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Abstract. In this paper, we show that the higher currents of the sine-
Gordon model are super-renormalizable by power counting in the frame-
work of pAQFT. First we obtain closed recursive formulas for the higher
currents in the classical theory and introduce a suitable notion of de-
gree for their components. We then move to the pAQFT setting, and by
means of some technical results, we compute explicit formulas for the un-
renormalized interacting currents. Finally, we perform what we call the
piecewise renormalization of the interacting higher currents, showing that
the renormalization process involves a number of steps which is bounded
by the degree of the classical conserved currents.

1. Introduction

This paper is the first step of a bigger project, which aims at understanding to
what extent features of the conservation laws of classical systems are preserved
when considering the corresponding quantum counterpart. More specifically,
the focus of this paper is on the two-dimensional massless sine-Gordon model,
both from the point of view of classical field theory and of perturbative alge-
braic quantum field theory (pAQFT for short).

During its long history, the sine-Gordon model has been keeping exhibit-
ing a remarkable richness of properties. As a classical relativistic nonlinear
scalar field theory, it was found to be an example of integrable system. This
encompasses features like: existence of an infinite number of solutions to the
sine-Gordon equation (see [1]), related by the Bäcklund transformations, and
existence of an infinite number of conserved higher currents, which moreover
form a commutative algebra with respect to the Peierl’s bracket (see [2]). Par-
ticularly relevant to our purpose is their interpretation in terms of Noether’s
theorem, proposed in [3] and [4].
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As a quantum physical system, the sine-Gordon model admits a non-
trivial scattering theory. In recent years, it has revealed remarkable features
also in the context of pAQFT. In particular, as shown in [5] and [6], the scatter-
ing matrix of the two-dimensional massless sine-Gordon model in Minkowski
signature was explicitly constructed and its summability proved, building par-
tially on older results in Euclidean signature (e.g. [7]). These results represent
the starting point of this work, which aims at investigating the renormalization
properties of the higher currents in the framework of pAQFT.

We adopt the Epstein–Glaser point of view on renormalization and prove,
as main result, that the components of the higher currents are super-renormalizable
by power counting in pAQFT (see [8]).

We remark that, compared to other approaches, in our setting we do
not need Fock techniques and we are hence not concerned with Fock space
representations issues.

We also point out that our argument follows from well-known results on
scaling-degree-preserving extensions of distributions [9–12] and on a notion
of degree that we introduce based on the concrete expressions of the higher
currents, which gives a bound on the number of counterterms necessary in the
renormalization process. Unlike other renormalization techniques though, we
do not compute the explicit counterterms.

However, we believe that the notations and technical results that we
introduce along the way might represent a good foundation for further inves-
tigations of the summability and convergence properties of the renormalized
interacting higher currents. For a discussion of the renormalizability, summa-
bility, conservation and other properties of the first of the higher conserved
currents of the sine-Gordon model, namely its stress–energy tensor, where the
counterterms are explicitly computed, we refer to [13] and [14].

The paper is organized as follows. Section 2 is devoted to the classical
theory of the sine-Gordon model. We generalize the work done in [4] to the
sine-Gordon with coupling constant (so that the setting considered in [4] is
recovered as a special case for the value of the coupling constant a = 1),
and moreover, we obtain explicit expressions for the components of the higher
conserved currents. Along the way, we also introduce a notion of degree that
will reveal to be crucial in the discussion of the renormalization of the currents
in pAQFT.

In Sect. 3, we prove some technical results, on the star products and on
the time-ordered products of fields with specific properties, that allow us to find
closed and explicit expressions for the unrenormalized time-ordered products
and the retarded components of the currents.

Finally, in Sect. 4 we show the renormalizability of the components of the
conserved currents. We do this in three steps: first we further expand the un-
renormalized expressions of the retarded components to their very elementary
parts, then we piecewise renormalize the elementary parts separately and in
the end we show that reassembling the piecewise renormalized parts all to-
gether gives a well-defined renormalized version of the retarded components of
the currents.
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2. Conserved Currents in the Classical Theory

In this section, we explain how the higher conserved currents for the classical
sine-Gordon model can be obtained. Conceptually, we follow the same passages
as in [4]. However, we extend all the definitions (given there only for the
standard sine-Gordon model) to the general case of the sine-Gordon model
with coupling constant (in the following referred to as the general sine-Gordon
model or simply as the sine-Gordon model). Hence, also our results are more
general and, moreover, we derive explicit recursive formulas for the quantities
involved.

Let us start introducing some basic notions. The sine-Gordon model is
a massless relativistic nonlinear scalar field theory. The rôle of spacetime is
played by the two-dimensional Minkowski space M2. The configuration bundle
of the theory is the trivial bundle M2 × R −→ M2. Configurations are sections
of this bundle, namely functions ϕ ∈ C∞(M2). Adopting Cartesian coordi-
nates (x0 =: t, x1 =: �x) on M2, with Minkowski metric η = diag(−1, 1), the
Lagrangian of the sine-Gordon model is written as:

L(ϕ) dt ∧ d�x = (L0 + Lint) dt ∧ d�x =
(1

2
∂μϕ∂μϕ + cos(aϕ)

)
dt ∧ d�x, (1)

where the parameter a > 0 is called coupling constant. The corresponding
Euler–Lagrange equation, also called sine-Gordon equation, is

− �ϕ + a sin(aϕ) = ∂2
t ϕ − ∂2

�xϕ + a sin(aϕ) = 0. (2)

In the sequel, we will always work in another system of coordinates, which
turns out to be particularly useful in the description of the conservation laws
of the sine-Gordon model. Light-cone coordinates (τ, ξ) are defined by:

τ =
1
2
(�x + t), ξ =

1
2
(�x − t). (3)

The sine-Gordon Lagrangian in light-cone coordinates becomes

L(ϕ) dτ ∧ dξ =
(1

2
ϕξϕτ + cos(aϕ)

)
dτ ∧ dξ, (4)

and the sine-Gordon equation is

ϕξτ − a sin(aϕ) = 0, (5)

where we also adopt the convention that subscripts τ and ξ indicate partial
derivation w.r.t. the corresponding coordinate.

Remark 2.0.1. The so-called standard sine-Gordon model, which is more often
treated in the literature, for example, also in [4], is the special case for a = 1.

2.1. Extended Bäcklund Transformations

Extended Bäcklund transformations are defined in [4] for the standard sine-
Gordon model. We extend the definition to the general sine-Gordon model by
introducing also a dependence on the coupling constant a > 0.
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Definition 2.1.1. We say that the configuration ϕ′ ∈ C∞(M2) is obtained from
a given configuration ϕ ∈ C∞(M2) by an extended Bäcklund transformation
B̂α of parameter α ∈ R, in notation ϕ′ = B̂αϕ, if ϕ′ satisfies the following
parametric PDE:

1
2
(ϕ′ + ϕ)ξ =

1
α

sin
[1
2
a(ϕ′ − ϕ)

]
(6)

Assuming that ϕ′ admits a power series expansion in the parameter α,
we write:

ϕ′ =
∞∑

ν=0

Aν [a, ϕ]αν , (7)

where the coefficients Aν depend on both the coupling constant a and the
initial configuration ϕ. We can now substitute the power series expansion (7)
in Eq. (6), using also the power series expansion of sine, and compare order
by order in α. Omitting the dependence on a and ϕ, we obtain the following
expressions for the first coefficients Aν :

A0 = ϕ, A1 =
2
a
ϕξ, A2 =

2
a2

ϕξξ. (8)

Carrying out a detailed study of Eq. (6), it is possible to obtain an explicit
recursive formula for the higher coefficients Aν .

Proposition 2.1.1. For ν ≥ 2, the following recursive formula holds:

Aν+1 =
[ ν
2 ]−1∑
β=0

(−1)β
(1
2
a
)2(β+1) ∑

n0,...,nν−2−2β≥0
n0+···+nν−2−2β=2β+3∑ν−2−2β

i=1 i·ni=ν−2−2β

An0
1 · · · Anν−2−2β

ν−1−2β

n0! · · · nν−2−2β !

+
1
a
Aν,ξ,

(9)

where [ν
2 ] denotes the integer part of ν

2 .

Proof. The proof is given in Appendix A. �

The first coefficients obtained using formula (9) have the form:

A3 =
2
a3

ϕξξξ +
1
3a

ϕ3
ξ ,

A4 =
2
a4

ϕ4ξ +
2
a2

ϕ2
ξϕξξ.

(10)

Remark 2.1.1. We point out two direct consequences of Proposition 2.1.1:
(i) From formula (9) it follows that the coefficients Aν are all polynomials in

the derivatives of the configuration ϕ with respect only to the light-cone
coordinate ξ.

(ii) As a consistency check, the expressions for the coefficients Aν presented
in [4] are recovered from our expressions setting a = 1.

We introduce here a notion that turns out to be crucial for the subsequent
discussion of the renormalization of the higher currents in pAQFT.
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Definition 2.1.2. Consider a configuration ϕ ∈ C∞(M2). We assign a degree
to its k-th derivative with respect to the light-cone coordinate ξ, by:

deg(ϕkξ) = k, ∀k ∈ N.

We extend this definition to monomials in the derivatives of ϕ by additivity:

deg(ϕk1ξϕk2ξ . . . ϕkN ξ) = k1 + k2 + · · · + kN .

We say that a polynomial in the derivatives of ϕ is homogeneous of degree d
if all its monomial terms have degree d.

Proposition 2.1.2. For every ν ≥ 0, the coefficient Aν is homogeneous of degree
equal to ν.

Proof. The claim is trivial for A0 = ϕ, A1 = 2
aϕξ and A2 = 2

a2 ϕξξ. For ν ≥ 3,
we proceed by induction. For ν = 3, using formulas (10), we have

deg(A3) = deg
( 2

a3
ϕξξξ +

1
3a

ϕ3
ξ

)
= 3.

Now suppose the claim is true for ν ≤ N . The coefficient AN+1 is given by
formula (9). The first term is 1

aAN,ξ which, due to the additional derivative
w.r.t. ξ, has degree N + 1. The other terms are given by products

An0
1 · · · AnN−2−2β

N−1−2β , (11)

with the conditions on the indexes n0, . . . , nN−2−2β :

n0 + · · · + nN−2−2β = 2β + 3

1 · n1 + · · · + (N − 2 − 2β) · nN−2−2β = N − 2 − 2β
(12)

From these conditions and additivity of the degree, it follows that

deg
(
An0

1 · · · AnN−2−2β

N−1−2β

)
= 1 · n0 + · · · + (N − 1 − 2β) · nN−2−2β

= n0 + n1 + · · · + nN−2−2β

+ n1 + · · · + (N − 2 − 2β) · nN−2−2β

= 2β + 3 + N − 2 − 2β

= N + 1.

(13)

�

2.2. The Higher Conserved Currents

First, we restrict on-shell; namely, we assume that ϕ is a solution of the sine-
Gordon equation (5). In [4], it is shown that the one-parameter family of
1-forms s̃(α) = −s̃

(α)
1 dτ + s̃

(α)
2 dξ, with components

s̃
(α)
1 = cos

[
1
2
(ϕ + B̃−αϕ)

]
+ cos

[
1
2
(ϕ + B̃αϕ)

]

s̃
(α)
2 =

1
α2

{
2 − cos

[
1
2
(ϕ − B̃−αϕ)

]
− cos

[
1
2
(ϕ − B̃αϕ)

]}
,

(14)

where B̃α are the extended Bäcklund transformations for the standard sine-
Gordon model (see Remark 2.0.1), forms a family of on-shell conserved currents
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for the standard sine-Gordon model. It turns out that the correct adaptation
of these formulas to the more general case of the sine-Gordon model (with
parameter a > 0) yields the following one-parameter (in α ∈ R) family of
on-shell conserved currents s(α) = −s

(α)
1 dτ + s

(α)
2 dξ, with components

s
(α)
1 = cos

[
1
2
a(ϕ + B̂−αϕ)

]
+ cos

[
1
2
a(ϕ + B̂αϕ)

]
(15a)

s
(α)
2 =

1
α2

{
2 − cos

[
1
2
a(ϕ − B̂−αϕ)

]
− cos

[
1
2
a(ϕ − B̂αϕ)

]}
. (15b)

We see immediately that the previous formulas for the components of the
conserved currents s̃

(α)
1 , s̃

(α)
2 are obtained from formulas (15a) and (15b) simply

by setting a = 1. Using our definition of extended Bäcklund transformations,
in particular Eq. (6), and using also the further relation

1
2
(B̂αϕ − ϕ)τ = α sin

[
1
2
a(B̂αϕ + ϕ)

]
, (16)

which holds only on-shell (cfr. [4]), it is easy to check that the currents s(α)

satisfy indeed a null-divergence, or continuity, equation, namely an on-shell
conservation law:

div(s(α)) := ∂ξs
(α)
1 + ∂τs

(α)
2 = 0, ∀α ∈ R. (17)

Using formula (7) to write B̂±αϕ and the power series expansion of cosine,
we can expand also s

(α)
1 and s

(α)
2 as power series in α. Since formulas (15a)

and (15b) are symmetric in α, only even powers will appear. We denote the
results of the power series expansions by:

s
(α)
1 =

∞∑
N=0

sN
1 α2N , s

(α)
2 =

∞∑
N=0

sN
2 α2N . (18)

For every order in α a conserved current is obtained, which we denote by

sN = −sN
1 dτ + sN

2 dξ. (19)

Proposition 2.2.1. The components sN
1 and sN

2 of the conserved currents have
the following form:

sN
1 = cos(aϕ)

⎡
⎢⎢⎢⎢⎢⎣

2
N∑

β=1

(−1)β

(
1
2
a

)2β ∑
n1,...,n2N ≥0

n1+···+n2N=2β∑2N
i=1 i·ni=2N

An1
1 · · · An2N

2N

n1! · · · n2N !

⎤
⎥⎥⎥⎥⎥⎦

+ sin(aϕ)

⎡
⎢⎢⎢⎢⎢⎣

2
N−1∑
β=0

(−1)β+1

(
1
2
a

)2β+1 ∑
n1,...,n2N ≥0

n1+···+n2N=2β+1∑2N
i=1 i·ni=2N

An1
1 · · · An2N

2N

n1! · · · n2N !

⎤
⎥⎥⎥⎥⎥⎦

,

(20)
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where the coefficient of sin(aϕ) is defined only for N ≥ 1, and

sN
2 = 2

N∑
μ=0

(−1)μ
(1

2
a
)2(μ+1) ∑

n0,...,n2(N−μ)≥0
n0+···+n2(N−μ)=2(μ+1)∑2(N−μ)

i=1 i·ni=2(N−μ)

An0
1 · · · An2(N−μ)

2(N−μ)+1

n0! · · · n2(N−μ)!
. (21)

Proof. The proof is given in Appendix B. �

The expressions of the first components, from formulas (20) and (21),
are: {

s0
1 = 2 cos(aϕ),

s0
2 = ϕ2

ξ ,

{
s1
1 = −ϕ2

ξ cos(aϕ) − 2
aϕξξ sin(aϕ),

s1
2 = 1

4ϕ4
ξ + 2

a2 ϕξϕξξξ + 1
a2 ϕ2

ξξ.
(22)

Remark 2.2.1. Considering point (i) of Remark 2.1.1 together with formulas
(20) and (21), it follows that the coefficients of cos(aϕ) and of sin(aϕ) in the
expression of sN

1 , and the second components sN
2 are all polynomials in the

derivatives of the configuration ϕ with respect to the coordinate ξ.
Again, as a consistency check, we have that we recover the expressions for the
components of the conserved currents given in [4] from our expressions setting
a = 1.

To conclude this section, we study the properties of the degree of the
components of the higher conserved currents.

Proposition 2.2.2. Assign by convention degree equal to 0 to cos(aϕ) and sin(aϕ).
Then, we have that:

• The first component sN
1 of the conserved current sN is homogeneous of

degree equal to 2N .
• The second component sN

2 of the conserved current sN is homogeneous
of degree equal to 2(N + 1).

Proof. The first claim follows from the observation that the coefficients of
cos(aϕ) and sin(aϕ), in formula (20), are given by sums of products of the
form

An1
1 · · · An2N

2N , (23)

with the condition n1 + · · · + 2N · n2N = 2N . All these products have degree

deg(An1
1 . . . An2N

2N ) = 1 · n1 + · · · + 2N · n2N = 2N. (24)

As for the second claim, from formula (21) we have that sN
2 is given by

a finite sum of products of the form

An0
1 · · · An2(N−μ)

2(N−μ)+1, (25)

with the conditions
n0 + · · · + n2(N−μ) = 2(μ + 1)

1 · n1 + . . . 2(N − μ) · n2(N−μ) = 2(N − μ).
(26)
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The degree of each one of these products is

deg
(
An0

1 . . . A
n2(N−μ)

2(N−μ)+1

)
= n0 + · · · + (2(N − μ) + 1)n2(N−μ)

= n0 + n1 + · · · + n2(N−μ)

+ n1 + · · · + 2(N − μ)n2(N−μ)

= 2(μ + 1) + 2(N − μ)

= 2(N + 1).

(27)

�

3. Unrenormalized Expressions for the Interacting Higher
Currents in pAQFT

Before discussing the technical details, we recall some basic notions regarding
the framework of pAQFT. In particular, we restrict to the specific setting of
the sine-Gordon model (for more extensive and general treatments, we refer
for example to [9,10,15,16]).

Fields, also called observables, are described by a class of smooth func-
tionals F : C∞(M2) → C, called microcausal functionals and denoted by Fμc.
More generally, in adherence with the perturbative approach, one considers
formal power series in � with coefficients in microcausal functionals, denoted
by Fμc[[�]].

The space of fields is endowed with a non-commutative product

F 
 G =
∞∑

n=0

�

n!

〈( δn

δϕn
F
)
, (W )n δn

δϕn
G

〉
, F,G ∈ Fμc[[�]], (28)

where δn

δϕn F, δn

δϕn G denote the n-th functional derivatives of the fields F and
G and the bidistribution W denotes a choice of Wightman two-point function.
This product defines on Fμc[[�]] the structure of a Poisson ∗-algebra, where the
Poisson bracket is given by the commutator with respect to the star product
and the involution ∗ by complex conjugation. The resulting Poisson ∗-algebra
(Fμc[[�]], 
, [·, ·]	,∗ ) is called the algebra of free fields.

While the algebra of free fields represents the model algebra for observ-
ables, the physical concept of evolution is encoded by the notion of interacting
fields. Roughly speaking, considering interacting fields represents the quantum
equivalent of the classical restriction to on-shell fields, namely observables eval-
uated only on configurations that are solutions of the Euler–Lagrange equa-
tions of the theory. This is precisely the case for the higher currents of the
sine-Gordon model, which are conserved only when evaluated on a configura-
tion that is a solution of the sine-Gordon equation.

Physical interactions are modelled by a subclass of functionals called local
functionals, denoted by Floc ⊂ Fμc, characterized by the property that their
functional derivatives of every order are distributions with compact support
contained in the diagonal of the appropriate number of copies of spacetime. In
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order to construct interacting fields, first the time-ordered product is defined
as the following commutative product of local fields F1, F2 ∈ Floc[[�]]:

T2

(
F1 ⊗ F2

)
= F1 
F F2 =

∞∑
n=0

�

n!

〈( δn

δϕn
F1

)
, (ΔF )n δn

δϕn
F2

〉
, (29)

where ΔF is the unique Feynman propagator (we remark that in general, on
curved spacetimes, the Feynman propagator is not unique). The time-ordered
product of order l is then:

Tl

(
F1 ⊗ · · · ⊗ Fl

)
:= F1 
F · · · 
F Fl, F1, . . . , Fl ∈ Floc[[�]]. (30)

In the formula for the time-ordered product, the Feynman propagator is
intended as a symmetric bidistribution defined on M

2
2. Its wavefront set is such

that the product of Feynman propagators can be defined using Hörmander’s
sufficient criterion [11] only outside of the diagonal. This implies that the
time-ordered products Tl

(
F1(x1) ⊗ · · · ⊗ Fl(xl)

)
, seen as observable-valued

distributions, can be defined by Hörmander’s sufficient criterion only on a
subset of M

l
2 denoted by

M̌
l
2 :=

{
(x1, . . . , xl) ∈ M

l
2|xi �= xj ∀1 ≤ i < j ≤ l

}
. (31)

The renormalization problem in pAQFT is the problem of extending these
products to distributions well-defined on the whole M

l
2. This can be done by

combining a study of the properties of their wavefront set with the notion of
Steinmann scaling degree [12]. The extension process is not always unique. The
ambiguities are represented by the possibility to add derivatives of Dirac deltas
up to a certain order. This renormalization framework goes under the name
of Epstein–Glaser renormalization. We also remark that the pAQFT setting
is defined not only on Minkowski spacetime, but applies more generally to
globally hyperbolic spacetimes.

The main ingredient of the interacting picture in pAQFT is the scattering
matrix S, defined as the generating function of the time-ordered products:

S(F ) := T
(
e
iF/�

⊗
)

:=
∞∑

n=0

1
n!

( i

�

)n

Tn

(
F⊗n

)
, F ∈ Floc[[�]], (32)

where T0

(
F
)

= 1 and T1

(
F
)

= F . Interacting fields (F )int can then be con-
structed by means of the Bogoliubov formula1:

(F )int := −i�
d
dλ

(
S(Lint)	−1 
 S(Lint + λF )

)∣∣∣∣
λ=0

, (33)

where Lint is the interaction Lagrangian of the system under consideration. In
particular for the sine-Gordon model, we have Lint = cos(aϕ).

1The idea of using Bogoliubov formula to compute the interacting components of the higher
currents for the sine-Gordon model was presented by the author at the 46th LQP Workshop,
Erlangen, 24–25 June 2022. Other approaches are possible. In particular, for considerations
on the stress–energy tensor in a different framework, see [13] and [14].
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The result has to be intended as a formal power series in � (and in the
coupling constant contained in Lint) and is denoted by:

(F )int =
∞∑

n=0

1
n!

Rn

(
L⊗n

int , F
)
. (34)

The coefficients of the series are called retarded products and are given by

Rt

(
L⊗t

int, F
)

=
( i

�

)t t∑
l=0

(
t

l

)
(−1)t−lT̄t−l

(
L

⊗(t−l)
int

)

 Tl+1

(
L⊗l

int ⊗ F
)
, (35)

where T̄n are the anti-chronological products, defined as the coefficients of the
inverse (in the sense of formal power series) of the scattering matrix

S(F )	−1 =
∞∑

n=0

1
n!

(−i

�

)n

T̄n

(
F⊗n

)
. (36)

3.1. Time-Ordered Products for Components sN2

We start the discussion with the components sN
2 because, as pointed out in

Remark 2.2.1, these are polynomials in the derivatives of the configuration ϕ.
Thanks to this fact, we can further manipulate the unrenormalized expression
of the (l + 1)-th time-ordered products occurring in formula (35).

Proposition 3.1.1. The unrenormalized (l + 1)-th time-ordered product for the
components sN

2 can be written as a finite sum of terms:

Tl+1

(
L⊗l
int ⊗ sN

2

)

=
2(N+1)∑

j=0

�
j

∑
j1,...,jl≥0

j1+···+jl=j

1
j1! . . . jl!

(ΔF )jTl

( δj1

δϕj1
Lint ⊗ · · · ⊗ δjl

δϕjl
Lint

) δj

δϕj
sN
2 .

(37)

Proof. The result can be obtained using the formula for the time-ordered prod-
uct from [5] and splitting the exponential in the following way:

Tl+1

(
L⊗l

int ⊗ sN
2

)
= μ ◦ e�

∑
1≤i<j≤l+1 Dij

F

(
L⊗l

int ⊗ sN
2

)

= μ ◦ e�
∑

1≤i<j≤l Dij
F ◦ e�

∑l
i=1 Di l+1

F

(
L⊗l

int ⊗ sN
2

)
,

(38)

where

Dij
F :=

〈
ΔF ,

δ

δϕi
⊗ δ

δϕj

〉
(39)

and the index i in δ
δϕi

means that the functional derivative is applied to the
i-th term of the tensor product.

From Remark 2.2.1 and Proposition 2.2.2 it follows that, as a local field,
sN
2 admits nonzero functional derivatives of order at most 2(N +1). Hence the
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second exponential series is in fact a finite sum:

e�
∑l

i=1 Di l+1
F
(
L⊗l

int ⊗ sN
2

)
=

2(N+1)∑
j=0

�
j

j!

(
l∑

i=1

Di l+1
F

)j (
L⊗l

int ⊗ sN
2

)
(40)

Expanding the operators
(

l∑
i=1

Di l+1
F

)j

= 〈(ΔF )j ,
( δ

δϕ1
+ · · · +

δ

δϕl

)j

⊗ δj

δϕj
l+1

〉, (41)

using the multinomial formula

( δ

δϕ1
+ · · · +

δ

δϕl

)j

=
∑

j1,...,jl≥0
j1+···+jl=j

j!
j1! . . . jl!

l∏
t=1

δjt

δϕjt

t

, (42)

and carrying out the computations, we finally arrived at the desired
result. �

3.2. Retarded Components sN2

We can use Proposition 3.1.1 to make more explicit the expression of the
unrenormalized retarded product of order t for components sN

2 :

Rt

(
L⊗t

int ⊗sN
2

)
=
( i

�

)t t∑
l=0

(
t

l

)
(−1)t−lT̄t−l

(
L

⊗(t−l)
int

)

Tl+1

(
L⊗l

int ⊗sN
2

)
. (43)

First, we study the 
-products T̄t−l

(
L

⊗(t−l)
int

)

 Tl+1

(
L⊗l

int ⊗ sN
2

)
which,

according to formula (37), are in turn composed by terms of the form

T̄t−l

(
L

⊗(t−l)
int

)


(
Tl

( δj1

δϕj1
Lint ⊗ · · · ⊗ δjl

δϕjl
Lint

) δj

δϕj
sN
2

)
. (44)

We can prove the following slightly more general technical result that applies
in particular to formula (44).

Proposition 3.2.1. Consider the star product of fields A,B,C ∈ Fμc[[�]]

A 
 (B C),

where C is such that ∃ c ∈ N for which δi

δϕi C = 0 whenever i > c, while A and
B can possibly admit nonzero functional derivatives of arbitrary order. Then,
the product can be written in the form:

A 
 (B C) =
c∑

k=0

�
k

k!

( ∞∑
n=0

�
n

n!

(
δk

δϕk

δn

δϕn
A

)
(W )n δn

δϕn
B

)
(W )k δk

δϕk
C. (45)
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Proof. The claim is obtained by explicit calculation, applying the Leibniz rule
and exchanging the order of the summations as follows:

A 
 (B C) =
∞∑

n=0

�
n

n!

(
δn

δϕn
A

)
(W )n δn

δϕn
(B C)

=
∞∑

n=0

�
n

n!

(
δn

δϕn
A

)
(W )n

( n∑
k=0

(
n

k

)
δn−k

δϕn−k
B

δk

δϕk
C

)

=
c∑

k=0

( ∞∑
n=k

�
n

n!

(
n

k

)(
δn

δϕn
A

)
(W )n δn−k

δϕn−k
B

)
δk

δϕk
C.

(46)

Rescaling the index of the second summation n → n − k, we conclude. �

Substituting formula (37) in the product T̄t−l

(
L

⊗(t−l)
int

)

Tl+1

(
L⊗l

int⊗sN
2

)
,

we obtain, as noted above, a sum of products of the form

T̄t−l

(
L

⊗(t−l)
int

)


(
Tl

( δj1

δϕj1
Lint ⊗ · · · ⊗ δjl

δϕjl
Lint

) δj

δϕj
sN
2

)
. (47)

Applying Proposition 3.2.1 to each one of these terms, setting A = T̄t−l(
L

⊗(t−l)
int

)
, B = Tl

(
δj1

δϕj1 Lint ⊗ · · · ⊗ δjl

δϕjl
Lint

)
and C = δj

δϕj sN
2 , we finally

get:

T̄t−l

(
L

⊗(t−l)
int

)
� Tl+1

(
L⊗l
int ⊗ sN

2

)

=

2(N+1)∑
j=0

�
j

∑
j1,...,jl≥0

j1+···+jl=j

1

j1! . . . jl!

2(N+1)−j∑
i=0

�
i

i!

×
( ∞∑

k=0

�
k

k!

δi

δϕi

δk

δϕk
T̄t−l

(
L

⊗(t−l)
int

)
(W )k δk

δϕk
Tl

( δj1

δϕj1
Lint ⊗ · · · ⊗ δjl

δϕjl
Lint

))

× (ΔF )j(W )i δi

δϕi

δj

δϕj
sN
2 .

(48)
We can now plug this equation in formula (43) and finally arrive at the

explicit expression for the unrenormalized retarded components sN
2 :

Rt

(
L⊗t

int ⊗ sN
2

)

=
( i

�

)t t∑
l=0

(
t

l

)
(−1)t−l

2(N+1)∑
j=0

2(N+1)−j∑
i=0

�
j
�

i

i!

∑
j1,...,jl≥0

j1+···+jl=j

1
j1! . . . jl!

×
( ∞∑

k=0

�
k

k!
δi

δϕi

δk

δϕk
T̄t−l

(
L

⊗(t−l)
int

)
(W )k δk

δϕk
Tl

( δj1

δϕj1
Lint ⊗ · · · ⊗ δjl

δϕjl
Lint

))

× (ΔF )j(W )i δi

δϕi

δj

δϕj
sN
2 .

(49)
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3.3. Time-Ordered Products for Components sN1

We know from formula (21) that components sN
1 are given by the sum of a ho-

mogeneous part of degree 2N multiplied by cos(aϕ) and another homogeneous
part of degree 2N multiplied by sin(aϕ). We rename the two homogeneous
parts qN

1 and rN
1 , respectively, and write

sN
1 = cos(aϕ)qN

1 + sin(aϕ)rN
1 . (50)

By linearity of the time-ordered products, we have

Tl+1

(
L⊗l

int⊗sN
1

)
= Tl+1

(
L⊗l

int⊗(cos(aϕ)qN
1 )
)
+Tl+1

(
L⊗l

int⊗(sin(aϕ)rN
1 )
)
. (51)

The two terms on the right hand side can be treated exactly in the same
way, so we discuss only the second one. In this case it is not any longer true
that the field sin(aϕ)rN

1 admits nonzero functional derivatives only up to a
finite order, so we cannot directly apply Proposition 3.1.1. Nevertheless, we
can prove a similar technical result.

Proposition 3.3.1. Consider a time-ordered product of the form

Tl+1

(
A⊗l ⊗ (B C)

)
, A,B,C ∈ Fμc[[�]],

where C is such that ∃ c ∈ N for which δi

δϕi C = 0 whenever i > c, while A and
B can possibly admit nonzero functional derivatives of arbitrary order. Then,
the following equation holds:

Tl+1

(
A⊗l ⊗ (B C)

)

=
c∑

i=0

�
i(ΔF )i

∑
i1,...,il≥0

i1+···+il=i

1
i1! . . . il!

Tl+1

( δi1

δϕi1
A ⊗ · · · ⊗ δil

δϕil
A ⊗ B

) δi

δϕi
C.

(52)

Proof. We start from the formula for the time-ordered products as in the proof
of Proposition 3.1.1:

Tl+1

(
A⊗l ⊗ (B C)

)
= μ ◦ e�

∑
1≤i<j≤l Dij

F ◦ e�
∑l

i=1 Di l+1
F
(
A⊗l ⊗ (B C)

)
. (53)

The second exponential acts on the fields as:

e�
∑l

i=1 Di l+1
F

(
A⊗l ⊗ (B C)

)

=
∞∑

j=0

�
j

j!
(ΔF )j

(
δ

δϕ1
+ · · · +

δ

δϕl

)j

⊗ δj

δϕj
l+1

(
A⊗l ⊗ (B C)

)
.

(54)

Then, we proceed studying separately the derivatives of the product δj

δϕj
l+1

(
B C
)
.

Applying the Leibniz rule, we have:
∞∑

j=0

δj

δϕj
l+1

(
B C
)

=
∞∑

j=0

j∑
k=0

(
j

k

)
δj−k

δϕj−k
l+1

B
δk

δϕk
l+1

C. (55)
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We can rewrite the sums using indices k and i = j − k. Recalling also that by
hypothesis, the field C admits nonzero derivatives only up to order c, we get:

∞∑
j=0

δj

δϕj
l+1

(
B C
)

=
c∑

k=0

( ∞∑
i=0

(
i + k

k

)
δi

δϕi
l+1

B

)
δk

δϕk
l+1

C. (56)

Substituting in Eq. (54) and using the new indices i and k for the sums, we
obtain:

e�
∑l

i=1 Di l+1
F

(
A⊗l ⊗ (B C)

)

=
c∑

k=0

∞∑
i=0

(�ΔF )i+k

(i + k)!

(i + k

k

)( δ

δϕ1
+ · · · +

δ

δϕl

)i+k (
A⊗l

)⊗
(

δi

δϕi
l+1

B
δk

δϕk
l+1

C

)

=

c∑
k=0

(�ΔF )k

k!

∞∑
i=0

(�ΔF )i

i!

(
δ

δϕ1
+ · · · +

δ

δϕl

)i+k (
A⊗l

)⊗
(

δi

δϕi
l+1

B
δk

δϕk
l+1

C

)
.

We can expand the operators
(

δ
δϕ1

+ · · · + δ
δϕl

)k

using the multinomial
formula. Substituting it in the formula above, we obtain:

e�
∑l

i=1 Di l+1
F

(
A⊗l ⊗ (B C)

)

=
c∑

k=0
k1,...,kl≥0

k1+···+kl=k

(�ΔF )k

k1! · · · kl!

∞∑
i=0

(�Δ)i

i!

(
δ

δϕ1
+ · · · +

δ

δϕl

)i ( δk1

δϕk1
A ⊗ · · · ⊗ δkl

δϕkl
A

)

⊗
(

δi

δϕi
l+1

B
δk

δϕk
l+1

C

)
.

(57)
It is now clear that the sum over the index i in the last formula corre-

sponds to the exponential notation for the time-ordered product. Hence, we
can write:

e�
∑l

i=1 Di l+1
F
(
A⊗l ⊗ (B C)

)

=
c∑

k=0
k1,...,kl≥0

k1+···+kl=j

(�ΔF )k

k1! · · · kl!
e�
∑l

i=1 Di l+1
F

(
δk1

δϕk1
A ⊗ · · · ⊗ δkl

δϕkl
A ⊗ B

)
δk

δφk
l+1

C.

Applying the remaining operators μ ◦ e�
∑

1≤i<j≤l Dij
F , we finally arrive at:

μ ◦ e�
∑

1≤i<j≤l Dij
F ◦ e�

∑l
i=1 Di l+1

F
(
A⊗l ⊗ (B C)

)
=

c∑
k=0

k1,...,kl≥0
k1+···+kl=k

(�ΔF )k

k1! · · · kl!

×μ ◦ e�
∑

1≤i<j≤l Dij
F ◦ e�

∑l
i=1 Di l+1

F

(
δk1

δϕk1
A ⊗ · · · ⊗ δkl

δϕkl
A ⊗ B

)
δk

δϕk
l+1

C
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=
c∑

k=0
k1,...,kl≥0

k1+···+kl=k

(�ΔF )k

k1! · · · kl!
Tl+1

(
δk1

δϕk1
A ⊗ · · · ⊗ δkl

δϕkl
A ⊗ B

)
δk

δϕk
C.

�

In our case we have A = Lint, B = sin(aϕ) and C = rN
1 . From Remark

2.2.1 and Proposition 2.2.1, we know that functional derivatives of rN
1 of order

greater than 2N are all zero. We can hence apply Proposition 3.3.1 and obtain:

Tl+1

(
L⊗l
int ⊗ (sin(aϕ) · rN

1 )
)

=
2N∑
i=0

�
i(ΔF )i

∑
i1,...,il≥0

i1+···+il=i

1

i1! . . . il!
Tl+1

( δi1

δϕi1
Lint ⊗ · · · ⊗ δil

δϕil
Lint ⊗ sin(aϕ)

)

× δi

δϕi
rN
1 . (58)

A completely analogous expression occurs for term Tl+1

(
L⊗l

int ⊗ (cos(aϕ)qN
1 )
)

in equation (51), with cos(aϕ) in place of sin(aϕ) and qN
1 in place of rN

1 .

3.4. Retarded Components sN1
Using formula (50) and linearity of the retarded products, we have

Rt

(
L⊗t

int ⊗ sN
1

)
= Rt

(
L⊗t

int ⊗ (cos(aϕ)qN
1 )
)

+ Rt

(
L⊗t

int ⊗ (sin(aϕ)rN
1 )
)
. (59)

The two terms on the right hand side are completely analogous, so we consider
only the second one. By formula (35), we can expand the retarded product as

Rt

(
L⊗t

int ⊗ (sin(aϕ)rN
1 )
)

=
( i

�

)t t∑
l=0

(
t

l

)
(−1)t−lT̄t−l

(
L

⊗(t−l)
int

)

 Tl+1

(
L⊗l

int ⊗ (sin(aϕ)rN
1 )
)
.

(60)

First we consider the star products T̄t−l

(
L

⊗(t−l)
int

)

 Tl+1

(
L⊗l

int ⊗ (sin(aϕ)

rN
1 )
)
. We substitute equation (58), renaming the index i → j, and then apply

Proposition 3.2.1 to every term to obtain:

T̄t−l

(
L

⊗(t−l)
int

)

 Tl+1

(
L⊗l

int ⊗ (sin(aϕ)rN
1 )
)

=
2N∑
j=0

�
j

∑
j1,...,jl≥0

j1+···+jl=j

1
j1! . . . jl!

2N−j∑
i=0

�
i

i!

( ∞∑
k=0

�
k

k!
δi

δϕi

δk

δϕk
T̄t−l

(
L

⊗(t−l)
int

)

×(W )k δk

δϕk
Tl+1

( δj1

δϕj1
Lint ⊗ · · · ⊗ δjl

δϕjl
Lint ⊗ sin(aϕ)

))

×(ΔF )j(W )i δi

δϕi

δj

δϕj
rN
1 . (61)
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Then, we plug this expression in Eq. (60) and arrive at:

Rt

(
L⊗t
int ⊗ (sin(aϕ) · rN

1 )
)

=
( i

�

)t
t∑

l=0

(
t

l

)
(−1)t−l

2N∑
j=0

�
j

∑
j1,...,jl≥0

j1+···+jl=j

1

j1! . . . jl!

2N−j∑
i=0

�
i

i!

×
( ∞∑

k=0

�
k

k!

δi

δϕi

δk

δϕk
T̄t−l

(
L

⊗(t−l)
int

)
(W )k

× δk

δϕk
Tl+1

( δj1

δϕj1
Lint ⊗ · · · ⊗ δjl

δϕjl
Lint ⊗ sin(aϕ)

))
(ΔF )j(W )i δi

δϕi

δj

δϕj
rN
1 .

(62)
A completely analogous expression occurs for the term Rt

(
L⊗t

int⊗(cos(aϕ)qN
1 )
)

in Eq. (59), with cos(aϕ) in place of sin(aϕ) and qN
1 in place of rN

1 .

4. Renormalization of the Interacting Currents

In the following sections, we perform the renormalization of the retarded com-
ponents Rt

(
L⊗t

int ⊗ sN
2

)
and Rt

(
L⊗t

int ⊗ (sin(aϕ) · rN
1 )
)

(recall that the other

term in Eq. (59) for the retarded component sN
1 is completely analogous).

Specifically, we show that it is possible to extend their unrenormalized expres-
sions, as distributions defined on the subset M̌

t+1
2 ⊆ M

t+1
2 (see formula (31)),

to distributions defined on the whole space M
t+1
2 .

More importantly, in Lemma 4.1.1 we prove that the scaling degree of
the distributions appearing in the unrenormalized retarded components of the
currents is uniformly bounded by the corresponding degree of the component,
according to Definition 2.1.2 and Proposition 2.2.2. This directly implies the
main result of this paper, namely, the super-renormalizability of the retarded
components of the higher currents of the sine-Gordon model, see Theorem
4.3.1.

We adopt an approach which we call piecewise renormalization. It con-
sists of three steps: expansion of the expression to be renormalized in its ele-
mentary parts, renormalization of each one of the elementary parts separately
and finally showing that reassembling the renormalized elementary parts all
together gives a well-defined result.

Before starting with our program, we recall (see [5] and [6] for more
details) that vertex operators Va, a > 0, act on configurations ϕ ∈ C∞(M2),
returning a distribution (a smooth function in fact), in the following way:

Va(x) : ϕ �→ Va(x)[ϕ] := eiaϕ(x). (63)

The critical property of vertex operators is that functional derivatives of vertex
operators have the form:

δk

δϕ(y1) . . . δϕ(yk)
Va(x) = (ia)kδ(y1 − x) . . . δ(yk − x)Va(x), (64)
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thus they are essentially again vertex operators, modulo constant coefficients.
We use vertex operators to write the interaction Lagrangian of the sine-Gordon
model as Lint = cos(aϕ) = 1

2 (Va + V−a) and to write sin(aϕ) = 1
2i (Va − V−a).

We also introduce some notation. By slight abuse, we denote with x :=
(τ, ξ) the set of light-cone coordinates on M2, and consequently with
(x1, . . . , xn) := (τ1, ξ1, . . . , τn, ξn) the set of light-cone coordinates on M

n
2 . Sub-

stituting the vertex operators, using formula (64) and omitting the numerical
coefficients, we can write the generic term of Eq. (49) in the form:

δi

δϕi

δk

δϕk
T̄t−l

(
Val+1(xl+1) ⊗ · · · ⊗ Vat

(xt)
)(

W (x{l+1≤·≤t} − x{1≤·≤l})
)k

× δk

δϕk
Tl

(
Va1(x1) ⊗ · · · ⊗ Val

(xl)
)(

∂·
ξt+1

W (x{l+1≤·≤t} − xt+1)
)i

×(∂·
ξt+1

ΔF (x{1≤·≤l} − xt+1)
)j δi

δϕi

δj

δϕj
sN
2 (xt+1), (65)

where, moreover, we have that:
• a1, . . . , at ∈ {+a,−a}, a ∈ R+;
• (W (x{l+1≤·≤t} − x{1≤·≤l})

)k denotes products of k Wightman two-point
functions and for each one of them the first argument belongs to the set
x{l+1≤·≤t} := {xl+1, . . . , xt}, while the second argument belongs to the
set x{1≤·≤l} := {x1, . . . , xl}, in all the possible combinations;

• (∂·
ξt+1

W (x{l+1≤·≤t} −xt+1)
)i denotes products of i Wightman two-point

functions where for each one of them the first argument belongs to the
set x{l+1≤·≤t}, the second argument is xt+1 and moreover we take a
derivative of unspecified order ∂·

ξt+1
with respect to the coordinate ξt+1

of xt+1 = (τt+1, ξt+1) (the order of the derivative depends on the results
of the functional derivatives δi

δϕi of sN
2 (xt+1));

• (∂·
ξt+1

ΔF (x{1≤·≤l} − xt+1)
)j denotes products of j Feynman propaga-

tors where for each one of them the first argument belongs to the set
x{1≤·≤l}, the second argument is xt+1 and moreover we take a deriv-
ative of unspecified order ∂·

ξt+1
with respect to the coordinate ξt+1 of

xt+1 = (τt+1, ξt+1) (the order of the derivative depends on the results of
the functional derivatives δj

δϕj of sN
2 (xt+1)).

For the generic term of Eq. (62), we have the only difference that also the
time-ordered products depend on xt+1. In this case we have:

δi

δϕi

δk

δϕk
T̄t−l

(
Val+2(xl+2) ⊗ · · · ⊗ Vat+1(xt+1)

)

×(W (x{l+2≤·≤t+1} − x{1≤·≤l+1})
)k(

∂·
ξl+1

W (x{l+2≤·≤t+1} − xl+1)
)i

× δk

δϕk
Tl+1

(
Va1(x1) ⊗ · · · ⊗ Val

(xl) ⊗ Val+1(xl+1)
)

×(∂·
ξl+1

ΔF (x{1≤·≤l} − xl+1)
)j δi

δϕi

δj

δϕj
rN
1 (xl+1), (66)
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with same notations as above.
We are now ready to discuss the renormalization of the generic terms (65)

and (66). In Sect. 4.1, we consider time-ordered products of vertex operators
together with derivatives of Feynman propagators and perform what we call
their piecewise renormalization. In Sect. 4.2, we consider anti-chronological
products of vertex operators and we perform their piecewise renormalization.

As for the derivatives of the components of the currents, they are smooth
functions, there is no need for renormalization. The products of Wightman
two-point functions and their derivatives, instead, are always well-defined dis-
tributions on M

t+1
2 according to Hörmander’s sufficient criterion.

Finally, in Sect. 4.3 we reassemble the pieces all together and show, by a
careful study of the wavefront sets of all the elements involved, that the result
is well-defined.

4.1. Piecewise Renormalization of Time-Ordered Products and Derivatives of
Feynman Propagators

According to our plan, we first expand the expressions to be renormalized
in their most elementary parts. In [5] it is shown that the unrenormalized
time-ordered products of vertex operators can be written in exponential form
as:

Tl

(
Va1(x1) ⊗ · · · ⊗ Val

(xl)
)

= ei
(
a1ϕ(x1)+···+alϕ(xl)

) ∏
1≤i<j≤l

e−aiaj�ΔF (xi−xj).

(67)
Omitting the exponentials of configurations, which do not need renormal-

ization, we can expand the exponentials of Feynman propagators as a formal
power series in �. The coefficient of the power �

p is given by:
∑

{pi,j≥0, 1≤i<j≤l
s.t.

∑
i,j pi,j=p}

(−1)p(a1a2)p1,2 · · · (al−1al)pl−1,l

p1,2! · · · pl−1,l!

× (ΔF )p1,2(x1 − x2) · · · (ΔF )pl−1,l(xl−1 − xl),

(68)

4.1.1. Discussion for Components sN2 . We now concentrate specifically on the
time-ordered products of vertex operators and derivative of Feynman prop-
agators appearing in formula (65). We write the products of derivatives of
Feynman propagators as:

∂
i1,1
ξt+1

ΔF (x1 − xt+1) · · · ∂i1,n1
ξt+1

ΔF (x1 − xt+1)

× ∂
i2,1
ξt+1

ΔF (x2 − xt+1) · · · ∂i2,n2
ξt+1

ΔF (x2 − xt+1)

...

× ∂
il,1
ξt+1

ΔF (xl − xt+1) · · · ∂il,nl

ξt+1
ΔF (xl − xt+1),

(69)

where ir s ≥ 1, if nr ≥ 1, and otherwise, if nr = 0, then there is no product of
Feynman propagators with argument (xr−xt+1). Using formulas (69) and (68)
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in expression (65), we obtain that the coefficient of �
p, modulo multiplicative

constants, is:
∑

{pi,j≥0, 1≤i<j≤l
s.t.

∑
i,j pi,j=p}

(−1)p(a1a2)p1,2 · · · (al−1al)pl−1,l

p1,2! · · · pl−1,l!

×(ΔF )p1,2(x1 − x2) · · · (ΔF )pl−1,l(xl−1 − xl)

×∂
i1,1
ξt+1

ΔF (x1 − xt+1) · · · ∂i1,n1
ξt+1

ΔF (x1 − xt+1)

...
×∂

il,1
ξt+1

ΔF (xl − xt+1) · · · ∂il,nl

ξt+1
ΔF (xl − xt+1). (70)

We consider each one of the elementary parts separately, as distributions de-
fined on M2 \ {0}, and denote them by:

D1,2 := (ΔF )p1,2 ,

...

Dl−1,l := (ΔF )pl−1,l ,

D1,t+1 := (∂i1,1
ξt+1

ΔF ) · · · (∂i1,n1
ξt+1

ΔF ),

...

Dl,t+1 := (∂il,1
ξt+1

ΔF ) · · · (∂il,nl

ξt+1
ΔF ),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∈ D ′(M2 \ {0}). (71)

In order to proceed with the second step of the piecewise renormalization
process of formula (70), we take into account the Steinmann scaling degree of
the Feynman propagator. On the two-dimensional Minkowski space M2, the
Feynman propagator ΔF scales homogeneously with scaling degree sd(ΔF ) =
0, and every derivative potentially increases by one the scaling degree (see
[10,12]).

Lemma 4.1.1. For the products of derivatives of Feynman propagators appear-
ing in formula (71), the following estimate on the scaling degrees holds:

sd
(
(∂i1,1

ξt+1
ΔF ) · · · (∂i1,n1

ξt+1
ΔF )

)
≤∑n1

s=1 i1,s,

...

sd
(
(∂il,1

ξt+1
ΔF ) · · · (∂il,nl

ξt+1
ΔF )

)
≤∑nl

s=1 il,s,

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

≤ deg(sN
2 ) = 2(N + 1), (72)

for every N ∈ N.

Proof. The result follows from Remark 2.2.1 and Proposition 2.2.2 on the
structure of the components sN

2 and from the general fact that, given two
distributions u, v ∈ D ′ whose distributional product is well-defined, it holds

sd(uv) ≤ sd(u) + sd(v). (73)

�
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Remark 4.1.1. Formula (73) also implies that any power of the Feynman prop-
agator has scaling degree equal to 0 on M2 \ {0}.

Knowing an estimate on the scaling degree of each one of the elements
in formula (71), we can apply well-known results [9,10,17] to extend them
to distributions defined on the whole M2 in such a way to also preserve the
scaling degree. We denote these extensions by:

[D1,2] := [(ΔF )p1,2 ],
...

[Dl−1,l] := [(ΔF )pl−1,l ],

[D1,t+1] := [(∂i1,1
ξt+1

ΔF ) · · · (∂i1,n1
ξt+1

ΔF )],

...

[Dl,t+1] := [(∂il,1
ξt+1

ΔF ) · · · (∂il,nl

ξt+1
ΔF )],

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∈ D ′(M2). (74)

Remark 4.1.2. We point out two important observations:

(i) For powers of Feynman propagators, since their scaling degree is equal
to 0, the extensions are direct and unique. For products of derivatives of
Feynman propagators, when the scaling degree is sd ≥ 2, the extension
is unique up to adding a finite number of derivatives of the Dirac delta,
namely derivatives up to order sd − 2 (see also beginning of Sect. 3).

(ii) Considering the wavefront set of the Feynman propagator and the fact
that the extensions are realized by possibly adding Dirac deltas, we have
that the wavefront set of each element of (74) is contained in the set

Γ0 :=
{

(w, k) ∈ T ∗
M2| |w|2 = 0, w �= 0, k =

η�(w)
λ

, λ > 0
}

∪
∪ {(0, k) ∈ T ∗

M2|k �= 0} ,

(75)

where |w|2 = η(w,w), and η� : TM2 → T ∗
M2 is the isomorphism induced

by the Minkowski metric.

The piecewise renormalization process has to maintain the translation
invariance of the unrenormalized expressions. Starting from the extended el-
ementary parts (74), we obtain translation-invariant distributions defined on
M

2
2 performing the pull-back of every element via appropriate maps.

Lemma 4.1.2. Consider the maps

si,j : M
2
2 → M2

(xi, xj) �→ wi,j = xi − xj ,
(76)
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where i, j ∈ {1, . . . , l} and i < j, or i = 1, . . . , l and j = t + 1. Then, the
following are well-defined translation-invariant distributions:

s∗
1,2

(
[D1,2]

)
= [(ΔF )p1,2 ](x1 − x2),

...

s∗
l−1,l

(
[Dl−1,l]

)
= [(ΔF )pl−1,l ](xl−1 − xl),

s∗
1,t+1

(
[D1,t+1]

)
= [(∂i1,1

ξt+1
ΔF ) · · · (∂i1,n1

ξt+1
ΔF )](x1 − xt+1),

...

s∗
l,t+1

(
[Dl,t+1]

)
= [(∂il,1

ξt+1
ΔF ) · · · (∂il,nl

ξt+1
ΔF )](xl − xt+1),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∈ D ′(M2
2). (77)

Proof. Pull-back along the maps si,j is well-defined in general for any distri-
bution, hence a fortiori for our distributions (74). Indeed, the transpose of the
tangent maps (s′

i,j)
t have the form:

(s′
i,j)

t : T ∗
M2 → T ∗

M
2
2

(wi,j = xi − xj , k) �→ (xi, k;xj ,−k).
(78)

Hence, the condition ensuring the well-posedness of the pull-back (see [11])

(s′
i,j)

t
(
Γ0

) ∩ {(xi, 0;xj , 0) ⊂ T ∗
M

2
2

}
= ∅ (79)

is always satisfied, for any i, j as above. �

Remark 4.1.3. From the properties of the wavefront set under the operation
of pull-back and formula (75), we obtain that the wavefront set of the distri-
butions (77) are contained, respectively, in the sets

Γi,j = (s′
i,j)

t
(
Γ0

)
=
{

(xi, k;xj ,−k) ∈ T ∗
M

2
2| |xi − xj |2 = 0, xi �= xj ,

k =
η�(xi − xj)

λ
, λ > 0

}
∪ {(x, k;x,−k) ∈ T ∗

M
2
2|k �= 0

}
,

(80)
with i, j ∈ {1, . . . , l} and i < j, or i = 1, . . . , l and j = t + 1.

We have thus completed the piecewise renormalization of the elemen-
tary parts. Reassembling them together, we arrive at the following piecewise
renormalized expression for the coefficient of �

p:
∑

{pi,j≥0, 1≤i<j≤l
s.t.

∑
i,j pi,j=p}

(−1)p(a1a2)p1,2 · · · (al−1al)pl−1,l

p1,2! · · · pl−1,l!

×[(ΔF )p1,2 ](x1 − x2) · · · [(ΔF )pl−1,l ](xl−1 − xl)

×[(∂i1,1
ξt+1

ΔF ) · · · (∂i1,n1
ξt+1

ΔF )](x1 − xt+1)

...
×[(∂il,1

ξt+1
ΔF ) · · · (∂il,nl

ξt+1
ΔF )](xl − xt+1). (81)
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We can repeat the piecewise renormalization in the same way for the
coefficients of every power of �

p. Summing together all the orders, we finally
obtain the piecewise renormalized expression of the time-ordered products of
vertex operators and derivatives of Feynman propagators appearing in formula
(65)
[
Tl

(
Va1(x1) ⊗ · · · ⊗ Val

(xl)
)] · [(∂i1 1

ξt+1
ΔF ) · · · (∂i1 n1

ξt+1
ΔF )](x1 − xt+1) · · ·

· · · [(∂il 1
ξt+1

ΔF ) · · · (∂il nl

ξt+1
ΔF )](xl − xt+1).

(82)

We show that the distributional products in this formula are actually well-
defined according to Hörmander’s sufficient criterion in Theorem 4.3.1.

Remark 4.1.4. We stress that, from point (i) of Remark 4.1.2, the extensions
regarding the Feynman propagators and consequently the time-ordered prod-
ucts of vertex operators are unique and direct. Instead, the extensions re-
garding the products of derivatives of Feynman propagators are not unique.
Nevertheless, the number of derivatives of Dirac deltas that can be added in
the extension process is finite and bounded by deg(sN

2 ) − 2 = 2N .

4.1.2. Discussion for Components sN1 . The piecewise renormalization of the
time-ordered products of vertex operators and derivatives of Feynman prop-
agators in the case of the retarded components sN

1 proceeds in a completely
analogous way. We only point out some slight differences.

The first one is that the time-ordered products appearing in formula (66)
depend also on the same argument xl+1 as the term rN

1 . This translates in the
fact that the coefficient of the power �

p takes the form
∑

{pi,j≥0, 1≤i<j≤l+1
s.t.

∑
i,j pi,j=p}

(−1)p(a1a2)p1,2 · · · (alal+1)pl,l+1

p1,2! · · · pl,l+1!

×(ΔF )p1,2(x1 − x2) · · · (ΔF )pl,l+1(xl − xl+1)

×∂
i1,1
ξl+1

ΔF (x1 − xl+1) · · · ∂i1,n1
ξl+1

ΔF (x1 − xl+1)

...
×∂

il,1
ξl+1

ΔF (xl − xl+1) · · · ∂il,nl

ξl+1
ΔF (xl − xl+1). (83)

The second difference is that, from Proposition 2.2.2, deg(rN
1 ) = 2N . So

the same argument as in Lemma 4.1.1 tells us that the scaling degrees of the
products of derivatives of Feynman propagators in (83) are bounded by 2N .

We can repeat the same passages as in the previous section, obtaining a
piecewise renormalized version of the coefficient of �

p for every order p:
∑

{pi,j≥0, 1≤i<j≤l+1
s.t.

∑
i,j pi,j=p}

(−1)p(a1a2)p1,2 · · · (alal+1)pl,l+1

p1,2! · · · pl,l+1!

×[(ΔF )p1,2 ](x1 − x2) · · · [(ΔF )pl,l+1 ](xl − xl+1)
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×[(∂i1,1
ξl+1

ΔF ) · · · (∂i1,n1
ξl+1

ΔF )](x1 − xl+1)

...
×[(∂il,1

ξl+1
ΔF ) · · · (∂il,nl

ξl+1
ΔF )](xl − xl+1). (84)

Summing together all the orders, we finally get the piecewise renormalized
expression of the time-ordered products of vertex operators and derivatives of
Feynman propagators appearing in formula (66):

[
Tl+1

(
Va1 (x1) ⊗ · · · ⊗ Val (xl) ⊗ Val+1 (xl+1)

)]

× [(∂
i1,1
ξl+1

ΔF ) · · · (∂i1,n1
ξl+1

ΔF )](x1 − xl+1) · · · [(∂il,1
ξl+1

ΔF ) · · · (∂il,nl
ξl+1

ΔF )](xl − xl+1).

(85)
We show that the distributional products in this formula are actually

well-defined according to Hörmander’s sufficient criterion in Theorem 4.3.1.

Remark 4.1.5. As previously pointed out in Remark 4.1.4 for the retarded
components sN

2 , also in this case the ambiguity in the renormalization process,
given by number of derivatives of Dirac deltas that can be added, is finite and
bounded by deg(sN

1 ) − 2 = 2(N − 1).

4.2. Piecewise Renormalization of Anti-chronological Products of Vertex Op-
erators

We now consider the anti-chronological products appearing in formulas (65)
and (66). In both cases we have anti-chronological products of vertex operators
with t − l arguments. We indicate them by:

T̄t−l

(
Val+1(xl+1) ⊗ · · · ⊗ Vat

(xt)
)
. (86)

The anti-chronological products of vertex operators can be written in the fol-
lowing exponential form:

T̄t−l

(
Val+1(xl+1) ⊗ · · · ⊗ Vat

(xt)
)

= ei
(
al+1ϕ(xl+1)+···+atϕ(xt)

) ∏
l+1≤i<j≤t

e−aiaj�ΔAF (xi−xj),
(87)

where ΔAF is the anti-Feynman propagator, defined as the complex conjugate
of the Feynman propagator ΔAF = ΔF . For its scaling degree, it holds:

sd(ΔAF ) = sd(ΔF ) = sd(ΔF ) = 0. (88)

We can expand the product of exponentials of anti-Feynman propagators
and collect the coefficient of �

q:
∑

{qi,j≥0, l+1≤i<j≤t
s.t.

∑
i,j qi,j=q}

(−1)q(al+1al+2)ql+1,l+2 · · · (at−1at)qt−1,t

ql+1,l+2! · · · qt−1,t!

× (ΔAF )ql+1,l+2(xl+1 − xl+2) · · · (ΔAF )qt−1,t(xt−1 − xt).
(89)
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Each one of the elementary parts has scaling degree equal to 0. So they admit
direct and unique extensions (cfr. point (i) of Remark 4.1.2). Repeating once
more the same passages as in Sect. 4.1.1, we arrive at the piecewise renormal-
ized expression of the coefficient of �

q:
∑

{qi,j≥0, l+1≤i<j≤t
s.t.

∑
i,j qi,j=q}

(−1)q(al+1al+2)ql+1,l+2 · · · (at−1at)qt−1,t

ql+1,l+2! · · · qt−1,t!

× [(ΔAF )ql+1,l+2 ](xl+1 − xl+2) · · · [(ΔAF )qt−1,t ](xt−1 − xt).
(90)

Summing together all the orders, we finally get the piecewise renormalized
expression of the anti-chronological products of vertex operators appearing in
formulas (65) and (66), which we denote by:

[
T̄t−l

(
Val+1(xl+1) ⊗ · · · ⊗ Vat

(xt)
)]

. (91)

4.3. Well-Posedness of the Piecewise Renormalized Expressions

We complete the renormalization of the retarded components of the higher
currents showing that the piecewise renormalized expressions obtained in the
previous sections are indeed well-defined. We proceed as follows.

First we prove the well-posedness of the piecewise renormalized time-
ordered products of vertex operators and derivatives of Feynman propagators
and of the piecewise renormalized anti-chronological products of vertex oper-
ators by explicitly computing their wavefront set. Then we estimate the wave-
front set of the products of (derivatives of) Wightman two-point functions.
Finally, we show that these elements satisfy Hörmander’s sufficient criterion
and thus their product is well-defined.

Let us start with the piecewise renormalized coefficient of the power �
p of

time-ordered products of vertex operators and derivatives of Feynman prop-
agators for components sN

1 , formula (84). We regard it as the result of the
pull-back of the tensor product of all its elementary parts

TOFp
l+1 :=

∑
{pi,j≥0, 1≤i<j≤l+1

s.t.
∑

i,j pi,j=p}

(−1)p(a1a2)p1,2 · · · (alal+1)pl,l+1

p1,2! · · · pl,l+1!

[(ΔF )p1,2 ](w1,2) ⊗ · · · ⊗ [(ΔF )pl,l+1 ](wl,l+1)

⊗ [(∂i1,1
ξl+1

ΔF ) · · · (∂i1,n1
ξl+1

ΔF )](w̃1,l+1)

...

⊗ [(∂il,1
ξl+1

ΔF ) · · · (∂il,nl

ξl+1
ΔF )](w̃l,l+1),

(92)
seen as a distribution in D ′(MK

2 ), K =
(
l+1
2

)
+ l, via the map

s : M
l+1
2 → M

K
2

(x1, . . . , xl+1) �→ (wi,j = xi − xj , w̃k,l+1 = xk − xl+1),
(93)
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for 1 ≤ i < j ≤ l + 1 and 1 ≤ k ≤ l.
The question of the well-posedness of the coefficient (84) is now rephrased

in terms of the well-posedness of the pull-back s∗(TOFp
l+1). In other words,

we ask whether the condition

(s′)t
(
WF(TOFp

l+1)
)⋂(

M2 × {0} )l+1 = ∅, (94)

where (s′)t is the transpose of the tangent map of s and WF(TOFp
l+1) is the

wavefront set of TOFp
l+1, is satisfied.

A graph notation, introduced in [17] to describe the wavefront set of
products of Feynman propagators in the context of algebraic quantum field
theory on curved spacetimes, turns out to be the proper tool to answer this
question. We recall this notation from [9], adapting it to our spacetime M2:

• Denote by Gn the set of non-oriented graphs with vertexes V = {1, . . . , n},
and by EG the set of edges of a given graph G ∈ Gn. For any edge e ∈ EG

between vertexes i < j, we set source σ(e) = i and target τ(e) = j;
• A couple of maps (χ, κ) is an immersion of the graph G ∈ Gn into our

spacetime M2 if:
– χ : V → M2 maps vertexes i of G to points xi ∈ M2, with the

condition that if the vertexes i < j are connected by an edge, then
|xi − xj |2 = η(xi − xj , xi − xj) = 0;

– κ : EG → T ∗
M2 with the condition that, if the vertexes i < j are

connected by the edge e ∈ EG, then the covector κ(e) =: ke is
{

ke = λijη�(xi − xj) for some λij > 0, if xi �= xj ,

ke ∈ (M2 \ {0} ), if xi = xj .
(95)

The covector ke is said to be outgoing for the point xi and incoming
for the point xj .

Using this notation, the wavefront set Λl+1 := (s′)t
(
WF(TOFp)

)
of s∗(TOFp

l+1)
can be described as:

Λl+1 =

{
(x1, k1; . . . ;xl+1, kl+1) ∈ T ∗

M
l+1
2 | ∃G ∈ Gl+1 and

∃ an immersion (χ, κ) of G such that

ki =
∑

e∈EG

σ(e)=i

ke −
∑

f∈EG

τ(f)=i

kf

}
.

(96)

Proposition 4.3.1. For every order p, the piecewise renormalized coefficient of
�

p, formula (84), is a well-defined distribution on M
l+1
2 . Namely, the condition

Λl+1 ∩ (M2 × {0} )l+1 = ∅ (97)

for the well-posedness of the pull-back s∗(TOF p
l+1) is satisfied. Consequently the

piecewise renormalized time-ordered products of vertex operators and deriva-
tives of Feynman propagators, formula (85), are also well-defined.
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Proof. Consider first immersed graphs in M2 with no loops, i.e. suppose that
the immersion map χ is injective. In this case, we obtain the thesis from the
following argument. For every immersed vertex xi, the corresponding covector
ki is given by a sum of covectors which are coparallel to the directions of
connection of the vertex to its adjacent vertexes in the immersed graph. The
directions of the connections always lie on the boundary of the light-cone. This
means that, in order to have all covectors ki equal to zero, every vertex xi of
the immersed graph has to be connected to its adjacent vertexes in opposite
directions. But this can never be the case. In fact, each connected component
of every immersed graph has a finite number of vertexes and if we consider
for example, in a connected component, the vertex x̄ with maximum time
coordinate, then this vertex will be connected to its adjacent vertexes only in
past-directed directions. Hence the covectors over x̄ cannot sum up to zero.

Suppose now that the immersed graph contains loops, namely that the
immersion χ maps vertexes I = {i1, . . . , in} ⊆ {1, . . . , l + 1}, n ≤ l + 1, to the
same point xI ∈ M2. Let us denote by EG

I the set of loops, namely EG
I is the

subset of edges e ∈ EG such that σ(e) ∈ I and τ(e) ∈ I. Then the conditions
that the covectors ki1 , . . . , kin

over the points xi1 = · · · = xin
= xI are all

equal to zero can be written as:

ki1 =
∑

e∈EG\EG
I

σ(e)=i1

ke −
∑

f∈EG\EG
I

τ(f)=i1

kf +
∑

e∈EG
I

σ(e)=i1

ke −
∑

f∈EG
I

τ(f)=i1

kf = 0

...
kin

=
∑

e∈EG\EG
I

σ(e)=in

ke −
∑

f∈EG\EG
I

τ(f)=in

kf +
∑

e∈EG
I

σ(e)=in

ke −
∑

f∈EG
I

τ(f)=in

kf = 0. (98)

From these equations, we see that each one of the covectors ke associated with
an edge e ∈ EG

I appears twice, with opposite signs. If we sum up the equations
above, we are then left with the condition:

kI = ki1 + · · · + kin
=

∑

e∈EG\EG
I

σ(e)∈I

ke −
∑

f∈EG\EG
I

τ(f)∈I

kf = 0. (99)

This corresponds to the condition that we get if we look at the immersed
graph G, without considering the loops. We are then reduced to the situation
discussed above and we can apply the same argument to conclude. �

Completing the characterization of the renormalized time-ordered prod-
ucts of vertex operators and derivatives of Feynman propagators, we have the
following result.

Proposition 4.3.2. The wavefront set Λl+1 of the renormalized time-ordered
products of vertex operators and derivatives of Feynman propagators satisfies
the microlocal condition

Λl+1 ∩
((

M2 × V −
)l+1 ∪ (M2 × V +

)l+1
)

= ∅, (100)
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where V − and V + are the closure of the past and future light cones, respec-
tively.

Proof. For each connected component of each immersed graph, we have a ver-
tex x̄+ with maximum time coordinate and another vertex x̄− with minimum
time coordinate. This means that x̄+ is connected to its adjacent vertexes only
by past-directed directions, and hence the covector over x̄+ is past-directed.
Conversely the vertex x̄− is connected to its adjacent vertexes only by future-
directed directions, and hence the covector over x̄− is future-directed.

This situation is not affected by the presence of loops at the vertexes x̄+

or x̄−. In fact, suppose that x̄+ is the image, via the immersion map χ, of the
vertexes I := {i1, . . . , in} ⊆ {1, . . . , l + 1}, n ≤ l + 1. Then, similarly as in
the proof of Proposition 4.3.1, we have that the covectors over the immersed
vertexes xi1 , . . . , xin

can be summed up to give:

k+ = ki1 + · · · + kin
=

∑

e∈EG\EG
I

σ(e)∈I

ke −
∑

f∈EG\EG
I

τ(f)∈I

kf , (101)

which is precisely the expression that we get if we look at the immersed graph
G, without considering the loops. If we now assume that all covectors belong
to V +, then also k+ ∈ V +. This is a contradiction, because from the argument
at the beginning we know that for immersed graphs without loops the covector
k+ over x̄+ must belong to V −. If we assume, on the contrary, that all covectors
belong to V − and repeat the previous reasoning for x̄−, we get a contradiction
since we know that for immersed graphs without loops the covector over x̄−
must belong to V +. �
Remark 4.3.1. For what concerns the piecewise renormalized time-ordered prod-
ucts of vertex operators and derivatives of Feynman propagators in the case of
components sN

2 , formulas (81) and (82), it suffices to repeat the same passages
substituting the subscript l + 1 with t + 1.

We now consider the piecewise renormalized coefficient of the power �
q of

the anti-chronological products of vertex operators, formula (91). We regard
it as the pull-back of the tensor product

ACVq
t−l :=

∑
{qi,j≥0, l+1≤i<j≤t

s.t.
∑

i,j qi,j=q}

(−1)q(al+1al+2)ql+1,l+2 · · · (at−1at)qt−1,t

ql+1,l+2! · · · qt−1,t!

× [(ΔAF )ql+1,l+2 ](wl+1,l+2) ⊗ · · · ⊗ [(ΔAF )qt−1,t ](wt−1,t),

(102)

as a distribution defined on M
K̃
2 , K̃ =

(
t−l
2

)
, via the map

s̃ : M
t−l
2 → M

K̃
2

(xl+1, . . . , xt) �→ (wi,j = xi − xj),
(103)

for l + 1 ≤ i < j ≤ t. The condition for the well-posedness of the pull-back
s̃ ∗(ACVq

t−l

)
becomes then

(s̃ ′)t
(
WF(ACVq

t−l)
)⋂(

M2 × {0} )t−l = ∅. (104)
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The set Λ̃t−l := (s̃ ′)t
(
WF(ACVq

t−l)
)

can be described slightly adapting the
graph notation. Recalling that the anti-Feynman propagator is defined as
ΔAF = ΔF , we have the relation:

WF(ΔAF ) = −WF(ΔF ) =
{
(w,−k) ∈ T ∗

M2|(w, k) ∈ WF(ΔF )
}

. (105)

This means that in this case, in the definition of immersion (χ̃, κ̃) of a graph,
the prescription is:

{
k̃e = −λijη�(xi − xj) for some λij > 0, if xi �= xj ,

k̃e ∈ (M2 \ {0} ), if xi = xj .
(106)

We have then:

Λ̃t−l :=

{
( xl+1, kl+1; . . . ;xt, kt) ∈ T ∗

M
t−l
2 | ∃G ∈ Gt−l and

∃ an immersion (χ̃, κ̃) of G such that

ki =
∑

e∈EG

σ(e)=i

k̃e −
∑

f∈EG

τ(f)=i

k̃f

}
. (107)

This modification does not affect the validity of the arguments in the proofs
of Propositions 4.3.1 and 4.3.2, whose passages can be repeated to obtain the
expected results.

Proposition 4.3.3. For every order q, the piecewise renormalized coefficient of
�

q, formula (90), is a well-defined distribution on M
t−l
2 . Namely, the condition

Λ̃t−l ∩ (M2 × {0} )t−l = ∅. (108)

for the well-posedness of the pull-back s̃ ∗(ACV q
t−l

)
is satisfied. Consequently

the piecewise renormalized anti-chronological products of vertex operators, for-
mula (91), are also well-defined.

Proposition 4.3.4. The wavefront set of the renormalized anti-chronological
products of vertex operators Λ̃t−l satisfies the microlocal condition

Λ̃t−l ∩
((

M2 × V −
)t−l ∪ (M2 × V +

)t−l
)

= ∅. (109)

It remains to consider the products of Wightman two-point functions and
their derivatives. We recall that these products are always well-defined, hence
no renormalization is needed in this case. Without loss of generality, we can
consider as working example the product appearing in formula (66)
(
W (x{l+2≤·≤t+1} − x{1≤·≤l+1})

)k(
∂·

ξl+1
W (x{l+2≤·≤t+1} − xl+1)

)i
. (110)

The analogous product appearing in formula (65) can be treated in the same
way. The only difference between formulas (66) and (65) is in the way the
dependence of the various elements on the coordinates (x1, . . . , xt+1) is dis-
tributed.
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Once more, we can estimate the wavefront set of such products by means
of the graph notation introduced above. The wavefront set of the Wightman
two-point function W is given by [10]:{

(x, k) ∈ T ∗
M2| |x|2 = 0, |k|2 = 0, λk = η�(x), λ ∈ R s.t. k ∈ ∂V + \ {0}} .

(111)
Hence, we have to modify the convention (95) in the following way: for vertexes
1 ≤ i < j ≤ t + 1 connected by an edge e, we set source σ(e) := j and target
τ(e) := i, and define an immersion (χ̂, κ̂) by{

k̂e = λjiη�(xj − xi) with λji ∈ R s.t. k̂e ∈ ∂V + \ {0} , if xj �= xi,

k̂e ∈ ∂V + \ {0} , if xj = xi.

(112)
We obtain then the following description for the wavefront set Ωt+1 of the
product of Wightman two-point functions and their derivatives (110):

Ωt+1 =

{
(x1, k1; . . . ;xt+1, kt+1) ∈ T ∗

M
t+1
2 | ∃G ∈ Gt+1 and

∃ an immersion (χ̂, κ̂) of G such that

ki =
∑

e∈EG

σ(e)=i

k̂e −
∑

f∈EG

τ(f)=i

k̂f

}
.

(113)

Remark 4.3.2. Considering how the coordinates (x1, . . . , xt+1) are distributed
in formula (110), we see that the vertexes {xl+2, . . . , xt+1} only have outgoing
edges. Conversely the vertexes {x1, . . . , xl+1} only have incoming edges. This
means that the wavefront set Ωt+1 of the product (110) can be estimated by
a more explicit expression, namely:

Ωt+1 ⊆ Ω̃t+1 :=
{

(x1, k1; . . . ;xl+1, kl+1;xl+2, kl+2; . . . ;xt+1, kt+1) ∈ T ∗
M

t+1
2

s.t. k1, . . . , kl+1 ∈ V − and kl+2, . . . , kt+1 ∈ V +

}
.

(114)

Theorem 4.3.1. The retarded components Rt

(
L⊗t
int⊗sN

1

)
and Rt

(
L⊗t
int⊗sN

2

)
of

the higher conserved currents of the sine-Gordon model are super-renormalizable
by power counting in pAQFT.

Proof. In the previous part of this section, we have collected almost all the
elements to prove our conclusive result. It is sufficient now to prove that the
distributional product of renormalized anti-chronological products of vertex
operators, renormalized time-ordered products of vertex operators and deriva-
tives of Feynman propagators and Wightman two-point functions and their
derivatives is well-defined on M

t+1
2 according to Hörmander’s criterion.

We know from formula (114), an explicit estimate on the wavefront set
of the product of Wightman two-point functions and their derivatives. On
the other hand, we can regard the product of renormalized anti-chronological
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products of vertex operators with renormalized time-ordered products of vertex
operators and derivatives of Feynman propagators, defined, respectively, on
M

t−l
2 and M

l+1
2 , as a tensor product of distributions. We denote it by:

ACVt−l ⊗ TOFl+1 :=
([

T̄t−l

(
Val+2(xl+2) ⊗ · · · ⊗ Vat+1(xt+1)

)])

⊗
([

Tl+1

(
Va1(x1) ⊗ · · · ⊗ Val

(xl) ⊗ Val+1(xl+1)
)]

× [(∂i1,1
ξl+1

ΔF ) · · · (∂i1,n1
ξl+1

ΔF )](x1 − xl+1) · · ·
· · · [(∂il,1

ξl+1
ΔF ) · · · (∂il,nl

ξl+1
ΔF )](xl − xl+1)

)
∈ D ′(

M
t+1
2

)
.

(115)
From the properties of the tensor product of distributions [11], we have that
the wavefront set of ACVt−l ⊗ TOFl+1 is contained in the set:

Λl+1,t−l :=
(

Λl+1 × Λ̃t−l

)
∪
(

Λl+1 × (M2 × {0})t−l
)

∪
((

M2 × {0})l+1 × Λ̃t−l

)
⊆ T ∗

M
t+1
2 ,

(116)

where Λl+1 and Λ̃t−l are defined by formula (96) and formula (107), respec-
tively. From Proposition 4.3.2 and Proposition 4.3.4, we have that

Λl+1,t−l ∩
(((

M2 × V̄−
)l+1 ∪ (M2 × V̄+

)l+1
)

×
((

M2 × V̄−
)t−l ∪ (M2 × V̄+

)t−l
))

= ∅.

(117)

If we now consider the set
Λl+1,t−l + Ωt+1 :=

{
(x1, r1 + s1; . . . ;xt+1, rt+1 + st+1) ∈ T ∗

M
t+1
2 |

(x1, r1; . . . ;xt+1, rt+1) ∈ Λl+1,t−l,

and (x1, s1; . . . ;xt+1, st+1) ∈ Ωt+1

} (118)

and compare formula (114) and formula (117), we see immediately that
(
Λl+1,t−l + Ωt+1

)⋂(
M

t+1
2 × {0} ) = ∅. (119)

Hence Hörmander’s sufficient criterion is satisfied. �

Conclusion. We have shown that the renormalization of the time-ordered
products and of the anti-chronological products of interactions does not in-
crease the scaling degree estimates for the piecewise renormalized components
of the currents, which makes them super-renormalizable.
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A. Proof of Proposition 2.1.1

Proof. First we substitute (7) in (6) and use the power series expansion of sine
to get

∞∑
ν=0

Aν,ξα
ν = −ϕξ +

2
α

∞∑
μ=0

(−1)μ

(2μ + 1)!
(1
2
a
)2μ+1

( ∞∑
ν=0

Aναν − ϕ

)2μ+1

. (120)

Requiring that the limit for α → 0 of this equation exists gives A0 = ϕ, hence
formula above becomes

∞∑
ν=0

Aν,ξα
ν = −ϕξ + 2

∞∑
μ=0

(−1)μ

(2μ + 1)!
(1
2
a
)2μ+1

α2μ

( ∞∑
ν=0

Aν+1α
ν

)2μ+1

. (121)

Now we start comparing the coefficients from the left hand side and the right
hand side of Eq. (121) for the first orders:

• At order 0, we have: A0,ξ = −ϕξ + 2 · 1
2aA1 −→ A1 = 2

aϕξ.
• At order 1 we get: A1,ξ = 2 · 1

2aA2 −→ A2 = 2
a2 ϕξξ.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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For orders ≥ 2, we rearrange the summation on the right hand side of equation
(121) in the following way:

∞∑
μ=0

(−1)μ

(2μ + 1)!
(1
2
a
)2μ+1

α2μ

( ∞∑
ν=0

Aν+1α
ν

)2μ+1

=
∞∑

μ,ρ=0

(−1)μ
(1
2
a
)2μ+1

⎛
⎜⎜⎜⎜⎝

∑
n0,...,nρ≥0

n0+···+nρ=2μ+1
1·n1+···+ρ·nρ=ρ

An0
1 · · · Anρ

ρ+1

n0! · · · nρ!

⎞
⎟⎟⎟⎟⎠

αρ+2μ.

(122)

We rewrite the double summation using indexes ν := ρ + 2μ and β := μ, so to
get the expression:

∞∑
ν=0

αν

⎛
⎜⎜⎜⎜⎜⎝

[ ν
2 ]∑

β=0

(−1)β
(1
2
a
)2β+1 ∑

n0,...,nν−2β≥0
n0+···+nν−2β=2β+1∑ν−2β

i=1 i·ni=ν−2β

An0
1 · · · Anν−2β

ν−2β+1

n0! · · · nν−2β !

⎞
⎟⎟⎟⎟⎟⎠

, (123)

where [ν
2 ] is the integer part of ν

2 .
We now observe that we can decompose the coefficient of αν in two parts, one
corresponding to β = 0 and the other for β ≥ 1, respectively:

[ ν
2 ]∑

β=0

(−1)β
(a
2

)2β+1
∑

n0,...,nν−2β≥0
n0+···+nν−2β=2β+1∑ν−2β

i=1 i·ni=ν−2β

An0
1 · · · Anν−2β

ν−2β+1

n0! · · · nν−2β !
=

a

2

∑
n0,...,nν≥0

n0+···+nν=1∑ν
i=1 i·ni=ν

An0
1 · · · Anν

ν+1

n0! · · · nν !

+

[ ν
2 ]∑

β=1

(−1)β
(1
2

a
)2β+1

∑
n0,...,nν−2β≥0

n0+···+nν−2β=2β+1∑ν−2β
i=1 i·ni=ν−2β

An0
1 · · · Anν−2β

ν−2β+1

n0! · · · nν−2β !
.

(124)
In particular the first term on the right hand side reduces to a

2Aν+1.
Comparing the coefficients of the power αν , for ν ≥ 2, from equation (121),
we get:

Aν,ξ = aAν+1 + 2
[ ν
2 ]∑

β=1

(−1)β
(a
2
)2β+1 ∑

n0,...,nν−2β≥0
n0+···+nν−2β=2β+1∑ν−2β

i=1 i·ni=ν−2β

An0
1 · · · Anν−2β

ν−2β+1

n0! · · · nν−2β !
.

(125)
Extracting Aν+1 and rescaling the summation over β, we conclude. �
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B. Proof of Proposition 2.2.1

Proof. First we introduce some notation. We define:

ϕ + B̂αϕ =:
∞∑

ν=0

A+
ν αν , where

{
A+

0 = 2ϕ

A+
ν = Aν ∀ν ≥ 1,

ϕ − B̂αϕ =:
∞∑

ν=0

A−
ν αν , where

{
A−

0 = 0
A−

ν = −Aν ∀ν ≥ 1.

(126)

We use the power series expansion of cosine and substitute equations above to
get the following expressions for the components of the conserved currents:

s
(α)
1 =

∞∑
μ=0

(−1)μ

(2μ)!

(
1
2
a

)2μ
⎡
⎣
( ∞∑

ν=0

A+
ν αν

)2μ

+

( ∞∑
ν=0

A+
ν (−α)ν

)2μ
⎤
⎦ ,

s
(α)
2 = − 1

α2

∞∑
μ=1

(−1)μ

(2μ)!

(
1
2
a

)2μ
⎡
⎣
( ∞∑

ν=0

A−
ν αν

)2μ

+

( ∞∑
ν=0

A−
ν (−α)ν

)2μ
⎤
⎦ .

(127)
We remark that both formulas above are symmetric in α, so only even powers
will appear. We further manipulate the two components separately. Starting
with s

(α)
1 , we expand

(∑∞
ν=0 A+

ν αν
)2μ and

(∑∞
ν=0 A+

ν (−α)ν
)2μ, collect the

coefficients of the even powers α2ρ and obtain:

s
(α)
1 =

∞∑
ρ=0

α2ρ

⎡
⎢⎢⎢⎢⎢⎣

2
∞∑

μ=0

(−1)μ

⎛
⎜⎜⎜⎜⎜⎝

1
2
a
)2μ( ∑

n0,...,n2ρ≥0
n0+···+n2ρ=2μ∑2ρ

i=1 i·ni=2ρ

(A+
0 )n0 · · · (A+

2ρ)
n2ρ

n0! · · · n2ρ!

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

.

We now concentrate on the coefficient of the power α2ρ, we call it sρ
1:

sρ
1 = 2

∞∑
μ=0

(−1)μ
(1

2
a
)2μ

⎛
⎜⎜⎜⎜⎜⎝

∑
n0,...,n2ρ≥0

n0+···+n2ρ=2μ∑2ρ
i=1 i·ni=2ρ

(A+
0 )n0 · · · (A+

2ρ)
n2ρ

n0! · · · n2ρ!

⎞
⎟⎟⎟⎟⎟⎠

. (128)

Specifically, we want to extract the dependence of the powers of A+
0 on μ.

Introducing the index β to account for the possible values of the exponent n0,
we can rewrite formula (128) in the following manner:

2
2ρ∑

β=0

∑

μ≥ β
2

(−1)μ
(1

2
a
)2μ (A+

0 )2μ−β

(2μ − β)!

⎛
⎜⎜⎜⎜⎜⎝

∑
n1,...,n2ρ≥0

n1+···+n2ρ=β∑2ρ
i=1 i·ni=2ρ

(A+
1 )n1 . . . (A+

2ρ)
n2ρ

n1! . . . n2ρ!

⎞
⎟⎟⎟⎟⎟⎠

.

(129)
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Then we distinguish the cases when β is even or odd. The terms for β even
can be collected in the expression:

2
ρ∑

β=0

∞∑
μ=β

(−1)μ
(1

2
a
)2μ (A+

0 )2(μ−β)

(
2(μ − β)

)
!

⎛
⎜⎜⎜⎜⎜⎝

∑
n1,...,n2ρ≥0

n1+···+n2ρ=2β∑2ρ
i=1 i·ni=2ρ

(A+
1 )n1 · · · (A+

2ρ)
n2ρ

n1! · · · n2ρ!

⎞
⎟⎟⎟⎟⎟⎠

.

(130)
Rescaling the summation over μ we recognize the power series expansion of
cos
(

1
2aA+

0

)
= cos(aϕ). Hence, for β even we obtain the coefficient:

cos(aϕ)

⎡
⎢⎢⎢⎢⎢⎣

2
ρ∑

β=0

(−1)β
(1

2
a
)2β ∑

n1,...,n2ρ≥0
n1+···+n2ρ=2β∑2ρ

i=1 i·ni=2ρ

(A+
1 )n1 · · · (A+

2ρ)
n2ρ

n1! · · · n2ρ!

⎤
⎥⎥⎥⎥⎥⎦

. (131)

On the other hand, assuming ρ ≥ 1, the terms for β odd are

2
ρ−1∑
β=0

∞∑
μ=β+1

(−1)μ
(1

2
a
)2μ (A+

0 )2μ−2β−1

(2μ − 2β − 1)!

∑
n1,...,n2ρ≥0

n1+···+n2ρ=2β+1∑2ρ
i=1 i·ni=2ρ

(A+
1 )n1 · · · (A+

2ρ)
n2ρ

n1! · · · n2ρ!
.

(132)
Rescaling the summation over μ, we recognize the power series expansion of
sin
(

1
2aA+

0

)
= sin(aϕ). Hence, for β odd we obtain the coefficient:

sin(aϕ)

⎡
⎢⎢⎢⎢⎢⎣

2
ρ−1∑
β=0

(−1)β+1
(1

2
a
)2β+1 ∑

n1,...,n2ρ≥0
n1+···+n2ρ=2β+1∑2ρ

i=1 i·ni=2ρ

(A+
1 )n1 · · · (A+

2ρ)
n2ρ

n1! · · · n2ρ!

⎤
⎥⎥⎥⎥⎥⎦

.

(133)
Using the fact that A+

ν = Aν , for ν ≥ 1, and changing the name of the upper
index ρ to N , we obtain the expected result for sN

1 .
For what concerns s

(α)
2 , we use the fact that A−

0 = 0 to extract a power
α2μ, then we divide by α2 and finally rewrite the summations rescaling the
indexes, thus obtaining:

s
(α)
2 =

∞∑
μ=0

(−1)μ

(2(μ + 1))!

(1
2
a
)2(μ+1)

α2μ

×
⎡
⎣
( ∞∑

ν=0

A−
ν+1α

ν

)2(μ+1)

+

( ∞∑
ν=0

A−
ν+1(−α)ν

)2(μ+1)
⎤
⎦ .

(134)
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Expanding
(∑∞

ν=0 A−
ν+1α

ν
)2(μ+1) and

(∑∞
ν=0 A−

ν+1(−α)ν
)2(μ+1) we see

that again only the even powers of α survive and they give:

s
(α)
2 =

∞∑
μ=0

(−1)μ

(2(μ + 1))!

(1
2
a
)2(μ+1)

α2μ

×

⎡
⎢⎢⎢⎢⎢⎣

2
∞∑

ρ=0

α2ρ

⎛
⎜⎜⎜⎜⎜⎝

∑
n0,...,n2ρ≥0

n0+···+n2ρ=2(μ+1)∑2ρ
i=1 i·ni=2ρ

(2(μ + 1))!
n0! . . . n2ρ!

(A−
1 )n0 . . . (A−

2ρ+1)
n2ρ

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

.

(135)
Collecting the powers of α, rewriting the summation using indexes N :=

μ + ρ and μ and recalling that A−
ν = −Aν for ν ≥ 1, we finally obtain that

the coefficient of α2N is:

sN
2 = 2

N∑
μ=0

(−1)μ
(1

2
a
)2(μ+1) ∑

n0,...,n2(N−μ)≥0
n0+···+n2(N−μ)=2(μ+1)∑2(N−μ)

i=1 i·ni=2(N−μ)

An0
1 · · · An2(N−μ)

2(N−μ)+1

n0! · · · n2(N−μ)!
.

�
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