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Large Deviations for the Ground State of
Weakly Interacting Bose Gases

Simone Rademacher

Abstract. We consider the ground state of a Bose gas of N particles on the
three-dimensional unit torus in the mean-field regime that is known to
exhibit Bose–Einstein condensation. Bounded one-particle operators with
law given through the interacting Bose gas’ ground state correspond to
dependent random variables due to the bosons’ correlation. We prove that
in the limit N → ∞ bounded one-particle operators with law given by
the ground state satisfy large deviation estimates. We derive a lower and
an upper bound on the rate function that match up to second order and
that are characterized by quantum fluctuations around the condensate.

1. Introduction

We consider N bosons on the three-dimensional unit torus Λ = [0, 1]3 in the
mean-field regime described by the Hamiltonian

HN =
N∑

j=1

(−Δxj
) +

1
N

N∑

i<j

v(xi − xj) (1.1)

acting on L2
s

(
ΛN
)
, the symmetric subspace of L2

(
ΛN
)
. We consider two-

particle interaction potentials with Fourier transform v̂ given by

v(x) =
∑

p∈Λ∗
v̂(p)eip·x for Λ∗ = 2πZ

3 with v̂ ≥ 0, v̂ ∈ �1(Λ∗) . (1.2)

At zero temperature, the bosons relax to the unique ground state ψN of HN

realizing

EN = inf
‖ψ‖2=1

〈ψ, HNψ〉 = 〈ψN ,HNψN 〉 . (1.3)
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The ground state ψN exhibits Bose–Einstein condensation, i.e., a macroscopic
fraction of the N particles occupies the same quantum state, called the con-
densate. Mathematically, ψN is said to satisfy the property of Bose–Einstein
condensation if its corresponding one-particle reduced density given by

γ
(k)
ψN

:= trk+1,...,N |ψN 〉〈ψN | (1.4)

for k = 1 converges in trace norm to

γ
(1)
ψN

→ |ϕ0〉〈ϕ0| as N → ∞ (1.5)

where ϕ0 ∈ L2(Λ) denotes the condensate wave function. In fact the conver-
gence (1.5) holds true not only for the one—but also in general for k-particle
reduced densities. However, due to particle’s correlation, the ground state ψN

is not a purely factorized state of the condensate’s wave function.
Both, the computation of the ground state energy (1.3) and the ground

state’s property of BEC (1.5) and beyond are widely studied in the literature
(see, for example, [3,9,10,13–16,18,20,22,24]). In fact, [20] proves besides BEC
that the Bose gas’ excitation spectrum is well described by Bogoliubov theory.
Consequently, the fluctuations around the condensate, namely the particles
orthogonal to the condensate can be effectively described as a quasi-free state
(namely a Gaussian quantum state) on an appropriate Fock space. This char-
acterization of the condensates’ excitations will be important for our analysis.

1.1. Probabilistic Approach

Recently, the characterization of Bose–Einstein condensation through prob-
abilistic concepts became of interest. In fact, the property of Bose–Einstein
condensation (1.5) implies a law of large numbers for bounded one-particle
operators [1]. To be more precise, let O denote a bounded one-particle opera-
tor on L2(R3) for which we define the N -particle operator O(i) by

O(i) = 1 ⊗ 1 ⊗ · · · ⊗ 1 ⊗ O ⊗ 1 ⊗ · · · ⊗ 1 (1.6)

, i.e., as operator acting as O on the i-th particle and as identity elsewhere.
We consider O(i) as a random variable with law given by

Pψ

[
O(i) ∈ A

]
= 〈ψ, χA(O(i))ψ〉 with ψ ∈ L2(ΛN ) (1.7)

where χA denotes the characteristic function of A ⊂ R. We remark that fac-
torized states lead to i.i.d. random variables in this picture [19] and thus a law
of large numbers and a large deviation principle hold true from basic theorems
of probability theory.

Random variables with law given by the ground state ψN (known to
not be a factorized state) of HN satisfy a law of large numbers, too (though
they are not independent random variables). To be more precise, the averaged
centered (w.r.t. to the condensate’s expectation value 〈ϕ0, Oϕ0〉) sum

ON :=
1
N

N∑

i=1

(
O(i) − 〈ϕ0, Oϕ0〉

)
(1.8)
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with O(i) given by (1.6) satisfies for any δ > 0

lim
N→∞

PψN
[|ON | > δ] = 0 . (1.9)

The law of large numbers is a consequence of the property of Bose–Einstein
condensation [1,19], that is, the trace norm convergence of the one- and two-
particle reduced density.

Here, we are interested in the precise decay of the probability distribution
(1.9) in probability theory described through the rate function

Λ∗
ψN

(x) = lim
N→∞

N−1 log PψN
[ON > x] (1.10)

if it exists. In case of i.i.d. random variables (i.e., factorized states ϕ⊗N )
Cramer’s theorem shows that the rate functions exists and is given in terms
of the Legendre–Fenchel transform through

Λ∗
ϕ⊗N (x) = inf

λ∈R

[−λx + Λϕ⊗N (λ)
]

(1.11)

where Λϕ⊗N (λ) equals for i.i.d. random variables the logarithmic moment gen-
erating function

Λϕ⊗N (λ) = log〈ϕ, eλ(O(1)−〈ϕ,Oϕ〉)ϕ〉 . (1.12)

In our main theorem, we show that for the ground state ψN of HN , known to
be not factorized due to particles’ correlation, still large deviation estimates
hold true.

1.2. Results

Before stating our main theorem, we introduce some more notation. In our
result, we consider operators O such that the norm

|||O||| := ‖(1 − Δ)O(1 − Δ)−1‖ (1.13)

is bounded. Furthermore, we define

Λ∗
+ = 2πZ

3 \ {0} (1.14)

and the function f ∈ �2(Λ∗
+) by

f(p) = cosh(μp)q̂Oϕ0(p) + sinh(μp)̂qOϕ0(p) (1.15)

where q denotes the projection onto the orthogonal complement of the span
of the condensate wave function (i.e., q = 1 − |ϕ0〉〈ϕ0|) and μp is given by the
identity

coth(2μp) = −p2 + v̂(p)
v̂(p)

. (1.16)

Theorem 1.1. Let v be a real-valued, even function with 0 ≤ v̂ ∈ �1(Λ∗), such
that ‖μ‖�2(Λ∗

+) is sufficiently small. Let ψN denote the ground state of the
Hamiltonian HN defined in (1.1).

Let O denote a self-adjoint operator on L2(Λ) such that |||O||| < ∞,
and let f be defined by (1.15). For O(j) given by (1.6), we define ON =
N−1

∑N
j=1

(
O(j) − 〈ϕ0, Oϕ0〉

)
.
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Then, there exist C1, C2 > 0 (independent of O) such that
(i) for all 0 ≤ x ≤ 1/(C1|||O|||)

lim sup
N→∞

N−1 log PψN
[ON > x] ≤ − x2

2‖f‖2
�2(Λ∗

+)

+ x3 C1|||O|||3
‖f‖3

�2(Λ∗
+)

(1.17)

(ii) for all 0 ≤ x ≤ ‖f‖4
�2(Λ∗

+)/(C2|||O|||3)

lim sup
N→∞

N−1 log PψN
[ON > x] ≥ − x2

2‖f‖2
�2(Λ∗

+)

− x5/2 C2|||O|||3/2

‖f‖4
�2(Λ∗

+)

. (1.18)

We remark that for sufficiently small x ≤ min{‖f‖4
�2(Λ∗

+)/(C2|||O|||3),
1/C1|||O|||}, Theorem 1.1 characterizes the rate function up to second order.
Namely, Theorem 1.1 shows that in the regime of large deviations, i.e., x =
O(1), we have

Λ∗
ψN

(x) = − x2

2‖f‖2
�2(Λ∗

+)

+ O(x5/2) . (1.19)

Regime of Large Deviations. The present result in Theorem 1.1 provides a
first characterization of the regime of large deviations (i.e., x = O(1)) for
fluctuations around the condensate of bounded one-particle operators in the
ground state. We remark that the variance ‖f‖�2(Λ∗

+) differs from the variance
of factorized state ϕ⊗sN

0 and is, in particular, fully characterized by the ground
state’s Bogoliubov approximation (for more details, see (2.15) and subsequent
discussions resp. Lemma 4.3 in Sect. 4) representing the particles’ correlation.

Up to now, results in the regime of large deviations are available for
the dynamics in the mean-field regime only. For factorized initial data, the
rate function characterizing the fluctuations of bounded one-particle operators
around the condensate’s Hartree dynamics was proven to satisfy a upper bound
of the form of Theorem 1.1 (i) first [12], and a lower bound of the form of
Theorem 1.1 (ii) later [22].

Regime of Standard Deviations. In the regime of standard deviations, i.e.,
x = O(N−1/2), Theorem 1.1 furthermore implies

lim
N→∞

PψN

[√
NON < x

]
=
∫ x

−∞
e
−x2/(2‖f‖2

�2(Λ∗
+)), (1.20)

thus a central limit theorem where the limiting Gaussian random variable’s
variance is given by ‖f‖�2(Λ∗

+) agreeing with earlier results [21]. In fact [21]
proves a central limit theorem for fluctuations around the condensate for the
ground state in the Gross–Pitaevskii regime. The Gross–Pitaevskii scaling
regime considers instead of v, the N -dependent two-body interaction poten-
tial vβ

N = N3βvN (Nβ ·) with β = 1. (For more details and recent progress on
results in the Gross–Pitaevskii regime, see [5–7,11,17].) However, (1.20) fol-
lows from adapting the analysis in [21] to the mathematically easier accessible
mean-field scaling regime (corresponding to β = 0).
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Recently, [2] refined the characterization of the regime of standard devi-
ations and derived an edge-worth expansion.

Central limit theorems were proven first for the mean-field dynamics of
Bose gases. Fluctuations of bounded one-particle operators around the Hartree
equations were proven to have Gaussian behavior [1], though they do not
correspond to i.i.d. random variables. These results were later generalized to
multivariate central limit theorem [8], dependent random variables (i.e., k-
particle operators) [19] and singular particles interaction in the intermediate
scaling regime (for vβ

N with β ∈ (0, 1))) [20].
Theorem 1.1 follows (similarly to [12,22]) from estimates on the logarith-

mic moment generating function given in the following theorem.

Theorem 1.2. Under the same assumptions as in Theorem 1.1,

(i) there exists a constant C1 > 0 such that for all 0 ≤ λ ≤ 1/|||O||| we have

lim inf
N→∞

N−1 ln EψN

[
eλON

] ≤ λ2

2
‖f‖2

�2(Λ∗
+) + C1λ

3|||O|||3 (1.21)

(ii) there exists a constant C2 > 0 such that for all 0 ≤ λ ≤ 1/‖|||O||| we have

lim sup
N→∞

N−1 ln EψN

[
eλON

] ≥ λ2

2
‖f‖2

�2(Λ∗
+) − C2λ

3|||O|||3 (1.22)

Theorem 1.1 follows from Theorem 1.2 by a generalization of Cramer’s
theorem (see [22, Section 2]).

Idea of the Proof. The rest of this paper is dedicated to the proof of Theo-
rem 1.2, thus on estimates on the moment generating function. We recall that
for the result of Theorem 1.2 we are interested in the leading order of the expo-
nential of the moment generating function that is o(Nλ2) in the limit of small
λ and large N . We will show that for the leading order fluctuations around the
condensate are crucial that we describe by the excitation vector UNψN . (For a
precise definition of the unitary map UN to the Fock space of excitations, see
(2.2).) As a first step, we prove that we can replace the moment generating
function EψN

[
eλON

]
with the expectation value

〈UNψN , eλφ+(qOϕ0)/2eλκN+eλφ+(qOϕ0)/2UNψN 〉 (1.23)

paying a price exponentially O(Nλ3) and thus sub-leading (see Lemma 4.1).
Here, we introduced the notation

φ+(q0Oϕ0) =
√

N − N+a(q0Oϕ0) + a∗(q0Oϕ0)
√

N − N+ (1.24)

where a, a∗ denote the creation and annihilation operators on the bosonic Fock
space and N+ the number of excitations. (For a precise definition, see Sect. 2.)
Note that the operator φ+, in contrast to its asymptotic limit

φ̃+(h) =
√

Na(q0Oϕ0) +
√

Na∗(q0Oϕ0) (1.25)

for N → ∞, does not increase the number of excitations which will be crucial
for our analysis.
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We remark that the excitation vector UNψN is the ground state of the
excitation Hamiltonian

UNHNU∗
N = Q + RN . (1.26)

Its quadratic (in modified creation and annihilation operators) part Q and the
remainder term RN are given in (2.15) resp. (2.16). In the second step, we show
that replacing UNψN with the ground state ψQ of the quadratic operator Q
leads to an error exponentially O(Nλ3) (and thus sub-leading). While the first
step follows strategies presented in [12] on the dynamical problem, the second
step uses novel techniques. The proof is based on the Hellmann–Feynman
theorem and Gronwall’s inequality applied for s ∈ [0, 1] to the family of ground
states ψGN (s) that corresponds to the Hamiltonians GN (s) = Q+sRN and thus
interpolates between the excitation vector UNψN and ψQ. (For more details,
see Proposition 2.1 and Lemma 4.2.)

We remark that the ground state of operators quadratic in standard
creation and annihilation operators is well known and given by a quasi-free
state, i.e., by

eB̃(μ)Ω with B̃(μ) =
1
2

∑

p∈Λ∗
+

μp

(
a∗

pa
∗
−p − apa−p

)
(1.27)

where μ is given by (1.16) and vacuum vector Ω. Note that the operator Q
is quadratic in modified creation and annihilation operators. However, we will
prove that its ground state ψQ is approximately given by a generalized quasi-
free state, i.e., by

eB(μ)Ω with B(μ) =
1
2

∑

p∈Λ∗
+

μp

(
b∗
pb

∗
−p − bpb−p

)
. (1.28)

A crucial property of a Bogoliubov transform (1.27) is that its action on cre-
ation and annihilation operators is explicitly known. In particular, we have for
the asymptotic limit of φ+ that

eB̃(μ)φ̃+(q0Oϕ0)e−B̃(μ) = φ̃+(f) . (1.29)

Though the explicit action of the generalized Bogoliubov transform (1.28) on
the operator φ+ is not known, we show in the third step that we still have

eB(μ)φ+(q0Oϕ0)e−B(μ) ≈ φ+(f) (1.30)

with an error exponentially O(Nλ3). This argument will be based again on
the Hellmann–Feynman theorem together with Gronwall’s inequality applied
to the family of ground states ψQ(s) of Q(s) = D + sRQ for s ∈ [0, 1] where D
is a quadratic, diagonal operator. Thus, Q(s) interpolates between the ground
state eB(μ)ψQ and the vacuum vector (see Lemma 4.3).

In the last step, we then compute the remaining expectation value

〈Ω, eλφ+(f)/2eλκN+eλφ+(f)/2Ω〉 (1.31)
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with f given by (1.15). A comparison with the asymptotic limit φ̃+ shows
that the exponential of λN+ contributes exponentially O(Nλ3), and thus sub-
leading, leading to Theorem 1.2. For the true operator φ+, this holds still true
in the limit N → ∞ and follows from arguments given in [12] (see Lemma 4.4).

Structure of the Paper. The paper is structured as follows: In Sect. 2, we
introduce the description of the fluctuations (called excitations) around the
condensate in the Fock space of excitations. In particular, we prove properties
of the excitations’ Hamiltonian GN and the quadratic approximation Q and
their corresponding ground states (see Propositions 2.1, 2.2). In Sect. 3, we
recall preliminary results from [12,22] and prove further auxiliary Lemmas (in
particular for generalized Bogoliubov transforms (1.28)) that we will use later
for the proof of Theorem 1.2 in Sect. 4.

2. Fluctuations Around the Condensate

2.1. Fock Space of Excitations

On the unit torus the condensate wave function ϕ0 is given by the constant
function. To study the fluctuations around the condensate, we need to factor
out the condensates contributions. For this, we use an observation from [13]
that any N -particle wave function ψN ∈ L2(ΛN ) can be decomposed as

ψN = η0 ⊗s ϕ⊗N
0 + μ1 ⊗s ϕ

⊗(N−1)
0 + · · · + ηN (2.1)

where the excitation vectors ηj are elements of L2
⊥ϕ0

(Λj), and the orthogonal
complement in L2(Λj) of the condensate wave function ϕ0 and ⊗s denotes the
symmetric tensor product. Furthermore, we define the unitary

UN : L2
s

(
ΛN
)→ F≤N

⊥ϕ0
, ψN �→ {η1, . . . , ηN} (2.2)

mapping any N -particle wave function ψN onto its excitation vector {η1, . . . , ηN}
that is an element of the Fock space of excitations

F≤N
⊥ϕ0

=
N⊕

j=0

L2
⊥ϕ0

(Λ)⊗sj . (2.3)

A crucial property of elements of the Fock space of excitations ξN ∈ F≤N
⊥ϕ0

is that the number of particles operator N =
∑

p∈Λ∗ a∗
pap is bounded, i.e.,

〈ξN ,N ξN 〉 ≤ N‖ξN‖2. Here, we introduced the standard creation and annihi-
lation operators a∗

p, ap in momentum space defined through the following re-
lation by the well-known creation and annihilation operators in position space
ǎ(f), ǎ∗(f)

a∗
p = ǎ(ϕp), resp. ap = ǎ(ϕp) with ϕp = eip·x for p ∈ Λ∗

+ = 2πZ
3

(2.4)

that satisfy the canonical commutation relations
[
a∗

p, aq

]
= δp,q, and [ap, aq] =

[
a∗

p, a
∗
q

]
= 0 . (2.5)
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Contrarily, on the full bosonic Fock space built over L2(Λj) (instead of L2
⊥ϕ0

(Λj)) and given by

F =
∞⊕

j=0

L2(Λ)⊗sj . (2.6)

the number of particles N =
∑

p∈Λ a∗
pap is an unbounded operator.

For our analysis, it will be useful to work on the Fock space of excitations
that is equipped with modified creation and annihilation operators b∗

p, bq that
leave (in contrast to the standard ones a∗

p, aq) F≤N
⊥ϕ0

invariant and were first
introduced in [4]. They are given by

bp =

√
N − N+√

N
ap, b∗

p = a∗
p

√
N − N+√

N
. (2.7)

with the number of excitations

N+ =
∑

p∈Λ∗
+

a∗
pap and Λ∗

+ = Λ∗ \ {0} . (2.8)

It follows from (2.5) that b∗
p, bq satisfy the modified commutation relations

[
bp, b

∗
q

]
= δpq

(
1 − N+

N

)
− 1

N
a∗

qap .
[
b∗
p, b

∗
q

]
= [bp, bq] = 0 . (2.9)

We remark that in the limit of N → ∞, the commutation relations of b∗
p, bq

agree with the canonical commutation relations (2.5). However, the corrections
that are O(N−1) lead to difficulties in the analysis later.

The operator b∗
p, bq arise from the unitary UN applied for p, q �= 0 to

products of creation and annihilation operators, namely

UNa∗
0aqUN =

√
Nbp, and UNa∗

qa0UN =
√

Nb∗
p . (2.10)

Moreover, UN satisfies the property

UNa∗
paqUN = a∗

paq, UNa∗
0a0UN = N − N+ . (2.11)

2.2. Excitation Hamiltonian

We can embed L2
s(Λ

N ) into the full bosonic Fock space F where the Hamil-
tonian HN defined in (1.1) then reads in momentum space

HN :=
∑

p∈Λ∗
p2a∗

pap +
1

2N

∑

p,q,k∈Λ∗
v̂(k)a∗

p−ka∗
q+kapaq . (2.12)

If ψN denotes the ground state of HN , then the excitation vector UNψN =: ψGN

denotes the ground state of the excitation Hamiltonian

GN := UNHNU∗
N − N

2
v̂(0) (2.13)

that can be explicitly computed using the properties of the unitary (2.10),
(2.11) and is of the form

GN = Q + RN (2.14)
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where Q denotes an operator quadratic in (standard) creation and annihilation
operators and is given with the notation Λ∗

+ = Λ+ \ {0} by

Q :=
∑

p∈Λ∗
+

[
p2a∗

pap + v̂(p)b∗
pbp +

1
2
v̂(p)

(
b∗
pb

∗
−p + bpb−p

)]
(2.15)

, whereas the remainder terms collected in RN and given by

RN :=
1√
N

∑

p,q∈Λ∗
+,p�=−q

v̂(q)
(
b∗
p+qa

∗
−qap + h.c.

)

+
1

2N

∑

p,q∈Λ∗
+,q �=−p,k

v̂(k)a∗
p+ka∗

k−qapak (2.16)

will be shown to contribute to our analysis sub-leading only. In fact, in the
proof of Theorem 1.2 in Sect. 4 it turns out that Q resp. its corresponding
ground state ψQ is approximately given by

ψQ = eB(μ)Ω with eB(μ) = exp

(
∑

p∈Λ∗
+

[
μpb

∗
pb

∗
−p − μpbpb−p

]
)

(2.17)

with μp given by (1.16), i.e., ψQ is a generalized Bogoliubov transform eB(μ)

applied to the vacuum Ω and fully determines the variance (i.e., ‖f‖2
�2(Λ∗

+)

in Theorem 1.1). We remark that the approximation of GN (s) by Q is often
referred to as Bogoliubov approximation.

Furthermore, we introduce the family of Hamiltonians {GN (s)}s∈[0,1]

given by

GN (s) = Q + sRN (2.18)

interpolating between the excitation Hamiltonian GN and its quadratic ap-
proximation Q. In the following proposition, we collect useful properties of
{GN (s)}s∈[0,1]. For this, we introduce the following notation for the particles’
kinetic energy

K =
∑

p∈Λ∗
+

p2 . (2.19)

Proposition 2.1. Let s ∈ [0, 1], then there exists a ground state ψN (s) of the
Hamiltonian GN (s) defined in (2.18). Furthermore, there exists a constant C >
0 such that

〈ψGN (s), (N+ + 1)kψGN (s)〉 ≤ C (2.20)

for k = 1, 2 and the spectrum of the Hamiltonian GN (s) has a spectral gap
above the ground state EN (s) independent of s,N .

Moreover, there exists C > 0 such that for any Fock space vector ξ ∈ F≤N
⊥ϕ0

we have ∥∥∥∥(N+ + 1)
qψGN (s)

GN (s) − EN (s)
ξ

∥∥∥∥ ≤ C‖ξ‖,
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∥∥∥∥(N+ + 1)−1/2
qψGN (s)

GN (s) − EN (s)
ξ

∥∥∥∥ ≤ C‖(N+ + 1)−3/2ξ‖ (2.21)

Proof. The proof uses well-known ideas and techniques introduced to prove
results on the properties of GN and its corresponding ground state ψGN

showing
that the remainder RN contributes sub-leading only (see, for example, [13,15,
20]). Since GN (s) differs from GN by a multiple of the remainder only, these
techniques apply for GN (s) as we shall show in the following.

The strategy is as follows: First we show that GN (s) is bounded from
below by a multiple of N+ −C yielding the estimate (2.64) for k = 1 and with
further arguments for k = 2, too. Then, the remainder RN can be proven to
be sub-leading, and the existence of a spectral gap of the spectrum of GN (s)
independent of N, s follows from the spectral properties of Q. Finally, we prove
(2.65) from the previously proven properties.

Proof of Lower Bound for GN (s). First we shall prove that there exist con-
stants C1, C2 > 0 such that

GN (s) ≥ C1N+ − C2 . (2.22)

To this end, we recall that by definition (2.18) we have GN (s) = Q + sRN

for s ∈ [0, 1]. For the quadratic operator Q, we find since v̂(p) = v̂(−p) and
v̂(p) ≥ 0

Q =
∑

p∈Λ∗
+

p2a∗
pap +

1
2

∑

p∈Λ∗
+

v̂(p)
[
b∗
p + b−p

] [
b∗
−p + bp

]− 1
2
‖v̂‖�1

≥
∑

p∈Λ∗
+

p2a∗
pap − ‖v̂‖�1 ≥ (2π)2N+ − 1

2
‖v̂‖�1 . (2.23)

Thus assuming that there exists sufficiently small ε1 > 0 with

RN ≥ −ε1N+ − C (2.24)

, then (2.22) follows from (2.18) and (2.23). We are left with proving (2.24). For
this, we use that the contribution of RN quartic in creation and annihilation
operator is nonnegative, i.e., that we can write

RN = R̃N + VN , with VN =
1

2N

∑

p,q∈Λ∗
+,q �=−p,k

v̂(k)a∗
p+ka∗

k−qapak

(2.25)

and VN ≥ 0 following from v̂ ≥ 0. Therefore, to prove (2.24) it suffices to show
that

R̃N ≥ −ε1N+ − ε2VN − C (2.26)

for sufficiently small ε1, ε2 > 0. We estimate the single contributions of RN

given in (2.16) separately using the bounds

‖a(h)ξ‖ ≤ ‖h‖�2(Λ∗)‖N 1/2ξ‖, ‖a∗(h)ξ‖ ≤ ‖h‖�2(Λ∗)‖(N + 1)1/2ξ‖ (2.27)
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where a∗(h) =
∑

p∈Λ∗ hpa
∗
p for any h ∈ �2(Λ∗

+) resp. for the modified creation
and annihilation operators

‖b(h)ξ‖ ≤ ‖h‖�2(Λ∗
+)‖N 1/2ξ‖, ‖b∗(h)ξ‖ ≤ ‖h‖�2(Λ∗

+)‖(N + 1)1/2ξ‖ . (2.28)

By definition (2.16), the operator R̃N is cubic in creation and annihilation
operators and can be bounded with (2.28) by

N−1/2|〈ψ,
∑

p,q∈Λ∗
+,p�=−q

v̂(q)b∗
p+qa

∗
−qapψ〉|

= N−1/2|
〈

ψ,
∑

p,q∈Λ∗
+,p�=−q

v̂(q)a∗
p+qa

∗
−qap

√
1 − (N+ + 1)/Nψ

〉
|

≤ C

(
(2N−1

∑

p,q∈Λ∗
+,p�=−q

v̂(q)‖ap+qa−qψ‖2

)1/2

×
(

∑

p,q∈Λ∗
+,p�=−q

v̂(q)‖ap

√
1 − (N+ + 1)/Nψ‖2

)1/2

. (2.29)

We switch to position space for the first factor and find

(2N)−1
∑

p,q∈Λ∗∗,p�=q

v̂(q)‖ap+qa−qψ‖2

= (2N)−1

∫
dxdy v(x − y) 〈ψ, a∗

xa∗
yayax ψ〉 = 〈ψ, VNψ〉 (2.30)

and therefore

N−1/2

∣∣∣∣∣∣

〈
ψ,

∑

p,q∈Λ∗
+,p�=−q

v̂(q)b∗
p+qa

∗
−qapψ

〉∣∣∣∣∣∣
≤ C‖v̂‖�1‖V1/2

N ψ‖ ‖(N + 1)1/2ψ‖ .

(2.31)

The Hermitian conjugate can be estimated similarly. Thus, with (2.31) we
arrive at (2.26) and thus at (2.22) using that s ∈ [0, 1].

Proof of (2.64). The lower bound (2.22) has several consequences: On the one
hand, the lower bound (2.22) shows that GN (s) is bounded from below by a
constant −C(N +1). On the other hand, (2.22) shows that for any normalized
ξ ∈ F with 1GN (s)≤ζξ = ξ (i.e., in particular for the ground state) that

〈ξ, N+ξ〉 ≤ C−1
1 〈ξ, GN (s)ξ〉 + C2 ≤ C−1

1 ζ + C2 (2.32)

which proves (2.64) for k = 1. To prove (2.64) for k = 2, we remark that (2.22)
furthermore implies

〈ξ, (N+ + 1)2ξ〉 ≤ C〈ξ, (N+ + 1)1/2GN (s)(N+ + 1)1/2ξ〉
= Cζ

〈
ξ, N+ξ〉 + C〈ξ,N 1/2

+

[
GN (s),N 1/2

+

]
ξ
〉

. (2.33)
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With spectral calculus, we find that
[
GN (s),N 1/2

+

]
=

1
π

∫ ∞

0

√
t

N+ + 1 + t
[GN (s),N+]

1
N+ + 1 + t

dt (2.34)

We recall the definition of GN (s) and compute the commutators for every term
separately. We have

[Q,N+] =
∑

p∈Λ∗
+

v̂(p)
[
b∗
pb

∗
−p − bpb−p

]
(2.35)

and thus

∣∣∣
〈
ξ, N 1/2

+

[
Q, N 1/2

+

]
ξ
〉∣∣∣

≤ 1

2

∫ ∞

0

√
t

(
∑

p∈Λ∗
+

v̂(p)

∥∥∥∥∥bp
(N+ + 1)1/2

N+ + 1 + t
ξ

∥∥∥∥∥

)1/2
⎛

⎜⎝
∑

p∈Λ∗
+

v̂(p)

∥∥∥∥∥b
∗
−p

1

N+ + 1 + t
ξ

∥∥∥∥∥

⎞

⎟⎠

1/2

dt

+
1

2

∫ ∞

0

√
t

⎛

⎜⎝
∑

p∈Λ∗
+

v̂(p)
∥∥∥b∗

p

(N+ + 1)1/2

N+ + 1 + t
ξ

∥∥∥∥∥

⎞

⎟⎠

1/2 (
∑

p∈Λ∗
+

v̂(p)

∥∥∥∥∥b−p
1

N+ + 1 + t
ξ

∥∥∥∥∥

)1/2

dt

≤
∫ ∞

0

√
t

(1 + t)2
dt ‖(N+ + 1)ξ‖ ‖(N+ + 1)1/2ξ‖ ≤ C‖(N+ + 1)ξ‖ ‖(N+ + 1)1/2ξ‖ .

(2.36)

The commutator with RN follows similarly using that [N+, ap] = −ap

resp. [N+, a∗
p] = a∗

p and analogous estimates as in (2.31)) (with VN ≤ CN−1N 2
+

≤ CN+ on F≤N
⊥ϕ0

). Thus, we arrive at
∣∣∣
〈
ξ,N 1/2

+

[
GN (s),N 1/2

+

]
ξ
〉∣∣∣ ≤ C‖(N+ + 1)ξ‖ ‖(N+ + 1)1/2ξ‖ (2.37)

and with (2.33) furthermore at
(

1 − 1
2

)〈
ξ, (N+ + 1)2ξ

〉 ≤ C〈ξ, (N+ + 1)ξ〉 ≤ C (2.38)

from (2.32) yielding (2.64) for k = 2.
With (2.32), we can now refine the estimates on the remainder. We shall

prove that

‖RNψ‖2 ≤ CN−1‖(N + 1)3/2ψ‖2 . (2.39)

For the contribution of RN in (2.16) cubic in (modified) creation and annihila-
tion operators, we switch to position space and compute with the commutation
relations for any vector ψ ∈ F≤N

⊥ϕ0

∥∥∥∥∥∥

∑

p,q∈Λ∗
+,p�=−q

v̂(q)b
∗
p+qa

∗
−qapψ

∥∥∥∥∥∥

2

=

∫

Λ4
dxdydzdw v(x − y)v(z − w)〈ψ, a

∗
za

∗
xa

∗
yawazax(N − N+ − 1)/N ψ〉

+

∫

Λ3
dxdydz v(x − y)v(x − z)〈ψ, a

∗
za

∗
yazax(N − N+ − 1)/N ψ〉
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+

∫

Λ3
dxdydw (v(x − y)v(y − w) + v(x − y)v(w − x))

〈ψ, a
∗
xa

∗
yawax(N − N+ − 1)/N ψ〉

+

∫

Λ3
dxdydz v(x − y)v(z − y)〈ψ, a

∗
za

∗
xazax(N − N+ − 1)/N ψ〉

+

∫

Λ2
dxdy v(x − y)

2〈ψ,
(
a

∗
yax + a

∗
xax

)
(N − N+ − 1)/N ψ〉 . (2.40)

Since ‖v‖L∞(Λ) ≤ ‖v̂‖�1(Λ∗) ≤ C, we thus conclude by (2.27) that

N−1

∥∥∥∥∥∥

∑

p,q∈Λ∗
+,p�=−q

v̂(q)b∗
p+qa

∗
−qapψ

∥∥∥∥∥∥

2

≤ CN−1
∥∥∥(N+ + 1)3/2ψ

∥∥∥
2

. (2.41)

We proceed similarly for the contribution of RN cubic in creation and annihi-
lation operators VN (see (2.16) resp. (2.25)). With the commutation relation,
we find for any ψ ∈ F≤N

⊥ϕ0

(2N)2‖VNψ‖2

=
∫

Λ4
dxdydzdw v(x − y)v(z − w) 〈ψ, a∗

za
∗
wa∗

xa∗
yazawaxayψ〉

+ 2
∫

Λ3
dxdydz (v(x − y)v(z − x) + v(x − y)v(z − y))

〈ψ, a∗
za

∗
xa∗

yazaxayψ〉

+ 2
∫

Λ2
dxdydz v(x − y)2 〈ψ, a∗

xa∗
yaxayψ〉 (2.42)

and thus we arrive with ‖v‖L∞(Λ) ≤ ‖v̂‖�1(Λ∗) ≤ C at

‖VNψ‖2 ≤ CN−1‖(N+ + 1)2ψ‖2 . (2.43)

Summarizing (2.40), (2.41) and (2.43), we thus arrive at the desired estimate
(2.39).

Therefore, with (2.39) we find that for any ψ ∈ F≤N
⊥ϕ0

in the limit N → ∞
〈ψ,GN (s)ψ〉 = 〈ψ,GN (s)ψ〉 + O(N−1/2) (2.44)

and with the min max principle it follows that the low energy states are de-
termined through the quadratic Hamiltonian Q. In particular the spectrum of
GN (s) has a spectral gap independent of N, s (given in leading order by the
spectral gap of Q. (For more details, see, for example, [13].) Furthermore, with
similar arguments as in [10] it follows that for every s ∈ [0, 1] there exists a
ground state ψN (s) approximated by the ground state of Q.

Proof of (2.65). With (2.22), we find

qψGN (s)

GN (s) − EN (s)
(N+ + 1)2

qψGN (s)

GN (s) − EN (s)

≤ C
qψGN (s)

GN (s) − EN (s)
(N+ + 1)1/2 (GN (s) − EN (s) + 1) (N+ + 1)1/2

qψGN (s)

GN (s) − EN (s)

(2.45)
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In order to use (2.22) once more, we write the r.h.s. as

qψGN (s)

GN (s) − EN (s)
(N+ + 1)1/2 (GN (s) − EN (s)) (N+ + 1)1/2

qψGN (s)

GN (s) − EN (s)

=
1

2

[
(N+ + 1)1/2,

[
(N+ + 1)1/2,

qψGN (s)

GN (s) − EN (s)

]]

+
1

2

qψGN (s)

GN (s) − EN (s)

[[
(N+ + 1)1/2, GN (s)

]
, (N+ + 1)1/2

] qψGN (s)

GN (s) − EN (s)
.

(2.46)

For the first term, we find similarly to (2.34) with spectral calculus

[
(N+ + 1)1/2,

qψGN (s)

GN (s) − EN (s)

]

=
qψGN (s)

GN (s) − EN (s)

[
(N+ + 1)1/2, GN (s)

] qψGN (s)

GN (s) − EN (s)

=
1

π

qψGN (s)

GN (s) − EN (s)

∫ ∞

0

√
t

N+ + 1 + t
[GN (s), N+]

dt

N+ + 1 + t

qψGN (s)

GN (s) − EN (s)

(2.47)

and thus with similar estimates as in (2.34)-(2.37) and (2.22)
∣∣∣∣

〈
ξ,
[
(N+ + 1)1/2,

[
N 1/2

+ ,
qψGN (s)

GN (s) − EN (s)

]]
ξ

〉∣∣∣∣

≤ C

∥∥∥∥
qψGN (s)

GN (s) − EN (s)
(N+ + 1)1/2ξ

∥∥∥∥

∥∥∥∥(N+ + 1)
qψGN (s)

GN (s) − EN (s)
ξ

∥∥∥∥

≤ C‖ξ‖
∥∥∥∥(N+ + 1)

qψGN (s)

GN (s) − EN (s)
ξ

∥∥∥∥ . (2.48)

The second term of the r.h.s. of (2.45) can be estimated similarly, and we find
with (2.34)-(2.37), (2.22) that
∣∣∣∣

〈
ξ,

qψGN (s)

GN (s) − EN (s)

[[
(N+ + 1)1/2, GN (s)

]
, (N+ + 1)1/2

] qψGN (s)

GN (s) − EN (s)
ξ

〉∣∣∣∣

≤ C
∥∥∥

qψGN (s)

GN (s) − EN (s)
(N+ + 1)1/2ξ‖ ‖(N+ + 1)

qψGN (s)

GN (s) − EN (s)
ξ‖

≤ C‖ξ‖
∥∥∥∥(N+ + 1)

qψGN (s)

GN (s) − EN (s)
ξ

∥∥∥∥ . (2.49)

Thus, we conclude with (2.48), (2.49) from (2.45) with the operator inequality
(

1 − 1
2

)
qψGN (s)

GN (s) − EN (s)
(N+ + 1)2

qψGN (s)

GN (s) − EN (s)
≤ C (2.50)

that finally leads to the desired first bound of (2.65).
The second bound follows with similar arguments from (2.47).

�
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2.3. Generalized Bogoliubov Transform

We note that the quadratic Hamiltonian Q is formulated w.r.t. to modified cre-
ation and annihilation operators. For operators quadratic in standard creation
and annihilation operators, the corresponding unique ground state is explic-
itly known and given by a quasi-free state. However, here we do not have an
explicit expression for the ground state ψQ, but we will use that it is approx-
imately given by the generalized quasi-free state eB(μ)Ω as defined in (1.28).
In contrast to the standard Bogoliubov transform (1.27) formulated w.r.t. to
standard creation and annihilation operators, there is no exact formula for the
action of eB(μ) on modified creation and annihilation operators. However, we
have

eB(μ)b∗
pe

−B(μ) = γpb
∗
p + σpb−p + dp,

eB(μ)bpe
−B(μ) = γpbp + σpb

∗
−p + d∗

p (2.51)

where we write σp = sinh(μp) and γp = cosh(μp). The remainders dp, d
∗
p are

small on states with a small number of excitations. More precisely, [5, Lemma
2.3] shows (since μ ∈ �2(Λ∗

+)) that for any k ∈ Z there exists Ck > 0 such that

‖(N+ + 1)k/2dpψ‖ ≤ CkN−1
(
‖bp(N+1)(k+2)/2ψ‖ + |μp| ‖(N+ + 1)3/2ψ‖

)

(2.52)

for all p ∈ Λ∗
+ and

‖(N+ + 1)k/2d∗
pψ‖ ≤ CkN−1‖(N+ + 1)3/2ψ‖ (2.53)

In particular, this leads to

‖(N+ + 1)−1/2d
1
p b
2

αpψ‖, ‖(N+ + 1)−1/2b
1
p d
2

αpψ‖ ≤ CN−1/2‖(N+ + 1)ψ‖
(2.54)

and

‖(N+ + 1)−1/2d
1
p d
2

αpψ‖ ≤ CN−1/2‖(N+ + 1)ψ‖ (2.55)

with �i ∈ {·, ∗} for i = 1, 2, either �1 = �2 or �1 = ∗ and �2 = · and α = −1
if �1 = �2 and α = 1 otherwise. These estimates (2.52), (2.53), (2.55) remain
true when replacing dp, d

∗
p resp. d
1

p d
2
αp with their (double commutator) with

N+; we have

‖(N+ + 1)k/2 [N+, dp] ψ‖ ≤ CkN−1
(
‖bp(N+1)(k+2)/2ψ‖ + |μp| ‖(N+ + 1)3/2ψ‖

)

(2.56)
resp.

‖(N+ + 1)k/2 [N+, [N+, dp]] ψ‖ ≤ CkN−1
(
‖bp(N+1)(k+2)/2ψ‖ + |μp| ‖(N+ + 1)3/2ψ‖

)

(2.57)

and similarly for the other operators. (Note that (2.56), (2.57) follow
from the proof of [6, Corollary 3.5].) Also, we know the generalized Bogoliubov
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transform approximate action on the kinetic term that is given by

eB(μ)
∑

p∈Λ∗
+

p2a∗
pape

−B(μ)

=
∑

p∈Λ∗
+

p2a∗
pap +

∑

p∈Λ∗
+

p2
(
σ2

p + σpγp(b∗
pb

∗
−p + bpb−p) + 2σ2

pb∗
pbp

)
+ RK

(2.58)

where the remainder RK satisfies

‖(N+ + 1)−1/2RKψ‖ ≤ CN−1/2‖(N+ + 1)ψ‖ . (2.59)

and also similar bounds for its (double) commutator as formulated before
(2.56), (2.57). Note that since p2μp ∈ �1(Λ) and σp, γp ∈ �∞(Λ∗

+), this is a con-
sequence of (2.54), (2.55). (For more details, see Lemma 3.10.) Consequently,
conjugating the quadratic Hamiltonian Q with the generalized Bogoliubov
transform eB(μ) almost diagonalizes Q. More precisely, we have

e−B(μ)QeB(μ) = D + RQ (2.60)

where the diagonal operator D is given by

D :=
∑

p∈Λ∗
+

((
p2 + v̂(p)

)
(σ2

p + γ2
p) + 2σpγpv̂(p)

)
a∗

pap (2.61)

and the remainder is

RQ =
∑

p∈Λ∗
+

(2p2σ2
p + v̂(p))(b∗

pbp − a∗
pap)

+
∑

p∈Λ∗
+

v̂(p)
(
(γpb

∗
p + σpb−p)dp + d∗

p(γpbp + σpb
∗
−p) + d∗

pdp

)

+
∑

p∈Λ∗
+

v̂(p)
(
(γpb

∗
p + σpb−p)d∗

−p + d∗
p(γpb

∗
−p + σpbp) + d∗

pd
∗
−p)
)

+ h.c.

+ RK . (2.62)

Though we do not have an explicit form of eB(μ)ψQ, the ground state of the
diagonal operator D is explicitly known and given by the vacuum Ω. For this
reason, we will study for s ∈ [0, 1] the family of Hamiltonians

Q(s) := D + sRK (2.63)

interpolating between Q(1) = e−B(μ)QeB(μ) and Q(0) = D.
Similarly to Proposition 2.1, we have the following properties.

Proposition 2.2. Let s ∈ [0, 1], then there exists a ground state ψQ(s) of the
Hamiltonian Q(s) defined in (2.18). Furthermore, there exists a constant Ck >
0 (independent of s,N) such that

〈ψQ(s), (N+ + 1)kψQ(s)〉 ≤ Ck (2.64)

for k = 1, 2 and the spectrum of the Hamiltonian Q(s) has a spectral gap above
the ground state E(s) independent of s,N . Moreover, for k = 1, 2 there exists
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Ck > 0 (independent of N, s) such that for any Fock space vector ξ ∈ F≤N
⊥ϕ0

we
have

∥∥∥∥(N+ + 1)k/2
qψQ(s)

Q(s) − E(s)
ξ

∥∥∥∥ ≤ Ck‖ξ‖ . (2.65)

Proof. We proceed similarly as in the proof of Proposition 2.1. First note that
from Proposition 2.1 we have (since Q = GN (0)) that

Q(1) = e−B(μ)(Q − E(1))eB(μ) ≥ C1e
−B(μ)N+eB(μ) − C2 (2.66)

for some C1, C2 > 0. The generalized Bogoliubov transform approximately
preserves the number of particles. More precisely, it follows from [5, Lemma
2.4] that

e−B(μ)QeB(μ) ≥ C3N+ − C4 (2.67)

for some positive constants C3, C4 > 0. Since D ≥ CN+ for some positive
C > 0 and Q(s) = se−B(μ)QeB(μ) +(1− s)D is a convex combination of both,
we find

(Q(s) − E(s)) ≥ c0N+ − C0 (2.68)

for some positive constants c0, C > 0. This implies that for any normalized
ξ ∈ F with ξ = 1Q(s)≤ζξ that

〈ξ, (N + 1)2ξ〉 ≤ C〈ξ, (N+ + 1)1/2Q(s)(N+ + 1)1/2ξ〉
= Cζ〈ξ, (N+ + 1)ξ〉 + C

〈
ξ,
[
(N+ + 1)1/2,

[
Q(s), (N+ + 1)1/2

]]
ξ
〉

.

(2.69)

With formula 2.34, we write the commutator as

[
(N+ + 1)1/2,

[
Q(s), (N+ + 1)1/2

]]

=
1

π2

∫ ∞

0
dt1dt2

1

N+ + 1 + t1

1

N+ + 1 + t2
[N+, [N+, Q(s)]]

1

N+ + 1 + t2

1

N+ + 1 + t1
(2.70)

Since v̂ ∈ �2(Λ∗
+) and

[N+, b

p

]
= αb


p with � ∈ {·, ∗} and α = −1 if � = ·
and α = 1 if � = ∗, it follows from (2.28) and (2.57) that we can bound the
double commutator in form by the number of particles. Thus, we arrive for
any ξ ∈ F≤N

⊥ϕ0
at

〈ξ, (N + 1)2ξ〉 ≤ Cζ〈ξ, (N+ + 1)ξ〉 + C‖(N + 1)ξ‖‖ξ‖ (2.71)

and we conclude by 〈ξ, (N + 1)2ξ〉 ≤ C. The spectral gap and the bound on
the resolvent follow with similar arguments as in the proof of Proposition 2.1
using again the estimates on the double commutator.

�
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3. Preliminaries

The proof of Theorem 1.2 is based on closed formulas derived in [12] for the
conjugation of operators of the form bp, b

∗
p and

dΓ(H) =
∑

p∈Λ∗
+

Hp,q a∗
pa−q (3.1)

for any bounded operator H on �2(Λ∗
+) with the exponential of N+ (given by

(2.8)) and the symmetric operator

φ+(h) = b∗(h) + b(h) =
∑

p∈Λ∗
+

hp

[
b∗
p + b−p

]
(3.2)

with h ∈ �2(Λ∗
+). For this, we furthermore define for any h ∈ �2(Λ∗

+) the
anti-symmetric operator

iφ−(h) = b(h) − b∗(h) = −
∑

p∈Λ∗
+

hp

[
b∗
p − b−p

]
. (3.3)

and (in abuse of notation) the shorthand notation

γs = cosh(s) and σs = sinh(s) (3.4)

We recall the closed formulas from [12] that are formulated in position
space and easily translate with (2.4) to momentum space relevant for the
present analysis.

Lemma 3.1. (Proposition 2.2,2.4 in [12]) With the shorthand notation ‖·‖�2(Λ∗
+) =

‖ · ‖, we have for h ∈ �2(Λ∗
+) and p ∈ Λ∗

+

e
√

Nφ+(h)bpe−√
Nφ+(h) = γ‖h‖bp + γ‖h‖

γ‖h‖−1

‖h‖2 h−piφ−(h) − γ‖h‖−1

‖h‖2 h−pb∗(h)

−√
N γ‖h‖

σ‖h‖
‖h‖ h−p

(
1 − N+

N

)
+ 1√

N

σ‖h‖
‖h‖

γ‖h‖−1

‖h‖2 h−pa∗(h)a(h)

+ 1√
N

σ‖h‖
‖h‖ a∗(h)ap . (3.5)

Furthermore, for any self-adjoint H : D(H) → �2(Λ∗
+) with domain

D(H) ⊂ �2(Λ∗
+) and h ∈ D(H), we have

e
√

Nφ+(h)dΓ(H)e−√
Nφ+(h)

= dΓ(H) +
√

N
σ‖h‖
‖h‖ iφ−(Hh)

− N
σ2

‖h‖
‖h‖2

〈h,Hh〉
(

1 − N+

N

)
+

(γ‖h‖ − 1)
‖h‖2

(a∗(h)a(Hh) + a∗(Hh)a(h))

+
√

N
σ‖h‖
‖h‖

γ‖h‖ − 1
‖h‖2

〈h,Hh〉iφ−(h) +
(

γ‖h‖ − 1
‖h‖2

)2

〈h,Hh〉a∗(h)a(h) .

A similar formula as (3.46) for e
√

Nφ+(h)b∗
pe

−√
Nφ+(h) follows when re-

placing h with its negative −h and taking the Hermitian conjugate of (3.46).



Large Deviations for the Ground State

Furthermore, the following closed formulas hold for the conjugation with
respect to the exponential of the number of particles operator on the excitation
Fock space N+.
Lemma 3.2 (Proposition 2.5 [12]) . Let N+ be given by (2.8) and h ∈ �2(Λ+

+).
Then, for every s ∈ R we have with the short hand notation (3.4)

e−sN+b(h)esN+ = esb(h),

e−sN+b∗(h)esN+ = e−sb∗(h),

e−sN+φ+(h)esN+ = γsφ+(h) + σsiφ−(h),

e−sN+iφ−(h)esN+ = γsiφ−(h) + σsφ+(h) . (3.6)

Moreover, we shall use the following Lemma proven in [12].
Lemma 3.3 (Proposition 2.6 [12]) .Let h· : R → �2(Λ∗

+), t �→ ht be a differen-
tiable. For ξ1, ξ2 ∈ F≤N

⊥ϕ0
, we find with the short hand notation (3.4)

〈
ξ1,
[
∂te

√
Nφ+(ht)

]
e−√

Nφ+(ht)ξ2

〉

=
√

N
σ‖ht‖
‖ht‖ 〈ξ1, φ+(∂tht)ξ2〉 −

√
N

σ‖ht‖
‖ht‖

γ‖ht‖ − 1
‖ht‖2

Im〈∂tht, ht〉〈ξ1, φ−(ht)ξ2〉

−
√

N
σ‖ht‖ − ‖ht‖

‖ht‖3
Re〈∂tht, ht〉〈ξ1, φ+(ht)ξ2〉

− iN
σ2

‖ht‖
‖ht‖2

Im〈∂tht, ht〉〈ξ1, (1 − N+/N)ξ2〉

+ i

(
γ‖ht‖ − 1

‖ht‖2

)2

Im〈∂tht, ht〉〈ξ1, a
∗(ht)a(ht)ξ2〉

+
γ‖ht‖ − 1

‖ht‖2

〈
ξ1, [a∗(ht)a(∂tht) − a∗(∂tht)a(ht)] ξ2

〉
. (3.7)

In the proof of the main theorem, we consider operators conjugated w.r.t.
to both exponentials eλ

√
Nφ+(h)eλN+ where the parameter λ ∈ [0, 1] is consid-

ered to be small. The previous lemma yields in the following corollary for the
first-order contributions.
Corollary 3.4. Let H ∈ �2(Λ∗

+), g ∈ �2(Λ∗
+) and |λ|, |λκ| ≤ 1. Then, there

exists C > 0 (independent of κ, λ) such that
∥∥∥∥∥
∑

pΛ∗
+

Hp

(
eκλN+eλ

√
Nφ+(g)b
1

p b
2
αpe

−λ
√

Nφ+(g)e−κλN+ − b
1
p b
2

αp

)
ψ

∥∥∥∥∥

≤ C(‖g‖ + |κ|)|λ|
√

N‖(N+ + 1)1/2ψ‖ + C‖g‖2λ2N‖ψ‖ (3.8)

with �i ∈ {·, ∗} for i = 1, 2, either �1 = �2 and α = −1 or �1 = ∗, �2 = ·
and α = 1 otherwise. Furthermore, for p2 g ∈ �2(Λ∗

+) there exists C > 0
(independent of κ, λ) such that

∥∥∥∥∥
∑

pΛ∗
+

p2
(
eκλN+eλ

√
Nφ+(g)a∗

pape
−λ

√
Nφ+(g)e−κλN+ − a∗

pap

)
ψ

∥∥∥∥∥
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≤ C‖p2g‖|λ|
√

N‖(N+ + 1)1/2ψ‖ + C‖p2g‖2λ2N‖ψ‖ . (3.9)

Proof. We consider the case �1 = ∗, �2 = · and α = 1 first. We recall that by
definition of the modified creation and annihilation operators in (2.7) we have

∑

p∈Λ+

Hp b∗
pbp =

N − N+ + 1
N

∑

p∈Λ+

Hp a∗
pap =

N − N+ + 1
N

dΓ(H) (3.10)

and thus
∑

p∈Λ+

Hp

(
eκλN+eλ

√
Nφ+(g)b∗

pbpe
−λ

√
Nφ+(g)e−λκN+ − b∗

pbp

)

=
N − N+ + 1

N

(
eκλN+eλ

√
Nφ+(g)dΓ(H)e−λ

√
Nφ+(g)e−λκN+ − dΓ(H)

)

−
(

eκλN+eλ
√

Nφ+(g) N+

N
e−λ

√
Nφ+(g)e−λκN+ − N+

N

)
dΓ(H) . (3.11)

From Lemma 3.1, we find that

∑

p∈Λ+

Hp

(
eκλN+eλ

√
Nφ+(g)b∗

pbpe−λ
√

Nφ+(g)e−λκN+ − b∗
pb−q

)

=
N − N+ + 1

N

[
λγκλ

√
N

σλ‖g‖
λ‖g‖ iφ−(Hg) + λσκλ

√
N

σλ‖g‖
λ‖g‖ φ+(Hg)

− Nλ2
σ2

λ‖g‖
(λ‖g‖)2

〈g, Hg〉
(

1 − N+

N

)
+ λ2

(γλ‖g‖ − 1)

(λ‖g‖)2
(a∗(g)a(Hg) + a∗(Hg)a(g))

+
√

Nλ3γκλ

σλ‖g‖
λ‖g‖

γλ‖g‖ − 1

(λ‖g‖)2
〈g, Hg〉iφ−(g) + λ3

√
N σκλ

σλ‖g‖
λ‖g‖

γλ‖g‖ − 1

(λ‖g‖)2
〈g, Hg〉φ+(g)

+λ4

(
γλ‖g‖ − 1

(λ‖g‖)2

)2

〈g, Hg〉a∗(g)a(g)

]

+
1

N

[
λγκλ

σλ‖g‖
λ‖g‖ iφ−(g) + λσκλ

σλ‖g‖
λ‖g‖ φ+(g)

− Nλ2
σ2

λ‖g‖
(λ‖g‖)2

‖g‖2

(
1 − N+

N

)
+ 2λ2

(γλ‖g‖ − 1)

(λ‖g‖)2
a∗(g)a(g)

+
√

Nλ3 γκλ

σλ‖g‖
λ‖g‖

γλ‖g‖ − 1

(λ‖g‖)2
‖g‖2iφ−(g) +

√
Nλ3 σκλ

σλ‖g‖
λ‖g‖

γλ‖g‖ − 1

(λ‖g‖)2
‖g‖2φ+(g)

+λ4

(
γλ‖g‖ − 1

(λ‖g‖)2

)2

‖g‖2a∗(g)a(g)

]
dΓ(H) . (3.12)

Since g,Hg ∈ �2(Λ∗
+), we find with (2.27), (2.28) for any ψ ∈ F≤N

⊥ϕ and
|λ| < 1 that

∥∥∥∥∥∥

∑

p∈Λ+

Hp

(
eκλN+eλ

√
Nφ+(g)b∗

pbpe
−λ

√
Nφ+(g)e−λκN+ − b∗

pb−q

)
ψ

∥∥∥∥∥∥

≤ Cλ‖g‖
√

N‖(N+ + 1)1/2ψ‖ + Cλ2‖g‖2N‖ψ‖ . (3.13)
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The remaining cases for (3.8) (i.e., �1 = �2) follow similarly from Lemma 3.1.
We have∥∥∥∥∥∥

∑

p∈Λ+

Hp

(
eκλN+eλ

√
Nφ+(g)b∗

pb
∗
−pe

−λ
√

Nφ+(g)e−λκN+ − b∗
pb−q

)
ψ

∥∥∥∥∥∥

≤ Cλ(‖g‖ + κ)
√

N‖(N+ + 1)1/2ψ‖ + Cλ2‖g‖2N‖ψ‖ . (3.14)

Note that the bound linear in λ depends on κ (in contrast to (3.13)) as b∗
pb

∗
−p

does not commute with eλκN+ .
The second estimate (3.9) follows with similar arguments from Lemma 3.1

since

∑

p∈Λ+

p2
(
eκλN+eλ

√
Nφ+(g)a∗

pape−λ
√

Nφ+(g)e−λκN+ − a∗
pap

)

=
N − N+ + 1

N

[
λγκλ

√
N

σλ‖g‖
λ‖g‖ iφ−(g̃) + λσκλ

√
N

σλ‖g‖
λ‖g‖ φ+(g̃)

− Nλ2
σ2

λ‖g‖
(λ‖g‖)2

〈g, Hg〉
(

1 − N+

N

)
+ λ2

(γλ‖g‖ − 1)

(λ‖g‖)2
(a∗(g)a(g̃) + a∗(g̃)a(g))

+
√

Nλ3γκλ

σ‖g‖
‖g‖

γλ‖g‖ − 1

(λ‖g‖)2
〈g, g̃〉iφ−(g) + λ3

√
N σκλ

σλ‖g‖
λ‖g‖

γλ‖g‖ − 1

(λ‖g‖)2
〈g, g̃〉φ+(g)

+λ4

(
γλ‖g‖ − 1

(λ‖g‖)2

)2

〈g, Hg〉a∗(g)a(g)

]

(3.15)

where we denoted g̃(p) = p2g(p). Since g̃ ∈ �2(Λ∗
+) by assumption, (3.9)

follows with similar arguments. �

For our analysis, we need to improve those bounds and prove similar
bounds for the conjugated operators

eλκN+eλ
√

Nφ+(h) d

p e−λ

√
Nφ+(h)e−λκN+ (3.16)

with � ∈ {·, ∗} and κ, λ ∈ R. For this, we are using closed formulas derived
in [12, Proposition 2.3−2.6] and properties of dp, d

∗
p from [4,5] based on the

expansion for any p ∈ Λ∗
+

e−B(μ)bpe
B(μ) =

m−1∑

n=1

(−1)n
ad(n)

B(μ)(bp)

n!

+
∫ 1

0

ds1

∫ s1

0

ds2 . . .

∫ sm−1

0

dsme−smB(μ)ad(m)
B(μ)(bp)esmB(μ)

(3.17)

with the recursive definition for the nested commutators

ad(0)
B(μ)(A) = A and ad(n)

B(μ) =
[
B(μ), ad(n−1)

B(μ) (A)
]

. (3.18)

In [4], it is shown that the nested commutators of bp, b
∗
p are given in terms

of the following operators: For f1, . . . , fn ∈ �2(Λ∗
+), � = (�1, . . . , �n), � =
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(�0, . . . , �n−1) ∈ {·, ∗}n, we define the Π(2)-operator of order n by

Π(2)

,� (f1, . . . , fn)

=
∑

p1,...,pn∈Λ∗
+

b�0
α0p1

a
1
β1p1

a�1
α1p2

a
2
β2p2

a�2
α2p3

. . . a

n−1
βn−1pn−1

a�n−1
αn−1pn

b
n

βnpn

n∏

�=1

f�(p�)

(3.19)

were for � = 0, 1, . . . , n we define α� = 1 if �� = ∗., α� = −1 if �� = ·, β� = 1
if �� = · and β� = −1 of �� = ∗. Moreover, we require that for every j =
1, . . . , n − 1, we have either �j = · and �j = ∗ or �j = ∗ and �j = · (so that the
product a
�

β�p�
a��

α�p�+1
preserves the number of particles for all � = 1, . . . , n−1).

Then, the operator Π(2)

,� (f1, . . . , fn) leaves the truncated Fock space invariant.

Moreover, if for some � = 1, . . . , n, ��−1 = · and �� = ∗, we furthermore
require that f� ∈ �1(Λ∗

+) (so that we can normal order the operators). For
g, f1, . . . , fn ∈ �2(Λ∗

+), � = (�1, . . . , �n) ∈ {·, ∗}n, � = (�0, . . . , �n) ∈ {·, ∗}n+1 we
define a Π(1)-operator of order n by

Π
(1)
�,	

(f1, . . . , fn; g)

=
∑

p1,...,pn∈Λ∗
+

b	0
α0,p1

a�1
β1p1

a	1
α1p2

a�2
β2p2

a	2
α2p3

. . . a
�n−1
βn−1pn−1

a
	n−1
αn−1pna�n

βnpn
a	n (g)

n∏

�=1

f�(p�)

(3.20)

where α� and β� are defined as before. Also here, we require that for
all � = 1, . . . , n either �� = · and �� = ∗ or � = ∗ and �� = ·. Then, the
operators Π(1) leave the truncated Fock space invariant, too. Furthermore, we
require that f� ∈ �1(Λ∗

+) if ��−1 = · and �� = ∗ for some � = 1, . . . , n. The
following lemma proven in [4] shows that nested commutators adB(μ)(bp) can
be expressed in terms of (N − N+)/N , (N − (N+ − 1))/N and Π(1) resp.
Π(2)-operators.

Lemma 3.5. Let μ ∈ �2(Λ∗
+) be such that μp = μ−p for all p ∈ Λ∗

+. To simplify
the notation, assume also μ to be real-valued. Let B(μ) be defined as in (1.28),
n ∈ N and p ∈ Λ∗

+. Then, the nested commutator ad(n)
B(μ)(bp) can be written as

the sum of exactly 2nn! terms with the following properties.
(i) Possibly up to a sign, each term has the form

Λ1Λ2 . . . ΛiN
−kΠ(1)


,� (μj1 . . . . , μjk ;μs
pϕαp) (3.21)

for some i, k, s ∈ N, j1, . . . , jk ∈ N\{0}, � ∈ {·, ∗}k, � ∈ {·, ∗}k+1 and
α ∈ {±} chosen so that α = 1 if �k = · and α = −1 of �k = ∗ (recall that
ϕp(x) = e−ip·x). In 3.21, each operator Λw : F≤N → F≤N , w = 1, . . . , i
is either a factor of (N − N+)/N , a factor (N − (N+ − 1))/N or an
operator of the form

N−hΠ(2)

′,�′(μz1 , μz2 , . . . , μzh) (3.22)

for some h, z1, . . . , zh ∈ N\{0}, �, β ∈ {·, ∗}h.
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(ii) If a term of the form (3.21) contains m ∈ N factors (N − N+)/N or
(N−(N++1))/N and j ∈ N factors of the form (3.21) with Π(2) operators
pf order h1, . . . , hj ∈ N \ {0}, then we have

m + (h1 + 1) + · · · + (hj + 1) + (k + 1) = n + 1 (3.23)

(iii) If a term of the form (3.21) contains (considering all Λ-operators and
the Π(1)-operator) the arguments μi1 , . . . , μim and the factor μs

p for some
m, s ∈ N and i1, . . . , im ∈ N\{0}, then

i1 + · · · + im + s = n . (3.24)

(iv) There is exactly one term having the form (3.21) with k = 0 and such
that all Λ-operators are factors of (N − N+)/N or of (N + 1 − N )/N . It
is given by

(
N − N+

N

)n/2(
N + 1 − N+

N

)n/2

μn
p bp (3.25)

if n is even, and by

−
(

N − N+

N

)(n+1)/2(
N + 1 − N+

N

)(n−1)/2

μn
p b∗

−p (3.26)

if n is odd.
(v) If the Π(1)-operator in (3.21) is of order k ∈ N \ {0}, it has either the

form

∑

p1,...,pk

b�0
α0p1

k−1∏

i=1

a
i

βipi
a�i

αipi+1
a∗

−pk
μ2r

p ap

k∏

i=1

μji
pi

(3.27)

or the form

∑

p1,...,pk

b�0
α0p1

k−1∏

i=1

a
i

βipi
a�i

αipi+1
apk

μ2r+1
p a∗

p

k∏

i=1

μji
pi

(3.28)

for some r ∈ N, j1, . . . , jk ∈ N\{0}. If it is of order k = 0, then it is
either given by μ2r

p bp or by μ2r+1
p b∗

−p for some r ∈ N.
(vi) For every non-normally ordered term of the form

∑

q∈Λ∗
μi

qaqa
∗
q ,

∑

q∈Λ∗
μi

qbqa
∗
q ,

∑

q∈Λ∗
μi

qaqb
∗
q or

∑

q∈Λ∗
μi

qbqb
∗
q (3.29)

appearing either in the Λ-operators or in the Π(1)-operator in (3.21), we
have i ≥ 2.

As a consequence of Lemma 3.5, for ‖μ‖ small enough we have

e−B(μ)bpe
B(μ) =

∞∑

n=0

(−1)n

n!
ad

(n)
B(μ)(bp),

e−B(μ)b∗
pe

B(μ) =

∞∑

n=0

(−1)n

n!
ad

(n)
B(μ)(b

∗
p) (3.30)
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and the series converge absolutely (see [6, Lemma 3.3]). From this, we also get
an explicitly define the remainder operators (2.51) by

dp =
∑

m≥0

1

m!

[
ad

(m)
−B(μ)(bp) − µm

p b�m
αmp

]
,

d∗
p =

∑

m≥0

1

m!

[
ad

(m)
−B(μ)(b

∗
p) − µm

p b
�m+1
αmp

]
(3.31)

where p ∈ Λ∗
+, (�m, αm) = (·,+1) if m is even and (�m, αm) = (∗,−1) if

m is odd. This representation allows to prove the following improved error
estimates on the remainder terms dp using Lemmas 3.5 and 3.1. We start with
the conjugation w.r.t. to eλN+ first.

Lemma 3.6. Under the same assumptions and notations of Lemma 3.5, for
|λ| ≤ 1 and sufficiently small ‖μ‖, there exists C > 0 (independent of λ, κ)
such that

‖ (eλN+dpe
−λN+ − dp

)
ψ‖ ≤ C|λ|N−1

(
‖bp(N+ + 1)ψ‖ + |μp|‖(N+ + 1)3/2)ψ‖

)

(3.32)

and

‖ (eλN+d∗
pe

−λN+ − d∗
p

)
ψ‖ ≤ C|λ|N−1‖(N+ + 1)3/2ψ‖ . (3.33)

Proof. From (3.31), we find that

‖
(
eλN+dpe−λN+ − dp

)
ψ‖

≤
∑

m≥0

1

m!

∥∥∥
(
eλN+

[
ad

(m)
−B(μ)

(bp) − μm
p b�m

αmp

]
e−λN+ −

[
ad

(m)
−B(μ)

(bp) − μm
p b�m

αmp

])
ψ
∥∥∥

(3.34)

and by Lemma 3.5 the difference

eλN+

[
ad(m)

−B(μ)(bp) − μm
p b
m

αmp

]
e−λN+ −

[
ad(m)

−B(μ)(bp) − μm
p b
m

αmp

]
(3.35)

is the sum of one term of the form

Ap = eλN+

(
N − N+

N

)m+(1−αm)/2
2

(
N + 1 − N+

N

)m+(1+αm)/2
2

μpb

m
αmpe

−λN+

−
(

N − N+

N

)m+(1−αm)/2
2

(
N + 1 − N+

N

)m+(1+αm)/2
2

μpb

m
αmp (3.36)

and 2mm! − 1 terms are of the form

Bp = eκλN+Λ1 . . . Λi1N
−kΠ(1)


,� (μj1 , . . . , μjk1 ;μ�1
p ϕα�1pgp)e−λκN+

− Λ1 . . . Λi1N
−kΠ(1)


,� (μj1 , . . . , μjk1 ;μ�1
p ϕα�1p) (3.37)

where i1, k1, �1 ∈ N, j1, . . . , jk ∈ N\{0} and where each operator Λr is either a
factor (N − N+)/N , a factor (N + 1 − N+)/N or a Π(2) operator of the form

N−hΠ(2)

,� (μz1 , . . . , μzh) (3.38)
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with h, z1, . . . , zh ∈ N\{0}. We consider (3.36) and (3.37) separately, and thus,
each term that is of the form (3.36) either has k1 > 0 or contains at least one
operator of the form (3.38). We start with estimating (3.36) first that vanishes
for m = 0. Furthermore, we have from Lemma 3.1

‖Apψ‖ =
∥∥∥
(

N − N+

N

)m+(1−αm)/2
2

(
N + 1 − N+

N

)m+(1+αm)/2
2

μm
p

(
eλN+b�m

αmpe−λN+ − b�m
αmp

)
ψ‖ ≤ κλCm|μp|mN−1‖(N+ + 1)3/2ψ‖ . (3.39)

For (3.37), we find

Bp =

i∑

u=1

(
u−1∏

t=1

eλN+Λte
−λN+

)(
eλN+Λue−λN+ − Λu

) i∏

t=u+1

Λt

× N−kΠ
(1)
�,	

(μj1 , . . . , μjk1 ; μ�1
p ϕα�1p) +

(
i∏

t=1

Λt

)
N−k

×
(
eλN+Π

(1)
�,	

(μj1 , . . . , μjk1 ; μ�1
p ϕα�1p)e−λN+ − Π

(1)
�,	

(μj1 , . . . , μjk1 ; μ�1
p ϕα�1p)

)
.

(3.40)

In case Λu is of the form (N − N+)/N or (N + 1 − N+)/N then eλN+

Λue−λN+ − Λu vanishes. Otherwise, if Λu is an operator of the form Π(2),
it creates resp. annihilates two particles; thus, in this case it follows from
Proposition 3.2 that eλN+Λue−λN+ − Λu = (eλκu − 1)Λu with κu = 2 or
κu = −2. Similarly, as the operator Π(1) creates or annihilates one particle,
we have

Π(1)

,� (μj1 , . . . , μj1 , . . . , μjk1 ;μ�1

p ϕα�1p)e−λN+ − Π(1)

,� (μj1 , . . . , μjk1 ;μ�1

p ϕα�1p)

= (eλκ − 1)Π(1)

,� (μj1 , . . . , μj1 , . . . , μjk1 ;μ�1

p ϕα�1p) (3.41)

with κ = 1 or κ = −1. Therefore, we find

∥∥∥Bpψ
∥∥∥ ≤

(
i∑

u=1

(eλκu − 1) + (eλκ − 1)

)∥∥∥∥∥

i∏

t=1

ΛtN
−kΠ

(1)
�,	

(μj1 , . . . , μjk1 ; μ�1
p ϕα�1p)ψ

∥∥∥∥∥ .

(3.42)

We consider the case �1 = 0 and �1 > 0 separately (see, for example, [6,
Lemma 3.4] resp. [4, Section 5]) and arrive with |μp| ≤ ‖μ‖ at
∥∥∥Bpψ

∥∥∥ ≤ |λ|CmN−1
(
‖μ‖m−�1 |μp|�1δ�1>0‖(N+ + 1)3/2ψ‖ + ‖μ‖m‖bp(N+ + 1)ξ‖

)

≤ |λ|CmN−1‖μ‖m−1
(
|μp|δm>0‖(N+ + 1)3/2ψ‖ + ‖μ‖‖bp(N+ + 1)ξ‖

)
. (3.43)

We plug (3.39) and (3.43) into (3.34) and conclude for sufficiently small
‖μ‖ at (3.32). The second bound (3.33) follows similarly using that in the case
�1 = 0 we only have ‖b∗

p(N+ + 1)ψ‖ ≤ ‖(N+ + 1)3/2ψ‖. �

Next we prove similar estimates for the conjugation of dp, d
∗
p with the

two exponentials eκλN+eλ
√

Nφ+(g). To this end, we first prove the following
auxiliary estimates.
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Lemma 3.7. Under the same assumptions and notations of Lemma 3.5, let
|κλ|, |λ| ≤ 1, g ∈ �2(Λ∗

+). Then for sufficiently small ‖μ‖ there exists C > 0
(independent of κ, λ) such that

∥∥∥
(
e

κλN+e
λ

√
Nφ+(g)N+e

−λ
√

Nφ+(g))
e

−λκN+ − N+

)
ψ
∥∥∥

≤ C
(
λ

2‖g‖2‖ψ‖ + |λ|‖g‖N
−1/2‖(N+ + 1)

1/2
ψ‖
)

.

∥∥∥
(
e

κλN+e
λ

√
Nφ+(g)

Π
(2)
�′,	′ (μ

z1 , μ
z2 , . . . , μ

zn )e
−λ

√
Nφ+(g))

e
−λκN+

−Π
(2)
�′,	′ (μ

z1 , μ
z2 , . . . , μ

zn )
)
ψ
∥∥∥

≤ CN
n
(
λ

2‖g‖2‖ψ‖ + |λ|(‖g‖ + |κ|)N−1/2‖(N+ + 1)
1/2

ψ‖
)

. (3.44)

Proof. The first bound follows with similar arguments as in the proof of
Lemma 3.4. For the second, we note that from definition (3.19) it follows

e
κλN+e

λ
√

Nφ+(g)
Π

(2)
�′,	′ (μ

z1 , μ
z2 , . . . , μ

zn )e
−λ

√
Nφ+(g))

e
−λκN+ − Π

(2)
�′,	′ (μ

z1 , μ
z2 , . . . , μ

zn )

=
∑

p1,...,pn∈Λ∗
+

[
e

κλN+e
λ

√
Nφ+(g)

b
	0
α0,p1

e
−λ

√
Nφ+(g)

e
−λκN+ − b

	0
α0,p1

]

×
n−1∏

t=1

a
�t
βtpt

a
	t
αtpt+1

a
�n
βnpn

a
	n (g)

n∏

�=1

f�(p�)

+
∑

p1,...,pn∈Λ∗
+

e
λκN+e

√
Nφ+(g)

b
	0
α0,p1

e
−√

Nφ+(g)
e

−λκN+

×
n∑

j=1

(
j−1∏

t=1

e
κλN+e

λ
√

Nφ+(g)
a

�t
βtpt

a
	t
αtpt+1

e
−λ

√
Nφ+(g)

e
−λκN+

)

×
[
e

κλN+e
λ

√
Nφ+(g)

a
�j
βjpj

a
	j
αjpj+1e

−λ
√

Nφ+(g)
e

−λκN+ − a
�j
βjpj

a
	j
αjpj+1

]

×
⎛

⎝
n−1∏

u=j+1

a
�u
βupu

a
	u
αupu+1

⎞

⎠ a
�n
βnpn

a
	n (g)

n∏

�=1

f�(p�) . (3.45)

On the one hand, it follows from Lemma 3.1 that

eλκN+e
√

Nφ+(g)bα0p1e
−√

Nφ+(g)eλκN+ − bα0p1

=
[(

γλ‖g‖ − 1
)
eλκ + γλ‖g‖

(
eλκ − 1

)]
bα0p1

+ λγ‖g‖
γλ‖g‖ − 1
λ2‖g‖2

g−α0p1 (γκλiφ−(g) + σκλφ+(g))

− λ
γλ‖g‖ − 1

‖g‖2
e−λκg−α0pb

∗(g) −
√

N λγλ‖g‖
σλ‖g‖
λ‖g‖ g−α0p1

(
1 − N+

N

)

+ λ3 1√
N

σλ‖g‖
λ‖g‖

γλ‖g‖ − 1
λ‖g‖2

g−α0p1a
∗(g)a(g) + λ

1√
N

σλ‖g‖
λ‖g‖ a∗(g)aα0p1



Large Deviations for the Ground State

We recall that from the estimates (2.28), any term is O(
√

Nλ) for small λ and
large N . On the other hand, from Lemma 3.1 for �j = ∗ and �j = ·

eλκN+e
√

Nφ+(h)a

j

βjpj
a�j

αjpj+1
e−√

Nφ+(h)e−λκN+ − a

j

βjpj
a�j

αjpj+1

= λ
√

N
σλ‖g‖
λ‖g‖ i

[
γλκ

(
b∗
βjpj

gαjpj+1 − bαjpj+1g−βjpj

)

+σλκ

(
b∗
βjpj

gαjpj+1 + bαjpj+1g−βjpj

)]

− λ2N
σ2

λ‖g‖
λ2‖g‖2

gβjpj
g−αjpj+1

(
1 − N

N

)

+ λ2 (γλ‖g‖ − 1)
λ3‖g‖2

(g−αjpj+1a
∗
βjpj

a(g) + gβjpj
a∗(g)aαjpj+1)

+
√

N λ3 σλ‖g‖
λ‖g‖

γλ‖g‖ − 1
λ‖g‖2

gβjpj
g−αjpj+1 (γκλiφ−(g) + σκλφ+(g))

+ λ4

(
γλ‖g‖ − 1

‖g‖2

)2

gβjpj
g−αjpj+1a

∗(g)a(g)

and, similarly to Lemma 3.4, any term is either bounded by multiples of√
Nλ‖(N+ + 1)1/2ψ‖ or O(λ2N). Note that the case �j = · and �j = ∗ follows

in the same way using the commutation relations. Moreover, (3.46), (3.46)
show that terms appearing in (3.45) of the form

‖eλκN+e
√

Nφ+(h)a

j

βjpj
a�j

αjpj+1
e−√

Nφ+(h)e−λκN+ψ‖,

‖eλκN+e
√

Nφ+(h)b

j

βjpj
e−√

Nφ+(h)e−λκN+ψ‖ (3.46)

bounded through multiples of N1/2‖(N+ + 1)1/2‖ + λ2N‖ψ‖ ≤ CN resp.
‖(N+ + 1)1/2‖ + λN1/2‖ψ‖ ≤ CN1/2. Since the number of particles opera-
tor can be easily commuted through a


j

βjpj
a

�j
αjpj+1 , bα0p1 , we get

∥∥∥
(
e

κλN+e
λ

√
Nφ+(g)

Π
(2)
�′,	′ (μ

z1 , μ
z2 , . . . , μ

zn )e
−λ

√
Nφ+(g))

e
−λκN+

−Π
(2)
�′,	′ (μ

z1 , μ
z2 , . . . , μ

zn )
)
ψ
∥∥∥

≤ n(CN)
n|λ|(‖g‖ + |κ|)

(
λ

2‖ψ‖ + N
−1/2‖(N+ + 1)

1/2
ψ‖
)

≤ (CN)
n|λ|(‖g‖ + |κ|)

(
λ

2‖ψ‖ + N
−1/2‖(N+ + 1)

1/2
ψ‖
)

(3.47)

and Lemma 3.7 follows. �
From these estimates, we derive the following estimates for (3.16).

Lemma 3.8. Under the same assumptions and notations as in Lemma 3.5,
g ∈ �2(Λ∗

+) and |λ|, |λκ| ≤ 1 and ‖μ‖ small enough. Then, there exists C > 0
(independent of κ, λ) such that

∥∥∥(N+ + 1)k/2
(
eκλN+eλ

√
Nφ+(g)dpe−λ

√
Nφ+(g)e−λκN+ − dp

)
ψ
∥∥∥

≤ C ((‖g‖ + |κ|)|μp| + |gp|)) |
(
|λ|N−1/2‖(N+ + 1)(k+2)/2ψ‖

+|λ|3‖g‖2
√

N‖(N+ + 1)k/2ψ‖
)
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+ C(‖g‖ + |κ|)
(
|λ|N−1/2‖bp(N+ + 1)(k+1)/2ψ‖

+|λ|3‖g‖2
√

N‖bp(N+ + 1)(k−1)/2ψ‖
)

(3.48)

and

∥∥∥(N+ + 1)k/2
(
eκλN+eλ

√
Nφ+(g)d∗

pe−λ
√

Nφ+(g)e−λκN+ − d∗
p

)
ψ
∥∥∥

≤ C(‖g‖ + |κ|)
(
|λ|N−1/2‖(N+ + 1)(k+2)/2ψ‖ + |λ|3‖g‖2

√
N‖(N+ + 1)k/2ψ‖

)

(3.49)

Proof. We start with the first bound and observe that from (3.31) we have

‖
(
eκλN+eλ

√
Nφ+(g)dpe

−λ
√

Nφ+(g)e−λκN+ − dp

)
ψ‖

=
∑

≥0

1
m!

∥∥∥
(
eκλN+eλ

√
Nφ+(g)

[
ad(m)

−B(μ)(bq) − μm
q b
m

αmp

]
e−λ

√
Nφ+(g)e−λκN+

−
[
ad(m)

−B(μ)(bq) − μm
q b
m

αmp

] )
ψ
∥∥∥ . (3.50)

By Lemma 3.5, the term inside the norm can be written by a sum where one
term is given by

Ap = eκλN+eλ
√

Nφ+(g)

(
N − N+

N

)m+(1−αm)/2
2

(
N + 1 − N+

N

)m−(1−αm)/2
2

× μm
p b
m

αmpe
−λ

√
Nφ+(g)e−λκN+

−
(

N − N+

N

)m+(1−αm)/2
2

(
N + 1 − N+

N

)m−(1−αm)/2
2

μm
p b
m

αmp (3.51)

and 2mm! − 1 terms are of the form

Bp = eκλN+eλ
√

Nφ+(g)Λ1 . . . Λi1

N−kΠ(1)

,� (μj1 , . . . , μjk1 ;μ�1

p ϕα�1p)e−λ
√

Nφ+(g)e−λκN+

− Λ1 . . . Λi1N
−kΠ(1)


,� (μj1 , . . . , μjk1 ;μ�1
p ϕα�1p) (3.52)

where i1, k1, �1 ∈ N, j1, . . . , jk ∈ N\{0} and where each operator Λr is either a
factor (N − N+)/N , a factor (N + 1 − N+)/N or a Π(2) operator of the form

N−hΠ(2)

,� (μz1 , . . . , μzh) (3.53)

with h, z1, . . . , zh ∈ N\{0}. We consider terms of the form (3.51) and (3.52)
separately. Each term of the form (3.52) has either k1 > 0 or at least one
operator that is of the form (3.53). We start with (3.51) that vanishes for
m = 0. We have for βm = (1 − αm)/2

Ap :=

(m+βm)/2∑

j=1

(
N − N+

N

)(m+βm)/2−j+1 (
e

κλN+e
λ

√
Nφ+(g) N+

N
e

−λ
√

Nφ+(g)
e

−λκN+ − N+

N

)
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×
(

N − N+

N

)j (N + 1 − N+

N

)(m+−βm)/2

μ
m
p b

�m

αmp

+

(
N − N+

N

)(m+βm)/2 (m−βm)/2∑

j=1

(
N + 1 − N+

N

)(m−βm)/2−j+1

×
(

e
κλN+e

λ
√

Nφ+(g)
(N+

N

)
e

−λ
√

Nφ+(g)
e

−λκN+ − N+

N

)(
N + 1 − N+

N

)j

μ
m
p b

�m

αmp

+ e
κλN+e

λ
√

Nφ+(g)

((
N − N+

N

)(m+βm)/2 (N + 1 − N+

N

)(m−βm)/2

− 1

)

× e
−λ

√
Nφ+(g)

e
−λκN+

× μ
m
p

(
e

κλN+e
λ

√
Nφ+(g)

b
�m

αmpe
−λ

√
Nφ+(g)

e
−λκN+ − b

�m

αmp

)
(3.54)

Since for the second summand of the r.h.s. of (3.54) we have

(
N − N+

N

)(m+βm)/2 (N + 1 − N+

N

)(m−βm)/2

− 1

= −
(m+βm)/2∑

j=1

(
N − N+

N

)(m+βm)/2−j+1 N+

N

(
N − N+

N

)j (N + 1 − N+

N

)(m−βm)/2

−
(

N − N+

N

)(m+βm)/2 (m−βm)/2∑

j=1

(
N + 1 − N+

N

)(m+βm)/2−j+1

(N+ − 1

N

)(
N − N+

N

)j

. (3.55)

we can argue similarly as in the proof of Lemma 3.7. In particular, since
powers of the number of excitations N+ can be easily commuted through any
operator appearing (3.54), we find from Lemma 3.7 for the first and Lemma 3.1
for the second term of the r.h.s. of (3.52)

‖(N+ + 1)k/2Apψ‖
≤ Cm|μp|‖μ‖m−1

(
|λ|(‖g‖ + |κ|)N−1/2‖(N+ + 1)(k+2)/2ψ‖

+λ3‖g‖3
√

N‖(N+ + 1)kψ‖
)

. (3.56)

for some constants C > 0. For (3.52), we write

N kBp = N k
i1∑

n=1

( n−1∏

t=1

eκλN+eλ
√

Nφ+(g)Λte
−λ

√
Nφ+(g)e−λκN+

)

×
(
eκλN+eλ

√
Nφ+(g)Λne−λ

√
Nφ+(g)e−λκN+ − Λn

)

× Λn+1 . . . Λi1Π
(1)
�,	

(μj1 , . . . , μjk1 ; μ�1
p ϕα�1p)

+ N k
( i1∏

t=1

eκλN+eλ
√

Nφ+(g)Λte
−λ

√
Nφ+(g)e−λκN+

)

×
(
e−λ

√
Nφ+(g)e−λκN+N−kΠ

(1)
�,	

(μj1 , . . . , μjk1 ; μ�1
p ϕα�1p)e−λ

√
Nφ+(g)e−λκN+

−Π
(1)
�,	

(μj1 , . . . , μjk1 ; μ�1
p ϕα�1p)

)
(3.57)
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First note again powers of the number of excitations can be easily com-
muted through operators appearing in this term. Moreover, by Lemma 3.7 we
have

‖eκλN+eλ
√

Nφ+(g)Λte
−λ

√
Nφ+(g)e−λκN+ψ‖ ≤ C . (3.58)

Thus, the first term of the r.h.s. of (3.57) can be estimated by Lemma 3.7
distinguishing the case �1 = 0 and �1 > 0 as in the proof of Lemma 3.6 by

Cm‖μ‖m|μp|
(
|λ|(‖g‖ + |κ|)N−1/2‖(N+ + 1)(k+2)/2ψ‖ + |λ|3‖g‖3

√
N‖(N+ + 1)k/2ψ‖

)

+ Cm‖μ‖m
(
|λ|(‖g‖ + |κ|)N−1/2‖bp(N+ + 1)(k+1)/2ψ‖

+|λ|3‖g‖3
√

N‖bp(N+ + 1)(k−1)/2ψ‖
)

(3.59)

For the second term of the r.h.s. of (3.57), we proceed similarly as in the
proof of Lemma 3.7 by Lemma 3.1 distinguishing again the case �1 = 0 and
�1 > 0 and thus finally get

Cm‖μ‖m ((‖g‖ + |κ|)|μp| + |gp|) |
(
|λ|N−1/2‖(N+ + 1)(k+2)/2ψ‖ + |λ|3‖g‖2

√
N‖(N+ + 1)k/2ψ‖

)

+ Cm‖μ‖m
(
|λ|(‖g‖ + |κ|)N−1/2‖bp(N+ + 1)(k+1)/2ψ‖

+|λ|3‖g‖3
√

N‖bp(N+ + 1)(k−1)/2ψ‖
)

. (3.60)

Plugging these estimates into (3.50) we arrive for sufficiently small ‖μ‖
at Lemma 3.8. The second estimate of Lemma 3.8 follows similarly. �

Lemma 3.9. Under the same assumptions as in Lemma 3.8, there exists C > 0
(independent of λ, κ) such that

‖(N+ + 1)−k/2
(
eκλN+eλ

√
Nφ+(g)d
1

p d
2
αpe

−λ
√

Nφ+(g))e−λκN+ − d
1
p d
2

p

)
ψ‖

≤ C(‖g‖ + |κ|)|λ|‖(N+ + 1)1−k/2ψ‖ + C|λ|3‖g‖3N‖ψ‖ (3.61)

and similarly

‖(N+ + 1)−k/2
(
eκλN+eλ

√
Nφ+(g)d
1

p b
2
αpe

−λ
√

Nφ+(g))e−λκN+ − d
1
p b
2

p

)
ψ‖

≤ C(‖g‖ + |κ|)|λ|‖(N+ + 1)1−k/2ψ‖ + C|λ|3‖g‖3N‖ψ‖
‖(N+ + 1)−k/2

(
eκλN+eλ

√
Nφ+(g)b
1

p d
2
αpe

−λ
√

Nφ+(g))e−λκN+ − b
1
p d
2

p

)
ψ‖

≤ C(‖g‖ + |κ|)|λ|‖(N+ + 1)1−k/2ψ‖ + C|λ|3‖g‖3N‖ψ‖ (3.62)

with �i ∈ {·, ∗} for i = 1, 2 either �1 = �2 or �1 = ∗ and �2 = · and α = −1 if
�1 = � = 2 and α = 1 otherwise.

Proof. We start with �1 = �2 = ∗. We observe that from (2.51) we have
(
eκλN+eλ

√
Nφ+(g)d∗

pd
∗
−pe

−λ
√

Nφ+(g))e−λκN+ − d∗
pd

∗
−p

)

=
(
eκλN+eλ

√
Nφ+(g)d∗

pe
−λ

√
Nφ+(g))e−λκN+ − d∗

p

)
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eκλN+eλ
√

Nφ+(g)d∗
−pe

−λ
√

Nφ+(g))e−λκN+

+ d∗
p

(
eκλN+eλ

√
Nφ+(g)d∗

−pe
−λ

√
Nφ+(g))e−λκN+ − d∗

−p

)
(3.63)

and thus

‖(N+ + 1)−k/2
(
eκλN+eλ

√
Nφ+(g)d∗

pd
∗
−pe

−λ
√

Nφ+(g))e−λκN+ − d∗
pd

∗
−p

)
ψ‖

≤ ‖(N+ + 1)−k/2
(
eκλN+eλ

√
Nφ+(g)dpe

−λ
√

Nφ+(g))e−λκN+ − dp

)

× eκλN+eλ
√

Nφ+(g)d∗
−pe

−λ
√

Nφ+(g))e−λκN+ψ‖
+ ‖(N+ + 1)−k/2d∗

p

(
eκλN+eλ

√
Nφ+(g)d∗

−pe
−λ

√
Nφ+(g))e−λκN+ − d∗

−p

)
ψ‖

(3.64)

With (2.52) and Lemma 3.8, we find for all |λ|, |κλ| ≤ 1

‖(N+ + 1)
−k/2

(
e

κλN+e
λ

√
Nφ+(g)

d
∗
pd

∗
−pe

−λ
√

Nφ+(g))
e

−λκN+ − d
∗
pd

∗
−p

)
ψ‖

≤ C
√

N |λ|3‖g‖3‖e
κλN+e

λ
√

Nφ+(g)
d

∗
−pe

−λ
√

Nφ+(g))
e

−λκN+ψ‖

+ C|λ|(‖g‖ + |κ|)N−1/2‖(N+ + 1)
(2−k)/2

e
κλN+e

λ
√

Nφ+(g)
d

∗
−pe

−λ
√

Nφ+(g))
e

−λκN+ψ‖

+ CN
−1/2‖(N+ + 1)

(2−k)/2
(
e

κλN+e
λ

√
Nφ+(g)

d
∗
−pe

−λ
√

Nφ+(g))
e

−λκN+ − d
∗
−p

)
ψ‖

≤ CN |λ|3‖g‖3‖ψ‖ + CN
−1|λ|(‖g‖ + |κ|)‖(N+ + 1)

(4−k)/2
ψ‖ . (3.65)

The remaining bounds follow similarly with (2.28) and Lemmas 3.1, 3.8.
�

Additionally, we consider the conjugation of the kinetic energy with the
generalized Bogoliubov transform that we write as

eB(μ)
∑

p∈Λ∗
+

p2a∗
pape

−B(μ)

=
∑

p∈Λ∗
+

p2a∗
pap +

∑

p∈Λ∗
+

p2
(
σ2

p + σpγp(b∗
pb

∗
−p + b∗

pb
∗
−p) + 2σ2

pb∗
pbp

)
+ RK

(3.66)

where the remainder RK satisfies the following properties.

Lemma 3.10. Under the same assumptions as in Lemma 3.5, 3.8, let p2μ ∈
�1(Λ∗

+) and ‖μ‖ small enough. Then, there exists C > 0 such that

‖(N+ + 1)−1/2RKψ‖ ≤ CN−1/2‖(N+ + 1)ψ‖ . (3.67)

‖
[
(N+ + 1)1/2,

[
N+ + 1)1/2,RK

]]
ψ‖ ≤ C‖(N+ + 1)ψ‖ . (3.68)

Furthermore for |λ|, |κλ| ≤ 1 there exists C > 0 (independent of λ, κ) such
that ∥∥∥

(
eκλN+eλ

√
Nφ+(g)RKe−λ

√
Nφ+(g))e−λκN+ − RK

)
ψ
∥∥∥

≤ CN |λ|3‖g‖3‖ψ‖ + C|λ|(‖g‖ + |κ|)‖(N+ + 1)ψ‖ . (3.69)
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Proof. We compute

e−B(μ)KeB(μ) = K +

∫ 1

0
ds

d

ds
e−sB(μ)KesB(μ)

= K +

∫ 1

0
ds e−sB(μ)[K, B(μ)]esB(μ)

= K +

∫ 1

0
ds

∑

p∈Λ∗
+

p2μpe−sB(μ)
(
bpb−p + b∗

pb∗
−p

)
esB(μ)

= K +
∑

p∈Λ∗
+

σ2
p +

∑

p∈Λ∗
+

p2γpσp(bpb2−p + b∗
pb∗

−p) + 2
∑

p∈Λ∗
+

b∗
pbp + RK

(3.70)

where

RK =
∑

n,m≥0

(−1)n+m

n!m!(n + m + 1)

∑

p∈Λ∗
+

p2μn+1
p b�n

αnp

[
ad

(m)
B(μ)

(b−p) − μm
p b�m

−αmp

]
+ h.c.

+
∑

n,m≥0

(−1)n+m

n!m!(n + m + 1)

∑

p∈Λ∗
+

p2μp

[
ad

(n)
B(μ)

(b−p) − μn
p b�n

−αnp

]
μm+1

p b�m
αmp + h.c.

+
∑

n,m≥0

(−1)n+m

n!m!(n + m + 1)

∑

p∈Λ∗
+

p2μp

[
ad

(n)
B(μ)

(b−p) − μn
p b�n

−αnp

]

[
ad

(m)
B(μ)

(b−p) − μm
p b�m

−αnp

]
(3.71)

We recall that it follows with the same arguments as in Lemma 3.8 (see,
for example, [6, Lemma 3.4] that

‖(N+ + 1)−1/2
(
ad(m)

B(μ)(b−p) − μm
p b
m

−αnp

)
ψ‖ ≤ CN−1‖(N+ + 1)2ψ‖ (3.72)

for all p ∈ Λ∗
+. Since p2μ ∈ �1(Λ∗

+) by assumption, the first estimate (3.67)
follows. This estimates remains true for the double commutator, too (see [6,
Lemma 3.4]) and thus (3.68) follows. For the second estimate (3.69), we recall
that in the proof of Lemma 3.8 we more precisely prove that

∥∥∥
(
eκλN+eλ

√
Nφ+(g)

[
ad(m)

−B(μ)(bq) − μm
q b
m

αmp

]
e−λ

√
Nφ+(g)e−λκN+

−
[
ad(m)

−B(μ)(bq)μm
q b
m

αmp

] )
ψ
∥∥∥

≤ Cm|λ|(‖g‖ + |κ|)‖(N+ + 1)ψ‖ + Cm‖g‖3|λ|3N‖ψ‖ ‖ψ‖ . (3.73)

and thus (3.69) follows. �

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2, and thus, we estimate the logarithmic
moment generating function. For this, we define the centered (w.r.t. to the
condensate’s expectation value) operator

Õ := O − 〈ϕ0, Oϕ0〉 (4.1)
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and recall that we need to compute the moment generating function

EψN

[
eλON

]
= 〈ψN , eλON ψN 〉 (4.2)

We consider the embedding of ψN ∈ L2
s(R

3N ) in the full bosonic Fock space
where we have the identity

ON =
∑

p,q∈Λ∗

̂̃
Op,q a∗

pa−q . (4.3)

where ̂̃
Op,q denotes the Fourier coefficients of Õ, i.e., ̂̃Op,q =

∫
Λ×Λ

dxdy Õ(x; y)ei(px+qy). By definition of UN in (2.2), we observe that we can
write ψN as

ψN = UNψGN
(4.4)

where ψGN
denotes the ground state of the excitation Hamiltonian GN defined

in (2.14). The properties (2.10), (2.11) of the unitary UN show that

UN

∑

p,q∈Λ∗

̂̃
Op,q a∗

pa−q U∗
N =

∑

p,q∈Λ∗
+

̂̃
Op,qa

∗
pa−q +

√
Nφ+(Ôϕ0) (4.5)

where we recall the notation 3.2. Furthermore, we introduce the notation

g = Ôϕ0 and B =
∑

p,q∈Λ∗
+

̂̃
Op,q a∗

pa−q (4.6)

and thus arrive at

EψN

[
eλON

]
= 〈ψGN

, eλ
√

Nφ+(g)+λBψGN
〉 (4.7)

In the following, we will compute the expectation value of the r.h.s. of (4.7).
First we will show that the operator B contributes to our analysis sub-leading
only (see Lemma 4.1). This will be based on ideas introduced in [12,22]. Second
we will show that the ground state ψGN

of the excitation Hamiltonian GN (de-
fined in (2.14)) approximately behaves as the ground state ψQ of the excitation
Hamiltonian’s quadratic approximation Q (defined in (2.15)) (Lemma 4.2).
Then, we show that ψQ effectively acts as a Bogoliubov transformation on the
observable φ+(g). We remark that this would be an immediate consequence if
the operator φ+ defined in (3.2) would be formulated w.r.t. to standard cre-
ation and annihilation operators. However, φ+ is formulated w.r.t. to modified
creation and annihilation operators that lead to more involved calculations (see
Lemma 4.3). Finally, in the last step, we compute the remaining expectation
value (see Lemma 4.4).

While the first and the forth step are based on ideas presented in [12] for
the dynamical problem, the second and third step use novel ideas and tech-
niques based on the Hellmann–Feynman theorem and Gronwall’s inequality.
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4.1. Step 1

In this step, we show that the operator B defined in (4.6) contributes to
the expectation value (4.7) exponentially cubic in λ only. This lemma follows
closely the proof of [22, Lemma 3.3] resp. [12, Lemma 3.1] considering a similar
result for the dynamics in the mean-field regime (β = 0). The results [12,22]
are formulated in position space; however, the proofs and results are easily
carried over to momentum space.

Lemma 4.1. Under the same assumptions as in Theorem 1.2, there exists C >
0 such that for all 0 ≤ λ ≤ 1/‖O‖ we have

e−CN‖O‖3λ3
〈
ψGN

, eλ
√

Nφ+(g)/2e−2λ‖O‖N+eλ
√

Nφ+(g)/2ψGN

〉

≤
〈
ψGN

, eλ
√

Nφ+(g)+λBψGN

〉

≤ eCN‖O‖3λ3
〈
ψGN

, eλ
√

Nφ+(g)/2e2λ‖O‖N+eλ
√

Nφ+(g)/2ψGN

〉
. (4.8)

Proof. We start with the lower bound (i.e., the first inequality of Lemma 4.1)
and define similarly to [22, Lemma 3.3] for s ∈ [0, 1] and κ > 0 the Fock space
vector

ξ(s) := e−(1−s)λκN+/2e(1−s)λ
√

Nφ+(g)/2esλ[B+
√

Nφ+(g)]/2ψGN
. (4.9)

We remark that by construction ξN (s) is an element of the Fock space of
excitations F≤ϕ0

⊥ϕN
, and thus, the number of particles of ξ(s) is at most N . This

observation will be crucial for our analysis later. Since we have for s = 0

‖ξ(0)‖2 =
〈
ψGN

, eλ
√

Nφ+(g)/2e−κλN+eλ
√

Nφ+(g)/2ψGN

〉
(4.10)

and for s = 1

‖ξ(1)‖2 =
〈
ψGN

, eλ
√

Nφ+(g)+λBψGN

〉
, (4.11)

it suffices to control the difference of (4.10) and (4.11) to get the desired
estimate. We aim to control their difference through the derivative

∂s‖ξ(s)‖2 = 2Re〈ξ(s), ∂sξ(s)〉 = 2Re〈ξ(s), M(s)ξ(s)〉 = Re〈ξ(s), (M(s) + M(s)∗) ξ(s)〉
(4.12)

with the operator Ms given by

M(s) =
λ

2
e−(1−s)λκN+/2e(1−s)λ

√
Nφ+(g)/2 B e−(1−s)λ

√
Nφ+(g)/2e(1−s)λκN+/2 +

λκ

2
N+.

(4.13)

The results from [12, Propositions 2.2-−2.4] (summarized in Lemma 3.1, 3.2)
provide formulas to compute the operator M(s) explicitly. We use the short-
hand notation (3.4) and h(s) = (1 − s)λg and arrive at

M(s) + M(s)∗

λ
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=
∑

p,q∈Λ∗
+

̂̃
Op,qa∗

pa−q + κN+

+
γ‖h(s)‖ − 1

‖h(s)‖2

∑

p,q,k∈Λ∗
+

[
hp(s)

̂̃
Oq,khk(s)a∗

pa−q + hq(s)
̂̃
Op,khk(s)a∗

pa−q

]

−
σ2

‖h(s)‖
‖h(s)‖2

〈h(s), Õh(s)〉 (N − N+)

+

(
γ‖h(s)‖ − 1

‖h(s)‖2

)2

〈h(s), Õh(s)〉
∑

p,q∈Λ∗
+

hp(s)hq(s)a∗
pa−q

+
√

N
σ‖h(s)‖
‖h(s)‖ sinh((s − 1)λκ/2)

[
γ‖h(s)‖ − 1

‖h(s)‖2
〈h(s), Õh(s)〉φ+(h(s)) + φ+(

̂̃
Oh(s))

]
.

(4.14)

With the bounds (2.28) for any Fock space vector ξ ∈ F≤N
⊥ϕ0

and

‖h(s)‖2 ≤ λ‖Oϕ0‖2 ≤ λ‖O‖ ‖ϕ0‖2 ≤ 1, ‖Õ‖ ≤ ‖O‖ (1 + ‖ϕ0‖2
2

)
= 2‖O‖

(4.15)

for all λ‖O‖ ≤ 1, we observe that that all but the terms of the first line of the
r.h.s. of (4.14) are bounded by Cλ2N . For the first line, however, we find with
the choice κ = 2‖O‖

∑

p,q∈Λ∗
+

̂̃
Op,qa

∗
paq + κN+ ≥ (−2‖O‖ + κ)N+ ≥ 0 (4.16)

as operator inequality on the Fock space of excitations F≤N
⊥ϕ0

. Summarizing,
we arrive at

M(s) + M∗(s)
λ

≥ Cλ2N (4.17)

again as operator inequality on F≤N
⊥ϕ0

that yields

2
λ

Re 〈ξ(s),M(s) ξ(s)〉 ≥ −Cλ2N‖O‖3‖ξ(s)‖2 . (4.18)

In combination with (4.12), the lower bound from Lemma 4.1 now follows from
Gronwall’s inequality.

The upper bound is proven with a similar strategy (see also [12] for more
details) replacing the constant κ in the definition of the Fock space vector ξ(s)
in (4.9) by −κ and estimating the terms of (4.14) from above instead of from
below. �

4.2. Step 2

The goal of the second step is to show that we can replace ψGN
, the ground state

of the excitation Hamiltonian GN with the ground state ψQ of its quadratic
approximation Q. The idea is to use the family of Hamiltonians {GN (s)}s∈[0,1]

defined in (2.18) interpolating between the excitation Hamiltonian GN =
GN (1) and its corresponding quadratic approximation Q = GN (0). We re-
mark that Proposition 2.1 summarizes useful properties of the Hamiltonians
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{GN (s)}s∈[0,1] and their corresponding ground states {ψGN (s)}s∈[0,1] that will
be crucial for the proof of the following Lemma.

This Lemma’s proof is crucially different from the proof of [12,22] where
the analogous step was based on properties of the dynamical evolution.

Lemma 4.2. Under the same assumptions as in Theorem 1.1, there exist con-
stants C1, C2 > 0 and κ1, κ2 such that for all 0 ≤ λ ≤
min{1/(κ1|||O|||), 1/(κ2|||O|||)} we have

〈
ψGN

, eλ
√

Nφ+(g)/2e2λ‖O‖N+eλ
√

Nφ+(g)/2ψGN

〉

≤ eC1(Nλ3+λ)〈ψQ, eλ
√

Nφ+(g)/2eκ1λ|||O|||N+eλ
√

Nφ+(g)/2ψQ〉 (4.19)

resp.
〈
ψGN

, eλ
√

Nφ+(g)/2e−2λ‖O‖N+eλ
√

Nφ+(g)/2ψGN

〉

≥ e−C2(Nλ3+λ)〈ψQ, eλ
√

Nφ+(g)/2e−κ2λ|||O|||N+eλ
√

Nφ+(g)/2ψQ〉 (4.20)

Proof. We start with the lower bound, i.e., the second inequality of Lemma 4.2.
The upper bound then follows with similar arguments.

We consider the two families of Hamiltonians {GN (s)}s∈[0,1] defined in
(2.18). We shall prove first that denoting with ψGN (s) the ground state of
GN (s)

〈ψGN (1), eλ
√

Nφ+(g)/2e−2λ‖O‖N+eλ
√

Nφ+(g)/2ψGN (1)〉
≥ e−C2(Nλ3+λ)〈ψGN (0), eλ

√
Nφ+(g)/2e−κ2λ|||O|||N+eλ

√
Nφ+(g)/2ψGN (0)〉

(4.21)

for some constants C2, κ2 > 0 which together with the observation GN (0) = Q
yields the lower bound of Lemma 4.2.

For s ∈ [0, 1], let GN (s) denote the Hamiltonian defined in (2.18) with
corresponding ground state ψGN (s). Then, we define the Fock space vector

ξ(s) = e−λκsN+/2eλφ+(g)/2ψGN (s) . (4.22)

where κs : [0, 1] → R denotes a differentiable positive function with κ1 = 2‖O‖
chosen later. We remark that it follows from Proposition 2.1 that ψGN (s) ∈
F≤N

⊥ϕ0
for all s ∈ [0, 1] and thus ξN (s) ∈ F≤N

⊥ϕ0
. Moreover,

‖ξ(1)‖2
2 =

〈
ψGN

, eλ
√

Nφ+(g)/2e−2λ‖O‖N+eλ
√

Nφ+(g)/2ψGN

〉
. (4.23)

and

‖ξ(0)‖2
2 =

〈
ψGN (0), eλ

√
Nφ+(g)/2e−λκ0N+eλ

√
Nφ+(g)/2ψGN (0)

〉
. (4.24)

Thus, we are left with controlling the difference of (4.23) and (4.24) for which
we shall use estimates on the derivative

∂s‖ξ(s)‖2 = 2Re〈ξ(s), ∂sξ(s)〉 . (4.25)
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As a preliminary step toward computing the derivative of ξ(s), we compute
with the Hellmann–Feynman theorem the ground states derivative given with
the notation qψGN (s) := 1 − |ψGN (s)〉〈ψGN (s)| by

∂sψGN (s) =
qψGN (s)

GN (s) − EN (s)
RN ψGN (s) . (4.26)

Proposition 2.1 ensures that the reduced resolvent
qψGN (s)

GN (s)−EN (s) is well defined
for all s ∈ [0, 1] and, in particular, bounded from above independent of N, s.

We remark that by Proposition 2.1, the r.h.s. of (4.26) is Eq. (2.15)
and (2.28) in norm by bounded by a constant. However, we cannot bound
the derivative in norm here, but we need to compute the conjugation of the
operators of the r.h.s. of (4.26) with the exponentials of

√
Nλφ+(g),N+ to then

bound the operators of the r.h.s. of (4.26) in form. To this end, we introduce
the splitting RN =

∑2
j=1 R(j)

N given by

R(1)
N =

1√
N

∑

p,q∈Λ∗
+,p�=q

v̂(q)
(
b∗
p+qa

∗
−qap + h.c.

)

R(3)
N =

1
2N

∑

p,q,k∈Λ∗
+

v̂(k)a∗
p−ka∗

q+kapaq (4.27)

We remark that GN (s) leaves the truncated Fock space invariant (as it is formu-
lated w.r.t. to modified creation and annihilation operators only). Moreover,
we recall that it follows from Lemma 2.1 that

∥∥∥
qψGN (s)

GN (s) − EN (s)

∥∥∥, ‖ qψGN (s)

GN (s) − EN (s)
(N+ + 1)

∥∥∥ ≤ C (4.28)

and
∥∥∥(N+ + 1)−1/2

qψGN (s)

GN (s) − EN (s)
(N+ + 1)3/2

∥∥∥ ≤ C . (4.29)

We use these properties now in the following to estimate the derivative

∂s‖ξN (s)‖2 = 2Re〈ξN (s), M(s)ξN (s)〉 (4.30)

where the operator M(s) is with (4.26) is given by

M(s) = e−λκsN/2eλ
√

Nφ+(qOϕ)/2
qψGN (s)

GN (s) − EN (s)
RNe−κsλ

√
Nφ+(g)/2eκsλN+/2

− λκ̇sN+ . (4.31)

It follows that denoting with

G̃N (s) = e−λκsN+/2eλ
√

Nφ+(g)/2GN (s)e−λ
√

Nφ+(g)/2eλκsN+/2 (4.32)

the conjugated Hamiltonian and thus

e−λκsN+/2eλ
√

Nφ+(g)/2
qψGN (s)

GN (s) − EN (s)
e−λ

√
Nφ+(g)/2eλκsN+/2 =

qψG̃N (s)

G̃N (s) − EN (s)
(4.33)



S. Rademacher Ann. Henri Poincaré

where we introduced the notation

q̃ψGN (s) := e−λκsN+/2eλ
√

Nφ+(g)/2qψGN (s)e
−λ

√
Nφ+(g)/2eλκsN+/2. (4.34)

We remark that despite that q̃ψGN (s) is not a projection, it still commutes with
GN (s) and we have for any ψ ∈ F≤N

⊥ϕ the bound

‖q̃ψGN (s)ξN (s)‖ ≤ C‖ξN (s)‖ + ‖e−λ
√

Nφ+(g)/2eλκsN+/2ψGN (s)‖
‖eλ

√
Nφ+(g)/2e−λκsN+/2ξN (s)‖

≤ C‖ξN (s)‖ . (4.35)

Hence, we find
∥∥∥

q̃ψGN (s)

G̃N (s) − EN (s)
ξN (s)

∥∥∥ ≤ C
∥∥∥q̃ψGN (s)ξN (s)

∥∥∥ ≤ C‖ξN (s)‖ (4.36)

where the estimates are independent in N . Furthermore, with the notation

e−λκsN+/2eλ
√

Nφ+(g)/2RNe−λ
√

Nφ+(g)/2eλN+/2 = RN + ARN
(4.37)

we arrive for (4.31) at

M(s) =
q̃ψGN (s)

G̃N (s) − EN (s)
RN +

q̃ψGN (s)

G̃N (s) − EN (s)
ARN

− λκ̇sN+ . (4.38)

We will show in the following that the first two terms can be bounded by terms
that are either O(λ3N) (and thus sub-leading) or can be bounded in terms of
operators that are compensated by the last term for properly chosen κs. To
this end, we estimate the two first terms of the r.h.s. of (4.38) separately. While
the second term is by definition already at least linear in λ, we need to use the
reduced resolvent’s properties for the first term.

We start with the second term of the r.h.s. of (4.38) and consider for this
the single contributions of RN separately, i.e., we define with (4.27) the sum
ARN

=
∑2

j=1 AR(j)
N

where

AR(j)
N

= e−λκsN+/2eλ
√

Nφ+(g)/2R(j)
N e−λ

√
Nφ+(g)/2eλκsN+/2 − R(j)

N . (4.39)

The first term AR(1)
N

is by [12, Proposition 2.2−2.4] (resp. Lemma 3.1, 3.2) of
the form

AR(1)
N

= BR(1)
N

+ DR(1)
N

+ ER(1)
N

(4.40)

where ‖BR(1)
N

‖ ≤ C‖O‖3λ3N for all λκs ≤ 1, while the operator DR(1)
N

qua-
dratic in λ is given by

DR(1)
N

=
λ2

4

∑

p,q∈Λ∗
+,p �=q

v̂(q)

[
κsb∗

p+q +
√

Ngp+q

(
1 − N+

N

)
− 1√

N
a∗

p+qa(g)

]

[g−qbp − gpb−q ]

+
λ2

4
√

N

∑

p,q∈Λ∗
+,p �=q

v̂(q)
[‖g‖2

�2b∗
p+q − gp+qiφ−(g) + gp+qb(g)

]
a∗

−qap
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+
λ2

4
√

N

∑

p,q∈Λ∗
+,p �=q

v̂(q)b∗
p+q

[
κs

√
N (g−qbp + gpb−q) − Nh−qhp

(
1 − N+

N

)

+ h−qa∗(g)ap + hpa∗
−qa(g)

]
+ h.c., (4.41)

and thus bounded for ψ ∈ F≤N
⊥ϕ0

and λκs ≤ 1 by

‖DR(1)
N

ψ‖ ≤ Cλ2‖O‖2
√

N(κs + 1)‖(N+ + 1)1/2ψ‖
≤ C O‖3λ3N(κ2

s + 1)‖ψ‖2 + Cλ‖O‖‖N 1/2
+ ψ‖2 . (4.42)

For the contribution of (4.40) linear in λ, we find

ER(1)
N

=
λ

2
√

N

∑

p,q∈Λ∗
+,p �=q

v̂(q)

[
κsb∗

p+q +
√

Ngp+q

(
1 − N+

N

)
− 1√

N
a∗

p+qa(g)

]
a∗

−qap

+
λ

2

∑

p,q∈Λ∗
+,p �=q

v̂(q)b∗
p+q [g−qbp − gpb−q] − h.c. (4.43)

that is bounded for ψ ∈ F≤N
⊥ϕ0

and λκs ≤ 1 by
∣∣∣∣∣

〈
ψ,

q̃ψGN (s)

G̃N (s) − EN (s)
ER(1)

N
ψ

〉∣∣∣∣∣ ≤ Cλ‖O‖(κs + 1)‖(N+ + 1)1/2ψ‖2 . (4.44)

Thus from (4.40), (4.42) and (4.44), we get for all λκs ≤ 1
∣∣∣∣∣

〈
ξN (s),

q̃ψGN (s)

G̃N (s) − EN (s)
AR(1)

N
ξN (s)

〉∣∣∣∣∣

≤ Cλ‖O‖(κs + 1)〈ξN (s), (N+ + 1)ξN (s)〉 + CNλ3‖ξN (s)‖2 (4.45)

that is, again of the desired form. For the second term of (4.27), we first observe
that by the commutation relations we can write

R(2)
N =

1
2N

∑

p,q,k∈Λ∗
+

v̂(k)a∗
p−kaqa

∗
q+kap (4.46)

and thus we find with [12, Proposition 2.2−2.4] (resp. Lemma 3.1, 3.2) that

AR(2)
N

= BR(2)
N

+ DR(2)
N

+ ER(2)
N

(4.47)

where λκs ≤ 1 we have ‖BR(3)
N

‖ ≤ C |O‖3λ3N and

DR(2)
N

=
λ2N

8N

∑

p,q,k∈Λ∗
+

v̂(k)
[
g−p+kaq − gqa∗

p−k

] [
g−q−kap − gpa∗

q+k

]

+
λ2

8N

∑

p,q,k∈Λ∗
+

v̂(k)a∗
p−kaq

[
κs

√
N
[
g−q−kap + gpa∗

q+k

]− Ng−q−kgp

(
1 − N+

N

)

+ a∗(g)g−q−kap + a∗
q+kgpa(g)

]

+
λ2

8N

∑

p,q,k∈Λ∗
+

v̂(k)
[
κs

√
N
[
g−p+kaq + gqa∗

p−k

]− Ng−p+kgq

(
1 − N+

N

)
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+ a∗(g)g−p+kaq + a∗
p−kgqa(g)

]
a∗

q+kap + h.c. (4.48)

and thus bounded for ψ ∈ F≤N
⊥ϕ0

and λκs ≤ 1 by

‖DR(2)
N

ψ‖ ≤ Cλ2
√

N‖(N+ + 1)1/2ψ‖ ≤ C‖O‖3λ3N‖ψ‖2 + Cλ O‖‖N 1/2
+ ψ‖2

(4.49)

For the linear contributions of (4.47), we find

ER(2)
N

=
λ
√

N

4N

∑

p,q,k∈Λ∗
+

v̂(k)
([

g−p+kaq − gqa∗
p−k

]
a∗

q+kap + a∗
p−kaq

[
g−q−kap − gpa∗

q+k

])

− h.c. (4.50)

that is bounded for ψ ∈ F≤N
⊥ϕ0

and λκs ≤ 1 by
∣∣∣∣∣

〈
ψ,

q̃ψGN (s)

G̃N (s) − EN (s)
ER(3)

N
ψ

〉∣∣∣∣∣ ≤ Cλ |O‖‖(N+ + 1)1/2ψ‖2 . (4.51)

Thus, from (4.47), (4.49) and (4.51) we get
∣∣∣∣∣

〈
ξN (s),

q̃ψGN (s)

G̃N (s) − EN (s)
AR(2)

N
ξN (s)

〉∣∣∣∣∣

≤ Cλ O‖〈ξN (s), (N+ + 1)ξN (s)〉 + CN‖o‖3λ3‖ξN (s)‖2 . (4.52)

With (4.45) and (4.52), we therefore conclude that the second term of the r.h.s.
of (4.38) is bounded by
∣∣∣∣∣

〈
ξN (s),

q̃ψGN (s)

G̃N (s) − EN (s)
ARN

ξN (s)

〉∣∣∣∣∣

≤ Cλ‖O‖(1 + κs)〈ξN (s), (N+ + 1)ξN (s)〉 + CN‖O‖3λ3‖ξN (s)‖2 (4.53)

for all λκs ≤ 1, that is, of the desired form, namely the first term can be
compensated (for properly chosen κs) by the last term of the r.h.s. of (4.38),
while the second term is considered sub-leading here.

It remains to show a similar bound for the first term of the r.h.s. of (4.38).
For this, we use the resolvent’s properties and first note that

q̃ψGN (s)

G̃N (s) − EN (s)
RN =

q̃ψGN (s)

G̃N (s) − EN (s)

(
pψGN (s) + qψGN (s)

)RN , (4.54)

while the first term is with Lemma 2.1 bounded by
∣∣∣∣∣

〈
ξN (s),

q̃ψGN (s)

G̃N (s) − EN (s)
pψGN (s)RNξN (s)

〉∣∣∣∣∣

≤
∥∥∥

q̃ψGN (s)

G̃N (s) − EN (s)
ξN (s)

∥∥∥‖pψGN (s)RNξN (s)‖ ≤ CN−1/2‖ξN (s)‖2 (4.55)
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and we use the resolvent identity for the second term and write

q̃ψGN (s)qψGN (s)

G̃N (s) − EN (s)
RN =

qψGN (s)

GN (s) − EN (s)
RN

+
q̃ψGN (s)

G̃N (s) − EN (s)
(AQ + ARN

)
qψGN (s)

GN (s) − EN (s)
RN

(4.56)

with the notation (4.39) and

AQ = e−λκsN+/2eλ
√

Nφ+(g)/2Qe−λ
√

Nφ+(g)/2eλN+/2 − Q . (4.57)

Thus summarizing (4.54)–(4.56), it follows from Lemma 2.1 that the first term
of the r.h.s. of (4.38) is bounded by

∣∣∣∣∣

〈
ξN (s),

qψG̃N (s)

G̃′
N (s) − EN (s)

RN ξN (s)

〉∣∣∣∣∣

≤ C‖ξN (s)‖2 + |〈ξN (s),
q̃ψGN (s)

G̃N (s) − EN (s)

(
AQ + ARN

) qψGN (s)

GN (s) − EN (s)
RN ξN (s)〉|

(4.58)

and we are left with bounding the last term. For this, we are going to use
that on the one hand the operators AQ′ , AR′

N
are at least linear in λ and the

resolvent w.r.t. to G′
N (s) allows to bound the number of particle operator. We

proceed similarly as before and observe that it follows from [12, Proposition
2.2−2.4] (resp. Lemma 3.1, 3.2) that for all λκs ≤ 1 we have from Lemma 3.4
that

AQ = DQ + EQ (4.59)

with ‖DQ‖op ≤ Nλ2 and since ‖p2 g‖�2 ≤ C|||O|||‖ϕ0‖H2 ≤ C|||O||| for any
ψ ∈ F≤N

⊥ϕ0
that

‖EQψ‖ ≤ C
√

Nλ(‖O‖ + κs|||O|||)‖(N+ + 1)1/2ψ‖ . (4.60)

We recall that from (4.45) and (4.52), we similarly have for all λκs ≤ 1

ARN
= DRN

+ ERN
(4.61)

with ‖DRN
‖ ≤ CN‖O‖2λ2 and

‖ERN
ψ‖ ≤ C

√
N‖O‖λ(1 + κs)‖(N+ + 1)1/2ψ‖ (4.62)

for any ψ ∈ F≤N
⊥ϕ0

. Thus, from (4.63) we find
∣∣∣∣∣

〈
ξN (s),

q̃ψGN (s)

G̃N (s) − EN (s)
RNξN (s)

〉∣∣∣∣∣

≤ C‖ξN (s)‖2 + λ2N
∥∥∥

qψGN (s)

GN (s) − EN (s)
RNξN (s)

∥∥∥
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+

∣∣∣∣∣

〈
ξN (s),

q̃ψGN (s)

G̃N (s) − EN (s)
(EQ + ERN

)
qψGN (s)

GN (s) − EN (s)
RNξN (s)

〉∣∣∣∣∣
(4.63)

and we find with Lemma 2.1
∣∣∣∣∣

〈
ξN (s),

q̃ψGN (s)

G̃N (s) − EN (s)
RNξN (s)

〉∣∣∣∣∣

≤ C‖ξN (s)‖2 + λ2‖O‖2
√

N‖(N+ + 1)ξN (s)‖2

+

∣∣∣∣∣

〈
ξN (s),

q̃ψGN (s)

G̃N (s) − EN (s)
(EQ + ERN

)
qψGN (s)

GN (s) − EN (s)
RNξN (s)

〉∣∣∣∣∣
(4.64)

The first two summands of the r.h.s. of (4.64) are already of the desired form
as it can be bounded by terms O(λ3N) resp. terms of the form λN+. For the
last term, we, however, have to estimate more carefully. We use once more
the resolvent formula and write with the notation EGN (s) = EQ + ERN

and
DGN (s) = DQ + DRN

q̃ψGN (s)

G̃N (s) − EN (s)
EGN (s)

qψGN (s)

GN (s) − EN (s)
RN

=

(
q̃ψGN (s)

G̃N (s) − EN (s)
(EGN (s) + DGN (s)) + 1

)
qψGN (s)

GN (s) − EN (s)
EGN (s)

qψGN (s)

GN (s) − EN (s)
RN .

(4.65)

It follows from (4.60), (4.62) and Lemma 2.1 that for all λκs ≤ 1 we have

∥∥∥∥EGN (s)

qψGN (s)

GN (s) − EN (s)
EGN (s)

qψGN (s)

GN (s) − EN (s)
RN ξN (s)

∥∥∥∥

≤ C
√

Nλ|||O|||(1 + κs)
∥∥∥(N+ + 1)1/2

qψGN (s)

GN (s) − EN (s)
EGN (s)

qψGN (s)

G′
N (s) − EN (s)

RN ξN (s)
∥∥∥

≤ C
√

Nλ|||O|||(1 + κs)
∥∥∥(N+ + 1)−1/2EGN (s)

qψGN (s)

G′
N (s) − EN (s)

RN ξN (s)
∥∥∥ (4.66)

With N+ap = ap(N+ − 1), it follows from (4.44), (4.51) and (4.60) that

‖(N+ + 1)−1/2EGN (s)ψ‖ ≤ C
√

Nλ|||O|||(1 + κs)‖ψ‖ (4.67)

for any ψ ∈ F≤N
⊥ϕ0

, and therefore,
∥∥∥EGN (s)

qψGN (s)

GN (s) − EN (s)
EGN (s)

qψGN (s)

GN (s) − EN (s)
RNξN (s)

∥∥∥

≤ CNλ2|||O|||2(1 + κs)2
∥∥∥

qψGN (s)

GN (s) − EN (s)
RNξN (s)

∥∥∥

≤ C
√

Nλ2|||O|||2(1 + κs)2
∥∥∥(N+ + 1)1/2ξN (s)

∥∥∥ . (4.68)
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where we used Lemma 2.1 and (2.39). Similarly, we find with Lemma 2.1
∥∥∥DGN (s)

qψGN (s)

GN (s) − EN (s)
EGN (s)

qψGN (s)

GN (s) − EN (s)
RNξN (s)

∥∥∥

≤ CN3/2|||O|||3λ3(1 + κs)3
∥∥∥(N+ + 1)−1/2

qψGN (s)

GN (s) − EN (s)
RNξN (s)

∥∥∥

≤ CN |||O|||3λ3(1 + κs)3‖ξN (s)‖2 . (4.69)

Therefore, we arrive with (4.36), (4.68) and (4.69) for (4.64) for all λκs ≤ 1 at
∣∣∣∣∣

〈
ξN (s),

qψG̃N (s)

G̃N (s) − EN (s)
RNξN (s)

〉∣∣∣∣∣

≤ CNλ3|||O|||3(1 + κs)3‖ξN (s)‖2 + Cλ|||O|||‖(N+ + 1)1/2ξN (s)‖2 (4.70)

that is of the desired form. Together with (4.53), we thus get for (4.38) that

2Re〈ξN (s),M(s)ξN (s)〉
≥ (Cλ|||O|||(κs + 1) − κ̇s) 〈ξN (s), N+ξN (s)〉 + C(Nλ3 + λ)‖ξN (s)‖2 .

(4.71)

With the choice

κs = 2‖O‖eC(s−1) + |||O|||(eC(s−1) − 1) (4.72)

yielding ∂s‖ξN (s)‖2 ≥ −C(λ + Nλ3)‖ξN (s)‖2, we arrive with Gronwall’s in-
equality at the lower bound of Lemma 4.2.

The upper bound follows with similar ideas, replacing the lower with
upper bounds and κs with −κs. �

4.3. Step 3

We recall that we are left with computing the expectation value w.r.t. to
the ground state ψQ of the quadratic Hamiltonian Q given by (2.15). In this
step, we will show that the ground state is approximately given by eB(μ)Ω,
that is, a an generalized Bogoliubov transform applied to the vacuum vector.
Furthermore, we show that eB(μ) acts on the observable φ+(h) as a Bogoliubov
transform, i.e., that e−B(μ)φ+(h)eB(μ) can be approximated by φ+(f) with f
given by (1.15). The main difficulty in this step here is that all quantities are
formulated w.r.t. to modified creation and annihilation operators for which the
action of the Bogoliubov transform is not explicitly given. However, we use
(2.51) and (2.52), (2.53) and Lemmas 3.5–3.9 to prove the following Lemma.

Lemma 4.3. Let κ > 0. Under the same assumptions as in Theorem 1.2,
there exist constants C1, C2 > 0 and κ1, κ2 > 0 such that for all 0 ≤ λ ≤
min{1/(κ1|||O|||), 1/(κ2|||O|||)} we have

〈
ψQ, eλ

√
Nφ+(g)/2eκ|||O|||N+eλ

√
Nφ+(g)/2ψQ

〉

≤ eC1(Nλ3+λ)〈Ω, eλ
√

Nφ+(f)/2eκ1|||O|||N+eλ
√

Nφ+(f)/2Ω〉 (4.73)
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resp.
〈
ψQ, eλ

√
Nφ+(g)/2e−λκ|||O|||N+eλ

√
Nφ+(g)/2ψQ

〉

≥ e−C2(Nλ3+λ)〈Ω, eλ
√

Nφ+(f)/2e−λκ2|||O|||N+eλ
√

Nφ+(f)/2Ω〉 (4.74)

where f is given by (1.15).

Proof. We start with the proof of the lower bound. The upper bound then
follows with similar arguments as in the previous steps. As the generalized
Bogoliubov transform (1.28) is a unitary operator, we write

〈
ψQ, eλ

√
Nφ+(g)/2e−λκ|||O|||N+eλ

√
Nφ+(g)/2ψQ

〉

= 〈eB(μ)ψQ, eλ
√

NeB(μ)φ+(g)/2e−B(μ)

e−κ|||O|||eB(μ)N+e−B(μ)
eλ

√
NeB(μ)φ+(g)e−B(μ)/2eB(μ)ψQ〉 (4.75)

The final goal is to compare the r.h.s. with the r.h.s. of the lower bound
(4.74). To this end, we perform three steps: We first show that we can replace
the exponent −κeB(μ)N+e−B(μ) with κ2N+ for sufficiently large κ2 > 0. Sec-
ond, we show that the exponent eB(μ)φ+(g)e−B(μ) can be effectively replaced
by φ+(f) with f given by (1.15), again paying a sub-leading price. As a third
and last step, we then show that we can replace eB(μ)ψQ with an interpolation
argument (similarly as in the proof of Lemma 4.2) by Ω.

Step 3.1. Similarly as in the previous steps, we define for s ∈ [0, 1] the vector

ξ1(s) = e−(1−s)λκ1|||O|||N+e−sκ|||O|||eB(μ)N+e−B(μ)
eλ

√
NeB(μ)φ+(g)e−B(μ)/2eB(μ)ψQ

(4.76)

where κ1 > 0 is chosen later. By definition, we have

‖ξ1(1)‖2 = 〈eB(μ)ψQ, eλ
√

NeB(μ)φ+(g)/2e−B(μ)
e−κ|||O|||eB(μ)N+e−B(μ)

eλ
√

NeB(μ)φ+(g)e−B(μ)/2eB(μ)ψQ〉 (4.77)

and

‖ξ1(0)‖2 = 〈eB(μ)ψQ, eλ
√

NeB(μ)φ+(g)/2e−B(μ)
e−λκ1|||O|||N+

eλ
√

NeB(μ)φ+(g)e−B(μ)/2eB(μ)ψQ〉 (4.78)

and we control their difference by computing the derivative

∂s‖ξ1(s)‖2 = 2Re〈ξ1(s), ∂sξ1(s)〉 = 〈ξ1(s),M1(s)ξ1(s)〉 (4.79)

with

M1(s) = −λκ|||O||| + λe−λ(1−s)κ1|||O|||N+e−B(μ)N+eB(μ)eλ(1−s)κ1|||O|||N+ + λκ1|||O|||N+

(4.80)

From (2.51), we find

e−B(μ)N+eB(μ) =
∑

p∈Λ∗
+

(
σ2

p + (γ2
p + σ2

p)b∗
pbp) + 2σpγp(b∗

pb
∗
−p + bpb−p)

)
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+
∑

p∈Λ∗
+

(
d∗

p(γpbp + σpb
∗
−p) + h.c. + d∗

pdp

)
. (4.81)

We recall that here we used the notation γp := cosh(μp) and σp = sinh(μp)
with μp given by (1.16). Since 0 ≤ v̂ ∈ �1(Λ∗

+) we get ‖μ‖�1(Λ∗
+) ≤ C and thus

σ ∈ �1(Λ∗
+) and γ ∈ �∞(Λ∗

+). Hence for the first line of the r.h.s. of (4.81), we
use again Propositions 3.2,3.1 and get similarly as in the previous steps

λ|〈ξ1(s), e−λ(1−s)κ1|||O|||N+

×
∑

p∈Λ∗
+

(
σ2

p + (γ2
p + σ2

p)b∗
pbp) + 2σpγp(b∗

pb∗
−p + bpb−p)

)
e−λ(1−s)κ1|||O|||N+ξ1(s)〉|

≤ (Cλ‖O‖ + Cκ1‖O‖2λ2)〈ξ1(s) (N+ + 1)ξ1(s)〉
≤ C̃λ‖O‖〈ξ1(s) (N+ + 1)ξ1(s)〉 + C̃κ1Nλ3‖O‖3‖ξN (s)‖ . (4.82)

where C̃, C̃κ1 > 0 and C > 0 does not depend on κ1. For the second
line of the r.h.s., we proceed similarly using Lemma 3.6 and (2.52), (2.53)
instead of Proposition 3.2 and (2.28). In fact, Lemma 3.6 and (2.52), (2.53)
are applicable as by assumption the norm ‖μ‖ sufficiently small. Thus, we find

λ|〈ξ1(s), e−λ(1−s)κ1|||O|||N+

×
∑

p∈Λ∗
+

(
d∗

p(γpbp + σpb
∗
−p) + h.c. + d∗

pdp

)
e−λ(1−s)κ1|||O|||N+ξ1(s)〉|

≤ Cλ‖O‖〈ξ1(s) (N+ + 1)ξ1(s)〉 + Cκ1Nλ3‖O‖3‖ξN (s)‖ . (4.83)

with C,Cκ1 > 0 and C > 0 independent of κ1. Summarizing, we find from
(4.82) and (4.83) by choosing κ1 > 0 sufficiently large

∂s‖ξ1(s)‖2 ≥ (κ1 − C)λ|||O|||〈ξ1(s), N+ξ1(s)〉 − Cκ1(λ
3N + 1)‖ξ1(s)‖2

≥ −Cκ1(λ
3N + 1)‖ξ1(s)‖2 . (4.84)

We finally arrive at

〈ψQ, eλ
√

Nφ+(g)/2e−λκ|||O|||N+eλ
√

Nφ+(g)/2ψQ〉
≥ e−C(Nλ3+1)〈eB(μ)ψQ, eλ

√
NeB(μ)φ+(g)/2e−B(μ)

e−κ1|||O|||N+eλ
√

NeB(μ)φ+(g)e−B(μ)/2eB(μ)ψQ〉 (4.85)

Step 3.2. Next we show that in the limit N → ∞, we can replace the operator
eB(μ)φ+(g)e−B(μ) by φ+(f)/2 where f is defined in (1.15), i.e., that there
exists κ2, C2 > 0 such that

〈eB(μ)ψQ, eλ
√

NeB(μ)φ+(g)/2e−B(μ)
e−κ1|||O|||N+eλ

√
NeB(μ)φ+(g)e−B(μ)/2eB(μ)ψQ〉

≥ e−C(λ3N+1)〈eB(μ)ψQ, eλ
√

Nφ+(f)/2e−κ2|||O|||N+eλ
√

Nφ+(f)/2eB(μ)ψQ〉
(4.86)

To this end, we define for s ∈ [0, 1]

ξ2(s) = e−κ(s)|||O|||N+e(1−s)λ
√

Nφ+(f)/2esλ
√

NeB(μ)φ+(g)e−B(μ)/2eB(μ)ψQ (4.87)
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where κ : [0, 1] → R+ is a positive, differentiable function with κ(1) = κ1

chosen later. Since

‖ξ2(1)‖2 = 〈eB(μ)ψQ, eλ
√

NeB(μ)φ+(g)/2e−B(μ)
e−κ1|||O|||N+

eλ
√

NeB(μ)φ+(g)e−B(μ)/2eB(μ)ψQ〉 (4.88)

and

‖ξ2(0)‖2 = 〈eB(μ)ψQ, eλ
√

Nφ+(f)/2e−κ(0)|||O|||N+eλ
√

Nφ+(f)/2eB(μ)ψQ〉, (4.89)

it suffices to control the derivative

∂s‖ξ2(s)‖2 = 〈ξ2(s), M2(s)ξ2(s)〉 (4.90)

with

M2(s) = −λκ̇s|||O|||N+

+ λ
√

Ne−κ(s)|||O|||N+e(1−s)λ
√

Nφ+(f)/2
(
eB(μ)φ(g)eB(μ) − φ(f)

)

× e(1−s)λ
√

Nφ+(f)/2e−κ(s)|||O|||N+ (4.91)

As before, the idea is to bound the first term w.r.t. the second term paying a
price that is O(λ3N). To that end, we observe first that from (2.51) we have

eB(μ)φ+(g)eB(μ) − φ(f) =
∑

p∈Λ∗
+

gp

[
d∗

p + d−p

]
= d(g) + d∗(g) (4.92)

Since μ, g ∈ �2(Λ∗
+) and thus f ∈ �2(Λ∗

+), it follows from (2.52) and Lemma 3.5
that

λ
√

N |〈ξ2(s), e−κ(s)|||O|||N+e(1−s)λ
√

Nφ+(f)/2

(d(g) + d∗(g)) e(1−s)λ
√

Nφ+(f)/2e−κ(s)|||O|||N+ξ2(s)〉|
≤ Cλ|||O|||‖(N+ + 1)1/2ξ2(s)‖2 + Cκs

|||O|||2λ2‖(N+ + 1)1/2ξ2(s)‖2

+ Cκs
Nλ3|||O|||3‖ξ2(s)‖2 (4.93)

where C > 0 is a positive constant that, in contrast to Cκs
, does not depend

on κs. Thus,

∂s‖ξ2(s)‖2 ≥ λ|||O|||(C − κ̇s)‖N 1/2
+ ξ2(s)‖2 − Cκs

(Nλ3|||O|||3 + λ|||O|||)‖ξ2(s)‖2 .
(4.94)

We choose κ2(s) = −κ1 + (1 − s)κ2 for sufficiently large κ2 > 0 so that

∂s‖ξ2(s)‖2 ≥ −Cκs
(Nλ3|||O|||3 + λ|||O|||)‖ξ2(s)‖2 . (4.95)

and the desired estimate (4.86) follows.
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Step 3.3. Finally, we prove that we can replace eB(μ)ψQ with the vacuum vec-
tor Ω, that is, the ground state of the diagonal Hamiltonian D. More precisely,
we show that there exists κ3, C > 0 such that

〈
eB(μ)ψQ, eλ

√
Nφ+(f)/2e−λκ2|||O|||N+eλ

√
Nφ+(f)/2eB(μ)ψQ

〉

≥ e−C(Nλ3+1)〈Ω, eλ
√

Nφ+(f)/2e−λκ3|||O|||N+eλ
√

Nφ+(f)/2Ω〉 . (4.96)

To this end, we define for s ∈ [0, 1] the ground state ψQ(s) of the Hamiltonian

Q(s) = D + sRQ (4.97)

with corresponding eigenvalue E(s) and furthermore the vector

ξ3(s) = e−λκ(s)|||O|||N+/2eλ
√

Nφ+(f)/2ψQ(s) (4.98)

with differentiable κ(s) : [0, 1] → R+ satisfying κ(1) = κ2 that we choose later.
Since

‖ξ3(1)‖2 = 〈eB(μ)ψQ, eλ
√

Nφ+(f)/2e−λκ2|||O|||N+eλ
√

Nφ+(f)/2eB(μ)ψQ〉 (4.99)

and

‖ξ3(0)‖2 = 〈Ω, eλ
√

Nφ+(f)/2e−λκ(0)|||O|||N+eλ
√

Nφ+(f)/2Ω〉 . (4.100)

, it suffices to control the derivative

∂s‖ξ3(s)‖2 = 2Re〈ξ3(s),M3(s)ξ3(s)〉 (4.101)

with

M3(s) = e−λκ(s)|||O|||N+/2eλ
√

Nφ+(f)/2
qψQ(s)

Q(s) − E(s)
RQeλ

√
Nφ+(f)/2

eλκ(s)|||O|||N+/2 − κ̇sλ|||O|||N+

=
q̃ψQ(s)

Q̃(s) − E(s)
R̃Q − κ̇sλ|||O|||N+ (4.102)

where we introduced the notation

Q̃(s) = e−λκ(s)|||O|||N+/2eλ
√

Nφ+(f)/2Q(s)eλ
√

Nφ+(f)/2eλκ(s)|||O|||N+/2 (4.103)

and q̃ψQ(s) = e−λκ(s)|||O|||N+/2eλ
√

Nφ+(f)/2qψQ(s)e
λ

√
Nφ+(f)/2eλκ(s)|||O|||N+/2 resp.

R̃Q = e−λκ(s)|||O|||N+/2eλ
√

Nφ+(f)/2RQeλ
√

Nφ+(f)/2eλκ(s)|||O|||N+/2 . (4.104)

First note that it follows from Lemmas 3.4, 3.9 that for any formalized ψ ∈
F≤N

⊥ϕ

〈ψ,
(
Q̃(s) − E(s)

)
ψ〉

≥ 〈ψ, (Q(s) − E(s)) ψ〉 − Cλ
√

N |||O|||‖(N+ + 1)1/2ψ‖ − CNλ2|||O|||2 .
(4.105)

Therefore, there exists ε, Cε > 0 such that by Proposition 2.2

〈ψ,
(
Q̃(s) − E(s)

)
ψ〉 ≥ (C − ε)〈ψ, N+ψ〉 − CεN |||O|||2λ2 . (4.106)
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and consequently
∥∥∥(N+ + 1)1/2

q̃ψQ(s)

Q̃(s) − E(s)
ψ‖ ≤ C(N1/2λ|||O||| + 1)‖q̃ψQ(s)ψ‖ . (4.107)

We can prove a similar bound not only for the square root but for the number
of particle operator. For that we write with the resolvent identity

N+

q̃ψQ(s)

Q̃(s) − E(s)
= N+

pψQ(s) q̃ψQ(s)

Q̃(s) − E(s)
+ N+

qψQ(s) q̃ψQ(s)

Q̃(s) − E(s)
. (4.108)

We use Proposition 2.2 for the first and the resolvent identity for the second
term and arrive at
∥∥∥N+

q̃ψQ(s)

Q̃(s) − E(s)
ψ
∥∥∥ ≤ C +

∥∥∥N+

qψQ(s)

Q(s) − E(s)

(
Q̃(s) − Q(s)

) q̃ψQ(s)

Q̃(s) − E(s)
ψ
∥∥∥ .

(4.109)

From Proposition 2.2, we find
∥∥∥N+

q̃ψQ(s)

Q̃(s) − E(s)
ψ
∥∥∥ ≤ C‖q̃ψQ(s)ψ‖ + C

∥∥∥
(
Q̃(s) − Q(s)

) q̃ψQ(s)

Q̃(s) − E(s)
ψ
∥∥∥

(4.110)

and furthermore since v̂ ∈ �1(Λ∗
+) from Lemma 3.4, 3.9

∥∥∥N+

q̃ψQ(s)

Q̃(s) − E(s)
ψ
∥∥∥

≤ C(1 + Nλ2|||O|||2)‖q̃ψQ(s)ψ‖ + Cλ
√

N |||O|||
∥∥∥(N+ + 1)1/2

q̃ψQ(s)

Q̃(s) − E(s)
ψ
∥∥∥.

(4.111)

With the first bound (4.107), we thus arrive at
∥∥∥N+

q̃ψQ(s)

Q̃(s) − E(s)
ψ
∥∥∥ ≤ C(Nλ2|||O|||2 + 1)‖q̃ψQ(s)ψ‖ . (4.112)

With these estimates (4.107), (4.112), we can now bound M3(s) defined in
(4.102). We define the operator

ARQ = R̃Q − RQ (4.113)

that we can bound with Lemmas 3.9, 3.10 by

‖ARQ
q̃ψQ(s)

Q̃(s) − E(s)
ξ3(s)‖ ≤ CNλ3|||O|||3‖q̃ψQ(s)ξ3(s)‖

+ Cλ|||O|||
∥∥∥(N+ + 1)

q̃ψQ(s)

Q̃(s) − E(s)
ξ3(s)

∥∥∥ (4.114)

and thus with (4.112)

‖ARQ
q̃ψQ(s)

Q̃(s) − E(s)
ξ3(s)‖ ≤ C(Nλ3|||O|||3 + 1)‖q̃ψQ(s)ξ3(s)‖
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≤ C(Nλ3|||O|||3 + 1)‖ξ3(s)‖ . (4.115)

In order to control the contribution of RQ in M3(s) in (4.102), we use Lem-
mas 3.5, 3.10 that show
∣∣∣∣∣

〈
ξ3(s), RQ

q̃ψQ(s)

Q̃(s) − E(s)
ξ3(s)

〉∣∣∣∣∣

≤ CN−1/2‖(N+ + 1)1/2ξ3(s)‖
∥∥∥(N+ + 1)

q̃ψQ(s)

Q̃(s) − E(s)
ξ3(s)

∥∥∥

≤ Cκ(s)

√
Nλ2|||O|||2‖(N+ + 1)1/2ξ3(s)‖‖ξ3(s)‖

≤ Cλ|||O|||‖(N+ + 1)1/2ξ3(s)‖2 + C̃κ(s)(Nλ3|||O|||3 + 1)|ξ3(s)‖3 . (4.116)

Hence, we find from (4.102) choosing κ(s) = κ3s+κ4(1−s) and κ4 sufficiently
large

∂s‖ξ3(s)‖2 ≥ (C|||O||| − κ(s)|||O|||)‖N 1/2
+ ξ3(s)‖2 − CNλ3‖ξ3(s)‖2

≥ −Cκ(s)(Nλ3|||O|||3 + 1)‖ξ3(s)‖2 (4.117)

and thus the desired estimate follows. �

4.4. Step 4

In the last step, we compute the remaining expectation value in the vacuum.
The following lemma follows immediately from [22, Lemma 3.3].

Lemma 4.4. Let κ > 0. Under the same assumptions as in Theorem 1.1, there
exist constants C1, C2 > 0 such that for all 0 ≤ λ ≤ 1/(κ|||O|||) we have

ln〈Ω, eλ
√

Nφ+(f)/2eκλ|||O|||N+eλ
√

Nφ+(f)/2Ω〉

≤ N

(
λ2‖f‖2

2
+ C1λ

3|||O|||3
)

+ C1λ|||O||| (4.118)

resp.

ln〈Ω, eλ
√

Nφ+(f)/2e−κλ|||O|||N+e−λ
√

Nφ+(f)/2Ω〉

≥ N

(
λ2‖f‖2

2
− C2λ

3|||O|||3
)

− C2|||O|||λ (4.119)
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Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Ben Arous, G., Kirkpatrick, K., Schlein, B.: A central limit theorem in many-
body quantum dynamics. Commun. Math. Phys. 321(2), 371–417 (2013)

[2] Boßmann, L., Petrat, S.: Edgeworth expansion for the weakly interacting Bose
gas. Preprint (2022) arXiv:2208.00199

[3] Boßmann, L., Petrat, S., Seiringer, R.: Asymptotic expansion of the low-energy
excitation spectrum for weakly interacting Bosons. Forum Math. Sigma 9, e28
(2021)

[4] Brennecke, C., Schlein, B.: Gross–Pitaevskii dynamics for Bose–Einstein con-
densates. Anal. PDE 12(6), 1513–1596 (2019)

[5] Brennecke, C., Boccato, C., Cenatiempo, S., Schlein, B.-: Bogoliubov Theory in
the Gross–Pitaevskii Limit. Acta Math. 222(2), 219–335 (2019)

[6] Brennecke, C., Boccato, C., Cenatiempo, S., Schlein, B.-: Optimal Rate for Bose–
Einstein Condensation in the Gross–Pitaevskii Regime. Commun. Math. Phys.
376, 1311–1319 (2020)

[7] Brenencke, C., Schraven, S., Schlein, B.: Bose–Einstein condensation with opti-
mal rate for trapped bosons in the Gross–Pitaevskii regime. Math. Phys. Anal.
Geometry 25(12) (2022)

[8] Buchholz, S., Saffirio, C., Schlein, B.: Multivariate central limit theorem in quan-
tum dynamics. J. Stat. Phys. 154(1–2), 113–152 (2014)
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