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The Sobolev Wavefront Set of the Causal
Propagator in Finite Regularity
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Abstract. Given a globally hyperbolic spacetime M = R×Σ of dimension
four and regularity Cτ , we estimate the Sobolev wavefront set of the
causal propagator KG of the Klein–Gordon operator. In the smooth case,
the propagator satisfies WF ′(KG) = C, where C ⊂ T ∗(M ×M) consists

of those points (x̃, ξ̃, ỹ, η̃) such that ξ̃, η̃ are cotangent to a null geodesic γ
at x̃ resp. ỹ and parallel transports of each other along γ. We show that
for τ > 2,

WF ′−2+τ−ε(KG) ⊂ C

for every ε > 0. Furthermore, in regularity Cτ+2 with τ > 2,

C ⊂ WF ′− 1
2 (KG) ⊂ WF ′τ−ε(KG) ⊂ C

holds for 0 < ε < τ + 1
2
. In the ultrastatic case with Σ compact, we show

WF ′− 3
2+τ−ε(KG) ⊂ C for ε > 0 and τ > 2 and WF ′− 3

2+τ−ε(KG) = C
for τ > 3 and ε < τ − 3. Moreover, we show that the global regularity of

the propagator KG is H
− 1

2 −ε

loc (M × M) as in the smooth case.
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1. Introduction

The quantisation of the scalar field forms part of the basis for the subject
of Algebraic Quantum Field Theory. While the main mathematical framework
for the smooth setting was initiated more than 20 years ago, see e.g. [23,28,32,
39,50], ongoing research continues to develop new techniques, particularly in
connection with microlocal analysis [29,37,38], the importance of Hadamard
states [20,27,40,55,58], locality and covariance [12,26,44], perturbation theory
[11,14,34], Dirac fields [15,24,31,33] and gauge theory [7,13].

Moreover, it is now possible to approach certain mathematical questions
related to quantum fields propagating in spacetimes of finite regularity. This is
motivated by the deep foundational work on causality theory [8,18,42,46] and
advances in our understanding of nonlinear hyperbolic equations [17,19,41],
which were needed as a first step towards a full understanding of Einstein’s
equations as a well-posed Cauchy problem, which requires solutions that go
beyond the smooth ones. Additionally, there are several astrophysical models
of phenomena such as neutron stars, self-gravitating fluids and gravitational
collapse that are not smooth [2,16,47].

The quantisation proceeds in two steps. First, one constructs an algebra
of observables, then one represents this algebra on a Hilbert space of physical
states.

A common candidate for such physical quantum states, ω, are quasifree
states that satisfy the microlocal spectrum condition.

To state it, it is useful to introduce the sets

C =
{
(x̃, ξ̃, ỹ, η̃) ∈ T ∗(M × M)\0; gab(x̃)ξ̃aξ̃b=gab(ỹ)η̃aη̃b = 0, (x̃, ξ̃) ∼ (ỹ, η̃)

}

C+=
{

(x̃, ξ̃, ỹ, η̃)∈C; ξ̃0 ≥ 0, η̃0 ≥ 0
}

, (1.1)

where (x̃, ξ̃) ∼ (ỹ, η̃) means that there is a null geodesic γ joining x̃ and ỹ

such that ξ̃, η̃ are cotangent to the null geodesic γ at x̃ resp. ỹ and parallel
transports of each other.
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Using the above sets, one can define the microlocal spectrum condition
as follows:

Definition 1.1. A quasifree state ωH on the algebra of observables satisfies the
microlocal spectrum condition if its two-point function ω

(2)
H is a distribution

in D′(M × M) and satisfies the following wavefront set condition

WF ′(ω(2)
H ) = C+,

where WF ′(ω(2)
H ) := {(x̃, ξ̃; ỹ,−η̃) ∈ T ∗(M × M); (x̃, ξ̃; ỹ, η̃) ∈ WF (ω(2)

H )}.

These states, called Hadamard states, have been constructed in the smooth
setting. They encompass both ground and KMS states [29,37]. Moreover, they
are particularly well suited for point-splitting renormalisation, a technique used
for calculating key physical quantities like the renormalised energy-momentum
tensor [63,64].

A central goal now is the construction of suitable quantum states in non-
smooth scenarios following the techniques in [29,38], which requires a thorough
knowledge of the wavefront set of the causal propagator. This is the question
we address in this article. To be precise, we characterise the wavefront set of
the causal propagator of the Klein–Gordon operator in non-smooth globally
hyperbolic spacetimes. The causal propagator is constructed using the inverses
associated with the Cauchy problem, which makes it a classical propagator.
It is worth noting that there exist other bisolutions such as the two-point
functions described above, which are non-classical (see [22] for further details
on this convention).

The microlocal analysis of the propagators of the wave equation and its
parametrices in low-regularity spacetimes introduces several technical chal-
lenges due to the lack of a complete theory of Fourier integral operators with
non-smooth symbols and amplitudes. However, progress has been made using
the paradifferential calculus introduced by Bony [10] (see also [6,45,61]). In
addition, Szeftel has constructed a parametrix which requires only control over
the L2 curvature of the metric in order to prove the L2-curvature conjecture
related to Einstein’s field equations [41,59]. Moreover, Tataru [60] has con-
structed parametrices of the wave equations in low regularity for metrics with
C1,1 coefficients as a preliminary step to show suitable Strichartz estimates
and analyse nonlinear PDE’s using phase space transforms. In addition, his
results allowed even lower regularity at the expense of showing weaker results.
Finally, we mention Smith’s construction of parametrices for the C1,1 case us-
ing wave packets [56] (see [65] for a parametrix construction using Gaussians).
The contribution of our paper is establishing the microlocal singular structure
of the causal propagator when the regularity of the spacetime is finite. The
main theorems we prove are:

Theorem (Theorem 5.1). Let (M, g) be a Cτ globally hyperbolic spacetime with
τ > 2 and KG the causal propagator of the Klein–Gordon operator P . Then,

WF ′−2+τ−ε(KG) ⊂ C

for every ε > 0, C as in Eq.(1.1),
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and

Theorem (Theorem 5.2). For a Cτ+2 globally hyperbolic spacetime with τ > 2,

C ⊂ WF ′− 1
2 (KG) ⊂ WF ′τ−ε(KG) ⊂ C,

and hence equality, holds for 0 < ε < τ + 1
2 .

In the ultrastatic case, sharper results are available. For completeness,
we state these in the Appendix, see Lemmas 6.5 and 6.7, Theorems 6.9 and
6.11.

1.1. The Smooth Setting

Consider a pair (M, g), where M is a smooth manifold and g is a smooth
Lorentzian metric. The Klein–Gordon operator P on (M, g) is given by

P := gμν∇μ∇νφ + m2φ = (�g + m2)φ (1.2)

where gμν is the inverse metric tensor, ∇μ is the covariant derivative and m
is a positive real number.

The starting point is the notion of advanced and retarded Green operators
in this situation.

Definition 1.2. Let M be a time-oriented connected Lorentzian manifold and
let P be the Klein–Gordon operator. An advanced Green operator G+ is a
linear map G+ : D(M) → C∞(M) such that

1. P ◦ G+ = idD(M)

2. G+ ◦ P |D(M) = idD(M)

3. supp(G+φ) ⊂ J+(supp(φ)) for all φ ∈ D(M).

A retarded Green operator G− satisfies (1) and (2), but (3) is replaced by the
condition supp(G−φ) ⊂ J−(supp(φ)) for all φ ∈ D(M).

In [5, Corollary 3.4.3], it is shown that these exist and are unique on a
globally hyperbolic manifold.

The advanced and retarded Green operators are then used to define the
causal propagator

G := G+ − G−

which maps D(M) to C∞
sc (M), the space of spatially compact maps, i.e. the

smooth maps φ such that there exists a compact subset K ⊂ M with supp(φ) ⊂
J(K). If M is globally hyperbolic, then one has the following exact sequence
[5, Theorem 3.4.7]:

0 D(M) D(M) C∞
sc (M) C∞

sc (M),P G P

Since G is a continuous linear operator, the Schwartz Kernel Theorem implies
that there exists one and only one distribution KG ∈ D′(M × M) such that

KG(u ⊗ v) = 〈G(v), u〉, u, v ∈ D(M). (1.3)
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It follows from Duistermaat and Hörmander’s characterisation using Fourier
integral operators that the kernel KG satisfies

WF ′(KG) = C. (1.4)

More explicitly, they showed that KG ∈ I− 3
2 (M ×M,C ′), where Iμ(X,Λ)

denotes the space of Lagrangian distributions of order μ over the manifold X
associated to the Lagrangian submanifold Λ. In this case Λ = C ′ = {(x̃, ξ̃; ỹ,−η̃);
(x̃, ξ̃; ỹ, η̃) ∈ C}, see [25, Theorem 6.5.3]. Using [25, Theorem 5.4.1, Theorem
6.5.3], one obtains that in four dimensions, KG belongs to the Sobolev space

H
− 1

2−ε

loc (M × M) for any ε > 0. For details on the Sobolev spaces mentioned,
see Sect. 6.1 and [36, Appendix B].

2. The Non-Smooth Setting

Next we will consider the case, where g is a non-smooth metric. We will specify
the precise regularity in each section.

The definition of the Green operators in the non-smooth setting will
require us to choose suitable spaces of functions based on Sobolev spaces as
domain and range. We let

V0 = {φ ∈ H2
comp(M);Pφ ∈ H1

comp(M)}
Vsc = {φ ∈ H2

loc(M);Pφ ∈ H1
loc(M)

and supp(φ) ⊂ J(K), where K is a compact subset of M}. (2.1)

Definition 2.1. An advanced Green operator for the Klein–Gordon operator P
is a linear map

G+ : H1
comp(M) → H2

loc(M)

satisfying the properties

1. PG+ = idH1
comp(M),

2. G+P |V0 = idV0 ,
3. supp(G+(f)) ⊂ J+(supp(f)) for all f ∈ H1

comp(M),

A retarded Green operator G− is defined correspondingly.

It is shown in [36, Theorem 5.8] that these operators exist and are unique
on Lorentzian manifolds that satisfy the condition of generalised hyperbolicity.
This condition is satisfied in particular for C1,1 globally hyperbolic spacetimes.
Moreover, one obtains a short exact sequence for the low-regularity causal
propagator, G := G+ − G−, similar to that in the smooth case

0 V0 H1
comp(M) Vsc H1

loc(M).P G P
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3. Pseudodifferential Operators with Non-Smooth Symbols

3.1. Symbol Classes

Let {ψj ; j = 0, 1, . . .} be a Littlewood-Paley partition of unity on R
n, i.e. a

partition of unity 1 =
∑∞

j=0 ψj , where ψ0 ≡ 1 for |ξ| ≤ 1 and ψ0 ≡ 0 for |ξ| ≥ 2
and ψj(ξ) = ψ0(2jξ) − ψ0(21−jξ). The support of ψj , j ≥ 1, then lies in an
annulus around the origin of interior radius 2j and exterior radius 21+j .

Definition 3.1. (a) For τ ∈ (0,∞), the Hölder space Cτ (Rn) is the set of all
functions f with

‖f‖Cτ :=
∑

|α|≤[τ ]

‖∂α
x f‖L∞(Rn) +

∑

|α|=[τ ]

sup
x�=y

|∂α
x f(x) − ∂α

x f(y)|
|x − y|τ−[τ ]

< ∞. (3.1)

(b) For τ ∈ R, the Zygmund space Cτ
∗ (Rn) consists of all functions f

with

‖f‖Cτ∗ = sup
j

2jτ‖ψj(D)f‖L∞ < ∞. (3.2)

Here, ψj(D) is the Fourier multiplier with symbol ψj , i.e. ψj(D)u =
F−1ψjFu, where (Fu)(ξ) = (2π)−n/2

∫
e−ixξu(x) dnx is the Fourier trans-

form.
We have the following relations: Cτ = Cτ

∗ if τ /∈ N, and Cτ ⊂ Cτ
∗ if

τ ∈ N.
We next introduce symbol classes of finite Hölder or Zygmund regularity,

following Taylor [61]. We use the notation 〈ξ〉 := (1 + |ξ|2) 1
2 , ξ ∈ R

n.

Definition 3.2. (a) Let 0 ≤ δ < 1. A symbol p(x, ξ) belongs to Cτ
∗ Sm

1,δ :=
Cτ

∗ Sm
1,δ(R

n × R
n) if

‖Dα
ξ p(·, ξ)‖Cτ∗ ≤ Cα〈ξ〉m−|α|+τδ and |Dα

ξ p(x, ξ)| ≤ Cα〈ξ〉m−|α|.

(b) We obtain the symbol class CτSm
1,δ := CτSm

1,δ(R
n ×R

n) for τ > 0 by
requiring that

‖Dα
ξ p(·, ξ)‖Cs ≤ Cα〈ξ〉m−|α|+sδ, 0 ≤ s ≤ τ.

(c) A symbol p(x, ξ) is in CτSm
cl provided p(x, ξ) ∈ CτSm

1,0 and p(x, ξ)
has a classical expansion

p(x, ξ) ∼
∑

j≥0

pm−j(x, ξ)

in terms pm−j homogeneous of degree m − j in ξ for |ξ| ≥ 1, in the sense
that the difference between p(x, ξ) and the sum over 0 ≤ j < N belongs to
CτSm−N

1,0 .

The pseudodifferential operator p(x,Dx) with the symbol p(x, ξ) ∈ CτSm
1,δ

is given by

(p(x,Dx)u) (x) = (2π)−n/2

∫

Rn

eix·ξp(x, ξ)(Fu)(ξ)dnξ, u ∈ S(Rn). (3.3)
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It extends to continuous maps

p(x,Dx) : Hs+m(Rn) → Hs(Rn), −τ(1 − δ) < s < τ. (3.4)

While it is possible to extend the theory of pseudodifferential operators
with non-smooth symbols to manifolds (see [1]), due to the local nature of our
results it is a key point of this article that we can work entirely on R

n.

3.2. Symbol Smoothing

Given p(x, ξ) ∈ CτSm
1,γ and δ ∈ (γ, 1) let

p#(x, ξ) =
∞∑

j=0

Jεj
p(x, ξ)ψj(ξ). (3.5)

Here, Jε is the smoothing operator given by (Jεf)(x) = (φ(εD)f)(x) with
φ ∈ C∞

0 (Rn), φ(ξ) = 1 for |ξ| ≤ 1, and we take εj = 2−j(δ−γ).
Letting pb(x, ξ) = p(x, ξ) − p#(x, ξ), we obtain the decomposition

p(x, ξ) = p#(x, ξ) + pb(x, ξ), (3.6)

where p#(x, ξ) ∈ Sm
1,δ and pb(x, ξ) ∈ CτS

m−τ(δ−γ)
1,δ .

The symbol estimates for p# are a consequence of the estimate

‖∂β
x Jεf‖L∞ ≤

{
C‖f‖Cτ |β| ≤ τ

Cε−(|β|−τ)‖f‖Cτ |β| > τ,

and that εj = 2−j(δ−γ). For details, see Proposition 1.3 E and Equation
(1.3.21) in [61].

3.3. Microlocal Sobolev Regularity

Let p ∈ CτSm
ρ,δ, τ > 0, with δ < ρ. Suppose that there is a conic neighbourhood

Γ of (x0, ξ0) and constants c, C > 0 such that |p(x, ξ)| ≥ c|ξ|m for (x, ξ) ∈ Γ,
|ξ| ≥ C. Then, (x0, ξ0) is called non-characteristic. If p has a homogeneous
principal symbol pm, the condition is equivalent to pm(x0, ξ0) �= 0. The com-
plement of the set of non-characteristic points is the set of characteristic points
denoted by Char(p).

A distribution u is microlocally in Hs at (x0, ξ0) ∈ T ∗M\0 if there exists
a conic neighbourhood Γ0 of ξ0 and a smooth function ϕ ∈ C∞

0 (M) with
ϕ(x0) �= 0 such that

∫

Γ0

〈ξ〉2s|F(ϕu)(ξ)|2dnξ < ∞.

Otherwise we say that (x0, ξ0) lies in the Hs-wavefront set WF s(u).
If u is microlocally in Hs in an open conic subset Γ ⊂ T ∗M\0, we write

u ∈ Hs
mcl(Γ).
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3.4. Propagation of Singularities for Bisolutions of the Klein–Gordon Opera-
tor

A globally hyperbolic spacetime is of the form R× Σ, where Σ is not assumed
to be compact, and we will write local coordinates in the form

x̃ = (t, x), ỹ = (s, y) (3.7)

and the associated covariables as

ξ̃ = (ξ0, ξ), η̃ = (η0, η). (3.8)

On the product (R × Σ) × (R × Σ), we use (x, ξ) with

x = (x̃, ỹ), ξ = (ξ̃, η̃). (3.9)

In the sequel, we shall apply the Klein–Gordon operator also to functions
and distributions on M × M . Using the coordinates in Eqs. (3.7), (3.8) and
(3.9), we distinguish the cases, where P acts on the first set of variables (t, x)
or on the second set (s, y), and write P(t,x) and P(s,y), respectively. Explicitly,

P(t,x)(x,Dx) = P(t,x)(x̃,Dx̃, ỹ, Dỹ) = (�g(x̃) + m2) ⊗ I

P(s,y)(x,Dx) = P(s,y)(x̃,Dx̃, ỹ, Dỹ) = I ⊗ (�g(ỹ) + m2)

In particular,

Char(P(t,x)) = Char(P ) × T ∗M ∪ {(x, ξ) ∈ T ∗(M × M)\0, ξ̃ = 0}
Char(P(s,y)) = T ∗M × Char(P ) ∪ {(x, ξ) ∈ T ∗(M × M)\0, η̃ = 0}.

(3.10)

Theorem 3.3. Let the metric g be of class Cτ , τ > 1, 0 ≤ σ < τ − 1 and
v ∈ H2+σ−τ+ε

loc (M × M) for some ε > 0 with P(t,x)(x,Dx)v = 0. Then,

WF σ+2(v) ⊂ Char(P(t,x)).

Proof. Being interested in the wavefront set of v near a point x, we multiply
v by a function ϕ ∈ D(M × M) with ϕ ≡ 1 near x and consider ϕv. So we
can assume that v has support in a small neighbourhood of x contained in a
single coordinate patch and consider v as an element of H2+σ−τ+ε(R4 × R

4).
In order to distinguish points (x, ξ) = (x̃, ξ̃, ỹ, η̃) from their representation in
local coordinates, we will write the latter in the form (x, ξ) = (x̃, ξ̃, ỹ, η̃). In
this local setting, P(t,x)(x,Dx) is given by the symbol

P(t,x)(x, ξ) = P(t,x)(x̃, ξ̃, ỹ, η̃) = gμν(x̃)ξμξν
︸ ︷︷ ︸

p2(x,ξ)

+ igμν(x)Γρ
μν(x)ξ

ρ︸ ︷︷ ︸
p1(x,ξ)

+ m2
︸︷︷︸

p0(x,ξ)

.

(3.11)

The symbol smoothing (Eq. (3.6)) on p2, p1 gives a decomposition

p2(x, ξ) = p#
2 (x, ξ) + pb

2(x, ξ)

p1(x, ξ) = p#
1 (x, ξ) + pb

1(x, ξ)
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P(t,x)(x, ξ) = (p#
2 (x, ξ) + p#

1 (x, ξ)) + pb
2(x, ξ) + pb

1(x, ξ) + p0(x, ξ)

= q#(x, ξ) + pb
2(x, ξ) + pb

1(x, ξ),

where

q#(x, ξ) = (p#
2 (x, ξ) + p#

1 (x, ξ) + p0(x, ξ)) ∈ S2
1,δ(R

8 × R
8), (3.12)

pb
2(x, ξ) ∈ CτS2−τδ

1,δ (R8 × R
8) pb

1(x, ξ) ∈ Cτ−1S
1−(τ−1)δ
1,δ (R8 × R

8).

(3.13)

Taking 0 ≤ δ < 1 so close to 1 that 2 − τδ < 2 − τ + ε we have v ∈
H2+σ−τδ(R4 × R

4) (notice this implies v ∈ H1+σ−(τ−1)δ(R4 × R
4)), and we

have

q#(x,Dx)v = −(pb
2(x,Dx) + pb

1(x,Dx))v = f, (3.14)

where f ∈ Hσ(R4 × R
4), since pb

2(x,Dx)v ∈ Hσ(R4 × R
4) and pb

1(x,Dx)v ∈
Hσ+1−δ(R4 × R

4).
Now if (x̃0, ξ̃0, ỹ0, η̃0) /∈ Char(P(t,x)), there are C, c > 0 such that

|P(t,x)(x, ξ)| ≥ c|ξ|2 for |ξ| ≥ C

in a conical neighbourhood Γ that contains (x̃0, ξ̃0, ỹ0, η̃0).

Since pb
2(x, ξ) ∈ CτS2−τδ

1,δ and pb
1(x, ξ) ∈ Cτ−1S

1−(τ−1)δ
1,δ , there exists a

C̃ > 0 such that

|q#(x, ξ)| ≥ C(1 + |ξ|2) − (1 + |ξ|2) 2−τδ
2 − (1 + |ξ|2) 1−(τ−1)δ

2

≥ C̃(1 + |ξ|2) for large |ξ|.
Therefore, (x̃0, ξ̃0, ỹ0, η̃0) /∈ Char(q#).

Since q# ∈ S2
1,δ and (x̃0, ξ̃0, ỹ0, η̃0) /∈ Char(q#), there is a microlocal

parametrix with symbol q̃ ∈ S−2
1,δ (R8 × R

8) such that

v + r(x,Dx)v = q̃(x,Dx)q#(x,Dx)v = q̃(x,Dx)f,

where (x̃0, ξ̃0, ỹ0, η̃0) /∈ WF (r(x,Dx)v) and q̃(x,Dx)f ∈ Hσ+2(R4 ×R
4) which

shows that (x̃0, ξ̃0, ỹ0, η̃0) /∈ WF σ+2(q̃(x,Dx)f). Since

WF σ+2(v) ⊂ WF σ+2(q̃(x,Dx)f) ∪ WF (r(x,Dx)v), (3.15)

we see that (x̃0, ξ̃0, ỹ0, η̃0) /∈ WF σ+2(v).
By definition of the wavefront set, this means that (x0, ξ0) is not in the

wavefront set of v, considered as a distribution on M × M . �

Remark 3.4. In the proof presented above, we showed that the microlocal re-
sults are local estimates, which can be done within a chart in the cotangent
bundle T ∗

R
8. To streamline the discussion and avoid frequently alternating

between the notation of the chart and the manifold, we will forego this dis-
tinction in Section 5. However, it is important to bear in mind that the proofs
in that section are analogous to the one detailed above, involving localization
within a chart.
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Remark 3.5. Applying the symbol smoothing directly to P(t,x) ∈ Cτ−1S2
1,0

would leave us with P b
(t,x) ∈ Cτ−1S

2−(τ−1)δ
1,δ . The advantage of the decompo-

sition in Theorem 3.3 with pb
1 ∈ Cτ−1S

1−(τ−1)δ
1,δ and pb

2 ∈ CτS2−τδ
1,δ is that the

associated operators map a given u ∈ H2+s−τδ to Hs and Hs+1−δ, respec-
tively, for −(1 − δ)(τ − 1) < s < τ − 1, so that the sum is in Hs instead of
Hs−δ.

The theorem, below, will be crucial for our main result. Proofs can be
found in [61, Proposition 6.1.D] or [62, Proposition 11.4]. In [62, p.215], Taylor
points out that Zygmund regularity C2

∗ for the metric suffices.

Theorem 3.6. Let u ∈ D′(M ×M) solve P(t,x)u = f . Let γ be an integral curve
of the Hamiltonian vector field Hp2 with p2 as in Eq. (3.11). If for some s ∈ R,
we have f ∈ Hs

mcl(Γ) and P b
(t,x)u ∈ Hs

mcl(Γ), where γ ⊂ Γ with Γ a conical
neighbourhood and u ∈ Hs+1

mcl (γ(0)), then u ∈ Hs+1
mcl (γ).

Remark 3.7. If u ∈ H2+s−τδ
comp , then P b

(t,x)u ∈ Hs, see Remark (3.5). More-
over, using the divergence structure of the operator one can show that, if u ∈
H1+s−τδ

comp , f ∈ Hs−1, u ∈ Hs
mcl(γ(0)), then u ∈ Hs

mcl(γ) for −2(1 − δ) < s ≤ 2;
see [62, p.210] for details.

Remark 3.8. Notice that the s ∈ R is constrained by the microlocal regularity
of P b

(t,x)u and not only that of f . In fact, one can use the stronger hypothesis
that u ∈ Hs−τδ

comp(U) for a suitable domain U , regularity τ and δ ∈ (0, 1) in
order to guarantee that P b

(t,x)u ∈ Hs(U) ⊂ Hs
mcl(Γ)

4. Support and Global Regularity of KG

The following two lemmas contain the main results of this section. The first
lemma shows that only causally connected points belong to the support of KG.
The second lemma establishes that KG ∈ H−1−ε

loc (M × M).

Lemma 4.1. Let (x̃, ỹ) ∈ M ×M be such that x̃ and ỹ are not causally related,
i.e. x̃ /∈ J(ỹ). Then, (x̃, ỹ) /∈ supp(KG).

Proof. Since the support of KG is the complement of the largest open set
where KG vanishes, it is enough to show that there are open neighbourhoods
V of x̃ and U of ỹ such that KG vanishes in W = V × U .

We construct the sets V and U as follows: For globally hyperbolic space-
times, there exist a time function and a foliation by Cauchy surfaces, i.e.
M = R × Σ, see [8, Theorem 1.1], [53, Theorem 5.9]. Let x̃ ∈ {t} × Σ and
ỹ ∈ {s} × Σ. Without loss of generality, we assume t ≤ s. Since M is glob-
ally hyperbolic, J(ỹ) ∩ ({t} × Σ) is compact and by hypothesis does not
contain x̃. Therefore, there exists a neighbourhood Ṽ of x̃ in {t} × Σ such
that Ṽ ∩ (J(ỹ) ∩ ({t} × Σ)) = ∅. By symmetry, ỹ /∈ J(Ṽ ) ∩ ({s} × Σ) =
J(Ṽ ) ∩ ({s} × Σ), and we thus also find a neighbourhood Ũ of ỹ in {s} × Σ
such that Ũ ∩ J(Ṽ ) ∩ ({s} × Σ) = ∅.
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Figure 1. U ∩ J(V ) = ∅ and V ∩ J(U) = ∅

Now we consider the total domain of dependence of both sets, i.e. D(Ũ)
and D(Ṽ ).1 Notice that J(D(Ṽ )) ∩ D(Ũ) = ∅ and J(D(Ũ)) ∩ D(Ṽ ) = ∅.
Otherwise, we could construct a causal curve between Ũ and Ṽ . We define
V := IntD(Ṽ ) and U := IntD(Ũ), see Fig. 1.

Now we show that KG vanishes in W = V ×U : Choose smooth functions
ψ and φ with supp(ψ) ⊂ V and supp(φ) ⊂ U . Then,

KG(ψ ⊗ φ) = 〈G(ψ), φ〉 =
∫

M

G(ψ)φ
√

gdx

=
∫

J(supp(ψ))∩supp(φ)

G(ψ)φ
√

gdx

=
∫

J(V )∩U

G(ψ)φ
√

gdx = 0.

�

Remark 4.2. Notice that a totally analogous proof shows that (x̃, ỹ) /∈
supp(KG±) if x̃ /∈ J±(ỹ).

Regarding the global regularity of the causal propagator for C1,1 globally
hyperbolic spacetimes, we find a slightly weaker result compared to the smooth
case. Nevertheless, in the ultrastatic setting we show that the same regularity
as in the smooth setting holds (Lemma 6.11).

Lemma 4.3. Let (M, g) be a C1,1-globally hyperbolic spacetime. Then KG ∈
H−1−ε

loc (M × M) for every ε > 0.

Proof. We have to show that, given ψ1, ψ2 ∈ D(M), the Schwartz kernel of
the product ψ2Gψ1 is in H−1−ε(M) for every ε > 0. Since the proof is local,
we may assume (using possibly disconnected coordinate charts) that ψ1 and
ψ2 have their support in the same coordinate neighbourhood for M . We will

1Given a subset S of M , the domain of dependence of S is the set of all points p in M such
that every inextendible causal curve through p intersects S.
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therefore work in R
4, using the notation ψ1, ψ2 and G also for the representa-

tions in local coordinates. In order to distinguish the standard variables and
covariables on R

4 from those chosen for M we shall denote them by x, ξ, etc.
Moreover, we choose ψ3, ψ4 ∈ D(R4) supported in the same coordinate chart,
satisfying ψ3ψ2 = ψ2 and ψ4ψ3 = ψ3. Finally, we denote by Λs, s ∈ R, the
pseudodifferential operator of order s with symbol (1 + |ξ|2)s/2 on R

4.
We have

ψ2Gψ1 = Λ1+εΛ−1−εψ3ψ2Gψ1 = Λ1+ε(ψ4 + (1 − ψ4))Λ−1−εψ3ψ2Gψ1.

(4.1)

The operator ψ4Λ−1−εψ3ψ2Gψ1 maps H1(R4) to H3+ε
comp(R

4) and therefore is
a Hilbert–Schmidt operator. Hence, it has an integral kernel in L2(R4 × R

4).
The operator (1 − ψ4)Λ−1−εψ3 is obviously smoothing, since 1 − ψ4 and ψ3

have disjoint support. Hence, it maps H2(R4) to H∞(R4) =
⋂

s Hs(R4). But
more is true: In the identity

xj(1 − ψ4)Λ−1−εψ3 = (1 − ψ4)Λ−1−εxjψ3 + (1 − ψ4)[xj ,Λ
−1−ε]ψ3,

both operators on the right hand side map H2(R4) to H∞(R4) (recall that
[xj ,Λ

−1−ε] has the symbol Dξ
j
(1 + |ξ|2)−1−ε). Iterating this identity, we find

that (1 + |x|2N )(1 − ψ4)Λ−1−εψ3 ∈ B(H2(R4),H∞(R4)) for every N ∈ N.
Hence, (1 − ψ4)Λ−1−εψ3 maps H2(R4) to S(R4).

Therefore, it also has an integral kernel in L2(R4 × R
4). Denote for the

moment the L2-integral kernel of Λ−1−εψ3ψ2Gψ1 by kA = kA(x, y). Then, the
kernel k = k(x, y) of ψ2Gψ1 is given by

Λ1+ε
(x) kA(x, y).

Here, the notation Λ1+ε
(x) indicates that we view Λ1+ε as an operator on R

4 ×
R

4 that acts only with respect to the first copy of R
4. In this sense, it is a

pseudodifferential operator with symbol in the Hörmander class S1+ε
0,0 and thus

maps L2(R4 × R
4) to H−1−ε(R4 × R

4). This shows the assertion. �

Remark 4.4. Notice that since only the mapping properties of G were used we
have also that KG+ ,KG− ∈ H−1−ε

loc (M × M).

5. Proof of the Main Theorems

A globally hyperbolic spacetime is given by a family of Riemannian metrics
{ht}t∈R on Σ and a function β(x, t) > 0 such that the spacetime metric (M, g),
where M = R × Σ, is given by

ds2 = β2(t, x)dt2 − ht, (5.1)

see [9, Theorem 1.1]. We will assume that the regularity of the spacetime
metric g is Cτ .

In this section, we will prove the following results:
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Theorem 5.1. Let (M, g) be a Cτ globally hyperbolic spacetime with τ > 2 and
KG the causal propagator of the Klein–Gordon operator P . Then,

WF ′−2+τ−ε(KG) ⊂ C

for every ε > 0, C as in Eq. (1.1).

Theorem 5.2. For a Cτ+2 globally hyperbolic spacetime with τ > 2,

C ⊂ WF ′− 1
2 (KG) ⊂ WF ′τ−ε(KG) ⊂ C

holds for 0 < ε < τ + 1
2 .

Remark 5.3. In the non-smooth case, we cannot expect G(f) ∈ C∞(M) even
if f ∈ D(M) as a consequence of the fact that G(f) solves the homogeneous
Cauchy problem. We know from [38, Proposition B.8] that for f ∈ D(M),

WF s(G(f)) ⊂ {(x̃, ξ̃) ∈ T ∗M ; (x̃, ξ̃, ỹ, 0) ∈ WF s(KG) for some y ∈ M}.

Therefore, WF ′s(KG) might contain points that are not in C.

Remark 5.4. Since KG is antisymmetric, we have that for ρ(x̃, ỹ) = (ỹ, x̃),
ρ∗KG = −KG. This implies that if (x̃, ξ̃, ỹ, 0) ∈ WF s(KG) for some y ∈ M ,
then (ỹ, 0, x̃, ξ̃) ∈ WF s(KG) for some y ∈ M .

5.1. Proof of Theorem 5.1

Let u ∈ H1+s−τδ
comp (M × M) satisfy P(t,x)(x,Dx)u = 0.

Then also

∂ν

(√
|g|gμν∂μu

)
= 0.

Using the decomposition
√|g|gμν∂μ = (

√|g|gμν∂μ)# +(
√|g|gμν∂μ)b, we

obtain

P(t,x)(x,Dx)u =
1
√|g|∂ν

(
(
√

|g|gμν∂μ)#u + (
√

|g|gμν∂μ)bu
)

. (5.2)

We state the behaviour outside the characteristic in this setting.

Lemma 5.5. For τ > 2 and any ε̃ > 0,

WF−1−ε̃+τ (KG) ⊂ Char(P(t,x)) ∩ Char(P(s,y)). (5.3)

Proof. As the statement is microlocal, we can work in local coordinates in
T ∗(R4 × R

4) and consider ϕKG for ϕ ∈ D(R4 × R
4) with ϕ = 1 near x0.

Let (x0, ξ0) = (x̃0, ξ̃0, ỹ0, η̃0) �∈ Char(P(t,x))2 Then, 0 <
√|g(x̃)| and

|gμν(x̃)
√|g(x̃)|ξμξν | ≥ C|ξ|2 for suitable C > 0 in a conic neighbourhood of

(x0, ξ0).
In particular, (x0, ξ0) �∈ Char(∂ν(

√|g|gμν∂μ)#), so there exists a mi-
crolocal parametrix q̃ ∈ S−2

1,δ such that

q̃∂ν(
√

|g|gμν∂μ)# = I + r, (5.4)

2Underscores to differentiate between the manifold points and points in R
8 will be omitted.

See Remark 3.4.
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where r(x,Dx) is microlocally smoothing near (x0, ξ0).
Since P(t,x)(x,Dx)KG = 0, we have near x0

0 = ∂ν(
√

|g|gμν∂μ)KG (5.5)

= ∂ν(
√

|g|gμν∂μ)#ϕKG + ∂ν(
√

|g|gμν∂μ)bϕKG, (5.6)

Since (
√|g|gμνξμ)b ∈ CτS1−τδ

1,δ for every 0 ≤ δ < 1, we obtain a bounded
map

∂ν(
√

|g|gμν∂μ)b : Hs+1−τδ(R4 × R
4) → Hs−1(R4 × R

4), (5.7)

−(1 − δ)τ < s < τδ.
Since KG ∈ H−1−ε

loc (M ×M) for every ε > 0 by Lemma 4.3, we can choose
δ such that s = −2 + τδ − ε > 0 so that by Eq. (5.5), we have locally

∂ν(
√

|g|gμν∂μ)#ϕKG = −∂ν(
√

|g|gμν∂μ)bϕKG ∈ H−3+τδ−ε(R4 × R
4).

(5.8)

Applying the microlocal parametrix q̃, we obtain

q̃∂ν(
√

|g|gμν∂μ)#ϕKG ∈ H−1+τδ−ε(R4 × R
4). (5.9)

By Eq. (5.4), Eq. (5.9) equals

(I + r(x,Dx))ϕKG. (5.10)

Hence, KG ∈ H−1+τδ−ε(M × M) microlocally near (x0, ξ0), so that
(x0, ξ0) �∈ WF−1+τδ−ε(KG) for any ε > 0, 0 ≤ δ < 1. Choosing δ appro-
priately, we find that for every ε̃ > 0

WF−1−ε̃+τ (KG) ⊂ Char(P(t,x)). (5.11)

Arguing analogously for P(s,y), we can see that

WF−1+τ−ε̃(KG) ⊂ Char(P(t,x)) ∩ Char(P(s,y)). (5.12)

�

Notice that

Char(P(t,x)) ∩ Char(P(s,y)) = (Char(P ) × Char(P )) ∪ A ∪ B,

where A := {(x̃, 0, ỹ, η̃) ∈ T ∗(M×M) : (ỹ, η̃) ∈ Char(P )} and B := {(x̃, ξ̃, ỹ, 0)
∈ T ∗(M × M) : (x̃, ξ̃) ∈ Char(P )}.

We will show now that the sets A and B do not belong to WF−2+τ−ε̃(KG).
Nevertheless, for higher wavefront sets, that may not be the case, see Re-
marks 5.3 and 5.4.

In order to show the result, we will need the following lemma.

Lemma 5.6. (x̃, ξ̃, x̃, μξ̃) /∈ WF−2+τ−ε̃(KG±) for μ �= −1.
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Proof. Consider a point (ỹ, η̃) �= (x̃, ξ̃) on the null bicharacteristic γ(x̃, ξ̃), with
ỹ ∈ J−(x̃). Since PG+ = I, it holds

KI = KPG+ = P(t,x)KG+ (5.13)

with wavefront set the conormal to the diagonal. As μ �= −1, (x̃, ξ̃, x̃, μξ̃) is
not part of it, and neither are the points of the set γ(x̃, ξ̃) × {(x̃, μξ̃)}. Hence,
there exists an open conic neighbourhood W of the set of all (z̃, ζ̃, x̃, μξ̃) ∈
T ∗(M × M), where (z̃, ζ̃) lies on γ(x̃, ξ̃) between (x̃, ξ̃) and (ỹ, η̃), that does
not intersect WF (KI). We can assume that the base point projection Π(W )
is relatively compact. We choose ϕ ∈ D(M × M) with ϕ = 1 on ΠW . Then,

∅ = WF (KI) ∩ W = WF (P(t,x)KG+) ∩ W. (5.14)

Moreover, P#
(t,x)(ϕKG+) = P(t,x)(ϕKG+) − P b

(t,x)(ϕKG+).
According to Remark 4.4, KG+ ∈ H−1−ε

loc (M × M) for every ε > 0,
therefore P b

(t,x)(ϕKG+) ∈ H−3−ε+τ . We now apply Theorem 3.6 with u =
ϕKG+ , s = −3−ε̃+τ , Γ = W , f = P(t,x)KG+ ∈ H∞

mcl(W ), P b
(t,x)(ϕKG+) ∈ Hs.

We have ϕKG+ ∈ H∞
mcl near (ỹ, η̃, x̃, μξ̃), since (ỹ, x̃) is not in the support

of KG+ . Hence, Theorem 3.6 implies that KG+ ∈ H−2−ε+τ
mcl also in a conic

neighbourhood of (x̃, ξ̃, x̃, μξ̃), as this point lies on the integral curve of the
Hamiltonian vector field for the principal symbol of P(t,x). Hence, (x̃, ξ̃, x̃, μξ̃) /∈
WF−2+τ−ε(KG+). In an analogous way, we see that (x̃, ξ̃, x̃, μξ̃) /∈ WF−2+τ−ε

(KG−) by considering a point (ỹ, η̃) on γ(x̃, ξ̃) with ỹ ∈ J+(x̃). �

Remark 5.7. Notice that the fact that the wavefront set of KI is the conormal
to the diagonal does not allow one to repeat the same argument in the case
(x̃, ξ̃, x̃,−ξ̃) ∈ WF s(KG+).

Remark 5.8. A similar argument holds for the case (x̃, λξ̃, x̃, ξ̃) /∈ WF−2+τ−ε̃

(KG±) by using P(s,y).

Lemma 5.9. For τ > 2 and any ε̃ > 0,

WF−2+τ−ε̃(KG) ⊂ Char(P ) × Char(P ). (5.15)

Proof. Using Lemma 5.5, we just need to show that there are no points from
the sets A or B. Let (x̃, ξ̃, ỹ, 0) ∈ B ∩ WF−2+τ−ε̃(KG) then by Theorem 3.6,
we have that (γ(x̃, ξ̃), ỹ, 0) ∈ WF−2+τ−ε̃(KG). Now ỹ = (s1, y1) for some
s1 ∈ R, y1 ∈ Σ. By global hyperbolicity, γ(x̃, ξ̃) intersects {s1} × Σ in ex-
actly one point with the covector χ �= 0. Since causally separated points
are not in supp(KG), the point of intersection has to be (s1, y1). Hence,
(s1, y1, χ, s1, y1, 0) ∈ WF−2+τ−ε̃(KG) ⊂ (WF−2+τ−ε̃(KG+) ∪ WF−2+τ−ε̃

(KG−)). This is a contradiction to Lemma 5.6. A similar argument holds for
points in A. �

Remark 5.10. The existence of symmetries allows one to show that the Sobolev
wavefront set in Lemma 5.5 is already disjoint from the sets A and B. For
example, if M is stationary, KG is of the form KG(t − s, x, y). Therefore,
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one has the additional equation (∂t + ∂s)KG = 0, that implies WF l(KG) ⊂
Char(∂t+∂s) for l ∈ R. Moreover, Char(∂t+∂s)∩A = ∅ and Char(∂t+∂s)∩B =
∅. A similar argument holds in the case of a sufficiently spatially symmetric
spacetime, e.g. cosmological space of the form ds2 = a(t)(−dt2 + dx2 + dy2 +
dz2). In this case, KG is of the form KG(t, s, x1 − x2, y1 − y2, z1 − z2) due to
the spatial invariance.

Now we establish that points above the diagonal are of a specific form.

Lemma 5.11. If (x̃, ξ̃, x̃, η̃) ∈ WF−2+τ−ε̃(KG) for τ > 2, and some ε̃ > 0, then
η̃ = −ξ̃.

Proof. Suppose η̃ and ξ̃ are linearly independent, i.e. η̃ �= μξ̃ for μ ∈ R. By
Lemma (5.9) (x̃, ξ̃, x̃, η̃) ∈ Char(P )×Char(P ). Now we choose a Cauchy hyper-
surface Σt0 = {t0} × Σ such that the null geodesic with initial data (x̃, ξ̃) and
the null geodesic with initial data (x̃, η̃) intersect it. These points of intersec-
tions are unique by global hyperbolicity. Moreover, using the condition η̃ �= μξ̃,
we can choose Σt0 such that these points are distinct. We denote these points
by (t0, x0), (t0, y0). Furthermore, they are not causally related. Now KG ∈
H−1−ε

loc (M × m) so ∂ν(
√|g|gμν∂μ)bKG ∈ H−3−ε+τδ(R4 × R

4) and therefore
if (x̃, ξ̃, ỹ,−η̃) ∈ WF−2+τ−ε(KG) then (γ(x̃, ξ̃), γ(ỹ,−η̃)) ∈ WF−2−ε+τ (KG)
where γ(x̃, ξ̃) is the null bicharacteristic with initial data (x̃, ξ̃) and γ(x̃, η̃) is
the null bicharacteristic with initial data (x̃, η̃).

In particular (t0, x0, t0, y0) ∈ Π(WF− 1
2−ε+τ (KG)), where Π is the projec-

tion from T ∗(M×M) to M×M . However, this is a contradiction to Proposition
4.1, since (t0, x0, t0, y0) /∈ supp(KG). Therefore, η̃ = μξ̃.

Now as a consequence of the fact that KG = KG++KG− and WF s(KG) ⊂
WF s(KG+) ∪ WF s(KG−) for all s, Lemma 5.6 implies that μ = −1. �

Proof of Theorem 5.1. Let (x̃, ξ̃, ỹ,−η̃) ∈ WF−2+τ−ε(KG). The propagation
of singularities result (Theorem 3.6) implies that (γ(x̃, ξ̃), γ(ỹ,−η̃)) ∈
WF−2−ε+τ (KG), where γ(x̃, ξ̃) is the null bicharacteristic with initial data
(x̃, ξ̃) and γ(ỹ,−η̃) is the null bicharacteristic with initial data (ỹ,−η̃).

Now we choose a Cauchy surface Σt1 = {t1} × Σ and suppose that
(t1, x1, ξ̃1, t1, x2, ξ̃2) ∈ (γ(x̃, ξ̃), γ(ỹ,−η̃)) ∩ (Σ2

t1). By Lemmas 4.1 and 5.9,
(t1, x1, ξ̃1), (t1, x2, ξ̃2) ∈ Char(P ), x1 = x2, and ξ̃2 = −ξ̃1.

Next we define a curve γ̃ : (−∞,∞) → M as follows. First, we shift the
parametrization λ in the definition of the null bicharacteristics so that

γ(x̃, ξ̃)(t1) = (t1, x1, ξ̃1), γ(ỹ,−η̃)(t1) = (t1, x1,−ξ̃1).

Then, we denote by Π : T ∗M → M the canonical projection and define two
curves in M by

γ1(λ) := Π(γ(x̃, ξ̃)(λ)), γ2(λ) := Π(γ(ỹ,−η̃)(λ)).

Notice that we have γ1(t1) = (t1, x1), γ̇1(t1) = g−1(ξ̃1, ·) and γ2(t1) =
(t1, x1), γ̇2(t1) = g−1(−ξ̃1, ·). Moreover, we can assume that x̃ = γ1(a) and
ỹ = γ2(b) for suitable a, b ∈ R with a < t1 < b.
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Figure 2. γ1 is a null geodesic that satisfies γ(a) =
x̃, γ̇1(a) = g−1(ξ, )̇ and γ2 is a null geodesic that satisfies
γ(b) = ỹ, γ̇2(b) = g−1(−η, ·)

Finally, let

γ̃(λ) =

{
γ1(λ) λ ∈ (−∞, t1]
−γ2(λ) λ ∈ (t1,∞)

(5.16)

where −γ2 denotes the curve with opposite orientation.
Then, γ̃(a) = x̃, γ̃(b) = ỹ; moreover, g(·, ˙̃γ)|Tx̃M = ξ̃, g(·, ˙̃γ)|TỹM = η̃, and

therefore, γ̃ is a null geodesic between x̃ and ỹ with cotangent vectors ξ̃ at x̃
and η̃ at ỹ, i.e. (x̃, ξ̃, ỹ,−η̃) ∈ C ′ := {(x̃, ξ̃, ỹ,−η̃); (x̃, ξ; ỹ, η̃) ∈ C}, see Fig. 2.

This shows

WF−2−ε+τ (KG) ⊂ C ′ (5.17)

or, equivalently WF ′−2−ε+τ (KG) ⊂ C. �

5.2. Proof of Theorem 5.2

Now we show that C is contained in WF ′− 1
2 (KG).

Lemma 5.12. Let P be the Klein–Gordon operator with g ∈ Cτ+2, τ > 2. Then,
C ⊂ WF ′− 1

2 (KG)

Proof. Using Proposition C.1 of [28], see also [48], there exists an interpolat-
ing spacetime of regularity Cτ , (M̄, ḡ), which satisfies the following conditions:
There exist times t1 and t2 such that for t < t1, (M̄, ḡ) is isometric to a neigh-
bourhood of a Cauchy surface Σ̃ of a smooth, globally hyperbolic spacetime
(Ms, gs). Furthermore, for t > t2, (M̄, ḡ) is isometric to a neighbourhood of a
Cauchy surface Σ of the non-smooth spacetime (M, g).

Now if KḠ is the causal propagator associated to (M̄, ḡ), its restriction
to t < t1, denoted KḠ|t<t1 , corresponds to the smooth causal propagator [5,
Proposition 3.5.1] and therefore

WF ′(KḠ|t<t1) = C̄ ∩ T ∗({(t, x) ∈ M̄ ; t < t1} × {(t, x) ∈ M̄ ; t < t1}),

where C̄ denotes the canonical relationship associated to ḡ.
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Let (x̃, ξ̃, x̃,−ξ̃) ∈ C̄ ′ in the non-smooth region, i.e. x̃ = (t3, x) with
t3 > t2.

By global hyperbolicity, the base point projections of the null bicharac-
teristics γ(x̃, ξ̃) and γ(x̃,−ξ̃) intersect the hypersurface t = t0 < t1 at one
unique point denoted w. Moreover, as a consequence of being in C̄ ′, we have
(w,χ,w,−χ) = (γ(x̃, ξ̃) × γ(x̃,−ξ̃)) ∩ (Σ̃t0 × Σ̃t0).

Since we are in the smooth part, smooth theory implies, in particular,
that (w,χ,w,−χ) ∈ WF s(KḠ|t<t1) for − 1

2 ≤ s by combining [25, Theorem
6.5.3] and [38, Proposition B.10]. Now, an application of Theorem 3.6 gives
(x̃, ξ̃, x̃,−ξ̃) ∈ WF s(KḠ) for − 1

2 ≤ s.
Furthermore, by [36, Theorem 5.10, Theorem 5.8], the restriction of KḠ

to t > t2, denoted KḠ|t>t2 , in a neighbourhood of Σt3 is the same as the
restriction of the non-smooth causal propagator, KG, associated to (M, g).
Hence, (x̃, ξ̃, x̃,−ξ̃) ∈ WF s(KG).

Another application of Theorem 3.6 using the null bicharacteristics from
(M, g) gives C ′ ⊂ WF− 1

2 (KG), i.e. C ⊂ WF ′− 1
2 (KG). �

Proof of Theorem 5.2. The combination of Lemma 5.12 and Theorem 5.1 gives
the result. �
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6. Appendix

6.1. Sobolev Spaces

Hs(Rn), s ∈ R, is the set of all tempered distributions u on R
n whose Fourier

transforms Fu are regular distributions satisfying

‖u‖2
Hs(Rn) :=

∫
〈ξ〉2s|Fu(ξ)|2 dnξ < ∞.

Let (M, g) be a (possibly) non-compact Riemannian manifold which is
geodesically complete. The Laplace–Beltrami operator −Δg is essentially self-
adjoint if the regularity of the metric is Cτ for τ ≥ 2, [57, Theorem 2.4]. For
lower regularity, see Appendix 6.2. By Hs(M), we denote the completion of
D(M) with respect to the norm

‖u‖Hs(M) := ‖(I − Δg)s/2u‖L2(M).

If M is compact, Hs(M) is independent of the metric.
For an open subset U of M , we define the local Sobolev spaces:

Hs
loc(U) := {u ∈ D′(M);ϕu ∈ Hs(M) for all ϕ ∈ D(U)}.

and

Hs
comp(U) := {u ∈ D′(M);u ∈ Hs(M) and supp(u) ⊂ U is compact}.

Notice that given a manifold M , the spaces Hs
loc(U) and Hs

comp(U) are in-
dependent of the Riemannian metric used to define the Sobolev spaces Hs(M).

For a compact n-dimensional manifold Σ, we can also define Sobolev
spaces on R × Σ relying on local coordinates. Namely, suppose {Uj : j ∈ J}
is an open cover of Σ by coordinate charts and {ϕj : j ∈ J} is a subordinate
partition of unity. Given a function u on R × Σ, we say that u ∈ H̃s(R × Σ),
provided that, using local coordinates on Σ, ϕj(x)u(t, x) ∈ Hs(R × R

n) for
j = 1, . . . , J (more formally: For the coordinate map κj : Uj → R

n, we have
(id × κj∗)(ϕju) ∈ Hs(R× Σ)). For integer k, this is equivalent to asking that,
for all multi-indices α with |α| ≤ k, we have ∂α

t,xu ∈ L2(R × R
n) in local

coordinates. Moreover, R × Σ is a manifold of bounded geometry and the
Sobolev spaces introduced in this setting coincide with the spaces H̃s, see e.g.
Theorem 3.9 in [30].

Lemma 6.1. Let g = dt2 + hijdxidxj be an ultrastatic metric of regularity Cτ

on R × Σ with τ > 1. Then,

Hs(R × Σ) = H̃s(R × Σ), 0 ≤ s ≤ 2,

i.e. the two Hilbert spaces coincide up to equivalent norms.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Proof. The assertion is obvious for s = 0, when H̃0(R × Σ) = L2(R × Σ) =
H0(R × Σ). We have

Hs(R × Σ) = D((I − Δg)s/2) = [L2(R × Σ),D(I − Δg)]s/2,

where the first equality holds by definition and the second is [3, Section I.2.9]
for complex interpolation.

In view of the interpolation property for the standard Sobolev spaces, it
is sufficient to show the assertion for s = 2. Assuming that τ > 1, the operator
I − Δg is strongly elliptic with coefficients in Cτ−1. By elliptic regularity, its
maximal domain is H̃2(R×Σ). This is a well-known fact, although a reference
seems to be hard to find. In order to see it we first note that, by Lax–Milgram’s
theorem, every u ∈ L2(R × Σ) with Δgu ∈ L2(R × Σ) belongs to H1(R × Σ).
Symbol smoothing as in Remark 3.5 then shows that u even belongs to H̃2(R×
Σ). Hence, the maximal domain is a subset of H̃2(R × Σ).

The minimal domain is also H̃2(R × Σ), since D(R × Σ) is dense in
H̃2(R × Σ). Hence, D(I − Δg) = H̃2(R × Σ). �

Remark 6.2. An analogous construction can be performed for R2 ×Σ2 and the
analogue of Lemma 6.1 holds.

6.2. Essential Self-Adjointness of the Laplace–Beltrami Operator

Theorem 6.3. Let (Σ, h) be a smooth compact n-dimensional manifold equipped
with a Riemannian metric of regularity C1(Σ). Then, the Laplace–Beltrami
operator Δh is essentially self-adjoint.

We follow Strichartz’s article [57] that uses the following criterion [51,
Theorem X.1].

Theorem 6.4. Let A be any closed negative-definite symmetric, densely defined
operator on a Hilbert space H. Then, A = A∗ if and only if there are no
eigenvectors with positive eigenvalue in the domain of A∗.

Now we will state the following helpful result

Proposition 6.5. Let u be an L2(Σ) function that satisfies Δu = λu for some
λ > 0. Then, u is identically zero.

Proof. Let u be a weak solution which by elliptic regularity satisfies u ∈ H2(Σ).
Hence,

λ (u, u)L2(Σ) =(Δu, u)L2(Σ) = − (du, du)L2(Σ) (6.1)

Now λ > 0 so we have u = 0. �

Proof of Theorem 6.3. By direct computation, Δh is negative-definite and sym-
metric. That it is densely defined follows from the density of D(M) in L2(M)
for continuous metrics (see [4, Proposition 7] for even rougher cases). The ap-
plication of Theorem 6.4 taking into account Proposition 6.5 gives the result.

�
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For the non-compact case, one could follow the construction in Strichartz’s
article. However, suitable modifications are required under the regularity of
Theorem 6.3. For example, one would have to use an integral distance as in
[21, Theorem 5.11] to show the desired properties of the approximations to
unity. Then, one would need to verify that the elliptic regularity results hold
in that situation as well.

Since we are only interested in the case of M = R
2 ×Σ2 and the operator

2mI−∂tt−∂ss−Δhx
−Δhy

under C1,1 regularity assumptions, we will proceed
in a different manner.

Lemma 6.6. The operator 2mI − ∂tt − ∂ss − Δhx
− Δhy

, where hx, hy are
Riemannian metrics of regularity C1,1, is essentially self-adjoint with domain
H2(R2 × Σ2).

Proof. By [52, Lemma 2.1], we obtain that −∂tt−∂ss−Δhx
−Δhy

is essentially
self-adjoint in L2(R2 ×Σ2) with domain D(R)⊗D(R)⊗C∞(Σ2). Since D(R)⊗
D(R) ⊗ C∞(Σ2) is dense in H2(R2 × Σ2) which carries the graph norm of
−∂tt−∂ss−Δhx

−Δhy
, we obtain that the closure of the domain is H2(R2×Σ2).

Now −∂tt − ∂ss − Δhx
− Δhy

and 2mI commute and are self-adjoint. By
[49, Lemma 4.16.1], 2mI − ∂tt − ∂ss − Δhx

− Δhy
is self-adjoint with domain

H2(R2 × Σ2). �

6.3. An Equivalent Sobolev Norm

The main results of this section are the following proposition and Corollary
6.10.

Proposition 6.7. Let Σ be a compact manifold and {φj ⊗ φk; j, k = 1, 2, . . .}
be an orthonormal basis of L2(Σ) ⊗H L2(Σ) associated to the eigenfunctions
{φj} of the operator mI − Δh, m > 0. Writing u ∈ L2((R × Σ) × (R × Σ)) ∼=
L2(R2 × Σ2) ∼= L2(R2) ⊗H L2(Σ) ⊗H L2(Σ) in the form

u(t, s, x, y) =
∑

j,k

ujk(t, s)φj(x)φk(y) with ujk = 〈u, φj ⊗ φk〉 ∈ L2(R2),

(6.2)
we obtain the following alternative description of the Sobolev spaces: For 0 ≤
s ≤ 2
Hs(R2 × Σ2)

=

⎧
⎨

⎩
u ∈ S′(R2 × Σ2);

∑

j,k

∫

R2
(ξ20 + η2

0 + λ2
j + λ2

k)s|(Fujk)(ξ0, η0)|2dξ0dη0 < ∞
⎫
⎬

⎭
.

Here, S ′(R2 × Σ2) is the dual space to S(R2 × Σ2) := S(R2)⊗̂πC∞(Σ2).
First we show the result in the particular case s = 2:

Lemma 6.8.

H2(R2 × Σ2) =

⎧
⎨

⎩
u ∈ S ′(R2 × Σ2);

∑

j,k

∫

R2
(|ξ0|2
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+|η0|2 + λ2
j + λ2

k)2|(Fujk)(ξ0, η0)|2dξ0dη0 < ∞
⎫
⎬

⎭
.

Proof. By definition (see Appendix 6.1)

H2(R2 × Σ2) = {u ∈ L2(R2 × Σ2); (I − ∂tt − ∂ss − Δhx
− Δhy

)u

∈ L2(R2 × Σ2)}, (6.3)

where we have equipped Σ×Σ with the product metric h̃ induced by the metric
h on each of the components so that Δh̃ = ∂tt+∂ss+Δhx

+Δhy
, where Δhx

and
Δhy

are the Laplacians for the metric h on the first and second components
of Σ × Σ, respectively. Since m > 0 we may (at the expense of obtaining an
equivalent norm) replace I in Eq. (6.3) by 2mI. Writing u ∈ H2(R2 × Σ2) ⊂
L2(R2 × Σ2) in the form (6.2) and using the orthonormality of the set {φl}l

in L2(Σ), we obtain

‖u‖2
H2(R2×Σ2)

:=
∫

R2

∫

Σ×Σ

|(2mI − ∂tt − ∂ss − Δhx
− Δhy

)u|2
√

h(x)
√

h(y)dtdsdxdy

=
∫

R2

∑

j,k

| − (∂tt + ∂ss)ujk(t, s) + λ2
jujk(t, s) + λ2

kujk(t, s)|2dtds.

Applying the Fourier transform in (s, t), Plancherel’s theorem shows that

‖u‖2
H2(R2×Σ2) =

∑

j,k

∫

R2

(
ξ2
0 + η2

0 + λ2
j + λ2

k

)2 |(Fujk)(ξ0, η0)|2dξ0dη0

which proves the result. �

Before proving the main proposition, we state the following result found
in Amann [3, I.(2.9.8)].

Theorem 6.9. Let A be a nonnegative self-adjoint operator. Then, we have the
following relation for the domains of the powers of A:

D(A(1−θ)α+θβ) = [D(Aα),D(Aβ)]θ

for 0 ≤ Re α < Re β and 0 < θ < 1. Here [·, ·]θ denotes complex interpolation.

Proof of Proposition 6.7. Since (R × Σ) × (R × Σ) is a complete manifold,
the operator 2mI − Δh̃ is positive and self-adjoint (see Appendix 6.2). Using
Theorem 6.9, we obtain for 0 < θ < 1

H2θ(R2 × Σ2) = D((2mI − Δh̃)θ)

= {u ∈ S ′(R2 × Σ2); (2mI − Δh̃)θu ∈ L2(R2 × Σ2)}.

Since 2mI−Δh̃ = 2mI−∂tt−∂ss−Δhx
−Δhy

can be written as a multiplication
operator in the form

(2mI − Δh̃)u
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=
∑

j,k

φj(x)φk(y)
∫

R2
ei(ξ0t+η0s)

(
ξ2
0 + η2

0 + λ2
j + λ2

k

)
(Fujk)(ξ0, η0)dξ0dη0,

we infer from the orthonormality of the φj that (2mI −Δh̃)θu in L2(R2 ×Σ2),
if and only if

∥
∥
∥
∑

j,k

φj(x)φk(y)
∫

R2
ei(ξ0t+η0s)

(
ξ2
0 + η2

0 + λ2
j + λ2

k

)θ

(Fujk)(ξ0, η0)dξ0dη0

∥
∥
∥

2

L2(R2×Σ2)

=
∑

j,k

∫

R2

(
ξ2
0 + η2

0 + λ2
j + λ2

k

)2θ |(Fujk)(ξ0, η0)|2dξ0dη0 < ∞.

This establishes the required equivalence. �
Corollary 6.10. For −1 ≤ θ ≤ 0, we obtain by L2-duality that

H2θ(R2 × Σ2) = (H−2θ(R2 × Σ2))′

=

⎧
⎨

⎩
u ∈ S ′(R2 × Σ2);

∑

j,k

∫

R2
(|ξ0|2

+|η0|2 + λ2
j + λ2

k)2θ|Fujk(ξ0, η0)|2dξ0dη0 < ∞
⎫
⎬

⎭
,

with uj,k = 〈u, φj ⊗ φk〉 ∈ S ′(R2).

6.4. The Ultrastatic Case

In this case, we consider a Lorentzian metric g on M = R×Σ with Σ compact
of the form

ds2 = dt2 − hij(x)dxidxj

where hij(x) are the components of a time independent Riemannian metric of
Hölder regularity Cτ (when τ ∈ N we will consider the Zygmund spaces Cτ

∗ ,
introduced in Definition 3.1).

The Klein–Gordon operator P on M is

Pφ = ∂ttφ − Δhφ + m2φ (6.4)

with Δhφ = 1√
h
∂xi(hij

√
h∂xj φ) and m > 0.

The causal propagator G is given by − sin(A
1
2 (t − s))
A

1
2

where A := −Δh +

m2 is self-adjoint on L2(Σ), see Appendix 6.2.
Moreover, the spectrum of A is a discrete set of positive eigenvalues which

we denote by {λ2
j ; j = 1, 2, . . .}, listed according to their (finite) multiplicity.

The associated set {φj}j∈N of normalised real eigenfunctions is an orthonormal
basis of L2(Σ), see [43, Theorem 5.8]. For u, v ∈ D(M), we have G(v) ∈ D′(M)
given by

〈G(v), u〉
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:=
∫

Σ

∫ ∞

−∞

(

− sin(A
1
2 (t − s))
A

1
2

v

)

(t, x)u(t, x)
√

h(x)dxdt

= −
∫

M

⎛

⎝
∫ ∞

−∞

∑

j

λ−1
j sin(λj(t − s))φj(x)

∫

Σ

φj(y)v(s, y)
√

h(y)dyds

⎞

⎠

u(t, x)
√

h(x)dxdt. (6.5)

Using that 〈G(v), u〉 = 〈KG, v ⊗ u〉 gives the singular integral kernel
representation

KG(t, x; s, y) = −
∑

j

λ−1
j sin(λj(t − s))φj(x)φj(y). (6.6)

6.4.1. Global Regularity. Now we show in Lemma 6.11 that, in ultrastatic
spacetimes, the global regularity of the causal propagator is the same as in the
smooth case

Lemma 6.11. KG ∈ H
− 1

2−ε

loc (M × M) for every ε > 0.

Proof. This follows from Corollary 6.10 similar to the computation in [54,
Theorem 4.10]. �

It will be useful to consider the following bidistribution, KA that satisfies
∂tKA = KG.

Corollary 6.12. Let KA ∈ D′(M × M) be the bidistribution given by

KA(u ⊗ v) :=
∫

M

⎛

⎝
∫ ∞

−∞

∑

j

λ−2
j cos(λj(t − s))φj(x)

∫

Σ

φj(y)v(s, y)
√

h(y)dyds

⎞

⎠

u(t, x)
√

h(x)dxdt,

Then,

KA ∈ H
1
2−ε

loc (M × M) for every ε > 0. (6.7)

Proof. This follows from Proposition 6.7 similar to the computation in [54,
Corollary 4.11]. �

6.4.2. Wavefront Set Estimates. Now we show some helpful lemmas in order
to prove Theorems 6.15 and 6.17 which are the main results of the section.

First, we establish the microlocal regularity of KG outside the set Char(P )×
Char(P ).

In the following proofs, we use the distribution KA, because a direct
application of Theorem 3.3 for KG is not possible, since for δ close to 1, the
above σ cannot take the value − 1

2 .

Lemma 6.13. For τ > 2 and any ε̃ > 0,

WF− 1
2−ε̃+τ (KG) ⊂ Char(P ) × Char(P ). (6.8)
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Proof. This is an application of Theorem 3.3, the observation that KA satisfies
(∂t + ∂s)KA = 0 and WF− 1

2−ε̃+τ (KG) ⊂ WF
1
2−ε̃+τ (KA). The proof is along

the lines [54, Lemma 4.13] �

Now we establish that points above the diagonal are of a specific form.

Lemma 6.14. If (x̃, ξ̃, x̃, η̃) ∈ WF− 3
2−ε̃+τ (KG) for τ > 2 and some ε̃ > 0, then

η̃ = −ξ̃.

Proof. This is a consequence of Theorem 3.7 combined with the support prop-
erties of KG. The proof is along the lines of that for [54, Lemma 4.16] �

Now we state one of the main results:

Theorem 6.15. Let (M, g) be a Cτ ultrastatic spacetime with τ > 2 and KG

the causal propagator. Then, WF ′− 3
2−ε+τ (KG) ⊂ C for every ε > 0 and C as

in Eq. (1.1).

Proof. Let (x̃, ξ̃, ỹ,−η̃) ∈ WF− 3
2−ε+τ (KG). The propagation of singularities

result (Theorem 3.6) implies that (γ(x̃, ξ̃), γ(ỹ,−η̃)) ∈ WF− 1
2−ε+τ (KA), where

γ(x̃, ξ̃) is the null bicharacteristic with initial data (x̃, ξ̃) and γ(ỹ,−η̃) is the
null bicharacteristic with initial data (ỹ,−η̃). As a consequence of Lemma
6.13, Lemma 6.4, the fact that (∂t +∂s)KG = 0 and the inclusion WF s(KA) ⊂
WF s−1(KG)∪Char(∂t) for all s ∈ R, we have (γ(x̃, ξ̃), γ(ỹ,−η̃)) ∈ WF− 3

2−ε+τ

(KG). Then, we can apply Theorem 3.7 combined with Lemma 6.14 to obtain
the result. The proof is along the lines [54, Theorem 4.17]. �

For the analysis of adiabatic states, it is enough to work with the inclu-
sion shown above. However, in the smooth case we have an equality of sets.
In Theorem 6.17, we show that this equality holds under stronger regularity
assumptions on the metric.

First we show the following lemma

Lemma 6.16. Let (x̃, ξ̃) ∈ Char(P ) with P as in Eq. (6.4).Then (x̃, x̃, ξ̃,−ξ̃) ∈
WF

3
2+ε(KG) for all ε > 0.

Proof. Since WF s1 ⊂ WF s2 for s1 ≤ s2, it is enough to show the result for
small ε. Let Q := R × Σ2. We define the embedding f : Q → M × M by
f(s, x, y) = (s, x, s, y). The set of normals of the map f is

Nf = {(f(s, x, y), ξ̃, η̃) ∈ T ∗(M × M);t f ′(s, x, y)(ξ̃, η̃) = 0}
= {(s, x, s, y, ξ0, 0,−ξ0, 0) ∈ T ∗(M × M)},

where tf ′ is the transpose of the differential of f . In particular, Nf ∩(Char P ×
Char P ) = ∅. By Lemma 6.13,

WF
3
2+ε(KG) ∩ Nf = ∅

and therefore

WF
1
2+ε(∂tKG) ∩ Nf ⊂ WF

3
2+ε(KG) ∩ Nf = ∅
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for suitably small ε > 0. Therefore, Proposition B.7 from [38] implies that the
restriction of ∂tKG to Q is defined and satisfies

WF ε(∂tKG|Q) ⊂ f∗(WF
1
2+ε(∂tKG))

= {(s, x, y,t f ′(ξ̃, η̃)) ∈ T ∗Q; (f(s, x, y), ξ̃, η̃) ∈ WF
1
2+ε(∂tKG)}.

(6.9)

As a distribution, ∂tKG|Q is given by

∂tKG|Q(s, x, y) = −
∑

j

φj(x)φj(y),

i.e., it acts on the non-smooth density ψ1(s)ψ2(x)ψ3(y)
√

h(x)
√

h(y)dxdy, by

〈∂tKG|Q, ψ1ψ2ψ3〉 = −
∫ ∞

−∞
ψ1(p)dp

∫

Σ

ψ2(w)ψ3(w)
√

h(w)dw. (6.10)

Therefore, its Fourier transform is given by

(F(∂tKG|Q))(χ, ξ, η) = δ0(χ) ⊗
∫

Σ

e−iw(ξ+η)
√

h(w)dw. (6.11)

Moreover, we have (∂tKG|Q−1⊗δ(x−y))(ψ) = 0 for all smooth densities
on R×Σ×Σ. Therefore, ∂tKG|Q = 1⊗ δ(x− y) as elements of D′(R×Σ×Σ).
This implies

WF s(∂tKG|Q) =

{
∅, s < − 3

2

(s, x, x, 0, ξ,−ξ) for all ξ ∈ T ∗
x Σ, s ≥ − 3

2 .

Using Eq. (6.9), we find that there exists ξ0 such that (s, x, s, x, ξ0, ξ,−ξ0,

−ξ) ∈ WF
1
2+ε(∂tKG) for each ξ ∈ T ∗Σ.

According to Proposition B.3 from [38],

WF
1
2+ε(∂tKG) ⊂ WF

3
2+ε(KG). (6.12)

Since the wavefront set is contained in Char(P )×Char(P ), we obtain from
Lemma 6.13 (s, x, s, x, ξ0, ξ,−ξ0,−ξ) ∈ Char(P ) × Char(P ) with ξ2

0 = hijξiξj .
Without loss of generality, we choose a sign for ξ0, i.e. ξ0 :=

√
hijξiξj .

Now we show that if (s, x, s, x, ξ0, ξ,−ξ0,−ξ) ∈ WF
3
2+ε(KG), then (s, x, s,

x,−ξ0,−ξ, ξ0, ξ) ∈ WF
3
2+ε(KG). The diffeomorphism f1(t, x, s, y) = (s, y, t, x)

has the set of normals Nf1 = {(s, y, t, x, 0, 0, 0, 0) ∈ T ∗(M × M)} which has
empty intersection with WF (KG). Then, [35, Theorem 8.2.3] and the invari-
ance of the Sobolev wavefront set implies that

WF
3
2+ε(f∗

1 KG) = f∗
1 WF

3
2+ε(KG). (6.13)

Moreover, f∗
1 KG = −KG which gives

WF
3
2+ε(KG) = f∗

1 WF
3
2+ε(KG). (6.14)

Now since (s, x, s, x, ξ0, ξ,−ξ0,−ξ) ∈ WF
3
2+ε(KG), then we have (s, x, s, x,−ξ0,

−ξ, ξ0, ξ) ∈ WF
3
2+ε(KG) by Eq. (6.14).

Notice that we also have to show that (s, x, s, x,−ξ0, ξ, ξ0,−ξ) and (s, x, s

, x, ξ0,−ξ,−ξ0, ξ) are in WF
3
2+ε(KG).
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In this case, we use the diffeomorphism f2(t, x, s, y) = (s, x, t, y) that has
the set of normals Nf2 = {(s, x, t, y, 0, 0, 0, 0) ∈ T ∗(M ×M)} which has empty
intersection with WF (KG). Then, [35, Theorem 8.2.3] and the invariance of
the Sobolev wavefront set implies that

WF
3
2+ε(f∗

2 KG) = f∗
2 WF

3
2+ε(KG). (6.15)

Moreover, f∗
2 KG = −KG which gives

WF
3
2+ε(KG) = f∗

2 WF
3
2+ε(KG). (6.16)

Now since (s, x, s, x, ξ0, ξ,−ξ0,−ξ) ∈ WF
3
2+ε(KG) then we have (s, x, s, x,−ξ0,

ξ, ξ0,−ξ) ∈ WF
3
2+ε(KG) by Eq. (6.16). Using f1, we obtain (s, x, s, x,

ξ0,−ξ,−ξ0, ξ) ∈ WF
3
2+ε(KG). This gives the desired result. �

Now we show the equality of sets as in the smooth case.

Theorem 6.17. Let (M, g) be a Cτ ultrastatic spacetime with τ > 3 and KG

the causal propagator. Then, C ⊂ WF ′− 3
2+τ−ε̃(KG) for all ε̃ < τ − 3 and C

as in Eq. (1.1). In particular, we have C ⊂ WF ′s(KG) for all s > 3
2 .

Proof. Under the additional regularity assumption and arguing locally as in
Theorem 3.3, we have P b

(t,x)KA, P b
(s,y)KA ∈ H

3
2+ε̃(M × M) and therefore for

(x̃, ξ̃, ỹ, η̃) ∈ WF
3
2+ε̃(KG) ⊂ WF

5
2+ε̃(KA) we can choose s = 3

2 + ε̃ in Theorem
3.6.

Now if (x, ξ) = (x̃, ξ̃, ỹ,−η̃) ∈ C ′ then there is a null geodesic γ such that
γ(t1) = x̃, γ(t2) = ỹ and g(·, γ̇)|Tx̃M = ξ̃, g(·, γ̇)|TỹM = η̃. Now, (x̃, ξ̃, x̃,−ξ̃) ∈
C ′ and by Lemma 6.16 (x̃, ξ̃, x̃,−ξ̃) ∈ WF

3
2+ε(KG) for ε > 0 which implies

for ε̃ < τ − 3 that (x̃, ξ̃, x̃,−ξ̃) ∈ WF− 3
2+τ−ε̃(KG) ⊂ WF− 1

2+τ−ε̃(KA). Ap-
plying Theorem 3.6 to P(t,x)KA, P(s,y)KA with the s described above we have
(γ(x̃, ξ̃), γ(x̃,−ξ̃)) ∈ WF− 1

2+τ−ε̃(KA). Using the same argument as in Theo-
rem 6.15, this implies (x̃, ξ̃, ỹ,−η̃) = (x, ξ) ∈ WF− 3

2+τ−ε̃(KG). �
Remark 6.18. The combination of Theorem 6.15 with Theorem 6.17 gives

WF ′− 3
2+τ−ε̃(KG) = C

for τ > 3 and ε̃ < τ − 3.

6.4.3. The C1,1 Case. The following theorem states the result for the case of
C1,1 regularity.

Theorem 6.19. Let (M, g) be a C1,1 ultrastatic spacetime and KG the causal
propagator. Then, WF ′ 12−ε̃(KG) ⊂ C for all ε̃ > 0.

Proof of Theorem 6.19. In order to show the theorem, we will state how dif-
ferent results of the paper change under this regularity.

From the comment above Theorem 3.6, we know that Theorem 3.6 still
holds. Notice that C1,1 ⊂ C2

∗ [62, Chapter 1, Eq.(1.21)].
Also, notice that a C1,1 metric guarantees the existence and uniqueness

of the Hamiltonian flow which is critical for the proof. Theorem 3.3 holds even
for τ > 1.
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Lemma 4.1 requires no modification, since the results on global hyper-
bolicity still hold for this regularity [53, Corollary 3.4]. The hypothesis in [66,
Theorem 1.1] is the requirement that the coefficients of the principal part
have one derivative that is Lipschitz which is clearly satisfied in the C1,1 case.
Hence, Lemma 6.11 holds.

For Lemma 6.14 and Theorem 6.15, the only thing to notice is that in
this case P b

(t,x)KA, P b
(s,y)KA ∈ H

1
2−ε̃(M × M) (arguing locally as in Theorem

3.3) and therefore we can apply Theorem 3.6 for s = 1
2 − ε̃. In this section, we

have applied the version of Theorem 3.6 after [62, Proposition 11.4]. �
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