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Discrete Symplectic Fermions on Double
Dimers and Their Virasoro Representation

David Adame-Carrillo

Abstract. A discrete version of the conformal field theory of symplec-
tic fermions is introduced and discussed. Specifically, discrete symplec-
tic fermions are realised as holomorphic observables in the double-dimer
model. Using techniques of discrete complex analysis, the space of local
fields of discrete symplectic fermions on the square lattice is proven to
carry a representation of the Virasoro algebra with central charge −2.

1. Introduction

Over the last twenty-five years, numerous conformally invariant properties of
the scaling limit of various lattice models have been rigorously established.
Nevertheless, such conformally invariant behaviour of statistical models had
been studied in the Physics literature using conformal field theory (CFT) ever
since the founding works of Belavin, Polyakov and Zamolodchikov in the 1980s
[3,4]. Although it is a non-rigorous approach to statistical mechanics, CFT has
served as a plentiful source of insights to the Mathematics community. Yet, it
is fair to say that it remains far from well-understood from a mathematical
perspective.

A relevant example of a statistical model is the dimer model, in which
one takes perfect matchings of the vertices in a graph uniformly at random.
This model has been studied in the Physics literature since as early as 1937
[10]; and, in 1961, Kasteleyn [15] and, independently, Fisher and Temperley [9]
exactly solved the model in a statistical sense, i.e. they found an exact formula
for the number of dimer configurations in finite subgraphs of the square lattice.
As for the scaling limit of the model and its conformal invariance, in the early
2000s, Kenyon established the convergence of the height function of dimers to
the Gaussian Free Field [18,19]. It is worth pointing out that other approaches
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have been taken to prove such convergence results [5,6], and that similar results
have been proven with more generality [24].

The model considered in this paper is the double-dimer model, in which
one takes two independent copies of the dimer model. A strong motivation
to study this model is a conjecture by Kenyon [23, Section 9], who predicted
the interfaces that arise when superimposing two dimer covers on the square
lattice to converge to SLE4 in the scaling limit. After the introduction of CLEs
[25,26], the conjecture was then lifted to claim that also the loops in double-
dimer covers converge to CLE4. There have been very relevant developments
in this direction in the last ten years [1,2,8,20], though some questions about
the full conjecture are still open [2].

In two-dimensional CFT, the conformal symmetries of the theory are en-
coded in the infinite-dimensional Lie algebra Vir :=

⊕
n∈Z

CLn ⊕CC with Lie
brackets

[
Ln,Lm

]
= (n − m) Ln+m +

n3 − n

12
δn+m C ,

[
C,Vir

]
= 0 ,

known as the Virasoro algebra. Algebraically, two-dimensional CFTs are stud-
ied in terms of representations of the Virasoro algebra. In a CFT, the operator
C is proportional to the identity operator, and its eigenvalue is called the
central charge of the CFT in question.

The question that is addressed here is whether the algebraic structure of
a CFT can be found already at the lattice level. In other words, can one build
a Virasoro representation using observables on the lattice before taking scaling
limits? This question was answered positively for the discrete Gaussian Free
Field and the Ising model in [13].

Another important CFT shall be considered here: Symplectic fermions,
which has central charge −2 [11,12,16,17]. This theory is more exotic in the
sense that it is of logarithmic type (logCFT). The terminology stems from the
fact that logCFTs possess correlation functions with logarithmic dependencies.
On the algebraic side, logCFTs feature more intricate representations of the
Virasoro algebra—representations in which the L0 operator cannot be diag-
onalised. Symplectic fermions, in particular, exhibit a (sub)representation in
which the L0 operator has Jordan blocks of rank 2 [17]. Such a representation
falls into the class of staggered modules, which have been studied in [21].

In order to study symplectic fermions on the lattice, a novel discretisation
of the theory is introduced. The fermionic fields ξ and η can be defined as
holomorphic observables on the double-dimer model on general bipartite finite
planar graphs. In particular, one can make precise sense of random variables
of the form

η(w1)ξ(b1)η(w2)ξ(b2) · · · η(wn)ξ(bn),

where wi and bi are vertices of different colour of the underlying bipartite
graph—see Sect. 2 for more details. The suitability of this discretisation can
be justified by considering the infinite volume limit, in which the observables
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behave in the way predicted by CFT. The connection between symplectic
fermions and double dimers, although unprecedented, is coherent with the
dimer model being studied as CFT of central charge −2 [14].

The main result of this paper—Theorem 5.2—can be informally stated as
follows:

Theorem. The space of local fields of the discrete symplectic fermions on the
square lattice constitutes a representation of the Virasoro algebra with central
charge −2, where the generators Ln for n ∈ Z are defined via a Sugawara
construction on the current modes of the fermions ξ and η.

Let us elaborate a bit further on the above statement. The space in which
the Virasoro action is defined is the space of local fields, which are, in a sense,
a generalisation of the maps z �→ η(z) and z �→ ξ(z)—see Sect. 4 for precise
definitions. Using the techniques of discrete complex analysis developed in
[13], one can translate the holomorphicity of the fermions into an algebraic
language. In particular, one can define the Fourier modes χ+

n and χ−
n for n ∈ Z

of the symplectic fermions’ currents as operators in the space of local fields—
see Sect. 4. Discrete holomorphicity yields, then, the exact anticommutation
relations of the symplectic fermion symmetry algebra:

{
χ−

n , χ+
m

}
= n δn+mid and

{
χ−

n , χ−
m

}
=
{
χ+

n , χ+
m

}
= 0

for n,m ∈ Z. Moreover, the operators χ−
n and χ+

n permit the definition of the
Virasoro generators Ln via a Sugawara construction.

Organisation of the paper. In Sect. 2, discrete symplectic fermions are defined
on double dimers on any (dimerable) bipartite finite planar graph and their
relation with the Kasteleyn matrix is established. Moreover, discrete symplec-
tic fermions are proven to be equivalently defined using Grassmann algebra
techniques via a discretisation of the action of symplectic fermions in the
continuum. In Sect. 3, multipoint correlation functions of discrete symplec-
tic fermions are studied along sequences of growing Temperleyan domains of
the square lattice. In particular, the 2-point function is proven to be closely
related to the derivative of the discrete full-plane Green’s function, and multi-
point correlations are obtained from it by Wick’s formula. In Sect. 4, the space
of local fields of discrete symplectic fermions on the infinite square lattice is
defined and discussed along with the current modes of the fermions. Finally,
in Sect. 5, the Virasoro modes are defined in terms of the current modes, and
they are proven to satisfy the Virasoro commutation relations with central
charge −2.

2. Discrete Symplectic Fermions in Finite Domains

2.1. Simple Paths and Fermions

Let G = (V, E) be a bipartite finite planar graph partitioned into black vertices
V• and white vertices V◦ that admits at least one dimer cover, i.e. there exists
a subset of edges ω ⊂ E , such that every vertex appears exactly once in ω.
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λ

b

w

Figure 1. A double-dimer cover (ω, ω) on a subgraph of the
square lattice and an odd simple path λ : w � b adapted to
(ω, ω)

Then, let D(G) denote the set of dimer covers on G, and D2(G) := D(G)×D(G)
is the set of double-dimer covers on G. See Fig. 1 for an example on a subgraph
of the square lattice. The (finite) set D2(G) is regarded as a probability space
equipped with the uniform probability measure PG , the expectation value with
respect to which is denoted by EG .

A famous result by Kasteleyn [15] is |D(G)| = |detK |, where K is any
Kasteleyn matrix of G, i.e. a matrix K : V• × V◦ −→ S

1 ∪ {0} ⊂ C such that
K(b, w) �= 0 only when we have {w, b} ∈ E , and which satisfies the Kaste-
leyn condition: for a sequence (w1, b1, . . . , wn, bn, wn+1 = w1) of consecutively
adjacent vertices around a single face of G, we have

K(b1, w1)K(b2, w1) · · ·K(bn, wn)K(b1, wn) = (−1)n+1.

Remark 2.1. Let Z
2 = Z

2
◦ 	 Z

2
• be coloured in a chessboard fashion. If G =

(V, E) is the induced (dimerable) graph of a subset V ⊂ Z
2 with no holes—see

Sect. 3—then, the matrix ∂ : Z2
•×Z

2
◦ −→ C given by ∂b,w := b − w if |b−w| = 1

and ∂b,w := 0 otherwise, is a Kasteleyn matrix of G. 


Let us introduce the combinatorial objects that are used to construct
symplectic fermions on double dimers. A simple path on G is a sequence of
distinct consecutively adjacent edges of G that does not cross itself, i.e. λ =
(e1, . . . , en) with ei ∈ E , such that ei ∩ ej �= ∅ if and only if |i − j| = 1 for
1 ≤ i �= j ≤ n. Then, let λ : x � y denote that x, y ∈ V are the endpoints of
λ, i.e. the vertices that satisfy x ∈ e1 and x /∈ e2, and y ∈ en and y /∈ en−1.
Abusing notation, write ei ∈ λ, and, for v ∈ V, write v ∈ λ if v ∈

⋃n
i=1 ei.

Two simple paths λ1, λ2 are said not to intersect if there is no v ∈ V satisfying
v ∈ λ1 and v ∈ λ2, and it is denoted by λ1 ∩ λ2 = ∅. Also, λ1 ⊂ λ2 denotes
that λ1 is a subpath of λ2, i.e. for all e ∈ E such that e ∈ λ1 it follows that
e ∈ λ2.

An odd simple path on G is a simple path λ = (e1, . . . , en) with n ∈ N odd.
Note that the endpoints of odd paths are of different colours. Let EO(λ) :=
{e1, e3, . . . , en} ⊂ E and EE(λ) := {e2, e4, . . . , en−1} ⊂ E denote the set of odd
and even edges of λ, respectively. Define also its odd length as 	(λ) := |EE(λ)|,
and its path factor as
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Ξ(λ) := (−1)�(λ)
∏

e∈EO(λ)

K(be, we)
∏

e∈EE(λ)

K(be, we),

where we ∈ V◦ and be ∈ V• are the white and black vertices of e = {we, be},
respectively.

An odd simple path λ : w � b is said to be adapted to a double-dimer
cover (ω, ω) ∈ D2(G) if EO(λ) ⊂ ω ∩ ω—see Fig. 1. Note that multiple paths
with the same endpoints can be adapted to the same double-dimer cover. Let
such adaptedness be denoted by λ � (ω, ω), and let the indicator function of
the event {(ω, ω) |λ � (ω, ω)} ⊂ D2(G) be denoted by 1λ.

Then, n pairs of fermions at w1, . . . , wn ∈ V◦ and b1, . . . , bn ∈ V• are
defined to be the random variable

η(w1)ξ(b1) · · · η(wn)ξ(bn) :=
∑

σ∈Sn

sgn σ

n∏

i=1

∑

λi:wi�bσ(i)

Ξ(λi)1λi
,

where for each i and σ, the second sum runs over the set of simple paths from
wi to bσ(i).

The following proposition states that in the above sum, terms arising
from configurations of n paths with intersections add up to 0.

Proposition 2.1. For w1, . . . , wn ∈ V◦ and b1, . . . , bn ∈ V•,

η(w1)ξ(b1) · · · η(wn)ξ(bn) =
∑

σ∈Sn

sgn σ
∑

λi:wi�bσ(i)
λi∩λj=∅ i�=j

Ξ(λ1) · · · Ξ(λn)1λ1 · · ·1λn
,

where the second sum runs over the set of n simple paths from wi to bσ(i) that
do not intersect each other.

Proof. Fix a double-dimer cover (ω, ω) throughout the proof. By its definition,
[
η(w1)ξ(b1) · · · η(wn)ξ(bn)

]
(ω, ω) =

∑

σ∈Sn

∑

λi:wi�bσ(i)

sgn σ Ξ(λ1) · · · Ξ(λn)

1λ1(ω, ω) · · ·1λn
(ω, ω)

(2.1)
with no restrictions on the sum over paths λ1, . . . , λn. There is one non-
vanishing term in the sum on the right-hand side of Equation (2.1) for every
element of the set

S :=
{
(σ;λ1, . . . , λn)

∣
∣σ ∈ Sn, (ω, ω) � λi : wi � bσ(i) for 1 ≤ i ≤ n

}
.

Let us build an involution ι on S. Say that an element (σ;λ1, . . . , λn) is non-
intersecting if it satisfies λi ∩ λj = ∅ for all 1 ≤ i �= j ≤ n. Then, ι maps non-
intersecting elements to themselves. Now, consider an element (σ;λ1, . . . , λn)
that is not non-intersecting. Take i1 as the smallest 1 ≤ i ≤ n such that
λi1 ∩ λj �= ∅ for some i1 < j ≤ n, and let J be the set of such j’s. Let
headi(λj) : wj � x be the longest subpath of λj that satisfies that x ∈ λi; and
take

i2 := min
{
j ∈ J

∣
∣ ∀k ∈ J, headk(λi1) ⊂ headj(λi1)

}
.
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λi1

λi2 →−�

→−�

ι
λ̃i2

λ̃i1

wi1

wi2

wi1

wi2

bσ(i1)

bσ(i2)

bσ̃(i2)

bσ̃(i1)

Figure 2. Involution ι in the proof of Proposition 2.1

Similarly, for λi ∩λj �= ∅, let taili(λj) : x � bσ(j) be the shortest subpath of λj

that satisfies x ∈ λi. Note it is an empty path when bσ(j) ∈ λi. Define, then,
σ̃ := σ ◦ [i1 i2], where [i1 i2] ∈ Sn is the permutation of i1 and i2, and the odd
simple paths λ̃i1 : wi1 � bσ̃(i1) and λ̃i2 : wi2 � bσ̃(i2) by swapping the tails of
λi1 and λi2 around—see Fig. 2. Note that, since λi1 , λi2 � (ω, ω), necessarily
λ̃i1 , λ̃i2 � (ω, ω). Then, take

ι(σ;λ1, . . . , λi1 , . . . , λi2 , . . . , λn) = (σ̃;λ1, . . . , λ̃i1 , . . . , λ̃i2 , . . . , λn).

Indeed, ι ◦ ι = id. The result follows by observing that Ξ(λi1) Ξ(λi2) = Ξ(λ̃i1)
Ξ(λ̃i2) and sgnσ = − sgn σ̃, i.e. the terms in the sum in Eq. (2.1) not arising
from non-intersecting elements of S cancel out pairwise.

Corollary 2.1.1. If wi = wj or bi = bj for some i �= j, then η(w1)ξ(b1) · · ·
η(wn)ξ(bn) ≡ 0.

Proof. If not all w1, . . . , wn and b1, . . . , bn are distinct, there are no non-
intersecting elements in S, so the whole sum adds up to 0.

2.2. Discrete Holomorphicity of Fermions

On G, the Kasteleyn matrix provides a notion of differentiation: Let V be
a vector space—usually C. For f : V −→ V , the V -valued function ∂Kf is
defined, on black and white vertices respectively, by

∂Kf(b) :=
∑

w∈V◦
{b,w}∈E

K(b, w)f(w) and ∂Kf(w) := −
∑

b∈V•
{b,w}∈E

K(b, w)f(b).

Similarly, ∂̄Kf is defined by

∂̄Kf(b) :=
∑

w∈V◦
{b,w}∈E

K(b, w)f(w) and ∂̄Kf(w) := −
∑

b∈V•
{b,w}∈E

K(b, w)f(b).

For an expression depending on of several vertices, the notation ∂K
x and

∂̄K
x is used to clarify with respect to which variable the K-derivative is taken.

The following result proves EG [η(·)ξ(·)] to be (the complex conjugate
of) the non-zero entries of the coupling function—in Kenyon’s sense [18]—of
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φ−1

w
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w

w

b

b

b

b

λ

λw

(ω, ω) (ωw, ω)

(ω, ω) (ωλ, ω)

Figure 3. Bijection φ in the proof of Theorem 2.2

double dimers on G, i.e. EG [η(w)ξ(b)] = K−1(w, b). A purely combinatorial
proof shall be presented here, although a shorter proof can be written using
Grassmann algebra techniques—see Sects. 2.3 and 2.4.

Theorem 2.2. Fix w0 ∈ V◦ and b0 ∈ V•. Then,

∂̄K
w EG

[
η(w0)ξ(w)

]
= δw,w0 and ∂̄K

b EG
[
η(b)ξ(b0)

]
= −δb,b0 .

for all w ∈ V◦ and b ∈ V•.

Proof. Explicitly,

∂̄K
w EG

[
η(w0)ξ(w)

]
=

1
|D2(G)|

∑

(ω,ω)∈D2(G)

∑

b∼w

∑

λ:w0�b

K(b, w) Ξ(λ)1λ(ω, ω) .

(2.2)

There is a nonzero term in the above sum for each element of the set S(w0) :=⊔
b∼w S

(w0)
b , where

S
(w0)
b :=

{
(ω, ω;λ)

∣
∣ (ω, ω) ∈ D2(G), (ω, ω) � λ : w0 � b

}
.

Assume first w = w0, and let us build a bijection φ : S(w0) −→ D2(G)—see
Fig. 3.

– For (ω, ω;λ) ∈ S
(w)
b for some {w, b} =: ew ∈ E , take the dimer cover

ωλ :=
(
ω\EO(λ)

)
∪ EE(λ) ∪ {e} .

Note if 	(λ) = 0 then ωλ = ω. Set then φ(ω, ω;λ) := (ωλ, ω).
– Conversely, for a double-dimer cover (ω, ω) ∈ D2(G), let e1, . . . , en ∈

ω and ē1, . . . , ēn+1 ∈ ω be the edges that make a simple path (ē1, e1, . . . ,
en, ēn+1) =: λw : w � b for some b ∈ V• adjacent to w. Take the dimer cover
ωw := (ω\ {e1, . . . , en})∪{ē1, . . . , ēn+1} and set φ−1(ω, ω) := (ωw, ω;λw). Note
n can be 0 and, in that case, ωw = ω.
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ι→−� →−�
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ι→−� →−�
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b
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(ω, ω) (ωw, ω)

Figure 4. Involution ι in the proof of Theorem 2.2

Indeed, φ ◦ φ−1 = idD2(G). Moreover, the term K(b, w) Ξ(λw) in Equation
(2.2) arising from φ−1(ω, ω) = (ωw, ω;λw) is 1 by virtue of the Kasteleyn
condition. It follows that ∂̄K

w EG
[
η(w0)ξ(w)

]
= 1 when w = w0.

Assume now w �= w0, and let us build an involution ι on S(w0)—see Fig. 4.
Consider an element (ω, ω;λ) ∈ S

(w0)
b ⊂ S(w0).

– If w ∈ λ, there exists {w, b0} ∈ EE(λ). Then, let headλ : w0 � b0 and
tailλ : w � b be subpaths of λ. Consider ωλ :=

(
ω\EO(tailλ)

)
∪ EE(tailλ) ∪{

{w, b}
}

and set ι(ω, ω;λ) := (ωλ, ω; headλ). Note ωλ = ω if 	(tailλ) = 1.
– Otherwise, if w /∈ λ, let e1, . . . , en ∈ ω and ē1, . . . , ēn+1 ∈ ω be the edges

that make a simple path (ē1, e1, . . . , en, ēn+1) =: λw : w � b1 for some b1 ∈ V•
adjacent to w. Let λ̃ : w0 � b1 be the concatenation of λ with ({b, w}) and
λw, and consider the dimer cover ωw := ω\

(
EE(λw) ∪

{
{w, b1}

})
∪ EO(λw) .

In this case, set ι(ω, ω;λ) := (ωw, ω; λ̃). Note ωw = ω if n = 0.
Indeed ι ◦ ι = idS(w0) . Moreover, consider the latter scenario, when w /∈ λ.

The term of (ω, ω;λ) in Eq. (2.2) is

K(b, w) Ξ(λ) = K(b, w)(−1)�(λ)
∏

e∈EO(λ)

K(be, we)
∏

e∈EE(λ)

K(be, we)

whereas the term of ι(ω, ω;λ) = (ωw, ω; λ̃) is

K(b1, w) Ξ(λ̃) = K(b1, w)(−1)�(λ̃)
∏

e∈EO(λ̃)

K(be, we)
∏

e∈EE(λ̃)

K(be, we)

= (−1)�(λ)+1+�(λw) K(b1, w)
∏

e∈EO(λ)

K(be, we)
∏

e∈EE(λ)

K(be, we)

× K(b, w)
∏

e∈EO(λw)

K(be, we)
∏

e∈EE(λw)

K(be, we)

= −K(b, w) Ξ(λ)

[

K(b1, w) (−1)�(λw)
∏

e∈EO(λw)

K(be, we)
∏

e∈EE(λw)

K(be, we)

]

.
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Again, the factor in square brackets is 1 by virtue of the Kasteleyn condi-
tion. Therefore, when w �= w0, all the terms in Eq. (2.2) cancel out pair-
wise, i.e. ∂̄K

w EG
[
η(w0)ξ(w)

]
= 0. The same arguments can be used to prove

∂̄K
b EG

[
η(b)ξ(b0)

]
= −δb,b0 . �

Using combinatorial arguments similar to the coupling φ in the above
proof, one can prove the following result that is stated here as a corollary.

Corollary 2.2.1. Let e1 = {w1, b1} , . . . , en = {wn, bn} ∈ E and be n edges.
Then,

EG
[
η(w1)ξ(b1) · · · η(wn)ξ(bn)

]
=

EG
[
1e1 · · ·1en

]

K(b1, w1) · · ·K(bn, wn)

where 1e is the indicator function e being open, i.e. the event {(ω, ω) | e ∈ ω}.

2.3. Grassmann Formalism and Wick’s Theorem

The Grassmann algebra Λ(G) of a finite set of generators G is the quotient
of the free non-commutative ring C〈G〉 by the two-sided ideal generated by
g1g2 + g2g1 for all g1, g2 ∈ G. Note Λ(G) is a finite-dimensional algebra over
C. Given an order of the generators σ, i.e. a injective σ : G −→ {1, . . . , |G|},
one can construct a basis of Λ(G) indexed by the subsets of G: For a subset
S ⊂ G, write S = {g1, g2 . . . , gn} so that σ(g1) < σ(g2) · · · < σ(gn) and
define vσ

S := g1g2 · · · gn ∈ Λ(G) and vσ
∅ := 1 ∈ Λ(G). Then, the set {vσ

S}S⊂G

constitutes a basis of Λ(G).

Remark 2.2. In the basis {vσ
S}S⊂G, any element v ∈ Λ(G) that has vanish-

ing projection onto the subspace spanned by vσ
∅ satisfies v|G|+1 = 0. For

such elements, the exponential map—given by the usual power series—is well-
defined. 


Given an order σ of G, one can canonically construct the bilinear form
〈·, ·〉σ determined by 〈vσ

S1
, vσ

S2
〉σ = δS1,S2 for S1, S2 ⊂ G. Then, the Berezin

integral of v ∈ Λ(G) with respect to the order σ is defined asˆ
v dGσ := 〈vσ

G, v〉σ.

Note that, given two orders σ, ς of G, the Berezin integrals with respect
to each of them differ by an overall factor sgn(ς ◦ σ−1).

Take the set of generators G = {xi, yi}n
i=1 and a matrix A = {Aij}n

i,j=1 ∈
GLn(C). Consider the action

S[x, y] :=
n∑

i=1

n∑

j=1

xiAijyj ∈ Λ(G).

For a given order σ of G, the partition function is defined as ZS :=
´

eS[x,y]dGσ.
Note it is well-defined complex number by Remark 2.2.
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Remark 2.3. Fixing the order to be σ(xi) = 2i − 1 and σ(yi) = 2i, one gets
[7]

ZS = detA.

For 1 ≤ i1 < · · · < im ≤ n and 1 ≤ j1 < · · · < jm ≤ n, correlation functions
are defined by

〈
m∏

k=1

xik
yjk

〉

:=
1

ZS

ˆ m∏

k=1

xik
yjk

eS[x,y]dGσ

and can be proven [7] to be given by
〈

m∏

k=1

xik
yjk

〉

= εIJ detAÎĴ ,

where AÎĴ is the matrix obtained by removing the columns I = {i1, . . . , im}
and rows J = {j1, . . . , jm} from A, and εIJ = (−1)i1+···+im+j1+···+jm . 


Therefrom, one can prove Wick’s formula, which is stated here as a propo-
sition.

Proposition 2.3 (Wick’s theorem). Let xi1 , . . . , xim
, yj1 , . . . , yjm

∈ G be 2m
generators. Then,

〈
xi1yji

· · · xim
yjm

〉
=

∑

σ∈Sm

sgn σ
〈
xi1yjσ(1)

〉
· · ·
〈
xim

yjσ(m)

〉
.

2.4. Discrete Symplectic Fermions and Double Dimers

The observables on double dimers described above can be alternatively found
using the Grassmann formalism by considering the appropriate discretisation
of the continuum action of symplectic fermions [17]. Let us build such dis-
cretisation on a dimerable bipartite graph G = (V◦ 	 V•, E) equipped with a
Kasteleyn matrix K. Then, take the set of generators

SyFerG :=
{

η(w), η̄(w), ξ(b), ξ̄(b)
∣
∣ w ∈ V◦, b ∈ V•

}
,

and consider its Grassmann algebra Λ(ξ, η) := Λ(SyFerG). Abusing notation,
ξ and ξ̄ are viewed as Λ(ξ, η)-valued functions on V• as well as η and η̄ as
Λ(ξ, η)-valued functions on V◦, so that we can apply the operators ∂K and
∂̄K on them. For Berezin integration, take any order ς of the vertices, i.e.
ς : V −→ {1, . . . , |V|} injective, and take the order of the generators given by
ξ(b) �−→ 2ς(b), ξ(b) �−→ 2ς(b) − 1, η(w) �−→ 2ς(w) − 1 and η(w) �−→ 2ς(w).
Note any order ς of the vertices yields the same sign for Berezin integration,
and let such integration be denoted by

´
·dηdηdξdξ.

The discretised version of the continuum action in [17] given by

S[ η, ξ, η, ξ ] :=
∑

w∈V◦

(
η(w)∂̄Kξ(w) + η(w)∂Kξ(w)

)

leads to the same observables as the ones defined on double dimers.
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Proposition 2.4. Let w1, . . . , wn ∈ V◦ and b1, . . . , bn ∈ V• be 2n vertices.
Then,

〈
η(w1)ξ(b1) · · · η(wn)ξ(bn)

〉
= EG

[
η(w1)ξ(b1) · · · η(wn)ξ(bn)

]
.

Proof. By Remark 2.3, the partition function is the determinant of a block-
diagonal matrix with two blocks: K and K. The partition function is then
detKdetK, which, by virtue of Kasteleyn’s theorem, equals |D(G)|2. The
action S[ξ, η] contains the terms K(b, w) η(w)ξ(b) and K(b, w) η(w)ξ(b) for
each edge {b, w} ∈ E . Therefore, the terms that contribute to

´
η(w1)ξ(b1) · · ·

η(wn)ξ(bn)eS[η,ξ,η,ξ] dηdηdξdξ are in the (|V|/2 − n)-th term in the series of
the exponential:

η(w1)ξ(b1) · · · η(wn)ξ(bn)
S[ξ, η]|V|/2−n

(|V|/2 − n)!
. (2.3)

Each monomial appears (|V|/2 − n)! times, and can be identified with a pair
consisting of a dimer cover on G—from the factors ηξ—and a dimer cover on
the graph G with the vertices w1, b1, . . . , wn, bn removed. That is, there is a
term that survives Berezin integration for each configuration consisting of n
non-intersecting paths λi : wi � bσ(i) with σ ∈ Sn for 1 ≤ i ≤ n, and a double-
dimer cover on the complement of those paths in G. In light of the Kasteleyn
condition, the factors arising from loops are always 1, and the contribution
of such term is sgn σ

∏n
i=1 Ξ(λi). The statement becomes clear by writing the

right-hand side using the expression in Proposition 2.1 and noting one has the
same sum as on the left-hand side. �

Proposition 2.5 (Wick’s theorem). Fix w1, . . . , wn ∈ V◦ and b1, . . . , bn ∈ V•.
Then,

EG
[
η(w1)ξ(b1) · · · η(wn)ξ(bn)

]
=
∑

σ∈S

sgn σ

n∏

i=1

EG
[
η(wi)ξ(bσ(i))

]
.

Proof. It is a corollary of Propositions 2.4 and 2.3. �

3. Symplectic Fermions on Z
2

Before moving onto the construction of the algebraic structure of symplectic
fermions in Sects. 4 and 5, we take an orthogonal direction and consider the
behaviour of correlation functions EG [η(w1)ξ(b1) · · · η(wn)ξ(bn)] as one lets
G grow to cover the whole plane. In particular, we restrict our attention to
subgraphs of the infinite square lattice Z

2 ⊂ C.
Taking the thermodynamic limit of the (double-)dimer model is a non-

trivial task, which is, moreover, particularly sensitive to the shape of the
boundary of the domains where one studies the model. We consider, here,
the limit of the correlation functions of the fermionic observables; and we do
so along sequences of Temperleyan domains —defined below—, where the ob-
servables have a richer structure. To that end, consider the following partition
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Figure 5. A Temperleyan domain V = V•1 	 V•0 	 V◦ with
a distinguished boundary point (red) and its associated
dimerable graph G

of Z2—see Fig. 5: elements with both coordinates even are called even black
vertices, elements with both coordinates odd are called odd black vertices, and
the rest are called white vertices. Then, let Z

2
•0, Z

2
•1 and Z

2
◦ denote the set of

even black vertices, odd black vertices and white vertices, respectively. This
way, the infinite square lattice is bipartite between black vertices Z2

• = Z
2
•0	Z2

•1

and white vertices Z
2
◦.

3.1. Temperleyan Domains

A subset of vertices V ⊂ Z
2 is said be connected if every two vertices in V

can be connected by a Z
2-nearest-neighbour path within V. A finite connec-

ted subset of vertices V⊂Z
2 is said to be a simply connected domain if there

exists a Jordan curve made of a concatenation of length 1 segments between
nearest neighbours in V such that all the vertices in Z

2\V and no vertex in
V lie in its exterior. The points where this Jordan curve is not smooth are
called the corners of V. Note that it follows that all the vertices of a simply
connected domain have at least 2 nearest neighbours within the domain. A
simply connected domain is called a Temperleyan domain if all of its corners
are even black—see Fig. 5. From the partition of Z2, a Temperleyan domain
inherits a partition V = V•0 	 V•1 	 V◦. Note |V• 	 V•1| = |V◦| + 1.

Let V be a Temperleyan domain and let ∈ V•0 be a distinguished—
even— black boundary point, i.e. a black vertex such that there exists w ∈
Z
2
◦\V◦ satisfying ‖ − w‖ = 1. Define V := V\ { } and let G = (V , E ) de-

note the—dimerable—graph induced by V , i.e. E := {{z, w}⊂V : ‖z−w‖=1}.
Recall from Remark 2.1 that, on subgraphs of Z2 such as G , the holomorphic
and antiholomorphic derivatives give rise to a Kasteleyn matrix. Those deriva-
tives are denoted by ∂ and ∂̄ and act on functions as follows: For f : V −→ C

∂f(z) :=
∑

w∈V
{z,w}∈E

f(w)
w − z

and ∂̄f(z) :=
∑

w∈V
{z,w}∈E

f(w)
w − z

.
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Figure 6. Graphs G•0 (solid) and G•1 (dotted) associated to
the Temperleyan domain V in Fig. 5

3.2. Green’s Functions and 2-point Function

For any graph G = (V, E) and any function on its vertices f : V −→ C, the
laplacian of f at v ∈ V is defined as

ΔGf(v) :=
∑

u∈V
{u,v}∈E

(
f(u) − f(v)

)
.

The 2-point function EG [ η(w)ξ(z) ] on G will be proven to be closely re-
lated to the Green’s function of the laplacian in two associated graphs—see
Proposition 3.1. Let us build those—see Fig. 6.

The graph G•0 = (V•0, E•0) is the one induced by V•0, i.e. E•0 contains
all pairs {b1, b2} ⊂ V•0 such that ‖b1 − b2‖ = 2. Then, for b0 ∈ V•0\ { }, let
G•0(b0, · ) be the Green’s function on G•0 with Dirichlet boundary conditions
at , i.e. the unique solution f : V•0 −→ C to Δ•0f(b) := ΔG•0f(b) = −δb,b0

for all b ∈ V•0\ { } with f( ) = 0. Essentially, G•0 is the Green’s function on
G•0 with Neumann boundary conditions everywhere except at .

As for the odd side, define the boundary of V•1 as the set of odd vertices
b∗ ∈ Z

2
•1\V•1 at Manhattan distance 1 from V, and let it be denoted by

∂V•1. Similarly as in the even case, let G•1 := (V•1 ∪ ∂V•1, E•1) be the graph
induced at distance 2 by V•1 decorated with edges from V•1 to ∂V•1. For
b∗
0 ∈ V•1, let G•1(b∗

0, · ) be the Green’s function on G•1 with Dirichlet boundary
conditions on ∂V•1, i.e. the unique solution f : V•1∪∂V•1 −→ C to Δ•1f(b∗) :=
ΔG•1f(b∗) = −δb∗,b∗

0
for all b∗ ∈ V•1 and satisfying f(b∗) = 0 for all b∗ ∈ ∂V•1.

Note G•0 and G•1 are conjugate to each other in the sense that each edge
of G•0 crosses perpendicularly an edge of G•1 and vice versa.

Remark 3.1. Consider a function f : V −→ C. For b ∈ V•0\ { }, a simple
computation yields ∂∂̄f(b) = Δ•0f•0(b) where f•0 is the restriction of f to
V•0\ { } and extended to by zero. Similarly, for b∗ ∈ V•1, one gets ∂∂̄f(b∗) =
Δ•1f•1(b∗) where f•1 is the restriction of f to V•1 and extended to ∂V•1 by
zero. 
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b∗
Rb∗

L

b+

b−

w̃ b∗
1b∗

2

b1

b2

w

Figure 7. Four Z
2-nearest neighbours of a white vertex

Proposition 3.1. Let w ∈ V◦ be a white vertex not adjacent to . Let b∗
1, b

∗
2 ∈

V•1 and b1, b2 ∈ V•0 be the four Z
2-nearest neighbours of w. Then, for z ∈

V•1 ∪ V•0\ { },

1
2
EG×

V
[ η(w)ξ(z) ] =

⎧
⎪⎪⎨

⎪⎪⎩

1
b1−b2

(
G•0(b1, z) − G•0(b2, z)

)
if z ∈ V•0\ { }

1
b∗
1−b∗

2

(
G•1(b∗

1, z) − G•1(b∗
2, z)

)
if z ∈ V•1

.

Proof. Let f•1 be the restriction of z �→ EG [η(w)ξ(z)] to V•1 extended to ∂V•1

by zero. Theorem 2.2 states ∂̄w̃EG [η(w)ξ(w̃)] = δw,w̃ for w̃, w ∈ V◦. Hence, by
Remark 3.1, for any b∗ ∈ V•1,

Δ•1f•1(b∗) = (∂∂̄)b∗EG [η(w)ξ(b∗)]

=
∑

w̃∈V
{b∗,w̃}∈E

∂̄w̃EG
[
η(w)ξ(w̃)

]

w̃ − b∗ =
δb∗

1 ,b∗

w − b∗
1

+
δb∗

2 ,b∗

w − b∗
2

.

Moreover, f•1 satisfies the right boundary conditions, i.e. f•1(b∗) = 0 for b∗ ∈
∂V•1, and so, the claim follows from the uniqueness of the Green’s function
and w − b∗

1 = b∗
2 − w. Since w is not adjacent to , the proof for even black

vertices is identical. �

Remark 3.2. Take the vertices b∗
1, b

∗
2, b1, b2 in Proposition 3.1 to satisfy the

relation b∗
1 − b∗

2 = −i(b1 − b2)—see Fig. 7. The functions f•0(b) := G•0(b1, b)−
G•0(b2, b) and f•1(b∗) := G•1(b∗

1, b
∗) − G•1(b∗

2, b
∗) defined on V•0 and V•1 ∪

∂V•1, respectively, are harmonic conjugates of each other on V◦\ {w} in the
following sense: For any w̃ ∈ V◦\ {w}, let b+, b− ∈ V•0 be the Z

2-nearest
neighbours of w̃, and let b∗

L, b∗
R ∈ V•1 ∪ ∂V•1 be the Z

2-nearest neighbours of
w̃ sitting on the left and right, respectively, when going from b− to b+ through
w̃—see Fig. 7. Then,

f•0(b+) − f•0(b−) = f•1(b∗
R) − f•1(b∗

L).
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3.3. Thermodynamic Limit

From Proposition 3.1, one expects the 2-point function to converge to the
derivative of the full-plane Green’s function on the two sublattices Z2

• and Z
2
•1

as one lets the Temperleyan domain V grow to cover the whole Z
2. The full-

plane Green’s function G is the unique function on Z
2
•0 satisfying G(0) = 0,

ΔG(z) = −δz,0 with asymptotic behaviour

G(z) = − 1
2π

log |z| + C + O

(
1

|z|2
)

as |z| → ∞, where C = −(γ + 3
2 log 2)/2π and γ is Euler’s constant [22].

Remark 3.3. Similarly as in Remark 3.2, one can build two functions in terms
of the full-plane Green’s function that are harmonic conjugates of each other
on Z

2
◦ except for one point. Fix a white vertex w ∈ Z

2
◦, and let b1, b2 ∈ Z

2
•0 and

b∗
1, b

∗
2 ∈ Z

2
•1 be its four Z2-nearest neighbours satisfying b∗

1−b∗
2 = −i(b1−b2) as

in Remark 3.2—see Fig. 7. Then, the functions F•0(b) := G(b1 − b)−G(b2 − b)
and F•1(b∗) := G(b∗

1 − b∗) − G(b∗
2 − b∗) defined, respectively, on Z

2
•0 and

Z
2
•1 are harmonic conjugate of each other on Z

2
◦\ {w} in the same sense as in

Remark 3.2. 


For the rest of this section, fix a sequence (Vn)n∈N of Temperleyan do-
mains with distinguished black boundary points n ∈ Vn

•0 that converges to
Z
2, i.e. for every k ∈ N there exists N ∈ N such that B�(0; k) ⊂ Vn for all

n ≥ N , where B�(z; r) :=
{
w ∈ Z

2 : ‖z − w‖ < r
}
. Let Vn ↑ Z

2 denote such
convergence. For such a sequence, let Gn, Gn

•0, Gn
•1, G

(n)
•0 and G(n)

•1 denote the
objects described in the previous subsections for the Temperleyan domain Vn.

Theorem 3.2. For any w ∈ Z
2
◦ and z ∈ Z

2
•0 	 Z

2
•1,

1
2
EGn

[
η(w)ξ(z)

] n→∞−−−−−−−→ G(z − w1) − G(z − w2)
w1 − w2

where w1, w2 ∈ Z
2
•0 	 Z

2
•1 are the two Z

2-nearest neighbours of w of the same
parity as z.

As a straight-forward corollary, one gets the existence of all correlation
functions of discrete symplectic fermions in the thermodynamic limit along
Temperleyan domains.

Corollary 3.2.1. Fix w1, . . . , wk ∈ Z
2
◦ and z1, . . . , zk ∈ Z

2
•.

lim
n→∞EGn

[
η(w1)ξ(z1) · · · η(wk)ξ(zk)

]
=

∑

σ∈Sn

sgn σ

k∏

i=1

(

lim
n→∞EGn

[
η(wi)ξ(zσ(i))

]
)

.

Proof. It is a consequence of Wick’s theorem—Proposition 2.5—
and Theorem 3.2. �

Moreover, note that, if one fixes w ∈ Z
2
◦, the asymptotic behaviour of

limn→∞ EGn [η(w)ξ(z)] as |z| → ∞ is proportional to |z −w|−1 +O(|z −w|−2),
which justifies the discretisation of symplectic fermions as a suitable one [17].
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3.4. Proof of Theorem 3.2

Because of the different boundary conditions in each of the graphs Gn
•0 and

Gn
•1, the proof of Theorem 3.2 does not follow the same lines in both cases. Let

us treat first the simpler case: The odd half, in which the boundary conditions
are Dirichlet everywhere on the boundary of Gn

•1.

Proposition 3.3. Fix two odd black vertices b∗
1, b

∗
2 ∈ Z

2
•1 satisfying ‖b∗

1−b∗
2‖ = 2.

Then, for all b∗ ∈ Z
2
•1,

G(n)
•1 (b∗

1, b
∗) − G(n)

•1 (b∗
2, b

∗) n→∞−−−−−−−→ G(b∗ − b∗
1) − G(b∗ − b∗

2).

Proof. Consider the function h
(n)
•1 on Vn

•1∪∂Vn
•1 given by h

(n)
•1 := f

(n)
•1 −F•1 with

f
(n)
•1 as in Remark 3.2 and F•1 as in Remark 3.3. It satisfies Δ•1h

(n)
•1 (b∗) = 0

for b∗ /∈ ∂Vn
•1 and h

(n)
•1 (b∗) = −G(b∗ − b∗

1) + G(b∗ − b∗
2) for all b∗ ∈ ∂Vn

•1. The
maximum principle dictates, for any b∗ ∈ V•1,

|h(n)
•1 (b∗)| ≤ max

b∗∈∂Vn
•1

|h(n)
•1 (b∗)| = max

b∗∈∂Vn
•1

|G(b∗ − b∗
1) − G(b∗ − b∗

2)|,

and the asymptotic behaviour of G makes the function b∗ �→ G(b∗ − b∗
1) −

G(b∗ − b∗
2) be O(1/|b∗|) as |b∗| → ∞. Then, the property Vn ↑ Z

2 ensures
|h(n)

•1 (b∗)| → 0 as n → ∞ since the boundary ∂Vn
•1 only gets farther from b∗

1

and b∗
2 as n grows. �

The same statement for the graphs Gn
•0 is slightly more intricate to prove

as a consequence of the boundary conditions, which are Neumann everywhere
except at n, where they are Dirichlet. The proof is simple if one takes a
clever choice of distinguished points. For a distinguished point ˜

n possibly
different from n, let G̃n and G̃(n)

•0 denote the objects described in the previous
subsections.

Proposition 3.4. Fix two even black vertices b1, b2 ∈ Z
2
•0 satisfying ‖b1 − b2‖ =

2. For b ∈ Z
2
•0, let ˜

n ∈ Vn
•0 be any of the black boundary vertices that is

closest to b. Then,

G̃(n)
•0 (b1, b) − G̃(n)

•0 (b2, b)
n→∞−−−−−−−→ G(b − b1) − G(b − b2).

Proof. Let the vertices b∗
1, b

∗
2 ∈ Z

2
•1 and the functions f

(n)
•1 and f̃

(n)
•0 be as in

Remark 3.2, and let the functions F•0 and F•1 be as in Remark 3.3. Consider
the functions h

(n)
•1 and h

(n)
•0 on Vn

•1 and Vn
•0 given by h

(n)
•0 := f

(n)
•0 − F•0 and

h
(n)
•1 := f

(n)
•1 − F•1, respectively. Note they are harmonic conjugates of each

other except at the edges {b∗
1, b

∗
2} and {b1, b2}. Note, too, that they are har-

monic on their domains. Thus, by Harnack’s estimate, there exists a constant
C > 0 such that

∣
∣h

(n)
•1 (b̃∗

1) − h
(n)
•1 (b̃∗

2)
∣
∣ ≤ C

maxb∗∈∂Vn•1
|h(n)

•1 (b∗)|
minb∗∈∂Vn

•1
‖b̃∗

1 − b∗‖
= C

maxb∗∈∂Vn•1
|F•1(b∗)|

minb∗∈∂Vn
•1

‖b̃∗
1 − b∗‖
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Figure 8. A path γn (orange) from b ∈ Vn
•0 (dark blue) to the

closest boundary point ˜
n ∈ Vn

•0 (green), and a point bi ∈ Vn
•0

(light blue) and the largest ball centred thereat contained in
Vn

•0 (Color figure online)

for any b̃∗
1, b̃

∗
2 ∈ Vn

•1 satisfying ‖b̃∗
1 − b̃∗

2‖ = 2. Consider any of the shortest Z2
•0-

nearest-neighbour path γn := (b0, b1, . . . , bk) in Vn
•0 from b0 = b to bk = ˜

n—
see Fig. 7. Note k = ‖˜

n − b‖. Let b∗
L,i, b

∗
R,i ∈ Z

2
•1 be the odd black vertices,

respectively, to the left and right when going from bi−1 to bi. Then,

∣
∣h

(n)
•0 (˜

n) − h
(n)
•0 (b)

∣
∣ =

∣
∣
∣
∣
∣

‖˜n−b‖∑

i=1

(
h
(n)
•0 (bi) − h

(n)
•0 (bi−1)

)
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

‖˜n−b‖∑

i=1

(
h
(n)
•1 (b∗

R,i) − h
(n)
•1 (b∗

L,i)
)
∣
∣
∣
∣
∣

≤
‖˜n−b‖∑

i=1

∣
∣
∣h

(n)
•1 (b∗

R,i) − h
(n)
•1 (b∗

L,i)
∣
∣
∣

≤ C

‖˜n−b‖∑

i=1

maxb∗∈∂Vn•1
|F•1(b∗)|

‖˜
n − b‖ − i + 1

n→∞−−−−−−−→ 0

since, for large n, the sum of inverses grows like log(‖˜
n‖) as n → ∞ but

F•1 evaluated on the boundary of Vn goes to 0 as 1/‖˜
n‖ by the asymptotic

behaviour of G. Moreover, h
(n)
•0 (˜

n) −→ 0 as n → ∞ again by the asymptotic
behaviour of G, which completes the proof. �

So as to prove the same statement for arbitrary choices of distinguished
boundary points n, one needs to first prove an auxiliary result about dimers
on Temperleyan domains. In a dimer configuration ω ∈ D(G), say that an edge
e is open if e ∈ ω.
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˜
n

n

Figure 9. A tree on Gn
•0 and the dimer configurations on Gn

and G̃n associated to it through the Temperley bijection. In
purple the dimers that are open both in Gn and G̃n

Corollary 3.4.1. Fix two Z
2-nearest neighbours w ∈ Z

2
◦ and b ∈ Z

2
•. Then,

PG̃n

[
{w, b} open

] n→∞−−−−−−−→ 1
4
.

Proof. It follows from Corollary 2.2.1 and the values of the full-plane Green’s
function in a neighbourhood of the origin: G(0) = 0 and G(z) = 1/4 for all
z ∈ Z

2
•0 with ‖z‖ = 2. �

Note the following lemma differs from the previous corollary by just one
tilde, i.e. in the following result one allows for any choice of distinguished
points n ∈ Vn

•0.

Lemma 3.5. Fix two Z
2-nearest neighbours w ∈ Z

2
◦ and b ∈ Z

2
•0. Then,

PGn

[
{w, b} open

] n→∞−−−−−−−→ 1
4
.

Proof. The Temperley bijection provides couplings between uniform spanning
trees on Gn

•0, and uniform dimers on Gn and G̃n as shown in Fig. 9. Let τn and
τ̃n be the bijections between the set T n

•0 of spanning trees on Gn
•0, and D(Gn)

and D(G̃n), respectively. In turn, those couplings provide a coupling between
D(Gn) and D(G̃n) as follows: Let b, b′ ∈ Z

2
•0 and b∗

1, b
∗
2 ∈ Z

2
•1 be the Z

2-nearest
neighbours of w. Consider the event An ⊂ T n

•0 that the branch from n to ˜
n

contains the edge {b, b′}. For a tree T /∈ An, the dimer {w, b} has the same
state simultaneously—open or closed—in τn(T ) and τ̃n(T )—see Fig. 9. Then,
if one proves the probability of An to converge to 0 the proof is complete. This
can be accomplished using Wilson’s algorithm to generate uniform spanning
trees and the Beurling estimate: Consider the coupling (bijection) φ between
T n

•0 and the set T n
•1 of spanning trees on Gn

•1 wired at the boundary ∂Vn
•1—ee

Fig. 10. Then, φ(An) is contained in the event Bn ⊂ T n
•1 that the branch of b∗

1

and the branch of b∗
2 do not overlap—see Fig. 10. Using Wilson’s algorithm,

the probability of Bn can be bounded from above by the probability of the
event Cn that a random walk on Gn

•1 started at b∗
2 hits the boundary ∂Vn

•1

before hitting a branch connecting b∗
1 to ∂Vn

•1. The Beurling estimate asserts
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Figure 10. Left: The coupling between T n
•0 and T n

•1. Right:
An instance of φ(An) ⊂ Bn. The vertices b, b′ ∈ Vn

•0 and
b∗
1, b

∗
2 ∈ Vn

•1 highlighted in blue.

there exists a constant C > 0 such that

P[Cn] ≤ C

(
1

ming∈∂Vn•1
‖g2 − g‖

) 1
2

,

which converges to 0 as n → ∞ by Vn ↑ Z
2. Tracing back the couplings, this

implies P[An] −→ 0 as n → ∞. �

Note, again, that the following proposition differs from Proposition 3.4
by a few tildes.

Proposition 3.6. Fix two even black vertices b1, b2 ∈ Z
2
•0 satisfying ‖b1 − b2‖ =

2. Then, for any b ∈ Z
2
•,

G(n)
•0 (b1, b) − G(n)

•0 (b2, b)
n→∞−−−−−−−→ G(b − b1) − G(b − b2).

Proof. The arguments have the same flavour as in the proof of Proposition 3.4,
but now taking a fixed path from b∗ to b∗

1 and using Corollary 2.2.1, Lemma 3.5
and the values of the full-plane Green’s function G(0) = 0 and G(z) = −1/4
for z = ±1,±i. �

4. Local Fields and Current Modes

In what follows, the attention is brought onto discrete symplectic fermions on
arbitrary domains of Z2 with no holes—see Sect. 3. For the rest of the text,
the Kasteleyn matrix on any such domain is fixed to be ∂—see Remark 2.1.

In particular, in this section, the construction of the space of local fields
of symplectic fermions on the square lattice is presented. This is the space
which later on will be shown to carry a representation of the Virasoro algebra.
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In the continuum [17], the fermions η and ξ can be put in an equal
footing by defining the two-component fermion field χ = (χ+, χ−), where
χ+(z) = ∂ξ(z) and χ−(z) = η(z). The algebraic content of symplectic fermions
in the Vertex Operator Algebra (VOA) sense is encoded in the so called current
modes of χ i.e. the coefficients of the formal series χα(z) =

∑
k∈Z

χα
k z−k−1.

Although no such construction is intended to be translated to the discrete,
there are two tools of discrete complex analysis on Z

2 introduced in [13] that
allow one to define such current modes: a bilinear notion of discrete integration,
and a family of functions that mimic the properties of the complex Laurent
monomials C � z �→ zn for n ∈ Z. Let us review them here.

For the rest of the section, let ‖ · ‖ denote the Manhattan norm, i.e.
‖z‖ = |Re z| + |Im z|, and let B�(x; r) denote the ball of radius r ≥ 0 centred
at x ∈ Z

2 with respect to the Manhattan distance.

4.1. Preliminaries: Discrete Integration and Discrete Monomials

Discrete integration is performed along dual contours. A dual contour γ =
(p0, . . . , pn) with p0 = pn is a sequence of consecutively nearest plaquette
centres that does not intersect itself, i.e. pi ∈ (Z2)∗ = (Z + 1

2 )2 ⊂ C for
i = 0, . . . , n and |pi −pi−1| = 1 for i = 1, . . . , n and such that p1, . . . , pn are all
distinct. Then, int�

•γ ⊂ Z
2
• and int�

◦γ ⊂ Z
2
◦ denote, respectively, the set of black

and white vertices enclosed by γ—see Fig. 11—and int�γ := int�
•γ ∪ int�

◦γ. A
dual contour is said to be positively oriented if it turns counterclockwise around
its interior.

For any vector space V over C and any pair of functions f : Z2
◦ −→ C

and g : Z2
• −→ V, one defines the integral

“
γ

f(z◦)g(z•)d�z :=
n∑

k=1

(pk − pk−1)f(wk)g(bk),

where wk ∈ Z
2
◦ and bk ∈ Z

2
• are the white and black vertices across the

dual edge {pk, pk−1} with respect to each other—see Fig. 11. The definition is
identical when f is V-valued and g is C-valued.

wk

bk

pkpk−1

Figure 11. A dual contour and the vertices in its interior
highlighted in blue
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This notion of integration is closely related to the notion of discrete dif-
ferentiation given by the derivatives

∂f(z) :=
∑

w∈Z2
|z−w|=1

f(w)
w − z

and ∂̄f(z) :=
∑

w∈Z2
|z−w|=1

f(w)
w − z

(4.1)

through the discrete Stoke’s formula: Let γ be a positively oriented dual con-
tour, then“

γ

f(z◦)g(z•)d�z = i
∑

b∈int�
•γ

∂̄f(b)g(b) + i
∑

w∈int�
◦γ

f(w)∂̄g(w).

A function f is said to be discrete holomorphic at z ∈ Z
2 if ∂̄f(z) = 0.

Then, Stokes’ formula implies that, for two positively oriented dual contours
γ1, γ2 satisfying that f and g are discrete holomorphic on the symmetric
differences int�

•γ1�int�
•γ2 and int�

◦γ1�int�
◦γ2 respectively, one has›

γ1
f(z◦)g(z•)d�z =

›
γ2

f(z◦)g(z•)d�z.
Moreover, one also has discrete integration by parts: if f, g : Z2

◦ �−→ C are
discrete holomorphic on a discrete neighbourhood of γ, it follows that“

γ

∂f(z•)g(z◦)d�z = −
“

γ

f(z◦)∂g(z•)d�z.

As for the discrete Laurent monomials, a modified version of the ones
constructed in [13] shall be considered1. In particular, one should distribute the
discrete pole in the black sublattice of Z2 among the four Z2

•-nearest neighbours
of the origin—see the fifth property in the following proposition.

Proposition 4.1 (Proposition 2.1 in [13]). There exists a unique family of func-
tions {z �→ z[n]}n∈Z on Z

2 that satisfies the following properties:
1. For all n ∈ Z, z �→ z[n] has the same π/2 rotational symmetry around

the origin as z �→ zn on C.
2. For all z ∈ Z

2, z[0] = 1.
3. For any z ∈ Z

2, there exists N ∈ N such that z[n] = 0 for all n ≥ N .
4. For n < 0, z[n] −→ 0 as ‖z‖ → ∞.
5. The first negative-power monomial satisfies

1
2π

∂̄z[−1] =
1
2
δz,0 +

1
4

∑

‖w‖=1

δz,w +
1
8

∑

w=±1±i

δz,w.

6. For n ≥ 0, for all z ∈ Z
2 ∂̄z[n] = 0. For n < 0, there exists R > 0 such

that ∂̄z[n] = 0 if ‖z‖ > R.
7. For any n,m ∈ Z, “

γ

z
[n]
• z

[m]
◦ d�z = 2πiδn+m+1,

1For the results presented here, the modification is not essential—one could reproduce the
rest of the results in this paper with the original choice of Laurent monomials. Nevertheless,
the monomials in [13] do not allow one to build both the holomorphic and antiholomorphic
sectors simultaneously with the expected commutativity among them.
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for any large enough positively oriented dual contour γ that encircles the
origin.

Define then, for n ∈ Z≥0, the null radius RN
n of z �→ z[n] as the largest

radius r ∈ Z≥0 that satisfies the condition

‖z‖ ≤ r ⇒ z[n] = 0.

Define also, for n ∈ Z, the singular radius RS
n of z �→ z[n] as the smallest

radius r ∈ Z≥0 that satisfies the condition

‖z‖ > r ⇒ ∂̄z[n] = 0.

Naturally RS
n = 0 for n ≥ 0.

4.2. Local Fields and Null Fields

From a CFT perspective, a field F is an object that can be evaluated at any
point z on the domain of the model in question to produce a meaningful quan-
tity F (z). Such field is said to be local if F (z) depends only on a neighbourhood
of z, and, if w is another point, F (z) and F (w) have the same dependence on
their respective neighbourhoods. In other words, a local field F is completely
determined by a translation invariant rule and its value at a distinguished
point, for example, the origin F (0).

As an example, in our model of symplectic fermions in the square lattice,
one could interpret η(0)ξ(1) and η(0 + 2i)ξ(1 + 2i) as the same local field
evaluated at the points 0 and 2i. Note, however, that one should specify the
domain G so as to know which precise objects the above are, and therefore, to
make sense of such objects independently of G, one needs to consider a more
abstract construction.

With this preamble in mind, one defines a local field of the discrete sym-
plectic fermions on Z

2 as an element of the polynomial ring

Floc := C
[
ϕ̂(z)ϕ̂(w)

∣
∣ w, z ∈ Z

2
]
,

which should be heuristically interpreted as the value of such field at 0. More-
over, one wants to think of ϕ̂ as η̂ on white vertices and ξ̂ on black vertices.
For that reason, the notation η̂(w)ξ̂(b) is used interchangeably with ϕ̂(w)ϕ̂(b)
when the colours of the vertices w and b are known to be white and black,
respectively; and similarly for pairs ξ̂η̂, η̂η̂ and ξ̂ξ̂. The product on Floc is
stressed by a dot · whenever convenient.

Example 4.1. For z, w ∈ Z
2
◦, the linear combinations

χ̂−(w)χ̂+(z) := η̂(w)∂ξ̂(z), χ̂+(w)χ̂−(z) := ∂ξ̂(w)η̂(z),

χ̂+(w)χ̂+(z) := ∂ξ̂(w)∂ξ̂(z), and χ̂−(w)χ̂−(z) := η̂(w)η̂(z).

are local fields, where ∂ is as defined in Eq. (4.1). 


Informally, a field involves the product and linear combination of ϕ(z)
for some z ∈ Z

2 in a neighbourhood of 0. More precisely, the support of
a local field F ∈ Floc is defined as the smallest subset S ⊂ Z

2 such that
F ∈ C[ ϕ̂(z)ϕ̂(w) |w, z ∈ S ] ⊂ Floc, and it is denoted by supp� F .
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w

b

G

Figure 12. A field (purple) evaluated on G at w and b and
a null field (green) with a radius of nullity (red) thereof

Given a domain V ⊂ Z
2 with no holes that induces a dimerable graph

G, the way a local field associates a random variable on D2(G) to a point
z ∈ V is through the map evG

z , which is defined on monomials as follows: Let
z1, . . . , zn+m ∈ Z

2 be n+m ∈ 2N vertices such that n of them are white and m
of them are black, and consider the monomial M = ϕ̂(z1)ϕ̂(z2) · · · ϕ̂(zn+m−1)
ϕ̂(zn+m). Then, if n �= m or zi+z /∈ V for some 1 ≤ i ≤ n+m, set evG

z (M) ≡ 0.
Otherwise, let σ ∈ S2n be the permutation satisfying (zσ(1), zσ(2), . . . , zσ(2n−1),

zσ(2n)) = (w1, b1, . . . , wn, bn) for w1, . . . , wn ∈ Z
2
◦ and b1, . . . , bn ∈ Z

2
•. Define

evG
z (M) :=

{
sgn σ η(w1 + z)ξ(b1 + z) · · · η(wn + z)ξ(bn + z) if z ∈ Z

2◦

(−1)n sgn σ η(b1 + z)ξ(w1 + z) · · · η(bn + z)ξ(wn + z) if z ∈ Z
2•

.

Note that choosing a different ordering of the vertices wi, bi leads to the same
random variable—see its definition in Sect. 2.1. The definition of evG

z is com-
pleted by setting evG

z (1) ≡ 1 and extending linearly to the whole Floc.
From the point of view of CFT, the relevant quantities of a model are the

correlation functions of fields evaluated at macroscopically separated points.
In our construction, those quantities are expectation values of local fields eval-
uated at such points, and for that reason, one should identify any two local
fields that lead to the same expectation values when tested against local fields
at a large enough distance. This motivates the following definition of null fields.

A local field F ∈ Floc is said to be null if there exists R > 0 such that

EG
[
evG

z

(
F · ϕ̂(z1) · · · ϕ̂(z2n)

)]
= 0

for any domain G = (V, E) of Z2 with no holes, any z1, . . . , z2n ∈ Z
2\B�(0;R)

and any z ∈ V that satisfy B�(z; rad F ) ⊂ V and z + zi ∈ V for 1 ≤ i ≤ 2n.
Such an R is called a radius of nullity of F .

Example 4.2. Note the evaluation map is built to encode the anticommutativ-
ity of the fermions: the local field η̂(w)ξ̂(b) + ξ̂(b)η̂(w) is null for all w ∈ Z

2
◦

and b ∈ Z
2
•. 


Example 4.3. By Corollary 2.1.1, local fields of the form η̂(w1)ξ̂(b1) · · ·
η̂(wn)ξ̂(bn) ∈ Floc with wi = wj or bi = bj for some 1 ≤ i �= j ≤ n are
null. 
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Example 4.4. For w,w0 ∈ Z
2
◦, the field η̂(w0)∂̄ξ̂(w), where ∂̄ is as in Equation

(4.1), is null if and only if w �= w0 by Wick’s theorem and Theorem 2.2.
Similarly, for b, b0 ∈ Z

2
•, the field ∂̄η̂(b)ξ̂(b0) is null if and only if b �= b0. 


The set of null fields is denoted by Fnull ⊂ Floc. Note it is a vector
subspace, but it is not a subalgebra: Take the null fields F1 = η̂(w)∂̄ξ̂(0) and
F2 = η̂(0)∂̄ξ̂(w) for some w ∈ Z

2
◦\{0}. Then, F1 · F2 is not null by Wick’s

theorem and Theorem 2.2.

Remark 4.5. Let F ∈ Floc be a local field. By virtue of Wick’s theorem and
Theorem 2.2, the fields defined in Example 4.4 satisfy

η̂(w0)∂̄ξ̂(w) · F = δw,w0F + Fnull and ∂̄η̂(b)ξ̂(b0) · F = −δb,b0F + Fnull

for w,w0 ∈ Z
2
◦\supp�

◦F and b, b0 ∈ Z
2
•\supp�

•F . Furthermore, ∂̄χ̂α(z)χ̂β(w) ·F
and χ̂α(z)∂̄χ̂β(w) · F—for z, w in the right sublattice of Z2 depending on α, β
in each case—are null as long as z �= w, and z, w are at least at distance 2
from supp�F . 


4.3. Fermionic Current Modes

Let γ, γ+ be a pair of positively oriented dual contours. Define then, for n,m ∈
Z and α, β ∈ {+,−}, the local field

(χ̂α
mχ̂β

n)γ,γ+ :=
1
2π

“
γ+

d�w

“
γ

d�z w
[m]
• z

[n]
• χ̂α(w◦)χ̂

β(z◦) .

For this local field to produce something meaningful, the contours γ and γ+

need to be away from each other. To that end, given two dual contours γ =
(p0, . . . , pn) and γ̃ = (p̃0, . . . , p̃m), define dist(γ, γ̃) := min0≤i≤n; 0≤j≤m |pi−p̃j |,
and for a set S ⊂ Z

2 define dist(γ, S) := min0≤i≤n; x∈S |pi − x|.

Lemma 4.2. Let F ∈ Floc be a local field and let γ1, γ
+
1 and γ2, γ

+
2 be pairs of

positively oriented dual contours satisfying supp�F ∪B�
(
0;RS

n ∨RS
m

)
⊂ int�γi ⊂

int�γ+
i and dist(γi, γ

+
i ) > 1 and dist(γi, supp

�F ) > 1 for i = 1, 2. Then, for
α, β ∈ {+,−},

(χ̂α
mχ̂β

n)γ1,γ+
1

· F − (χ̂α
mχ̂β

n)γ2,γ+
2

· F ∈ Fnull.

Proof. Take a positively oriented dual contour γ+ satisfying that γ+, γ+
i are

non-overlapping and int�γ+
i ⊂ int�γ+ for i = 1, 2—see Fig. 13. Then, using

Stokes’ formula, by Remark 4.5 and the fact that γi is sufficiently away from
supp�F and γ+

i ,
[(

χ̂
α
mχ̂

β
n

)
γ

i
,γ+ − (

χ̂
α
mχ̂

β
n

)
γ

i
,γ+

i

]
· F =

1

2π

“
γi

d
�
z z

[n]
•

[ “
γ+

−
“

γ+
i

]

d
�
w w

[m]
• χ̂

α
(w◦)χ̂

β
(z◦) · F

=
i

2π

“
γi

d
�
z z

[n]
•

∑

w•∈int�
•γ+

w• /∈int�•γ
+
i

w
[m]
• ∂̄χ̂

α
(w•)χ̂

β
(z◦) · F

= 0 + Fnull .
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Figure 13. Left: Definition of χ̂α
mχ̂β

n(F +Fnull). The support
of F in green, the ball B�(0;RS

n ∨RS
m) in orange, the contours

γ, γ+ in blue. Right: Proof of Lemma 4.2. The contours γ1, γ
+
1

in red, γ2, γ
+
2 in blue and γ+ in dashed yellow (Color figure

online)

Similar arguments prove (χ̂α
mχ̂β

n)γ1,γ+ · F − (χ̂α
mχ̂β

n)γ2,γ+ · F to be null.
Writing

(χ̂α
mχ̂β

n)γ1,γ+
1
·F − (χ̂α

mχ̂β
n)γ2,γ+

2
· F =

[
(χ̂α

mχ̂β
n)γ1,γ+

1
· F − (χ̂α

mχ̂β
n)γ1,γ+ · F

]

+
[
(χ̂α

mχ̂β
n)γ1,γ+ · F − (χ̂α

mχ̂β
n)γ2,γ+ · F

]

+
[
(χ̂α

mχ̂β
n)γ2,γ+ · F − (χ̂α

mχ̂β
n)γ2,γ+

2
· F
]
,

it becomes clear that the claim holds true. �

Lemma 4.3. Let F ∈ Fnull be a null field and let γ, γ+ be a pair of positively
oriented dual contours satisfying supp�F ∪ B�(0;RS

n ∨ RS
m) ⊂ int�γ ⊂ int�γ+

and dist(γ, γ+) > 1 and dist(γ, supp�F ) > 1. Then, (χ̂α
mχ̂β

n)γ,γ+ · F is null too
for any α, β ∈ {+,−}.

Proof. Let RF be a radius of nullity of F , and take any R > 0 big enough such
that there exists a pair γ̃, γ̃+ of positively oriented dual contours satisfying

B�(0;RF + 2) ⊂ int�γ̃ ⊂ int�γ̃+ ⊂ B�(0;R − 2),

and dist(γ̃, γ̃+) > 1. By nullity of F , it is clear that R is a radius of nullity of
(χ̂α

mχ̂β
n)γ̃+,γ̃ · F . By Lemma 4.2, (χ̂α

mχ̂β
n)γ+,γ · F − (χ̂α

mχ̂β
n)γ̃+,γ̃ · F is null too,

and so the claim follows. �

The two lemmas above are all one needs so as to check the well-definedness
of the following linear operators on the space of correlation-equivalent local
fields

F := Floc/Fnull.
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Let F ∈ Floc be a local field. For n,m ∈ Z, define

χ̂α
mχ̂β

n(F + Fnull) := (χ̂α
mχ̂β

n)γ,γ+ · F + Fnull,

where γ, γ+ are positively oriented dual contours satisfying—see Fig. 13—

supp�F ∪ B�(0;RS
n ∨ RS

m) ⊂ int�γ ⊂ int�γ+,

and dist(γ, γ+) > 1. These operators are referred to as the current modes of
the fermions.

4.4. Anticommutation Relations

Take the standard definition of the anticommutators of the current modes:
{
χ̂α

n, χ̂β
m

}
:= χ̂α

nχ̂β
m + χ̂β

mχ̂α
n,

χ̂γ
k

{
χ̂α

n, χ̂β
m

}
χ̂δ

l := χ̂γ
kχ̂α

n ◦ χ̂β
mχ̂δ

l + χ̂γ
kχ̂β

m ◦ χ̂α
nχ̂δ

l ,

which are again linear operators on F . For x ∈ Z, let δx := δx,0. Let dαβ be
an antisymmetric symbol with d−+ = 1.

Proposition 4.4. The fermion modes satisfy, for all n,m ∈ Z,
{
χ̂α

n, χ̂β
m

}
= n δn+mdαβ idF ,

and χ̂γ
k{χ̂α

n, χ̂β
m}χ̂δ

l = n δn+mdαβχ̂γ
kχ̂δ

l .

Proof. Let us consider only the case {χ̂−
n , χ̂+

m}—the rest of cases are proven
with similar computations. Fix F ∈ Floc and take three non-intersecting pos-
itively oriented dual contours γ−, γ, γ+ satisfying supp�F ∪ B�(0;RS

n ∨ RS
m) ⊂

int�γ− ⊂ int�γ ⊂ int�γ+, and dist(supp�F, γ−) > 1 and dist(γ, γ±) > 1. Recall
from Example 4.2 that η̂(w)ξ̂(b) · F = −ξ̂(b)η̂(w) · F + Fnull for any F ∈ Floc.
Then, the following chain of equalities holds modulo null fields, by Stokes’ for-
mula, the integration by parts formula, Remark 4.5, and the integral properties
of the discrete monomials—Proposition 4.1—:
[(

χ̂
−
n χ̂

+
m

)
γ−,γ

+
(
χ̂

+
mχ̂

−
n

)
γ,γ+

]
· F =

1

2π

“
γ

d
�
w

“
γ−

d
�
z w

[n]
• z

[m]
• η̂(w◦)∂ξ̂(z◦) · F

+
1

2π

“
γ+

d
�
z

“
γ

d
�
w w

[n]
• z

[m]
• ∂ξ̂(z◦)η̂(w◦) · F

=
1

2π

“
γ

d
�
w w

[n]
•

[ “
γ−

−
“

γ+

]

d
�
z z

[m]
• η̂(w◦)∂ξ̂(z◦) · F

= − m

2π

“
γ

d
�
w w

[n]
•

[ “
γ−

−
“

γ+

]

d
�
z z

[m−1]
◦ η̂(w◦)ξ̂(z•) · F

=
im

2π

“
γ

d
�
w w

[n]
•

∑

z◦∈int�
◦γ+

z◦ /∈int�◦γ−

z
[m−1]
◦ η̂(w◦)∂̄ξ̂(z◦) · F

=
im

2π

“
γ

d
�
w w

[n]
• w

[m−1]
◦ F

= −mδn+m F

= nδn+m F ,

which completes the proof for α = − and β = +. �
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5. Virasoro Representation on Local Fields

The CFT of symplectic fermions [17] suggests that, from the fermion current
modes, one can build operators satisfying the Virasoro relations—see Sect. 1.
Doing so, the space of local fields F can be rendered a representation of the
Virasoro algebra. In particular, the Virasoro modes are built through a Sug-
awara construction, i.e. as an infinite sum that is quadratic on the fermion
modes. In this context, the Sugawara construction is justified by the following
truncation property.

Lemma 5.1. Let F ∈ Floc be a local field. There exists N ∈ N such that

χ̂α
mχ̂β

n(F + Fnull) = 0 + Fnull

for all n ≥ N and all m ∈ Z and α, β ∈ {+,−}.

Proof. Fix m ∈ Z. Take N ∈ N large enough such that there exists a positively
oriented dual contour γ satisfying supp�F ⊂ int�γ ⊂ B�(0;RN

N − 1). Such
a contour always exists since RN

n grows with n—see Proposition 4.1. Then,
clearly (χ̂α

mχ̂β
n)γ,γ+ · F = 0 for any γ+ since the integrand z �→ z[n] vanishes

everywhere along γ. �

5.1. Virasoro Modes

For n ∈ Z, the Virasoro modes are defined as the linear operators

Ln :=
∑

k∈Z

0←−−−−→
χ̂+

n−kχ̂−
k

on F , where the normally ordered fermion modes are defined as

k←−−→
χ̂+

mχ̂−
n :=

{
χ̂+

mχ̂−
n if n − m ≥ k

−χ̂−
n χ̂+

m if n − m < k
.

Note that, for all n ∈ Z, the operator Ln on F is well-defined since, by
Lemma 5.1, only finitely many terms yield a non-zero field when Ln acts on a
given field.

The following remark is used later in some proofs.

Remark 5.1. For k < l,

k←−−→
χ̂+

mχ̂−
n −

l←−−→
χ̂+

mχ̂−
n =

{{
χ̂+

m, χ̂−
n

}
if k ≤ n − m < l

0 otherwise
,

for all n,m ∈ Z. 


5.2. Derivation of the Central Charge

The main result in this section states that the Ln satisfy the Virasoro commu-
tation relations with central charge −2. Let [ ·, · ] denote the usual commutator
of operators, i.e. [A,B] := A ◦ B − B ◦ A.
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Theorem 5.2. For n,m ∈ Z

[
Ln,Lm

]
= (n − m)Ln+m +

c

12
(n3 − n)δn+midF

with c = −2.

The proof of this theorem is broken down into three separate lemmas.

Lemma 5.3. For any n,m, l, k ∈ Z,

[
Ln,

m←−−→
χ̂+

l χ̂−
k

]
= −k

−(l+k)←−−−−→
χ̂+

l χ̂−
n+k − l

l+k←−−−→
χ̂+

n+lχ̂
−
k .

Proof. Note that, in the following chain of equalities, all infinite sums of opera-
tors produce a well-defined operator by Lemma 5.1. In particular, this property
justifies pulling the infinite sum out of the commutator. Then, one just needs
to use the identity [AB,CD] = A{B,C}D +{A,C}◦DB −C{A,D}B −AC ◦
{B,D}:

[
Ln, χ̂+

l χ̂−
k

]
=
∑

j∈Z

[
0←−−−−→

χ̂+
n−jχ̂

−
j , χ̂+

l χ̂−
k

]

=
∑

j≥n/2

[
χ̂+

n−jχ̂
−
j , χ̂+

l χ̂−
k

]
−
∑

j<n/2

[
χ̂−

j χ̂+
n−j , χ̂

+
l χ̂−

k

]

=
∑

j≥n/2

(
χ̂+

n−j{χ̂−
j , χ̂+

l }χ̂−
k − χ̂+

l {χ̂−
k , χ̂+

n−j}χ̂−
j

)

−
∑

j<n/2

(
{χ̂−

j , χ̂+
l } ◦ χ̂−

k χ̂+
n−j − χ̂−

j χ̂+
l ◦ {χ̂−

k , χ̂+
n−j}

)

= −l

l+k←−−−→
χ̂+

n+lχ̂
−
k − k

−(l+k)←−−−−→
χ̂+

l χ̂−
n+k ,

where in the last step one needs to observe that for fixed values of l, k ∈ Z,
two and only two of the four terms produce a nonzero operator. A similar
computation yields [Ln, χ̂−

k χ̂+
l ] = −[Ln, χ̂+

l χ̂−
k ], and the claim follows. �

Define 1odd,1even : Z>0 −→ {0, 1} by 1odd(n) = 1 if n is odd and 0
otherwise, and 1even(n) := 1−1odd(n). Define also Θ : Z −→ {0, 1} by Θ(n) =
1 if n ≥ 0 and 0 otherwise.

Lemma 5.4. For any n ∈ Z and m ∈ Z\{0},

∑

k∈Z

m←−−−−−−→
χ̂+

n+m−kχ̂−
k = Ln+m − δn+m

⎛

⎜
⎝

|m|
2

1even(|m|)Θ(−m) +
∑

0<k< |m|
2

k

⎞

⎟
⎠ idF .

Proof. Again, the infinite sums are well-defined by Lemma 5.1. From Re-
mark 5.1 and Proposition 4.4, it follows

∑

k∈Z

m←−−−−−−→
χ̂+

n+m−kχ̂−
k =

∑

k∈Z

0←−−−−−−→
χ̂+

n+m−kχ̂−
k + δn+midF ·

{ ∑
m
2 ≤k<0 k if m < 0

−
∑

0≤k< m
2

k if m > 0
,
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from which the claim follows immediately. �

Lemma 5.5. For any n ∈ Z and m ∈ Z\{0},
∑

k∈Z

k

( m←−−−−−−→
χ̂+

n+m−kχ̂−
k −

−m←−−−−−−→
χ̂+

n+m−kχ̂−
k

)

= −
(

m3 − m

12
+

m

4
1even(|m|)

)

δn+midF .

Proof. Again, the infinite sums are well-defined by Lemma 5.1. From Re-
mark 5.1 and Proposition 4.4, it follows

∑

k∈Z

k

( m←−−−−−−→
χ̂+

n+m−kχ̂−
k −

−m←−−−−−−→
χ̂+

n+m−kχ̂−
k

)

= δn+midF ·
{ ∑

m
2 ≤k<− m

2
k2 if m < 0

−
∑

− m
2 ≤k< m

2
k2 if m > 0

,

from which the claim follows immediately. �

Proof of Theorem 5.2. Using Lemma 5.3,

[
Ln,Lm

]
=
∑

k∈Z

[
Ln,

0←−−−−→
χ̂+

m−kχ̂−
k

]
= −

∑

k∈Z

(

k

−m←−−−−−−→
χ̂+

m−kχ̂−
n+k + (m − k)

m←−−−−−−→
χ̂+

n+m−kχ̂−
k

)

= −
∑

k∈Z

(

(k − n)
−m←−−−−−−→

χ̂+
m+n−kχ̂−

k + (m − k)
m←−−−−−−→

χ̂+
n+m−kχ̂−

k

)

= n
∑

k∈Z

−m←−−−−−−→
χ̂+

m+n−kχ̂−
k − m

∑

k∈Z

m←−−−−−−→
χ̂+

n+m−kχ̂−
k

+
∑

k∈Z

k

( m←−−−−−−→
χ̂+

n+m−kχ̂−
k −

−m←−−−−−−→
χ̂+

m+n−kχ̂−
k

)

.

At this point, it is clear that for m = 0, [Ln,L0] = nLn. For m �= 0, using
Lemmas 5.4 and 5.5 on the above expression,
[
Ln,Lm

]
= (n − m)Ln+m − n δn+m

(
|m|
2

1even(|m|)Θ(m) +
∑

0<k< |m|
2

k

)

idF

+ m δn+m

(
|m|
2

1even(|m|)Θ(−m) +
∑

0<k< |m|
2

k

)

idF

− δn+m

(
m3

12
+

m

6
− m

4
1odd(m)

)

idF .

The proof is finally complete using
∑

0<k< |m|
2

k = (m2 − 2|m|1even(|m|) −
1odd(|m|))/8 and Θ(m) + Θ(−m) = 1 for m �= 0. �
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