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Essential Self-Adjointness of Even-Order,
Strongly Singular, Homogeneous Half-Line
Differential Operators

Fritz Gesztesy , Markus Hunziker and Gerald Teschl

Abstract. We consider essential self-adjointness on the space C∞
0 ((0, ∞))

of even-order, strongly singular, homogeneous differential operators asso-
ciated with differential expressions of the type

τ2n(c) = (−1)n
d2n

dx2n
+

c

x2n
, x > 0, n ∈ N, c ∈ R,

in L2((0, ∞); dx). While the special case n = 1 is classical and it is well
known that τ2(c)

∣
∣
C∞

0 ((0,∞))
is essentially self-adjoint if and only if c ≥ 3/4,

the case n ∈ N, n ≥ 2, is far from obvious. In particular, it is not at all
clear from the outset that

there exists cn ∈ R, n ∈ N, such that

τ2n(c)
∣
∣
C∞

0 ((0,∞))
is essentially self-adjoint (∗)

if and only if c ≥ cn.

As one of the principal results of this paper we indeed establish the exis-
tence of cn, satisfying cn ≥ (4n − 1)!!

/

22n, such that property (*) holds.
In sharp contrast to the analogous lower semiboundedness question,

for which values of c is τ2n(c)
∣
∣
C∞

0 ((0,∞))
bounded from below?,

which permits the sharp (and explicit) answer c ≥ [(2n−1)!!]2
/

22n, n ∈ N,
the answer for (*) is surprisingly complex and involves various aspects of
the geometry and analytical theory of polynomials. For completeness we
record explicitly,

c1 = 3/4, c2 = 45, c3 = 2240
(

214 + 7
√

1009
)/

27,

and remark that cn is the root of a polynomial of degree n − 1. We
demonstrate that for n = 6, 7, cn are algebraic numbers not expressible
as radicals over Q (and conjecture this is in fact true for general n ≥ 6).
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1. Introduction

Consider the 2nth-order differential expression

τ2n(c) = (−1)n d2n

dx2n
+

c

x2n
, x ∈ (0,∞), n ∈ N, c ∈ R, (1.1)

and introduce the underlying preminimal and symmetric L2((0,∞); dx)-
realization

τ2n(c)
∣
∣
C∞

0 ((0,∞))
(1.2)

and its closure, the associated minimal operator T2n,min(c) in L2((0,∞); dx),

T2n,min(c) = τ2n(c)
∣
∣
C∞

0 ((0,∞))
. (1.3)

The principal question to be posed and answered in this paper is the
following:

For which values of c ∈ R is T2n,min(c) self-adjoint (equivalently,

for which values of c ∈ R is τ2n(c)
∣
∣
C∞

0 ((0,∞))
essentially self-adjoint )

in L2((0,∞); dx)? (1.4)

For the notion of (essentially) self-adjoint Hilbert space operators see, for
instance, [27, Sect. V.3], [39, Sect. VIII.2], [45, Sect. 3.2], and [52, Sects. 4.4,
5.3].

In the special case n = 1 it is well known that the precise answer is (see,
e.g., [46]),

(1.4) holds for n = 1 if and only if c ≥ c1 = 3/4. (1.5)

A priori it is not clear at all that this extends to n ∈ N, n ≥ 2, that is,
it is not obvious from the outset that

there exists cn ∈ R, n ∈ N, such that

τ2n(c)
∣
∣
C∞

0 ((0,∞))
is essentially self-adjoint if and only if c ≥ cn.

(1.6)

Our principal new results, Theorem 4.5 and Corollary 4.7 assert that
(1.6) indeed holds for some cn ∈ R satisfying

cn ≥ (4n − 1)!!
/

22n, n ∈ N. (1.7)
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The proof of the existence of cn in (1.6) (satisfying (1.7)) is surprisingly
complex and involves various aspects of the geometry and analytical theory of
polynomials. Explicitly, one obtains

c1 = 3/4, c2 = 45, c3 = 2240
(

214 + 7
√

1009
)/

27,

c4 = 2835

(

13711 +
190309441

3
√

2625188010911 + 1805760
√−292868607

+
3
√

2625188010911 + 1805760
√−292868607

)

(1.8)

and we note that in this context that cn is the root of a polynomial of degree
n − 1. In addition, we demonstrate that for n = 6, 7, cn are algebraic numbers
not expressible as radicals over Q; we conjecture that this actually continues
to hold for general n ≥ 6.

Before explaining some of the strategy behind the proof of the existence
of cn, and for the purpose of comparison and exhibition of a sharp contrast to
the essential self-adjointness problem (1.6), we briefly record the precise bor-
derline of semiboundedness of the minimal operator T2n,min(c), which permits
a remarkably simple and explicit solution as follows:

T2n,min(c) is bounded from below, and then actually, T2n,min(c) ≥ 0, n ∈ N,

if and only if c ≥ − [(2n − 1)!!]2

22n
. (1.9)

This is a consequence of the sequence of sharp Birman–Hardy–Rellich inequal-
ities, see Birman [5, p. 46] (see also Glazman [17, p. 83–84])

∫ ∞

0

dx
∣
∣f (n)(x)

∣
∣
2 ≥ [(2n − 1)!!]2

22n

∫ ∞

0

dx x−2n|f(x)|2,
f ∈ Cn

0 ((0,∞)), n ∈ N.

(1.10)

For more details on (1.10) see [16] and the extensive literature cited therein.
Returning to (1.6), our subject at hand, we recall that τ2n(c)

∣
∣
C∞

0 ((0,∞))

is essentially self-adjoint in L2((0,∞); dx) if and only if τ2n(c)
∣
∣
C∞

0 ((0,∞))
is in

the limit point case at x = 0 and x = ∞. However, since for all c ∈ R, cx−2n is
bounded on (ε,∞) for all ε > 0, τ2n(c)

∣
∣
C∞

0 ((0,∞))
is automatically in the limit

point case at x = ∞ and hence it suffices to exclusively focus on whether or
not τ2n(c)

∣
∣
C∞

0 ((0,∞))
is in the limit point case at x = 0.

In this context one observes that τ2n(c)
∣
∣
C∞

0 ((0,∞))
is said to be in the

limit point case at an interval endpoint a ∈ {0,∞} if precisely n solutions of

τ2n(c)y(μ, · ; c) = μy(μ, · ; c), μ ∈ C\R (1.11)

(i.e., precisely half of the solutions) lie in L2(Ia; dx), where Ia is an interval
of the type I0 = (0, d) if a = 0, and I∞ = (d,∞) if a = ∞, for some fixed
d ∈ (0,∞).
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To decide the limit point property of τ2n(c)
∣
∣
C∞

0 ((0,∞))
at x = 0, one next

argues that it is possible to choose μ = 0 in (1.11), restricting x to the interval
I0 = (0, d), which then leads to a special Euler-type equation which generically
has solutions of power-type

yj(0, x; c) = Cjx
αj(c), 1 ≤ j ≤ 2n, (1.12)

with αj(c), 1 ≤ j ≤ 2n, being the solutions of the underlying discriminant or
indicial equation,

D2n(z; c) =
2n∏

j=1

[z − (j − 1)] + (−1)nc = 0, z ∈ C. (1.13)

In exceptional cases, where some of the αk(c) coincide, (1.12) is replaced by

yk(0, x; c) = Ckxαk(c)P (ln(x)), (1.14)

where P ( · ) is a polynomial of degree at most 2n − 1. Since we are interested
in whether or not yj(0, x; c) ∈ L2((0, d); dx) for some d ∈ (0,∞), the presence
of logarithmic terms is irrelevant and the deciding L2-criterion for solutions of
τ2n(c)y(μ, · ; c) = 0 simply becomes

Re(αj(c)) > −1/2, for L2-membership,

respectively, Re(αj(c)) ≤ −1/2, for non-L2-membership.
(1.15)

In conclusion, to settle the essential self-adjointness problem (1.6) one
needs to establish the existence of cn ∈ R such that precisely n roots αj(c) of
D2n( · ; c) = 0 satisfy Re(αj(c)) ≤ −1/2 for c ≥ cn. (Equivalently, precisely n
roots αk(c) of D2n( · ; c) = 0 satisfy Re(αk(c)) > −1/2 for c ≥ cn.)

Turning briefly to the content of each section, we note that Sect. 2 in-
troduces minimal and maximal operators associated with general differential
expressions τ2n of order 2n, n ∈ N, in L2((0,∞); dx) and reviews the underly-
ing facts on deficiency indices of the minimal operator T2n,min, including Ko-
daira’s decomposition principle. Section 3 discusses perturbed Euler differential
systems and investigates the underlying deficiency indices for the minimal op-
erator associated with τ2n(c) in (1.1). In addition, some of the basic theory of
first-order systems in the complex domain going back to Fuchs, Frobenius, and
Sauvage, in versions championed by Hille and Kneser, is summarized. More-
over, the special examples τ2(c) and τ4(c) are treated explicitly. Properties of
the (real part of the) roots αj(c) of D2n( · ; c) = 0 are the center piece of our
principal Sect. 4, culminating in Theorem 4.5 and Corollary 4.7 which settle
the essential self-adjointness problem (1.6). The techniques involved are related
to the Grace–Heawood theorem [38, p. 126], the Routh–Hurwitz criterion, and
Orlando’s formula [13, § XV.7]. Appendix A shows with the help of Galois
theory that c6 is an algebraic number that cannot be expressed as radicals
over Q; we conjecture this actually remains the case for all cn, n ∈ N, n ≥ 6.

Finally, some remarks on the notation employed: We denote by C
M×N ,

M,N ∈ N, the linear space of M × N matrices with complex-valued entries.
IN represents the identity matrix in C

N . The spectrum of a matrix (or closed
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operator in a Hilbert space) T is denoted by σ(T ). The abbreviation N0 =
N ∪ {0} is used.

2. The Deficiency Indices of T2n,min(c)

In this section we briefly recall the notions of deficiency indices and limit point,
respectively, limit circle cases associated with maximally defined differential
operators, generated by formally symmetric differential expressions τ2n on in-
tervals (a, b) ⊆ R, of even order 2n, n ∈ N, and then specialize the results to
the particular case τ2n(c) at hand. We will primarily follow [7, Sects. XIII.2,
XIII.6], [34, Sects. 17.4, 17.5], [53, Sects. 3, 4] and also refer to [2, § 126], [23],
[24], [29], [30], [51, Chs. 2–4] for relevant background material.

Assuming (a, b) ⊆ R we suppose that

pm, r are (Lebesgue) measurable and real-valued a.e. on (a, b), 0 ≤ m ≤ n,

pn > 0, r > 0 (Lebesgue) a.e. on (a, b),

(1/pn), pm ∈ L1
loc((a, b); dx), 0 ≤ m ≤ n − 1, (2.1)

and introduce the quasi-derivatives

u[0] = u, u[m] = u(m), 0 ≤ m ≤ n − 1,

u[n] = pn

(

un−1
)′

,

u[n+1] = −(

un
)′ + pn−1u

n−1,

u[n+j] = −(

un+j−1
)′ + pn−ju

n−j , 2 ≤ j ≤ n − 1,

u[2n] = −(

u2n−1
)′ + p0u = r(τ2nu). (2.2)

Here the formally symmetric differential expression τ2n of order 2n is given by

(τ2nu)(x) =
n∑

m=0

(−1)m
(

pm(x)y(m)(x)
)(m)

, x ∈ (a, b). (2.3)

Given (2.1)–(2.3), the maximal L2((a, b); rdx)-realization (in short, the
maximal operator), T2n,max, associated with τ2n is then defined by

T2n,maxf =τ2nf,

f ∈ dom(T2n,max) =
{

g ∈ L2((a, b); rdx)
∣
∣ g[�] ∈ ACloc((a, b)), 0 ≤ � ≤ 2n − 1;

τ2ng ∈ L2((a, b); rdx)
}

. (2.4)

Introducing the preminimal operator
.
T 2n,minf = τ2nf,

f ∈ dom
(

T2n,min

)

= {g ∈ dom(T2n,max) | supp (g) compact}
(2.5)

in L2((a, b); rdx), one can show that
.
T 2n,min is densely defined, symmetric,

and closable. Hence, defining the minimal operator in L2((a, b); rdx) associated
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with τ2n as the closure of
.
T 2n,min,

T2n,min =
.
T 2n,min, (2.6)

one can prove the well-known fact

T ∗
2n,min = T2n,max, T ∗

2n,max = T2n,min, (2.7)

and thus T2n,max is closed. Moreover, if

pm ∈ Cm((a, b)), 0 ≤ m ≤ n, (2.8)

one can introduce
..
T 2n,min = τ2n

∣
∣
C∞

0 ((a,b))
, (2.9)

and then also obtains
..
T 2n,min =

.
T 2n,min = T2n,min. (2.10)

Introducing the Lagrange bracket

[u, v]x =
n∑

j=1

[

u[j−1](x)v[2n−j](x) − u[2n−j](x)v[j−1](x)
]

, x ∈ (a, b), (2.11)

one infers for (d, e) ⊂ (a, b) Lagrange’s identity via integrations by parts
∫ e

d

r(x)dx
{

(τ2nu)(x)v(x) − u(x)(τ2nv)(x)
}

= [u, v]e − [u, v]d = [u, v]x
∣
∣
e

x=d
. (2.12)

Moreover, if u(μ, · ) and v(μ, · ) are solutions of

(τ2nu(μ, · ))(x) = μu(μ, x),
(τ2nv(μ, · ))(x) = μv(μ, x), μ ∈ C, x ∈ (a, b), (2.13)

then
d

dx
[u(μ, · ), v(μ, · )]x = 0, x ∈ (a, b). (2.14)

Finally, we also recall the known fact,

dom(T2n,min) ={g ∈ dom(T2n,max) | for all h ∈ dom(T2n,max) :

[h, g]a = 0 = [h, g]b }.
(2.15)

In the following, the number of L2((a, b); rdx)-solutions u(μ±, · ) of

τ2nu(μ±, · ) = μ±u(μ±, · ), with ± Im(μ±) > 0, (2.16)

is denoted by n±(T2n,min) and called the deficiency indices of T2n,min. This
notion is well defined as n±(T2n,min) is known to be constant throughout the
open complex upper and lower half-plane. As a result, one typically chooses
μ± = ±i. Since the coefficients of τ2n are real-valued, one obtains by a result
of von Neumann [49] that

0 ≤ n+(T2n,min) = n−(T2n,min) ≤ 2n. (2.17)
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Finally, given d ∈ (a, b), and denoting by T2n,min(max),(a,d) and
T2n,min(max),(d,b) the corresponding minimal or maximal operator with the
interval (a, b) replaced by (a, d) and (d, b), respectively, where d is now a reg-
ular endpoint for τ2n

∣
∣
(a,d)

and τ2n

∣
∣
(d,b)

, one has (cf. [2, p. 483–484])

n+(T2n,min,(a,d)) = n−(T2n,min,(a,d)), n+(T2n,min,(d,b)) = n−(T2n,min,(d,b)),

n ≤ n±(T2n,min,(a,d)) ≤ 2n, n ≤ n±(T2n,min,(d,b)) ≤ 2n,
(2.18)

and the Kodaira decomposition principle (see, e.g., [7, Corollary XIII.2.26],
[34, p. 72])

n±(T2n,min) = n±(T2n,min,(a,d)) + n±(T2n,min,(d,b)) − 2n (2.19)

holds.

Remark 2.1. Given the fact that d ∈ (a, b) is a regular endpoint for τ2n|(a,d)

and τ2n|(d,b), the particular (and extreme) case where

n±(T2n,min,(a,d)) = n (resp., n±(T2n,min,(d,b)) = n) (2.20)

is the precise analog of Weyl’s limit point case at x = a (resp., x = b) in the
classical second-order case n = 1, that is, for τ2|(a,d) (resp., τ2|(d,b)). Hence, we
will apply this limit point terminology also in the 2nth-order context in the
following. In particular, if

n±(T2n,min,(a,d)) = n = n±(T2n,min,(d,b)), (2.21)

then τ2n|(a,b) is in the limit point case at a and b and (2.19) yields accordingly
that

n±(T2n,min) = 0 (2.22)

in this case. Thus, (2.21), and hence (2.22), is equivalent to

T2n,min = T2n,max is self-adjoint in L2((a, b); rdx), (2.23)

which in turn is equivalent to
.
T 2n,min is essentially self-adjoint in L2((a, b); rdx). (2.24)

If in addition hypothesis (2.8) holds, then each of (2.21)–(2.24) is also equiva-
lent to

..
T 2n,min is essentially self-adjoint in L2((a, b); rdx). (2.25)

All other cases, where 1 ≤ n±(T2n,min) ≤ 2n, describe various degrees of
limit circle cases of τ2n, with n±(T2n,min) = 2n representing the extreme case.



In the bulk of this paper we are particularly interested in the special case
where

pn(x) = 1, pm(x) = 0, 1 ≤ m ≤ n − 1, p0(x) = cx−2n,

r(x) = 1, x ∈ (0,∞), (2.26)
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that is, in the concrete example

τ2n(c) = (−1)n d2n

dx2n
+

c

x2n
, x ∈ (0,∞), n ∈ N, c ∈ R, (2.27)

denoting the associated (pre)minimal and maximal operators in L2((0,∞); dx)
by T2n,min(c),

.
T 2n,min(c),

..
T 2n,min(c), T2n,max(c), etc.

In particular, we are interested in the question,

“for which values of c ∈ R is T2n,min(c) self-adjoint

(resp.,
..
T 2n,min(c) essentially self-adjoint) in L2((0,∞); dx)?′′ (2.28)

3. Perturbed Euler Differential Systems and Their Deficiency
Indices

In this section we will prove that it suffices to focus on the spectral parameter
μ = 0 when trying to determine the number of L2((0, d); dx)-solutions y(μ, · )
of

τ2n(c)y(μ, x) = (−1)ny(2n)(μ, x) + cx−2ny(μ, x) = μy(μ, x),

x ∈ (0, d), μ ∈ C, n ∈ N, c ∈ R,
(3.1)

for fixed d ∈ (0,∞) (e.g., one could simply choose d = 1). In particular, the
deficiency indices of the underlying minimal differential operator T2n,min(c)
can be determined from the knowledge of the number of L2((0, d); dx)-solutions
of y(0, · ), that is, one can reduce (3.1) to the far simpler case μ = 0.

To prove the μ-independence of the number of L2((0, d); dx)-solutions
y(μ, · ) of (3.1), we find it convenient to employ a bit of the celebrated theory of
regular singular points (singular points of the first kind) for first-order systems
of differential equations in the complex domain, going back to G. Frobenius
[9], L. Fuchs [10–12], and L. Sauvage [40–44]. The theory is aptly summarized
in a number of treatises, we just mention [3, p. 17–36], [6, p. 108–135], [13,
148–164], [18, p. 70–92], [19, p. 105–131], [20], [21, p. 182–198], [22, p. 342–352],
[25, p. 356–372, Ch. XVI], [36, Ch. V], [48, Ch. 4], and [50, 216–235].

In the following ζ ∈ C\{0} (resp., ζ ∈ D(0;R)\{0} = {ζ ∈ C | 0 < |ζ| <
R} for some fixed R ∈ (0,∞)) represents the complex analog of x ∈ (0, d)
in (3.1) and we will study first-order systems of differential equations of the
particular form

Y ′(ζ) = ζ−1A(ζ)Y (ζ), (3.2)

where Y ( · ) represents either an N × 1 solution vector or an N × N solution
matrix, N ∈ N, which generally is multi-valued, and A( · ) is an N × N entire
(resp., analytic in D(0;R)) matrix-valued function,

A(ζ) =
∑

m∈N0

Am ζm. (3.3)
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The very special structure (at most a first-order pole of the coefficient matrix
at z = 0) of the right-hand side of (3.2) then leads to a rather special structure
of solutions as described in the following.

As a warm up we briefly discuss the pure Euler situation where A( · ) is
actually a constant matrix A0 ∈ C

N×N , that is, we consider

Y ′(ζ) = ζ−1A0Y (ζ), (3.4)

with fundamental (typically, many-valued) matrix solutions of the form

Y (ζ) = ζA0C = eA0 ln(ζ)C, (3.5)

where C ∈ C
N×N is nonsingular (i.e., detCN (C) �= 0). Transforming A0 into

its Jordan normal form Â0 = TA0T
−1 for some nonsingular T ∈ C

N×N , and
setting Ŷ ( · ) = TY ( · ) yields

Ŷ ′(ζ) = ζ−1Â0Ŷ (ζ), (3.6)

hence one can assume without loss of generality that A0 is in Jordan normal
form. In this case A0 is represented as a block diagonal matrix consisting
possibly of a diagonal matrix D and possibly of a number of nontrivial Jordan
blocks of varying r × r, 1 ≤ r ≤ N , sizes, denoted by Jr(αq). In particular, if
Jr(αq) is of the form

Jr(αq) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

αq 1 0 · · · 0
0 αq 1 · · · 0
...

...
. . . . . .

...
0 0 0 · · · 1
0 0 0 · · · αq

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, αq ∈ σ(A0), (3.7)

then

ζJr(αq) = ζαq

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 ln(ζ) [ln(ζ)]2/[2!] · · · [ln(ζ)]r−1/[(r − 1)!]
0 1 ln(ζ) · · · [ln(ζ)]r−2/[(r − 2)!]
...

...
. . . . . .

...
0 0 0 · · · ln(ζ)
0 0 0 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(3.8)

explicitly demonstrating the appearance of powers of logarithms of ζ in (3.5)
in the case where A0 has an eigenvalue αq whose algebraic multiplicity strictly
exceeds its geometric one. In particular, the eigenvalues αq of A0 are deter-
mined via the characteristic equation for A0, also called the indicial equation,

DN (z) = detCN (zIN − A0) = 0, z ∈ C. (3.9)

The general, or perturbed, Euler case (3.2) leads to analogous results as
follows.
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Theorem 3.1 (Hille [21], p. 192–198, Kneser [28]). Given the matrix A( · ) ∈
C

N×N in (3.3) entire (resp., analytic in D(0;R)), the perturbed Euler differen-
tial system (3.2) has a fundamental set of (generally, multi-valued ) solutions
Yj ∈ C

N×1, j = 1, . . . , N , of the form,

Yj(ζ; q) =
∑

m∈N0

pj,m,q(ln(ζ)) ζm+αq , 1 ≤ j ≤ N, (3.10)

where αq runs through all distinct eigenvalues of A0 (i.e., all elements of
σ(A0)), determined via DN ( · ) = 0, and pj,m,q( · ) ∈ C

N×1 are polynomi-
als of degree less than or equal to N − 1. The series in (3.10) converges for
0 < |ζ| < ∞ (resp., for 0 < |ζ| < R).

In this context we also refer to Sections 4.3, 4.4, particularly, Theorem
4.11, in Teschl [48], for a succinct treatment of the Frobenius method for first-
order systems with a pole structure as in (3.2).

We also note that a fundamental matrix solution of (3.2) can be obtained
in analogy to (3.5) in the pure Euler case. In particular, under the spectral
hypothesis that

σ(A0) ∩ {σ(A0) + Z} = ∅, (3.11)

it was proven by Fuchs [11,12] (cf. Hille [22, Theorem 9.5.1]) that the perturbed
Euler differential system (3.2) has fundamental matrix solutions of the form

Y (ζ) =
∑

m∈N0

Cm ζmIN+A0C, C0 = IN , C� ∈ C
N×N , � ∈ N, (3.12)

where again C ∈ C
N×N is nonsingular.

The case where the spectral assumption (3.11) on A0 is violated is much
more involved1. What follows is a shortened description of Hille [22, Theo-
rem 9.5.2], a modified version of Frobenius’ method: If (3.11) does not hold,
fundamental matrix solutions of the perturbed Euler differential system (3.2)
are of the form

Y (ζ) =
M∑

j=0

[ln(ζ)]j
∑

m∈N0

Cm,j ζmIN+A0C, C0,0 = [M !]IN , Cm,j ∈ C
N×N ,

(3.13)

and once again C ∈ C
N×N is nonsingular. A characterization of M in (3.13)

is possible, see, for instance, [22, p. 342–352].
We conclude this overview by specializing the 1st-order N ×N perturbed

Euler system (3.2) to the Nth-order scalar case (a special case of which is
depicted in (3.1)). Consider the scalar Nth-order differential equation

y(N)(ζ) + bN−1(ζ)y(N−1)(ζ) + · · · + b1(ζ)y′(ζ) + b0(ζ)y(ζ) = 0, (3.14)

1In fact, we quote Hille [22, p. 344] in this context: “. . . A number of arguments are available
in the literature all of them more or less corny. What I shall give here is not the corniest;
. . . ”
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where the coefficients bj( · ), 0 ≤ j ≤ N − 1, are of the form

bj(ζ) = ζj−Naj(ζ), aj(ζ) =
∑

m∈N0

aj,m ζm, (3.15)

with aj( · ) entire (resp., analytic in D(0;R)). The scalar ODE (3.14) subor-
dinates to the perturbed Euler differential system (3.2) upon identifying A(ζ)
with the N × N matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 . . . 0
0 1 1 0 . . . 0
0 0 2 1 . . . 0
0 0 0 3 . . . 0
...

...
...

... . . .
...

...
...

...
... . . .

. . . . . . 0
0 0 0 0 . . . 1

−a0(ζ) −a1(ζ) −a2(ζ) −a3(ζ) . . . (N − 1) − aN−1(ζ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.16)

and identifying Y (ζ) with (Y1(ζ), . . . , YN (ζ)), where the solutions Yj( · ) ∈
C

N×1 are given by

Yj( · ) = (yj,1( · ), . . . , yj,N ( · ))�, yj,k(ζ) = ζk−1y
(k−1)
j (ζ), 1 ≤ j, k ≤ N,

(3.17)

with yj( · ), 1 ≤ j ≤ N , linearly independent solutions of (3.14). In this scalar
context the matrix A0 ∈ C

N×N in (3.3) is thus of the form

A0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 . . . 0
0 1 1 0 . . . 0
0 0 2 1 . . . 0
0 0 0 3 . . . 0
...

...
...

... . . .
...

...
...

...
... . . .

. . . . . . 0
0 0 0 0 . . . 1

−a0,0 −a1,0 −a2,0 −a3,0 . . . (N − 1) − aN−1,0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.18)

and hence the eigenvalues αq of A0 prominently figuring in the solution (3.10)
are determined via the indicial equation (3.9), DN ( · ) = 0, where

DN (z) = detCN (zIN − A0)

=
N∑

k=0

aN−k,0

{∏N−k
r=1 [z − (r − 1)], 0 ≤ k ≤ N − 1,

1, k = N,
aN,0 = 1, z ∈ C.

(3.19)

Given these results we can return to the half-line differential expression
τ2n(c) in (3.1), the special case of the scalar case (3.14) with N = 2n and
(frequently explicitly indicating the c-dependence of the coefficients)
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bj(ζ; c) = 0, 1 ≤ j ≤ 2n − 1, b0(ζ; c) = (−1)nc ζ−2n − (−1)nμ, μ ∈ C,

(3.20)

equivalently,

aj(ζ; c) = 0, 1 ≤ j ≤ 2n − 1, a0(ζ; c) = (−1)nc − (−1)nμ ζ2n, μ ∈ C.

(3.21)

In this case the indicial equation further reduces to

D2n(z; c) =
2n∏

j=1

[z − (j − 1)] + (−1)nc = 0, z ∈ C. (3.22)

Thus, we can state the following result.

Theorem 3.2. Let c ∈ R, μ ∈ C. Then for any d ∈ (0,∞), the number of
L2((0, d); dx)-solutions of τ2n(c)y(μ, · ) = μy(μ; · ), denoted by #L2

(

τ2n(c)|(0,d)

)

,
is independent of μ. In particular,

n ≤ #L2

(

τ2n(c)|(0,d)

) ≤ 2n. (3.23)

Moreover, the deficiency indices n±(T2n,min(c)) (with T2n,min(c) representing
the closure of τ2n(c)

∣
∣
C∞

0 ((0,∞))
in L2((0,∞); dx)) equal

n±(T2n,min(c)) = #L2

(

τ2n(c)|(0,d)

) − n. (3.24)

and hence

0 ≤ n±(T2n,min(c)) ≤ n. (3.25)

In particular,

T2n,min(c) is self-adjoint
(

equivalently,
..
T 2n,min is essentially self-adjoint

)

in L2((0,∞); dx) if and only if #L2

(

τ2n(c)|(0,d)

)

= n.

(3.26)

Proof. The μ-independence of #L2

(

τ2n(c)|(0,d)

)

follows from the structure of
the solutions Yj in (3.10), the fact that for each d ∈ (0,∞), the power xα lies
in L2((0, d); dx) if and only if Re(α) > −1/2, independently of the presence of
any logarithmic factors, and finally that only the spectrum of A0 determines
the powers αq in (3.10).

Since c ∈ R, τ2n(c) possesses an anti-unitary conjugation operator (ef-
fected by complex conjugation of elements in L2((0,∞); dx)) and one obtains
by (2.17),

n+(T2n,min(c)) = n−(T2n,min(c)). (3.27)

Moreover by a special case of Kodaira’s decomposition principle (2.19) for
deficiency indices,

n±(T2n,min(c)) = n±
(

τ2n(c)
∣
∣
C∞

0 ((0,d))

)

+ n±
(

τ2n(c)
∣
∣
C∞

0 ((d,∞))

)

− 2n

= n±
(

τ2n(c)
∣
∣
C∞

0 ((0,d))

)

− n

= #L2

(

τ2n(c)|(0,d)

) − n, (3.28)
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since

n±
(

τ2n(c)
∣
∣
C∞

0 ((d,∞))

)

= n. (3.29)

Relation (3.29) holds since τ2n(c) is regular at d and, as x−2n is bounded on
the interval [d,∞) (cf. [34, Sect. 14.7]), τ2n(c) is in the limit point case at ∞
since (−1)nd2n/dx2n is in the limit point case at ∞. Moreover, by (2.18),

n ≤ n±
(

τ2n(c)
∣
∣
C∞

0 ((0,d))

)

≤ 2n, (3.30)

implying (3.23) and (3.25). �

Remark 3.3. (i) The independence of #L2

(

τ2n(c)|(0,d)

)

with respect to μ per-
mits one to choose the by far simplest situation by taking μ = 0 when counting
the number of L2((0, d); dx)-solutions of τ2n(c)y(μ, · ) = μy(μ; · ). This in turn
grants one to focus on solutions of the simple power-type xα as in (3.10) (ig-
noring the possibility of additional logarithmic factors which, however, cannot
influence the L2- or non-L2-behavior of solutions near x = 0). In particular,
considering

yα(x) = xαP (ln(x)), x ∈ (0,∞), α ∈ C, (3.31)

where P ( · ) is any polynomial, then for all d ∈ (0,∞),

yα( · ) ∈ L2((0, d); dx) if and only if Re(α) > −1/2. (3.32)

Thus, by (3.10), Re(α) > −1/2, respectively, Re(α) ≤ −1/2, is the criterion
deciding whether or not a particular solution with power-type behavior xα

(again, ignoring possible logarithmic factors) contributes to #L2

(

τ2n(c)|(0,d)

)

.
(ii) It will be shown in Corollary 4.8 that any permissible integer value for
#(τ2n|(0,d)) in (3.23) actually is attained for some c ∈ R. 

Remark 3.4. One observes that D2n( · ; c) possesses the symmetry

D2n(−(1/2) + n + z) = D2n(−(1/2) + n − z). (3.33)

In particular, at z = 0 one obtains

D2n((−1/2) + n) = (−1)n

(
n∏

j=1

[j − 1/2]2 + c

)

= (−1)n

(
[(2n − 1)!!]2

22n
+ c

)

. (3.34)

Consequently, for c = −[(2n−1)!!]2
/

22n one has a double zero at α = k−(1/2)
and there are two solutions of the type

y1(0, x, c) = xk−(1/2), y2(0, x, c) = xk−(1/2) ln(x) (3.35)

in this case. 

Next, we now recall the special situation n = 1 which is explicitly solvable

for general spectral parameter μ in terms of Bessel functions as follows:
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Example 3.5. Assuming the case n = 1 in (3.1) we consider

− y′′(μ, x) + cx−2y(μ, x) = μy(μ, x),

μ ∈ C, x ∈ (0,∞), c ∈ R.
(3.36)

The associated characteristic equation

D2(z; c) = z(z − 1) − c = 0, (3.37)

has the following two complex-valued solutions

α1(c) = (1/2) −
√

c + (1/4),

α2(c) = (1/2) +
√

c + (1/4),
(3.38)

choosing the principal branch for [ · ]1/2 with branch cut (−∞, 0], such that

z1/2 = r1/2eiϕ/2, z = reiϕ, r, r1/2 ∈ [0,∞), ϕ ∈ (−π, π]. (3.39)

With this convention in place one checks that for all c ∈ R, one has the
ordering,

Re(α1(c)) ≤ 1/2 ≤ Re(α2(c)). (3.40)

(α) Generic case: Suppose c ∈ R is such that

[α1(c) − α2(c)]/2 �∈ Z. (3.41)

Then the nonhomogenous differential equation (3.36) has the following funda-
mental system of solutions (cf. [1, No. 9.1.49, p. 362])

y1(μ, x; c) = (π/2)μ−γ(c)/2x1/2Jγ(c)

(

μ1/2x
)

,

y2(μ, x; c) = sin(πγ(c))μγ(c)/2x1/2J−γ(c)

(

μ1/2x
)

,

μ ∈ C, x ∈ (0,∞), (3.42)

where

γ(c) =
√

c + (1/4), γ ∈ [0,∞), c ∈ R. (3.43)

(Thus, γ(c) ∈ {[0,∞)\N0} ∪ i(0,∞) in the generic case.)

(β) Exceptional Cases: Suppose c ∈ R is such that

[α1(c) − α2(c)]/2 ∈ Z, (3.44)

then

c = k2 − (1/4), k ∈ N0. (3.45)

More precisely, for k ∈ N0,

[α1(c) − α2(c)]/2 = ±k if and only if c = k2 − (1/4). (3.46)

Furthermore,

α1(c) = α2(c) if and only if c = −1/4. (3.47)

In the exceptional case, where γ(c) = k ∈ N0, one obtains

y1
(

μ, x; k2 − (1/2)
)

= (π/2)μ−k/2x1/2Jk

(

μ1/2x
)

,



Homogeneous Half-Line Differential Operators

y2
(

μ, x; k2 − (1/2)
)

= μk/2x1/2
[ − Yk

(

μ1/2x
)

+ π−1 ln(μ)Jk

(

μ1/2x
)]

,

μ ∈ C, x ∈ (0,∞), c ∈ {

k2 − (1/4)
}

k∈N0
. (3.48)

Here Jκ( · ) represent the standard Bessel functions of order κ ∈ C and first
kind, and Yk( · ) denotes the Bessel function of order k ∈ N0 and second kind
(see, e.g., [1, Ch. 9]). Moreover, one verifies (cf. [1, p. 360]) that

W (y2(μ, · , c), y1(μ, · ; c)) = 1, μ ∈ C, c ∈ R (3.49)

(here W (f, g) = fg′ − f ′g denotes the Wronskian of f and g), and that the
fundamental system of solutions y1(μ, ·; c), y2(μ, ·, c) (3.42), (3.48) of (3.36) is
entire with respect to μ ∈ C for fixed x ∈ (0,∞), and real-valued for μ ∈ R.

As μ → 0, the fundamental systems of solutions (3.42), (3.48), upon
disregarding normalization, greatly simplify to

y1(0, x; c) = xα1(c), c ∈ R, y2(0, x; c) =
{

xα2(c), c ∈ R\{−1/4},
x1/2ln(x), c = −1/4;

x ∈ (0,∞), (3.50)

underscoring once again the advantage of choosing μ = 0.
One observes that in accordance with (1.9) (see also (1.10)) and Re-

mark 3.4, the logarithmic case in (3.50) occurs at c = −1/4, that is, precisely
at the borderline of semiboundedness of Tmin,2(c).

Thus, determining whether or not Re(αj(c) > −1/2, j = 1, 2, one con-
cludes that

#L2

(

τ2(c)|(0,d)

)

=

{

1, if c ≥ 3/4,

2, if c < 3/4.
(3.51)

Remark 3.6. In view of the next example, where n = 2, in fact, in view of
the general case n ∈ N, it might be interesting to rewrite the Bessel function
solutions in the case n = 1 in terms of the corresponding generalized hyperge-
ometric function and Meijer’s G-function as follows: In the generic case, where
c ∈ R is such that [α1(c) − α2(c)]/2 �∈ Z, the nonhomogenous differential
equation (3.36) has the following fundamental system of solutions

y1(μ, x; c) = xα1(c)
0F1

(

1+
α1(c)−α2(c)

2

∣
∣
∣
∣

− μx2

4

)

,

y2(μ, x; c) = xα2(c)
0F1

(

1+
α2(c)−α1(c)

2

∣
∣
∣
∣

− μx2

4

)

,

μ ∈ C, x ∈ (0,∞). (3.52)

Here 0F1

(

b1

∣
∣
∣ ·

)

represents the generalized hypergeometric function given by

0F1

(

b1

∣
∣
∣ ζ
)

=
∑

k∈N0

ζk

(b1)kk!
, b1 ∈ C\{−N0}, ζ ∈ C, (3.53)
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with (a)k denoting Pochhammer’s symbol,

(a)0 = 1, (a)k =
k−1∏

j=0

(a + j) = Γ(a + k)/Γ(a), k ∈ N, a ∈ C. (3.54)

In particular, 0F1

(

b1

∣
∣
∣ ζ
)

is entire in ζ ∈ C and

0F1

(

b1

∣
∣
∣ ζ
)

=
ζ→0

1 + O(ζ). (3.55)

In the exceptional case, where γ(c) = k ∈ N0, one obtains

y1
(

μ, x; k2 − (1/2)
)

= xk+(1/2)
0F1

(

1+k

∣
∣
∣
∣

− μx2

4

)

,

y2
(

μ, x; k2 − (1/2)
)

= Γ(k + 1)2kμ−k/2x1/2G2,0
0,2

(

k/2;−k/2

∣
∣
∣
∣

− μx2

4

)

+
[

π(−1)k+1ik+1 + ln(μ)
]

xk+(1/2)
0F1

(

1+k

∣
∣
∣
∣

− μx2

4

)

,

μ ∈ C, x ∈ (0,∞), c ∈ {

k2 − (1/4)
}

k∈N0
. (3.56)

Here Meijer’s G-function, G2,0
0,2

(

c1,c2

∣
∣
∣ ·

)

, is given by a Mellin–Barnes-type

integral,

G2,0
0,2

(

c1,c2

∣
∣
∣ ζ
)

=
1

2πi

∫

C
ds ζsΓ(c1 − s)Γ(c2 − s), (3.57)

where C is a contour beginning and ending at +∞ encircling all poles of Γ(cj −
s), j = 1, 2, once in negative orientation, and the left-hand side of (3.57) is
defined as the (absolutely convergent) sum of residues of the right-hand side.
The exceptional case where c1 and c2 differ by an integer is treated by a
limiting argument. (For more details, see [14].) 


For details on generalized hypergeometric functions and Meijer’s G-
function we refer, for instance, to [4], [8, Ch. IV, Sects. 5.3–5.6], [31, Ch. V],
[32, Ch. V], and [35, Ch. 16], [37, Sect. 8.2].

Example 3.7. Assuming the case n = 2 in (3.1) we consider

y′′′′(μ, x) + cx−4y(μ, x) = μy(μ, x),

x ∈ (0,∞), μ ∈ C, c ∈ R.
(3.58)

The associated characteristic equation

D4(z; c) = z(z − 1)(z − 2)(z − 3) − c = 0, z ∈ C, c ∈ R, (3.59)
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has the following four complex-valued solutions,

α1(c) =
[

3 −
√

5 + 4
√

1 − c

]/

2,

α2(c) =
[

3 −
√

5 − 4
√

1 − c

]/

2,

α3(c) =
[

3 +
√

5 − 4
√

1 − c

]/

2,

α4(c) =
[

3 +
√

5 + 4
√

1 − c

]/

2; c ∈ R,

(3.60)

employing the principal branch (3.39) for [ · ]1/2. With this convention, one
checks that for all c ∈ R, one has

Re(α1(c)) ≤ Re(α2(c)) ≤ 3/2 ≤ Re(α3(c)) ≤ Re(α4(c)). (3.61)

(α) Generic case: Suppose c ∈ R is such that

[αj(c) − αj′(c)]/4 �∈ Z, for all 1 ≤ j, j′ ≤ 4, j �= j′. (3.62)

Then the nonhomogenous differential equation (3.58) has the following funda-
mental system of solutions,

y1(μ, x; c) = xα1(c)
0F3

(

1+
α1(c)−α2(c)

4 ,1+
α1(c)−α3(c)

4 ,1+
α1(c)−α4(c)

4

∣
∣
∣
∣

μx4

256

)

,

y2(μ, x; c) = xα2(c)
0F3

(

1+
α2(c)−α1(c)

4 ,1+
α2(c)−α3(c)

4 ,1+
α2(c)−α4(c)

4

∣
∣
∣
∣

μx4

256

)

,

y3(μ, x; c) = xα3(c)
0F3

(

1+
α3(c)−α1(c)

4 ,1+
α3(c)−α2(c)

4 ,1+
α3(c)−α4(c)

4

∣
∣
∣
∣

μx4

256

)

,

y4(μ, x; c) = xα4(c)
0F3

(

1+
α4(c)−α1(c)

4 ,1+
α4(c)−α2(c)

4 ,1+
α4(c)−α3(c)

4

∣
∣
∣
∣

μx4

256

)

;

μ ∈ C, x ∈ (0,∞).
(3.63)

Asymptotically,

yj(μ, x; c) =
x↓0

xαj(c)[1 + O(x)], 1 ≤ j ≤ 4, (3.64)

and thus, the four functions are indeed linearly independent.

Here 0F3

(

b1,b2,b3

∣
∣
∣ ·

)

represents the generalized hypergeometric function

given by

0F3

(

b1,b2,b3

∣
∣
∣ ζ
)

=
∑

k∈N0

ζk

(b1)k(b2)k(b3)kk!
, b1, b2, b3 ∈ C\{−N0}, ζ ∈ C.

(3.65)
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Again, 0F3

(

b1,b2,b3

∣
∣
∣ ζ
)

is entire in ζ ∈ C and

0F3

(

b1,b2,b3

∣
∣
∣ ζ
)

=
ζ→0

1 + O(ζ). (3.66)

That these functions are in fact solutions of (3.58) can be confirmed by di-
rect verification using the differential equation for generalized hypergeometric
functions.

(β) Exceptional Cases: Suppose c ∈ R is such that

[αj(c) − αj′(c)]/4 ∈ Z for some 1 ≤ j, j′ ≤ 4, j �= j′, (3.67)

then

either c = 1 − 20k2 + 64k4, or, c = −(9/16) + 10k2 − 16k4, k ∈ N0.

(3.68)

More precisely, for k ∈ N0,

/4 = ±k implies c = 1 − 20k2 + 64k4,

[α1(c) − α3(c)]/4 = ±k implies c = 1 − 20k2 + 64k4,

[α1(c) − α4(c)]/4 = ±k implies c = −(9/16) + 10k2 − 16k4,

[α2(c) − α3(c)]/4 = ±k implies c = −(9/16) + 10k2 − 16k4,

[α2(c) − α4(c)]/4 = ±k implies c = 1 − 20k2 + 64k4,

[α3(c) − α4(c)]/4 = ±k implies c = 1 − 20k2 + 64k4.

(3.69)

Furthermore,

α1(c) = α2(c) if and only if α3(c) = α4(c) if and only if c = 1 (3.70)

and

α2(c) = α3(c) if and only if c = −9/16. (3.71)

If c = 1, then

α1(1) = α2(1) =
[

3 −
√

5
]/

2, α3(1) = α4(1) =
[

3 +
√

5
]/

2, (3.72)

and a fundamental system of solutions is given by,

y1(μ, x; 1) = x[3−√
5]/2

0F3

(

1,1−
√

5
4 ,1−

√
5

4

∣
∣
∣
∣

μx4

256

)

,

y2(μ, x; 1) = G2,0
0,4

(

3−√
5

8 , 3−√
5

8 ; 3+
√

5
8 , 3+

√
5

8

∣
∣
∣
∣

μx4

256

)

,

y3(μ, x; 1) = x[3+
√
5]/2

0F3

(

1,1+
√

5
4 ,1+

√
5

4

∣
∣
∣
∣

μx4

256

)

,

y4(μ, x; 1) = G2,0
0,4

(

3+
√

5
8 , 3+

√
5

8 ; 3−√
5

8 , 3−√
5

8

∣
∣
∣
∣

μx4

256

)

;

μ ∈ C, x ∈ (0,∞).

(3.73)
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Asymptotically,

y2(μ, x; 1) =
x↓0

c2x
[3−√

5]/2 ln(x)[1 + O(x)],

y4(μ, x; 1) =
x↓0

c4x
[3+

√
5]/2 ln(x)[1 + O(x)].

(3.74)

Here Meijer’s G-function, G2,0
0,4

(

c1,c2;c3,c4

∣
∣
∣ ·

)

, is again given by a Mellin–

Barnes-type integral,

G2,0
0,4

(

c1,c2;c3,c4

∣
∣
∣ ζ
)

=
1

2πi

∫

C
ds ζs Γ(c1 − s)Γ(c2 − s)

Γ(1 − c3 + s)Γ(1 − c4 + s)
, (3.75)

where C is a contour beginning and ending at +∞ encircling all poles of Γ(cj −
·), j = 1, 2, once in negative orientation, and the left-hand side of (3.75) is
defined as the (absolutely convergent) sum of residues of the right-hand side.
The exceptional case where c1 and c2 differ by an integer is once more treated
by a limiting argument.
If c = 1 − 20k2 + 64k4, k ∈ N, then

α1

(

1 − 20k2 + 64k4
)

=
[

3 − 4k −
√

5 − 16k2
]/

2,

α2

(

1 − 20k2 + 64k4
)

=
[

3 − 4k +
√

5 − 16k2
]/

2,

α3

(

1 − 20k2 + 64k4
)

=
[

3 + 4k −
√

5 − 16k2
]/

2,

α4

(

1 − 20k2 + 64k4
)

=
[

3 + 4k +
√

5 − 16k2
]/

2,

(3.76)

and a fundamental system of solutions is given by,

y1
(

μ, x; 1 − 20k2 + 64k4
)

= G2,0
0,4

(

3−4k−
√

5−16k2
8 , 3+4k−

√
5−16k2

8 ; 3−4k+
√

5−16k2
8 , 3+4k+

√
5−16k2

8

∣
∣
∣
∣

μx4

256

)

,

y2
(

μ, x; 1 − 20k2 + 64k4
)

= G2,0
0,4

(

3−4k+
√

5−16k2
8 , 3+4k+

√
5−16k2

8 ; 3−4k−
√

5−16k2
8 , 3+4k−

√
5−16k2

8

∣
∣
∣
∣

μx4

256

)

,

y3
(

μ, x; 1 − 20k2 + 64k4
)

= x[(3+4k)−√
5−16k2 ]/2

0F3

(

1+k,1+k−
√

5−16k2
4 ,1−

√
5−16k2

4

∣
∣
∣
∣

μx4

256

)

,

y4
(

μ, x; 1 − 20k2 + 64k4
)

= x[(3+4k)+
√
5−16k2 ]/2

0F3

(

1+k,1+k+

√
5−16k2

4 ,1+

√
5−16k2

4

∣
∣
∣
∣

μx4

256

)

;

μ ∈ C, x ∈ (0,∞). (3.77)
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Asymptotically,

y1
(

μ, x; 1 − 20k2 + 64k4
)

=
x↓0

x[(3−4k)−√
5−16k2 ]/2 ln(x)[1 + O(x)],

y2
(

μ, x; 1 − 20k2 + 64k4
)

=
x↓0

x[(3−4k)+
√
5−16k2 ]/2 ln(x)[1 + O(x)].

(3.78)

If c = −9/16, then

α1(−9/16) =
[

3 −
√

10
]/

2,

α2(−9/16) = α3(−9/16) = 3/2,

α4(−9/16) =
[

3 +
√

10
]/

2,

(3.79)

and a fundamental system of solutions is given by,

y1(μ, x;−9/16) = x[3−√
10]/2

0F3

(

1−
√

10
4 ,1−

√
10
8 ,1−

√
10
8

∣
∣
∣
∣

μx4

256

)

,

y2(μ, x;−9/16) = x3/2
0F3

(

1,1−
√

10
8 ,1+

√
10
8

∣
∣
∣
∣

μx4

256

)

,

y3(μ, x;−9/16) = G2,0
0,4

(

3
8 , 38 ;

3−√
10

8 , 3+
√

10
8

∣
∣
∣
∣

μx4

256

)

,

y4(μ, x;−9/16) = x[3+
√
10]/2

0F3

(

1+
√

10
4 ,1+

√
10
8 ,1+

√
10
8

∣
∣
∣
∣

μx4

256

)

;

μ ∈ C, x ∈ (0,∞).

(3.80)

Asymptotically,

y3(μ, x,−9/16) =
x↓0

c3x
3/2 ln(x)[1 + O(x)]. (3.81)

One observes that the case c = −9/16 is once more precisely the border-
line of semiboundedness of Tmin,4(c) again in accordance with (1.9) (see also
(1.10)) and Remark 3.4.

If c = −(9/16) + 10k2 − 16k4, k ∈ N, then

α1

( − (9/16) + 10k2 − 16k4
)

= (3 − 4k)/2,

α2

( − (9/16) + 10k2 − 16k4
)

=
[

3 −
√

10 − 16k2
]/

2,

α3

( − (9/16) + 10k2 − 16k4
)

=
[

3 +
√

10 − 16k2
]/

2,

α4

( − (9/16) + 10k2 − 16k4
)

= (3 + 4k)/2,

(3.82)

and a fundamental system of solutions is given by,

y1
(

μ, x;−(9/16) + 10k2 − 16k4
)

= G2,0
0,4

(

3−4k
8 , 3+4k

8 ; 3−
√

10−16k2
8 , 3+

√
10−16k2
8

∣
∣
∣
∣

μx4

256

)

,

y2
(

μ, x;−(9/16) + 10k2 − 16k4
)

= x[3−√
10−16k2 ]/2

0F3

(

8−2
√

10−16k2
8 , 8−4k−

√
10−16k2
8 , 8+4k−

√
10−16k2
8

∣
∣
∣
∣

μx4

256

)

,
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y3
(

μ, x;−(9/16) + 10k2 − 16k4
)

= x[3+
√
10−16k2 ]/2

0F3

(

8+2
√

10−16k2
8 , 8−4k+

√
10−16k2
8 , 8+4k+

√
10−16k2
8

∣
∣
∣
∣

μx4

256

)

,

y4
(

μ, x;−(9/16) + 10k2 − 16k4
)

= x(3+4k)/2
0F3

(

1+k, 8+4k−
√

10−16k2
8 , 8+4k+

√
10−16k2
8

∣
∣
∣
∣

μx4

256

)

;

μ ∈ C, x ∈ (0,∞). (3.83)

Asymptotically,

y1(x) =
x↓0

c1x
(3−4k)/2[1 + O(x)] + c2x

(3+4k)/2 ln(x)[1 + O(x)]. (3.84)

Once more, as μ → 0, the fundamental system of solutions of (3.58)
considerably simplifies to

y1(0, x; c) = xα1(c), y2(0, x; c) = xα2(c),

y3(0, x; c) = xα3(c), y4(0, x; c) = xα4(c); c ∈ R\{1,−9/16}, (3.85)

y1(0, x; 1) = x[3−√
5]/2, y2(0, x; 1) = x[3−√

5]/2 ln(x),

y3(0, x; 1) = x[3+
√
5]/2, y4(0, x; 1) = x[3+

√
5]/2 ln(x), c = 1, (3.86)

y1(0, x;−9/16) = x[3−√
10]/2, y3(0, x;−9/16) = x3/2,

y3(0, x;−9/16) = x3/2 ln(x), y4(0, x;−9/16) = x[3+
√
10]/2, c = −9/16;

x ∈ (0,∞). (3.87)

By inspection, one verifies that τ4(c)yj(0, · ; c) = 0, 1 ≤ j ≤ 4. Alternatively,
one can apply the theory of nth-order Euler differential equations as presented,
for instance, in [6, p. 122–123].

Thus, determining whether or not Re(αj(c) > −1/2, 1 ≤ j ≤ 4, one
concludes that

#L2

(

τ4(c)|(0,d)

)

=

⎧

⎪⎨

⎪⎩

2, if c ≥ 45,

4, if − (7!!)/24 ≤ c < 45,

3, if c < −(7!!)/24.
(3.88)

(Explicitly, (7!!)/24 = 105/16.)

Without going into further details we note that also the higher-order
examples n ∈ N, n ≥ 3, can be explicitly solved in terms generalized hyperge-
ometric functions and Meijer’s G-function (this is discussed in [14]).

4. On the Real Part of the Roots of D2n( · ; c), c ∈ R

For n ∈ N and c ∈ R, let D2n( · ; c) be the polynomial given by (3.22) and
note that all of its coefficients are real. The goal of this section is to determine
how many of the roots of D2n( · ; c) have real part > −1/2. Results of this sort
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are typically approached by using the Routh–Hurwitz criterion. We propose a
different approach here, even though Hurwitz’s ideas still play a central role.

Let us begin by fixing some notation. For c ∈ R, let the roots of D2n( · ; c) =
0 be denoted αj(c), j = 1, . . . , 2n. By the continuous dependence of the roots
of a polynomial on the coefficients (see [33, Theorem (1.4)]), we may choose
our labeling such that each αj(c) is a continuous function of c and

Re(α1(c)) ≤ Re(α2(c)) ≤ · · · ≤ Re(αn(c)) ≤ · · · ≤ Re(α2n(c)), c ∈ R.

(4.1)

Note that Re(αj(0)) = αj(0) = j − 1 for j = 1, . . . , 2n. The fact that

D2n( · ; 0) has 2n distinct real roots > −1/2 (4.2)

will be of crucial importance in all that follows.

Example 4.1. Figure 1 shows the graphs of the real parts of the roots of D6( · ; c)
as functions of c ∈ R. The scale for the x-axis has been chosen such that
x = c1/6 for c > 0 and x = sgn(c)|c|1/6 for c < 0. The dotted lines show
the graphs of the real parts of the roots of ( · )6 − c = 0 as functions of c.
One notes that these dotted lines are straight lines precisely because of our
special choice of scale for the x-axis. Furthermore, as c → ±∞, the graph of
each function Re(αj(c)) approaches one of these straight lines asymptotically.
One observes that for c � 0, one has Re(α1(c)) = Re(α2(c)) < Re(α3(c)) =
Re(α4(c)) < Re(α5(c)) = Re(α6(c)). Similarly, for c � 0, one infers that
Re(α1(c)) < Re(α2(c)) = Re(α3(c)) < Re(α4(c)) = Re(α5(c)) < Re(α6(c)).

As will be shown later, we have

Re(α1(c)) ≤ −1
2

iff c ≤ 2240
(

214 − 7
√

1009
)

27
≈ −693.0

or c ≥ 10395
64

≈ 162.4,

Re(α2(c)) ≤ −1
2

iff c ≤ 2240
(

214 − 7
√

1009
)

27
≈ −693.0

or c ≥ 2240
(

214 + 7
√

1009
)

27
≈ 36201.2,

Re(α3(c)) ≤ −1
2

iff c ≥ 2240
(

214 + 7
√

1009
)

27
≈ 36201.2,

(4.3)

where the algebraic numbers on the right are roots of the quadratic equation
27c2 − 958720c − 677376000 = 0. If j ∈ {4, 5, 6}, then Re(αj(c)) > −1/2 for
all c ∈ R.

The proof of our main result, Theorem 4.5, concerning the real parts of
the roots of D2n( · ; c), c ∈ R, will depend on three lemmas. The first lemma
states that for any c ∈ R, the polynomial D2n( · ; c) cannot have more than
two roots (counting multiplicity) having the same real part. More precisely,
we have the following result:
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Figure 1. Graphs of the real parts of the roots of D6( · ; c)
as functions of c ∈ R

Lemma 4.2. For j, j′ ∈ {1, 2, . . . , 2n} and c ∈ R,

Re(αj(c)) = Re(αj′(c)) implies |j − j′| ≤ 1, (4.4)

Furthermore, if Re(αj(c)) = Re(αj′(c)) and |j −j′| = 1, then αj(c), αj′(c) �∈ R

and αj(c) = αj′(c).

Proof. Let c ∈ R and note that

d

dz
D2n(z; c) =

d

dz
(D2n(z; 0) + (−1)nc) =

d

dz
D2n(z; 0), z ∈ C. (4.5)

In particular, D2n( · ; c) and D2n( · ; 0) have the same critical points. By (4.2)

all of the roots of the derivative of D2n( · ; 0) are real and simple, (4.6)

and hence it follows that D2n( · ; c) does not have real roots of multiplicity
greater than two. Moreover, since c ∈ R, all roots of D2n( · ; c) are real or com-
plex conjugates. Arguing by contradiction, suppose the polynomial D2n( · ; c)



F. Gesztesy et al. Ann. Henri Poincaré

has more than two roots (counting multiplicity) having the same real part.
Then

there exist two roots z1, z2 ∈ C of D2n( · ; c) such that

Re(z1) = Re(z2) and 0 ≤ Im(z1) < Im(z2).
(4.7)

We now use the Grace–Heawood theorem to obtain a contradiction. More
precisely, we use the following corollary of (the proof of) the Grace–Heawood
theorem, which is stated on page 126 of [38] as a “Supplement”:

If z1, z2 ∈ C are two distinct roots of a complex polynomial of degree
≥ 2, then neither of the two closed half-planes whose boundary is the
perpendicular bisector of the line segment [z1, z2] is devoid of any
critical points of the polynomial.

When applied to the two roots z1, z2 of D2n( · ; c) as in the claim, this leads
to a contradiction as follows. Note that the perpendicular bisector of the line
segment [z1, z2] in our situation is of the form {z ∈ C | Im(z) = y0}, where
y0 := [Im(z1) + Im(z2)]/2 > 0. Now recall that by (4.6) all the critical points
of D2n( · ; c) are real. Thus, the closed half-plane {z ∈ C | Im(z) ≥ y0} would
be devoid of any critical points of D2n( · ; c). This is the desired contradiction.

�

The second lemma is concerned with the asymptotic behavior of the real
parts of the roots of D2n( · ; c) as c → ±∞.

Lemma 4.3. For j ∈ {1, 2, . . . , 2n} and c ∈ R,

lim
c→+∞ Re(αj(c)) =

{

−∞, 1 ≤ j ≤ n,

+∞, n + 1 ≤ j ≤ 2n,
(4.8)

and

lim
c→−∞ Re(αj(c)) =

⎧

⎪⎨

⎪⎩

−∞, 1 ≤ j ≤ n − 1,

n − (1/2), n ≤ j ≤ n + 1,

+∞, n + 2 ≤ j ≤ 2n.

(4.9)

Proof. For the purpose of this proof, let f(·) be the polynomial given by

f(z) := D2n(z + (n − (1/2)); 0), z ∈ C. (4.10)

The half-integer n − (1/2) is the center of mass of the roots of D2n( · ; 0) and
hence the center of mass of the roots of f( · ) is 0. In other words,

if we write f(z) =
2n∑

j=0

ajz
j , then a2n−1 = 0. (4.11)

For z0 ∈ C, it will be convenient to define polynomials f( · ; z0) and g( · ; z0)
by

f(z; z0) := f(z) − z2n
0 , g(z; z0) := z2n − z2n

0 , z ∈ C. (4.12)

One notes that if z2n
0 = (−1)n−1c, then f(z; z0) = D2n(z − (1/2); c) for all

z ∈ C.
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Next, let ε > 0. We claim that there exists a real number R > 0 such
that if |z0| > r, then the polynomial f( · ; z0) has a unique root in the open
disc U(z0; ε) := {z ∈ C | |z − z0| < ε}. Notice that g( · ; z0) has a unique
root in U(z0; ε), namely z0, as long as |z0| is sufficiently large. Thus, one
can use Rouché’s theorem as follows. Let M := max{|a2n−2|, . . . , |a1|, |a0|}. If
|z0| ≥ 1 + ε and z ∈ ∂U(z0; ε), then 1 ≤ |z| ≤ |z0| + ε and hence (keeping in
mind (4.11))

|f(z; z0) − g(z; z0)| = |a2n−2z
n−2 + . . . + a1z + a0|

≤ |a2n−2||z|2n−2 + · · · + |a1||z| + |a0|
≤ M(|z|2n−2 + · · · + |z| + 1)

≤ (2n − 1)M |z|2n−2

≤ (2n − 1)M(|z0| + ε)2n−2.

(4.13)

Furthermore, if |z0| ≥ 1 + ε, then the minimum of |g( · ; z0)| on the boundary
∂U(z0; ε) is attained at z = (|z0| − ε)z0/|z0| and hence for every z ∈ ∂U(z0; ε)
one has

|g(z; z0)| = |z2n − z2n
0 | ≥ |(|z0| − ε)2n − |z0|2n|

= ε |(|z0| − ε)2n−1 + · · · + (|z0| − ε) + 1|. (4.14)

One notes that if |z0| is sufficiently large, then

ε [(|z0| − ε)2n−1 + · · · + (|z0| − ε) + 1] > (2n − 1)M(|z0| + ε)2n−2 (4.15)

since the left-hand side is a polynomial in |z0| of degree 2n − 1 (with positive
leading coefficient) and the right-hand side is a polynomial in |z0| of degree
2n − 2 (with positive leading coefficient.) Therefore, if |z0| is sufficiently large,
then

|g(z; z0)| > |f(z; z0) − g(z; z0)| for every z ∈ ∂U(z0; ε) (4.16)

and hence, by Rouché’s theorem, f( · ; z0) and g( · ; z0) have the same number
of roots (counted with multiplicity) in U(z0; ε). It follows that there exists
some R > 0 such that if |z0| > R, then f( · ; z0) has a unique root in the open
disc U(z0; ε).

We can now complete the proof of Lemma 4.3. For c ∈ R, let the roots
of

[z − (n − (1/2))]2n + (−1)nc = 0, z ∈ C, (4.17)

be denoted βj(c), j = 1, . . . , 2n. One can choose a labeling such that

Re(β1(c)) ≤ Re(β2(c)) ≤ · · · ≤ Re(βn(c)) ≤ · · · ≤ Re(β2n(c)), c ∈ R. (4.18)

There is a statement analogous to Lemma 4.2 for the roots βj(c), j = 1, . . . , 2n.
In light of this, there is a “canonical” labeling for both the roots αj(c) and
βj(c) such that if 1 ≤ j < 2n and Re(αj(c)) = Re(αj+1(c)) [resp. Re(βj(c)) =
Re(βj+1(c))], then Im(αj(c)) < Im(αj+1(c)) [resp. Im(βj(c)) < Im(βj+1(c))].
The roots of (4.17) are trivial to determine and a straightforward (but some-
what tedious) analysis shows that the asymptotic behavior of Re(βj(c)) as
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c → ±∞ is given by (4.8) and (4.9), respectively, with αj(c) replaced by βj(c),
j = 1, 2 . . . , 2n.

Now for ε > 0 and |c| � 0, by the Rouché argument from above applied
to z0 = βj(c),

|αj(c) − βj(c)| < ε, j = 1, 2 . . . , 2n. (4.19)

Therefore, the asymptotic behavior of Re(βj(c)) as c → ±∞ is given by (4.8)
and (4.9), respectively. �

Finally, the last lemma is related to the Routh–Hurwitz criterion, adapted
to our situation. This takes some preparation. For c ∈ R, one first expands
D2n(z − (1/2); c) as a polynomial in z,

D2n(z − (1/2); c) = q2nz2n + q2n−1z
2n−1 + · · · + q1z +

[

q0 + (−1)nc
]

, (4.20)

and then considers the associated (2n × 2n) Hurwitz matrix,

H2n(c) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q2n−1 q2n−3 q2n−5 · · · 0 0 0

q2n q2n−2 q2n−4
. . .

...
...

...

0 q2n−1 q2n−3
. . .

...
...

...
... q2n q2n−2 0

...
...

... 0 q2n−1 q0+(−1)nc
...

...
...

... q2n q1 0
...

...
... 0 q2 q0+(−1)nc

...
...

...
... q3 q1 0

0 0 0 · · · q4 q2 q0+(−1)nc

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(4.21)

One notes that qj ∈ Q for all j ∈ {0, 1, . . . , 2n}. Furthermore, one observes
that c only occurs in the even rows. This implies that the function det (H2n( · ))
is a polynomial of degree n with rational coefficients. By Laplace expansion
along the last column,

det (H2n(c)) = [q0 + (−1)nc] hn−1(c), (4.22)

where hn−1( · ) is a polynomial of degree n−1 with rational coefficients. There
is a simple closed expression for q0, which is reminiscent of the expression on
the right-hand side of (1.9):

q0 =
(4n − 1)!!

22n
. (4.23)

Formula (4.23) is easily proved by induction using that

q0 = D2n(−1/2; 0) =
2n∏

j=1

[j − (1/2)]. (4.24)



Homogeneous Half-Line Differential Operators

Lemma 4.4. For j ∈ {1, 2, . . . , 2n} and c ∈ R, if Re(αj(c)) = −1/2, then

det(H2n(c)) = 0, (4.25)

that is,

c = (−1)n−1q0, or, hn−1(c) = 0, (4.26)

where hn−1( · ) is given by (4.22).

Proof. Note that the roots of the polynomial (4.20) are just the roots of
D2n( · ; c) shifted by 1/2, that is, roots of the polynomial (4.20) are αj(c) +
(1/2), where j ∈ {1, 2, . . . , 2n}. It then follows from Orlando’s formula (see
[13, § XV.7]) that

hn−1(c) =
∏

1≤j1<j2≤2n

{[αj1(c) + (1/2)] + [αj2(c) + (1/2)]}. (4.27)

Next, let j ∈ {1, 2, . . . , 2n} and c ∈ R such that Re(αj(c)) = −1/2. First
suppose αj(c) ∈ R. Then αj(c) = −1/2 and D2n(−1/2; c) = D2n(−1/2; 0) +
(−1)nc = 0, which implies that c = (−1)n−1q0. Next, suppose that αj(c) �∈ R.
By Lemma 4.2, there exists some j′ ∈{1, 2, . . . , 2n}, j �= j′, such that αj′(c)=
αj(c). Then [αj(c)+(1/2)]+[αj′(c)+(1/2)]=0 and hence hn−1(c)=0 by (4.27).
�

We now have all the necessary ingredients to prove the main result of
this section, Theorem 4.5. In this context we will use the floor and ceiling
notation: One recalls that for n ∈ N, �n/2� denotes the greatest integer less
than or equal to n/2; similarly, �n/2� denotes the least integer greater than or
equal n/2. Thus, for n ∈ N, one has

�n/2� =

⎧

⎨

⎩

�n/2� + 1 = (n + 1)/2 if n is odd,

�n/2� = n/2 if n is even.
(4.28)

Recalling Remark 3.3 (i), one obtains for c ∈ R, d ∈ (0,∞),

#
(

τ2n(c)|(0,d)

)

= the number of j ∈ {1, 2, . . . , 2n} such that Re(αj(c))
> −1/2. (4.29)

Theorem 4.5. (i) For every n ∈ N, n ≥ 2, there exist n real constants

c(1)n < c(2)n < · · · < c(n)n (4.30)

such that the following items (a)–(c) hold:
(a) For c ∈ R, d ∈ (0,∞), one has

#
(

τ2n(c)|(0,d)
)

=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n, if c ≥ c
(n)
n ,

n + 2(n − k), if c
(k)
n ≤ c < c

(k+1)
n and �n/2� < k ≤ n − 1,

2n, if c
(k)
n < c < c

(k+1)
n and k = �n/2�,

n + 2k + 1, if c
(k)
n < c ≤ c

(k+1)
n and 1 ≤ k < �n/2�,

n + 1, if c ≤ c
(1)
n .

(4.31)
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(b) The constant c
(�n/2�)
n is given by the formula

c(�n/2�)
n = (−1)n−1 (4n − 1)!!

22n
. (4.32)

(c) The constants c
(1)
n , c

(2)
n , . . . c

(�n/2�−1)
n , c

(�n/2�+1)
n , . . . , c

(n)
n are the roots of

the polynomial hn−1( · ) of degree n − 1 with rational coefficients. In ad-
dition,

c(n)n ≥ (4n − 1)!!
22n

=
n→∞ 21/2(2/e)nn2n[1 + O(1/n)]. (4.33)

(ii) For n = 1 one obtains

#
(

τ2(c)|(0,d)

)

=

{

1, if c ≥ 3/4,

2, if c < 3/4.
(4.34)

Proof. (i) The constants c
(1)
n , . . . , c

(n)
n will turn out to be the roots of the

polynomial det(H2n( · )) of degree n given by (4.21). However, it is not clear,
a priori, that det(H2n( · )) has n distinct real roots. For that reason, we will
have to define our constants differently.

Next, we recall that the polynomial D2n( · ; 0) has 2n distinct real roots,
namely the nonnegative integers αj(0) = j − 1, where j ∈ {1, 2 . . . , 2n}.
In particular, Re(αj(0)) > −1/2 for all j ∈ {1, 2 . . . , 2n}. By Lemma 4.3,
if 1 ≤ j ≤ n − 1, one has limc→−∞ Re(αj(c)) = −∞ and hence {c <
0 |Re(αj(c)) = −1/2} is nonempty by continuity; similarly, if 1 ≤ j ≤ n, then
limc→∞ Re(αj(c)) = −∞ and hence {c > 0 |Re(αj(c)) = −1/2} is nonempty
by continuity. Now, for 1 ≤ k ≤ n, define

c(k)n :=

⎧

⎨

⎩

min{c ∈ R |Re(αn−2k+1(c)) = −1/2} if 1 ≤ k ≤ �n/2�
max{c ∈ R |Re(α2(k−n/2�)−1(c)) = −1/2} if �n/2� < k ≤ n.

(4.35)

One notes that if 1 ≤ k ≤ �n/2�, then 1 ≤ n − 2k + 1 ≤ n − 1 and c
(k)
n < 0;

similarly, if �n/2� < k ≤ n, then 1 ≤ 2(k − �n/2�) − 1 ≤ n and c
(k)
n > 0. By

(4.1), we then obtain

c(1)n ≤ c(2)n ≤ · · · ≤ c(n/2�)
n < 0 < c(n/2�+1)

n ≤ · · · ≤ c(n−1)
n ≤ c(n)n

(4.36)

Next, we use Lemma 4.2 to show that all the inequalities in (4.36) are strict.
Suppose c

(k)
n = c

(k+1)
n for some 1 ≤ k ≤ �n/2� − 1. Then Re

(

αn−2k+1(c
(k)
n )

)

=
Re

(

αn−2k−1(c
(k)
n )

)

and since |(n−2k+1)−(n−2k−1)| = 2 > 1, this contradicts
(4.4). The same argument also yields a contradiction if c

(k)
n = c

(k+1)
n for some

�n/2� < k ≤ n − 1. Therefore, all the inequalities in (4.36) are strict.

We can say a bit more about the constants c
(n/2�)
n and c

(n/2�+1)
n .
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Claim 4.6. We have

c(n/2�)
n ≤ −q0 < 0 < q0 ≤ c(n/2�+1)

n , (4.37)

where q0 = D2n(−1/2; 0) as in (4.24).

By (4.36) and the discussion leading up to it, the claim follows if we show
that for c ∈ R, the polynomial D2n( · ; c) has no roots with real part equal to
−1/2 if |c| < q0. To prove the latter, we will use a simple argument due to
Tallis and Gordon [47, Theorem 1(a)]. Consider the polynomial f( · ) given by
f(z) := D2n(z − (1/2); 0), z ∈ C. By (3.22),

f(z) =
2n∏

j=1

[(z − (1/2)) − (j − 1)] =
2n∏

j=1

[z − (j − (1/2))] , z ∈ C.

(4.38)

Note that D2n( · ; c) has a root with real part equal −1/2 if and only if f( · ) +
(−1)nc has a root on the imaginary axis. Suppose f(ib)+(−1)nc = 0 for some
b ∈ R. Then

|c| = |f(ib)| =
2n∏

j=1

|ib − (j − (1/2))| ≥
2n∏

j=1

[j − (1/2)] = q0, (4.39)

which proves Claim 4.6.
Combining (4.36) and (4.37) implies

c(n)n ≥ q0 =
(4n − 1)!!

22n
=

Γ(4n)
24n−1Γ(2n)

. (4.40)

Stirling’s formula (see, e.g., [1, No. 6.1.37]),

Γ(z) =
z→∞

| arg(z)|<π

(2π)1/2e−zzz−(1/2)[1 + O(1/z)], (4.41)

then yields (4.33).
By Lemma 4.4, det

(

H2n

(

c
(k)
n

))

= 0 for every 1 ≤ k ≤ n. Since the
constants c

(k)
n are distinct and since det(H2n( · )) is a polynomial of degree n,

the polynomial det(H2n( · )) does not have any other roots. Furthermore, one
of the constants c

(k)
n must be equal to (−1)n−1q0 and the other n−1 constants

must be the roots of the polynomial hn−1( · ), see (4.22). If n is odd, then
(−1)n−1q0 = q0 > 0 and it follows from (4.37) and (4.36) that c

(n/2�+1)
n = q0;

similarly, if n is even, then (−1)n−1q0 = −q0 < 0 and it follows from (4.37)
and (4.36) that c

(n/2�)
n = −q0. In either case, in light of (4.28), we have

c
(�n/2�)
n = (−1)n−1q0. Thus, recalling the formula for q0 from (4.23), we obtain

(4.32). This completes the proof of parts (b) and (c) of Theorem 4.5.
Before we prove part (a), we recall that by the continuity argument given

in the first paragraph of this proof, for every 1 ≤ j ≤ n − 1, there exists some
c < 0 such that Re(αj(c)) = −1/2. By our observations above, this c must be
one of the constants c

(k)
n with 1 ≤ k ≤ �n/2�. Similarly, for every 1 ≤ j ≤ n,
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there exists some c > 0 such that Re(αj(c)) = −1/2 and, by our observations
above, this c must be one of the constants c

(k)
n with �n/2� + 1 ≤ k ≤ n.

We will now prove part (a) in the case when n is odd. Then n− 1 is even
and n−1 = 2�n/2� = 2(n−�n/2�). By Lemma 4.2 and since n−1 = 2�n/2�, for
every 1 ≤ k ≤ �n/2�, there are exactly two distinct j, j′ ∈ {1, 2 . . . , n−1} such
that Re

(

αj

(

c
(k)
n

))

= Re
(

αj′
(

c
(k)
n

))

. Furthermore, c
(n/2�+1)
n = c

(�n/2�)
n = q0

and α1

(

c
(�n/2�)
n

)

= −1/2 ∈ R. By Lemma 4.2 and since n−1 = 2(n−�n/2�), for
every �n/2�+1 ≤ k ≤ n, there are exactly two distinct j, j′ ∈ {2, 3 . . . , n} such
that Re

(

αj

(

c
(k)
n

))

= Re
(

αj′
(

c
(k)
n

))

. The resulting situation is summarized in
Fig. 2a. We now use Fig. 2a to understand how the value of #

(

τ2n(c)|(0,d)

)

changes with c ∈ R. For c ≤ c
(1)
n , Fig. 2b shows that Re(αj(c)) > −1/2 if

and only if n ≤ j ≤ 2n. Therefore, #
(

τ2n(c)|(0,d)

)

= n + 1 for c ≤ c
(1)
n . As c

increases beyond c
(1)
n , the value of #

(

τ2n(c)|(0,d)

)

jumps from n+1 to n+3 since
for c

(1)
n < c ≤ c

(2)
n , Re(αj(c)) > −1/2 if and only if n − 2 ≤ j ≤ 2n (assuming

that n ≥ 3). As c increases more, the value of #
(

τ2n(c)|(0,d)

)

increases by 2
each time c crosses one of the constants c

(k)
n until c reaches c

(n/2�)
n ), when the

value #
(

τ2n(c)|(0,d)

)

only increases by 1 from 2n− 1 to 2n. From then on, the
value of #

(

τ2n(c)|(0,d)

)

starts decreasing by 2 each time c moves beyond one of
the constants c

(k)
n until, finally, c passes c

(n)
n , and we have #

(

τ2n(c)|(0,d)

)

= n

since for c ≥ c
(n)
n , Re(αj(c)) > −1/2 if and only if n + 1 ≤ j ≤ 2n. The result

is the piecewise-formula for #
(

τ2n(c)|(0,d)

)

stated in part (a).
In the case when n is even, the argument is, mutatis mutandis, the same.

The situation is summarized in Fig. 2b. The result is the same piecewise-
formula for #

(

τ2n(c)|(0,d)

)

stated in part (a).
(ii) This has been discussed in Example 3.5. �

Corollary 4.7. For every n ∈ N, there exists a positive constant cn ∈ R such
that

{

c ∈ R
∣
∣#

(

τ2n(c)|(0,d)

)

= n
}

= [cn,∞), (4.42)

and thus,

T2n,min(c) is self-adjoint
(

equivalently,
..

T 2n,min is essentially self-adjoint
)

in L2((0,∞); dx) if and only if c ≥ cn.

(4.43)

In addition,

c1 = 3/4, cn = c(n)n ≥ (4n − 1)!!
22n

, n ∈ N, n ≥ 2 (4.44)

(see (4.30), (4.31), and (4.40)).

Put differently, Corollary 4.7 asserts there exist no “islands” (i.e., inter-
vals or its degeneration to points) of nonessential self-adjointness for τ2n(c)
∣
∣
C∞

0 ((0,∞))
for c ≥ cn.
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Figure 2. The constants c
(k)
n

We explicitly record the following exact expressions:

c1 = 3/4,

c2 = 45,

c3 = 2240
(

214 + 7
√

1009
)/

27 ≈ 36201.1645283357,

c4 = 2835

(

13711 +
190309441

3
√

2625188010911 + 1805760
√−292868607

+
3
√

2625188010911 + 1805760
√−292868607

)

= 38870685 + 5670

√

292868607
127

sin

(

1
3

tan−1

(

9
√

292868607
466120

))

+
876128400√

127
cos

(

1
3

tan−1

(

9
√

292868607
466120

))

≈ 117089256.9368802. (4.45)

Corollary 4.8. For every n ∈ N and every m ∈ {n, n + 1, · · · , 2n}, there exists
some c ∈ R such that #

(

τ2n(c)|(0,d)

)

= m.

Proof. By Theorem 4.5, as c increases from c � 0 to c � 0, #
(

τ2n(c)|(0,d)

)

takes on the values

n + 1, n + 3, . . . , 2n − 2, 2n, 2n − 1, 2n − 3, . . . , n + 2, n, if n is odd, (4.46)
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and

n + 1, n + 3, . . . , 2n − 3, 2n − 1, 2n, 2n − 2, . . . , n + 2, n, if n is even. (4.47)

In either case, #
(

τ2n(c)|(0,d)

)

takes on all integer values from n to 2n. �

In particular, Corollary 4.8 proves that every possible integer in the in-
terval [n, 2n] in (3.23) is attained for some c ∈ R.

Example 4.9. If n = 3, then q0 = 10395/64 and

h2(c) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

18 435 4881/8 0 0

−1 −505/4 −12139/16 c − 10395/64 0

0 18 435 4881/8 0

0 −1 −505/4 −12139/16 c − 10395/64

0 0 18 435 4881/8

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= −5832c2 + 207083520c + 146313216000, c ∈ R. (4.48)

The roots of h2( · ) are 2240
(

214 ± 7
√

1009
)

/27. Therefore, by Theorem 4.5
one finds

#
(

τ6(c)|(0,d)

)

=

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3, if 2240
(

214 + 7
√

1009
)

/27 ≤ c;

5, if 10395/64 ≤ c < 2240
(

214 + 7
√

1009
)

/27;

6, if 2240
(

214 − 7
√

1009
)

/27 < c < 10395/64;

4, if c ≤ 2240
(

214 − 7
√

1009
)

/27.

(4.49)
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Appendix A. Some Conjectures

In this section, when dealing with polynomials, we will view them as elements
in a polynomial ring as in abstract algebra. We will review some standard
notational conventions and basic results. Let X be an indeterminate (formal
symbol). We denote by Z[X] (resp. Q[X]) the ring of polynomials in the in-
determinate X with coefficients in Z (resp. Q). A polynomial f(X) ∈ Q[X] is
called irreducible, if it has positive degree and it cannot be written as a prod-
uct f(X) = g(X)h(X), where g(X), h(X) ∈ Q[X] are polynomials of degree
strictly less than the degree of f(X).

Conjecture A.1. For n ∈ N, n ≥ 2, the polynomial

gn−1(X) :=
(−1)n/2�

(2n2)n hn−1(X) (A.1)

is a monic irreducible polynomial in Q[X] of degree n − 1 with Galois group
Sn−1. In particular, for n ≥ 6, the constants c

(1)
n , c

(2)
n , . . . c

(�n/2�−1
n , c

(�n/2�+1)
n ,

. . . , c
(n)
n are algebraic numbers that are not expressible in radicals over Q.

Proof for n = 5. We have

g4(X) = X4 − 5237598744576X3/5 − 3477424021724410819117056X2/3125

+ 2933863158888223380395161288704X/125

+ 246639641224100448713004224731938816/55.

(A.2)

Let g̃4(X) := (3125)4 g4(X/3125). Then g̃4(X) is a monic polynomial of degree
4 with integer coefficients. Reducing the coefficient of modulo 19, one obtains

g̃4(X) ≡ X4 + 11X3 + 3X2 + 11X + 15 mod 19. (A.3)

It is easy to check that X4 +11X3 +3X2 +11X +15 is irreducible modulo 19.
By Gauss’ lemma, it follows that g4(X) is irreducible over Q. �
Proof for n = 6. We have

g5(X) = X5 − 15354318108567042605X4/729

− 333441081709503846926848000000X3/3

+ 4983404391409567436628431599042560000000X2

+ 8770826733513986444066497798757941248000000000000X

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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− 2088913117666248881257824386993081779822264320000000000000
(A.4)

Let g̃5(X) := (729)5 g5(X/729). Then g̃5(X) is a monic polynomial of
degree 5 with integer coefficients. Note that g5(X) is irreducible over Q if and
only if g̃5(X) is irreducible over Q. Furthermore, the Galois group of g5(X)
is isomorphic to the Galois group of g̃5(X). To prove the irreducibility and
to compute the Galois group, we reduce the coefficients of g̃5(X) modulo the
primes 23 and 109:

g̃5(X) ≡ X5 + 5X4 + 11X3 + 7X2 + 13X + 16 mod 23, (A.5)

g̃5(X) ≡ (X2 + 38X + 24)(X + 42)(X + 41)(x + 11) mod 109. (A.6)

It is easy to check that X5 + 5X4 + 11X3 + 7X2 + 13X + 16 is irreducible
modulo 23. Therefore, the polynomial g̃5(X) is irreducible over Z and also over
Q by Gauss’ lemma. It also follows, by a theorem due to Dedekind (see [26,
Thm. 4.37]), that the Galois group of the polynomial g̃5(X) contains a 5-cycle.
Since the reduction of g̃5(X) modulo 109 is the product an irreducible qua-
dratic polynomial and three linear polynomials, Dedekind’s theorem implies
that the Galois group of g̃5(X) contains a transposition (2-cycle). A subgroup
of S5 that contains a transposition and a 5-cycle is S5. Since S5 is not a solv-
able group, Galois’ theorem, implies that g5(X) is not solvable and hence c6
cannot be written in terms of radicals. �

The same idea can be used to prove the conjecture for larger n. The
following table shows what primes are used to verify the conjecture for 4 ≤
n ≤ 12.

We conclude with a vexing open conjecture:

Conjecture A.2. One has
(

recalling cn = c
(n)
n

)

cn ∼
n→∞

(

2n2
/

π
)2n

. (A.7)

and refer to [15] for numerical evidence in this context.
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Ann. Sci. Ecole Norm. Sup. 3(3), 391–404 (1886)

[41] Sauvage, L.: Sur les solutions régulières d’un système d’équations différentielles.
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