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An Elliptic Solution of the Classical
Yang–Baxter Equation Associated
with the Queer Lie Superalgebra

Maxim Nazarov

Abstract. A solution of the classical Yang–Baxter equation associated
with the queer Lie superalgebra is constructed in terms of Hermite theta
functions.

1. Introduction

Let g be any finite-dimensional Lie superalgebra over a complex field C . Let
r(u, v) be a meromorphic function of two complex variables u and v which
takes values in g ⊗ g . The classical Yang–Baxter equation for the function
r(u , v) is

[ r12(u, v), r13(u,w) ] + [ r12(u, v), r23(v, w) ] + [ r13(u,w), r23(v, w) ] = 0

where w is another complex variable and the function of u, v, w at the left-hand
side takes values in g ⊗ g ⊗ g . Here we use the standard notation, for example
r23(v, w) = 1 ⊗ r(v, w) . For conventions on the tensor products see Sect. 2.

A solution of the above equation is called nondegenerate if not every
value of the function r(u, v) is degenerate as a quadratic tensor. For simple
Lie algebras g the nondegenerate solutions were classified in [4,5]. In particular,
it was shown in [5] that for any nondegenerate solution r(u, v) with a simple
Lie algebra g one can find a domain D ⊂ C and two holomorphic maps

ψ : D → C and ω : D → Aut g

where ψ is not constant and the function (ω(u)⊗ ω(v)) r(ψ(u), ψ(v)) depends
only on the difference u − v .

This basic result of [5] does not hold for Lie superalgebras. Solutions
r(u, v) which depend not only on the difference u− v were constructed in [11].
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There g is the general linear Lie superalgebra gln|n with any positive integer
n . These solutions are antisymmetric, that is

r21(v, u) = − r(u, v). (1)

A general phenomenon underlying this construction was independently de-
scribed in [1]. See [12] for further discussion of this remarkable phenomenon.

The solutions r(u, v) constructed in [11] are rational functions of variables
u and v . Here we construct a solution r(u, v) which is expressed in theta
functions of u − v and u + v . Our g is the quotient of the special linear Lie
superalgebra sln|n by its one-dimensional centre. This quotient is denoted by
psln|n .

Elliptic solutions r(u, v) for the Lie superalgebra g = psln|n were con-
structed in [9]. They have the form r(u, v) = s(u− v) where s(u) is a function
such that

s21(u) = − s(−u). (2)

Hence these solutions are antisymmetric.
Now let η be the involutive automorphism of gln|n defined in Sect. 2. The

fixed point subalgebra of gln|n relative to η is the queer Lie superalgebra qn .
The automorphism η preserves the subalgebra sln|n and descends to psln|n .
In our Sect. 5 we show that the function s(u) in [9] can be so chosen that

(η ⊗ η) s(u) = s(−u) (3)

and that

r(u, v) = s(u − v) + (id ⊗ η) s(u + v) (4)

is another solution of classical Yang–Baxter equation for g = psln|n .
It immediately follows from (3) and (4) that

r(u, v) = s(u − v) + (η ⊗ id) s(−u − v). (5)

By comparing the definition (4) with (5) and by using (2) we see that our
solution r(u, v) is antisymmetric as well.

2. General Conventions

We shall use the following general conventions. Let A and B be any associative
Z2-graded algebras. Their tensor product A⊗B is also an associative Z2-graded
algebra such that for any homogeneous elements X,X ′ ∈ A and Y, Y ′ ∈ B

(X ⊗ Y )(X ′ ⊗ Y ′) = XX ′ ⊗ Y Y ′ (−1) deg X′ deg Y ,

deg (X ⊗ Y ) = deg X + deg Y .

Furthermore, for any two Z2-graded modules U and V over A and B, respec-
tively, the vector space U ⊗ V is a Z2-graded module over A ⊗ B such that for
any homogeneous elements x ∈ U and y ∈ V

(X ⊗ Y )(x ⊗ y) = Xx ⊗ Y y (−1) deg x deg Y , (6)

deg(x ⊗ y) = deg x + deg y . (7)
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Now let the indices i, j, k, l run through ± 1, . . . , ±n . Put ı̄ = 0 if i > 0
and ı̄ = 1 if i < 0 . Consider the Z2-graded vector space C

n|n . Let ei ∈ C
n|n

be an element of the standard basis. The Z2-grading on C
n|n is defined by

deg ei = ı̄ .
Let Eij ∈ End C

n|n be the standard matrix unit, defined by Eij ek =
δjk ei . The associative algebra End C

n|n is Z2-graded by setting deg Eij =
ı̄ + j̄ . Hence C

n|n is a Z2-graded module over End C
n|n . For any positive

integer m we can also identify the tensor product (End C
n|n)⊗m with the

algebra End((Cn|n)⊗m) acting on the vector space (Cn|n)⊗m by repeatedly
using conventions (6) and (7).

The supertrace str is a linear function End C
n|n → C defined by setting

str(Eij) = δij (−1) ı̄ .

This definition implies that for any homogeneous elements X,Y ∈ End C
n|n

str(Y X) = str(XY ) (−1) deg X deg Y .

Further, we can define an involutive automorphism η of End C
n|n by mapping

η : Eij �→ E−i,−j . (8)

This automorphism is the conjugation by the involutive odd element of
End C

n|n

E1,−1 + E−1,1 + · · · + En,−n + E−n,n.

We have

[Eij , Ekl ] = δjk Eil − δli Ekj (−1)( ı̄+ j̄ )(k̄ + l̄ ) (9)

in End C
n|n . Here the square brackets indicate the supercommutator. We will

also consider each Eij as an element of the Lie superalgebra gln|n . The special
linear Lie superalgebra sln|n is the subalgebra of gln|n defined as the kernel
of the function str . The centre of gln|n is spanned by the element

E11 + E−1,−1 + · · · + Enn + E−n,−n = 1.

The subalgebra sln|n contains this element. The quotient of the Lie superalge-
bra sln|n by the one-dimensional subspace spanned by this element is denoted
by psln|n . According to [8] the Lie superalgebra psln|n is simple if and only if
n > 1 . By using (9) we obtain that the Lie bracket on psl 1|1 is just zero.

By (9) our η is also an involutive automorphism of the Lie superalge-
bra gln|n . This automorphism preserves its subalgebra sln|n . The queer Lie
superalgebra qn is the fixed point subalgebra of gln|n by η .

3. Theta Functions

Fix any complex number τ with a positive imaginary part. For any real num-
bers a and b consider the Hermite theta function

θa,b(u) =
∞∑

m=−∞
eπiτ (a+m)2+2πi(a+m)(b+u). (10)
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The above series converges to a holomorphic function of the complex vari-
able u . All zeroes of this function are simple and form the subset

(a + 1
2 + Z) τ + (b + 1

2 + Z) ⊂ C,

see [7, pp. 196–199]. The numbers a and b here are called characteristics. For
a = b = 0 the series (10) is the Jacobi theta function. It follows from (10) that

θa,b(u + 1) = e 2πia θa,b(u) and θa,b(u + τ) = e−2πi(u+b+ τ
2 ) θa,b(u). (11)

By changing m to m + 1 in (10) and by using the first equation in (11) we
obtain

θa+1,b(u) = θa,b(u) and θa,b+1(u) = e 2πia θa,b(u) (12)

respectively. Further, by changing m to −m in (10) we obtain the parity rela-
tion

θa,b(−u) = θ−a,−b(u). (13)

Now let g and h be any integers not simultaneously divisible by 2n and
by n, respectively. Consider the function of the complex variable u

ϕg,h(u) =
θ g

2n+ 1
2 , 12− h

n
(u) θ ′

1
2 , 12

(0)

θ g
2n+ 1

2 , 12− h
n
(0) θ 1

2 , 12
(u)

.

This function is meromorphic. It has simple poles at every point on the lattice

L = Z + Z τ ⊂ C.

Due to the chosen normalisation the residue of the pole of ϕg,h(u) at u = 0
is 1 .

It immediately follows from the relations (12) that

ϕg+2n,h(u) = ϕg,h(u) and ϕg,h+n(u) = ϕg,h(u).

Thus ϕg,h(u) depends on the integers g and h only modulo 2n and n, respec-
tively. From now on g and h will run not through Z , but through the additive
groups Z2n = Z/2nZ and Zn = Z/nZ, respectively.

Let ε = eπ i/n be a primitive root of unity of the 2n . Direct calculation
using (11) yields the periodicity properties

ϕg,h(u + 1) = ε g ϕg,h(u) and ϕg,h(u + τ) = ε 2h ϕg,h(u). (14)

Another direct calculation using (12) and (13) yields the parity relation

ϕg,h(−u) = −ϕ−g,−h(u). (15)

4. Commuting Automorphisms

Consider the following two elements of the algebra End C
n|n ,

A = E11 + ε2E22 + · · · + ε 2(n−1)Enn

+ ε E−1,−1 + ε−1E−2,−2 + · · · + ε 3−2nE−n,−n
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and

B = E12 + · · · + En−1,n + En1

+ E−2,−1 + · · · + E−n,1−n + · · · + E−1,−n.

These elements are invertible and of Z2 -degree zero. They satisfy the relations

A2n = Bn = 1 and BA = ε2AB. (16)

By (8) we get

η(A) = ε A−1 and η(B) = B−1. (17)

Let us define two automorphisms α and β of the algebra End C
n|n by

setting

α(X) = A−1XA and β(X) = B−1XB

for X ∈ End C
n|n . These automorphisms commute and are of degrees 2n and

n, respectively. Here α(X) = β(X) = X if and only if X is a linear combination
of

E11 + · · · + Enn and E−1,−1 + · · · + E−n,−n.

Since the elements A and B are of Z2 -degree 0 , for each X ∈ End C
n|n we

have

str(α(X)) = str(X) and str(β(X)) = str(X). (18)

Let us now regard α and β as automorphisms of the Lie superalgebra
gln|n . It follows from the first equation in (16) that α 2n = β n = 1. The
eigenvalues of α and β are ε g and ε 2h where g and h range over Z2n and Zn,
respectively. Let gl g,h

n|n be the joint eigenspace of α and β corresponding to ε g

and ε 2h . By (18)

gl g,h
n|n ⊂ sln|n for (g, h) �= (0, 0). (19)

Consider the Casimir element of the tensor square gln|n⊗ gln|n

t =
∑

i,j

Eij ⊗ Eji (−1) j̄ .

This element is invariant by gln|n as for any indices k, l by using (9) we get

[ t, Ekl ⊗ 1 + 1 ⊗ Ekl ] = 0. (20)

Note that

(η ⊗ η) t = − t. (21)

It follows from (20) that the Casimir element t is invariant by both α ⊗ α and
β ⊗ β . Therefore t belongs to the direct sum of subspaces

gl g,h
n|n ⊗ gl −g,−h

n|n ⊂ gln|n⊗ gln|n. (22)

Let tg,h be the projection of element t to the direct summand (22). By (17),(21)

(η ⊗ η) tg,h = − t−g,−h. (23)
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Further, let σ be the linear transformation of gln|n ⊗ gln|n defined by
setting

σ (X ⊗ Y ) = Y ⊗ X (−1) deg X deg Y

for homogeneous elements X and Y . By the definition of t we have σ(t) = t . So

σ ( tg,h) = t−g,−h. (24)

We do not need explicit formulas for every projection tg,h . We only note
that

t 0,0 =
1
2n

(J ⊗ 1 + J ⊗ 1) (25)

where

J = E11 − E−1,−1 + · · · + Enn − E−n,−n.

5. Classical Yang–Baxter Equation

The central element 1 of the Lie superalgebra gln|n is contained in the eigenspace
gl 0,0

n|n . Therefore for any (g, h) �= (0, 0) the element tg,h can be identified
with its image in pgln|n ⊗ pgln|n . By using this identification, introduce a
function of u

s(u) =
∑

(g,h) �=(0,0)

ϕg,h(u) tg,h.

Observe that the function s(u) takes all its values in the subspace

psln|n⊗ psln|n ⊂ pgln|n⊗ pgln|n.

Changing the summation indices g, h to −g,−h, respectively, and then
using (15), (24) proves that s(u) indeed satisfies the condition (2) for g =
psln|n . Using (15), (23) proves that s(u) satisfies (3). Here we regard η as an
automorphism of the Lie algebra psln|n . The automorphisms α and β of gln|n
preserve sln|n and descend to psln|n too. By the periodicity properties (14) of
the function ϕg,h(u)

s(u + 1) = (α ⊗ id) s(u) = (id ⊗ α−1) s(u) (26)

and

s(u + τ) = (β ⊗ id) s(u) = (id ⊗ β−1) s(u). (27)

By (25) the image in pgln|n ⊗ pgln|n of the element t 0,0 is zero. Hence
the image of the element t is

∑

(g,h) �=(0,0)

tg,h.

Denote this image by p . The residue of the function s(u) at u = 0 equals p .
Now consider the function r(u, v) as defined by (4). We already observed

in Sect. 1 that (2) and (3) imply the antisymmetry property (1). Let us show
that r(u, v) is indeed a solution of the classical Yang–Baxter equation for
g = psln|n . We will employ general arguments from [4, Sect. 5].
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First observe that due to (4) and to the first equalities in (26) and (27)
we get

r(u + 1, v) = (α ⊗ id) r(u, v) and r(u + τ, v) = (β ⊗ id) r(u, v). (28)

Similarly, due to (5) and to the second equalities in (26) and (27) we get

r(u, v + 1) = (id ⊗ α) r(u, v) and r(u, v + τ) = (id ⊗ β) r(u, v).

Let f (u, v, w) be the left-hand side of the classical Yang–Baxter equation for
our r(u, v) with g = psln|n . Since α and β are Lie algebra automorphisms,
we have

f (u + 1, v, w) = (α ⊗ id ⊗ id) f (u, v, w) (29)

and

f (u + τ, v, w) = (β ⊗ id ⊗ id) f(u, v, w). (30)

Choose any values of v and w such that v − w, v + w /∈ L . We will prove
that then f (u, v, w) is a holomorphic function of u in the whole C . By (29)
and (30) this function is bounded and hence a constant. This constant is then
an element of psln|n⊗ psln|n⊗ psln|n invariant by α and β applied in the first
tensor factor. However the only element of psln|n invariant by both α and β
is zero. Therefore our function must be zero.

If u±v ∈ L, then u±w �∈ L since v±w �∈ L . Then the function r13(u,w)
has no pole. Consider the first two of the three summands of f (u, v, w) . By
the definition (4) their sum can be written as

[ s12(u − v), r13(u,w) + r23(v, w) ] + (31)
[ (id ⊗ η ⊗ id) s12(u + v), r13(u,w) + r23(v, w) ]. (32)

By multiplying (31) by u − v and then setting u = v we get

[ p, r13(v, w) + r23(v, w) ] = 0.

Here we employ (20) and the definition of p as the image of t in pgln|n⊗pgln|n .
Therefore (31) has no pole at u − v = 0 . It now follows from (26), (27), (28)
that the summand (31) has no pole whenever u − v ∈ L .

By multiplying the summand (32) by u + v and then setting u = − v we
get

[ (id ⊗ η ⊗ id) p, r13(−v, w) + r23(v, w) ]
= (id ⊗ η ⊗ id) [ p, r13(−v, w) + (id ⊗ η ⊗ id) r23(v, w) ]
= (id ⊗ η ⊗ id) [ p, r13(−v, w) + r23(−v, w) ] = 0.

So (32) has no pole at u + v = 0 . It follows from (26), (27), (28) that (32) has
no pole whenever u + v ∈ L .

Thus the function f (u, v, w) has no pole whenever u ± v ∈ L . Further,
by using the antisymmetry property (1) the function −f (u, v, w) can be writ-
ten as

[ r13(u,w), r12(u, v) ] + [ r13(u,w), r32(w, v) ] + [ r12(u, v), r32(w, v) ].
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Similarly to the above argument we can show that the latter function has no
pole when u ± w ∈ L . So r(u, v) is a solution of the classical Yang–Baxter
equation.

Following [2,3,6,10] it would be interesting to find a solution of the quan-
tum Yang–Baxter equation corresponding to our r(u, v) . For the rational so-
lutions of the classical equation constructed in [11] this was already done in
the same work.
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