
Ann. Henri Poincaré Online First
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Free Energy Fluctuations of the Bipartite
Spherical SK Model at Critical Temperature
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Abstract. The spherical Sherrington–Kirkpatrick (SSK) model and its
bipartite analog both exhibit the phenomenon that their free energy fluc-
tuations are asymptotically Gaussian at high temperature but asymptot-
ically Tracy–Widom at low temperature. This was proved in two papers
by Baik and Lee, for all non-critical temperatures. The case of the critical
temperature was recently computed for the SSK model in two separate
papers, one by Landon and the other by Johnstone, Klochkov, Onatski,
Pavlyshyn. In the current paper, we derive the critical temperature result
for the bipartite SSK model. In particular, we find that the free energy
fluctuations exhibit a transition when the temperature is in a window
of size n−1/3√log n around the critical temperature, the same window
as for the SSK model. Within this transitional window, the asymptotic
fluctuations of the free energy are the sum of independent Gaussian and
Tracy–Widom random variables.

1. Introduction

The Sherrington–Kirkpatrick (SK) and spherical Sherrington–Kirkpatrick
(SSK) models devised in the 1970s are two classical examples of mean-field
spin models in which the magnetic behavior of N particles, encoded in a spin
vector σ, is governed by their identically distributed random pairwise interac-
tions. The SK model has Ising spins σ ∈ {−1, 1}N , and SSK is the continuous
analog with σ ∈ {RN : ‖σ‖2 = N}. For a detailed exposition on these models,
we refer readers to the book by Panchenko [44]. One limitation of these models
is that of their mean-field structure, meaning that all pairs of particles inter-
act according to the same rule. With the aim of reflecting inhomogeneities and
community structures (e.g., in theoretical biology, social and neural networks),
scholars have developed various extensions beyond mean-field models.

One extension is the multi-species model, in which the set of N spins
is partitioned into a fixed number of disjoint subsets or “species” [15]. The
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random interactions between spins are not identically distributed as in the SK
and SSK models, but rather have variances depending on the species structure.
For a k-species model, the covariance structure can be encoded in a k×k matrix
Δ2, where Δ2

s,t denotes the variance of the random interaction between a spin
in species s and a spin in species t. In bipartite models, k = 2 and Δ2

s,s = 0
and Δ2

s,t > 0 for all s �= t, meaning that interactions are only between spins
of different species. Bipartite models have important applications in biology
and neural networks [1,17,19]. Another multi-species model (with applications
in artificial intelligence) is the deep Boltzmann machine, where the species or
“layers” are ordered, and interactions are only between spins in adjacent layers
[4–6,32,49].

Another direction of generalizing the SK and SSK models is to allow
interactions, not only between pairs, but among groups of spins. A p-spin
model has interactions among groups of p spins. Likewise, a (p, q)-spin bipartite
model has interactions between a group of p spins from one species and a group
of q spins from the other species. The case of spherical spins for this model
was studied by Auffinger and Chen [9], where they obtained a minimization
formula for the limiting free energy at sufficiently high temperature.

The current paper focuses on the bipartite (1, 1)-spin SSK model. The
setup for this model is as follows. Given two positive integers n,m, we define
spin variables

σ = (σ1, σ2, ..., σn) ∈ Sn−1, τ = (τ1, τ2, ..., τm) ∈ Sm−1,

where

Sn−1 = {u ∈ R
n : ‖u‖2 = n}.

The Hamiltonian for the model is given by

H(σ, τ ) =
1√

n + m

n∑

i=1

m∑

j=1

Jijσiτj

where Jij are independent, standard Gaussian random variables. The Gibbs
measure and the free energy for this model at inverse temperature β > 0 are

p(σ, τ ) =
1

Zn,m
eβH(σ ,τ ), Fn,m(β) =

1
n + m

log Zn,m, (1.1)

respectively, where Zm,n is a normalization factor (i.e. partition function),

Zn,m =
∫

Sm−1

∫

Sn−1

eβH(σ ,τ )dωn(σ)dωm(τ ), (1.2)

and dωn is the uniform probability measure on Sn−1.

1.1. Background and Related Literature

The free energy of SK and SSK has been well studied, although more is known
in the spherical setting. The limiting free energy was first conjectured by Parisi
for SK [47] and by Crisanti and Sommers for SSK [26]. Both conjectures were
rigorously proved by Talagrand [54,55]. The fluctuations of the SK model are



Free Energy Fluctuations of the Bipartite Spherical

only known at high temperature [2,14,25,31], but more is known for the spheri-
cal model, where additional analytic techniques are available. In 2016, Baik and
Lee analyzed the fluctuations of the SSK free energy at non-critical tempera-
ture and found that the fluctuations at high temperature are asymptotically
Gaussian while those at low temperature are asymptotically Tracy–Widom
[12]. The fluctuations at the critical temperature were left open.

The fluctuations at the critical temperature of the SSK free energy were
studied by Landon [39] and by Johnstone, Klochkov, Onatski, and Pavlyshyn
[36], independently. Both papers showed that the critical scaling for the inverse
temperature is β = βc + bn−1/3

√
log n. Landon proved that, for fixed b ≤ 0

and for b → 0, the fluctuations are Gaussian while, for b → +∞ at any rate,
the fluctuations are Tracy–Widom. For fixed b > 0, Landon showed tightness
but did not obtain the limiting distribution. On the other hand, Johnstone
et al. were able to compute fluctuations for all fixed b. Their result for b ≤ 0
agrees with that of Landon and, for b > 0, they showed that the fluctuations
are a sum of independent Gaussian and Tracy–Widom random variables.

Departure from the mean-field structure generally leads to a more chal-
lenging analysis. While the problem of the limiting free energy is solved for
general one-species mixed p-spin SK and SSK models [22,45,47,54,55], lim-
iting results remain incomplete for the multi-species and (p, q)-spin bipartite
models. For the multi-species SK model, the limiting free energy is only veri-
fied under the assumption of positive definite Δ2 (Barra et al. [15] proposed a
Parisi-type formula and proved an upper bound, and Panchenko [46] proved a
matching lower bound). For general Δ2, we only have a lower bound [46]. The
bipartite model, one of the most natural multi-species examples, belongs to
the indefinite Δ2 case and is still open in the case of Ising spins (a conjecture
on the limiting free energy was made [16,18]). When it comes to fluctuations,
a central limit theorem (CLT) for the free energy of the two-species SK model
for general Δ2 was obtained at high temperature by [41].

For the bipartite SSK model, more is known. Baik and Lee [13] obtained
both the limit and the asymptotic fluctuations of the free energy, at all non-
critical temperatures. More specifically, assuming n,m → ∞ with n/m =
λ + O(n−1−δ) for some λ, δ > 0, they provided explicit formulas for the first
two terms in the asymptotic expansion of the free energy for β �= βc, where the
critical inverse temperature βc is equal to

√
1 + λ/λ1/4. The formulas imply

that fluctuation is Gaussian with order n−1 for β < βc (high temperature) and
is GOE Tracy–Widom of order n−2/3 for β > βc (low temperature).

See [9,20,27,52,53] for high-temperature results for more general Ising or
spherical spin models.

1.2. Main Theorem

The goal of this paper is to compute the fluctuations of the free energy in a
transitional window around the critical temperature for the bipartite (1,1)-spin
SSK model. In particular, this includes detailed knowledge of the free energy
at the critical temperature, providing another result on critical temperature
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among spin glass models, in addition to the independent results of Landon [39]
and of Johnstone et al. [36].

We state our main result in the following theorem.

Theorem 1.1. Let Fn,m(β) denote the free energy of a bipartite SSK spin glass,
given by (1.1), where the species sizes n,m satisfy n/m = λ + O(n−1), for
some constant λ ∈ (0, 1], as n,m → ∞. When the inverse temperature is
at the critical scaling, namely β = βc + bn−1/3

√
log n for fixed b and βc :=√

1 + λ/λ1/4, the limiting distribution of the free energy is given by the formula
below and this convergence holds in distribution.

n + m√
1
6 log n

(
Fn,m(β) − F (β) +

1
12

log n

n + m

)
→ N (0, 1) +

√
6(1 + λ)

1
2 b+

λ
3
4 (1 +

√
λ)

2
3

TW1

(1.3)

where TW1 denotes the real Tracy–Widom distribution that is independent
from the standard normal N (0, 1) and b+ denotes the positive part of b. The
limiting free energy is given by

F (β) =

⎧
⎪⎨

⎪⎩

β2

2β4
c

for β < βc

fλ + λ
1+λ

A

(
(1 +

√
λ)2, β√

λ(1+λ)

)
− 1

2
log β − λ

2(1+λ)
Cλ for β ≥ βc

(1.4)

where

fλ = −1
2

+
λ − 1

2(λ + 1)
log 2 +

λ − 1
4(λ + 1)

log λ +
1
4

log(1 + λ),

A(x,B) =
√

α2 + xB2 − α log

(
α +

√
α2 + xB2

2B

)
,

Cλ = (1 − λ−1) log(1 + λ1/2) + log(λ1/2) + λ−1/2.

(1.5)

1.3. Overview of the Proof Methods

One valuable tool in the analysis of the free energy for SSK and bipartite SSK
models is a contour integral representation for the partition function (Zn,m in
our model). A priori, the partition function of SSK is a surface integral on a
high-dimensional sphere (or two spheres in the bipartite case). However, this
can be rewritten in terms of contour integrals in the complex plane, which are
significantly easier to analyze. The contour integral representation for the SSK
partition function was first observed by Kosterlitz, Thouless, and Jones [37].
The analogous representation for the spherical bipartite model, which we use
in the current paper, was derived by Baik and Lee [13].

Armed with this contour integral representation, our analysis can be bro-
ken into two broad stages: (1) use steepest descent analysis to obtain an asymp-
totic expansion for the free energy and (2) analyze the limiting fluctuations
using tools from random matrix theory. This general procedure has been fol-
lowed in several recent papers on spherical spin glasses, including [36,39] in
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their analysis of SSK at critical temperature. While much of our analysis is
inspired by the methods in these two papers, the bipartite setting introduces
certain technical challenges beyond those that arise for unipartite SSK.

One challenge in the bipartite setting is that the representation for Zn,m

is a double contour integral, rather than the single integral that arises for
SSK. This makes the process of contour deformation and steepest descent
analysis more delicate, particularly on the low-temperature side of the critical
threshold, where the contour passes very close to the (random) singularities
of the integrand. Another challenge in the bipartite setting is that the under-
lying random matrix is a Laguerre Orthogonal Ensemble (LOE) rather than
the Gaussian Orthogonal Ensemble (GOE) that appears for SSK (more back-
ground on random matrices is in Sect. 2). While these ensembles have many
similarities, certain analyses are more complicated for LOE.

From the steepest descent analysis, we obtain an asymptotic expansion
for the free energy near the critical temperature, which depends on a sum of the
form

∑n
i=1 log(γ − μi). This is a logarithmic linear statistic of the eigenvalues

{μi}n
i=1 of LOE. The CLT for this quantity is well known in random matrix

theory in the case where γ−d+ > c for some constant c and d+ being the upper
edge of the matrix spectrum (see, e.g., [10,11,42]). However, this standard CLT
for linear eigenvalue statistics does not address the case where γ approaches
d+ as n → ∞, which is precisely the scenario that arises when analyzing the
free energy at critical temperature. Thus, we need an “edge CLT” to treat the
case where γ → d+. A similar challenge arises for the SSK model at critical
temperature, where the log linear statistic depends on eigenvalues of GOE.
The edge CLT for this statistic in the GOE case can be found in [35,38], and
these works provide a necessary ingredient for the analysis of SSK free energy
at critical temperature.

When we began the current project, an analogous edge CLT for LOE did
not exist in the literature. To fill this gap, we proved the following theorem in
a separate paper [24].

Theorem 1.2. (Collins-Woodfin, Le [24]) Let Mn,m be an LOE matrix with
n,m, λ,Cλ, d+ as above. Let γ = d+ + σnn−2/3 with −τ < σn 	 (log n)2 for
some τ > 0. Then,
∑n

i=1 log |γ − μi| − Cλn − 1
λ1/2(1+λ1/2)

σnn1/3 + 2
3λ3/4(1+λ1/2)2

σ
3/2
n + 1

6
log n

√
2
3
logn

→ N (0, 1).

(1.6)

The above result is essential in proving Theorem 1.1 as it is the source
of the Gaussian term in the limiting distribution.

The last step of our proof is to show the asymptotic independence of the
Gaussian and Tracy–Widom terms in the limiting distribution. This involves a
recurrence on the entries of the tridiagonal representation of LOE. In the course
of this analysis, we prove a result that may be of independent interest, namely
that the largest eigenvalue of an n × n LOE matrix depends (asymptotically)
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on a minor of size n1/3 log3 n. This result is well known numerically (e.g., [29]),
but we have not found an explicit proof of it in the literature.

1.4. Organization

In Sect. 2, we provide a more detailed setup of the problem along with various
probability, spin glass, and random matrix theory results that will be used
throughout the paper. Sections 3 and 4 contain our analysis of the free energy
for β = βc + bn−1/3

√
log n in the cases of b < 0 (high critical temperature)

and b > 0 (low critical temperature), respectively. The case of b = 0 is also ad-
dressed in Sect. 4. Finally, in Sect. 5, we prove the asymptotic independence of
the Gaussian and Tracy–Widom terms in the main theorem. Appendices A and
B provide proofs of some technical lemmas from Sects. 2 and 5, respectively.

2. Setup and Preliminaries

2.1. Preliminaries for Bipartite SSK Model

Double contour integral representation of free energy. One of the key tools
that enable us to precisely calculate the free energy and its fluctuations is
a contour integral representation of the partition function. A priori, Zn,m is
given by the surface integral in (1.2). The contour integral representation of
Zn,m was derived by Baik and Lee [13]. For the bipartite model, we assume,
without loss of generality, that n ≤ m. We use Sn−1 to denote the unit n-
sphere (as opposed to Sn−1, which denotes the n-sphere of radius

√
n). Then

the partition function can be written as [13]

Zn,m(β) =
2n

|Sm−1||Sn−1|
(

π2(n + m)
m2nβ2

)n+m−4
4

Q(n, αn, Bn) (2.1)

where

Qn := Q(n, αn, Bn) = −
∫ γ1+i∞

γ1−i∞

∫ γ2+i∞

γ2−i∞
enG(z1,z2)dz2dz1 (2.2)

and G(z1, z2) is a random function depending on the eigenvalues μ1 ≥ μ2 ≥
· · · ≥ μn of 1

mJJT . The parameters γ1, γ2 can be any positive real numbers
satisfying 4γ1γ2 > μ1. The function G is defined as

G(z1, z2) := Bn(z1 + z2) − 1
2n

n∑

i=1

log(4z1z2 − μi) − αn log z1 (2.3)

where

αn :=
m − n

2n
, Bn :=

m√
n(n + m)

β (2.4)

Using this contour integral representation of Zn,m(β), the free energy of the
bipartite SSK is
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Fn,m(β) =
1

n + m
log Q(n, αn, Bn)

+
1

n + m
log

(
2n

|Sn−1||Sm−1|
(

π2(n + m)
m2nβ2

)n+m
4 −1

)
. (2.5)

By direct computation, the second term of the right-hand side is fλ − 1
2 log β +

λ
1+λ

log n
n + O(n−1) as n → ∞, where fλ is as defined in (1.5). We obtain

Fn,m(β) =
1

n + m
log Q(n, αn, Bn) + fλ − 1

2
log β +

λ

1 + λ

log n

n
+ O(n−1)

(2.6)

so the computation of the free energy boils down to computing the integral Qn.
In order to compute this integral via steepest descent analysis, one needs to
find a critical point of G(z1, z2). Baik and Lee show that there exists a critical
point (z1, z2) such that both coordinates are positive real and 4z1z2 > μ1. We
can choose the contours of the double integral to pass through this critical
point, which has coordinates

(γ1, γ2) =

(
αn +

√
α2

n + γB2
n

2Bn
,
−αn +

√
α2

n + γB2
n

2Bn

)
(2.7)

where γ is the unique real number greater than μ1 satisfying

1
n

n∑

i=1

1
γ − μi

=
B2

n

αn +
√

α2
n + γB2

. (2.8)

We see that γ is implicitly a function of the eigenvalues of 1
mJJT , which is a

normalized Laguerre Orthogonal Ensemble (i.e., real Wishart matrix). Later
in this section we recount some important properties of this matrix ensemble
that will be used throughout the paper.

Critical inverse temperature βc and critical window. As stated above, the
critical inverse temperature of the bipartite SSK model is βc =

√
1 + λ/λ1/4.

At this value of β, one sees a transition in the behavior of the critical point γ.
We give a brief, heuristic description of the transition here and provide more
details in the next two sections.

Equation (2.8), which is random and n-dependent, can be approximated
by its deterministic, n-independent analog

∫

R

1
z − x

pMP(x)d(x) =
B2

α +
√

α2 + zB2
(2.9)

where pMP denotes the Marčenko–Pastur measure (see definition in Eq. (2.12))
and α,B are given by

α :=
1 − λ

2λ
, B :=

β√
λ(1 + λ)

. (2.10)
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If Eq. (2.9) is to be of any use, then it should provide a solution z ∈ (d+,∞)
that is close to the solution γ of (2.8) (with high probability and for all suffi-
ciently large n). Labeling the left and right sides of (2.9) as L∞(z) and R∞(z),
respectively, Baik and Lee [13] observe that L∞(z)

R∞(z) is a decreasing function of
z ∈ (d+,∞) with

lim
z→∞

L∞(z)
R∞(z)

= 0, lim
z↓d+

L∞(z)
R∞(z)

=
L∞(d+)
R∞(d+)

. (2.11)

Hence, (2.9) has a solution z ∈ (d+,∞) if and only if L∞(d+) > R∞(d+).
We call this solution γ̃. By setting L∞(d+) = R∞(d+) and solving for β, one
obtains the critical inverse temperature. The implication of this is that, for
β < βc (high temperature), γ can be approximated by γ̃, and this determin-
istic approximation turns out to be very accurate. However, for β > βc (low
temperature), (2.9) can’t be used to approximate γ, since it has no solution in
(d+,∞). Intuitively, this is due to the fact that, at low temperature, γ is very
close to the eigenvalue μ1 and may be above or below d+, depending on the
value of μ1. A detailed analysis of γ in these two cases is provided in Sects. 3
and 4.

Finally, we comment on the scaling of the critical temperature window,
β = βc+O(n−1/3

√
log n). One can conjecture this critical scaling from the the-

orem of Baik and Lee by matching the order of the variance of the free energy
at high and low temperature. For fixed β < βc, the free energy has variance
of order n−2 log(βc − β) while, for fixed β > βc, the free energy has variance
of order n−4/3(β − βc)2. By formally equating these, we find that their order
matches when β − βc = Θ(n−1/3

√
log n) and we conjecture that the variance

of the free energy in this critical scaling should be of order n−2 log n. This
conjecture turns out to be correct, as we will see in the subsequent sections.

2.2. Probability and Random Matrix Preliminaries

Notational conventions (probability and asymptotics). Below are several as-
ymptotic notations that we use along with the definitions that we follow. For
any sequence {an} and positive sequence {bn}, we write

• an = O(bn) if there exists some constant C such that |an| ≤ Cbn for all
n,

• an = Ω(bn) if there exists some constant C such that |an| ≥ Cbn for all
n,

• an = Θ(bn) if there exist constants C1, C2 such that C1bn ≤ |an| ≤ C2bn

for all n (or, equivalently, an = O(bn) and an = Ω(bn)),
• an 	 bn if limn→∞ an/bn = 0,
• an � bn if limn→∞ bn/an = 0.

In addition, we sometimes need to make asymptotic statements about the prob-
ability of events in a sequence {En}. We say that En occurs “asymptotically
almost surely” if P(En) → 1 as n → ∞. We say En occurs “with overwhelming
probability” if, for all D > 0, there exists n0 such that P(En) > 1 − n−D for
all n > n0.
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Laguerre Orthogonal Ensemble and Marčenko–Pastur measure. As we saw in
the previous subsection, the eigenvalues of the matrix 1

mJJT will play an im-
portant role in our analysis. This is a normalized Laguerre Orthogonal Ensem-
ble, and we provide an overview of some of its key properties here. Marčenko
and Pastur [43] showed that the empirical spectral measure of LOE has the
following convergence, as n,m → ∞ with n/m → λ ≤ 1,

1
n

n∑

i=1

δμi
(x) → pMP(x)dx :=

√
(d+ − x)(x − d−)

2πλx
1[d−,d+](x)dx. (2.12)

The convergence is weakly in distribution and d± = (1±λ1/2)2, and pMP(x) is
referred to as the Marčenko–Pastur measure. In working with pMP, we some-
times need to use its Stieltjes transform

sMP(z) :=
∫

R

1
z − x

pMP(x)dx. (2.13)

We note that it is common to define the Stieltjes transform as the negative of
what we use here. However, our definition is consistent with that of [13] and is
more logical in this context, since it results in a positive value of sMP for our
setting.

Tracy–Widom distribution. The location of the largest eigenvalue is particu-
larly important in our analysis. The following result is well known in random
matrix theory. See, for example, [34,50] and Corollary 1.2 of [48].

Lemma 2.1. Let μ1 be the largest eigenvalue of 1
mMn,m, where Mn,m is an

n×n matrix from the Laguerre Orthogonal Ensemble. Then the following con-
vergence in distribution holds.

mμ1 − (
√

n +
√

m)2

(
√

n +
√

m) ((1/
√

n) + (1/
√

m))1/3
→ TW1 .

Under the condition n/m → λ ∈ (0, 1], the following form of Lemma 2.1
is useful in our paper.

n
2
3 (μ1 − d+)

λ
1
2 (1 + λ

1
2 )

4
3

→ TW1 . (2.14)

Classical eigenvalue locations and rigidity. A key tool in our analysis is to
approximate the eigenvalues by their “classical locations” (i.e., the quantiles
of the Marčenko–Pastur measure). The classical locations {gi} are defined by
the relation

i

n
=
∫ d+

gi

pMP(x)dx. (2.15)

Using this definition, one can show that

gi = d+ −
(

3πλ3/4d+i

2n

)2/3

+ O

(
i4/3

n4/3

)
, i ≤ n/2. (2.16)
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Thus, we expect that, for i 	 n, we will have μi ≈ d+ −
(

3πλ3/4d+i
2n

)2/3

.
The concept of “eigenvalue rigidity” means that eigenvalues are close to their
classical locations with high probability. More precisely, we define eigenvalue
rigidity to be the event

⋂

1≤i≤n

{
|μi − gi| ≤ nδ

n2/3 min{i1/3, (n + 1 − i)1/3}
}

,

which holds with overwhelming probability. This is proved in [48](Theorem
3.3) in the case λ ∈ (0, 1). For λ = 1, the result follows from Corollary 1.3
of [3] and the relation pMP(x) = pSC(

√
x) between the Marčenko–Pastur and

semicircle distributions.
In addition to eigenvalue rigidity, we sometimes need more precise control

of the larger eigenvalues. For this purpose, we introduce the following lemma,
which is proved in Appendix A. This lemma is inspired by a similar one proved
in [40] for GOE matrices and used by Landon in his analysis of SSK at critical
temperature [39].

Lemma 2.2. Let {μj}n
j=1 be the eigenvalues of 1

mMn,m. For each j, define

Aj =
(

3πλ3/4d+

2
j

)2/3

− n2/3(d+ − μj). (2.17)

Given ε > 0, there exists K such that for sufficiently large n,

P

⎛

⎝
⋂

K≤j≤n2/5

{
|Aj | ≤ λj2/3

}
⎞

⎠ ≥ 1 − ε. (2.18)

Furthermore, there exists C, c > 0 such that

E

[
1{n2/3(μj−d+)≤−C} |Aj |

]
≤ c log j

j1/3
, for K ≤ j ≤ n2/5. (2.19)

Tridiagonal representation of LOE. In Sect. 5, when proving the asymptotic
independence of the Gaussian and Tracy–Widom variables, we will need the
tridiagonal representation of LOE. Dumitriu and Edelman [28] show that the
eigenvalue distribution of the unnormalized LOE matrix Mn,m is the same
as that of the n × n matrix Tn = BBT where B is a bi-diagonal matrix of
dimension n × n. In particular,

B =

⎡

⎢⎢⎢⎢⎢⎣

a1

b1 a2

b2 a3

. . . . . .
bn−1 an

⎤

⎥⎥⎥⎥⎥⎦
so
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BBT =

⎡

⎢⎢⎢⎢⎢⎣

a2
1 a1b1

a1b1 a2
2 + b2

1 a2b2

a2b2 a2
3 + b2

2

. . . an−1bn−1

an−1bn−1 a2
n + b2

n−1

⎤

⎥⎥⎥⎥⎥⎦
(2.20)

where {ai}, {bi} are all independent random variables with distributions sat-
isfying

a2
i ∼ χ2(m − n + i), b2

i ∼ χ2(i). (2.21)

2.3. Defining the Event on Which Our Results Hold

Our arguments throughout this paper rely upon certain conditions on the
eigenvalues, which hold with probability close to 1. To streamline the later
proofs, we collect in this section various events involving the eigenvalues {μi}
and provide probability bounds for each event. Finally, we define Eε to be the
intersection of these events, which holds with probability 1 − ε for arbitrarily
small choice of ε.

Definition 2.3. Let δ, s, t, r, R be positive numbers where s < t, r < R, and let
K be a positive integer. We define the events F (1)

δ ,F (2)
K ,F (3)

s,t ,F (4)
r,R as follows.

F (1)
δ =

⋂

1≤i≤n

{
|μi − gi| ≤ nδ

n2/3 min{i1/3, (n + 1 − i)1/3}
}

, (2.22)

F (2)
K =

⋂

K≤j≤n2/5

{∣∣∣∣∣n
2/3(μj − d+) +

(
3πλ3/4d+

2
j

)2/3
∣∣∣∣∣ ≤ j2/3

10

}
, (2.23)

F (3)
s,t =

{
n2/3|d+ − μ1| ∈ [s, t]

}
, 0 < s < t, (2.24)

F (4)
r,R =

{
r < n2/3(μ1 − μ2) < R

}
. (2.25)

Remark 2.4. The event F (1)
δ is the eigenvalue rigidity condition with respect

to the “classical location,” and F (2)
K is inspired by a similar event used in the

context of Gaussian ensembles by Landon and Sosoe [40].

Lemma 2.5. (Event probability bounds) The following statements hold.

• For any fixed δ > 0, the event F (1)
δ holds with overwhelming probability.

• For any ε > 0, there exist positive constants K, s, t, r, R depending on ε
but not on n such that, for sufficiently large n,

P[F (2)
K ] ≥ 1 − ε

4 , P[F (3)
s,t ] ≥ 1 − ε

4 , P[F (4)
r,R] ≥ 1 − ε

4 .

Proof. The bounds on the first three events are clear. The eigenvalue rigidity
condition F (1)

δ holds with overwhelming probability (see explanation in Sect.
2.2). The bound on event F (2)

K follows directly from Lemma 2.2, where we can
take larger value of K to replace ε in the bound by ε/4. Result on F (3)

s,t is a
consequence of the Tracy–Widom convergence in Lemma 2.1.
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Finally, we consider F (4)
r,R. The upper bound n2/3(μ1 − μ2) ≤ R holds

with probability 1 − ε/8 for some R > 0 via a union bound (where |μ1 −
d+| is controlled using F (3)

s,t and |μ2 − d+| is bounded similarly using Tracy–
Widom convergence of μ2). For the lower bound on n2/3(μ1 − μ2), note that
the joint distribution of μ1 and μ2 (each rescaled as in (2.14)) converges to the
distribution given by the Tracy–Widom law (see, for example, [48,50]). This
law describes the joint distribution of the largest two eigenvalues of an operator
H1 whose spectrum is simple with probability one (see, for example, (4.5.9)
and Theorem 4.5.42 of [7]), implying an r > 0 such that P(n2/3(μ1 − μ2) >
r) ≥ 1 − ε/8 does exist for sufficiently large n.

Definition 2.6. Given ε > 0, we define Eε to be an event

Eε := F (1)
δ ∩ F (2)

K ∩ F (3)
s,t ∩ F (4)

r,R

where the parameters δ,K, s, t, r, R are chosen to satisfy the probability bounds
in Lemma 2.5. Note that K, s, t, r, R depend on ε, but δ does not. The choice
of these constants is not unique. However, for any given ε > 0, we fix these
values and define Eε accordingly.

The following corollary follows directly from the above definition and
Lemma 2.5.

Corollary 2.7. For any ε > 0, P[Eε] ≥ 1 − ε.

Computing the free energy in both the high- and low-temperature regimes
involves analyzing linear statistics of eigenvalues of the form

∑n
i=1

1
(z−μi)k , on

the event defined above. The key lemma that we use for handling these sums
is the following.

Lemma 2.8. Let z ∈ C with Re(z) ≥ d+. Let {μi} be the eigenvalues of
1
mMm,n. Then, for any ε > 0 and any positive integer l,

E

⎡

⎣1Eε

∣∣∣∣∣∣
1
n

n∑

j=K

1
(z − μj)l

−
∫ gK

d−

1
(z − y)l

pMP(y)dy

∣∣∣∣∣∣

⎤

⎦

= O

(
n

2
3 l−1 · min

{∣∣∣∣
log(n2/3|z − d+|)
(n2/3|z − d+|)l

∣∣∣∣ , 1
})

. (2.26)

Here, K is the constant depending on ε in F (2)
K and Eε.

A proof of this lemma is included in Appendix A. The general approach
is inspired by the method that Landon and Sosoe used in [40] to bound similar
eigenvalue statistics in the case of Gaussian orthogonal ensembles. We prove a
series of supporting lemmas, first for LUE, which allows us to make use of the
determinantal properties. We then extend our final result to LOE by way of
the interrelationship between eigenvalues of unitary and orthogonal ensembles
provided in [30].
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3. High Temperature

As mentioned in the previous section, the computation of the free energy
reduces to the computation of the integral

Qn = −
∫ γ1+i∞

γ1−i∞

∫ γ2+i∞

γ2−i∞
enG(z1,z2)dz2dz1 (3.1)

where G(z1, z2) is defined in (2.3). The general idea is that we should be able to
compute this integral via steepest descent analysis by deforming the contours
such that they pass through the critical point (γ1, γ2), which is a function of γ
as defined in (2.7)–(2.8). Baik and Lee [13] show that at fixed high temperature
(i.e., constant β < βc), the random variable γ is well approximated by γ̃,
the solution to (2.9). Furthermore, |γ − γ̃| is small enough that the integral
computations can be carried out with γ̃ and the error remains sufficiently
small.

In the high-temperature side of the critical window, we do not have fixed
β < βc as in [13], but rather β = βc + bn−1/3

√
log n for b < 0. The first

task of this section is to show that, even in this scaling, γ̃ remains a good
approximation of γ. Namely, we need to compute the asymptotics of γ̃ and
obtain an upper bound on |γ − γ̃|.
3.1. Bounds on G, Its Derivatives, and Its Critical Point

We begin with an asymptotic expansion for γ̃.

Lemma 3.1. For fixed b < 0, the solution γ̃ to (2.9) satisfies

γ̃ = d+ +
4λb2

1 + λ
n−2/3 log n + O(n−1(log n)3/2).

Proof. From [13] (see (6.17)), we obtain the closed-form expression

γ̃ = (1 + λ)β−2 + 1 + λ +
λ

1 + λ
β2. (3.2)

Observe that the right-hand side, as a function of β, is equal to d+ at βc. Thus,
by expanding the function around β = βc + bn−1/3

√
log n, we obtain

γ̃ − d+ =
4λ

1 + λ
(β − βc)2 − 4λ5/4

(1 + λ)3/2
(β − βc)3 + O((β − βc)4), (3.3)

and the lemma follows. �

In order to obtain a sufficiently tight bound for |γ − γ̃|, we need bounds
on various eigenvalue statistics and, in particular, we need to bound differences
of the form

1
n

n∑

i=1

1
(z − μi)k

−
∫

pMP(y)dy

(z − y)k
, k ≥ 1 (3.4)

when z is close to μ1. Given the precision needed for computations in the crit-
ical window, the bound obtained using eigenvalue rigidity is not tight enough.
Instead, we make use of the following lemma.
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Lemma 3.2. Let z ∈ C with Re(z) ≥ d+ and |z − d+| > cn−2/3 log n for some
c > 0. Let {μi} be the eigenvalues of 1

mMm,n. Then, for any ε > 0 and any
positive integer l,

E

⎡

⎣1Eε

∣∣∣∣∣∣
1
n

n∑

j=1

1
(z − μj)l

−
∫

pMP(y)dy

(z − y)l

∣∣∣∣∣∣

⎤

⎦ = O

(
n

2
3 l−1 log(n2/3|z − d+|)

(n2/3|z − d+|)l

)
.

(3.5)

Proof of Lemma 3.2. Given ε > 0, let K be the integer in the events F (2)
K

and Eε. Recall the classical locations gi, i = 0, . . . , n of the Marčenko–Pastur
measure. We start by writing 1

n

∑n
i=1

1
(z−μi)l − ∫

1
(z−y)l pMP(y)dy as the sum

S1 + S2 =

(
1
n

K∑

i=1

1
(z − μi)l

−
∫ d+

gK

pMP(y)dy

(z − y)l

)

+

(
1
n

n∑

i=K+1

1
(z − μj)l

−
∫ gK

d−

pMP(y)dy

(z − y)l

)
. (3.6)

For i ≤ K, we observe that:
• On the event Eε, n2/3(d+−μi) is uniformly bounded in i. Thus, |z−μi| ≥

|z − d+| − |d+ − μi| > 1
2 |z − d+| by the assumption on z.

• As Re(z) > d+, we have |z − y| ≥ |z − d+| for all real y < d+.
Therefore,

1Eε
|S1| ≤ 1

n

K∑

i=1

1
|z − μi|l +

∫ d+

gK

1
|z − y|l pMP(y)dy ≤ 3K

n|z − d+|l . (3.7)

We then bound 1Eε
|S2| using Lemma 2.8 to complete the proof of

Lemma 3.2. �

We obtain an upper bound for γ − γ̃ in the following lemma. Together
with Lemma 3.1, it verifies that the order of γ − γ̃ is strictly less than that of
γ̃ − d+.

Lemma 3.3. If b < 0, then, on the event Eε for any given ε > 0,

|γ − γ̃| = O

(
(log log n)2

n2/3
√

log n

)
.

Proof. Recall that γ and γ̃ are solutions to the equations L(x) = R(x) and
L∞(x) = R∞(x), respectively, where

L(x) =
1
n

n∑

i=1

1
x − μi(n)

, R(x) =
B2

n

αn +
√

α2
n + xB2

n

and

L∞(x) =
∫

R

pMP(y)dy

x − y
, R∞(x) =

B2

α +
√

α2 + xB2
.
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Define F (x) = R(x)/L(x) and let F∞(x) be given similarly. Setting εn =
(log log n)2

n2/3
√

log n
, we follow the method in [13] to prove |γ − γ̃| = O(εn) by showing

F (γ̃−εn) < 1 < F (γ̃+εn). Since F∞(γ̃) = 1 and F∞(γ̃−εn) < 1 < F∞(γ̃+εn),
it suffices to show

|F (x) − F∞(x)| 	 |F ′
∞(γ̃)|εn, for x ∈ [γ̃ − εn, γ̃ + εn]. (3.8)

Thus, we need a lower bound for |F ′
∞(γ̃)| and an upper bound for |F (x) −

F∞(x)|. For the lower bound, begin with

F ′
∞(γ̃) =

R′
∞(γ̃)L∞(γ̃) − L′

∞(γ̃)R∞(γ̃)
(L∞(γ̃))2

.

Note that L∞(γ̃) and R∞(γ̃) are of order 1, and R′
∞(γ̃) = O(1) using the fact

that α,B, γ̃ are all of order 1.
We now show |L′

∞(γ̃)| is of order at least n1/3(log n)−1/2, which implies
|F ′

∞(γ̃)| is as well.
Since we are interested in L′

∞(x) at γ̃, where γ̃ − d+ = Θ(n−2/3 log n) by
Lemma 3.1, we consider L∞(d+ + s) as a function of s and its derivative, and
later set s to take value of order n−2/3 log n. We have

L∞(d+ + s) = C

∫ d+

d−

√
(d+ − y)(y − d−)
(d+ + s − y)y

dy

=
∫ d+−d−

0

C
√

z(d+ − d− − z)
(z + s)(d+ − z)

dz,

where C = 2
π (
√

d+ −√
d−)−2 and z = d+ − y. We then write

L′
∞(d+ + s) =

d
ds

∫ d+−d−
2

0

C
√

z(d+ − d− − z)
(z + s)(d+ − z)

dz

+
d
ds

∫ d+−d−

d+−d−
2

C
√

z(d+ − d− − z)
(z + s)(d+ − z)

dz.

(3.9)

First, we consider the derivative of a simplified version of the first integral:

d
ds

∫ d+−d−
2

0

√
z

z + s
dz = −s−1/2 arctan

√
(d+−d−)/2

s

+
√

s

√
(d+ − d−)/2

s3/2

1

1 + (d+−d−)/2
s

= −s−1/2 + O(1).

(3.10)

Now that we have the derivative of this simplified integral, recall that the

actual integrand is C
√

z(d+−d−−z)

(z+s)(d+−z) and make the following observations:

• For z ∈ [0, d+−d−
2 ], there exist positive constants C1, C2 such that C1 <

C
√

d+−d−−z

d+−z < C2.
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• For any z > 0, the quantity
√

z
z+s is a decreasing function of s when s > 0.

From these two facts and the above computation, we conclude that, for small
s,

− C2s
−1/2 ≤ d

ds

∫ d+−d−
2

0

C
√

z(d+ − d− − z)
(z + s)(d+ − z)

dz ≤ −C1s
−1/2. (3.11)

Finally, the second bullet point implies the second integral on the right
side of (3.9) must be negative. Thus, L′

∞(d+ + s) < −C1s
−1/2, which implies

|L′
∞(γ̃)| is of order at least n1/3(log n)−1/2. We obtain the lower bound

|F ′
∞(γ̃)| = Ω(n1/3(log n)−1/2). (3.12)

We now show an upper bound of |F (x) − F∞(x)| for x ∈ [γ̃ − εn, γ̃ + εn].
For such x,

F (x) − F∞(x) =
(R(x) − R∞(x))L∞(x) + (L∞(x) − L(x))R∞(x)

L(x)L∞(x)
satisfies that the denominator, L∞(x), and R∞(x) all have order 1. Thus, it
remains to bound the terms R(x) − R∞(x) and L∞(x) − L(x). As αn − α =
O(n−1−δ) and Bn − B = O(n−1−δ), we have

R(x) − R∞(x) =

√
α2

n + xB2
n − αn

x
−

√
α2 + xB2 − α

x
= O(n−1−δ).

Lastly, Lemma 3.2 yields that

L(x) − L∞(x) =
1
n

n∑

i=1

1
x − μi

−
∫

pMP(y)dy

x − y
= O(n−1/3(log log n)(log n)−1).

Thus, we have shown that for x ∈ [γ̃ − (log log n)2

n2/3 log n
, γ̃ + (log log n)2

n2/3 log n
],

|F (x) − F∞(x)| = O

(
log log n

n1/3 log n

)
,

|F ′
∞(γ̃)| = Ω

(
n1/3(log n)−1/2

)
. (3.13)

This verifies the inequality (3.8), and the lemma follows. �
We now introduce a deterministic approximation G∞ of the function G,

given by

G∞(z1, z2) = B(z1 + z2) − α log z1 − 1
2

∫
log(4z1z2 − x)pMP(x)dx.

(3.14)

We observe that (γ̃1, γ̃2) is the unique critical point of G∞ satisfying 4γ̃1γ̃2 ∈
(d+,∞). This follows from the similar reasoning to what we used for (γ1, γ2).
We obtain the following asymptotic expressions for the functions G, G∞ and
their partial derivatives.

Lemma 3.4. Let (z1, z2) satisfy Re(4z1z2) ≥ d+ and |4z1z2−d+| ≥ cn−2/3 log n
for some fixed c > 0. Then, on the event Eε, the following hold and are uniform
in any compact region satisfying the constraints on (z1, z2):
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(i) For every multi-index k = (k1, k2) (with |k| := k1 + k2 ≥ 1),

∂kG(z1, z2) − ∂Gk
∞(z1, z2) = O

(
n

2
3 |k|−1 log log n

(log n)|k|

)
. (3.15)

(ii) For every multi-index k with |k| ≥ 1,

∂kG∞(z1, z2) = O(n
2
3 |k|−1(log n)−|k|+ 3

2 )

∂kG(z1, z2) = O(n
2
3 |k|−1(log n)−|k|+ 3

2 ).
(3.16)

Proof. We recall

G(z1, z2) = Bn(z1 + z2) − αn log z1 − 1
2n

n∑

j=1

log(4z1z2 − μj),

G∞(z1, z2) = B(z1 + z2) − α log z1 − 1
2

∫
log(4z1z2 − x)pMP(x)dx.

Observe that over any fixed compact region of C2, for every |k| ≥ 1,
• ∂kG∞(z1, z2) = O

(∫
(4z1z2 − x)−kpMP(x)dx

)
, and

• the differences in the partials of G and G∞ satisfy

∂kG(z1, z2) − ∂kG∞(z1, z2) = O

(
1
n

n∑

i=1

1
(4z1z2 − μi)|k| −

∫
pMP(x)dx

(4z1z2 − x)|k|

)
.

(3.17)

Applying Lemma 3.2 to (3.17) gives us part (i) of the lemma. For part (ii), we
first obtain the bound for ∂kG∞ by noting that

∣∣∣∣
∫

(4z1z2 − x)−|k|pMP(x)dx

∣∣∣∣

≤
∫

1
max{|4z1z2 − x|, d+ − x}|k| pMP(x)dx

= O

(∫ ∞

n−2/3 log n

√
y − n−2/3 log n

y|k| dy

)

= O

(∫ ∞

n−2/3 log n

y−|k|+ 1
2 dy

)
= O

(
(n−2/3 log n)−|k|+3/2

)
.

(3.18)

Then, the bound for ∂kG as in (ii) follows by part (i) of the lemma and the
bound obtained for ∂kG∞. �

We prove some further properties of G and G∞ in the following lemma.

Lemma 3.5. For the critical points (γ1, γ2) and (γ̃1, γ̃2) of G and G∞, respec-
tively, the following hold on event Eε.

(i) We have

|γ1 − γ̃1| = O(n−2/3(log log n)2(log n)−1/2),

|γ2 − γ̃2| = O(n−2/3(log log n)2(log n)−1/2).
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(ii) There is a positive constant c, independent of n, such that

4γ1γ2 − μ1 > cn−2/3 log n 4γ1γ2 − d+ > cn−2/3 log n.

(iii) We have

G(γ1, γ2) = G(γ̃1, γ̃2) + O(n−1(log n)−3/2(log log n)4)

and for and multi-index k = (k1, k2) satisfying |k| > 0,

∂kG(γ1, γ2) = ∂kG(γ̃1, γ̃2) + O
(
n

2
3 |k|−1(log n)−|k|(log log n)2

)
.

Proof. Part (i) follows from the equations for γ1, γ2, γ̃1, γ̃2 along with the
bound on |γ − γ̃|.

Part (ii) follows from part (i) along with the computation of γ̃ − d+ and
the fact that |d+ − μ1| = O(n−2/3).

For Part (iii), using the bounds from Lemma 3.4(ii) and Lemma 3.5(i),
we get the Taylor expansion

G(γ̃1, γ̃2) = G(γ1, γ2) + ∂1G(γ1, γ2)(γ̃1 − γ1) + ∂2G(γ1, γ2)(γ̃2 − γ2)

+ O
(

n1/3

(log n)1/2 · ( (log log n)2

n2/3(log n)1/2 )2
)

= G(γ̃1, γ̃2) + O(n−1(log n)−3/2(log log n)4).

Similarly, for the partials, we get

∂kG(γ̃1, γ̃2) = ∂kG(γ1, γ2) + O
(
n

2
3 (|k|+1)−1(log n)−(|k|+1)+ 3

2 · (log log n)2

n2/3(log n)1/2

)

= ∂kG(γ1, γ2) + O
(
n

2
3 |k|−1(log n)−|k|(log log n)2

)
.

�

3.2. Steepest Descent Analysis

We now perform steepest analysis to compute the contour integral in the high-
temperature case. The method relies on the observation that the dominant
contribution to the integral comes from within a small radius around the crit-
ical point of G. In this case, the radius is r = n−2/3(log n)

1
4+ε for some ε > 0.

The intuition behind this choice of truncation radius is as follows: Con-
sider a Taylor expansion of G∞ where z1 = γ̃1 + it1/rn and z2 = γ̃2 + it2/rn

with rn to be determined. Let m denote a multi-index for the derivative, and
let |m| denote the length the multi-index. We want to choose rn such that

∂(m)G∞(γ̃1, γ̃2) · r|m|
n =

{
Θ( 1

n ) |m| = 2
o( 1

n ) |m| ≥ 3.
(3.19)

Using the previous lemmas, this is satisfied exactly when r = Θ(n−2/3

(log n)1/4).

Lemma 3.6. Let γ1 = γ1(n) and γ2 = γ2(n) be such that (γ1, γ2) is the critical
point of G(z1, z2) satisfying γ = 4γ1γ2 > μ1(n). Then, for any 0 < ε < 1/4
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and any Ω ⊂ {(y1, y2) ∈ R
2 : y2

1 + y2
2 ≥ n−4/3(log n)1/2+2ε}, on the event Eε,

there exists some C > 0 such that∫

Ω

exp [nRe(G(γ1 + iy1, γ2 + iy2) − G(γ1, γ2))] dy2dy1 = O(e−C(log n)ε

).

Proof. Since γ −μn is bounded in n, Lemma 3.9 of [13] implies that with high
probability, the portion of the above integral over Ω∩{(y1, y2) ∈ R

2 : y2
1 +y2

2 ≥
n−1+2ε} is O(e−nε

). Thus, it remains to consider the subset of Ω where y2
1 +y2

2

is between n−4/3(log n)1/2+2ε and n−1+2ε. We denote this subset by Ω̃.
The proof of Lemma 3.9 of [13] also shows that, for some constant c0 > 0

and for any integer K ≥ 1,

Re(G(γ1 + iy1, γ2 + iy2) − G(γ1, γ2))

≤ − 1
4n

n∑

j=K

log
(

1 +
c0

(γ − μj)2
(y2

1 + y2
2)
)

, (3.20)

for all y1, y2 ∈ R. By Lemma 2.2, for every ε > 0, there exists c,K > 0 such
that, with probability at least 1 − ε,

γ − d+ ≤ cn−2/3 log n and d+ − μj ≤
{

ci2/3n−2/3, K ≤ j ≤ n2/5,

c, j > n2/5.

Thus, with probability at least 1 − ε,

γ − μj ≤

⎧
⎪⎨

⎪⎩

cn−2/3 log n, K ≤ j ≤ (log n)3/2,

cj2/3n−2/3, (log n)3/2 ≤ j ≤ n2/5,

c, j > n2/5.

Write r2 = y2
1 + y2

2 using polar coordinates, then for r ∈ [n−2/3 log1/4+ε n,
n−1/2+ε] and the above choice of K, the right-hand side of (3.20) has upper
bound

− 1

4n

⎡

⎣(log n)3/2 log

(
1 +

c′n4/3

log2 n
r2

)
+

n2/5∑

j=(log n)3/2

log

(
1 +

c′r2

(j/n)4/3

)
+

n

2
log(1 + c′r2)

⎤

⎦ .

(3.21)

We then use r ≥ n−2/3(log n)1/4+ε for the first and last terms inside the
brackets, and the fact log(1 + x) ≥ x/2 for small x to obtain a new bound

− c′

4n

⎡

⎣(log n)2ε + (log n)−3/2+2ε
n2/5∑

j=log3/2 n

j−4/3 +
n

4
r2

⎤

⎦ ≤ −c′r2

16
− c′(log n)2ε

8n
,

(3.22)

noting that the sum over j is O((log n)−1/2). Therefore, the integral over Ω̃ is
bounded by

e− c′
8 (log n)2ε

∫ n−1/2+ε

n−2/3 log1/4+ε n

e− c′
16 r2

rdr = O(e−C(log n)2ε

), (3.23)

for some C > 0. This completes our proof. �
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Lemma 3.7. If β = βc + bn−1/3
√

log n for fixed b < 0, then the integral Qn in
(3.1) satisfies

Qn = enG(γ1,γ2)
π

n
√

D(γ1, γ2)

(
1 + O((log n)− 3

2+6ε)
)

,

where ε > 0 is arbitrarily small and D(γ1, γ2) is the discriminant

D(γ1, γ2) := ∂2
1G(γ1, γ2) · ∂2

2G(γ1, γ2) − (∂1∂2G(γ1, γ2))2. (3.24)

Proof. We make the change of variables

z1 = γ1 + irnt1, z2 = γ2 + irnt2, (3.25)

where the scaling rn := n−2/3(log n)1/4 is chosen such that the quadratic term
in the Taylor expansion of G near (γ1, γ2) will be of order 1. With this change
of variable, we have

Qn=r2
nenG(γ1,γ2)

∫ ∞

−∞

∫ ∞

−∞
exp

(
n
(
G(γ1+irnt1, γ2 + irnt2) − G(γ1, γ2)

))
dt2dt1.

(3.26)

Fix 0 < ε < 1/4. We have shown in Lemma 3.6 that this integral outside
a region of radius (log n)ε around the critical point is O(e−c(log n)ε

) for some
constant c > 0. We now consider the region where |t1|, |t2| ≤ (log n)ε. In this
region,

G(γ1 + irnt1, γ2 + irnt2) − G(γ1, γ2)

= − 1
2r2

n

(
∂2
1G(γ1, γ2)t21 + 2∂1∂2G(γ1, γ2)t1t2 + ∂2

1G(γ1, γ2)t21
)

− i
6r3

n

(
∂3
1G(γ1, γ2)t31 + 3∂2

1∂2G(γ1, γ2)t21t2 + 3∂1∂
2
2G(γ1, γ2)t1t22

+∂3
2G(γ1, γ2)t32

)
+ O(Taylor remainder)

=: −r2
nX2(t1, t2) − ir3

nX3(t1, t2) + O(n−1(log n)− 3
2+4ε).

(3.27)

Thus, the integral on the central region becomes
∫ (log n)ε

−(log n)ε

∫ (log n)ε

−(log n)ε

exp
(
n
(
G(γ1 + irnt1, γ2 + irnt2) − G(γ1, γ2)

))
dt2dt1

=
∫ ∫

e−nr2
nX2(t1,t2)dt2dt1 − i

∫ ∫
nr3

nX3(t1, t2)e−nr2
nX2(t1,t2)dt2dt1

+O
(
(log n)− 3

2+6ε
)

, (3.28)

where the second integral vanishes due to the fact that

X3(−t1,−t2)e−nr2
nX2(−t1,−t2) = −X3(t1, t2)e−nr2

nX2(t1,t2).

It remains to compute
∫ (log n)ε

−(log n)ε

∫ (log n)ε

−(log n)ε e−nr2
nX2(t1,t2)dt2dt1, which we replace

by the integral over R
2, incurring an error on the order of

∫ ∞

(log n)ε

e−x2
dx < e−(log n)2ε 	 (log n)−3/2. (3.29)

Finally, applying Gaussian integration, we obtain the lemma. �
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We observe from the lemma above that the integral Qn depends on
G(γ1, γ2) and D(γ1, γ2), which we compute in the following lemma.

Lemma 3.8. If β = βc + bn−1/3
√

log n for some fixed b < 0, then

G(γ1, γ2) = A(γ̃, B) − 1
2n

n∑

i=1

log(γ̃ − μi) + O(n−1)

D(γ1, γ2) =
βc

λ2b
n1/3(log n)−1/2

(
1 + O

(
(log log n)2(log n)−3/2

))

where

A(x,B) :=
√

α2 + xB2 − α log

(
α +

√
α2 + xB2

2B

)
. (3.30)

Proof. The computation of G(γ1, γ2) relies upon G∞(γ̃1, γ̃2), which we write
as

G∞(γ̃1, γ̃2) = A(γ̃, B) − 1
2
HMP(γ̃), HMP(z) :=

∫

R

log(z − x)pMP(x)dx.

(3.31)

Then, by Lemma 3.5(iii),

G(γ1, γ2) = G∞(γ̃1, γ̃2) + [G(γ̃1, γ̃2) − G∞(γ̃1, γ̃2)] + O

(
n−1 (log log n)4

(log n)3/2

)

= G∞(γ̃1, γ̃2) − 1
2n

[
n∑

i=1

log(γ̃ − μi) − nHMP(γ̃)

]
+ O(n−1)

= A(γ̃, B) − 1
2n

n∑

i=1

log(γ̃ − μi) + O(n−1).

(3.32)

The same lemma and Lemma 3.4(ii) together yield

D(γ1, γ2) = D∞(γ̃1, γ̃2) + O

(
n1/3 (log log n)2

(log n)2

)
.

Recall from (3.2) that γ̃ = 1+β2+β−4
c β4

(1+λ)−1β2 , and βc = λ− 1
4 (1+λ)1/2. We arrive at

D∞(γ̃1, γ̃2) := ∂2
1G∞(γ̃1, γ̃2) · ∂2

2G∞(γ̃1, γ̃2) − (∂1∂2G∞(γ̃1, γ̃2))2

=
4β4

λ2(β4
c − β4)

.
(3.33)

Apply this to the expression D(γ1, γ2) and perform Taylor expansion around
βc; we obtain the lemma. �
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3.3. High-Temperature Free Energy

Finally, using the contour integral computations from the previous section, we
obtain the following lemma for the limiting fluctuations of the free energy on
the high-temperature side of the critical temperature window.

Lemma 3.9. Suppose β = βc + bn−1/3
√

log n for some fixed b < 0. We define
F (β) = β2

2β4
c
. Then the free energy satisfies

m + n√
1
6 log n

(
Fn,m(β) − F (β) +

1
12

log n

n + m

)
→ N (0, 1). (3.34)

Proof. We will show that

Fn,m(β) − β2

2β4
c

+
1
12

log n

n + m
−
√

1
6 log n

m + n
T0n = O

(
log log n

n

)
, (3.35)

where

− T0n :=

∑n
i=1 log(γ̃ − μi) − Cλn − 1√

λ(1+
√

λ)
n(γ̃ − d+) + 2

3λ3/4(1+
√

λ)2
n(γ̃ − d+)3/2 + 1

6
log n

√
2
3

log n

(3.36)

with Cλ := (1−λ−1) log(1+λ1/2)+log(λ1/2)+λ−1/2 and, by [24], T0n converges
in distribution to a standard normal. We now compute the left-hand side of
(3.35) in terms of the parameters β and λ. From (2.6), we start by computing

1
n + m

log Q(n, αn, Bn) =
n

n + m
G(γ1, γ2) +

1
2(n + m)

log
(

π2

D(γ1, γ2)

)

− log n

n + m
+ o(n−1), (3.37)

using Lemma 3.7. By Lemma 3.8, the second term satisfies

1
2(n + m)

log
(

π2

D(γ1, γ2)

)
= −1

6
log n

n + m
+ O

(
log log n

n

)
. (3.38)

Thus, using the computation of G(γ1, γ2) from (3.32), (3.37) simplifies to

1
n + m

log Q(n, αn, Bn) =
n

n + m
A(γ̃, B) − 1

2(n + m)

n∑

i=1

log(γ̃ − μi)

−7
6

log n

n + m
+ O

(
log log n

n

)
. (3.39)

Recall that α = 1
2 (λ−1 − 1) and B = 1√

λ(1+λ)
β for the bipartite SSK model,

and γ̃ is given in (3.2). This implies
√

α2 + γ̃B2 = λ+1
2λ + β2

1+λ , and

n

n + m
A(γ̃, B) =

1
2

+
λβ2

(1 + λ)2
+

1 − λ

2(1 + λ)
log

(
2β
√

λ(1 + λ)
1 + λ + β2λ

)
+ O(n−1).

(3.40)
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Combining (2.6), (3.39), and (3.40), we have

Fn,m(β) = − 1
2(n + m)

n∑

i=1

log(γ̃ − μi) +
λβ2

(1 + λ)2
− 1 − λ

2(1 + λ)
log(1 + λ + β2λ)

− λ

1+λ
log β +

1
2(λ + 1)

log(1+λ) − 1
6

log n

n+m
+O

(
log log n

n

)
.

(3.41)

In order to prove Eq. (3.35), we need express each β-dependent term as a
Taylor expansion around βc. More specifically, we define

Δβ := βc − β = O(n−1/3
√

log n). (3.42)

Using this and the fact that βc =
√

1+λ
λ1/4 , we get

β2 =
1 + λ√

λ
− 2βcΔβ + Δ2

β

log β =
1
2

log(1 + λ) − 1
4

log λ − 1
βc

Δβ − 1
2β2

c

Δ2
β

− 1
3β3

c

Δ3
β + O(Δ4

β)

log(1 + λ + β2λ) = log((1 + λ)(1 +
√

λ)) − 2βcλ

(1 + λ)(1 +
√

λ)
Δβ

+
λ(1 + λ + β2

c λ − 2β2
c )

(1 + λ)2(1 +
√

λ)2
Δ2

β

+
2βcλ

2(1 + λ − 1
3β2

c λ)

(1 + λ)3(1 +
√

λ)3
Δ3

β + O(Δ4
β)

(3.43)

Furthermore, using Eq. (3.3) we have

γ̃ − d+ =
4(1 + λ)

β4
c

Δ2
β +

4(1 + λ)
β5

c

Δ3
β + O(Δ4

β). (3.44)

Plugging these asymptotics into Eqs. (3.36) and (3.41), we verify (3.35), and
the lemma follows. �

4. Low Temperature

We now determine the asymptotics of the random double integral Qn =
− ∫ γ1+i∞

γ1−i∞
∫ γ2+i∞

γ2−i∞ enG(z1,z2)dz2dz1 when β = βc + bn− 1
3
√

log n for fixed b ≥ 0.
Recall that in the regime β < βc, both for fixed β as in [13] and for β in

Sect. 3, the critical point (γ1, γ2) of the function G is approximated by (γ̃1, γ̃2),
the critical point satisfying 4γ̃1γ̃2 > d+ of a deterministic approximation G∞
of G. In the case β > βc, a critical point of G∞ satisfying this inequality does
not exist, and we cannot approximate the product γ = 4γ1γ2 by a deterministic
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number. In fact, the product γ gets close to the branch point μ1 from above,
which requires more delicate analysis.

We address this issue by focusing on G near the point (μ(1)
1 , μ

(2)
1 ), given

by

μ
(1)
1 =

αn +
√

α2
n + μ1B2

n

2Bn
, μ

(2)
1 =

−αn +
√

α2
n + μ1B2

n

2Bn
, (4.1)

instead of (γ1, γ2). We see that 4μ
(1)
1 μ

(2)
1 = μ1, and G(z1, z2) at (μ(1)

1 , μ
(2)
1 ) is

undefined due to the term 1
n log(4z1z2 − μ1). However, the non-singular part

given below will play an important role.

Ĝ := Bn(μ(1)
1 + μ

(2)
1 ) − αn log μ

(1)
1 − 1

2n

n∑

j=2

log(μ1 − μj) (4.2)

In our computation of Ĝ as well as the contour integral, we need to work with
sums of the form 1

n

∑n
i=2

1
(μ1−μi)l for l ≥ 1. More specifically, we need the

following lemma.

Lemma 4.1. For LOE eigenvalues, on the event Eε, we have

1
n

n∑

i=2

1
μ1 − μi

− 1
λ1/2(1 + λ1/2)

= O(n−1/3) and

1
n

n∑

i=2

1
(μ1 − μi)l

= O(n
2
3 l−1), for l ≥ 2.

Proof. It suffices to prove the following statements:
(i) For any l ≥ 1, on the event Eε,

∣∣∣∣∣
1
n

n∑

i=k

1
(μ1 − μi)l

−
∫ gk

d−

pMP(x)
(d+ − x)l

dx

∣∣∣∣∣ = O(n
2
3 l−1). (4.3)

(ii) For any l ≥ 1 and any fixed k, on the event Eε,

1
n

k∑

i=2

1
(μ1 − μi)l

= O(n
2
3 l−1). (4.4)

(iii) For the l = 1 case,
∫ d+

gk

pMP(x)
d+ − x

dx = O(n− 1
3 ). (4.5)

(iii) For the l ≥ 2 case,
∫ gk

d−

pMP(x)
(d+ − x)l

dx = O(n
2
3 l−1) (4.6)

Verifying (ii) is straightforward after imposing the assumption μ1−μi > cn−2/3

for some c > 0, which follows from event F (4)
r,R. Statements (iii) and (iv) follow

from the definitions of pMP and gk.
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We now turn to (i). It follows from Lemma 2.8 that, on the event F (2)
K ,

1
n

n∑

i=K

1
(d+ − μi)l

−
∫ gK

d−

pMP(x)
(d+ − x)l

dx = O(n
2
3 l−1).

Thus, it remains only to show that

1
n

n∑

i=K

(
1

(μ1 − μi)l
− 1

(d+ − μi)l

)
= O(n

2
3 l−1). (4.7)

This bound holds on the event F (2)
K ∩ F (3)

s,t , which can be seen by observing
that
∣∣∣∣

1
(μ1 − μi)l

− 1
(d+ − μi)l

∣∣∣∣ =

∣∣∣∣∣
(d+ − μ1)

∑l−1
j=0(d+ − μi)j(μ1 − μi)l−j−1

(μ1 − μi)l(d+ − μi)l

∣∣∣∣∣

≤ l|d+ − μ1|
min{|d+ − μi|, |μ1 − μi|}l+1

,

and thus∣∣∣∣∣
1
n

n∑

i=K

(
1

(μ1 − μi)l
− 1

(d+ − μi)l

)∣∣∣∣∣ = O

(
1
n

n∑

i=K

l · n−2/3

(d+ − μi)l+1

)

= O

(
n−5/3

∫ n

K

l
(x

n

)− 2
3 (l+1)

dx

)

= O(n
2
3 l−1).

�
4.1. Computation of Ĝ(μ(1)

1 , μ
(2)
1 )

Lemma 4.2.

Ĝ = A(d+, B) − log n

3n
− 1

2n

n∑

i=1

log |d+ − μi|

+
bn− 1

3
√

log n

λ
1
4 (1 + λ)

1
2 d+

(μ1 − d+) + O(n−1),

where

A(x,B) :=
√

α2 + xB2 − α log

(
α +

√
α2 + xB2

B

)
. (4.8)

Remark 4.3. The expression of Ĝ given by Lemma 4.2 contains two distinct
random variables,

∑n
i=1 log |d+ − μi| and μ1 − d+. Under appropriate trans-

lation and scaling, they are the quantities that give rise to the Gaussian and
Tracy–Widom terms, respectively, in the convergence of free energy as stated
in Theorem 1.1. The translation and scaling needed for these two random
variables are, respectively, T1n and T2n, given by

T1n =
Cλn − 1

6
logn −∑n

i=1 log |d+ − μi|√
2
3
logn

, T2n =
n2/3(μ1 − d+)√
λ(1 +

√
λ)4/3

, (4.9)
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where Cλ is as in (1.5). The expression of Ĝ then reads

Ĝ = A(d+, B) − 1
2
Cλ − log n

4n
+

(
1√
6
T1n +

λ
1
4 b

(1 + λ
1
2 )

2
3 (1 + λ)

1
2
T2n

) √
log n

n

+O(n−1). (4.10)

Proof of Lemma 4.2. By definition,

Ĝ = Bn(μ(1)
1 + μ

(2)
1 ) − αn log(μ(1)

1 ) − 1
2n

n∑

i=2

log(μ1 − μi)

=
√

α2
n + μ1B2

n − αn log

(
αn +

√
α2

n + μ1B2
n

2Bn

)
− 1

2n

n∑

i=2

log(μ1 − μi).

(4.11)

Replacing αn, Bn by α,B, respectively (incurring an error of n−1−δ), and
applying Taylor expansion with respect to μ1 near d+, we obtain

√
α2

n + μ1B2
n − αn log

(
αn +

√
α2

n + μ1B2
n

2Bn

)

= A(d+, B) +
B2(μ1 − d+)

2(α +
√

α2 + d+B2)
+ O(n−1−δ).

(4.12)

Note we have dropped the quadratic term in the Taylor expansion, which
is O(n−4/3). It remains to compute the summation in (4.11), which can be
rewritten as

n∑

i=2

log(μ1 − μi) =
n∑

i=2

log |d+ − μi| − n(d+ − μ1)
λ

1
2 (1 + λ

1
2 )

+ E1 + E2 (4.13)

where we define

E1 = n(d+ − μ1)

(
1

λ
1
2 (1 + λ

1
2 )

− 1
n

n∑

i=2

1
μ1 − μi

)
,

E2 =
n∑

i=2

(
d+ − μ1

μ1 − μi
− log

∣∣∣∣1 +
d+ − μ1

μ1 − μi

∣∣∣∣

)
. (4.14)

We now show E1 + E2 = O(1), following an argument similar to that of
Johnstone et al in [36]. The bound E1 = O(1) follows from Lemma 4.1. To
bound E2, observe that, on the event we are considering, there exist k,C such
that μ1 ≤ d+ + Cn−2/3 and μk ≤ d+ − Cn−2/3. For any fixed i, we also have
d+ − μ1 = Θ(n−2/3) and μ1 − μi = Θ(n−2/3). This implies

k−1∑

i=2

(
d+ − μ1

μ1 − μi
− log

∣∣∣∣1 +
d+ − μ1

μ1 − μi

∣∣∣∣

)
= O(1).
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To bound the sum over the indices above k, we observe that, for i ≥ k, we have
d+−μ1
μ1−μi

≥ − 1
2 and, for any x ≥ − 1

2 , there is C1 such that | log(1+x)−x| ≤ C1x
2.

This gives us
n∑

i=k

(
d+ − μ1

μ1 − μi
− log

∣∣∣∣1 +
d+ − μ1

μ1 − μi

∣∣∣∣

)
= O(1).

Finally, combining the results above and observing that 1
2n log |d+ − μ1| =

− log n
3n + O(n−1), we get

Ĝ(μ(1)
1 , μ

(2)
1 ) = A(d+, B) − log n

3n
− 1

2n

n∑

i=1

log |d+ − μi| + c2(B)(μ1 − d+)

+O(n−1), (4.15)

where

c2(B) =
B2

2(α +
√

α2 + d+B2)
− 1

2λ1/2(1 + λ1/2)
. (4.16)

Recall that Bc is defined to be the quantity satisfying
√

α2 + d+B2
c − α

d+
=
∫

pMP(x)
d+ − x

dx =
1

λ
1
2 (1 + λ

1
2 )

. (4.17)

Using this definition along with a Taylor expansion of c2 near B = Bc = λ− 3
4 ,

we get

c2(B) =
Bc

2
√

α2 + d+B2
c

(B − Bc) + O((B − Bc)2)

=
bn− 1

3
√

log n

λ
1
4 (1 + λ)

1
2 d+

+ O(n−2/3 log n).

Apply this to (4.15), we obtain the lemma. �

4.2. Contour Integral Analysis

We now derive the asymptotics of the rescaled double integral

Sn := exp(−nĜ)Qn =
∫ ∞

−∞

∫ ∞

−∞
exp[n(G(γ1 + iy1, γ2 + iy2) − Ĝ)]dy2dy1.

(4.18)

The analysis holds on the following probability event Fε for arbitrarily small
ε > 0.

Lemma 4.4. For each ε > 0, there exist positive numbers r, s, t, and C, de-
pending on ε, such that the event Fε given by

Fε =

⎧
⎨

⎩

∣∣∣∣∣∣

n∑

j=2

1
n

2
3 (μ1 − μj)

− sMP(d+)

∣∣∣∣∣∣
≤ C

⎫
⎬

⎭
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∩
⎧
⎨

⎩

n∑

j=2

1
n

4
3 (μ1 − μj)2

≤ C

⎫
⎬

⎭F (3)
s,t ∩ F (4)

r,R

satisfies P(Fε) > 1 − ε.

We note that the definition of Fε is not unique as it depends on the choice
of s, t, r, R, and C. For any given ε > 0, we fix the values s, t, r, R,C and define
Fε accordingly.

Proof. First, for some C > 0, each of the two events that involve 1
n2/3(μ1−μj)

,
with this C as upper bound, holds with probability at least 1− ε/4 by Lemma
4.1. Meanwhile, by Lemma 2.5, we can find 0 < s < t and 0 < r < R such that
each of the events F (3)

s,t and F (4)
r,R holds with probability at least 1 − ε/4. �

Since the integral representation of the partition function only requires
γ1, γ2 > 0 such that 4γ1γ2 > μ1, we set γ1 = μ

(1)
1 and γ2 = μ

(2)
1 + n−1 in the

low-temperature case. The shift n−1 in γ2 is due to the deformation γ̂2, given
in (4.20), that we later apply to the integral in the y2 variable. The order n−1

is needed to cancel out a term of order n of the function in the exponent (see,
for example, (4.23)). Thus,

Sn =
∫ ∞

−∞

∫ ∞

−∞
exp[n(G(μ(1)

1 + iy1, μ
(2)
1 + n−1 + iy2) − Ĝ)]dy2dy1. (4.19)

In the remainder of the subsection, we prove the following lemma, for fixed
ε > 0 sufficiently small (e.g., 0 < ε < 1

100 ).

Lemma 4.5. On the event Fε,

Sn =

{
eO(1)n− 5

6
(
b
√

log n
)− 1

2 , b > 0,

eO(log log n)n− 5
6 , b = 0.

By Lemma 3.9 of [13], the part of the double integral Sn with |y1| >

n− 1
2+ε is O(e−nε

) with high probability. For |y1| < n− 1
2+ε, we modify the

z2-integral by replacing the vertical contour z2 = γ2 + iy2, y2 ∈ R with the
contour z2 = γ̂2 + iy2, y2 ∈ R, where γ̂2 is defined for each y1 by

γ̂2(y1) =
μ

(1)
1 (μ(2)

1 + n−1)

μ
(1)
1 + iy1

. (4.20)

The new contour is a modification of the one introduced by Baik and Lee in
[13]. Similar to the case in [13], we observe that the change in product z1z2 for
(z1, z2) near (μ(1)

1 , μ
(2)
1 ), but not the individual changes in z1, z2 with z1z2 being

fixed, greatly impacts the change in G(z1, z2), since the main contribution for
the latter comes from the term 1

4z1z2−μ1
. This suggests behavior of G(μ(1)

1 +

iy1, γ̂2) should be similar to that of G(μ(1)
1 , μ

(2)
1 + n−1) for the current range

of y1.
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Note that this deformation for each z1 = μ
(1)
1 + iy1 is valid. Indeed, if

(z1, z2) is a point on the branch cut of the logarithmic function in G, then
4z1z2 − μ1 is real and non-positive. That is, for some r ≥ 0,

Re z2 = Re

(
μ1 − r

4(μ(1)
1 + iy1)

)
= Re

(
μ1 − r

4μ
(1)
1 (μ(2)

1 + n−1)
γ̂2

)
< Re γ̂2.

This implies that the deformed contour does not cross the branch cut. Thus,
the part of Sn with |y1| < n−1/2+ε is equal to

∫ n−1/2+ε

−n−1/2+ε

∫ ∞

−∞
exp[n(G(μ(1)

1 + iy1, γ̂2 + iy2) − Ĝ)]dy2dy1.

We now carry out the analysis of this double integral, first by truncating the
y2−integral. For given y1, y2 ∈ R,

G(μ(1)
1 + iy1, γ̂2 + iy2) − Ĝ

= Bn

⎛

⎝i(y1 + y2) +
μ

(2)
1 + n−1

1 + i y1

μ
(1)
1

− μ
(2)
1

⎞

⎠− αn log

(
1 +

iy1

μ
(1)
1

)

− 1
2n

n∑

j=2

log

(
1 +

4μ
(1)
1 n−1 − 4y1y2

μ1 − μj
+ i

4μ
(1)
1 y2

μ1 − μj

)

− 1
2n

log(4μ(1)
1 n−1 − 4y1y2 + i4μ(1)

1 y2).

(4.21)

Our truncation procedure, which relies on bounding |G(μ(1)
1 + iy1, γ̂2 +

iy2)− Ĝ|, aligns rather closely with the arguments in [13], where the difference
|G(γ1 + iy1, γ̂2 + iy2) − G(γ1, γ2)| is the focus there. After truncating in the y1

variable, the contribution from the part |y2| > n− 1
2+ε is as follows.

Lemma 4.6. The following bound holds for the truncated integral.

∫

|y1|≤n− 1
2+ε

∫

|y2|>n− 1
2+ε

exp[n(G(μ(1)
1 + iy1, γ̂2 + iy2) − Ĝ)]dy2dy1 = O(n−1).

(4.22)
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Proof. From (4.21),

Re
[
n
(
G(μ(1)

1 + iy1, γ̂2 + iy2) − Ĝ
)]

=
Bn(μ(1)

1 )2 − nBnμ
(2)
1 y2

1

(μ(1)
1 )2 + y2

1

− αnn

2
log

⎛

⎝1 +

(
y1

μ
(1)
1

)2
⎞

⎠

− 1
4

log

⎛

⎝
(

4μ
(1)
1

n
− 4y1y2

)2

+ (4μ(1)
1 y2)2

⎞

⎠

− 1
4

n∑

j=2

log

⎛

⎝
(

1 +
4μ

(1)
1 n−1 − 4y1y2

μ1 − μj

)2

+
(4μ

(1)
1 y2)2

(μ1 − μj)2

⎞

⎠ .
(4.23)

Applying Taylor expansion in terms of y1 around 0 to the first two terms on
the right-hand side of (4.23), then for some c > 0, the first line has upper
bound

c0 − cny2
1 − 1

2
log

(
4μ

(1)
1 |y2|

)
, uniformly in |y1| ≤ n− 1

2+ε.

For the sum of log, by consider the cases y1y2 > 0 and y1y2 < 0 as in [13],
there exists c′ > 0 such that for all j ∈ {2, 3, . . . , n}, for all |y1| < n− 1

2+ε and
|y2| > n− 1

2+ε,
(

1 +
4μ

(1)
1 n−1 − 4y1y2

μ1 − μj

)2

+
(4μ

(1)
1 y2)2

(μ1 − μj)2
≥ 1 + c′y2

2 .

Therefore,

Re
[
n
(
G(μ(1)

1 + iy1, γ̂2 + iy2) − Ĝ
)]

≤ c0 − cny2
1 − 1

2
log

(
4μ

(1)
1 |y2|

)

−n

4
log(1 + c′y2

2),

and the left-hand side of (4.22) has upper bound
∫

|y1|≤n− 1
2+ε

∫

|y2|>n− 1
2+ε

ec0−cny2
1e− n

4 log(1+c′y2
2)(4μ

(1)
1 |y2|)− 1

2 dy2dy1,

which is a product of a y1-integral and a y2-integral. Each individual integral
is O(n− 1

2 ), so we obtain the lemma. �

The computation of Sn is now reduced to that of the same integral, over
the subset |y1| ≤ n− 1

2+ε and |y2| < n− 1
2+ε. However, we need to truncate the

y2-integral further.

Lemma 4.7. For this further truncation, we have the following bound.
∫

|y1|≤n− 1
2+ε

∫

n− 2
3+2ε<|y2|<n− 1

2+ε
exp[n(G(μ(1)

1 + iy1, γ̂2 + iy2) − Ĝ)]dy2dy1

= O(e−n4ε

).
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Proof. Computations similar to the proof of Lemma 4.6 give

Re
[
n
(
G(μ(1)

1 + iy1, γ̂2 + iy2) − Ĝ
)]

≤ c0 − 1
4

n∑

j=2

log

⎛

⎝
(

1 +
4μ

(1)
1 n−1 − 4y1y2

μ1 − μj

)2

+
(4μ

(1)
1 y2)2

(μ1 − μj)2

⎞

⎠ .

(4.24)

Observe that n− 2
3 	 μ1−μn4ε 	 n− 2

3+2ε. Thus, for 2 ≤ j ≤ n4ε,
(

4μ
(1)
1 y2

μ1−μj

)2

≥
(4μ

(1)
1 )2, and we obtain

−1
4

n4ε∑

j=1

log

⎛

⎝
(

1 +
4μ

(1)
1 n−1 − 4y1y2

μ1 − μj

)2

+
(4μ

(1)
1 y2)2

(μ1 − μj)2

⎞

⎠ ≤ −1
2

log(μ(1)
1 )n4ε.

For j > n4ε, μ1 − μj ≥ μ1 − μn4ε � n− 2
3 . Since |y1|, |y2| ≤ n− 1

2+ε, we
have μ1 −μj � |4μ

(1)
1 n−1 −4y1y2|. Using log(1−x) ≥ −2x for x ∈ (0, 1), then

for some constant C,C ′ > 0, the sum with indices j > n4ε on the right-hand
side of (4.24) has upper bound

−1
2

n∑

j=n4ε+1

log

(
1 +

4μ
(1)
1 n−1 − 4y1y2

μ1 − μj

)
≤ 4|μ(1)

1 n−1 − y1y2|
n∑

j=n4ε+1

1
μ1 − μj

≤ Cn|μ(1)
1 n−1 − y1y2| ≤ C ′n2ε.

Here, the second inequality holds with probability at least 1 − ε by Lemma
4.1. Thus, we obtain the uniform bound

Re
[
n
(
G(μ(1)

1 + iy1, γ̂2 + iy2) − Ĝ
)]

≤ c0 − Cn4ε

for some constant C > 0. This implies the lemma. �
Therefore, we have shown that

Sn =
∫ n− 1

2+ε

−n− 1
2+ε

∫ n− 2
3+2ε

−n− 2
3+2ε

exp[n(G(μ(1)
1 + iy1, γ̂2 + iy2) − Ĝ)]dy2dy1 + O(n−1).

(4.25)

We proceed to compute the double integral in (4.25). For |y1| ≤ n− 1
2+ε

and |y2| < n− 2
3+2ε, by Taylor series and the definitions of μ

(1)
1 and μ

(2)
1 in

(4.1), the second line of (4.21) for G(μ(1)
1 + iy1, γ̂2 + iy2) − Ĝ is

Bn(n−1 + iy2) − i
Bnn−1

μ
(1)
1

y1 − Bn(μ
(1)
1 +μ

(2)
1

2 + n−1)

(μ(1)
1 )2

y2
1 + O(y3

1),

while the last line, after factorizing the arguments of logarithm functions,
becomes

− 1
2n

n∑

j=2

log

(
1 +

4μ
(1)
1 n−1 + 4iμ(1)

1 y2

μ1 − μj

)
− 1

2n
log(4μ(1)

1 n−1 + 4iμ(1)
1 y2)
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− 1
2n

n∑

j=2

log

(
1 − 4y1y2

μ1 − μj + 4μ
(1)
1 n−1 + 4iμ(1)

1 y2

)

− 1
2n

log

(
1 − 4y1y2

4μ
(1)
1 n−1 + 4iμ(1)

1 y2

)
. (4.26)

Combining the above two displays, we obtain

exp[n(G(μ(1)
1 + iy1, γ̂2 + iy2) − Ĝ)]

= exp

⎡

⎣− iBn

μ
(1)
1

y1 − Bn(μ
(1)
1 +μ

(2)
1

2 + n−1)

(μ(1)
1 )2

ny2
1

⎤

⎦

· exp
[
Bnn(n−1 + iy2) − 1

2
log(4μ(1)

1 n−1 + 4iμ(1)
1 y2)

−1
2

n∑

j=2

log(1 +
4μ

(1)
1 n−1 + 4iμ(1)

1 y2

μ1 − μj
)

⎤

⎦

· exp

⎡

⎣−1
2

n∑

j=1

log

(
1 − 4y1y2

μ1 − μj + 4μ
(1)
1 n−1 + 4iμ(1)

1 y2

)
+ O(ny3

1)

⎤

⎦ .

(4.27)

Let H(y1, y2) denote the product of the first two exponential factors on
the right-hand side of (4.27) and L(y1, y2) be the last factor. That is,

exp[n(G(μ(1)
1 + iy1, γ̂2 + iy2) − Ĝ)] = H(y1, y2)L(y1, y2).

There is a constant c > 0 such that Bn(
μ
(1)
1 +μ

(2)
1

2 +n−1)

(μ
(1)
1 )2

> c, so

|H(y1, y2)| ≤ exp

⎡

⎣Bn − Bn(μ
(1)
1 +μ

(2)
1

2 + n−1)

(μ(1)
1 )2

ny2
1

−1
2

Re
n∑

j=2

log(1 +
4μ

(1)
1 n−1 + 4iμ(1)

1 y2

μ1 − μj
)

⎤

⎦

≤ exp

[
Bn − cny2

1 − 1
2

log

(
4μ

(1)
1 |y2|

μ1 − μ2

)]

≤ C(μ1 − μ2)
1
2 |y2|− 1

2 e−cny2
1 , (4.28)

for some constant C > 0. On the other hand, by Lemma 4.1, there exists
constant C > 0 such that

n∑

j=2

1

|μ1 − μj + 4μ
(1)
1 n−1 + 4iμ

(1)
1 y2|�

≤
n∑

j=2

1
(μ1 − μj)�
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≤
{

Cn1+ε, � = 1,

Cn
2�
3 +ε, � = 2, 3, . . .

(4.29)

At the same time,
∣∣∣∣∣

4y1y2

4μ
(1)
1 n−1 + 4iμ(1)

1 y2

∣∣∣∣∣ ≤ |y1|
μ

(1)
1

= O(n− 1
2+ε).

Thus, applying Taylor series, we have

L(y1, y2) = 1 +
n∑

k=1

2y1y2

μ1 − μj + 4μ
(1)
1 n−1 + 4iμ(1)

1 y2

+ O(n− 1
2+3ε). (4.30)

Observe that

|μ1 − μj + 4μ
(1)
1 n−1 + 4iμ(1)

1 y2| ≥
{

μ1 − μj , j = 2, 3, . . . , n,

4μ
(1)
1 |y2|, j = 1.

Applying (4.29) with � = 1, we obtain

|L(y1, y2) − 1| ≤ Cn|y1y2| + C ′n− 1
2+3ε. (4.31)

We now write
∫ n− 1

2+ε

−n− 1
2+ε

∫ n− 2
3+2ε

−n− 2
3+2ε

exp[n(G(μ(1)
1 + iy1, γ̂2 + iy2) − Ĝ)]dy2dy1 = I1 + I2,

(4.32)

where I2 is given by

I2 =
∫ n− 1

2+ε

−n− 1
2+ε

∫ n− 2
3+2ε

−n− 2
3+2ε

H(y1, y2)(L(y1, y2) − 1)dy2dy1. (4.33)

By (4.28) and (4.31), there is constant Cj > 0, j = 1, 2, 3 such that

|I2| ≤ C1

∫ n
− 1

2+ε

−n
− 1

2+ε

∫ n
− 2

3+2ε

−n
− 2

3+2ε
|H(y1, y2)|

(
n|y1y2| + n− 1

2+3ε
)

dy2dy1

≤ C2n(μ1−μ2)
1
2

∫ n
− 1

2+ε

−n
− 1

2+ε

∫ n
− 2

3+2ε

−n
− 2

3+2ε
e−cny2

1

(
|y1||y2| 12 + n− 3

2+3ε|y2|− 1
2

)
dy2dy1

≤ C3n
−1+4ε(μ1 − μ2)

1
2 . (4.34)

Together with (4.25) and (4.32), this implies that on the event μ1 − μ2 ≤
n−2/3+ε,

Sn = I1 + O(n−1).

Note that

I1 =
∫ n− 1

2+ε

−n− 1
2+ε

∫ n− 2
3+2ε

−n− 2
3+2ε

H(y1, y2)dy2dy1 (4.35)
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is equal to the product of two single integrals I11 and I12 as follows. First,

I11 =
∫ n− 1

2+ε

−n− 1
2+ε

exp

⎡

⎣− iBn

μ
(1)
1

y1 − Bn(μ
(1)
1 +μ

(2)
1

2 + n−1)

(μ(1)
1 )2

ny2
1

⎤

⎦dy1

= n− 1
2

∫ nε

−nε

e−c1x2
cos

(
c2√
n

x

)
dx,

(c1, c2) :=

⎛

⎝Bn(μ
(1)
1 +μ

(2)
1

2 + n−1)

(μ(1)
1 )2

,
Bn

μ
(1)
1

⎞

⎠ .

Using Taylor’s series of cosine, we obtain that for some C > 0,

I11 = Cn− 1
2
(
1 + O(n−1+2ε)

)
. (4.36)

Second, we have

I12 =
∫ n− 2

3+2ε

−n− 2
3+2ε

exp
[
n(G(μ(1)

1 , μ
(2)
1 + n−1 + iy) − Ĝ)

]
dy. (4.37)

We first check that I12 is close to the integral over the whole real line

Kn :=
∫ ∞

−∞
exp

[
n(G(μ(1)

1 , μ
(2)
1 + n−1 + iy) − Ĝ)

]
dy. (4.38)

By (4.27), for all y ∈ R,

Re
[
n

(
G(μ(1)

1 , μ
(2)
1 +

1
n

+ iy) − Ĝ

)]

≤ c0 − 1
4

log
(
(4μ

(1)
1 n−1)2 + (4μ(1)

1 y2)2
)

− 1
4

n∑

j=2

log

⎛

⎝
(

1 +
4μ

(1)
1 /n

μ1 − μj

)2

+

(
4μ

(1)
1 y

μ1 − μj

)2
⎞

⎠ .

In the case n− 2
3+2ε < |y| < n, we use − 1

4 log
(
(4μ

(1)
1 n−1)2 + (4μ(1)

1 y2)2
)

≤
1
2 log n and bound

n∑

j=2

log

⎛

⎝
(

1 +
4μ

(1)
1 /n

μ1 − μj

)2

+

(
4μ

(1)
1 y

μ1 − μj

)2
⎞

⎠ ≥ 2
n2ε∑

j=2

log

(
4μ

(1)
1 |y|

μ1 − μj

)
≥ Cn2ε

using the fact that μ1 − μn2ε 	 n− 2
3+2ε with high probability. For |y| > n,

we drop the negative term − 1
4 log

(
(4μ

(1)
1 n−1)2 + (4μ(1)

1 y2)2
)
, while, for some

c > 0,

n∑

j=2

log

⎛

⎝
(

1 +
4μ

(1)
1 /n

μ1 − μj

)2

+

(
4μ

(1)
1 y

μ1 − μj

)2
⎞

⎠ ≥ n log(1 + cy2) ≥ n log(c|y|).
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Re(z)

Im(z)

µ
(2)
1µ

(2)
2

a+

Γ1
Γ+
2

Γ−
2

Γ+
3

Γ−
3

Figure 1. Keyhole-like contour of integration Γ

Therefore, for some C ′, C ′′ > 0, it holds with high probability that

|Kn − I12| ≤ C ′
(

n1/2e−Cn−2ε

+
∫ ∞

0

(cy)− n
4

)
dy ≤ C ′′e−c′n2ε

. (4.39)

We determine in Sect. 4.2.1 that, on the event Fε,

Kn =

{
eO(1)n− 1

3
(
b
√

log n
)− 1

2 , b > 0,

eO(log log n)n− 1
3 , b = 0.

(4.40)

Assuming (4.40) is true, then using (4.39) and the fact that Sn = I11 · I12 +
O(n−1), we obtain Lemma 4.5.

4.2.1. Proof of (4.40) When b > 0. For brevity, we introduce the following
two notations to be used throughout the subsection:

a+ =
μ

(2)
1 + μ

(2)
2

2
=

μ1

8μ
(1)
1

+
μ2

8μ
(1)
2

, (4.41)

where μ
(1)
2 :=

αn+
√

α2
n+μ2B2

n

2Bn
and μ

(2)
2 :=

−αn+
√

α2
n+μ2B2

n

2Bn
.

We now show that the integral Kn, on the event Fε, satisfies (4.40), first
under the assumption b > 0. By Cauchy theorem, for every r ∈ (0, n−1],

iKn =
∫

Γ

exp
[
n(G(μ(1)

1 , z) − Ĝ)
]
dz,

where Γ = Γ1 ∪ Γ±
2 ∪ Γ±

3 is the vertical keyhole-like contour as in Fig. 1. In
particular, given a function φr : R+ → [0, π] of r such that φr → 0 as r ↓ 0, we
let Γ1 be the arc {μ

(2)
1 + reiθ : θ ∈ [−π + φr, π − φr]}, Γ±

2 = {x ± r sin φr : x ∈
[a+, μ

(2)
1 − r cos φr]}, and Γ±

3 be the rays {a+ ± iy : y ∈ [r sin φr,∞)}. Then,
for fixed n,

iKn = lim
r↓0

∫

Γ

exp
[
n(G(μ(1)

1 , z) − Ĝ)
]
dz. (4.42)
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For Γ1, using the fact that log(x+it) → log |x|+iπ as t ↓ 0 for x < 0, and
dz = ireiθdθ where θ takes values in [−π − φr, π + φr] as described above, one
can verify using Fubini’s that for each fixed n, the integral over Γ1 converges
to 0 as r → 0.

We show in Lemma 4.8 that, in the limit r ↓ 0, the contribution from
Γ+

2 ∪Γ−
2 part of the contour satisfies the asymptotics (4.40) in both cases b > 0

and b = 0. In Lemma 4.9, we confirm that for any keyhole radius r ∈ (0, 1/n],
with probability arbitrarily close to 1, the contribution from Γ+

3 ∪Γ−
3 is little-o

of that of Γ+
2 ∪ Γ−

2 when b > 0. Together, the lemmas establish (4.40) when
b > 0.

Lemma 4.8. On the event Fε, it holds that

lim
r↓0

∫

Γ+
2 ∪Γ−

2

exp
[
n(G(μ

(1)
1 , z) − Ĝ)

]
dz =

{
ieO(1)n− 1

3
(
b
√

log n
)− 1

2 , b > 0,

ieO(1)n− 1
3 , b = 0.

(4.43)

Proof. Recall that, if z ∈ Γ±
2 , then z = x ± ir sinφr where x ∈ [a+, μ

(2)
1 −

r cos φr]. Set s = μ
(2)
1 − x, we have

n(G(μ(1)
1 , z) − Ĝ) = −nBn(μ(2)

1 − x) ± inBnr sinφr

− 1
2

n∑

j=2

log

(
1 − 4μ

(1)
1 (μ(2)

1 − x) ∓ i4μ
(1)
1 r sin φr

μ1 − μj

)

− 1
2

log
(
−4μ

(1)
1 (μ(2)

1 − x) ± i4μ
(1)
1 r sinφr

)

r↓0→ −Bnns − 1
2

n∑

j=2

log

(
1 − 4μ

(1)
1 (μ(2)

1 − x)
μ1 − μj

)

− 1
2

log(4μ(1)
1 (μ(2)

1 − x)) ∓ i
π

2
.

Let A be the left-hand side of (4.43). We then obtain

A =
2i√
4μ

(1)
1

∫ μ
(2)
1 −a+

0

exp

⎛

⎝−Bnns − 1
2

n∑

j=2

log

(
1 − 4μ

(1)
1 s

μ1 − μj

)⎞

⎠ ds√
s
.

(4.44)

Observe that 4μ
(1)
1 s

μ1−μj
∈ [0, 1

2 ] for all s ∈ [0, μ
(2)
1 −a+] and all j. As 0 < − log(1−

x) − x ≤ x2 for x ∈ [0, 1
2 ], there exists ζ ∈ [0, 1] such that

− Bnns − 1
2

n∑

j=2

log

(
1 − 4μ

(1)
1 s

μ1 − μj

)

= −Bnns + 2μ
(1)
1 s

n∑

j=2

1
μ1 − μj

+
ζ(4μ

(1)
1 s)2

2

n∑

j=2

1
(μ1 − μj)2

.

(4.45)
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Define y := n2/3s ∈ [0, n2/3(μ(2)
1 − a+)], and let ω1n, ω2n be random variables

given by
n∑

j=2

1
n

2
3 (μ1 − μj)

= sMP(d+)n
1
3 + ω1n,

n∑

j=2

1
(
n

2
3 (μ1 − μj)

)2 = ω2n.

(4.46)

Then, (4.45) simplifies to

−Bnns − 1
2

n∑

j=2

log

(
1 − 4μ

(1)
1 s

μ1 − μj

)

= n
1
3 y
(
−Bn + 2μ

(1)
1 sMP(d+)

)
+
[
y(2μ

(1)
1 ω1n + 2(μ(1)

1 )2ζω2ny2
]
,

(4.47)

where the term inside the square brackets is O(1), uniformly for y ∈ [0, n2/3

(μ(2)
1 − a+)]. Observe also

−Bn + 2μ
(1)
1 sMP(d+) = −Bn +

αn +
√

α2
n + μ1B2

n

Bn
sMP(d+),

where Bn − Bc = Θ(β − βc) and Bc satisfies
√

α2 + d+B2
c = α + d+sMP(d+).

Therefore, applying Taylor expansion to the above expression with respect to
Bn near Bc and μ1 near d+, using μ1 − d+ = O(n−2/3) on the event Fε, we
obtain

−Bn + 2μ
(1)
1 sMP(d+) = −2sMP(d+)λ

1
2√

1 + λ
(β − βc) + O

(
(β − βc)2

)
. (4.48)

Thus, on the event Fε,

− Bnns − 1
2

n∑

j=2

log

(
1 − 4μ

(1)
1 s

μ1 − μj

)
= −2sMP(d+)λ

1
2 b

√
log n√

1 + λ
y + O(1),

(4.49)

and we arrive at

A =
ieO(1)

n
1
3

∫ n
2
3 (μ

(2)
1 −a+)

0

exp

(
−2sMP(d+)λ

1
2 b

√
log n√

1 + λ
y

)
dy√

y

=

{
ieO(1)n− 1

3 b− 1
2 (log n)− 1

4 , b > 0,

ieO(1)n− 1
3 , b = 0.

This completes the proof of the lemma. �

Lemma 4.9. Let θn = n2/3(μ
(2)
1 −μ

(2)
2 )

2 . For b ≥ 0 and for every 0 < r < n−1, on
the event Fε, ∣∣∣∣∣

∫

Γ+
3 ∪Γ−

3

exp
[
n(G(μ(1)

1 , z) − Ĝ)
]
dz

∣∣∣∣∣
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≤ n− 1
3 exp

(
−2sMP(d+)

√
λθn√

1 + λ
b
√

log n + O(1)

)
.

Proof. Since G(μ(1)
1 , z) = G(μ(1)

1 , z) for all z ∈ C, it suffices to bound the
integral over Γ+

3 . We define

G+(μ(1)
1 , a+) = lim

t↓0
G(μ(1)

1 , a+ + it), G̃(t) = G(μ(1)
1 , a+ + it) − G+(μ(1)

1 , a+).

Then, for z ∈ Γ+
3 ,

n(G(μ(1)
1 , z) − Ĝ) = n(G+(μ(1)

1 , a+) − Ĝ)) + nG̃(t),

and we have∣∣∣∣∣

∫

Γ+
3

exp
[
n(G(μ(1)

1 , z) − Ĝ)
]
dz

∣∣∣∣∣ ≤
∣∣∣en(G+(μ

(1)
1 ,a+)−Ĝ)

∣∣∣
∫ ∞

0

en Re G̃(t)dt.

(4.50)

For fixed k > 2,

nRe G̃(t) = −1
4

n∑

j=1

log

⎛

⎝1 +

(
4μ

(1)
1 t

4μ
(1)
1 a+ − μj

)2
⎞

⎠

≤ −1
4

n∑

j=2

log

⎛

⎝1 +

(
4μ

(1)
1 t

μ1 − μj

)2
⎞

⎠ ≤ −k

4
log

(
1 + ξ−2n

4
3 t2
)

,

where ξ := n2/3

4μ
(1)
1

|μ1 − μk+1| is O(1) on the event Fε. Thus,
∫ ∞

0

en Re G̃(t)dt ≤
∫ ∞

0

(1 + ξ−2n
4
3 t2)− k

4 dt = exp
(

−2
3

log n + O(1)
)

.

(4.51)

At the same time, on the event Fε, θn = Θ(n2/3(μ1 − μ2)) = Θ(1). Thus,
similar to the proof of Lemma 4.8, we obtain that

n(G+(μ(1)
1 , a+) − Ĝ) = −Bnn

1
3 θn − 1

2

n∑

j=2

log

(
1 − 4μ

(1)
1 θn

n
2
3 (μ1 − μj)

)

−1
2

log(4μ(1)
1 n−2/3θn) − iπ

2

= −n
1
3 θn

(
Bn − 2μ

(1)
1 sMP(d+) − ω1nn− 1

3

)

+(ζθn)2ω2n +
log n

3
+ O(1)

= −2
√

λsMP(d+)θn√
1 + λ

b
√

log n +
log n

3
+ O(1),

(4.52)

on the event Fε. Applying the above two displays to (4.50), we obtain the
lemma. �
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4.2.2. Proof of (4.40) When b = 0. Observe that when b = 0, Lemmas 4.8 and
4.9 using keyhole contour show that, with probability 1− ε for arbitrary small
ε > 0, the contribution from the vertical and horizontal parts of the contour
is both n− 1

3 eO(1). This provides the upper bound for Kn. As some cancelation
between the two contributions can occur, further analysis is required for the
lower bound. In this section, we use the steepest descent contour of G(μ(1)

1 , z)
crossing the real line above μ

(2)
1 to obtain the needed lower bound

Kn ≥ n− 1
3 eO(log log n).

The argument is inspired by the one provided by Johnstone et al in [36].

Lemma 4.10. There exists a unique saddle point of G(μ(1)
1 , z) on z ∈ (μ(2)

1 ,∞).

Proof. Observe that

∂2G(μ(1)
1 , z) = Bn − 1

2n

n∑

j=1

4μ
(1)
1

4μ
(1)
1 z − μj

is an increasing function of z on the interval (μ(2)
1 ,∞) and that

lim
z↓μ

(2)
1

∂2G(μ(1)
1 , z) = −∞, lim

z→∞ ∂2G(μ(1)
1 , z) = Bn > 0.

Thus, there is a unique solution zc ∈ (μ(2)
1 ,∞) to the equation ∂2G(μ(1)

1 , z) = 0.
Moreover, ∂2

2G(μ(1)
1 , z) > 0 for all z > μ

(2)
1 . Thus, zc is a saddle point of

Re[G(μ(1)
1 , z)]. �

Let Γs be the steepest descent contour of G(μ(1)
1 , z) crossing zc. For z =

x + iy ∈ Γs,

0 = Im[G(μ(1)
1 , z)] = Bny − 1

2n

n∑

j=1

arg(4μ(1)
1 x − μi + i4μ(1)

1 y),

which implies Γs is symmetric with respect to the x-axis. Moreover, for fixed
y > 0, arg(4μ(1)

1 x−μi +i4μ(1)
1 y) is strictly decreasing in x. This suggests there

is at most one solution x to Im[G(μ(1)
1 , x + iy)] = 0 for any y > 0. The same

applies to y < 0 by symmetry. We then parameterize Γs = {Γs(t) : 0 < t < 1}
such that Im Γs(t) is increasing in t.

As Bn|y| ↑ π
2 , x → −∞ so Γs(0+) = −∞−i π

2Bn
and Γs(1−) = −∞+i π

2Bn
.

We obtain Re Γs(t) is bounded above, and Kn as in (4.42) satisfies

iKn =
∫

Γs

exp
[
n(G(μ(1)

1 , z) − Ĝ)
]
dz.

We now consider points on the contour Γs with real part μ
(2)
1 .

Lemma 4.11. The function

f(y) := Im[G(μ(1)
1 , μ

(2)
1 + iy)] = Bny − π

4n
− 1

2n

n∑

j=2

arctan

(
4μ

(1)
1 y

μ1 − μj

)
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has a unique positive root y0. Furthermore, for any sequence an → ∞, an =
O(nδ) for any δ > 0,

n−2/3a−1
n ≤ y0 ≤ n−2/3an, asymptotically almost surely. (4.53)

Proof. Existence and uniqueness of y0 > 0 follow from the fact that f(y) is
continuous, convex function on [0,∞) with f(0) = − π

4n and lim
y→∞ f(y) = ∞.

Let y−, y+ denote the bounds a−1
n n−2/3 and ann−2/3, respectively. We

now verify (4.53) by showing that a.a.s., f(y−) < 0 < f(y+). First, using
arctan(x) ≥ x − x2/4 for x ≥ 0 and Lemma 4.1, then with probability 1 − ε
for arbitrary ε > 0,

f(y−) ≤ y−

⎛

⎝Bn − 2μ
(1)
1

n

n∑

j=2

1
μ1 − μj

⎞

⎠− π

4n
+

(4μ
(1)
1 y−)2

8n

n∑

j=2

1
(μ1 − μj)2

= y−
(
Bn − 2μ

(1)
1 sMP(d+) + O(n−1/3)

)
− π

4n
+ y2

− · O(n1/3)

= − π

4n
+ o(n−1) < 0.

In the last equality, Bn − 2μ
(1)
1 sMP(d+) = O(n−1−τ ) due to rigidity of μ1 and

the fact Bn = Bc + O(n−1−τ ) for any τ > 0. The second part of the proof
relies on the following statistics regarding the eigenvalues of a matrix from the
Laguerre Orthogonal Ensemble. Let

j0 = #
{

j : μj > d+ − 1
3
ann−2/3

}
,

j∗ = #
{

j : μj > μ1 −
(
1 +

π

2

)−1

ann−2/3

}
.

By Chebyshev’s inequality and (A.2), for some c > 0, it holds a.a.s. that
j0 ≥ ca

3/2
n . Combine with the observation that a.a.s., μ1 − d+ = Θ(n−2/3) 	

ann−2/3, we obtain

j∗ ≥ j0 ≥ ca3/2
n a.a.s. (4.54)

Since arctan(x) ≤ x − 1 for x > 1 + π
2 and j∗ = max{j : y+

μ1−μj
> 1 + π

2 }, we
have

arctan

(
4μ

(1)
1 y+

μ1 − μj

)
≤ 4μ

(1)
1 y+

μ1 − μj
− 1{j≤j∗}.

Lemma 4.1 and the above display imply that a.a.s.,

f(y+) = Bny+ − 1
2n

n∑

j=2

arctan

(
4μ

(1)
1 y+

μ1 − μj

)
− π

4n

≥ Bny+ − 1
2n

n∑

j=2

4μ
(1)
1 y+

μ1 − μj
+

j∗

2n
− π

4n

≥ y+ · O(n−1/3) +
ca

3/2
n

2n
− π

4n
,
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which is strictly positive as y+ = ann−2/3. We obtain the lemma. �

Let z0 = μ
(2)
1 + iy0, and consider the subset

Γ0 = {z ∈ Γs : | Im z| ≤ y0},

which is a connected curve with endpoints z0, z0 by the parameterization. We
have now obtained the needed tools to bound Kn as follows.

Observe that G(μ(1)
1 , z) − Ĝ is real on Γs and is monotone decreasing as

z moves away from the point zc along Γs. Also, dy
dt > 0 from the parameteri-

zation. Therefore,

Kn =
1
i

∫

Γs

exp
[
n(G(μ(1)

1 , z) − Ĝ)
]
dz

≥
∫ y0

−y0

exp
[
nRe(G(μ(1)

1 , z(y)) − Ĝ)
]
dy

≥ 2y0 exp
[
nRe(G(μ(1)

1 , z0) − Ĝ)
]
. (4.55)

Here,

log y0 + nRe(G(μ(1)
1 , z0) − Ĝ) = log y0 − 1

2
log(4μ(1)

1 y0)

− 1
4

n∑

j=2

log

(
1 +

(4μ
(1)
1 y0)2

(μ1 − μj)2

)

≥ 1
2

log y0 − (4μ
(1)
1 y0)2

4

n∑

j=2

1
(μ1 − μj)2

≥ −1
3

log n + O(log log n).

(4.56)

The last inequality holds a.a.s., using Lemma 4.11 with a2
n = log log n and the

fact
∑n

j=2
1

(μ1−μj)2
is O(n4/3) under the event Fε. This completes the proof of

the lower bound of Kn.

4.3. Low-Temperature Free Energy

Finally, using the contour integral computations from the previous section, we
obtain the following lemma for the limiting fluctuations of the free energy on
the low-temperature side of the critical temperature window.

Lemma 4.12. If β = βc + bn−1/3
√

log n for some fixed b ≥ 0, then the free
energy satisfies

m+n√
1
6 log n

(
Fn,m(β)−F (β)+

1
12

log n

n+m

)
→ N (0, 1)+

√
6λ

1
4 b

(1 + λ)
1
2 (1 + λ

1
2 )

2
3

TW1,

where

F (β) = fλ +
λ

1 + λ
A(d+, B) − 1

2
log β − λ

2(1 + λ)
Cλ. (4.57)
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Proof. By (4.18),
1

n + m
log Qn =

n

n + m
Ĝ +

1
n + m

log Sn.

Note that 1
n+m log Sn = − 5

6
log n
n+m + O(n−1 log log n) by Lemma 4.5, while the

quantity Ĝ is computed in Lemma 4.2. Combining them, we get
1

n + m
log Qn =

λ

1 + λ
A(d+, B) − 7

6
log n

n + m

− 1
2(n + m)

n∑

i=1

log |d+ − μi| +
λ

3
4 bn− 1

3
√

log n

(1 + λ)
3
2 d+

(μ1 − d+)

+O( log log n
n ). (4.58)

Apply this to (2.6), we obtain

Fm,n(β) = fλ +
λ

1 + λ
A(d+, B) − 1

2
log β − 1

6
log n

n + m

− 1
2(n + m)

n∑

i=1

log |d+ − μi| +
λ

3
4 bn− 1

3
√

log n

(1 + λ)
3
2 d+

(μ1 − d+)

+ O( log log n
n ).

In terms of variables T1n and T2n as in (4.9), we get

Fm,n(β) = fλ +
λ

1 + λ
A(d+, B) − 1

2
log β − λ

2(1 + λ)
Cλ − 1

12
log n

n + m

+

√
1
6 log n

n + m

(
T1n +

√
6λ

1
4 b

(1 + λ)
1
2 (1 + λ

1
2 )

2
3
T2n

)
+ O( log log n

n ).

(4.59)

The theorem then follows since T1n
d→ N (0, 1) by Theorem 1.2, and T2n

d→
TW1 by Lemma 2.1. �

The fact that the Gaussian and Tracy–Widom limits are independent is
shown in the next section.

5. Independence of Gaussian and Tracy–Widom Variables (Low
Temperature)

Recall the quantities

T1n :=
Cλn − 1

6 log n −∑n
i=1 log |d+ − μi|√

2
3 log n

, T2n :=
n2/3(μ1 − d+)√
λ(1 +

√
λ)4/3

,

Cλ = (1 − λ−1) log(1 + λ
1
2 ) + log(λ

1
2 ) + λ− 1

2

(5.1)

The goal of this section is to show that, given an LOE matrix Mn,m (which we
assume without loss of generality to be in tridiagonal form), with probability
arbitrarily close to one,
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• T1n = Zn√
2
3 log n

+ o(1) for Zn depending only on the upper left minor of

size n − 2n1/3(log n)3 of the matrix Mn,m, and
• T2n = Yn + o(1) for Yn depending only on the lower right minor of size

2n1/3(log n)3 of the matrix.
Our proofs draw on ideas from the paper [36], which proves a similar

result in the case of Wigner ensembles. We also make use of results from [24],
which studies the asymptotics of the quantity

∑n
i=1 log |γ − μi| for γ ≥ d+ by

analyzing a recurrence on the determinants of the minors of Mn,m. In order to
demonstrate the asymptotic independence of T1n and T2n, we need not only the
main theorem of [24], but also many of the intermediate lemmas which involve
recurrences on the matrix entries. For this purpose, we briefly summarize the
setup from that paper along with the key notations that are used.

Recall from (2.20) that the tridiagonal representation of Mn,m depends
on χ-squared random variables {a2

i }, {b2
i }. Paper [24] works with centered and

rescaled versions of these, denoted by αi and βi, respectively, which are defined
as

αi =
a2

i − (m − n + i)
|ρ+

i | , βi =
b2
i−1 − (i − 1)

|ρ+
i | . (5.2)

Here, the scaling factor ρ+
i is one of the characteristic roots of the recurrence

on determinants of the minors of Mn,m. This turns out to be a convenient
rescaling since it prevents the iterates from blowing up. More precisely,

ρ±
i := −1

2
(γm − (m − n + 2i − 1)

±
√

(γm − (m − n + 2i − 1))2 − 4(m − n + i − 1)(i − 1)
)

. (5.3)

Throughout the proofs, we will also use the notations

τi =
m − n + i

|ρ+
i | , δi =

i − 1
|ρ+

i | . (5.4)

5.1. Proof for T1n

Lemma 5.1. There exists a random random Zn, depending only on the upper
left minor of size n − 2n1/3(log n)3 of the matrix Mn,m such that

T1n =
Zn√
2
3 log n

+ o(1).

Proof. We begin our analysis of T1n by remarking that it is tricky to analyze
the distribution of

∑n
i=1 log |d+ −μi| directly because of how close d+ is to the

eigenvalues {μi}. For this reason, [24] uses the technique of first analyzing the
sum

∑n
i=1 log |γ − μi| for

γ = d+ + σnn−2/3, (5.5)

then analyzing the original sum by comparison to the shifted one. We employ
a similar technique here. More precisely, we take

σn = σ̄n := (log log n)3 . (5.6)
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From line (7.3) of [24], we have

n∑

i=1

log |d+ − μi| =
n∑

i=1

log |d+ + σ̄nn−2/3 − μi| − C1σ̄nn1/3 + C2σ̄
3/2
n + o(

√
logn).

(5.7)

where

C1 =
1

λ1/2(1 + λ1/2)
, C2 =

2
3λ3/4(1 + λ1/2)2

. (5.8)

Furthermore, from Lemma 3.1 and Section 4 of [24], we can rewrite the sum
on the right-hand side of (5.7) as

n∑

i=1

log |d+ + σ̄nn−2/3 − μi| = Cλn −
n∑

i=3

Li − 1
6

log n + C1σ̄nn1/3 − C2σ̄
3/2
n

0 +o
(√

log n
)

(5.9)

where C1, C2 are the same constants from (5.7) and Li is given by the recursive
formula

Li := ξi + ωiLi−1 for i ≥ 4, L3 := ξ3. (5.10)

with

ξi := αi + βi(1 + τi−1) + αi−1δi, ωi := τi−1δi. (5.11)

Thus, combining (5.7) and (5.9) with the definition of T1n, we get

T1n =
∑n

i=3 Li√
2
3 log n

+ o(1). (5.12)

It remains to show that
∑n

i=3 Li = Zn+o(
√

log n) for some Zn depending only
on the upper left minor of Mn,m of size n − 2n1/3(log n)3. From the recursive
definition of Li, we have, for any j ≥ 4,

n∑

i=3

Li =
n∑

i=3

ξi + ωiξi−1 + · · · + ωi · · · ω4ξ3 =
n∑

i=3

gi+1ξi

where gi = 1+ωi +ωiωi+1 + · · ·+ωi . . . ωn for 3 ≤ i ≤ n. Now we would like to
compare this sum to a similar sum, truncated at index i = n − 2n1/3(log n)3

and show that their difference is small, with probability arbitrarily close to 1.
As this will involve computing the variance of the difference between the sums,
we would like to eliminate the dependence between consecutive terms in the
sum by rewriting

n∑

i=3

Li =
n∑

i=3

gi+1Xi +
n∑

i=3

αi − g3α2.

where

Xi = (1 + τi−1)(δiαi−1 + βi), 3 ≤ i ≤ n. (5.13)
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Now we define

Zn =

n−2n1/3(log n)3�∑

i=3

gi+1Xi. (5.14)

This gives us
n∑

i=3

Li − Zn =
n∑

i=�n−2n1/3(log n)3
gi+1Xi +

n∑

i=3

αi − g3α2. (5.15)

It follows from line (5.21) of [24] that
∑n

i=3 αi − g3α2 = o(
√

log n) with prob-
ability 1 − n−1/2. Finally, we bound the variance of the remaining sum on the
right-hand side of (5.15). Since {Xi} are pairwise independent and {gi} are
deterministic, we have

E

⎡

⎢⎣

⎛

⎝
n∑

i=�n−2n1/3(log n)3
gi+1Xi

⎞

⎠
2
⎤

⎥⎦ =
n∑

i=�n−2n1/3(log n)3
g2

i+1EX2
i

From (4.42) of [24], we have EX2
i = O(n−1) uniformly in i. Combining Lemma

5.1 and Corollary 2.9 of [24], we have

gi =

{
O(n1/2(n − i)−1/2) i ≤ n − n1/3σn

O(n1/3σ
−1/2
n ) i ≥ n − n1/3σn.

(5.16)

Thus, we can bound the sum as follows:

n∑

i=�n−2n1/3(log n)3
g2

i+1EX2
i ≤


n−n1/3σn�∑

i=�n−2n1/3σn(log n)3

n

n − i
· C

n

+
n∑

i=�n−n1/3σn

n2/3

σn
· C

n

= O(log log n) + O(1).

This completes the proof of the lemma concerning T1n. �

5.2. Proof for T2n

We now verify that, T2n = Yn + o(1), for some random variable Yn depending
only on the bottom-right minor of size 2n

1
3 (log n)3 of the matrix Mn,m (in

fact, we get a much tighter tail bound than o(1)). Recall that T2n is a shifted
rescaling of the largest eigenvalue μ1, and it converges to the Tracy–Widom
distribution. Thus, Yn, if it exists, must converge to the same limit, while only
depending on the bottom corner of Mn,m. The following lemma shows that the
largest eigenvalue of the minor described above, with the same transformation
as in T2n, is a good choice for Yn.

Lemma 5.2. Let μ̃1 be the largest eigenvalue of the bottom-right minor of Mn,m

of size p > 2n
1
3 (log n)3. Then, for any D > 0 and ε > 0, with probability at
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least 1 − ε,

|μ1 − μ̃1| = O(n−D).

Furthermore, by setting Yn = n2/3(μ̃1−d+)√
λ(1+

√
λ)4/3 and taking D > 2

3 arbitrarily large,
we have

T2n = Yn + O(n−D+2/3).

The key ingredient to bounding the difference μ1 − μ̃1 lies in controlling
the first n − 2n1/3(log n)3 components of an eigenvector corresponding to μ1.
In particular, we need the following result.

Lemma 5.3. If v = (v1, . . . , vn)T is a principal eigenvector of Mn,m, then for
any ε > 0 and d > 0, with probability at least 1 − ε, we have

max
j≤n−2n

1
3 (log n)3

|vj |
‖v‖ < n−d.

Lemma 5.3 itself relies on the following two auxiliary Lemmas 5.4 and
5.5, both of which depend on the random entries in the tridiagonal matrix
form. We include their proofs in Appendix B.

Lemma 5.4. Let μ1 be the largest eigenvalue of Mn,m. Let {Fj}n−1
j=1 be the se-

quence given by

F1 = −1 +
μ1m − a2

1

|ρ+
1 | , Fj = −1 +

μ1m − (a2
j + b2

j−1)

|ρ+
j |

+
(aj−1bj−1)2

|ρ+
j ||ρ+

j−1|
· 1
1 + Fj−1

for j = 2, . . . , n − 1.

Here, ρ+
j is given by (5.3) with γ = d+. Then, for every ε > 0, with probability

at least 1 − ε,

max
j≤n−n

1
3 (log n)3

|Fj | = o(n− 1
3 ). (5.17)

Lemma 5.5. Given ε > 0, then for sufficiently large n and ai, bi as defined in
(2.21), we have

P

(∣∣∣∣ max
j≤n−n1/3(log n)3

ajbj − √
mn

∣∣∣∣ ≤ (e log n)2n1/2

)
≥ 1 − ε. (5.18)

Proof of Lemma 5.3. From the tridiagonal representation (2.20) and the no-
tations presented at the beginning of Sect. 5, we obtain the system of linear
equations
⎧
⎨

⎩

(
a2
1

m − μ1

)
v1 + a1b1

m v2 = 0,

aj−1bj−1
m vj−1 +

(
a2

j+b2j−1
m − μ1

)
vj + ajbj

m vj+1 = 0, j = 2, . . . , n − 1.

With probability 1, aj > 0 and bj > 0 for j = 1, . . . , n− 1. This implies v1 �= 0
(otherwise, v is the zero vector). In fact, as functions of positive, continuous
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random variables a1, . . . , aj−1, b1, . . . , bj−1, it holds with probability 1 that
vj �= 0 for each j. Thus, we rescale v to have v1 = 1 and obtain

v2 =
μ1m − a2

1

a1b1
, vj+1 =

μ1m − (a2
j + b2

j−1)
ajbj

vj − aj−1bj−1

ajbj
vj−1,

j = 2, . . . , n − 1. (5.19)

We introduce the following quantity

Fj =
vj+1

vj
· ajbj

|ρ+
j | − 1, for j = 1, . . . , n − 1. (5.20)

Here, ρ+
j is given in (5.3) with γ = d+. Set k = �n 1

3 �, and let j ≤ n −
2n1/3(log n)3. Observe that

|vj |
‖v‖ ≤

∣∣∣∣
vj

vj+k

∣∣∣∣ =
j+k−1∏

l=j

(1 + Fl)−1

j+k−1∏

l=j

(albl)/m

|ρ+
l |/m

. (5.21)

Since {Fl}n−1
l=1 satisfies the hypothesis of Lemma 5.4 and each l ∈ [j, j + k − 1]

satisfies l ≤ n − n
1
3 (log n)3, it follows that, with probability 1 − ε/2, we have∏j+k−1

l=j (1 + Fl)−1 = 1 + o(1).

We then consider the product
∏j+k−1

l=j
(albl)/m

|ρ+
l |/m

. As |ρ+
l | is decreasing in l

by (5.3),

|ρ+
l |

m
≥

∣∣∣ρ+
n−n1/3(log n)3

∣∣∣
m

=
d+m − (m + n − 2n1/3(log n)3 − 1)

2m(
1 +

√

1 − 4(m − n1/3(log n)3 − 1)(n − n1/3(log n)3 − 1)
(d+m − (m + n − 2n1/3(log n)3 − 1))2

)
.

(5.22)

Using d+m = m + n + 2
√

mn, the first factor on the right-hand side of
(5.22) is

√
λ(1 + O(n− 2

3 (log n)3)), while the expression under the square root
is Θ(n− 2

3 (log n)3). Therefore, there is a constant c > 0 such that

|ρ+
l |

m
≥

√
λ + cn− 1

3 (log n)
3
2 for all l ≤ n − n

1
3 (log n)3.

Combining this with Lemma 5.5, we obtain that, for some c′ > 0, with prob-
ability 1 − ε/2,

j+k−1∏

l=j

(albl)/m

|ρ+
l |/m

≤ (1 − c′n− 1
3 (log n)

3
2 + o(n− 1

3 ))k. (5.23)

Therefore, with probability 1 − ε,

max
j≤n−2n

1
3 (log n)3

|vj |
‖v‖ ≤ max

j≤n−2n
1
3 (log n)3

∣∣∣∣
vj

vj+k

∣∣∣∣ = exp
(
−c′(log n)3/2 + o(1)

)
.
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The above quantity is O(n− log1/2 n+o(1)), smaller than any n−d for sufficiently
large n. This completes the proof of Lemma 5.3. �

We now have the necessary tools to prove Lemma 5.2 and conclude our
argument of asymptotic independence.

Proof of Lemma 5.2. We observe that μ̃1 is equal to the largest eigenvalue of
M

(p)
n,m where

mM(p)
n,m

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0
. . .

. . .

. . . 0 0

0 a2
n−p+1 + b2n−p an−p+1bn−p+1

an−p+1bn−p+1
. . .

. . .

. . .
. . . an−1bn−1

an−1bn−1 a2
n + b2n−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.24)

This implies μ1 ≥ μ̃1. We now verify the upper bound on μ1 − μ̃1.
Set v = (v1, . . . , vn)T to be a normalized principal eigenvector, i.e., v is

a unit vector satisfying vT Mn,mv = μ1. Since μ̃1 ≥ vT M
(p)
n,mv, it follows that,

for v:n−p := (v1, . . . , vn−p)T and

(m − p)Mn−p,m−p =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a2
1 a1b1

a1b1 a2
2 + b21 a2b2

a2b2 a2
3 + b22

. . .

. . .
. . . an−l−1bn−l−1

an−p−1bn−p−1 a2
n−p + b2n−p−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

(5.25)

we have

μ1 − μ̃1 ≤ vT
(
Mn,m − M (p)

n,m

)
v

=
m − p

m
vT

:n−pMn−p,m−pv:n−p +
2an−pbn−p

m
vn−p+1vn−p.

(5.26)

As p > 2n
1
3 (log n)3, Lemma 5.3 implies that for any d > 0 and ε > 0, then

with probability 1 − ε/3, ‖v:n−p‖2 = O(n−2d+1) and max |vn−p+1|, |vn−p| =
O(n−d). Furthermore, 2

man−pbn−p = O(1) by Lemma 5.5, and ‖Mn−p,m−p‖ =
O(1) (due to being a rescaled LOE matrix), and each of these O(1) bounds
holds with probability 1 − ε/3. Therefore, (5.26) implies μ1 − μ̃1 = O(n−2d+1)
with probability 1 − ε. Setting d = 1

2 (D + 1), we obtain the first statement
of Lemma 5.2. The second one then follows immediately from the observation
T2n − Yn = Θ(n2/3(μ1 − μ̃1)). �
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6. Appendix: Section 2 Proofs

In appendix, we provide a proof for Lemma 2.2, and then apply it to prove
Lemma 2.8.

6.1. Proof of Lemma 2.2

Before beginning the main proof, we need the following preliminary results.

Lemma A.1. Let {μj}n
j=1 be eigenvalues of a scaled LUE or LOE matrix 1

mMn,m.
Assume s is such that s > C for some C > 0 and s = o(n2/3) as n → ∞. The
following statements hold for Ns := #{i : μi ∈ [d+ − sn−2/3,∞)}.

ENs =
2

3πλ3/4d+
s3/2 + O(s5/2n−2/3). (A.1)

Var(Ns) =
3

4π2
log(s)(1 + o(1)). (A.2)

The lemma is the analog of Proposition 6.5 from [40], which bounds the
expectation and variance of the counting function in the case of GOE matrices.
There, the result was obtained by applying the corresponding result for GUE
matrices by Gustavsson [33], and the relation between eigenvalues of Gaussian
orthogonal and unitary ensembles in [30]. The proof of [40] works in our case,
up to translating from Gaussian to Laguerre Ensembles. For completeness, we
reproduce it here, first proving for LUE matrices using a result in [51], and
then extend to LOE matrices using the following result.

Theorem A.2 (Theorem 5.2 of [30]). For independent eigenvalue point pro-
cesses LOEn,m, LOEn+1,m+1,

even(LOEn,m ∪ LOEn+1,m+1) = LUEn,m,

where the notation even(·) denotes the set containing only the even numbered
elements among the ordered list of elements in the original set.

Proof of Lemma A.1. In the case of LUE matrix, the lemma follows from the
results of Su in [51]. Namely, the first inequality holds by Lemma 1 of [51],
which states that

E#{j : μj ∈ [tn,∞)} = n

∫ βn,m

tn

pMP(x)dx
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=

√
βn,m − αn,m

3πβn,m
n(βn,m − tn)3/2 + O(n(βn,m − tn)5/2).

As the matrix in [51] is scaled by 1/n instead of 1/m as in this paper, our
interval of interest [d+ − sn−2/3,∞) corresponds to tn = βn,m − s

λn−2/3 in
[51]. Meanwhile, the inequality for variance directly follows from Lemma 4
there.

We now consider the case of LOE matrix. Let M
(1)
n,m, M

(1)
n+1,m+1 be in-

dependent LOE matrices of size n × m and (n + 1) × (m + 1), respectively,
and let M

(2)
n,m be a LUE matrix of size n × m. Set X

(2)
n,m to be the number of

eigenvalues of M
(2)
n,m that are at least m

(
d+ − sn− 2

3

)
. We define X

(1)
n,m and

X
(1)
n+1,m+1 similarly, for the two LOE matrices. Theorem A.2 implies that there

is a random variable Y and a random variable Z ∈ [0, 1] such that

X(2)
n,m

d= Y, Y − Z =
1
2

(
X(1)

n,m + X
(1)
n+1,m+1

)
.

The estimates (A.1) and (A.2) hold for Y by the previous paragraph. The
estimate (A.2) for Y , together with boundedness of Z and the fact X

(1)
n,m and

X
(1)
n+1,m+1 are independent implies that (A.2) holds for the X(1)’s as well.

Now,

E[X(2)
n,m] =

1
2

(
E[X(1)

n,m] + E[X(1)
n+1,m+1]

)
+ c, for some c ∈ [0, 1]. (A.3)

From the tridiagonal form of Laguerre Ensembles, the top left n × n minor of
M

(1)
n+1,m+1 has the same distribution as M

(1)
n,m. The eigenvalues of this minor

interlace those of M
(1)
n+1,m+1, which implies there is a random variable X̃

(1)
n,m

with the same distribution as X
(1)
n,m and satisfies

|X̃(1)
n,m − X

(1)
n+1,m+1| ≤ 1.

We then obtain (A.1) for X
(1)
n,m and X

(1)
n+1,m+1, using (A.1) for X

(2)
n,m, (A.3)

and the above inequality. �

We now have the needed tools to prove Lemma 2.2.

Proof of Lemma 2.2. For j = 1, . . . , n2/5 and t > 0, by definition,

P(Aj ≥ t) = P

(
μj ≥ d+ −

(
(C�j)2/3 − t

)
n−2/3

)
= P(NT ≥ j), (A.4)

where C� = 3
2πλ3/4d+ and T = T (j, t) := (C�j)2/3 − t. If ENT < j, then

P(NT ≥ j) ≤ P(|NT − ENT | ≥ j − ENT ) ≤ Var NT

(j − ENT )2
. (A.5)

In order to make use of this inequality, we need to know what values of t
(depending on j) satisfy ENT < j. By Lemma A.1, there exist K, c0 > 0
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such that, for any c1 > 0 and any sufficiently large n, if K ≤ j ≤ n2/5 and
0 < t < (C�j)2/3 − c1, then

j − ENT ≥ j − 1
C� ((C�j)2/3 − t)3/2 − c0j

5/3n−2/3

≥ j − j

(
1 − t

(C�j)2/3

)3/2

− c0 ≥ tj1/3

(C�)2/3
− c0.

(A.6)

In particular, this means that ENT < j is satisfied (along with the conditions
of Lemma A.1) when c0(C�)2/3j−1/3 < t < (C�j)2/3 − c1 and K ≤ j ≤ n2/5

(note that one should choose K > c0). Thus, for t, j satisfying these conditions,
we combine (A.4)–(A.6) with the variance bound from Lemma A.1 to conclude
that, for some c2 > 0 and sufficiently large n,

P(Aj ≥ t) ≤ c2 log j

((C�)−2/3tj1/3 − c0)2
. (A.7)

Next, taking T ′ = (C�j)2/3 + t we can follow the same argument to bound
P(Aj < −t). This time, we find that ENT ′ ≥ j is satisfied (along with the
conditions of Lemma A.1) when c0(C�)2/3j−1/3 < t 	 n2/3 and K ≤ j ≤ n2/5.
Then, for t, j satisfying these conditions, and for some c3 > 0 with sufficiently
large n,

P(Aj ≤ −t) = P(μj < d+ − T ′n−2/3) ≤ P(|NT ′ − ENT ′ | > ENT ′ − j)

≤ c3
log j + log(1 + t)

((C�)−2/3tj1/3 − c0)2
.

(A.8)

Thus, for j, t satisfying K ≤ j ≤ n2/5 and c0(C�)2/3j−1/3 < t < (C�j)2/3 − c1,
we have

P(|Aj | ≥ t) = O

(
log j + log(1 + t)

((C�)−2/3tj1/3 − c0)2

)
.

Taking t = λj2/3, then for all k ≥ K,

P

⎛

⎝
⋃

k≤j≤n2/5

{
|Aj | ≥ λj2/3

}
⎞

⎠ = O

⎛

⎝
n2/5∑

j=k

log j

j2

⎞

⎠ = O

(
log k

k

)
.

This bound holds uniformly for K ≤ k ≤ n2/5. Taking k → ∞ (for example
k = n1/5), we obtain (2.18).

It remains to prove the second part of the lemma. Set t∗ = c0(C�)2/3j−1/3.
For K ≤ j ≤ n2/5, we have

E

[
1{n2/3(μj−d+)≤−C} |Aj |

]
≤
∫ ∞

0

P(Aj ≥ t)dt +
∫ ∞

0

P(−Aj ≤ −t)dt

≤
(

t∗ +
∫ (C�j)2/3−C

t∗
P(Aj > t)dt + 0

)

+

⎛

⎝t∗ +
∫ n

2
3 −δ

t∗
P(−Aj ≤ −t)dt + o(n−1)

⎞

⎠
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≤ 2t∗ + C ′
∫ ∞

t∗

log j + log(1 + t)
((C�)−2/3tj1/3 − c0)2

dt

≤ 2t∗ + C ′′ log j

j1/3
= O

(
log j

j1/3

)
,

where, in the second line, we obtained
∫∞
(C�j)2/3−C

P(Aj ≥ t)dt = 0 from
the indicator in the expectation, and

∫∞
n

2
3 −δ P(−Aj ≤ −t)dt = o(n−1) from

eigenvalue rigidity. �

6.2. Proof of Lemma 2.8

We observe that

S2 :=
1
n

n∑

i=K+1

1
(z − μj)l

−
∫ gK

d−

1
(z − y)l

pMP(y)dy

=
∑

i>K

∫ gi−1

gi

(z − y)l − (z − μi)l

(z − μi)l(z − y)l
pMP(y)dy. (A.9)

The modulus of this sum satisfies

|S2| ≤
∑

i>K

∫ gi−1

gi

l max{|z − y|, |z − μi|}l−1|μi − y|
|z − μi|l|z − y|l pMP(y)dy

≤
∑

i>K

∫ gi−1

gi

l · |(μi − gi) + (gi − y)|
min{|z − μi|, |z − y|}l+1

pMP(y)dy.

We now split the sum as S21 + S22, summing over K ≤ i ≤ n2/5 and i > n2/5,
respectively. First, consider K ≤ i ≤ n2/5. By Lemma 2.2, given ε > 0, on the
event Eε, there exists c > 0 such that, for sufficiently large n, n2/3(d+ − μi) ≥
ci2/3 uniformly for all i in this range. Combining with the facts that Re z ≥ d+

and d+ ≥ μi for i ≥ K on Eε, we have

n2/3|z − μi| ≥ max{n2/3|z − d+|, ci2/3}. (A.10)

Meanwhile, there exists C > 0, independent of n, such that C−1i2/3 ≤ n2/3(d+−
gi) ≤ Ci2/3 for all i (see, for example, [12]). Thus, (A.10) also holds for
n2/3|z − y|, uniformly for y ∈ (gi, gi−1). For the numerator, we have n2/3(y −
gi) ≤ n2/3(gi−1 − gi) ≤ ci−1/3, using

1
n

=
∫ gi−1

gi

pMP(y)dy ≥ c
√

d+ − gi(gi−1 − gi).

By (2.16), n2/3(μi −gi) = Ai +O
(

i4/3

n2/3

)
, where Ai is given in (2.17). The term

i−1/3 is of larger order than n−2/3i4/3 when K ≤ i ≤ n2/5, and they have the
same order when i = Θ(n2/5). Thus,

1Eε

l · |(μi − gi) + (gi − y)|
min{|z − μi|, |z − y|}l+1

≤ Cln
2
3 l i−1/3 + |Ai|

i
2
3 (l+1) + (n

2
3 |z − d+|)l+1

,

K ≤ i ≤ n2/5. (A.11)
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By Lemma 2.2,

E [1Eε
|S21|] ≤ Cln

2
3 l−1

∑

K≤i≤n2/5

i−1/3 + E [1Eε
|Ai|]

i
2
3 (l+1) + (n

2
3 |z − d+|)l+1

≤ C ′ln
2
3 l−1

∑

K≤i≤n2/5

i−1/3 log i

i
2
3 (l+1) + (n

2
3 |z − d+|)l+1

.

(A.12)

Next, we consider two separate cases and conclude that, for some C ′′ > 0,

E [1Eε
|S21|] ≤

{
C ′′n

2
3 l−1 log(n2/3|z−d+|)

(n2/3|z−d+|)l K2/3 < n2/3|z − d+|,
C ′′n

2
3 l−1 K2/3 ≥ n2/3|z − d+|.

The bound in the first case is obtained by evaluating the right-hand side of
(A.12) separately for i2/3 < n2/3|z − d+| and i2/3 > n2/3|z − d+|. The bound
in the second case follows from the convergence of

∑∞
i=K i−

2
3 l−1 log i for all

l ≥ 1. Thus, we obtain

E [1Eε
|S21|] = O

(
n

2
3 l−1 · min

{∣∣∣∣
log(n2/3|z − d+|)
(n2/3|z − d+|)l

∣∣∣∣ , 1
})

. (A.13)

Lastly, for S22, we bound the numerator (which is l ·|μi−y|) using rigidity
and bound n2/3|z−y| ≥ ci2/3 by (A.10), while |z−μi| ≥ max{|z−d+|, d+−μi},
where, with high probability,

d+ − μi ≥

⎧
⎪⎨

⎪⎩

c > 0, i > n/2,

ci2/3n−2/3, n2/5 < i < n/2, using rigidity with δ < 2
15 and

(2.16).

We obtain

1Eε
|S22| ≤ Cln

2
3 l−1+δ

∑

i>n2/5

1
i
2
3 (l+1) min{i1/3, (n + 1 − i)1/3}

≤ C ′ln
2
3 l−1+δ

⎛

⎝
n/2∑

i=n2/5

i−
2
3 l−1 +

∑

i>n/2

1
n

2
3 (l+1)(n + 1 − i)1/3

⎞

⎠

= O(n
2
3 l−1 · n−4l/15+δ),

(A.14)

which is o(E [1Eε
|S21|]), provided δ < 4l/15. This completes our proof of

Lemma 2.8.

7. Appendix: Section 5 Proofs

In this section, we provide our proofs of Lemmas 5.4 and 5.5. The proof of
Lemma 5.4 requires asymptotic bounds on |ρ±

j | when γ = d+ and a few related
quantities, which we state in the following two lemmas. Similar results were
developed for the case γ > d+ in Lemmas 2.7 and 2.8 in [24].
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Lemma B.1. The following asymptotic bounds hold, uniformly in i ≥ 2 (where
i can be fixed or n-dependent):

(i) |ρ+
i | = Θ(n), |ρ−

i | = O(n),
(ii) |ρ+

i | − |ρ−
i | = Θ(n1/2(n − i + 1)1/2),

(iii) |ρ−
i | − |ρ−

i−1| = O(( n
n−i+1 )1/2) and |ρ+

i−1| − |ρ+
i | = O(( n

n−i+1 )1/2).

Proof. To show (i) for |ρ−
i |, observe that |ρ−

i | is increasing in i, and

|ρ−
n | =

1
2

(
2
√

mn + 1 − 2
√√

mn + n + m − 3
4 + O(1)

)
= O(n).

Similarly, part (i) for |ρ+
i | holds since |ρ+

i | is decreasing in i, |ρ+
2 | < 2

√
mn +

2n = Θ(n), and

|ρ+
n | >

1
2

(d+m − (m + n − 1)) =
1
2
(
2
√

mn + 1
)

= Θ(n).

For part (ii), we have

|ρ+
i | − |ρ−

i |
=
√

(2
√

mn − 1 + 2(n − i + 1))2 − 4(m − (n − i + 1))(n − (n − i + 1))

= 2
√√

mn + 1 + (m + n + 2
√

mn − 1)(n − i + 1) = Θ(n1/2(n − i + 1)1/2).

Next, we verify (iii) by showing that |ρ−
i |−|ρ−

i−1|+|ρ+
i−1|−|ρ+

i | = O(( n
n−i+1 )1/2).

Indeed, the left-hand side can be written as

(|ρ+
i−1| − |ρ−

i−1|
)− (|ρ+

i | − |ρ−
i |) =

(|ρ+
i−1| − |ρ−

i−1|
)2 − (|ρ+

i | − |ρ−
i |)2

|ρ+
i−1| − |ρ−

i−1| + |ρ+
i | − |ρ−

i | ,

where numerator of the last ratio simplifies to 4d+m − 4 = Θ(n) and the
denominator is Θ(n1/2(n − i + 1)1/2) by part (ii). �

Lemma B.2. There exist constants 0 < C1 < C2 such that, for sufficiently
large n, and 2 ≤ i ≤ n,

C1

(
n − i + 1

n

)1/2

≤ 1 − ωi ≤ C2

(
n − i + 1

n

)1/2

.

Proof. We recall that ωi = |ρ−
i |

|ρ+
i−1| . Using the bounds |ρ−

i−1|
|ρ+

i−1| < ωi <
|ρ−

i |
|ρ+

i | we

obtain

|ρ+
i | − |ρ−

i |
|ρ+

i | < 1 − ωi <
|ρ+

i−1| − |ρ−
i−1|

|ρ+
i−1|

.

Using Lemma B.1, the left and right sides of this inequality are both
Θ((n−i+1

n )1/2), uniformly in i, which gives the desired bounds. �
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7.1. Proof of Lemma 5.4

Using 1
1+Fi−1

= 1− Fi−1
1+Fi−1

= 1−Fi−1 + F 2
i−1

1+Fi−1
and the notations in (5.2) and

(5.4), we have F1 = μ1−d+

|ρ+
1 |/m

− α1, and for j = 2, . . . , n − 1,

Fj = −1 +
μ1

|ρ+
j |/m

− (αj + βj + τj + δj)

−(αj−1 + τj−1)(βj + δj)

(
1 − Fj−1 +

F 2
j−1

1 + Fj−1

)
.

As 1 + τj + δj = d+m

|ρ+
j | − |ρ−

j |
|ρ+

j | , we re-arrange the terms to have

Fj = ηj − ξj + ωjFj−1 + φj , (B.1)

where we define

ηj =
μ1 − d+

|ρ+
j |/m

, (B.2)

φj = −ωj +
|ρ−

j |
|ρ+

j | − αj−1βj + (αj−1βj + αj−1δj + τj−1βj)
Fj−1

1 + Fj−1
− ωj

F 2
j−1

1 + Fj−1
,

(B.3)

and ξj is given in (5.11). Note that, by Lemma B.1,

0 < ωj − |ρ−
j |

|ρ+
j | =

|ρ−
j |

|ρ+
j |

|ρ+
j−1| − |ρ+

j |
|ρ+

j−1|
= O(n− 1

2 (n − j + 1)− 1
2 ). (B.4)

Expanding the recurrence iteratively, we get

Fj = ωj . . . ω2F1 + (ηj + ωjηj−1 + · · · + ωj . . . ω3η2)

− (ξj + ωjξj−1 + · · · + ωj . . . ω3ξ2)

+ (φj + ωjφj−1 + · · · + ωj . . . ω3φ2) .

(B.5)

On the event F (3)
s,t , which holds with probability 1 − ε/6 for some s, t

depending on ε, |μ1 − d+| ≤ tn− 2
3 . As |ρ+

i |/m = Θ(1) for all i ≤ n, we obtain

max
j≤n

|ηj | = O
(
n− 2

3

)
.

We recall that αj , βj are the centered and scaled version of χ-squared random
variables a2

j , b
2
j−1, respectively, and as such, they can be bounded using con-

centration of sub-gamma random variables (see, e.g., Theorem 2.3 of [21]). In
particular, there exists some constant c such that, for all j ≤ n and for all
t > 0,

P

(
|αj | > c

(√
t
n + t

n

))
≤ 2e−t (B.6)

and likewise for each βj , so we conclude that, for any ε, with probability at
least 1 − ε/6,

max{|αj |, |βj | : j ≤ n} ≤ cn− 1
2
√

log n. (B.7)
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Thus, for some constant C1 > 0, with probability 1 − ε/3,

|ωj . . . ω2F1| ≤ |F1| = |η1 − α1| ≤ C1n
− 1

2 . (B.8)

As ωj is increasing in j,

1 + ωj + ωjωj−1 + · · · + ωj . . . ω3 ≤ 1 + ωj + ω2
j + · · · =

1
1 − ωj

.

By Lemma B.2, 1 − ωj = Θ
((

n−j
n

) 1
2

)
. Thus, setting j0 := �n − n

1
3 (log n)3�,

we observe that, for some constant C2, with probability 1 − ε/3,

max
j≤j0

|ηj+ωjηj−1+ · · · + ωj . . . ω3η2| ≤ max
j≤j0

(
|ηj | 1

1−ωj

)
≤ C2n

− 1
3 (log n)− 3

2 .

(B.9)

Having bounded the first line of (B.5), we turn to the second line and recall
the definition of Lj in (5.10). We have

ξj + ωjξj−1 + · · · + ωj . . . ω3ξ2 = Lj + ωj . . . ω3ξ2.

Note that maxj≤n |ξj | = O(n− 1
2
√

log n) on the event (B.7). We also have, for
some constant C3 > 0, with probability 1 − O(n−1),

max
j≤j0

|Lj | = O(n− 1
3 (log n)− 1

4 ). (B.10)

The details for this bound can be obtained using a similar argument to the
one found in Section 6.2 of [24]. In particular, the bound (B.10) follows from
line (6.17) of that paper (where the notations α and Yi can be translated as
α = 2 and Yi = Li +O(n− 1

2 ) in our context). Thus, for some constant C3 > 0,
with probability 1 − ε/3,

max
j≤j0

|ξj + ωjξj−1 + · · · + ωj . . . ω3ξ2| ≤ C3n
− 1

3 (log n)− 1
4 . (B.11)

Consider the event

G := {(B.8), (B.9), and (B.11) hold}, (B.12)

which holds with probability 1 − ε, for sufficiently large n. We now show that
on this event, the third line of (B.5) is o(n− 1

3 ). Since this quantity depends on
Fl’s up to Fj−1, we can control it in the process of using induction to show

max
j≤j0

|Fj | = o(n− 1
3 ) on the event G. (B.13)

More specifically, we will show that maxj≤j0 |Fj | < 2C3n
− 1

3 (log n)− 1
4 where C3

is the constant from (B.11). The base case holds by (B.8). Assume maxl≤j−1 |Fl|
< 2C3n

− 1
3 (log n)− 1

4 . Then, by (B.3), (B.4) and (B.7),

max
l≤j

|φl| = o(n− 2
3 ).
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Note that the above maximum also includes φj . Thus, for some constant C4 >
0,

|φj + ωjφj−1 + · · · + ωj . . . ω3φ2| ≤ max
l≤j

|φl| 1
1 − ωj

≤ C4n
− 1

3 (log n)−3/2.

Finally, by (B.5), we have that on G,

|Fj | ≤ C1n
− 2

3 (log n) + C2n
− 1

3 (log n)− 1
2 + C3n

− 1
3 (log n)− 1

4 + C4n
− 1

3 (log n)−3/2

< 2C3n
− 1

3 (log n)− 1
4 .

This completes the induction step, and we obtain the lemma.

7.2. Proof of Lemma 5.5

Fix ε > 0. For j0 = �n − n1/3(log n)3� and t = (e log n)2, it suffices to show
that, for sufficiently large n, each of the probabilities

p1 := P

(
max
j≤j0

ajbj <
√

mn − tn1/2

)
≤ P

(
aj0bj0 <

√
mn − tn1/2

)
and

(B.14)

p2 := P

(
max
j≤j0

ajbj >
√

mn + tn1/2

)
= 1 −

j0∏

j=1

P

(
ajbj <

√
mn + tn1/2

)

(B.15)

is less than ε/2. For any j = 1, 2, . . . , j0, observe that

a2
jb

2
j

(d)
=

(
m−n+j∑

i=1

g2
i

)(
j∑

k=1

(g′
k)2
)

, (B.16)

where
(d)
= denotes equality in distribution, and g1, . . . , gm−n+j , g

′
1, . . . , g

′
j are

independent standard gaussian variables. This implies that Ea2
jb

2
j = j(m −

n + j) and Var(a2
jb

2
j ) = 2j(m − n + j)(m − n + 2j + 2). Viewing a2

jb
2
j as

a gaussian polynomial of degree 4 in m − n + 2j variables gi’s and g′
k’s, we

have the following concentration result from [8] (see Corollary 5.49): For any
s ≥ (2e)2,

P
(|a2

jb
2
j − j(m − n + j)|

≥ s
√

2j(m − n + j)(m − n + 2j + 2)
)

≤ exp
(−2

√
s/e

)
. (B.17)

Apply this result to (aj0bj0)
2 with s = (e log n)2, we obtain p1 ≤ n−2.

At the same time, (B.17) implies P
(
ajbj <

√
mn + tn1/2

) ≥ 1 − n−2 for all
1 ≤ j ≤ j0, which yields p2 ≤ 1 − e−c/n for some c > 0. This completes the
proof of the lemma.
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