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The Double Semion State in Infinite Volume

Alex Bols , Boris Kjær and Alvin Moon

Abstract. We describe in a simple setting how to extract a braided tensor
category from a collection of superselection sectors of a two-dimensional
quantum spin system, corresponding to abelian anyons. We extract from
this category its fusion ring as well as its F and R-symbols. We then con-
struct the double semion state in infinite volume and extract the braided
tensor category describing its semion, anti-semion, and bound state exci-
tations. We verify that this category is equivalent to the representation
category of the twisted quantum double Dφ(Z2).

1. Introduction

Gapped ground states of two-dimensional quantum lattice systems may sup-
port anyonic excitations. Paradigmatic examples include Kitaev’s quantum
double models [15] and, more generally, the string-net models of Levin and
Wen [16]. It is widely believed that the types of anyons supported by a given
ground state are organised in a unitary braided fusion category, whose sim-
ple objects are the anyon types and whose structure is described by F and
R-matrices.

Recent years have seen a lot of progress towards justifying this belief, by
adapting the DHR analysis of superselection sectors in algebraic quantum field
theory [5,6,9–11] to the setting of microscopic lattice systems [3,19,21]. This
body of work manages to associate with a large class of gapped ground states a
strict braided C∗-tensor category whose objects are localised and transportable
endomorphisms of the observable algebra, and shows that this category is a
robust invariant for the gapped phase [1] to which the ground state belongs.

One can extract from any braided tensor category its fusion ring and
F-symbols, which encode the tensor structure of the category, as well as R-
symbols, which encode the braided structure of the category. This yields in
particular a microscopic definition of fusion rules, F-symbols, and R-symbols,
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which are commonly employed in the physics literature to describe anyon the-
ories. We note that a microscopic definition of F and R-symbols has been given
before in [14]. Extracting the F and R-symbols from the DHR-type analysis
has the advantage that it is clear that these data yield a robust invariant of
gapped phases [3,21].

In Sect. 2 of the paper, we review the construction of a braided tensor
category from a given ground state under some simplifying assumptions. We
assume in particular that the anyons we consider are abelian. By, moreover,
assuming that the set of anyon types is finite, and that each anyon has an
anti-particle, we show that corresponding fusion ring is group-like and abelian
and is equipped with F and R-symbols that satisfy the pentagon and hexagon
equations.

Section 3 is devoted to the construction and analysis of the double semion
state [16] in infinite volume. This is the simplest state that supports abelian
anyons whose braided tensor category has non-trivial F-symbols. We show that
the double semion ground state satisfies the assumptions of Sect. 2 with anyon
content consisting of the vacuum, the semion, the anti-semion, and a semion–
anti-semion bound state. We extract the fusion ring, F-symbols, and R-symbols
from the corresponding braided tensor category. Finally, we use a result from
[12] to conclude that the braided tensor category describing these anyons is
equivalent to the category Repf (Dφ(Z2)) of finite- dimensional representations
of the twisted quantum double algebra of Z2. Since the double semion model is
the string-net model defined by input fusion category F = Vecφ

Z2
with φ a non-

trivial 3-cocycle of Z2, this partially verifies the conjecture that the resulting
anyon theory is described by the Drinfeld centre Z(Vecφ

Z2
) = Repf (Dφ(Z2)),

see [17].
In appendix, we show various properties of the double semion state that

are used in Sect. 3. In particular, we introduce a new technique based on results
from [13] to show that the double semion state we construct is pure. This
technique is applicable to the construction and proof of purity of ground states
and excited states of a large class of lattice spin models including all Levin–
Wen string-net models.

2. Braided Tensor Category for Abelian Anyons

2.1. Setup.

2.1.1. Algebra of Observables and State. Consider a countable set Γ ⊂ R
2 of

sites in the plane. To each site x ∈ Γ, we associate an algebra Ax � End(Cd) for
some fixed d ≥ 2. For any finite X ⊂ Γ, we set AX =

⊗
x∈X Ax. If X ⊂ Y are

finite subsets of Γ, then there is a natural norm-preserving inclusion AX ↪−→ AY

by tensoring with the identity.
For any infinite subset Y ⊂ Γ, we then have a local net of algebras AX

for finite X ⊂ Y , whose direct limit is AY,loc, the algebra of local observables

supported in Y . Its norm completion is AY := AY,loc
‖·‖

, the algebra of quasi-
local observables supported in Y , and we get inclusions AX ↪−→ AY also for
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infinite X ⊂ Y . We write Aloc = AΓ,loc and A = AΓ for the algebra of all
local and all quasi-local observables, respectively. The support of an observable
O ∈ A is the smallest set X ⊂ Γ such that O ∈ AX .

Similarly, the support of an automorphism w of A is the smallest set Y
such that w|AY c = idAY c . Any subset Z ⊂ R

2 of the plane determines a subset
Z = Z ∩ Γ of Γ, and we denote AZ := AZ .

A major role is played by cones. The cone with apex at a ∈ R
2, axis

v̂ ∈ R
2 of unit length, and opening angle θ ∈ (0, 2π) is

Λa,v̂,θ := {x ∈ R
2 | (x − a) · v̂ > ‖x − a‖ cos(θ/2)}. (1)

We will assume that Λ is infinite for any cone Λ. In particular, this holds if Γ
is a lattice.

We will consider a pure state ω on A with GNS representation (π1,H,Ω).
For any X ⊂ Γ, we put R(X) := (π1(AX))′′, the von Neumann algebra asso-
ciated with X. For Z ⊂ R

2, we also write R(Z) = R(Z). We note that if Λ is
a cone, then R(Λ) is an infinite factor (Theorem 5.2 of [19]).

2.1.2. Superselection Sectors.

Definition 2.1. An irreducible representation (π,H) of A is said to satisfy the
superselection criterion with respect to π1 if for any cone Λ there is a unitary
U ∈ B(H) such that

Uπ(O)U∗ = π1(O) for all O ∈ AΛc (2)

If two representations π, π′ are unitarily equivalent, then we write π � π′.
We assume that we have a finite set of irreducible representations O =

{πa | a ∈ I} of A indexed by a labelling set I. We assume moreover that πa � πb

if and only if a = b, so all sectors in O are truly distinct. Moreover, 1 ∈ I so
that π1 ∈ O. We call π1 the vacuum sector.

We will now make some additional Assumptions (1–4) on these sectors
which will in particular imply that they satisfy the superselection criterion
with respect to π1. These assumptions are not generically satisfied by gapped
ground states, but Assumptions (1–3) and the first part of Assumption 4 are
verified for the Toric code model in [19] and for all abelian quantum double
models in [8]. The second part of Assumption 4 can be shown for these models
using similar methods. Below, we will verify these assumptions for the double
semion model. More generally, the authors expect that these assumptions hold
for all abelian string-net models [16].

Assumption 1. For any cone Λ and any a ∈ I, there is an automorphism wa,Λ

supported on Λ such that

πa � π1 ◦ wa,Λ. (3)

In particular, we take w1,Λ = id for all cones Λ.

The following assumption says that the anyons we study are abelian.

Assumption 2. For any a, b ∈ I there is a unique c ∈ I such that for any two
cones Λ1,Λ2 we have πc � π1 ◦ wa,Λ1 ◦ wb,Λ2 . We write c = a × b.
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The following assumption says that each anyon has an antiparticle.

Assumption 3. For each a ∈ I, there is an a∗ ∈ I such that a × a∗ = 1.

The final assumption is of a technical nature it plays an important role
in constructing a tensor category in Sect. 2.2.

Assumption 4. Assumption 1 implies that if Λ1,Λ2 ⊂ Λ are cones, then π1 ◦
wa,Λ1 � π1 ◦ wa,Λ2 . We assume that any unitary V ∈ B(H) implementing this
equivalence belongs to the von Neumann algebra R(Λ).

Similarly, it follows from Assumption 2 that π1◦wa,Λ◦wb,Λ � π1◦wa×b,Λ.
We assume that any unitary V ∈ B(H) implementing this equivalence belongs
to the von Neumann algebra R(Λ).

This assumption is implied by Haag duality (cf. the discussion at the
end of Sect. 2.2.4) and can also often be proven directly if the automorphisms
wa,Λ are known explicitly, for example, for the abelian quantum double models
[8,19] and for the double semion model treated below.

Assumptions 1–3 have a few elementary but important consequences.

Lemma 2.2. The representations πa, a ∈ I satisfy the superselection criterion
w.r.t. π1.

Proof. Fix a cone Λ. By Assumption 1, there is an automorphism wa,Λ sup-
ported in Λ such that π1 ◦ wa,Λ � πa. i.e. there is a unitary U ∈ B(H) such
that

Uπa(O)U∗ = π1(wa,Λ(O)) (4)

for all O ∈ A. Since wa,Λ is supported in Λ, we have w(O) = O for O ∈ AΛc

and therefore

Uπa(O)U∗ = π1(O) for all O ∈ AΛc . (5)

�

Lemma 2.3. The binary operation × : I ×I → I makes I into an abelian group
with unit 1 and inverse a−1 = a∗.

Proof. We first show that × is abelian. Take a, b ∈ I. Assumption 2 says
that for any two cones Λ1,Λ2 there are automorphisms wa,Λ1 , wb,Λ2 such that
πa×b � π1 ◦ wa,Λ1 ◦ wb,Λ2 . Exchanging the roles of a and b and of Λ1 and Λ2,
we have πb×a � π1 ◦ wb,Λ2 ◦ wa,Λ1 . If we now take Λ1 and Λ2 to be disjoint,
then certainly wa,Λ1 ◦ wb,Λ2 = wb,Λ2 ◦ wa,Λ1 and therefore πa×b � πb×a. But
we assumed that two representations in O are unitarily equivalent only if they
are the same, so a × b = b × a.

We now show that 1 is the identity for the product ×. Fix cones Λ1 and
Λ2. By Assumptions 1 and 2, there are automorphisms w1,Λ1 = id and wa,Λ2

such that π1×a � π1 ◦ id◦wa,Λ2 = π1 ◦wa,Λ2 � πa, hence 1×a = a. We already
know that × is abelian, so also a × 1 = a.

Finally, Assumption 3 states that a∗ is the inverse of a. �

We will often write ab = a × b for the product of elements a, b ∈ I.
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2.2. Braided Tensor Category. It is well understood how to associate a braided
tensor category with a pure state on a quantum spin system [3,19,21]. In this
section, we recap this construction and use Assumptions 1–4 to identify a
braided fusion subcategory with abelian fusion rules.

2.2.1. Tensor Category of Localised and Transportable Endomorphisms. Fix
a unit vector f̂ ∈ R

2, representing a ‘forbidden direction’. We say a cone
Λa,v̂,θ with axis v̂ and opening angle θ is forbidden if it contains the forbidden
direction f̂ , i.e. if v̂ · f̂ > cos(θ/2). A cone that is not forbidden is said to be
allowed. We define an allowed algebra by

B :=
⋃

allowed Λ

R(Λ)
‖·‖

⊂ B(H). (6)

This is a C∗-algebra that contains π1(A) since any local observable is supported
in some allowed cone.

Definition 2.4. We say an endomorphism ρ̄ of B is localised on Λ if ρ̄(π1(O)) =
π1(O) for all O ∈ AΛc , and that ρ̄ is localised if it is localised on some allowed
cone Λ. We say that an endomorphism ρ̄ of B that is localised on an allowed
cone Λ is transportable if for any allowed cone Λ′ there is an endomorphism ρ̄′

of B, localised on Λ′, and a unitary U ∈ B such that U ρ̄(π1(O)) = ρ̄′(π1(O))U

for all O ∈ A and such that U ∈ R(Λ̃) for any allowed cone Λ̃ that contains
the cones Λ and Λ′. We denote by Δ the set of all localised and transportable
endomorphisms.

The localised and transportable endomorphisms of B are the objects of
a C-linear category with morphisms

(ρ̄, σ̄) := {R ∈ B : Rρ̄(π1(O)) = σ̄(π1(O))R for all O ∈ A} (7)

for any ρ̄, σ̄ ∈ Δ. Morphisms are referred to as intertwiners.
Direct sums of objects can be constructed as in Lemma 6.1 of [19]. Indeed,

for any cone Λ, Corollary 5.3 of [19] shows that there are isometries V1, V2 ∈
R(Λ) such that V ∗

i Vj = δi,j 1 and V1V
∗
1 + V2V

∗
2 = 1. If ρ, σ are localised

on Λ, then Ad[V1] ◦ ρ + Ad[V2] ◦ σ is a direct sum of ρ and σ which is still
localised on Λ. Moreover, if ρ and σ are transportable, then for any allowed
cone Λ′ there are endomorphisms ρ′, σ′ localised on Λ′ and unitary morphisms
U1 ∈ (ρ, ρ′) and U2 ∈ (σ, σ′) such that U1, U2 ∈ R(Λ̃) for any allowed cone
Λ̃ ⊇ Λ ∪ Λ′. Then take isometries V ′

1 , V ′
2 ∈ R(Λ′) as above and consider the

direct sum Ad[V ′
1 ] ◦ ρ′ + Ad[V ′

2 ] ◦ σ′ of ρ′ and σ′, which is localised on Λ′.
The unitary W = V ′

1 U1 V ∗
1 +V ′

2 U2 V ∗
2 ∈ R(Λ̃) then intertwines the two direct

sums, showing that direct sums of localised and transportable endomorphisms
are again localised and transportable.

The category of localised and transportable endomorphisms of B can be
equipped with a monoidal structure. For any ρ̄, σ̄ ∈ Δ, we define their tensor
product by

ρ̄ ⊗ σ̄ := ρ̄ ◦ σ̄, (8)
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and for any intertwiners R ∈ (ρ̄, ρ̄′) and S ∈ (σ̄, σ̄′) we define the tensor
product by

R ⊗ S := Rρ̄(S) ∈ (ρ̄ ⊗ σ̄, ρ̄′ ⊗ σ̄′). (9)

2.2.2. Subcategory of Abelian Anyons. We use Assumptions 1–4 to obtain a
subcategory of Δ whose simple objects correspond to the anyon types a ∈ I.

The following lemma shows that the automorphisms wa,Λ of Assump-
tion 1 can be extended to localised and transportable endomorphisms of the
allowed algebra B, i.e. they yield objects in the category Δ.

Lemma 2.5 (Proposition 4.6 [19]). For each allowed cone Λ and each a ∈ I,
the automorphism wa,Λ of Assumption 1 has a unique extension to an endo-
morphism wa,Λ of B that is weakly continuous on R(Λ′) for any allowed cone
Λ′. If Λ′ ⊃ Λ, then wa,Λ(R(Λ′)) = R(Λ′). Moreover, wa,Λ is localised on Λ,
and is transportable. In particular, wa,Λ ∈ Δ.

Proof. Let Λ′ ⊃ Λ be any allowed cone that contains Λ. From Assumption 1,
we have for any forbidden cone Λ′′ with Λ′∩Λ′′ = ∅ that π1◦wa,Λ � π1◦wa,Λ′′ .
Let V ∈ B(H) be a unitary implementing this equivalence. We have for any
O ∈ AΛ′ that

π1

(
wa,Λ(O)

)
= V π1

(
wa,Λ′′(O)

)
V ∗ = V π1(O)V ∗ (10)

where we used that wa,Λ′′ is supported on Λ′′, which is disjoint form Λ′. We
define the action of wa,Λ on R(Λ′) by Ad(V ), which is weakly continuous,
and is uniquely determined by the action of wa,Λ on AΛ′ . Clearly this action
on R(Λ′) does not depend on the choice of Λ′′. It follows that the extensions
to R(Λ′) for different Λ′ are consistent with each other. Together with the
weak continuity, this shows that the extension wa,Λ is well defined on all of
B. Moreover, we have wa,Λ(AΛ′) = AΛ′ and weak continuity then implies
wa,Λ(R(Λ′)) = (wa,Λ(AΛ′))′′ = R(Λ′) as required. This implies the inclusion
wa,Λ(B) ⊆ B, so wa,Λ is indeed an endomorphism of B.

The endomorphism wa,Λ is localised on Λ by construction. To see that it
is transportable, let Λ′ be any allowed cone and let wa,Λ′ be the extension of
the automorphism wa,Λ′ to the allowed algebra B. By Assumption 4, there is
a unitary U ∈ B(H) such that U ∈ R(Λ′′) for any allowed cone Λ′′ ⊃ Λ ∪ Λ′

and

U π1

(
wa,Λ(O)

)
= π1(wa,Λ′(O))U (11)

for all O ∈ A. It follows from this and the construction of wa,Λ and wa,Λ′ that
U ∈ (wa,Λ, wa,Λ′), showing that wa,Λ is transportable. �

Lemma 2.6. The endomorphisms wa,Λ are simple objects of Δ, and two such
objects wa,Λ and wb,Λ′ are isomorphic if and only if a = b. That is,

(wa,Λ, wb,Λ′) �
{
C1 if a = b

{0} otherwise.
(12)



The Double Semion State in Infinite Volume

Proof. Suppose R ∈ (wa,Λ, wb,Λ′), i.e. the operator R ∈ B satisfies

R wa,Λ(π1(O)) = wb,Λ′(π1(O))R (13)

for all O ∈ A. By construction of wa,Λ, this implies

R (π1 ◦ wa,Λ)(O) = (π1 ◦ wb,Λ′)(O)R (14)

for all O ∈ A. By Assumption 1, we have π1 ◦ wa,Λ � πa and π1 ◦ wb,Λ � πb,
so there are unitaries Ua, Ub ∈ B(H) such that

RUa πa(O)U∗
a = Ub πb(O)U∗

b R (15)

for all O ∈ A. We see that U∗
b RUa intertwines the irreducible representations

πa and πb. By assumption, we have πa � πb if and only if a = b. So if a = b
then we must have U∗

b RUa ∈ C1 which holds if and only if R ∈ CI, and if
a �= b then we must have U∗

b RUa = 0 hence R = 0. �

Recall from Assumption 2 and Lemma 2.3 that the set of anyon types I
is equipped with an abelian product ×.

Lemma 2.7. If Λ and Λ′ are allowed cones and a, b ∈ I, then wa,Λ ⊗ wb,Λ′ �
wa×b,Λ′′ for any allowed cone Λ′′. If Λ̃ ⊇ Λ ∪ Λ′ ∪ Λ′′, then the intertwiners
that realise this isomorphism are elements of R(Λ̃).

Proof. By Assumption 4, we have π1 ◦ wa,Λ � π1 ◦ wa,Λ′′ implemented by
unitaries V ∈ R(Λ̃). It follows from this and Lemma 2.6 that (wa,Λ, wa,Λ′′)
is spanned by a unitary Ua ∈ R(Λ̃). Similarly, (wb,Λ′ , wb,Λ′′) is spanned by a
unitary Ub ∈ R(Λ̃).

Again by Assumption 4, we have π1 ◦ wa,Λ′′ ◦ wb,Λ′′ � π1 ◦ wa×b,Λ′′ with
unitary intertwiners all belonging to R(Λ′′). It follows that wa,Λ′′ ⊗wb,Λ′′ is iso-
morphic to wa×b,Λ′′ and is therefore simple. Moreover, (wa,Λ′′ ⊗wb,Λ′′ , wa×b,Λ′′)
is spanned by a unitary Va×b ∈ R(Λ′′) ⊂ R(Λ̃).

We now find that Va×b(Ua ⊗ Ub) ∈ R(Λ̃) is a unitary intertwiner in
(wa,Λ ⊗ wb,Λ′ , wa×b,Λ′′). Since wa×b,Λ′′ is simple, so is wa,Λ ⊗ wb,Λ′ , and it
follows that (wa,Λ ⊗ wb,Λ′ , wa×b,Λ′′) is actually spanned by Va×b(Ua ⊗ Ub).
This proves the claim. �

We now identify a full subcategory of Δ whose isomorphism classes cor-
respond to sums of anyons types a ∈ I.

For any allowed cone Λ, we fix isometries V1, V2 ∈ R(Λ) such that V ∗
i Vj =

δi,j 1 and V1V
∗
1 + V2V

∗
2 = 1 (existence follows from Corollary 5.3 of [19]) and

define for any ρ̄, σ̄ ∈ Δ the concrete direct sum ρ̄ ⊕Λ σ̄ := Ad[V1]◦ρ̄+Ad[V2]◦σ̄.

Definition 2.8. We let ΔI
Λ be the full tensor subcategory of Δ generated by

the simple objects {wa,Λ}a∈I using the tensor product ⊗ and the direct sum
⊕Λ.

By construction, all objects of ΔI
Λ are localised on Λ. Moreover, the

category ΔI
Λ is semisimple as show in the following lemma.
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Lemma 2.9. Every object of ΔI
Λ is isomorphic to an object of the form

ρ1 ⊕Λ ρ2 ⊕Λ · · · ⊕Λ ρn (16)

where the ρi are tensor products of the simple objects wa,Λ and the isomorphism
is given by a unitary in R(Λ).

(Note that the direct sum ⊕Λ is not associative, so the expression (16)
is to be interpreted as being defined by some choice of bracketing. Different
bracketings are isomorphic through a unitary in R(Λ)).

Proof. For the duration of this proof, we write ⊕ = ⊕Λ. Denote by V1, V2 ∈
R(Λ) the isometries used to construct the direct sum ⊕Λ, and for any ρ ∈ Δ
we write ⊕ρ for the direct sum constructed using the isometries ρ(V1), ρ(V2).

Suppose the claim is true for two objects ρ and σ of ΔI
Λ, i.e. ρ � ρ1 ⊕

· · ·⊕ρn and σ � σ1 ⊕· · ·⊕σm with isomorphisms implemented by unitaries in
R(Λ), and where the ρi and σj are finite tensor products of the simple objects
wa,Λ. The claim then holds trivially for ρ⊕σ. Let us now show that the claim
holds for the tensor product ρ ⊗ σ. We have

ρ ⊗ σ � (ρ1 ⊕ · · · ⊕ ρn) ⊗ (σ1 ⊕ · · · ⊕ σm)

=
n⊕

κ=1

(ρκ ⊗ σ1) ⊕ρκ
· · · ⊕ρκ

(ρκ ⊗ σm)

where the isomorphism is implemented by a unitary in R(Λ). Noting that the
direct sums ⊕ρκ

are isomorphic to ⊕ through a unitary in R(Λ) we obtain the
required equivalence of ρ ⊗ σ to an object of the form (16). We have shown
that if ρ and σ both satisfy the claim, then so do ρ ⊕ σ and ρ ⊗ σ. Since the
claim holds trivially for the simple objects {wa,Λ}a∈I and the category ΔI

Λ is
by definition generated by these simple objects using ⊗ and ⊕, we conclude
that every object of ΔI

Λ is isomorphic to an object of the form (16) through a
unitary in R(Λ), as we wanted to show. �

Lemma 2.10. Let Λ be an allowed cone and Λ1,Λ2 ⊂ Λ two allowed subcones.
For any two objects ρ ∈ ΔI

Λ1
and σ ∈ ΔI

Λ2
, we have (ρ, σ) ⊂ R(Λ).

Proof. Let ρ1, ρ2 ∈ ΔI
Λ1

and σ1, σ2 ∈ ΔI
Λ2

and suppose (ρk, σl) ⊂ R(Λ) for
k, l ∈ {1, 2}. We will show that (ρ1 ⊕Λ1 ρ2, σ1 ⊕Λ2 σ2) ⊂ R(Λ). According to
Lemma 2.9, the result then follows by induction on the number of summands
in (16), since it holds for the simple objects {wa,Λ1}a∈I and {wa,Λ2}a∈I by
Lemma 2.6 and for finite tensor products of these by repeated application of
Lemma 2.7.

For i ∈ {1, 2}, let V
(i)
1 , V

(i)
2 ∈ R(Λi) be the isometries used to define

⊕Λi
, and let p

(i)
k = V

(i)
k (V (i)

k )∗ for k = 1, 2. Then (V (i)
k )∗p(i)

l = δk,l(V
(i)
k )∗ and

p
(i)
k V

(i)
l = δk,lV

(i)
k . Suppose R ∈ (ρ1 ⊕Λ1 ρ2, σ1 ⊕Λ2 σ2), then

R
(
Ad[V (1)

1 ] ◦ ρ1(O) + Ad[V (1)
2 ] ◦ ρ2(O)

)

=
(
Ad[V (2)

1 ] ◦ σ1(O) + Ad[V (2)
2 ] ◦ σ2(O)

)
R (17)
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Figure 1. Cones Λ0, ΛL and ΛR used in the definition of the
braiding intertwiners ε(ρ, σ)

for all O ∈ A. Multiplying from the left with (V (2)
k )∗ and from the right with

V
(1)
l yields

(V (2)
k )∗R V

(1)
l ρl(O) = σk(O) (V (2)

k )∗R V
(1)
l (18)

for all O ∈ A, so (V (2)
k )∗R V

(1)
l ∈ (ρl, σk). So then by hypothesis, (V (2)

k )∗R V
(1)
l

∈ R(Λ) for all k, l = 1, 2, and also p
(2)
k R p

(1)
l ∈ R(Λ). Therefore, R =

∑
k,l p

(2)
k

R p
(1)
l ∈ R(Λ) as required. �

2.2.3. Braided Structure. Fix an allowed cone Λ0 and consider two endomor-
phisms ρ̄, σ̄ ∈ ΔI

Λ0
. Pick allowed cones ΛL and ΛR as in Fig. 1. i.e. the dis-

joint allowed cones ΛR,Λ0 and ΛL are arranged in a counterclockwise order
from the forbidden direction, and there are allowed cones Λ̃L ⊃ ΛL ∪ Λ0 and
Λ̃R ⊃ ΛR ∪ Λ0 such that Λ̃L ∩ ΛR = Λ̃R ∩ ΛL = ∅. We say ΛL is to the left
of Λ0, and ΛR is to the right of Λ0. By transportability, there are endomor-
phisms ρ̄L ∈ ΔI

ΛL
and σ̄R ∈ ΔI

ΛR
, and unitary intertwiners U ∈ (ρ̄, ρ̄L) and

V ∈ (σ̄, σ̄R) such that U ∈ R(Λ̃L) and V ∈ R(Λ̃R).

Definition 2.11. The braiding intertwiner ε(ρ̄, σ̄) ∈ (ρ̄ ⊗ σ̄, σ̄ ⊗ ρ̄) is given by

ε(ρ̄, σ̄) := (V ∗ ⊗ U∗)(U ⊗ V ) = V ∗ρ̄(V ). (19)

To get the last equality, we use σR(U) = U which holds because σ̄R is
localised on ΛR while U ∈ R(Λ̃L). Using ρ̄L ⊗ σ̄R = σ̄R ⊗ ρ̄L, one easily verifies
that ε(ρ̄, σ̄) is indeed an intertwiner from ρ̄ ⊗ σ̄ to σ̄ ⊗ ρ̄.

Lemma 2.12. The braiding ε(ρ̄, σ̄) is independent of the choice of cones ΛL,ΛR,
the choice of objects ρ̄L ∈ ΔI

ΛL
and σ̄R ∈ ΔI

ΛR
and the choice of intertwiners

U ∈ (ρ̄, ρ̄L) and V ∈ (σ̄, σ̄R).
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Proof. Choose different cones Λ′
L and Λ′

R to the left and to the right of Λ0.
Then there are allowed cones Λ′′

L ⊇ ΛL ∪ Λ′
L and Λ′′

R ⊇ ΛR ∪ Λ′
R that are

also to the left and to the right of Λ0, respectively. Choose objects ρ̄′
L ∈ ΔI

Λ′
L

and σ̄′
R ∈ ΔI

Λ′
R
, as well as morphisms U ′ ∈ (ρ̄, ρ̄′

L) and V ′ ∈ (σ̄, σ̄′
R). Then

V ′V ∗ ∈ (σ̄R, σ̄′
R) ⊂ R(Λ′′

R) by Lemma 2.10. The new choice ρ̄′
L, σ̄′

R leads to a
braiding intertwiner

ε′(ρ̄, σ̄) = (V ′∗ ⊗ U ′∗)(U ′ ⊗ V ′) = V ′∗ρ̄(V ′)

= V ∗(V ′V ∗)∗ρ̄
(
(V ′V ∗)V

)
= V ∗ρ̄(V )

= ε(ρ̄, σ̄)

where we used ρ̄(V ′V ∗) = V ′V ∗ since V ′V ∗ ∈ R(Λ′′
R) and ρ̄ is supported in

Λ0, which is disjoint from Λ′′
R. �

Lemma 2.13. The braiding intertwiners satisfy the braid equations

ε(ρ ⊗ σ, τ) =
(
ε(ρ, τ) ⊗ 1σ

)(
1ρ ⊗ ε(σ, τ)

)

ε(ρ, σ ⊗ τ) =
(
1σ ⊗ ε(ρ, τ)

)(
ε(ρ, σ) ⊗ 1τ

)

where 1ρ = 1 ∈ (ρ, ρ).

Proof. Let us prove the first equation, the second is shown in the same way.
Choose ρL, σL supported in ΛL and morphisms Uρ ∈ (ρ, ρL), Uσ ∈ (σ, σL).
Choose τR supported in ΛR and a morphism Vτ ∈ (τ, τR). Then

ε(ρ ⊗ σ, τ) =
(
V ∗

τ ⊗ (Uρ ⊗ Uσ)∗)((Uρ ⊗ Uσ) ⊗ Vτ

)

= V ∗
τ ρ ⊗ σ(Vτ ) = V ∗

τ ρ
(
σ
(
Vτ

))

= V ∗
τ ρ(Vτ )ρ(V ∗

τ )ρ
(
σ(Vτ )

)

=
(
ε(ρ, τ) ⊗ 1σ

)(
ρ(V ∗

τ σ(Vτ ))
)

=
(
ε(ρ, τ) ⊗ 1σ

)(
1ρ ⊗ ε(σ, τ)

)
.

�

2.2.4. Relation to Previous Work. The state ω is said to satisfy Haag duality
for cones if R(Λ) = R(Λc)′ for all cones Λ. Haag duality for cones has been
verified for abelian quantum double models in [8,20]. We believe that the
double semion state introduced below can also be shown to satisfy Haag duality
for cones using similar methods.

Under the assumption that the pure state ω satisfies (approximate) Haag
duality for cones, it is shown in [21] that the category of localised and trans-
portable endomorphisms Δ is a braided C∗-tensor category with isomorphism
classes of simple objects in one-to-one correspondence with (equivalence classes
of) irreducible representations of the observable algebra that satisfy the super-
selection criterion (Definition 2.1).

The braided tensor categories ΔI
Λ constructed above are full subcate-

gories of Δ. If ω satisfies Haag duality for cones, then Δ is equipped with a
braiding given by Definition 4.11 of [21]. The restriction of this braiding to
ΔI

Λ agrees with the braiding defined in 2.11. It follows that the category ΔI
Λ
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completely describes the closed system of abelian anyons corresponding to the
irreducible representations {πa}a∈I in a way that is consistent with the theory
of [21]. These abelian anyons form a subset of all anyon types present in the
model (anyon types correspond to irreducible representations of the observ-
ables algebra that satisfy the superselection criterion). In contrast, the theory
of [21] captures all anyon types, in particular also all non-abelian anyons.

The reason that (approximate) Haag duality allows a description of all
anyon types is twofold. Most importantly, Haag duality allows one to construct
for any representation π that satisfies the superselection criterion with respect
to π1, and for any cone Λ, a transportable endomorphism ρπ,Λ localised on
Λ such that π � ρπ,Λ ◦ π1 (Definition 2.13 and Lemma 2.14 of [21]). This
ensures that Δ contains objects corresponding to any superselection sector.
In our setting, we obtain localised and transportable endomorphisms for the
superselection sectors {πa}a∈I using Assumptions 1 and 4, see Lemma 2.5.

Haag duality also allows a braiding to be defined for the entire tensor
category Δ. Note that for the braiding of definition 2.11 to be well defined, we
must show that it is independent of the choice of intertwiners U and V used in
the definition. This is done in Lemma 2.12 using the fact that if ρ̄ ∈ ΔI

Λ1
and

σ̄ ∈ ΔI
Λ2

, then all morphisms in (ρ̄, σ̄) are elements of R(Λ) for any allowed
cone Λ ⊇ Λ1∪Λ2. In our setting, this follows from Assumption 4 (Lemma 2.10).
With Haag duality for cones, this locality property of morphisms follows im-
mediately. Indeed, suppose ρ and σ are both localised on an allowed cone Λ,
and suppose R ∈ (ρ, σ). Then for any O ∈ AΛc we have

ρ(π1(O)) = σ(π1(O)) = π1(O), (20)

and hence

Rπ1(O) = Rρ(π1(O)) = σ(π1(O))R = π1(O)R. (21)

We see that R ∈ π1(AΛc)′ = R(Λc)′ = R(Λ) by Haag duality.
Using the same argument, one can use Haag duality for cones to prove

Assumption 4, as mentioned above.

2.3. Fusion Ring, F-Symbols, and R-Symbols.

2.3.1. Fusion Ring of ΔI
Λ. To any semisimple tensor category, one may asso-

ciate its fusion ring, see Section 4.5 of [7] for details. For the category ΔI
Λ, the

construction goes as follows. First, note that the isomorphism classes of simple
objects of ΔI

Λ are labelled by the elements of I, they are precisely the classes
[wa,Λ] for a ∈ I. Since ΔI

Λ is semisimple, any object ρ̄ of ΔI
Λ is isomorphic to

a direct sum of simple objects wa,Λ. The number of times that wa,Λ appears
in such a direct sum decomposition is independent on the particular choice of
direct sum decomposition and is called the multiplicity of a in ρ̄, and denoted
by [ρ̄ : a]. The fusion ring of ΔI

Λ is the free abelian group generated by the
isomorphism classes of simple objects {[wa,Λ]}a∈I , which we can identify with
the elements of I. Addition in this group corresponds to the direct sum in the
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category. The isomorphism class of a general object ρ̄ ∈ ΔI
Λ corresponds to an

element of fusion ring given by

[ρ̄] :=
∑

a∈I

[ρ̄ : a] a. (22)

The multiplication of the fusion ring is given by the tensor product of the
category. It is sufficient to define the multiplication on the generators by

a × b := [wa,Λ ⊗ wb,Λ] = [wa×b,Λ] = ab, (23)

which corresponds precisely to the multiplication on I introduced in Assump-
tion 2 and Lemma 2.3. We see that the fusion ring of ΔI

Λ is given by Z[I], the
ring of polynomials over the abelian group I with integer coefficients.

Two tensor categories that are monoidally equivalent have isomorphic
fusion rings. The converse certainly does not hold; there are inequivalent tensor
categories that have isomorphic fusion rings (for example, all categories Vecω

G

for 3-cocycle ω : G×3 → C
× have fusion ring Z[G]). It turns out that the

fusion ring together with certain cohomological data is sufficient information
to characterise a tensor category up to monoidal equivalence, see, for example,
Proposition 1.1 of [23]. Below, we will describe these cohomological data for the
category ΔI

Λ in terms of ‘F-symbols’, a nomenclature common in the physics
literature. Since we are interested in braided tensor categories, the question
arises to what extent the fusion ring together with the F-symbols characterises
a braided tensor category. The braiding induces more structure on the fusion
ring in the form of ‘R-symbols’, which will be described for our ΔI

Λ below. To
the best of the authors’ knowledge, it is not known if a fusion ring together
with F and R-symbols is enough information to characterise a braided tensor
category completely. In the special case where the fusion ring takes the form
Z[G] for a finite abelian group G however, this does turn out to be the case,
see Proposition 7.5.2 of [12].

2.3.2. Fusion and F-Symbols. Fix an allowed cone Λ0 and write wa := wa,Λ0 .
Pick unitary intertwiners Ω(a, b) ∈ (wa ⊗ wb, wa×b) ⊂ R(Λ0) called fusion
operators. Note that the Ω(a, b) are unique up to phase. The unitaries

Ω(ab, c)(Ω(a, b) ⊗ 1c) = Ω(ab, c)Ω(a, b)

Ω(a, bc)(1a ⊗ Ω(b, c)) = Ω(a, bc)wa(Ω(b, c))

are both intertwiners from wa ⊗ wb ⊗ wc to wabc. Since (wa ⊗ wb ⊗ wc, wabc)
is one-dimensional, there are phases F (a, b, c) ∈ U(1) such that

Ω(ab, c)Ω(a, b) = F (a, b, c) × Ω(a, bc)wa(Ω(b, c)). (24)

These F (a, b, c) are the F -symbols. Figure 2 gives a graphical representation
of Eq. (24).

The F-symbols satisfy a pentagon equation, which in our setting of abelian
anyons takes the form of a cocycle relation.

Proposition 2.14. The F-symbols satisfy

(dF )(a, b, c, d) :=
F (a, b, c)F (a, bc, d)F (b, c, d)

F (ab, c, d)F (a, b, cd)
= 1. (25)
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Figure 2. Graphical representation of Eq. (24), defining the
F-symbols F (a, b, c). Each node represents a fusion operator.
The diagrams represent two different compositions of fusion
operators both yielding intertwiners from wa⊗wb⊗wc to wabc

Proof. A graphical proof is shown in Fig. 3. In equations, we have

Ω(abc, d)Ω(ab, c)Ω(a, b)

= F (ab, c, d) × Ω(ab, cd)wab

(
Ω(c, d)

)
Ω(a, b)

= F (ab, c, d) × Ω(ab, cd)Ω(a, b)wa

(
wb

(
Ω(c, d)

))

= F (ab, c, d)F (a, b, cd) × Ω(a, bcd)wa(Ω(b, cd))wa(wb(Ω(c, d)))

= F (ab, c, d)F (a, b, cd) × Ω(a, bcd)wa

(
Ω(b, cd)wb(Ω(c, d))

)

but also

Ω(abc, d)Ω(ab, c)Ω(a, b)

= F (a, b, c) × Ω(abc, d)Ω(a, bc)wa(Ω(b, c))

= F (a, b, c)F (a, bc, d) × Ω(a, bcd)wa(Ω(bc, d))wa(Ω(b, c))

= F (a, b, c)F (a, bc, d) × Ω(a, bcd)wa

(
Ω(bc, d)Ω(b, c)

)

= F (a, b, c)F (a, bc, d)F (b, c, d) × Ω(a, bcd)wa

(
Ω(b, cd)wb(Ω(c, d))

)
.

And the desired equality follows. �

2.3.3. Braiding and R-Symbols. We simply set ε(a, b) := ε(wa, wb) for any
a, b ∈ I. The unitaries Ω(b, a)ε(a, b) and Ω(a, b) are both intertwiners from
wa ⊗ wb to wab. Since (wa ⊗ wb, wab) is one-dimensional, there exist phases
R(a, b) ∈ U(1) such that

Ω(b, a)ε(a, b) = R(a, b) × Ω(a, b). (26)

The phases R(a, b) are the R-symbols. Figure 4 gives a graphical representation
of Eq. (26).

2.3.4. Yang–Baxter Equation. The braidings ε(a, b) and fusions Ω(a, b) satisfy
the Yang–Baxter equations, see Fig. 5.

Proposition 2.15. We have

wc

(
Ω(a, b)

)
ε(a, c)wa

(
ε(b, c)

)
= ε(ab, c)Ω(a, b) (27)
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Figure 3. A graphical proof of the Pentagon equation

Figure 4. Graphical representation of Eq. (26), defining the
R-symbols R(a, b). The point where the a-line passes under
the b-line represents the braiding intertwiner ε(a, b)

and

Ω(b, c)wb

(
ε(a, c)

)
ε(a, b) = ε(a, bc)wa

(
Ω(b, c)

)
. (28)

Proof. We prove Eq. (27); the proof of Eq. (28) is similar. Choose a cone ΛR, an
endomorphism wR

c ∈ ΔI
ΛR

, and a unitary V ∈ (wc, w
R
c ) as in Definition 2.11.

Then
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Figure 5. Graphical representation of the Yang–Baxter equations

Figure 6. Graphical representations of the first and second
hexagon equations

ε(ab, c)Ω(a, b) = ε(wab, wc)Ω(a, b)

= V ∗ wab

(
V

)
Ω(a, b)

= V ∗Ω(a, b)wa

(
wb(V )

)

= V ∗wR
c

(
Ω(a, b)

)
wa(V )wa

(
V ∗wb(V )

)

= wc

(
Ω(a, b)

)
V ∗wa(V )wa

(
V ∗wb(V )

)

= wc

(
Ω(a, b)

)
ε(a, c)wa

(
ε(b, c)

)

where we used Ω(a, b) ∈ (wa ⊗ wb, wab) to obtain the third line. We used the
fact that Ω(a, b) ∈ R(Λ0) so wR

c (Ω(a, b)) = Ω(a, b) to obtain the fourth line.
The fifth line follows from V ∈ (wc, w

R
c ) and the fact that V is unitary, and

the final line follows by the definition of the braidings ε(a, c) and ε(b, c). �

2.3.5. Hexagon Equation. Using the Yang–Baxter equation, we obtain the
Hexagon equation, see Fig. 6.

Proposition 2.16. The F and R-symbols satisfy the hexagon equations
F (a, b, c)F (c, a, b)

F (a, c, b)
=

R(a, c)R(b, c)
R(ab, c)

(29)

and
F (a, b, c)F (b, c, a)

F (b, a, c)
=

R(a, bc)
R(a, b)R(a, c)

. (30)
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Proof. The left diagram in Fig. 6 suggests the following two equalities of mor-
phisms:

Ω(ca, b)Ω(c, a)ε(a, c)wa(ε(b, c))

= R(a, c) × Ω(ca, b)Ω(a, c)wa(ε(b, c))

= R(a, c)F (a, c, b) × Ω(a, cb)wa(Ω(c, b))wa(ε(b, c))

= R(a, c)F (a, c, b) × Ω(a, cb)wa

(
Ω(c, b)ε(b, c)

)

= R(a, c)F (a, c, b)R(b, c) × Ω(a, cb)wa(Ω(b, c))

and

Ω(ca, b)Ω(c, a)ε(a, c)wa(ε(b, c))

= F (c, a, b) × Ω(c, ab)wc(Ω(a, b))ε(a, c)wa(ε(b, c))

= F (c, a, b) × Ω(c, ab)ε(ab, c)Ω(a, b)

= F (c, a, b)R(ab, c) × Ω(ab, c)Ω(a, b)

= F (c, a, b)R(ab, c)F (a, b, c) × Ω(a, bc)wa(Ω(b, c))

where we used the Yang–Baxter equation to obtain the second line. The co-
efficients of the right-hand sides must be equal, yielding the first hexagon
equation.

The second hexagon equation is obtained in exactly the same way, fol-
lowing the right diagram in Fig. 6. �

2.3.6. Dependence of F and R-Symbols on the Choice of Λ0 and the Phases of
Ω(a, b). Suppose we chose different phases for the intertwiners Ω(a, b), i.e. we
consider

Ω′(a, b) = χ(a, b)Ω(a, b) (31)

for phases χ(a, b). This yields new F-symbols by

Ω′(ab, c)Ω′(a, b) = F ′(a, b, c) × Ω′(a, bc)wa(Ω′(b, c)) (32)

which are related to the original F-symbols by

F ′(a, b, c) = (dχ)(a, b, c)F (a, b, c) =
χ(b, c)χ(a, bc)
χ(ab, c)χ(a, b)

F (a, b, c). (33)

i.e. F ′ is related to F by the coboundary dχ. It follows that only the cohomol-
ogy class [F ] ∈ H3(I, U(1)) is well defined.

The R-symbols are also affected by the different choice of phases. Indeed,
the new R-symbols defined by

Ω′(b, a)ε(a, b) = R′(a, b) × Ω′(a, b) (34)

are related to the old by

R′(a, b) =
χ(b, a)
χ(a, b)

R(a, b). (35)

It follows that the self-statistics R(a, a) and the double braidings R(a, b)R(b, a)
are invariants.
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Next, we investigate the dependence of the F and R-symbols on the choice
of allowed cone Λ0. We will find no additional ambiguity beyond the one just
discussed.

Let Λ′
0 be another allowed cone. Then there is an allowed cone Λ̃0 con-

taining Λ0 ∪ Λ′
0. Denote w′

a = wa,Λ′
0
. Then there are unitaries Wa ∈ R(Λ̃0)

such that

Wa ∈ (wa, w′
a). (36)

These unitaries are unique up to phase.
This leads to new fusion intertwiners Ω′(a, b) ∈ (w′

a ⊗ w′
b, w

′
ab) given by

Ω′(a, b) = WabΩ(a, b)(Wa ⊗ Wb)∗. (37)

The new F-symbols are determined by

Ω′(ab, c)Ω′(a, b) = F ′(a, b, c) × Ω′(a, bc)w̄′
a(Ω′(b, c)). (38)

Using Eq. 37, we compute

Ω′(ab, c)Ω′(a, b) = WabcΩ(ab, c)Ω(a, b)w̄a

(
w̄b(W ∗

c )W ∗
b

)
W ∗

a (39)

and

Ω′(a, bc)w̄′
a(Ω′(b, c)) = WabcΩ(a, bc)w̄a(Ω(b, c))w̄a

(
w̄b(W ∗

c )W ∗
b

)
W ∗

a . (40)

It follows that F ′(a, b, c) = F (a, b, c) for all a, b, c ∈ I.
Recall that the braiding intertwiners ε(a, b) are defined in terms of en-

domorphisms wa localised on Λ0, wL
a localised on ΛL and wR

a localised on
ΛR as follows. Pick intertwiners (unique up to phase) Ua ∈ (wa, wL

a ) and
Va ∈ (wa, wR

a ), then

ε(a, b) = (V ∗
b ⊗ U∗

a )(Ua ⊗ Vb) = V ∗
b wa(Vb). (41)

It is shown in Lemma 2.12 that this braiding intertwiner is independent of the
choice of cones ΛL,ΛR. Moreover, ε(a, b) is independent of the choice of phase
for the intertwiners Ua and Va.

In order to make the comparison with the braiding on ΔI
Λ̃0

, let us choose
the left and right cones ΛL and ΛR such that they are to the left and right of
both Λ0 and Λ̃0.

With the new endomorphisms w′
a related to the old wa by Eq. (36), we

get new intertwiners U ′
a = UaW ∗

a ∈ (w′
a, wL

a ) and V ′
a = VaW ∗

a ∈ (w′
a, wR

a ) and
therefore new braiding intertwiners

ε′(a, b) = ((V ′
b )∗ ⊗ (U ′

a)∗)(U ′
a ⊗ V ′

b ) = (V ′
b )∗w̄′

a

(
V ′

b

)
. (42)

A short computation relates this to the braiding ε(a, b) as

ε′(a, b) = WbV
∗
b WaVbε(a, b)wa(W ∗

b )W ∗
a . (43)

The new R-symbol is determined by

Ω′(b, a)ε′(a, b) = R′(a, b) × Ω′(a, b). (44)

Using Eqs. (37) and (43), the left-hand side becomes

Ω′(b, a)ε′(a, b) = WbaΩ(b, a)ε(a, b)wa(W ∗
b )W ∗

a (45)
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Figure 7. Degrees of freedom of the double semion state live
on the edges of a hexagonal lattice

and

Ω′(a, b) = WabΩ(a, b)wa(W ∗
b )W ∗

a (46)

so, noting that ab = ba, we find R′(a, b) = R(a, b).
We conclude that Eqs. (33) and (35) are the only ambiguities in the F

and R-symbols.
We call two sets of F and R-symbols (F,R) and (F ′, R′) on the fusion

ring Z(I) gauge equivalent if they are related by (33) and (35) for some phases
χ(a, b).

3. The Double Semion State

We construct an infinite volume version of the ground state of the double
semion model, first introduced in [16]. We identify superselection sectors cor-
responding to semion, anti-semion, and bound state anyons and find that the
braided fusion category describing these anyons corresponds to the represen-
tation category of a twisted quantum double algebra Dφ(Z2).

3.1. Construction of the Double Semion State. Let ΓV ⊂ R
2 be the vertices

of the hexagonal lattice. We take Γ = ΓE to be the (midpoints of the) edges
of the hexagonal lattice (Fig. 7) and to each edge e ∈ Γ we associate a degree
of freedom Ae � End(C2). We fix Pauli matrices σX

e , σY
e , σZ

e in each Ae. We
denote by ΓF = (ΓV )∗ be the set of faces of the hexagonal lattice.

We say an edge e ∈ Γ belongs to a hexagon p ∈ ΓF and write e ∈ p if e
is one of the six boundary edges of p. We write ∂p for the set of six edges that
belong to p. For any subset Π ⊂ ΓF , we write ΠE = ∪p∈Π∂p for all edges that
belong to some hexagon in Π and by ∂Π = ΠE ∩ (Πc)E the collection of edges
that belong to exactly one hexagon in Π. That is, ∂Π is the boundary of Π.

We interpret σZ
e = −1 as the edge e being occupied by a string, while

σZ
e = 1 means that the edge is unoccupied.
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Figure 8. Π is the set of edges of the hexagons shaded blue.
Acting with AΠ on the state ω0 yields a string configuration
with two connected components (color figure online)

Figure 9. Increasing sequence of balls Πn depicted in the
primal hexagonal lattice

For any hexagon p ∈ ΓF , let

Ap =
∏

e∈∂p

σX
e (47)

and for any finite set Π of hexagons, let

AΠ =
∏

p∈Π

Ap =
∏

e∈∂Π

σX
e . (48)

Note that AΠ produces a string around the region Π when it acts on ω0, see
Fig. 8.

Let us fix a hexagon p0 ∈ ΠF as an origin and define Πn = {p ∈ ΠF :
dist(p, p0) ≤ n}, where dist(·, ·) is the graph distance for ΠF , see Fig. 9.
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Let ω0 be the pure product state without any strings, i.e.ω0(σZ
e ) = 1 for

all e ∈ Γ. Let (π0,H0,Ω0) be the GNS triple for ω0, and let

Ωn :=

√
1

2|Πn|
∑

Π⊂Πn

(−1)�Π AΠΩ0 (49)

where �Π is the number of connected components of Π. i.e. Ωn is a superposition
of closed string configurations supported in ΠE

n , with phases determined by
the parity of the number of components of the string configuration.

The vectors Ωn determine a sequence of pure states ωn on A. The fol-
lowing theorem is proved in Appendix A.

Theorem 3.1. The sequence ωn converges in the weak-* topology to a pure state
ω.

We call this pure state ω the double semion state and denote its GNS
triple by (π1,H,Ω).

3.2. String Operators. An oriented edge is a pair (v0, v1) of neighbouring
vertices of ΓV . We say v0 (v1) is the initial (final) vertex of (v0, v1). A path
P is a collection of oriented edges such that there is a sequence of vertices
(· · · , vi−1, vi, vi+1 · · · ) such that each oriented edge in P is of the form e =
(vi, vi+1) for some i. Such a sequence is called a vertex sequence for P . The
set of vertices appearing in any vertex sequence for P is uniquely determined
by P and denoted by PV . We call PV the vertex set of P ; it is the set of
vertices that are the initial or final vertex of some edge in P . We, moreover,
require paths to be self-avoiding in the sense that any vertex sequence for P
consists of distinct vertices, except for possibly the initial vertex, which may
be equal to the final vertex of the sequence, if these exist. In the latter case, we
say the path P is closed. Similarly, if a vertex sequence for P is bi-infinite, we
also say P is closed. If P has finite vertex sequence with all its vertices being
distinct, then the vertex sequence is uniquely determined by P and we denote
by ∂0P the first vertex of the vertex sequence and by ∂1P the final vertex of
the vertex sequence. We say an edge e belongs to P if P contains an oriented
edge corresponding to e. With slight abuse of notation, we write e ∈ P if e
belongs to P .

Let P be a path. An edge e is said to be a leg of a path P at v ∈ PV if e
is the unique edge with endpoint v such that e does not belong to P . If e is a
leg of P , then e either lies to the left or to the right of P w.r.t. the orientation
of P and the standard orientation of the plane. A leg that lies to the left is
called an L-leg of P , and a leg of P that lies to the right is called an R-leg of
P . Let PV be the vertex set of P . If v ∈ PV is the endpoint of an L−leg of P ,
then we say v is an L−vertex of P . Similarly, if v ∈ PV is the endpoint of an
R-leg of P , then we say v is an R-vertex of P , see Fig. 10.

Following [16], we define three types of non-trivial string operators.
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Figure 10. An oriented path P in solid blue with its L-
vertices fattened and its R-legs marked with dotted lines
(color figure online)

The semion string is given by

WS [P ] :=

(
∏

e∈P

σX
e

) ⎛

⎝
∏

R-legs e

i
1−σZ

e
2

⎞

⎠

(
∏

L-vertices v

(−1)sv

)

(50)

where sv = 1
4 (1 − σZ

e )(1 + σZ
e′) and e, e′ are the edges of P that go in and out

of the vertex v, respectively.
The anti-semion string is given by

WS̄ [P ] :=

(
∏

e∈P

σX
e

) ⎛

⎝
∏

R-legs e

(−i)
1−σZ

e
2

⎞

⎠

(
∏

L-vertices v

(−1)sv

)

(51)

and the bound-state string is given by

WB [P ] :=

⎛

⎝
∏

R-legs e

σZ
e

⎞

⎠ . (52)

We further define string operators for the vacuum sector W1[P ] = 1. We
set I = {1, S, S̄, B}, and we denote by wa[P ] the automorphism defined by
conjugation with the (possibly formal) unitary Wa[P ]. We say Wa[P ] or wa[P ]
is a closed string operator whenever P is a closed path.

One easily checks that WS̄ [P ] = WS [P ]WB [P ] = WB [P ]WS [P ], and
WB [P ]2 = 1. We will see later that this implies that the anyons 1, S, S̄ and B
satisfy fusion rules S × B = S̄, S̄ × B = S and B × B = 1. The fusion rules
S×S = 1 and S̄×S̄ = 1 do not follow so simply. For example, WS [P ]2 �= 1, see
Eq. (54). This failure of the string operators to form a strict representation of
the fusion rules is the origin of the non-trivial F-symbols of the double semion
model, see Sect. 3.3.

These string operators have the following important property:
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Figure 11. A cone Λ with the oriented path ∂ΠΛ go-
ing around it in a counterclockwise direction. The paths
P

(n)
Λ,+, P

(n)
Λ,− straddle the left and right side of Λ, respectively

Proposition 3.2. Closed string operators leave the ground state invariant. i.e. if
P is a closed string, then

ω ◦ wa[P ] = ω (53)

for all a ∈ I.

The proof is in Appendix B.

3.2.1. Definition of wa,Λ. For any set Z ⊂ R
2, let ΠZ be the set of hexagons

(regarded as open subsets of R2) that have some overlap with the set Z. For
a cone Λ, we interpret the boundary ∂ΠΛ as an infinite closed path oriented
counterclockwise around Λ. Assuming the opening angle of Λ is less than π,
the edges of ∂ΠΛ whose centre lies a distance further than n > 2 from the
apex of Λ form two half-infinite oriented paths P

(n)
Λ,+ and P

(n)
Λ,−, as shown in

Fig. 11.
Let Λ be a cone, and let Λ(L) and Λ(R) be its left- and right half-cones,

see Fig. 12. Take n > 2 sufficiently large such that wa,Λ := wa[P (n)

Λ(R),+
] and

va,Λ := wa[P (n)

Λ(L),−] are supported in Λ for all a ∈ I. Denote PΛ := P
(n)

Λ(R),+

and PΛ := P
(n)

Λ(L),−.

3.2.2. Fusion Rules. In this section, we show the fusion rules for the string op-
erators wa,Λ. In particular, we will show that wa,Λ ◦wb,Λ is unitarily equivalent
to wab,Λ.

Let us begin with semion-semion fusion. For any oriented path P , the
automorphism wS [P ] ◦wS [P ] is given by conjugation with the formal unitary

WS [P ]2 = ΩS,S [P ] :=

⎛

⎝
∏

R-legs e

σZ
e

⎞

⎠

⎛

⎜
⎜
⎝

∏

L-vertices
v=(e,e′)

σZ
e σZ

e′

⎞

⎟
⎟
⎠ . (54)



The Double Semion State in Infinite Volume

Figure 12. A cone Λ divided into its left and right cones
Λ(L) and Λ(R). The path PΛ is the largest part of ∂ΠΛ(R) such
that wa[PΛ] is supported in Λ

Let ei and ef be the initial and final edges of the path P (if they exist)
and let u[P ] be the automorphism given by conjugation with

U [P ] := ΩS,S [P ] × σZ
ei

σZ
ef

. (55)

Lemma 3.3. We have ω ◦ u[P ] = ω for any path P .

Proof. We first take P finite and show that u[P ] leaves any ωn invariant.
Recall that ωn is a vector state in the GNS representation of ω0, given

by

Ωn =

√
1

2|Πn|
∑

Π⊂Πn

(−1)�Π AΠΩ0. (56)

We have

U [P ]AΠΩ0 = AΠΩ0. (57)

Indeed, AΠ is a product of σX
e for all e ∈ ∂Π, a finite closed path. Now, any

such closed path supports an even number of factors σZ
e of the unitary U [P ].

Indeed, if ∂Π travels along P , then the two edges of P along an R-leg carry
no σZ , while the two edges along an L-vertex both have a σZ . The closed
path ∂Π must enter/leave the path P an even number of times. If it enters
through an R-leg, it picks up a σZ from the R-leg. If it enters through an
L-vertex, then it picks up exactly one of the σZ ’s of the two edges of P next
to the L-vertex. Finally, if ∂Π enters P through an endpoint of P , then the
factors σZ

i , σZ
f at the initial/final edges ensure that a factor σZ is picked up.

In all, we see that U [P ]AΠ = AΠU [P ], because the computation involves an
even number of commutations of a σX with a σZ . Obviously U [P ]Ω0 = Ω0 so
U [P ]AΠΩ0 = AΠΩ0 and U [P ]Ωn = Ωn. It follows that ωn ◦ u[P ] = ωn for any
n and hence ω ◦ u[P ] = ω for any finite P .

If P is infinite, then for any strictly local observable O we can find a finite
P ′ such that u[P ](O) = u[P ′](O) so (ω ◦ u[P ])(O) = (ω ◦ u[P ′])(O) = ω(O).
Since the strictly local observables are dense in A, this proves the claim. �
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Lemma 3.4. If u[P ] is supported in a cone Λ, then π1 ◦ u[P ] � π1, and the
unitary implementing this equivalence belongs to the von Neumann algebra
R(Λ).

Proof. The unitary equivalence π1 ◦ u[P ] � π1 follows immediately from
Lemma 3.3. Let U be the unitary implementing this equivalence, i.e.

UOU∗ = u[P ](O) (58)

for all O ∈ A, and UΩ = Ω. (We identify A with its image under the faithful
representation π1.)

If P is finite, then actually U ∈ AΛ ⊂ R(Λ). If P is infinite, let Pn be the
path consisting of edges of P whose midpoints lie in Πn. Then U [Pn] ∈ AΛ

has U [Pn]Ω = Ω for all n, and for any strictly local observables O,O′ we have

〈OΩ, UO′Ω〉 = 〈OΩ, u[P ](O′)UΩ〉 = lim
n↑∞

〈OΩ, u[Pn](O′)Ω〉
= lim

n↑∞
〈OΩ, U [Pn]O′Ω〉. (59)

Since the vectors OΩ, O′Ω for O,O′ strictly local observables are dense in H,
this shows that the sequence U [Pn] converges weakly to U . Since U [Pn] ∈ AΛ

for all n, it follows that U ∈ R(Λ). �

Lemma 3.5. For any cone Λ, we have that π1 ◦ wS,Λ ◦ wS,Λ � π1, and the
unitary UΛ implementing this equivalence belongs to the von Neumann algebra
R(Λ).

Proof. By definition, wS,Λ = wS [PΛ] so wS,Λ ◦ wS,Λ = Ad(σZ
f ) ◦ u[PΛ] where

ef is the final edge of the half-infinite path PΛ (cf. Eqs. (54) and (55)). From
Lemma 3.4, we find that there exists a unitary UΛ ∈ R(Λ) such that u[PΛ] =
Ad(UΛ), hence

π1 ◦ wS,Λ ◦ wS,Λ = π1 ◦ Ad(σZ
ef

UΛ), (60)

proving the claim. �

We can now easily show

Proposition 3.6. For each cone Λ, there are unitaries Ω(a, b) ∈ R(Λ) such
that

Ad(Ω(a, b)) ◦ wa,Λ ◦ wb,Λ = wa×b,Λ (61)

for all a, b ∈ I = {1, S, S̄, B} and where × is an abelian product on I given by

× 1 S S̄ B
1 1 S S̄ B
S S 1 B S̄
S̄ S̄ B 1 S
B B S̄ S 1
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Figure 13. Axis of Λ1 points to the right of the axis of Λ2

relative to the cone Λ. The region Z has wa[∂ΠZ ] supported
in Λ. Moreover, the path ∂ΠZ differs from the union of the
paths PΛ1 , PΛ2 by a finite number of edges

Proof. Lemma 3.5 shows that the claim holds for S × S = 1. The rest of the
claim follows from this case and

wS̄,Λ = wS,Λ ◦ wB,Λ = wB,Λ ◦ wS,Λ, wB,Λ ◦ wB,Λ = id. (62)

�

3.2.3. Transportability.

Lemma 3.7. If Λ1 and Λ2 are cones with axes ŵ1 and ŵ2, both contained in a
cone Λ and such that ŵ1 points to the right of ŵ2 relative to Λ (see Fig. 13).
Then π1 ◦ wa,Λ1 � π1 ◦ v−1

a,Λ2
and the unitary implementing this equivalence

belongs to the von Neumann algebra R(Λ).

Proof. Fix points x1, x2 on the central axes of the cones Λ1,Λ2 such that the
region Z bounded by the half-infinite parts of these axes starting at x1, x2,
and the line between x1 and x2 is convex and has wa,∂ΠZ

supported in Λ, see
Fig. 13.

By construction, wa,∂ΠZ
differs from wa,Λ1 ◦ va,Λ2 by the action of a

local unitary W supported on Λ. Since ∂ΠZ is a closed path, it follows from
Proposition 3.2 that there exists a unitary V ∈ B(H) such that π1 ◦ wa,∂ΠZ

=
Ad(V ) ◦ π1 and V Ω = Ω; hence,

π1 ◦ wa,Λ1 = Ad(V W ) ◦ π1 ◦ v−1
a,Λ2

. (63)

This shows the required unitary equivalence. It remains to show that V ∈
R(Λ).
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Let Zn = Z ∩ Bn where Bn is the disk of radius n centred at the ori-
gin of R

2. Then ∂ΠZn
are closed paths and the automorphisms w∂ΠZn

=
Ad(Wa[∂ΠZn

]) leave the ground state invariant, and are supported in Λ. In par-
ticular, there exist phases φn such that Vn := φnWa[∂ΠZn

] satisfies VnΩ = Ω.
For any strictly local observables O,O′ ∈ π1(A) we have

〈OΩ, V O′Ω〉 = 〈OΩ, wa,∂ΠZ
(O′)V Ω〉 = lim

n↑∞
〈OΩ, wa,∂ΠZn

(O′)VnΩ〉
= lim

n↑∞
〈OΩ, VnO′Ω〉. (64)

Since the vectors OΩ, O′Ω are dense in H, this shows that Vn converges weakly
to V . Since each Vn is in AΛ, we conclude that V ∈ R(Λ). �

Proposition 3.8. If Λ1 and Λ2 are cones both contained in a cone Λ, then
π1 ◦ wa,Λ1 � π1 ◦ wa,Λ2 and the unitary implementing this equivalence belongs
to the von Neumann algebra R(Λ).

Proof. Let ŵ1, ŵ2 be the axes of the cones Λ1,Λ2 and take a cone Λ3 ⊂ Λ such
that its axis ŵ3 points to the right of both ŵ1 and ŵ2 relative to Λ. Then,
Lemma 3.7 implies that there are unitaries V1, V2 ∈ R(Λ) such that

π1 ◦ wa,Λ1 = Ad(V1) ◦ π1 ◦ v−1
a,Λ3

, π1 ◦ wa,Λ2 = Ad(V2) ◦ π1 ◦ v−1
a,Λ3

, (65)

hence

π1 ◦ wa,Λ1 = Ad(V ∗
2 V1) ◦ π1 ◦ wa,Λ2 . (66)

Since V ∗
2 V1 ∈ R(Λ), this proves the claim. �

3.2.4. Distinct Sectors. Fix a cone Λ0 with axis (0, 1) and let πa := π1 ◦wa,Λ0

for a ∈ I.

Proposition 3.9. For all a, b ∈ I, we have πa � πb if and only if a = b.

Proof. For any n large enough such that the endpoint of PΛ0 is contained in
Πn−2, consider the S-matrix

Sab :=
1
2
(ω ◦ wa,Λ0)(Wb[∂Πn]). (67)

An easy calculation shows that these quantities are independent of n and
given by

S =
1
2

⎡

⎢
⎢
⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤

⎥
⎥
⎦ . (68)

It follows that for any a �= b there is a c such that (ω◦wa,Λ0)(Wc[∂Πn]) =
−(ω ◦ wb,Λ0)(Wc[∂Πn]) for all n sufficiently large. Corollary 2.6.11 of [2] then
implies that πa and πb are disjoint. �
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Table 1. Fusion intertwiners Ω(a, b) for the double semion
state

Ω(a, b) 1 S S̄ B

1 1 1 1 1
S 1 UσZ

ef
UσZ

ef
1

S̄ 1 UσZ
ef

UσZ
ef

1

B 1 1 1 1

3.2.5. Verification of Assumptions. The four faithful irreducible representa-
tions π1, πS , πS̄ , πB defined by πa = π1 ◦ wa,Λ0 for a ∈ {1, S, S̄, B} = I are
pairwise disjoint by Proposition 3.9.

For any cone Λ and any a ∈ I, we defined an automorphism wa,Λ sup-
ported in Λ. This collection of automorphisms satisfies Assumption 1 by Propo-
sition 3.8. Assumptions 2 and 3 are verified by Proposition 3.6. Finally, As-
sumption 4 holds by Propositions 3.6 and 3.8.

3.3. Computation of F-Symbols. Having fixed the cone Λ0 with axis (0, 1),
we use for all a ∈ I the shorthand notations wa := wa,Λ0 and wa := wa,Λ0 ,
where the latter are the extensions of wa to the allowed algebra B constructed
in Lemma 2.5.

Let ef be the final edge of the path PΛ0 and let U ∈ R(Λ0) be the unitary
such that π1 ◦ u[PΛ0 ] = Ad(U) ◦ π1 and UΩ = Ω provided by Lemma 3.4. The
proof of Lemma 3.5 shows that

Ad(Ω(S, S)) ◦ (wS ◦ wS) = w1 (69)

with Ω(S, S) = σZ
ef

U .
Using

wS̄ = wB ◦ wS = wS ◦ wB , wB ◦ wB = id, (70)

we find that

Ad(Ω(a, b)) ◦ (wa ◦ wb) = wa×b (71)

for all a, b ∈ I with fusion intertwiners Ω(a, b) given in Table 1. It follows that
Ω(a, b) ∈ (wa ⊗ wb, wa×b) for all a, b ∈ I.

In order to compute the F-symbols, we first show

Lemma 3.10.

wS(UσZ
ef

) = −UσZ
ef

, wB(UσZ
ef

) = UσZ
ef

, wS̄(UσZ
ef

) = −UσZ
ef

. (72)

Proof. Since ef is the final edge of the path PΛ0 , we have wS(σZ
ef

) = wS̄(σZ
ef

) =
−σZ

ef
and wB(σZ

ef
) = σZ

ef
. It remains to show that wS(U) = wS̄(U) = wB(U) =

U .
Since U is the weak limit of the sequence Un = U [Pn] where Pn is the

path consisting of edges of PΛ0 whose midpoints lie in Πn (cf. the proof of
Lemma 3.4), it is sufficient to show wS(Un) = wS̄(Un) = wB(Un) = Un. This
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follows similar to the argument in the proof of Lemma 3.4. Since Un is a
product of σZ ’s, we have that wB(Un) = Un, and

wS(Un) = wS̄(Un) =

(
∏

e∈Pn

σX
e

)

Un

(
∏

e∈Pn

σX
e

)

. (73)

By design, the unitary Un has an even number of σZ ’s on the path Pn. Indeed,
there are two factors of σZ for every L-vertex, zero for every R-leg, and another
two for the endpoints. We conclude that wS(Un) = WS̄(Un) = Un for all n.

�

We can now start computing the F -symbols. If in Eq. (24) we take a = 1,
then

Ω(b, c)Ω(1, b) = F (1, b, c)Ω(1, bc)Ω(B,C). (74)

Since Ω(1, b) = Ω(1, bc) = 1, we find that F (1, b, c) = 1 for all b, c.
Similarly we find F (a, 1, c) = F (a, b, 1) = 1 for all a, b, c.
Let us now consider F -symbols that involve the bound state B, for ex-

ample,

Ω(Bb, c)Ω(B, b) = F (B, b, c)Ω(B, bc)wB(Ω(b, c)). (75)

Since Ω(B, b) = Ω(B, bc) = 1, this reduces to

Ω(Bb, c) = F (B, b, c)wB(Ω(b, c)). (76)

If b = B or c = B, then then Ω(Bb, b) = Ω(b, c) = 1 so F (B, b, c) = 1.
If b, c ∈ {S, S̄}, then Ω(Bb, c) = Ω(b, c) = UσZ

ef
, so using Lemma 3.10 we find

again F (B, b, c) = 1 for all b, c.
Similar considerations show that F (B, b, c) = F (a,B, c) = F (a, b,B) = 1

for all a, b, c.
Finally, we consider the case where a, b, c ∈ {S, S̄}. Then since ab, bc ∈

{1, B} we have Ω(ab, c) = Ω(a, bc) = 1 so

UσZ
ef

= F (a, b, c)wa(UσZ
ef

). (77)

Using Lemma 3.10, we conclude that F (a, b, c) = −1 for a, b, c ∈ {S, S̄}.

3.4. Computation of R-Symbols. Choose cones ΛL with axis (−1, 0) and ΛR

with axis (1, 0), both disjoint from Λ0 as in Fig. 14. Let Λ̃L ⊇ Λ0 ∪ ΛL and
Λ̃R ⊇ Λ0 ∪ ΛR be allowed cones such that Λ̃L ∩ ΛR = Λ̃R ∩ ΛL = ∅.

To compute the braiding intertwiners ε(a, b) = ε(wa, wb), set vL
a = va

[ΛL]−1, vR
a = va[ΛR]−1 as well as wL

a = wa,ΛL
and wR

a = wa,ΛR
for all a =

1, S, S̄, B. (Recall that the automorphisms va,Λ are defined in Sect. 3.2.1.)
It follows from Lemma 3.7 that there are unitaries Ua ∈ (wa, vL

a ) and
Vb ∈ (wb, v

R
b ) such that Ua ∈ R(Λ̃L) and Vb ∈ R(Λ̃R). By the same lemma,

there are unitaries U ′
a ∈ (vL

a , wL
a ) and V ′

b ∈ (vR
b , wR

b ) such that U ′
a ∈ R(ΛL)

and V ′
b ∈ R(ΛR). We therefore have unitary morphisms U ′

aUa ∈ (wa, wL
a ) and
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Figure 14. Cones Λ0, ΛL and ΛR used to define the braiding
intertwiners

V ′
b Vb ∈ (wb, w

R
b ) with U ′

aUa ∈ R(Λ̃L) and V ′
b Vb ∈ R(Λ̃R). By definition 2.11

and the fact that wa(V ′
b ) = V ′

b , we have

ε(a, b) = V ∗
b wa

(
Vb

)
. (78)

In order to compute wa(Vb), let us realise Vb as the weak limit of a
sequence of strictly local unitaries.

Let K be the cone whose legs coincide with the central axes of Λ0 and
ΛR, see Fig. 15. Then the path ∂ΠK contains PΛ0 and PΛR

and the path
Q = ∂ΠK\(PΛ0 ∪ PΛR

) is finite. For each n, let Kn = K ∩ Bn where Bn ⊂ R
2

is the disk of radius n centred at the origin of R2. Consider the sequence of
paths Pn = ∂ΠKn

\ Q and set V
(n)
b := Wb[Pn].

Lemma 3.11. There are phases φn such that the sequence φnV
(n)
b converges

weakly to Vb.

Proof. Consider first the sequence of finite closed paths ∂ΠKn
= Pn ∪ Q and

corresponding string operators Wb[∂ΠKn
]. By Proposition 3.2, the unitaries

Wb[∂ΠKn
] leave the ground state invariant up to a phase, so there are phases

φn such that W̃ (n) := φnWb[∂ΠKn
] satisfy W̃ (n)Ω = Ω.

Since ∂ΠK is a closed path, the automorphism wb[∂ΠK ] leaves the grounds
state invariant by Proposition 3.2. It follows that there is a unique unitary
W̃ ∈ B(H) such that W̃Ω = Ω and wb[∂ΠK ] = Ad(W̃ ) (as automorphisms on
π1(A)).
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Figure 15. Sets Kn and the paths Pn and Q used in the
construction of the sequence of unitaries V

(n)
b that converge

weakly to the intertwiner Vb

Now, for any strictly local observable O we have wb[∂ΠK ](O) = wb[∂ΠKn
]

(O) for all n large enough. Thus, for any strictly local operators O,O′ we have

〈OΩ, W̃ O′Ω〉 = 〈OΩ, wb[∂ΠK ](O′) W̃Ω〉
= lim

n↑∞
〈OΩ, wb[∂ΠKn

](O′)Ω〉

= lim
n↑∞

〈OΩ, W̃ (n)O′Ω〉,

showing that the sequence W̃ (n) converges weakly to W̃ .
Now note that the paths ∂ΠKn

and Pn = ∂ΠKn
\Q differ by the same

path Q = ∂ΠKn
\Pn for all n. It follows that the corresponding string operators

Wb[∂ΠKn
] and V

(n)
b = Wb[Pn] satisfy V

(n)
b (Wb[P̃n])∗ = W for a unitary W that

is independent of n and is supported on the path Q and edges adjacent to Q.
(In fact, W is equal to Wb[Q]∗ up local operators supported near the endpoints
of the path Q.) Therefore, V

(n)
b = WWb[∂ΠKn

] and φnV
(n)
b = WW̃ (n).

Since W̃ (n) converges weakly to W̃ , it follows that the sequence φnV
(n)
b =

WW̃ (n) converges weakly to WW̃ . By construction, Ad(WW̃ ) = wb◦(wR
b )−1 =

Ad(Vb) so WW̃ = μVb for some phase μ. We then find that the sequence
μ∗φnV

(n)
n converges weakly to Vb. This proves Lemma. �

We can now compute the braiding intertwiners.
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Figure 16. Edges e and e′ playing a role in the computation
of ε(S, S)

Obviously w1 = id and V1 = I so ε(1, a) = ε(a, 1) = 1 for all a ∈ I. It is
also easy to see that

wB(V (n)
a ) = V (n)

a (79)

for any a ∈ {1, S, S̄, B}, so ε(B, a) = 1 for all a, while

wS(V (n)
B ) = wS̄(V (n)

B ) = −V
(n)
B , (80)

because the path PΛ0 contains a single R-leg of the path Pn. So ε(S,B) =
ε(S̄, B) = −1.

Let us now compute ε(S, S). Note that the path Pn enters the path PΛ0

at an L-vertex of PΛ0 . Let (e, e′) be the edges of PΛ0 before and after this
L-vertex, see Fig. 16. We find

(V (n)
S )∗ wS(V (n)

S )

=
(

σX
e′

(

i
1−σZ

e
2

))
(
σX

e σX
e′ (−1)sI

)
((

i
1−σZ

e
2

)∗
σX

e′

)
(
(−1)sI σX

e′ σX
e

)
= i1,

which implies ε(S, S) = i1.
We now use the braid equations (Lemma 2.13)

ε(ρ, σ ⊗ τ) = (1σ ⊗ε(ρ, τ))(ε(ρ, σ) ⊗ 1τ )

ε(ρ ⊗ σ, τ) = (ε(ρ, τ) ⊗ 1σ)(1ρ) ⊗ ε(σ, τ))

(where Iρ denotes the identity intertwiner from ρ to itself) to compute

ε(S̄, S) = ε(S × B,S) = ε(S, S)wS(ε(B,S)) = i1

ε(S, S̄) = ε(S, S × B) = wS(ε(S,B))ε(S, S) = −i1

ε(S̄, S̄) = ε(S × B, S̄) = ε(S, S̄)wS(ε(B,S)) = −i1 .

Thus, we have computed all braiding intertwiners,see Table 2 for a summary.
The R-symbols are defined (26) by

Ω(b, a)ε(a, b) = R(a, b) × Ω(a, b). (81)

Since Ω(a, b) = Ω(b, a) for all a, b, we find that the R-symbols are shown
in Table 3.
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Table 2. Braiding intertwiners ε(a, b) for the double semion
state

ε(a, b) 1 S S̄ B

1 1 1 1 1
S 1 i1 −i1 −1
S̄ 1 i1 −i1 −1
B 1 1 1 1

Table 3. R-symbols R(a, b) for the double semion state

R(a, b) 1 S S̄ B

1 1 1 1 1
S 1 i −i −1
S̄ 1 i −i −1
B 1 1 1 1

One can verify that the F and R-symbols indeed satisfy the pentagon
and hexagon equations.

3.5. Anyons are Described by RepfDφ(Z2). In Sect. 3.2.5, we verified As-
sumptions 1–4 for the superselection sectors πa with a ∈ I = {1, S, S̄, B}
of the double semion state. Let us denote by ΔI

Λ0
the corresponding braided

tensor category constructed in Sect. 2.2.
In this section, we show that ΔI

Λ0
is braided monoidal equivalent to the

representation category RepfDφ(Z2), where φ is a non-trivial 3-cocycle on Z2.
We will do this by showing that both categories have equivalent fusion rings,
F-symbols, and R-symbols, and appealing to Proposition 7.5.2 of [12].

This identification is relevant, because it partially verifies a conjecture
about string-net models [16]. A given string-net model is defined by an input
fusion category F , and the topological order of the model is conjectured [17]
to correspond to the Drinfeld centre Z(F) of F . In the case where F = Vecφ

G

for a finite group G and a 3-cocycle φ of G, we have Z(F) = RepfDφ(G)
(cf. [18]), where Dφ(G) is the twisted quantum double algebra first described
in [4].

3.5.1. The Braided Fusion Ring of ΔI
Λ0

. We have extracted from the braided
tensor category ΔI

Λ its fusion ring, generated by the elements of I = {1, S, S̄, B}
with abelian fusion rules given by the group structure on I described in Propo-
sition 3.6. In other words, the fusion ring of ΔI

Λ0
is isomorphic to Z(I). In

Sect. 3.3, we obtained the F-symbols, and in Sect. 3.4 we obtained the R-
symbols, Cf. Table 3 derived from the braided tensor category ΔI

Λ0
. It follows

from Proposition 7.5.2 of [12] that these data completely determine the cate-
gory ΔI

Λ0
up to braided monoidal equivalence.
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3.5.2. Description of RepfDφ(Z2). We describe the quasi Hopf algebra Dφ(Z2)
first introduced in [4]. We follow the presentation in [22].

Let φ : (Z2)3 → U(1) be the normalised representative of the non-trivial
class in H3(Z2, U(1)):

φ(−,−,−) = −1, all other components equal to 1. (82)

Let

cx(f, g) := (ιxφ)(f, g) =
φ(x, f, g)φ(f, g, x)

φ(f, x, g)
. (83)

for all x, f, g ∈ Z2. For each x ∈ Z2 the map cx : (Z2)2 → U(1) is a 2-cocycle,
it satisfies

cx(f, g)cx(fg, h) = cx(f, gh)cx(g, h). (84)

The quasi-quantum double Dφ(Z2) is an algebra spanned by {Pxf}x,f∈Z2

with multiplication

(Pxf)(Pyg) = δx,y(Pxfg) cx(f, g). (85)

The unit for this multiplication is
∑

x∈Z2
(Px1).

The quasi-quantum double is, moreover, equipped with a coproduct Δ :
Dφ(Z2) → Dφ(Z2) ⊗ Dφ(Z2) given by

Δ(Pxf) =
∑

yz=x

cf (y, z)(Pyf) ⊗ (Pzf). (86)

Associativity and quasicoassociativity follow readily from Eq. (84), in
particular

(id ⊗ Δ)Δ(Pxf) = ϕ · (Δ ⊗ id)Δ(Pxf) · ϕ−1 (87)

with ϕ =
∑

f,g,h∈Z2
φ−1(f, g, h) (Pf1) ⊗ (Pg1) ⊗ (Ph1). That Δ is an algebra

morphism follows from the identity

cx(f, g)cy(f, g)
cxy(f, g)

× cf (x, y)cg(x, y)
cfg(x, y)

= 1. (88)

There is a counit ε : Dφ(Z2) → C and an antipode S : Dφ(Z2) → Dφ(Z2)
given by

ε(Pxf) = δx,1, S(Pxf) = (Px−1f−1) cx−1(f, f−1)−1cf (x, x−1)−1.

(89)

These give Dφ(Z2) the structure of a quasi Hopf algebra. This quasi-Hopf
algebra is, moreover, quasitriangular with universal R-matrix

R =
∑

x,y

(Px1) ⊗ (Pyx). (90)
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3.5.3. Category of Representations and Its Fusion Ring. Since Dφ(Z2) is a
quasitriangular Hopf algebra, its category of finite-dimensional representa-
tions RepfDφ(Z2) is a braided tensor category. We extract the fusion ring,
F-symbols, and R-symbols of this braided tensor category. See [18] for a more
in depth analysis of this category of representations.

There are four irreducible representations of Dφ(Z2), labelled by pairs
(x, χ) ∈ Z2 ×Z

∗
2. (Z∗

2 consists of the characters of Z2, namely 1 and sgn.) They
are given by

Π(x,χ)(Pyf) = δx,y εx(f)χ(f) (91)

with

εx(f) := exp
(

πi
2

[x].[f ]
)

(92)

where [x], [f ] are the additive representation of x and f . i.e. ε−(−) = i and all
other components are equal to one. εx is a cocycle and

cx(f, g) = (dεx)(f, g) =
εx(fg)

εx(f)εx(g)
. (93)

Since we have a coproduct, we have the following tensor product of rep-
resentations:

(Π1 ⊗ Π2)(Pxf) := ((Π1 ⊗ Π2) ◦ Δ)(Pxf) =
∑

yz=x

cf (y, z)Π1(Pyf) ⊗ Π2(Pzf).

(94)

One easily verifies that

Π(x,χ) ⊗ Π(y,σ) = Π(xy,χσ). (95)

The representation Π(1,1) is an identity for this tensor product (with trivial left
and right unitors). In particular, the fusion ring of the representation category
is Z(G) with G the abelian group with elements {(x, χ)}(x,χ)∈Z2×Z

∗
2

and group
multiplication given by (x, χ) · (y, σ) = (xy, χσ).

With this tensor product, the representations of Dφ(Z2) form a tensor
category with simple objects Π(x,χ) and associators between simple objects

α(x,χ),(y,σ),(z,τ) : (Π(x,χ) ⊗ Π(y,σ)) ⊗ Π(z,τ) → Π(x,χ) ⊗ (Π(y,σ) ⊗ Π(z,τ))
(96)

given by multiplication with φ(x, y, z). This shows that the F-symbols of the
representation category RepfDφ(Z2) are given by the 3-cocycle α on G given
by α((x, χ), (y, σ), (z, τ)) = φ(x, y, z).

The braiding ε(x,χ),(y,σ) : Π(x,χ) ⊗ Π(y,σ) → Π(y,σ) ⊗ Π(x,χ) of simple
objects of Dφ(Z2) is given by multiplication with

(Π(x,χ) ⊗ Π(y,σ))(R) = εy(x)σ(x), (97)

where R is the universal R-matrix given in Eq. (90). These braidings are sum-
marised in Table 4, and it follows from (95) that the R-symbols of Dφ(Z2) are
given by the same table.
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Table 4. Braiding isomorphisms of RepfDφ(Z2) for simple
objects

ε(x,χ),(y,σ) (1, 1) (−1, 1) (−1, sgn) (1, sgn)

(1, 1) 1 1 1 1
(−1, 1) 1 i −i −1
(−1, sgn) 1 i −i −1
(1, sgn) 1 1 1 1

3.5.4. Braided Monoidal Equivalence of ΔI
Λ0

and RepfDφ(Z2). By the iden-
tification

(1, 1) ↔ 1, (−1, 1) ↔ S, (−1, sgn) ↔ S̄, (1, sgn) ↔ B. (98)

we see that the groups G and I and therefore the fusion rings Z(G) and Z(I)
of RepfDφ(Z2) and ΔI

Λ0
are isomorphic.

Under this identification, the F -symbols of ΔI
Λ0

computed in Sect. 3.3
match precisely with the F-symbols α of the representation category. Further-
more, comparing Tables 3 and 4 we see that also the R-symbols match pre-
cisely. Thus, the braided tensor category ΔI

Λ0
and the representation category

RepfDφ(Z2) have the same fusion rings Z(G) � Z(I), the same F-symbols,
and the same R-symbols. It follows from Proposition 7.5.2 of [12] that ΔI

Λ0

and RepfDφ(Z2) are isomorphic as braided monoidal categories.
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Appendix A. Purity of the Double Semion State

In appendix, we prove Theorem 3.1, stating that the double semion state ω
constructed in Sect. 3.1 is pure.

A.1. Restrictions of ω to finite regions. Denote by ΠE
n the set of edges belong-

ing to some hexagon of Πn and set Mn = AΠE
n
. We investigate the restrictions

ω|n := ω|Mn
.

Lemma A.1. For any m > n, we have that ω|n = ωm|n.
Proof. It is sufficient to note that ωm has the same expectation value for any
operator in Mn as ω does. Indeed, for any A ∈ Mn we have ω(A) = lim ωm(A),
and the latter sequence becomes constant as soon as Πm contains all hexagons
containing edges in the support of A. i.e. ωm(A) = ω(A) for all m ≥ n + 1.

�
Thus, we can restrict our attention to states ωm|n. Recall that ωm is

given by the expectation value in the vector state

Ωm =

√
1

2|Πm|
∑

Π⊂Πm

(−1)�ΠAΠΩ0 =

√
1

2|Πm|
∑

Π⊂Πm

(−)�∂Π|∂Π〉 (99)

where �∂Π is the number of closed loops in the loop soup ∂Π, and we chose
to write AΠ instead of π0(AΠ) because the representation π0 is faithful, and
|∂Π〉 is the product state with all degrees of freedom spin up, except those on
the edges along the path ∂Π, which are spin down.

Note that every closed path α supported on ΠE
m is of the form ∂Π for a

unique Π ⊂ Πm, so we have written Ωm as a uniform superposition over all
closed-loop soups supported on ΠE

m. Moreover, for closed paths α and β we
have |α〉 = |β〉 if and only if α = β, and these states are orthogonal otherwise.

We will show that ωm|n is a mixed state which is an equal-weight convex
combination of pure states ηn(b) where b is a boundary condition, namely an
assignment of up-or down to each out edge of the region Πn such that an even
number of edges are up, see Fig. 17

The state ηn(b) is then given by a uniform superposition of all loop soups
that satisfy the boundary condition b, weighed by ±1 depending on whether
a fixed ‘closure’ of the boundary condition has an even or an odd number of
closed loops.

Lemma A.2. There are 2|Πn| such loop soups for each boundary condition b.

Proof. For the boundary condition with all spins up, this is obvious, because
then the loop soups are precisely closed-loop soups in ΠE

n .
To obtain loop soups for an arbitrary boundary condition b, act on any

closed-loop soup with Ap on the hexagons between pairs of boundary edges
where b forces a loop to end (choose one of two possible pairings). This yields
a loop soup that satisfies the boundary condition, and two different closed-
loop soups give two different loop soups satisfying the boundary condition.
Conversely, every loop soup satisfying the boundary condition arises in this
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Figure 17. A loop soup α ∈ P(b)
4 with boundary condition b

corresponding to the red edges. The dotted red paths indicate
one of two ways of pairing neighbouring red edges, resulting
in a closed-loop soup (color figure online)

way, because acting on loop soups satisfying b with Av’s on the vertices between
pairs of boundary edges where b forces a loop to end yields a closed-loop soup.

�

Write P(b)
n for the loop soups in ΠE

n that satisfy the boundary condition b.
For a given boundary condition b, any α ∈ P(b)

n can be ‘closed up’ in precisely
two ways by connecting neighbouring marked edges using edges in ΠE

n+1\ΠE
n ,

see Fig. 17. Pick one such ‘pairing’ of marked boundary edges, and let �α be
the number of loops of α closed up with the chosen pairing. Then we have
normalised vectors

|η(b)
n 〉 =

√
1

2|Πn|
∑

α∈P(b)
n

(−1)�α|α〉. (100)

We have 〈η(b)
n , η

(b′)
n 〉 = δb,b′ , i.e. these vectors form an orthonormal set. Denote

by η
(b)
n the pure state on Mn corresponding to the vector |η(b)

n 〉.
Proposition A.3. For m > n ≥ 1,

ωm|n =
1

26n−1

∑

b

η(b)
n . (101)

Since the |η(b)
n 〉 form an orthonormal set, this is a Schmidt decomposition

of ωm|n.
Here, 26n−1 is the number of boundary conditions b. Indeed, there are

6n outer edges where the boundary condition either forces or does not force a
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string to pass, and the number of edges where a string is forced to end must be
even. There are as many even boundary conditions as there are odd boundary
conditions. Indeed, flipping a fixed edge gives a bijection.

Proof. By Lemma A.1, it is sufficient to consider m = n+1. The state ωn+1 on
ΠE

n+1 is a uniform superposition of closed-loop soups in ΠE
n+1. Any such loop

soup α defines a boundary condition b(α) by the outer edges of Πn that are
occupied by strings of α. We can therefore organise the α according to which
boundary condition they induce:

|Ωn+1〉 =

√
1

2|Πn+1|
∑

b

∑

α:b(α)=b

(−1)�α|α〉. (102)

The states |α〉 are orthonormal product states. If O is supported on ΠE
n , then

the matrix elements 〈β,Oα〉 only depend on the configuration of α and β on
ΠE

n . This information still allows us to deduce the boundary conditions b(α)
and b(β). Moreover, the matrix element vanishes if b(α) �= b(β), hence

ωn+1(O) = 〈Ωn+1, OΩn+1〉 =
1

2|Πn+1|
∑

α,β

(−1)�α+�β〈β,Oα〉

=
1

2|Πn+1|
∑

b

∑

α:b(α)=b
β:b(β)=b

(−1)�α+�β〈β,Oα〉

=
2

2|Πn+1|
∑

b

∑

α′,β′∈P(b)
n

(−1)�α′+�β′〈β′, Oα′〉

=
1

26n−1

∑

b

1
2|Πn|

∑

α′,β′∈P(b)
n

(−1)�α′+�β′〈β′, Oα′〉

=
1

26n−1

∑

b

η(b)
n (O).

The factor of 2 appearing in the third line is the number of choices of complet-
ing a loop soup α′ in ΠE

n with boundary condition b to a closed-loop soup α in
ΠE

n+1. The phase (−)�α′+�β′
does not depend on which (common) completion

is chosen. Indeed, changing the completion changes both �α′ and �β′ by an
odd amount if the number of marked edges is a multiple of 4, and both by
an even amount otherwise (Lemma A.4). To get the fourth line, we used that
|Πn+1| − |Πn| = 6n − 1. �

Lemma A.4. Given α ∈ P(b)
n , denote by �1α and �2α the number of loops in

the two possible completions. Then �1α − �2α is odd if the number of marked
points for b is a multiple of 4, and even otherwise.

Proof. Assume first that α has no closed loops. Let the number of marked
points be 2n. The following construction is illustrated in Fig. 18. Abstract the
region Πn to a disk with the marked points sitting on the boundary. Then the
two completions correspond to two sets of n intervals that ‘interlace’ along the
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Figure 18. Red dotted paths completing α to a closed-loop
soup are marked with vertices (black), and so are the closed
regions (green) resulting from this completion. The white re-
gions correspond one-to-one to faces of the black graph. Each
such white region corresponds to a loop of the alternative
completion of α to a closed-loop soup (color figure online)

boundary of the disk. Choose one of them. The loop soup α connects these n
intervals into groups. The number of groups g is the number of closed loops in
this completion, say �1α = g. Put a vertex on each interval for this completion,
and add a vertex in each group. Connect this vertex by edges to the vertices
of the intervals in the group. Finally, connect the vertices on the intervals
by edges along the boundary of the disk. This gives a connected graph with
V = n + g vertices and E = 2n edges. By the Euler formula, this graph has
F = 1 − V + E = 1 + n − g internal faces. The number of internal faces
corresponds precisely to �2α, and we find

�1α − �2α = g − (1 + n − g) = 2g − n − 1, (103)

which is odd if n is even and vice versa.
Any closed loops of α remain connected components of both completions,

so internal loops do not contribute to �1α = �2α.
�

We further show

Lemma A.5. For any boundary condition b and any O supported on ΠE
n−1, we

have η
(b)
n (O) = ω(O).

Proof. From Lemma A.1, it is sufficient to show that η
(b)
n (O) = ωn(O). Note

that ωn = η∅
n, where ∅ stand for the trivial boundary condition.
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For any other boundary condition b, let Ab be the product of Ap operators
over hexagons between pairs of marked edges of b. Clearly, Ab is supported out-
side ΠE

n−1, so A∗
bOAb = O, and since Ab bijectively maps loop soups satisfying

b to closed-loop soups, we find

η(b)
n (O) = η(b)

n (A∗
bOAb) = η∅

n(O) = ωn(O) = ω(O). (104)

�

A.2. Purity of the Limit State. We will now show that ω is a pure state by
making use of the following lemma, which is a special case of Lemma 2.1. of
[13].

Lemma A.6 (Lemma 2.1 of [13]). A state ω on a UHF algebra realised as the
inductive limit of a sequence of finite matrix algebras {Mm} is pure if the
following holds:

For each n, there exists m > n such that if ρ is a linear functional on
Mm that satisfies

ω|Mm
≥ ρ ≥ 0, (105)

then

ρ|Mn
= λω|Mn

(106)

for some λ ∈ R.

In applying this theorem to our setting, we take Mn to be the algebra
supported on ΠE

n .
Fix n and take m ≥ n + 1. Let ρ be a linear functional on Mm such that

Eq. (105) is satisfied. From Proposition A.3 and Lemma A.1, we have

ω|m = ωm+1|m =
1

26m−1

∑

b

η(b)
m , (107)

which is a Schmidt decomposition for ω|m. The assumption ω|m ≥ ρ ≥ 0
implies that ρ is a mixture of pure states in the span of the η

(b)
m ’s (Lemma A.7).

It then follows from Lemma A.5 and m > n that

ρ|n = λω|n (108)

for some 0 ≤ λ ≤ 1.
We conclude by Lemma A.6 that ω is pure.
We have used the following lemma:

Lemma A.7. Let ω and ρ be linear functionals on a finite matrix algebra such
that ω ≥ ρ ≥ 0. Suppose

ω =
∑

α

pα|ψα〉〈ψα| (109)

is a Schmidt decomposition of ω. Then any Schmidt decomposition

ρ =
∑

β

qβ |φβ〉〈φβ | (110)
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satisfies

span{|φβ〉}β ⊂ span{|ψα〉}α. (111)

i.e. the Schmidt states of ρ span a subspace of the space spanned by the Schmidt
states of ω.

Proof. Suppose the conclusion is false, so one of the φβ , say φ1, lies outside
of V = span{ψα}. Then there is a vector χ orthogonal to V and such that
c = 〈φ1, χ〉 �= 0.

Consider now the positive operator P = |χ〉〈χ|. We have ω(P ) = 0 and

ρ(P ) =
∑

β

qβ |〈φβ , χ〉|2 > 0 (112)

where all terms are non-negative and at least the term β = 1 is strictly positive.
It follows that (ω − ρ)(P ) < 0, violating the assumption. �

Appendix B. Properties of String Operators

For each vertex v, let

Av :=
1
2

(

1 +
∏

e∼v

σZ
e

)

(113)

where the product runs over the three edges connected to v. For each hexagon
p, regarded as a closed loop with counterclockwise orientation, let

Bp :=
1
2

(1 + WS [∂p])

(
∏

v∈p

Av

)

. (114)

The operators Bp and Av are orthogonal projections, and they all commute
with each other.

Let Πn be a finite set of hexagons as in Fig. 9. Let ΠV
n be the set of

vertices belonging to some hexagon in Πn. We set

HΠn
:=

∑

v∈ΠV
n

(1 − Av) +
∑

p∈Πn

Bp. (115)

Let us also introduce terms imposing boundary conditions:

H∂Πn
=

∑

e∈∂Πn

1
2

(
1 − σZ

e

)
. (116)

This is also a sum of orthogonal projections, and they all commute with each
other and with the Bp and Av appearing in HΠn

.
We now consider the commuting projection Hamiltonians

Hn := HΠn
+ H∂Πn

. (117)

Let Π̃n be the collection of edges that have an endpoint in ΠV
n . Then

Hn ∈ AΠ̃n
. Moreover, the state ωn restricts to AΠ̃n

as a pure state. Let us
continue to denote this restriction by ωn. We have
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Lemma B.1. The state ωn on AΠ̃n
is the unique ground state of Hn.

Proof. The state ωn is defined by the expectation in the vector state

Ωn =

√
1

2|Πn|
∑

Π⊂Πn

(−1)�(Π) AΠΩ0 (118)

where Ω0 has all σZ
e = 1.

The state Ωn is a superposition of closed string configurations in Πn.
Each such closed string configuration satisfies

(1 − Av)AΠΩ0 = 0,
1
2
(1 − σZ

e )AΠΩ0 = 0 (119)

for all v ∈ ΠV
n , all e ∈ ∂Πn and all Π ⊂ Πn.

To see that Ωn is a ground state of Hn it remains to show that it is in
the kernel of all Bp for p ∈ Πn. One can check that

WS [∂p]AΠΩ0 = φ(p,Π)Ap�ΠΩ0 (120)

where φ(p,Π) = −1 if p�Π has the same parity of connected components as
Π, and φ(p,Π) = 1 otherwise. i.e.

φ(p,Π) = (−1)�Π+�(p�Π)+1 (121)

It follows that WS [∂p]Ωn = −Ωn for any p ∈ Πn, hence BpΩn = 0.
To see that Ωn is the unique ground state, observe that any ground state

must be in the kernel of all the 1 − Av for v ∈ ΠV
n and all the 1

2 (1 − σZ
e ) for

e ∈ ∂Πn. The space of states that are simultaneously in the kernels of all these
projections is spanned by the closed string states

AΠΩ0, Π ⊂ Πn. (122)

We must find in this space a state that is in the kernel of all the Bp, equivalently
a -1 eigenstate of all the WS [∂p] for p ∈ Πn. Consider a general state

Ψ =
∑

Π⊂Πn

ψ(Π)AΠΩ0 (123)

where ψ(Π) ∈ C are arbitrary. Then

WS [∂p]Ψ =
∑

Π⊂Πn

ψ(Π)φ(p,Π)Ap�ΠΩ0, (124)

so WS [∂p]Ψ = −Ψ only if

ψ(Π)(−1)�Π − ψ(p�Π)(−1)�(p�Π). (125)

If any of the ψ(Π) is non-zero (which must be the case, otherwise Ψ = 0), then
this enforces

ψ(Π′) = (−1)�Π+�Π′
ψ(Π′) (126)

for all Π′ ⊂ Πn. Indeed, and Π can be related to any Π′ by a sequence of
symmetric differences with elementary hexagons p. This shows that Ψ � Ωn,
so Ωn is indeed the unique ground state of Hn on AΠ̃n

. �
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Lemma B.2. If P is a closed path entirely contained in Πn, then Wa[P ] com-
mutes with Hn.

Proof. This is shown for the string operators of any Levin–Wen model using a
graphical representation of the string operators in [16]. In our case of the double
semion model, we can also show it by brute force. That WS [P ] commutes with
the star operators Av and with the boundary terms in H∂Πn

is obvious. Let
us show that WS [P ] commutes with Bp for p ∈ Πn.

To this end, note simply that if Q is the path, possibly consisting of
multiple components, made up of edges of P that are also edges or R-legs of
p, oriented with the same orientation as P , then

WS [P ]WS [∂p]WS [P ]∗ = WS [∂p]U [Q] (127)

where the string operators U [Q] are defined in Eq. (55). Since U [Q](
∏

v∈p Av) =
∏

v∈p Av, and all Av’s commute with WS [P ] we find

WS [P ]

(

WS [∂p]
( ∏

v∈p

Av

)
)

WS [P ]∗ = WS [∂p]U [Q]

(
∏

v∈p

Av

)

= WS [∂p]

(
∏

v∈p

Av

)

. (128)

The claim for semion string operators WS [P ] follows.
The required result is easy to verify for bound state strings WB [P ], and

since WS̄ [P ] = WS [P ]WB [P ], the claim also holds for the anti-semion string
operators. �

Lemma B.3. If P is a finite closed string, then

ω ◦ wa[P ] = ω (129)

for any a ∈ {1, S, S̄, B}.
Proof. By Lemmas B.1 and B.2, we have

Wa[P ]Ωn ∼ Ωn (130)

for n sufficiently large. Hence, ωn ◦ wa[P ] = ωn for n sufficiently large. The
double semion state ω is by definition the weak-* limit of the sequence ωn so

ω ◦ wa[P ] = lim
n↑∞

ωn ◦ wa[P ] = lim
n↑∞

ωn = ω. (131)

�

We are now ready to give the

Proposition 3.2. Let O be a strictly local observable. Then we can find a finite
closed loop P ′ such that wa[P ](O) = wa[P ′](O). From Lemma B.3, we then
find (ω◦wa[P ])(O) = (ω◦wa[P ′])(O) = ω(O). Since the strictly local operators
are dense in A, it follows that ω ◦ wa[P ] = ω.
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References

[1] Bachmann, S., Michalakis, S., Nachtergaele, B., Sims, R.: Automorphic equiva-
lence within gapped phases of quantum lattice systems. Commun. Math. Phys.
309(3), 835–871 (2012). arXiv:1102.0842

[2] Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Me-
chanics: Volume 1: C*-and W*-Algebras. Symmetry Groups. Decomposition of
States. Springer Science & Business Media, Berlin (2012)

[3] Cha, M., Naaijkens, P., Nachtergaele, B.: On the stability of charges in in-
finite quantum spin systems. Commun. Math. Phys. 373(1), 219–264 (2020).
arXiv:1804.03203

[4] Dijkgraaf, R., Pasquier, V., Roche, P.: Quasi hope algebras, group cohomology
and orbifold models. Nucl. Phys. B Proc. Suppl. 18(2), 60–72 (1991)

[5] Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics
i. Commun. Math. Phys. 23, 199–230 (1971)

[6] Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics
ii. Commun. Math. Phys. 35, 49–85 (1974)

[7] Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories, vol. 205.
American Mathematical Society, Providence (2016)

[8] Fiedler, L., Naaijkens, P.: Haag duality for Kitaev’s quantum double model for
abelian groups. Rev. Math. Phys. 27(09), 1550021 (2015). arXiv:1406.1084v2

[9] Fredenhagen, K., Rehren, K.-H., Schroer, B.: Superselection sectors with braid
group statistics and exchange algebras: I. general theory. Commun. Math. Phys.
125, 201–226 (1989)

[10] Fredenhagen, K., Rehren, K.-H., Schroer, B.: Superselection sectors with braid
group statistics and exchange algebras ii: geometric aspects and conformal co-
variance. Rev. Math. Phys. 4(spec01), 113–157 (1992)
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