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Algebraic Localization of Wannier Functions
Implies Chern Triviality in Non-periodic
Insulators

Jianfeng Lu and Kevin D. Stubbs

Abstract. For gapped periodic systems (insulators), it has been estab-
lished that the insulator is topologically trivial (i.e., its Chern number is
equal to 0) if and only if its Fermi projector admits an orthogonal basis
with finite second moment (i.e., all basis elements satisfy

∫ |x|2|w(x)|2 dx
< ∞). In this paper, we extend one direction of this result to non-periodic
gapped systems. In particular, we show that the existence of an orthogo-
nal basis with slightly more decay (

∫ |x|2+ε|w(x)|2 dx < ∞ for any ε > 0)
is a sufficient condition to conclude that the Chern marker, the natural
generalization of the Chern number, vanishes.

1. Introduction

In electron structure theory, we are often interested in studying the subspace
of low energy states spanned by the range of Fermi projector P . For numerical
and theoretical purposes, we are in particular interested in finding a basis for
the occupied space range (P ) which is as well localized in space as possible. The
elements of such a basis are known as Wannier functions or generalized Wan-
nier functions (see review [8] and references therein). Typically for insulating
materials (i.e., materials with a spectral gap), the existence of a spectral gap
implies the Fermi projector P admits an integral kernel which is exponentially
localized in the following sense (see, for example, [7]):

|P (x,y)| � e−cgap|x−y |. (1)
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Here, the constant cgap depends on the size of the gap and vanishes as the
gap closes. Therefore, we might expect that these insulators admit a basis
which decays exponentially quickly in space. Somewhat surprisingly, even if
P satisfies an estimate like Eq. (1), it is not necessarily true that range (P )
admits a basis which decays exponentially quickly in space due to the existence
of so-called topological obstructions.

In two-dimensional periodic insulators, it is now well understood [1,9,10]
that the existence of a well-localized basis for range (P ) is fully characterized
by the Chern number which is defined as follows:

c(P ) =
1
2π

∫

B
tr

(
P (k)

[
∂k1P (k), ∂k2P (k)

])
dk1 ∧ dk2,

where B is the first Brillouin zone and P (k) is the Bloch decomposition of P
(see, e.g., [11]).

For periodic systems, P possesses a basis with finite second moment
(known as Wannier functions) if and only if c(P ) = 0, as established in [9].
Furthermore, c(P ) = 0 if and only if there exists a basis of range (P ) which
is exponentially localized [1]. These results, which connect the existence of a
basis with finite second moment to the vanishing of the Chern number and to
the existence of an exponentially localized basis, are known as the localization
dichotomy in periodic insulators.

Since the notion of the Chern number depends on the Bloch decomposi-
tion, the Chern number is no longer well defined for non-periodic systems. For
generic systems, the Chern marker was proposed in [3,6] as an extension.

Definition 1 (Chern Marker). Let P be a projection on L2(R2) and χL be the
indicator function of the set [−L,L)2. The Chern marker of P is defined by

C(P ) := lim
L→∞

2πi

4L2
tr

(
χLP

[
[X,P ], [Y, P ]

]
PχL

)

whenever the limit on the right-hand side exists.

Note that this generalizes the Chern number as for periodic systems the Chern
number and the Chern marker agree [6,7]. Therefore, parallel to the periodic
case, it is conjectured that the Chern marker characterizes the existence of lo-
calized Wannier basis for gapped systems [6,7]. Before continuing to state the
conjecture more precisely and state the main result of this paper, which con-
firms the conjecture in one direction, let us start by making some definitions:

Definition 2. Suppose that A is a bounded linear operator on L2(Rd) →
L2(Rd). We say that A admits an exponentially localized kernel with decay
rate γ, if A admits an integral kernel A(·, ·) : Rd × R

d → C and there exists a
finite, positive constant C so that:

|A(x,x′)| ≤ Ce−γ|x−x′| a.e.

Definition 3 (s-localized generalized Wannier basis). Given an orthogonal pro-
jector P , we say an orthonormal basis {ψα}α∈I ⊆ L2(R2) is an s-localized
generalized Wannier basis for P for some s > 0 if:
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(1) The collection {ψα}α∈I spans range (P ),
(2) There exists a finite, positive constant C and a collection of points

{μα}α∈I ⊆ R
2 such that for all α ∈ I

∫

R2
〈x − μα〉2s|ψα(x)|2 dx ≤ C, (2)

where 〈x − μα〉 := (|x − μα|2 + 1)1/2 is the Japanese bracket.
We refer to the collection {μα}α∈I as the center points of the basis {ψα}α∈I .

With these definitions, the localization dichotomy conjecture for non-periodic
systems is as follows:

Conjecture (Localization dichotomy for non-periodic gapped systems). Let P
be an orthogonal projector which admits an exponentially localized kernel. Then
the following statements are equivalent:
(a) P admits a generalized Wannier basis that is exponentially localized.
(b) P admits a generalized Wannier basis that is s-localized for s = 1.
(c) P is topologically trivial in the sense that its Chern marker C(P ) exists

and is equal to zero.

Note that obviously (a) implies (b). For the other equivalence, there have
been a few works devoted to the study of non-periodic localization dichotomy.
In particular, recent work [7] has shown that (b) ⇒ (c) with s > 4. Addition-
ally, our previous work [4] has shown that (b) ⇒ (a) (and hence (b) ⇒ (c))
with s > 5/2. In this paper, we improve upon these previous works by showing
that (b) ⇒ (c) for s > 1. Formally stated, the main result of this paper is the
following:

Theorem 1. Suppose that P is an orthogonal projection on L2(R2) which ad-
mits an exponentially localized kernel. If P admits an (1 + δ)-localized gener-
alized Wannier basis for some δ > 0, then the Chern marker C(P ) vanishes.

We note that Theorem 1 establishes only one part of the localization
dichotomy, while the other direction, C(P ) = 0 implies the existence of a
localized generalized Wannier basis, is still quite open in the most general
setting. We remark that for Hamiltonians with both rational and irrational
magnetic flux it has been shown that C(P ) = 0 implies exponential localization
of a generalized Wannier basis [2].

Notations

Vectors in R
d will be denoted by bold face with their components denoted

by subscripts. For example, v = (v1, v2, v3, . . . , vd) ∈ R
d. For any v ∈ R

d,
we use | · | to denote its 	2-norm and | · |∞ to denote its 	∞-norm; that is,
|v| :=

(∑d
i=1 v2

i

)1/2, |v|∞ := maxi |vi|. For any x ∈ R
2 and a ∈ R

+, we define
χa to be the indicator function of the set [−a, a)2 and Ba(x) be the ball of
radius a centered at x.

For any f : R2 → C, we will use ‖f‖ to denote the L2-norm. For any
bounded linear operator A on L2(R2), we adopt the following conventions:
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• Let ‖A‖ denote the spectral norm of A, ‖A‖ := sup‖f‖=1 ‖Af‖.
• If A is compact, let {σn(A)}∞

n=1 denote the singular values of A in de-
creasing order (i.e., if i < j then σi(A) ≥ σj(A)).

• If A is compact, let ‖A‖Sp
=

(∑∞
n=1 σn(A)p

)1/p denote the Schatten
p-norm for any p ≥ 1.

Note that with this convention ‖A‖ = ‖A‖S∞ .
In our estimates, C is used as a generic constants whose value may change

from line to line. We also write A � B if there exists a constant C such that
A ≤ CB.

Organization

The remainder of this paper is organized as follows. In Sect. 2, we outline the
proof of Theorem 1 relying on a number of propositions (Proposition 2.4, 2.5,
2.6). Next, in Sect. 3 we state and prove three important technical estimates
which are central to the proofs of these propositions. We provide proofs of
Proposition 2.4 in Sect. 4, Proposition 2.5 in Sect. 5 and Proposition 2.6 in
Sect. 6, respectively.

2. Proof of Main Theorem

We begin our proof by recalling the notion of bounded density which was
introduced in [4] to simplify the analytic estimates. After recalling the con-
sequences of bounded density (in particular, Lemma 2.2), we will use these
results to prove the main theorem.

2.1. Bounded Density

We begin with the definition of bounded density

Definition 4. We say that a collection of points {μα}α∈I has bounded density
if there exists a constant M < ∞ such that for all x ∈ R

2 we have

#{α : μα ∈ B1(x)} ≤ M

Importantly, if orthogonal projector P has an exponentially localized ker-
nel, one can show that the center points of every well-localized basis must have
bounded density.

Lemma 2.1. Let P be an orthogonal projector which admits an exponentially
localized kernel. If {ψα}α∈I is an s-localized generalized Wannier basis for P
for some s > 0, then the center points for {ψα}α∈I have bounded density.

Proof. For this proof, let χBr(a) denote the characteristic function of the ball
Br(a): χBr(a)(x) = 1 if x ∈ Br(a) and zero otherwise. We start by observing
two important facts.
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(i) If {ψα}α∈I is an s-localized basis for s > 0 with center points {μα}α∈I ,
then we have that

‖(1 − χBr(μα))ψα‖2 =
∫

R2
(1 − χBr(μα)(x))

〈x − μα 〉2s

〈x − μα 〉2s
|ψα(x)|2 dx

� r−2s

∫

R2
〈x − μα 〉2s|ψα(x)|2 dx

Since the collection {ψα}α∈I is s-localized, there exists a constant C,
uniform in α, so that ‖(1 − χBr(μα))ψα‖2 ≤ Cr−2s. Thus, we can find a
radius R > 0 so that for all α ∈ I and all r ≥ R

‖(1 − χBr(μα))ψα‖2 ≤ 1
2
. (3)

Since ‖(1 − χBr(μα))ψα‖2 + ‖χBr(μα)ψα‖2 = 1, have that for all r ≥ R,
‖χBr(μα)ψα‖2 ≥ 1

2 .
(ii) Since P admits an exponentially localized kernel, one easily checks that

there exists a constant K so that for all a ∈ R
2:

‖χBr(a)P‖2S2
=

∫

R2

∫

R2
χBr(a)(x)|P (x,y)|2 dx dy ≤ Kr2 (4)

Now let {ψα}α∈I be an s-localized basis for some s > 0 and toward a con-
tradiction suppose that the center points of this basis does not have bounded
density.

Since the center points for this basis do not have bounded density, we can
find a point x∗ ∈ R

2 so that the ball B1(x∗) has more than 4K(R+1)2 center
points where the constant R is from Eq. (3) and the constant K is from Eq.
(4). Let us denote the set of these center points by A := {α : μα ∈ B1(x∗)}.

Due to Eq. (3) we have that

‖χBR+1(x∗)P‖2S2
≤ K(R + 1)2

but on the other hand we have that

‖χBR+1(x∗)P‖2S2
≥

∑

α∈A
‖χBR+1(x∗)ψα‖2 ≥ 1

2
(
#A) ≥ 2K(R + 1)2

where we have used that α ∈ A implies that BR(μα) ⊆ BR+1(x∗) and Eq. (3).
This is a contradiction, and hence, the center points of {ψα}α∈I must have
bounded density. �

The usefulness of the notion of bounded density is that we can effectively
treat any basis with bounded density to have its center points on the integer
lattice.

Lemma 2.2. Let {ψα}α∈I be an s-localized basis with center points {μα}α∈I .
For each m ∈ Z

2 define

Im :=
{

α ∈ I : μα ∈
[

m1 − 1
2
,m1 +

1
2

)

×
[

m2 − 1
2
,m2 +

1
2

)}

(5)

If the center points {μα}α∈I have bounded density, then:
• There exists a constant M , so that for all m ∈ Z

2, #|Im | ≤ M
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• If α ∈ Im , then the center point of ψα can be treated as m without loss
of generality.

Proof of Lemma 2.2. Since the basis {ψα}α∈I has center points with bounded
density, we know that for each m ∈ Z

2 there are at most M center points
contained in the square [m1− 1

2 ,m1+ 1
2 )× [m2− 1

2 ,m2+ 1
2 ) as it is contained in

B1(m). If ψα initially had center point μα ∈ Im , by construction |m−μα|2 ≤√
2
2 . Therefore, using triangle inequality, it is easy to check that the collection

{ψα} is s-localized if we choose m as the center point of ψα instead of μα

(perhaps with a slightly larger constant in Eq. (2)). �

Remark 2.3. As a consequence Lemma 2.2, we can relabel the set of basis
functions {ψα}α∈I as ψ

(j)
m where j ∈ {1, . . . ,#|Im |} whenever Im is non-

empty (and ψ
(j)
m is undefined if Im is empty).

Throughout our proof, we will assume that #|Im | = 1 to simplify no-
tation. Considering the case #|Im | = 1 only has the effect of introducing a
multiplicative factor of M to some of our upper bounds and does not change
the overall argument or results.

2.2. Proof Outline

As discussed in the previous section, as a consequence of bounded density, any
s-localized basis may be written as {ψm } where ψm has its center point at
m. Given a fixed choice of basis, we can now define the projector PL which
projects onto the basis functions centered within the box of size L:

PL :=
∑

|m |∞≤L

|ψm 〉〈ψm |. (6)

Throughout the rest of this paper, we will assume that projector PL is fixed
and defined through a basis {ψm } which is (1 + δ)-localized for some δ > 0.

Unlike χLP which appears in the definition of the Chern marker, the
projector PL has finite rank and range (PL) ⊆ range (P ). In some sense, the
orthogonal projector PL captures the local information of P in more controlled
way than multiplying P by the cutoff χL as in the definition of the Chern
marker. Importantly, thanks to the decay property of the basis functions {ψm },
approximating χLP with PL incurs an error which is subleading compared to
the area of χL:

Proposition 2.4. Suppose that P admits a (1 + δ)-localized basis where δ > 0.
There exists a constant C such that for all L ≥ 1:

‖χLP − PL‖S2 ≤ CL2/3

Proof. Proved in Sect. 4. �

As a consequence of this proposition, we can show that replacing χLP
with PL in the definition of the Chern marker does not change the overall
limit:
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Proposition 2.5. If P admits a (1 + δ)-localized generalized Wannier basis
where δ > 0, then

lim
L→∞

1
L2

∥
∥
∥χLP

[
[X,P ], [Y, P ]

]
PχL − PL

[
[X,P ], [Y, P ]

]
PL

∥
∥
∥
S1

= 0. (7)

Hence,

lim
L→∞

2πi

4L2
tr

(
χLP

[
[X, P ], [Y, P ]

]
PχL

)
= lim

L→∞
2πi

4L2
tr

(
PL

[
[X, P ], [Y, P ]

]
PL

)

(8)

whenever at least one of the above limits exists.

Proof. Proved in Sect. 5 �

Hence, to prove Theorem 1 it suffices to show that if P admits an (1+δ)-
localized generalized Wannier basis then

lim
L→∞

2πi

4L2
tr

(
PL

[
[X,P ], [Y, P ]

]
PL

)
= 0. (9)

Toward proving Eq. (9), we begin by observing that since PL is defined through
a (1 + δ)-localized basis, the position operator X is a bounded operator on
range (PL) for each L. In particular, we have that

‖XPL‖2 ≤
∑

|m |∞≤L

‖Xψm ‖2

≤
∑

|m |∞≤L

(
‖(X − m1)ψm ‖ + |m1|‖ψm ‖

)2

≤
∑

|m |∞≤L

(
‖(X − m1)ψm ‖ + L

)2

� L4

Similarly, it is easily checked that Y is also a bounded operator on range (PL).
We will now use the fact that X and Y are both bounded operators

on range (PL) to perform some algebraic manipulations. Using the fact that
P 2 = P and [X,Y ] = 0, one can verify that (see also [7], [5])

P
[
[X,P ], [Y, P ]

]
P = [PXP,PY P ].

Therefore, since PL = PLP = PPL, we have the following:

PL

[
[X,P ], [Y, P ]

]
PL

= PL[PXP,PY P ]PL

= PLXPY PL − PLY PXPL

= PLX(P − PL + PL)Y PL − PLY (P − PL + PL)XPL

= [PLXPL, PLY PL] + PLX(P − PL)Y PL − PLY (P − PL)XPL.
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These manipulations are justified since X and Y are bounded operators on
range (PL). Since PL is finite rank, [PLXPL, PLY PL] is traceless, and hence,

tr
(
PL

[
[X,P ], [Y, P ]

]
PL

)
= tr

(
PLX(P − PL)Y PL − PLY (P − PL)XPL

)
.

(10)

Hence, using Hölder’s inequality and (P − PL) = (P − PL)2, we have that

| tr
(
PL

[
[X,P ], [Y, P ]

]
PL

)
|

≤ ‖PLX(P − PL)Y PL‖S1 + ‖PLY (P − PL)XPL‖S1

≤ 2‖(P − PL)XPL‖S2‖(P − PL)Y PL‖S2 . (11)

Proposition 2.6. If P admits a (1 + δ)-localized generalized Wannier basis
where δ > 0 then

lim
L→∞

1
L2

‖(P − PL)XPL‖2S2
= 0 (12)

lim
L→∞

1
L2

‖(P − PL)Y PL‖2S2
= 0. (13)

Proof. Proved in Sect. 6. �

Since the mapping x �→ √
x is continuous for x > 0, Proposition 2.6 and

Eq. (11) imply that

lim
L→∞

1
L2

∣
∣
∣tr

(
PL

[
[X,P ], [Y, P ]

]
PL

)∣
∣
∣ = 0

which proves Eq. (9), completing the proof of Theorem 1.

3. Technical Estimates

In this section, we prove two technical estimates (Propositions 3.1 and 3.2)
which are fundamental in our proofs of Propositions 2.4 and 2.6.

Proposition 3.1. If P admits a (1+δ)-localized generalized Wannier basis, then
for all a, b ≥ 1:

‖(1 − χa+b)Pa‖2S2
� a2b−2(1+δ)

Proof. We can expand the Hilbert–Schmidt norm we want to bound as follows:

‖(1 − χa+b)Pa‖2S2
=

∑

|m |∞≤a

‖(1 − χa+b)ψm ‖2.

(14)

Because of the separation between the sets {m ∈ Z
2 : |m|∞ ≤ a} and

supp (1 − χa+b), we can show that each of the terms in the above sum are
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small. In particular,

‖(1 − χa+b)ψm ‖2

=
∫

R2
(1 − χa+b(x))|ψm (x)|2 dx

=
∫

R2
(1 − χa+b(x))

(1 + |x1 − m1| + |x2 − m2|)2(1+δ)

(1 + |x1 − m1| + |x2 − m2|)2(1+δ)
|ψm (x)|2 dx

Since |m|∞ ≤ a, we have the pointwise bound

(1 − χa+b(x))
(1 + |x1 − m1| + |x2 − m2|) ≤ 1

1 + (a + b) − |m|∞ ≤ 1
1 + b

.

Therefore, for each since ψm is (1 + δ)-localized we have that:

‖(1 − χa+b)ψm ‖2

≤ (1 + b)−2(1+δ)

∫

R2
(1 + |x1 − m1| + |x2 − m2|)2(1+δ)|ψm (x)|2 dx

≤ Cb−2(1+δ)

for some absolute constant C. Using this bound in Eq. (14), we conclude that

‖(1 − χa+b)Pa‖2S2
≤

∑

|m |∞≤a

Cb−2(1+δ)

� a2b−2(1+δ)

which completes the proof. �

Proposition 3.2. If P admits a (1+δ)-localized generalized Wannier basis, then
for all a, b ≥ 1:

‖χa(P − Pa+b)‖2S2
� b−δ + ab−(1+δ)

We start by stating a lemma which we prove at the end of the section.

Lemma 3.3. Suppose that {ψm } is a (1 + δ)-localized basis. For any a ≥ 1,
we have the following bounds depending on the location of m in relation to
supp (χa):

(i) If |m1| > a and |m2| > a, then

‖χaψm ‖2 � 〈|m1| − a〉−(1+δ)〈|m2| − a〉−(1+δ).

(ii) If |m1| > a and |m2| ≤ a, then

‖χaψm ‖2 � 〈|m1| − a〉−2(1+δ)

(iii) If |m1| ≤ a and |m2| > a, then

‖χaψm ‖2 � 〈|m2| − a〉−2(1+δ)

With this lemma in hand, we can now prove Proposition 3.2.
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Proof of Proposition 3.2. By the properties of the Hilbert–Schmidt norm, we
see that

‖χa(P − Pa+b)‖2S2
=

∑

‖m‖>a+b

‖χaψm ‖2

We now split the set {m ∈ Z
2 : |m|∞ > a + b} into three parts and bound

each part separately

S1 :=
{

m : |m1| > a + b and |m2| > a + b
}

S2 :=
{

m : |m1| > a + b and |m2| ≤ a + b
}

S3 :=
{

m : |m1| ≤ a + b and |m2| > a + b
}

We start with controlling S1; by applying Lemma 3.3(1), we have that
∑

m∈S1

‖χaψm ‖2 ≤
∑

m∈S1

C

〈|m1| − a〉−(1+δ)〈|m2| − a〉−(1+δ)

≤ Cb−δ
∑

m∈S1

1
〈|m1| − a〉(1+δ/2)〈|m2| − a〉(1+δ/2)

≤ Cb−δ
∑

m∈Z2

1
〈|m1| − a〉(1+δ/2)〈|m2| − a〉(1+δ/2)

where in the second to last line we have used that since m ∈ S1, min{〈|m1| −
a〉, 〈|m2| − a〉} > b. Therefore,

∑

m∈S1

‖χaψm ‖2 � b−δ

We now turn to bound the sum for m ∈ S2. Applying Lemma 3.3(2), we
have that there exists a constant C such that

∑

m∈S2

‖χaψm ‖2 ≤
∑

|m1|>a+b

∑

|m2|≤a+b

C

〈|m1| − a〉2(1+δ)

≤ Cb−(1+δ)
∑

|m1|>a+b

∑

|m2|≤a+b

1
〈|m1| − a〉(1+δ)

≤ 2C(a + b)b−(1+δ)
∑

m1∈Z

1
〈|m1| − a〉(1+δ)

where in the second to last line we have used that 〈|m1| − a〉 > b. Therefore,
∑

m∈S2

‖χaψm ‖2 � (a + b)b−(1+δ)

Repeating the same calculation for S3 making the obvious changes, we
have that

∑

m∈S3

‖χaψm ‖2 � (a + b)b−(1+δ)



Vol. 25 (2024) Algebraic Localization of Wannier Functions 3921

Hence,

‖χa(P − Pa+b)‖2S2
≤ C1b

−δ + C2(a + b)b−(1+δ) + C3(a + b)b−(1+δ)

which proves the result. �

It remains to prove Lemma 3.3 to finish the proof.

Proof of Lemma 3.3. We will focus on the case when |m1| > a and |m2| > a
and note the changes which must be made for the other cases. For these esti-
mates, we will introduce the strip characteristic functions χstrip,X

D and χstrip,Y
D

defined as follows

χstrip,X
D (x) =

{
1 |x1| ≤ D

0 otherwise
χstrip,Y

D (x) =

{
1 |x2| ≤ D

0 otherwise

Next, let us define the distances Dx := |m1| − a and Dy := |m2| − a. With
these definitions, it is clear that up to a set of measure zero:

χstrip,X
Dx

(x − m)χa(x) = 0 and χstrip,Y
Dy

(x − m)χa(x) = 0

Therefore,

‖χLψm ‖2 =
∫

R2
χa(x)|ψm (x)|2 dx

=
∫

R2
χa(x)

(
1 − χstrip,X

Dx
(x − m)

)
|ψm (x)|2 dx

=
∫

R2
χa(x)

(
1 − χstrip,X

Dx
(x − m)

) 〈x1 − m1〉(1+δ)

〈x1 − m1〉(1+δ)
|ψm (x)|2 dx

By definition of χstrip,X
Dx

, we have the pointwise bound:

1 − χstrip,X
Dx

(x − m)
〈x1 − m1〉 ≤ 1

〈|m1| − a〉
Therefore,

‖χLψm ‖2 ≤ 1
〈|m1| − a〉(1+δ)

∫

R2
χa(x)〈x1 − m1〉(1+δ)|ψm (x)|2 dx.

By similar logic,
∫

R2
χa(x)〈x1 − m1〉|ψm (x)|2 dx

=
∫

R2
χa(x)

(
1 − χstrip,Y

Dy
(x − m)

) 〈x2 − m2〉(1+δ)

〈x2 − m2〉(1+δ)
〈x1 − m1〉|ψm (x)|2 dx

≤ 1
〈|m2| − a〉(1+δ)

∫

R2
χa(x)〈x1 − m1〉(1+δ)〈x2 − m2〉(1+δ)|ψm (x)|2 dx.
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Hence,

‖χaψm ‖2 ≤ 1
〈|m1| − a〉(1+δ)〈|m2| − a〉(1+δ)

∫

R2
χa(x)〈x1 − m1〉(1+δ)〈x2 − m2〉(1+δ)|ψm (x)|2 dx.

Now recall that the geometric mean is bounded by the arithmetic mean so

〈x1 − m1〉(1+δ)〈x2 − m2〉(1+δ) ≤ 1

2

(
〈x1 − m1〉2(1+δ) + 〈x2 − m2〉2(1+δ)

)

Therefore,

‖χaψm ‖2 ≤ ‖〈X − m1〉(1+δ)ψm ‖2 + ‖〈Y − m2〉(1+δ)ψm ‖2
2〈|m1| − a〉(1+δ)〈|m1| − a〉(1+δ)

.

which implies the result since ψm is (1 + δ)-localized.
The case |m1| > a and |m2| ≤ a follows by inserting 〈x1 −m1〉2(1+δ)〈x1 −

m1〉−2(1+δ) instead of 〈x1−m1〉(1+δ)〈x2−m2〉(1+δ)〈x1 − m1〉−(1+δ)

〈x2 − m2〉−(1+δ); the case |m1| ≤ a and |m2| > a follows similarly. �

4. Proof of Proposition 2.4

Let us start by fixing some 	 where 	 ∈ [1, L) to be chosen later. We can split
the quantity we would like to bound into four parts:

‖χLP − PL‖S2 ≤ ‖χL(P − PL)‖S2 + ‖(1 − χL)PL‖S2

≤ ‖χL(P − PL+�)‖S2 + ‖χL(PL+� − PL)‖S2

+ ‖(1 − χL)(PL − PL−�)‖S2 + ‖(1 − χL)PL−�‖S2

The first term is bounded by Proposition 3.2; by letting a = L, b = 	, there
exists a constant C1 so that:

‖χL(P − PL+�)‖S2 ≤ C1(	−δ + L	−(1+δ))1/2. (15)

The next two terms are bounded by observing that

rank (PL+� − PL) ≤ 4((L + 	)2 − L2) ≤ 12L	

rank (PL − PL−�) ≤ 4(L2 − (L − 	)2) ≤ 12L	

where we have used that 	 < L. Hence, there exists a constant C2 so that

‖χL(PL+� − PL)‖S2 + ‖(1 − χL)(PL − PL−�)‖S2 ≤ C2(L	)1/2. (16)

As for the final term, we can apply Proposition 3.1 with a = L − 	, b = 	 to
conclude that there exists a constant C3 so that

‖(1 − χL)PL−�‖S2 ≤ C3(L2	−2(1+δ))1/2 (17)

Combining the bounds in Eqs. (15), (16), (17), we have that

‖χLP − PL‖S2 ≤ C1(	−δ + L	−(1+δ))1/2 + C2(L	)1/2 + C3(L2	−2(1+δ))1/2.
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Now in the above equation, we have four different terms each which have
different big–O as L → ∞:

O(	−δ) O(L	−(1+δ)) O(L	) O(L2	−2(1+δ))

Since 	 > 1, it is clear that the two dominating terms are O(L	) and
O(L2	−2(1+δ)). Since we are free to choose 	, we will make a choice of 	
so that these two terms balance. A simple calculation shows that choosing
	 = L1/(3+2δ) gives

L	 = L2(2+δ)/(3+2δ)

L2	−2(1+δ) = L2(2+δ)/(3+2δ)

L	−(1+δ) = L(2+δ)/(3+2δ)

This valid choice for 	 since δ > 0 so 1
3+2δ < 1. With this choice of 	, we have

that

‖χL(P − PL)‖2 ≤ C1(L
−δ/(3+2δ)

+ 2L
(2+δ)/(3+2δ)

)
1/2

+ C2L
(2+δ)/(3+2δ)

+ C3L
(2+δ)/(3+2δ)

Hence, for L ≥ 1

‖χLP − PL‖S2 � L(2+δ)/(3+2δ).

The proof is completed by observing that for all δ ≥ 0:
2 + δ

3 + 2δ
≤ 2

3
.

5. Proof of Proposition 2.5

For this proof, let us abbreviate the commutator in the definition of the Chern
marker as C, that is:

C :=
[
[X,P ], [Y, P ]

]
.

With this notation, we have that:

χLPCPχL − PLCPL = (χLP − PL)CPχL + PLC(PχL − PL)

Applying Hölder’s inequality to the trace norm we want to bound, we have
that

‖χLPCPχL − PLCPL‖S1

≤ ‖(χLP − PL)CPχL‖S1 + ‖PLC(PχL − PL)‖S1

≤ ‖χLP − PL‖S2‖C‖S∞‖PχL‖S2 + ‖PL‖S2‖C‖S∞‖PχL − PL‖S2 .

The right-hand side can be upper bounded by observing that
(i) Since P admits an exponentially localized kernel,

‖C‖S∞ = ‖C‖ = ‖[[X,P ], [Y, P ]]‖ ≤ 2‖[X,P ]‖‖[Y, P ]‖ � 1.

(ii) Additionally, since P admits an exponentially localized kernel, one easily
checks that

‖PχL‖S2 � L.
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(iii) Since rank (PL) ≤ 4L2 and ‖PL‖ ≤ 1, we have that

‖PL‖S2 ≤ 2L.

(iv) Proposition 2.4 implies that

‖χLP − PL‖S2 � L2/3

Combining these four bounds, we conclude that

‖χLPCPχL − PLCPL‖S1 � L5/3

Hence,

lim
L→∞

1
L2

‖χLPCPχL − PLCPL‖S1 = 0

and the proposition is proved.

6. Proof of Proposition 2.6

Our main goal in this section is to show that the following quantity is o(L2):

‖(P − PL)XPL‖2S2

The corresponding bound for Y follows by an analogous argument.
Similar to the proof of Proposition 2.5, our first step will be to introduce

a length parameter 	 ∈ [1, 1
2L) to be fixed later. For any such choice of 	, by

the properties of the Hilbert–Schmidt norm we have that:

‖(P − PL)XPL‖2S2
= ‖(P − PL)XPL−2�‖2S2

+‖(P − PL)X(PL − PL−2�)‖2S2
(18)

The second of these terms can be shown to be O(L	) using that (P −PL)(PL −
PL−2�) = 0. In particular:

‖(P − PL)X(PL − PL−�)‖2S2
=

∑

L−2�<|m |∞≤L

‖(P − PL)Xψm ‖2

=
∑

L−2�<|m |∞≤L

‖(P − PL)(X − m1)ψm ‖2

≤
(

sup
m

‖(X − m1)ψm ‖2
) ∑

L−2�<|m |∞≤L

1

� L	.

Therefore, this term is o(L2) so long as we choose 	 = o(L).
Returning to the first term in Eq. (18), using that (P − PL)PL−2� = 0

we have that

‖(P − PL)XPL−2�‖2S2
=

∑

|m |∞≤L−2�

‖(P − PL)(X − m1)ψm ‖2

We will now show that each of the terms in the above sum are small using
Proposition 3.2. In particular, we have the following easy lemma
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Lemma 6.1. If ψm is (1+δ)-localized with center point m where |m|∞ ≤ L−2	,
then

‖(P − PL)(X − m1)ψm ‖ � 	−δ + L	−(1+δ)

Proof. We start by inserting χL−�+(1−χL−�) and applying triangle inequality

‖(P − PL)(X − m1)ψm ‖
≤ ‖(P − PL)χL−�(X − m1)ψm ‖ + ‖(P − PL)(1 − χL−�)(X − m1)ψm ‖

By Proposition 3.2, we have that

‖(P − PL)χL−�(X − m1)ψm ‖ ≤ ‖(P − PL)χL−�‖‖(X − m1)ψm ‖ � �−δ + L�−(1+δ).

By repeating a similar argument as used in the proof of Proposition 3.1, it is
easily verified that

‖(P − PL)(1 − χL−�)(X − m1)ψm ‖ ≤ ‖(1 − χL−�)(X − m1)ψm ‖ � 	−δ

which proves the lemma. �

Using Lemma 6.1, it follows that:

‖(P − PL)XPL−�‖2S2
� L2(	−δ + L	−(1+δ))2.

For our final step, we will choose 	 = L2/(2+δ). Since δ > 0, note that this
choice of 	 is o(L) consistent with our previous requirement. Furthermore, we
have that

‖(P − PL)XPL−�‖2S2
� L2(L−2δ/(2+δ) + L−δ/(2+δ))2.

Since δ > 0, we conclude that

lim
L→∞

1
L2

‖(P − PL)XPL−�‖2S2
= 0

which completes the proof.
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