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Dually Weighted Multi-matrix Models
as a Path to Causal Gravity-Matter Systems

Juan L. A. Abranches, Antonio D. Pereira and Reiko Toriumi

Abstract. We introduce a dually-weighted multi-matrix model that for a
suitable choice of weights reproduce two-dimensional Causal Dynamical
Triangulations (CDT) coupled to the Ising model. When Ising degrees of
freedom are removed, this model corresponds to the CDT-matrix model
introduced by Benedetti and Henson (Phys Lett B 678:222, 2009). We
present exact as well as approximate results for the Gaussian averages
of characters of a Hermitian matrix A and A2 for a given representation
and establish the present limitations that prevent us to solve the model
analytically. This sets the stage for the formulation of more sophisticated
matter models coupled to two-dimensional CDT as dually weighted multi-
matrix models providing a complementary view to the standard simplicial
formulation of CDT-matter models.

1. Introduction

The search for a consistent theory of quantum gravity that is valid up to ar-
bitrarily short length scales remains an open challenge in theoretical physics.
The direct quantization of the gravitational field described by general relativity
using the standard perturbative field-theoretic techniques renders a perturba-
tively non-renormalizable quantum field theory (QFT), see, e.g., [1–3]. In the
history of the construction of quantum theories of the fundamental interac-
tions, perturbative non-renormalizability of a given well-grounded theoretical
model was circumvented by the replacement of such a model by a more funda-
mental description either by the addition of new fields or by the discovery that
the degrees of freedom to be quantized were different ones. As such, successful
models were constructed and the fulfillment of perturbative renormalizability
became a paradigmatic prescription. Such an attitude could be taken in the
case of quantum gravity. Perhaps, the Einstein-Hilbert action is not the cor-
rect starting point and just corresponds to an effective description of classical
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gravity at sufficiently low energies and the fundamental degrees of freedom are
completely different. Alternatively, one could add more fields that restore a
well-behaved ultraviolet behavior for the would-be quantum theory of gravity.
In all those cases, there is an insistence in keeping the tools of perturbative
renormalization as the guiding principle in the construction of the underlying
QFT. However, as it is well-known nowadays, perturbative renormalizability
is neither necessary nor sufficient to define a theory that is valid across ar-
bitrary length scales. The existence of Landau poles in scalar field theories
in four dimensions or in quantum electrodynamics shows that perturbatively
renormalizable theories might require the introduction of a ultraviolet cutoff
at some finite energy scale in order to be non-trivial, see, e.g., [4–7]. In prac-
tice, however, such Landau poles live at scales far beyond our experimental
capabilities and therefore are harmless. Similarly, by introducing a cutoff for
the standard QFT of general relativity, one has a perfectly well-defined frame-
work to compute quantum corrections to gravitational processes at energy
scales below the cutoff [8–10]. Hence, constructing a fundamental theory of
quantum gravity, as opposed to such an effective field theory does not neces-
sarily require the construction of a perturbatively renormalizable QFT. One
possibility to define a QFT that is valid up to arbitrarily high energies is by
demanding that the coupling constants that enter physical observables reach
a renormalization group fixed point. When this happens, the theory attains
a scale-invariant regime and the ultraviolet cutoff can be safely removed. A
paradigmatic example is quantum chromodynamics which is asymptotically
free, i.e., the theory reaches the free (or Gaussian) fixed point in the ultravio-
let,1 see [11,12]. In this case, since the coupling becomes sufficiently small at
high energies, perturbation theory is applicable and can probe the existence
of such a fixed point. Alternatively, the theory could have an interacting (or
non-Gaussian) fixed point in the ultraviolet. In this situation, the values of
the couplings at the fixed point might not be small and perturbation theory
is not sufficient to probe it. When such a non-trivial fixed point exists,2 we
say that the QFT is asymptotically safe. In [13], Weinberg put forward the
conjecture that quantum gravity could be realized as an asymptotically safe
QFT. Evidence for that was obtained through the so-called 2 + ε expansion
[14–17]. However, due to its non-perturbative nature, the search for such a
fixed point needs different techniques with different systematics in order to
make its finding a robust claim. For many years, this conjecture was not in-
vestigated systematically due to the lack of suitable technical tools. However,
during the 1990s, this situation suffered a twist due to the development of two
major frameworks: the use of functional or non-perturbative renormalization
group equations to quantum gravity, see, e.g., [18] and reviews [19–24] and ref-
erences therein and the proper understanding of how to put quantum gravity
on a lattice in a consistent fashion with causality constraints, see [25,26] and
reviews [27,28] and references therein. Those computational techniques can

1In this case, the theory is also perturbatively renormalizable.
2Actually, besides having a non-trivial fixed point, it is necessary that just finitely many
couplings are adjusted in order to reach it, otherwise the theory is not predictive.
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be viewed as complementary approaches to the search for a non-perturbative
ultraviolet fixed point for quantum gravity and it has become usual to call
the search for the fixed point using continuum techniques as the asymptotic
safety approach while the search for a suitable continuum limit of discretized
path integrals with causal constraints as the Causal Dynamical Triangulations
(CDT) program. Both lines of research have provided a large body of evidence
for a suitable continuum limit in four dimensions. We refer the reader to the
references in the reviews above mentioned for a comprehensive list of the most
recent results in those fields.3

Despite the tremendous progress achieved in the physically motivated
four-dimensional case, the employment of non-perturbative techniques require
substantial truncations and approximations that still need a lot of effort to
produce quantitatively reliable results for those universal quantities, i.e., ob-
servables that could tell the existence of the continuum limit. Yet a fruitful
playground is to consider two-dimensional quantum gravity. In this case, the
interplay between continuum and discrete descriptions of the path integral
of quantum gravity has witnessed a significant progress over the last decades
ranging from the development of novel techniques to perform explicit calcula-
tions to rigorous mathematical results. We refer to, e.g., [34,35] for reviews on
the topic. In particular, the Dynamical Triangulation program was born in two
dimensions within an Euclidean setting while its continuum counterpart is en-
coded in Liouville quantum gravity. In particular, a successful implementation
of the discretization of the path integral of quantum gravity and thus a sum
over geometries and possibly topologies can be achieved by purely combina-
torial means with the use of the so-called matrix models [34,36–43]. Triangles
can be taken as dual representations of cubic-matrix vertices and Feynman
diagrams of such a model are simply triangulations of two-dimensional sur-
faces. The perturbative expansion of matrix-models partition functions can
be organized in powers of 1/N with N standing for the size of the Hermit-
ian random matrices and each power of such an expansion is associated with
a specific genus g. Such a remarkable expansion allows for the investigation
of continuum limits, e.g., where just spherical topologies contribute (the so-
called planar limit) or where all topologies are taken into account (double-
scaling limit). Thanks to the rich combinatorial framework behind the the-
ory of random matrices, very powerful results could be established in such a
discrete-to-continuum approach. The two-dimensional case is simple enough
so that one can still solve the Dynamical Triangulation model with no need
to make use of random matrices, but such a perspective opens up the pos-
sibility to think about higher-dimensional discrete approaches as theories of
higher-order tensors. So far, the higher dimensional tensor models were not

3We highlight that both approaches follow the inspiring idea put forward by Weinberg but

there is no reason a priori to expect that the would-be continuum limits belong to the

same universality class. In particular, CDT implements a Lorentzian path integral while

the continuum computations employing the functional renormalization group are mostly

Euclidean, with few exceptions, see, e.g., [29–33].
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successful in producing a suitable continuum limit in higher dimensions. Pri-
marily, the main obstacle was the lack of the analogue of the 1/N -expansion
in matrix models. Such a difficulty was lifted thanks to the works of Gurau
that introduced the so-called colored tensor models [44–47]. Yet the continuum
limits obtained from the colored tensor models up to date do not feature an
extended-geometry-like phase very much in agreement with the simulations
performed for Dynamical Triangulations in dimensionality greater than two
[48–52], see however [53–61]. This suggests that one could inspect more in-
tricate continuum limits from those models, see, e.g., the realization of such
a reasoning following the functional renormalization group [62–65], or that a
restriction to the configuration space should be implemented. This is precisely
what is achieved with CDT which displays a robust body of evidence that
such a suitable continuum limit exists in higher dimensions [25,66–75]. Nev-
ertheless, the analogue of CDT in a tensor-model language is still unknown.
In this paper, we explore a matrix model that would be such a realization in
two dimensions introduced by Benedetti and Henson in [76]. In essence, this
model implements the (non-local) global time foliation of CDT together with
the avoidance of spatial topology change by means of local constraints. This is
achieved by the so-called dually weighted matrix models introduced in [77–80].
On top of the CDT configurations generated by the Benedetti-Henson model,
we will introduce degreess of freedom arising from the Ising model, i.e., we
develop a (multi-)matrix model of the Ising model coupled to CDT in two di-
mensions. Alternatively, the combinatorial models can be enriched with more
structure such as group-theoretic data giving birth to the so-called Group Field
Theories which may or may not include a Lorentzian setting [81–84]. Thus,
two-dimensional quantum gravity might be too simplistic for some purposes
but certainly is an inspirational source for more sophisticated candidates in
higher dimensions.

Moreover, a realistic description of our Universe must accommodate mat-
ter degrees of freedom whose fluctuations can affect the existence of a suitable
continuum limit. Hence, it is conceivable that our comprehension of the poten-
tial mechanism that drives quantum gravity asymptotically safe (irrespective
of the approach followed here) depends on a simultaneous treatment of gravita-
tional as well as matter degrees of freedom. This ambitious goal has witnessed
significant progress over the last two decades both from the point of view of
the functional renormalization group as well as from lattice simulations and
encouraging results were found [23,28,85–87]. In the present work we provide
several results regarding a simple but still quite rich gravity-matter model:
two-dimensional CDT coupled to the Ising model. There are several motiva-
tions to look at this model but we emphasize the following: Implementing the
causality constraint at the level of a matrix model is a first step towards its
implementation in tensor models. As it is known, such a model does not have
a known exact solution and developing appropriate tools to deal with it is
mandatory. The inclusion of the Ising model produces a multi-matrix model
which is interesting on its own. Clearly, having the Ising model as the matter
component is tremendously far from the rich structure of the Standard Model
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of Particle Physics coupled to quantum gravity. Yet the purpose here is to ex-
plore the impact of the dynamical (and causal) lattice to the Ising model and
vice-versa. We emphasize that matrix models for Euclidean two-dimensional
gravity coupled to the Ising model were investigated in the past [88–91] as well
as its higher-dimensional version [92–94]. Moreover, the coupling between the
Ising model and CDT was also investigated since the birth of two-dimensional
CDT, see, e.g., [95–101]. We establish several properties of such a CDT-Ising
multi-matrix model paving the way for a future complete solution or making
its structure well-grounded for studies using non-perturbative tools such as the
functional renormalization group methods4 or numerical simulations.

This paper is organized as follows: In Sect. 2, we will briefly review
CDT-like matrix model as a dually weighted matrix model as introduced
by Benedetti and Henson [76]. In Sect. 3, we develop an analysis concern-
ing topologies which admit global foliations, specifically within the Benedetti-
Henson pure CDT-like matrix model (in Sect. 2) and further on non-orientable
symmetric matrix models. In Sect. 4, we discuss briefly the well-known two-
matrix models which can be interpreted as Ising model on random two-surfaces.
In Sect. 5, we present our CDT-matrix model coupled to the Ising model by
combining the models in Sects. 2 and 4. In Sect. 6, we study the properties of
the matrices Cm which, in the case of m = 2, is responsible for generating the
global foliation structure on the dual triangulation graphs of the CDT-like ma-
trix models. Theorem 6.1 is one of the main results of this paper. In Sect. 7, we
present the character expansions for partition functions of the two models, i.e.,
pure CDT-like matrix model by Benedetti-Henson and CDT-like matrix model
coupled to Ising model presented in Sects. 2 and 5 respectively. We base our
further analyses on these character expansions. In Sect. 8, we analyze the char-
acter expansion of the partition function for the latter model (i.e., CDT-like
matrix model coupled to Ising model) and present an expression in Proposi-
tion 8.1 in terms of Clebsch-Gordan coefficients using Weingarten calculus. In
Sect. 9, we evaluate Gaussian averages of characters for a given representation
r, 〈χr(A)〉0 and 〈χr(A2)〉0 for CDT-like matrix models presented in Sect. 2,
using various techniques, e.g., Schur-Weyl duality, theory of symmetric group
algebra, etc. Theorem 9.6, one of our main results, is related to Brauer alge-
bra. In Sect. 10, we conclude by revisiting and summarizing the various results
reported in this work.

2. Causal Dynamical Triangulations as a Matrix Model: A
Short Review

Let us describe via matrix model the Causal Dynamical Triangulation (CDT)
in two dimensions. The CDT was first worked and solved in [108] as a lattice
model. In [76], a definition through a matrix model was given, and we follow

4Functional renormalization techniques were developed for matrix models, see, e.g., [102–
106]. There are studies involving the functional renormalization group equation applied to
the Benedetti-Henson model, see [107].
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this definition. Let us also refer to this model as pure5 CDT-like matrix model
of Benedetti-Henson. The CDT-like matrix model graphs can be represented
as ribbon graphs just like other matrix models. In fact, these CDT-like matrix
models fall into a class of so called dually weighted models. In [78], Kazakov,
Staudacher, and Wynter introduced a so called dually weighted graphs where
different weights are assigned for vertices with different coordination num-
bers and for faces with different lengths. As one will see below in elaborating
the features of such CDT-like matrix models, our models generate the dually
weighted graphs only with vertices with coordination number 3, and with faces
with arbitrary lengths however, of particular type (restricting to only having
two edges of a certain type, which we will name timelike).

Definition 2.1. A prime ribbon graph is a set of topological discs and topo-
logical rectangles satisfying the following properties: no two rectangles or two
discs intersect; each rectangle has exactly one pair of opposite sides that are
contained in disc’s circumferences, and this is the only intersection between
rectangles and discs.

Definition 2.2. A rectangle’s edge that is not contained in a disc is called a
strand.

Definition 2.3. A ribbon graph is the boundary of the union of the discs and
rectangles of a prime ribbon graph.

Additionally, one can represent such ribbon graphs as multigraphs. Given
a ribbon graph, we assign a vertex to each disc and an edge to each rectangle.
If a disc and a rectangle are connected, i.e., they intersect, then respective
vertex and edge are connected. See Fig. 1 for an example. We may also call
a ribbon graph’s discs and rectangles as vertices and edges, respectively. We
define a face as a closed curve formed by strands, and we carry the notion
of faces from the ribbon graph to the multigraph. An example of a face of a
ribbon graph is shown in Fig. 1a.

The CDT-like matrix model ribbon graphs are edge-colored (not proper),
partitioned into two sets: spacelike edges and timelike edges. Together with the
defining properties of a ribbon graph and the edge coloring, the CDT ribbon
graph also has the following defining properties (CDT conditions):

1. Every vertex is three valent and has exactly one timelike edge and two
spacelike edges incident to it.

2. Every face has either two timelike edges or none.
Notice that the faces can have any number of spacelike edges. Figure 2

shows a representation of the vertices and edges. A triangulation is obtained
with the dual graph; the dual graph is defined by associating a vertex with
each face of the graph, and if two faces share an edge, their respective vertices
are connected by an edge (see Fig. 2b). This also leads to each vertex in the
graph being associated with a face in the dual graph, and since all vertices

5We specifically refer pure (gravity) because later, we will talk about a matrix model which
generate random two-surfaces (gravity) with matter.
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Figure 1. A face of a CDT ribbon graph (color figure online)

Figure 2. Components of the CDT ribbon graph

are three valent, all faces in the dual graph are triangles. In Fig. 3, we show
an example of a sphere triangulation that satisfies the CDT conditions given
above.

A matrix model that generates ribbon graphs, satisfying these defining
CDT conditions above can be constructed by associating a Hermitian matrix
A with spacelike edges of a ribbon graph and a Hermitian matrix B to timelike
edges of a ribbon graph. An auxiliary partition function for such a pure CDT-
like matrix model is given by

Z =
∫

dAdB e−NTr[ 1
2A2+ 1

2 (C2
−1B)2−gA2B]. (1)

The action (the negative of the exponent in (1)) of the model has the term
−NgA2B, responsible for the property that every vertex have exactly two
spacelike edges and one timelike edge. A matrix C2 is introduced in the qua-
dratic term of B, and it satisfies, for a positive integer p and in the large N
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Figure 3. An example of a CDT triangulation graph (dual
of a corresponding CDT ribbon graph). spacelike edges in the
ribbon graph are dual to timelike edges in the dual triangula-
tion graph, and vice-versa. The vertices of the dual triangula-
tion graph can have two or zero spacelike edges (in red) and
any number of timelike edges (in blue) (color figure online)

limit,

Tr[(C2)p] = Nδp,2. (2)

This condition on C2 is what sets the property that faces have only two or
zero timelike edges. In Sect. 6, we study this matrix C2 in more detail. Notice
that this constraint (2) on C2 is overdetermined, once p > N . Therefore, the
condition (2) on C2 can only be imposed in the large N limit. The Gaussian
average of a function f(A,B) is defined by

〈f(A,B)〉0 =
∫

dAdB f(A,B) e−NTr[ 1
2A2+ 1

2 (C2
−1B)2]

∫
dAdB e−NTr[ 1

2A2+ 1
2 (C2

−1B)2]
, (3)

and we find the following properties:

〈AijAkl〉0 =
1
N

δikδjl, (4)

〈BijBkl〉0 =
1
N

C2ikC2jl, (5)

〈AijBkl〉0 = 0. (6)

Since the condition on C2 in (2) can only be set at large N , the partition
function for CDT is only be obtained in the large N limit,

ZCDT = lim
N→∞

Z. (7)
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3. Properties of the Benedetti–Henson Model: Allowed
Topologies and (Non-)orientability

The two defining properties, albeit being local, put a global constraint on
the topologies that our ribbon graphs (and in their dual triangulation) may
represent. Studying the properties of the elements of the graph enables us to
determine the values of Euler characteristic which are allowed. The analysis
can be done either with the ribbon graphs or with the triangulations dual to
them. Here, let us work on the ribbon graphs.

Let us study some properties satisfied by the faces. A face that has no
timelike edges is simply a set of connected spacelike edges. See Fig. 4b. For a
face that has two timelike edges, since the vertices can only have one timelike
edge, a timelike edge in a face is always a neighbor of two spacelike edges of
the face. See Fig. 4a. This way, the edges of a given face of the latter type form
a sequence composed by a timelike edge, a several spacelike edges, a timelike
edge, a several spacelike edges, and then connecting back to the first timelike
edge. Thus, this type of face has two disjoint sets of connected spacelike edges,
and these two sets are separated by timelike edges. Let us call these the two
sets as spacelike boundaries of a face.

Definition 3.1. A strip is defined as a set that contains faces which are sequen-
tially connected by timelike edges, and also contains the edges and the vertices
of these faces. Each face in a strip is glued by timelike edges to either two faces
in the same strip (it can also glue to itself) or none, and one timelike edge is
shared exactly by two faces (these two faces are possibly the same face). If a
spacelike edge has multiplicity two in one face or if it belongs to two faces of
the same strip, consider those two appearances as distinct elements of a strip.

Definition 3.2. A boundary of a strip is defined as a set of spacelike edges that
are sequentially connected by vertices.

Definition 3.3. A interior of a strip is defined as the set of faces and timelike
edges in a strip.

Definition 3.4. A regular strip is a strip that has two boundaries (see Fig. 6a).

Definition 3.5. A singular strip is defined as a strip composed by a face with
no timelike edges (see Fig. 6b).

Definition 3.6. A Möbius strip is a non-singular strip that has one boundary
(see Fig. 6c).

Some important properties satisfied by CDT ribbon graphs are:
1. Every face belongs to a strip and is in only one strip.
2. A strip has only spacelike edges in its boundary, and all spacelike edges

are in boundaries of strips.
3. Since there is a finite number of faces, there is a finite number of strips.
4. Every non-singular strip is a periodic sequence which alternates between

faces and timelike edges; and every boundary of a strip is a periodic
sequence which alternates between spacelike edges and vertices.
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Figure 4. Components of the CDT ribbon graph. Spacelike
edges are shown in red, while timelike edges are shown in blue
(color figure online)

Figure 5. Steps of the demonstration of properties 5 and 6
of CDT ribbon graphs

5. A strip has only one or two boundaries.
6. A boundary of a strip either bounds one other strip or connects the strip

to itself.

Properties 1 to 4 are easy to see, but let us take a closer look at property
5. The singular strip is just a face with only spacelike edges, thus as a strip it
has only one boundary, as shown in Fig. 6b.

For a regular strip or a Möbius strip, we follow the steps below:

• Consider one of its faces, call it F1. F1 has two spacelike boundaries, call
them A1 and B1.

• Consider also a face, call it F2, that is connected to the previously consid-
ered face F1 above by a timelike edge. F2 also has two spacelike bound-
aries. Call them A2 and B2. (See Fig. 5a.)
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Figure 6. Types of strips present in a CDT ribbon graph.
spacelike edges are shown in red, while timelike edges are
shown in blue (color figure online)

• These two boundaries are each connected to a boundary of the previous
face by the vertices the faces share. Together, the two faces create two
extended spacelike boundaries, A1 ∪ A2 and B1 ∪ B2.

• This process is inductively repeated to k connected faces in the strip, and
the number of spacelike boundaries is kept two, A1 ∪ A2 ∪ · · · ∪ Ak, and
B1 ∪ B2 ∪ · · · ∪ Bk.

• Call l the number of faces in the strip. Considering property 4 of CDT
ribbon graphs, when the first and the last faces are connected, there are
two possibilities:

1. The two extended boundaries close into A1 ∪ A2 ∪ · · · ∪ Al and
B1 ∪ B2 ∪ · · · ∪ Bl, forming a regular strip, as shown in Fig. 6a.

2. The extended boundaries connect to each other, A1 ∪A2 ∪· · ·∪Al ∪
B1 ∪ B2 ∪ · · · ∪ Bl, creating only one closed boundary, forming the
Möbius strip as shown in Fig. 6c.

We can obtain the property 6 in a similar manner as we did property 5
above:

• Given a spacelike edge e1, consider the two faces (that might be the same)
that share e1. Call these faces f1 and g1.

• Consider the strips (that might be the same) that contain the faces f1

and g1 respectively. Call them s and t respectively.
• Consider now a spacelike edge, call it e2 that has a common vertex with

the previous spacelike edge e1. Call f2 and g2 the two faces that e2 belongs
to.

• The faces f2 and g2 either satisfy f2 ∈ s and g2 ∈ t, or satisfy f2 ∈ t and
g2 ∈ s. Without the loss of generality, assume the first case. (See Fig. 5b.)

• The two neighboring spacelike edges have the same two strips at its sides,
s and t.

• Inductively, when considering the entire closed cycle of spacelike edges,
either s �= t or s = t. Therefore, there are either two or one strip at its
sides.
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Consequently, similarly to the way faces are connected by the timelike
edges to form a strip, the entire graph is construted by strips connected by
spacelike edges. Together with property 6, since the graph is connected, every
strip is connected to each other by a sequence of strips. Therefore, one can say
that a graph is a sequence of strips, and there are three types of strips defined
in 3.5, 3.4, and 3.6.

Possible topologies
Let us now take a look at the Euler characteristics of the CDT ribbon graphs.
The elements of these ribbon graph can be decomposed into two disjoint sets:
boundaries of strips (defined in 3.2) and interiors of strips (defined in 3.3).
Setting V as the number of vertices, F the number of faces, ES the number
of spacelike edges, ET the number of timelike edges, and E the total number
of edges, the Euler characteristics can be written as:

χ = V − E + F = V − ES − ET + F = χB + χI , (8)

with χB = V − ES being the contribution to the Euler characteristics by the
boundaries of strips, and χI = F − ET being the contribution by the interiors
of strips. It is always true that χB = 0, since every vertex has two spacelike
edges, and every edge connects two vertices, thus 2V = 2ES . For χI , we need
to differentiate between different types of strips. For the regular strip and
the Möbius strip, since their faces have two timelike edges and every edge is
shared by two faces, these strips have the property 2F = 2ET , thus χI = 0.
As for a singular strip, since it is composed of only one face and there are no
timelike edges, χI = 1. Therefore, the Euler characteristic equals the number
of singular strips:

χ = Fs, (9)

where Fs is the number of faces with no timelike edges, therefore it is equal to
the number of singular strips.

From properties 5 and 6 we also get an important fact: The strips can
be ordered by sequencing them according to having a common boundary. This
sequencing induces global foliation, which is one of the fundamental properties
of the definition of CDT [108]. This sequence may be periodic (and therefore
called infinite), just as the strips themselves are a periodic sequence of faces.
The sequence also may be finite, starting with a singular or Möbius strip, as
they can only share a boundary with one other strip, and may end also with
a singular or Möbius strip. The singular strip, then, can only appear at most
twice. Therefore, since the Euler characteristics equals the number of singular
strips, the Euler characteristics can only be 0, 1 and 2.

• Considering only orientable surfaces6, we know that the Euler character-
istics can be expressed as χ = 2− 2g, where g is the genus of the surface.
The possibilities follow:

1. When the graph has two singular strips, we find that the genus
is 0, thus the surface is a sphere. This graph has the sequence of

6One can realize generating orientable two-surfaces by considering Hermitian matrix models.
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strips starting with a singular strip, having some regular strips in
the middle, and then ending in another singular strip.

2. When the graph has one singular strip, there is no solution since
there is no orientable surface with χ = 1 (corresponding to g = 1/2).

3. Lastly, when the graph has no singular strips, the genus is 1, there-
fore the surface is a torus, composed of a periodic sequence of regular
strips.

• When we consider nonorientable surfaces7, the Euler characteristics now
assumes the form

χ = 2 − (2g + c), (10)

where c is the number of cross caps.
1. For a graph with two singular strips, (10) can only be satisfied for

g = 0 and c = 0. Then, the topology is of a sphere.
2. When the graph has only one singular strip, the equation (10) can

now be satisfied with g = 0 and c = 1, thus we have the topology of
the projective plane.

3. Lastly, when the graph has no singular strips, the equation (10)
has two solutions. One solution is g = 1 with c = 0, implying it is a
torus. The other solution is g = 0 with c = 2, showing the possibility
of the topology of the Klein bottle.

Existence and construction of topologies
We have shown above that these topologies are allowed, but it does not yet
mean that they indeed exist. For this, let us define orientation of faces and
strips:

Definition 3.7. Orientation of a face: The edges of a face form a closed curve
and thus have the usual notion of orientation. Two faces that share an edge
are said to have a compatible orientation if the directions of the closed curves
are opposite in the common edge. We extend this notion to any two faces by
transitivity.

Definition 3.8. Orientation of a strip: A regular strip admits a compatible
orientation among all of its faces and we define the orientation of a strip as
the orientation of one of its faces. A Möbius strip does not admit a compatible
orientation among all of its faces. Two strips are said to have a compatible
orientation if a face from one strip has compatible orientation to a face of the
other strip.

In the following, we argue that indeed all the possible topologies discussed
above can exist by a simple construction of putting strips together to form the
sequence of strips.

1. Sphere: Start the sequence with a singular strip, follow it by a sequence
of regular strips, and end the sequence with another singular strip. See
Fig. 7.

7One can realize generating nonorientable two-surfaces by considering symmetric matrix
models.
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Figure 7. Construction of a sphere graph. The empty cir-
cle represents a singular strip, the circle with two lines inside
represents a regular strip, and the two non-intersecting lines
connecting two circles represent a boundary that keeps the ori-
entation compatible. This example shows four regular strips,
but any non-negative integer is possible

Figure 8. Construction of a torus graph. The circle with two
lines represents a regular strip, and the two non-intersecting
lines connecting two circles represent a boundary that keeps
the orientation compatible. This example shows six regular
strips, but any non-negative integer is possible

2. Torus: Given a finite sequence of regular strips, glue the first strip to the
last in way that the orientation is compatible. See Fig. 8.

3. Projective plane: (i) Start the sequence with a singular strip, follow it by
a sequence of regular strips (or none), and end it with a Möbius strip. See
Fig. 9a. (ii) Alternatively, start the sequence with a singular strip, follow
it by a sequence of regular strips, and glue the last boundary to itself as a
cross-cap. See Fig. 9b. The last boundary must have even length for this
to be possible.

4. Klein bottle: (i) Start the sequence with a Möbius strip, follow it by
a sequence of regular strips (or none) and end it with another Möbius
strip. See Fig. 10a. (ii) Alternatively, we can change one or both of these
Möbius strips for (a) cross-cap(s). See Fig. 10b, c. (iii) Furthermore, we
can also have a periodic sequence of regular strips, and we glue the first
strip to the last one in a way that their orientations are not compatible.
See Fig. 10d.
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Figure 9. Two different ways of constructing the projective
plane. The empty circle represents a singular strip, the cir-
cle with two lines represents a regular strip, the two non-
intersecting lines connecting two circles represent a boundary
that keeps the orientation compatible, and the line going in
and out of the same circle represents a cross-cap. Both exam-
ples show four regular strips, but any non-negative integer is
possible

Figure 10. Four different ways of constructing the Klein
bottle. The circle with two lines represents a regular strip,
the circle with one line represents a Möbius strip, and the
two non-intersecting lines connecting two circles represent a
boundary that keeps the orientation compatible. These exam-
ples are constructed with four regular strips, but any number
of them is possible

Figure 11. Components of the two-matrix model ribbon graph
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Figure 12. An example of a part of an two-matrix model
graph described by the action (12). The solid lines represent
the ribbon graph. The dashed lines represent the dual trian-
gulation. The coloring of the vertices represent the spin

4. Two-Matrix Model Representing Ising Model on Random
Two-Surfaces

Here, let us introduce two-matrix models which have been widely studied start-
ing with Itzykson and Zuber [109], followed by many others [110–113].

Consider the partition function,

ZIM = N−2 ln
∫

dM+dM−e−SIM , (11)

which is a generating function of connected ribbon graphs. Here M+ and M−
are N × N Hermitian matrices and for a Hermitian matrix M , the measure
applied is dM =

∏
i<j Re(Mij)Im(Mij)

∏
i Mii. For couplings γ and g,

SIM = N Tr
[
1
2
M2

+ +
1
2
M2

− − γ−2M+M− − gM3
+ − gM3

−

]
(12)

is said to be the action of the system [89,114]. One can interpret that the spins
are located on the vertices (of Feynman ribbon graphs generated perturbatively
by this action) represented by the terms in the action M3

+ and M3
−. Figure 11

shows how these elements appear in the ribbon graph, and Fig. 12 shows an
example of a ribbon graph represented as a graph.

We can interpret g as a cosmological constant, since it is related to the
volume of the universe. In the ribbon graph, the volume appears as the number
of vertices, while in the dual graph, the triangulation, it is the number of faces.
The coupling γ can be related to the Ising temperature T by γ = e−T −1

. For
a Gaussian model with partition function

Z0 =
∫

dA e−NTr 1
2A2

, (13)
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with a Hermitian matrix A, consider the average

〈f(A)〉0 =
1
Z0

∫
dA f(A) e−NTr 1

2A2
, (14)

where 0 denotes the Gaussian average. Wick’s theorem says that the com-
putation of this function can be decomposed by taking the products of the
propagators related to each edge in our Feynman graphs, where the propaga-
tors are simply the mean values taken for g = 0,

〈M+ijM+kl〉0 = 〈M−ijM−kl〉0 =
1
N

1
1 − γ−4

δilδkj , (15)

and

〈M+ijM−kl〉0 =
1
N

γ−2

1 − γ−4
δilδkj . (16)

Diagonalizing the kinetic term in (12) takes us to another interesting version of
the model, where now one can interpret that the spins are localized on the faces
of the matrix model graphs (i.e., ribbon graphs) rather than on the vertices of
the matrix model graphs. We achieve this by a few change of variables. First
change to the Hermitian matrices K and L given by

M+ =
1√
2
(K + L) and M− =

1√
2
(K − L), (17)

so that

SIM = N Tr
[
1
2
(1 − γ−2)K2 +

1
2
(1 + γ−2)L2 −

√
2gK3 − 3

√
2gKL2

]
, (18)

and with a last substitution to the couplings γ′, g′, and Hermitian matrices U
and V given by

γ′−2 =
γ − γ−1

γ + γ−1
, g′ = γ′−3/2

√
2g

(1 − γ−2)3/2
, U2 = γ′(1 − γ−2)K2,

V 2 = γ′(1 − γ−2)L2, (19)

we obtain

SIM = N Tr
[
1
2
γ′−1U2 +

1
2
γ′V 2 − g′U3 − 3g′UV 2

]
, (20)

which is the Ising model where the spins, therefore ± signs, are assigned for
each face of Feynman ribbon graphs. Here, U (resp. V ) can be thought of
as being associated with a ribbon graph edge shared by ribbon graph faces
of the same (resp. opposite) parity. For a third degree vertex, since there is
a face between each neighboring edges, there are three faces (some may be
the same) around it. Either the three faces have the same parity, hence the
term U3, or one of the three has a parity different from the other two, hence
the term 3U V 2. For topological reasons, this interpretation is only valid for
planar graphs. For example, consider the torus graph shown in Fig. 13. This
graph can be generated by (20) if we do not restrict ourselves to planar graphs.
Edges associated with U are in green, and edges associated to V are in orange.
In this configuration, the placement of the green edges around almost all faces
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Figure 13. A torus graph with an edge configuration that
does not allow an assignment of spin to the faces of ribbon
graphs

would imply that all faces have the same spin, while the existence of orange
edges would imply that some faces have opposite spins, thus a contradiction.

Note however, that the action (20) after simply the change of variables
should contain exactly the same information as the original action (12). The
apparent restriction discussed above is only associated with the interpretation
that we employed for U and V representing the same or opposite parities
respectively.

5. Ising Model Coupled to CDT via Matrix Model

We present a matrix model that describes Ising model on a two-dimensional
manifold which has global foliation, by combining the ideas of the two models
(CDT-like matrix model and Ising model) we introduced above in Sects. 2
and 4. We would like to define an action of the matrix model which generates
ribbon graphs satisfying desired properties of both CDT and Ising model.
Hence, we require four types of half-edges to be considered: spacelike half-
edges associated with spin-up vertices, spacelike half-edges associated with
spin-down vertices, timelike half-edges associated with spin-up vertices, and
timelike half-edges associated with spin-down vertices. Therefore, we introduce
four matrices, A+, A−, B+, and B− so that they induce notions of the space,
time, and parity as desired. Each of these matrices is represented by a specific
type of half-edges. The following conditions are sufficient in order to implement
the desired properties we described above: To impose the existence of spacelike
edges connecting equal parities, we set

〈A+ijA+kl〉0 = 〈A−ijA−kl〉0 =
1
N

1
1 − γ2

δilδkj . (21)

Similarly, for timelike edges connecting equal parities, we impose

〈B+ijB+kl〉0 = 〈B−ijB−kl〉0 =
1
N

1
1 − γ2

C2ilC2kj . (22)
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As for spacelike edges connecting unequal parities, we write

〈A+ijA−kl〉0 =
1
N

γ

1 − γ2
δilδkj . (23)

Lastly, for timelike edges connecting unequal parities, we put

〈B+ijB−kl〉0 =
1
N

γ

1 − γ2
C2ilC2kj . (24)

In order to make sure that only the four types of edges above (21), (22), (23),
and (24) exist, we set

〈A+ijB+kl〉 = 〈A+ijB−kl〉 = 〈A−ijB+kl〉 = 〈A−ijB−kl〉 = 0. (25)

The presence of spin-up and spin-down vertices is respectively imposed by
introducing the terms A2

+B+ and A2
−B− in the action. Therefore,

SCDTIM = N Tr
[
1
2
A2

+ +
1
2
(
C2

−1B+

)2
+

1
2
A2

− +
1
2
(
C2

−1B−
)2

−γA+A− − γ(C2
−1B+)(C2

−1B−) − gA2
+B+ − gA2

−B−

]
. (26)

The partition function is then given by

Z = lim
N→∞

ln
∫

dA+dB+dA−dB− e−SCDTIM . (27)

We can also use similar transformations to (17) and (19), that lead to (20), to
arrive at the version where the spins are on the faces. After the transformation
the action is

SCDTIM = NTr
[
1
2
γ−1U2

s +
1
2
γ−1(C−1

2 Ut)2 +
1
2
γV 2

s +
1
2
γ(C−1

2 Vt)2

−gU2
s Ut − gV 2

s Ut − gUsVsVt − gVsUsVt

]
, (28)

where we may interpret that Us generates spacelike edges between faces of
the same spin, Ut timelike edges between faces of the same spin, Vs spacelike
edges between faces of opposite spins, and Vt timelike edges between faces of
opposite spins.

6. Properties of the Matrices Cm

Let us study the properties of Cm and find its expression explicitly.

Theorem 6.1. Let Cm be a GL(N) matrix that satisfies Tr[(Cm)q] = Nδm,q

for q = 1, ..., N , with N > 0 and N = 0 mod m. Its eigenvalues can be
approximated by

λts = e
2π
m is W(−e

2πm
N i(t−1/2)−1)− 1

m

(
1 + O(N−1/2)

)
,

t = 1, ..., N/m and s = 1, ...,m. (29)
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Proof. We show (29) by finding the characteristic polynomial of Cm. Recall
[115] that, if the characteristic polynomial of a GL(N) matrix C is given by

p(λ) = det(C − λ1) =
N∑

k=0

πk(−λ)N−k, (30)

then the coefficients πk are related to the power traces of C, tk = Tr (Ck), by
Girard-Newton formulas

πk = (k!)−1 det[aij ]i,j=1,...,k, (31)

where

aij =

⎧⎪⎨
⎪⎩

tj−i+1 if i ≤ j

j if i = j + 1
0 if i ≥ j + 1.

(32)

Evaluating for C = Cm, we have πk = 0 for k �= 0 mod m, and for k = mr,
with r an integer satisfying 0 ≤ r ≤ k/m, we get

πmr =
(−1)mrNr

(−m)rr!
. (33)

Therefore, imposing that N is divisible by m,

pm(λ) =
N/m∑
r=0

πmr(−λ)N−mr =
N/m∑
r=0

(−1)mrNr

(−m)rr!
(−λ)N−mr

= (−λ)N

N/m∑
r=0

1
r!

(
−N

m
λ−m

)r

= (−λ)NsN/m

(
−N

m
λ−m

)
, (34)

where sn is the nth partial exponential sum polynomial, and we only need
to investigate its zeros because we are interested in eigenvalues λts. In the
large n limit, the polynomials sn(nz) have been shown [116,117] to have the
roots lying on the curve |ze1−z| = 1 with |z| ≤ 1, and arg(ze1−z) increases
monotonically from each zero. The zeroes zt, t = 1, ..., n, are approximately
given by zt = z̃t(1 + O(N−1/2)), with

z̃te
1−z̃t = e

2π
n i(t−1/2), t = 1, ..., n. (35)

Using the principal branch of the Lambert W function, W , defined by
W−1(z) = zez, we invert (35)

z̃t = −W(−e
2π
n i(t−1/2)−1). (36)

Now, in order to go back to eigenvalues λts, we use n = N/m and −λ−m
ts =

z̃t(1 + O(N−1/2)) in (36), and

λts = e
2π
m isW(−e

2πm
N i(t−1/2)−1)− 1

m (1 + O(N−1/2)),
t = 1, ..., N/m and s = 1, ...,m. (37)

We note that the eigenvalues are discrete, and the set is finite, with N eigen-
values in total. �
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Figure 14. Eigenvalues of C1 in their complex plane, with
vertical axis being Im(λ) and the horizontal Re(λ). In blue,
we plot the numerical values of the zeros of the polynomial
p1(λ) in (34) using Mathematica, and in red we plot the values
obtained from (37) for large N (color figure online)

Figure 15. Eigenvalues of C2. We obtained the approximate
curve in green by letting t and s continuous parameters in (37)
(color figure online)

We let Mathematica solve numerically the zeros of the polynomial (34).
We compare those with (37). We show in Fig. 14 and in Fig. 15 a comparison
for different values of N for C1 and C2.

Taking the values of the roots of (34) computed by Mathematica and
evaluating the power traces Tr(C1) and Tr(C2)2, we indeed obtain the correct
results within the machine error. Now, let us also check the validity of the
expression (37), by inserting the values of λts back to compute the power
traces Tr(C1) and Tr(C2)2. We found that for m �= q, we obtain 0 up to certain
power (qmax) of Cm, but the value of the power traces quickly increases after
we reach qmax. For example, qmax is about 20 for N = 10000. We find that
the value of qmax also increases as N increases.
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Let us consider the resolvent of the matrix Cm

1
N

Tr
[

1
1 − μCm

]
=

1
N

∞∑
k=0

Tr[(μCm)k] = 1 + μm. (38)

The resolvent (38) evaluates to

lim
N→∞

N∑
t=1

1
N

1
1 − μλt

=
∫ 1

0

dx
1

1 − μλ(x)
=
∫

γ

dλ
ρ(λ)

1 − μλ
, (39)

where x = t/N and ρ(λ) = dx/dλ is called the spectral density, and the indices
s and t are joined to only t. By equating (38) and (39), we can solve for ρ(λ).

Let us change the variables, α = λ−1;∫
γ

dλ
ρ(λ)

1 − μλ
=
∫

γ′
dα

−α−1ρ(α−1)
α − μ

. (40)

Assuming γ′ is a simple closed curve enclosing μ, using Cauchy’s theorem we
can use that

1 + μm =
1

2πi

∫
γ′

dα
1 + αm

α − μ
. (41)

Equating (40) and (41), we find a solution

− α−1ρ(α−1) =
1

2πi
(1 + αm), (42)

which, in terms of λ, translates to

ρ(λ) = − 1
2πi

(λ−1 + λ−m−1). (43)

At this point, let us check the validity of (37). Taking (37) to the power of m,

λm = W(−e
2πm

N i(t−1/2)−1)−1, (44)

to the leading order in large N . Manipulating the expression (44),

− λ−me1+λ−m

= e
2πm

N i(t−1/2) = e2πmix
(
1 + O(N−1)

)
, (45)

where we change variables x = t/N . Taking a derivative with respect to λ,

(−mλ−1 − mλ−m−1)(−λ−me1+λ−m

) = 2πmi
dx

dλ
e2πmix

(
1 + O(N−1)

)
, (46)

and noting that ρ(λ) = dx/dλ, we again obtain the same solution (43). This
concludes checking the validity of the solution (37).

Let us go back to (43) and continue solving for the distribution of λ.
Inserting ρ(λ) = dx/dλ, where x ∈ R with 0 ≤ x ≤ 1 in (43) and integrating
both sides, we obtain

λ−meλ−m

= κ e2πmix, (47)

where κ is some integration constant. In (37), κ was determined to be κ =
−e−1. Therefore, in Figs. 14 and 15 we only had one curve γ each. However,
(47) gives us a series of solutions because κ is free. A larger class of solutions
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means that now we should have many curves representing families of eigenval-
ues, with each curve corresponding to a particular value of κ. The observation
of (47) is that, given two possible values of m, m1 and m2, their solutions are
related by λm1

1 = λm2
2 . Therefore, we can focus on m = 1 without losing any

essential information. For m = 1, we have

λ−1eλ−1
= κ e2πix. (48)

Then, each value of κ is associated with a distinct solution for Cm. The eigen-
values of Cm are represented by a curve γκ. Equation (48) can be inverted
with the help of the W Lambert function,

λ = Wb(κ e2πix)−1, (49)

where Wb is a branch of W and b is an integer we assign to each branch. In
Fig. 16, we show a few of the infinitely many branch regions of the W function
with z = λ−1. Let us assign b = 0 to the branch where the point z = 0 belongs
to. As is shown in Fig. 16b, only curves around the origin can be closed. These
closed curves are the contours associated with the values of |κ| = |zez| with
0 ≤ |κ| ≤ e−1. The maximum value |κ| = e−1 is associated with the branch
point of W0. Our previous solution (45) picked this particular value |κ| = e−1.
However, our current analysis indicates that all these closed curves around
the origin are valid not just |κ| = e−1. In the previous solution (45), the
condition κ = −e−1 appeared because of the polynomials sN/m in (34). We
speculate that the reason for the existence of multiple solutions is related to
the fact that the large N limit condition limN→∞ 1

N Tr[(Cm)p] = δp,m can be
approached through different ways. That is, κ may be a function of Tr[Cm]
and Tr[(Cm)m], and this function might not have trivial limits. For example,
Tr[(C̃m)

p
] = Nδp,m + δp,1 has the same large N limit, limN→∞ 1

N Tr((C̃m)p) =
δp,m. The value of κ may vary when changing the condition on TrCm.

7. Character Expansion of Partition Function

For a N × N matrix M with eigenvalues Mk, where k ∈ Z with its range
1 ≤ k ≤ N and given a set of N increasing non-negative integers {h} =
{h1, ..., hN}, the character of this matrix can be given by

χ{h}(M) =
det(k,l)[(Mk)hl ]

Δ(M)
, (50)

where

Δ(M) = det
(k,l)

[(Mk)l−1] =
∏

1≤i<j≤N

(Mj − Mi) (51)

is the Vandermonde determinant. In general, the set {h} can be used to
uniquely label a representation of GL(N). We have as a result of character
expansion [78]

eTrM2 ∼
∑
{h}

c{h}χ{h}(M), (52)
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Figure 16. Plots for the function zez. On the white curves,
the image of zez is on the negative real line. The black point
is the branch point (color figure online)

with a summation over all such sets {h} and where, as we use from now on, ∼
indicates equality up to a constant. We separate the set {h} into a set of only
even integers {h}e and of only odd integers {h}o. If the numbers of even and
odd hl are equal or the numbers of even is one more than the number of odd,
the coefficient c{h} is given by

c{h} =
Δ({h}e)Δ({h}o)∏N

l=1 �{hl}/2�!
, (53)

where, in a similar manner to (51), for a set of complex numbers {m} =
{m1, ...,mN}, the Vandermonde is defined as

Δ({m}) = det
(k,l)

[(mk)l−1] =
∏

1≤i<j≤N

(mj − mi). (54)

We use �·� to represent the floor function. When the condition above is not
met, we simply have

c{h} = 0. (55)

The character expansion for the more general case eTrMk

, for integer k ≥ 1 is
also known [78].

7.1. Character Expansion for the Pure CDT-Like Matrix Model of Benedetti–
Henson

The partition function (1) for the pure CDT-like matrix model due to Benedetti-
Henson studied in [76], after integrating out B is given by

Z =
∫

dA e−NTr[ 12A2− g2
2 (A2C2)

2]. (56)
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By applying the character expansion given in (52) with M =
√

N
2 g2A2C2, we

expand the partition function (56),

Z ∼
∑
{h}

(
N

g2

2

)#h/2

c{h}

∫
dA χ{h}(A2C2)e−NTr[ 12A2], (57)

where #h =
∑N

l=1 hl − 1
2N(N − 1). With the diagonalization A = ΩΛΩ†, with

Ω ∈ U(N) and Λ a diagonal matrix, we preform a change of variables and
rewrite

Z ∼
∑
{h}

(
N

g2

2

)#h/2

c{h}

∫
RN

dΛ Δ(Λ)2e−NTr[ 12Λ2]

∫
U(N)

dΩ χ{h}(ΩΛ2Ω†C2).

(58)

In order to factorize the dependence on C2, let us use the Schur orthogonality
relation,

∫
U(N)

dΩ χ{h}(ΩΛ2Ω†C2) =
χ{h}(Λ2)χ{h}(C2)

dh
, (59)

where dh = Δ(h)/
∏N−1

i=1 i! is the dimension of the representation given by
{h}. We can then rewrite

Z ∼
∑
{h}

(
N

g2

2

)#h/2 c{h}
dh

χ{h}(C2)
∫
RN

dΛ Δ(Λ)2 χ{h}(Λ2) e−NTr[ 12Λ2],

(60)

now with the integral independent of C2 as desired, and c{h} is given in (53)
or (55), depending on which case {h} satisfies. By changing the variables back
to A = ΩΛΩ†, the integral part of the expression (60) can be written, up to a
constant, as

〈χ{h}(A2)〉0 =
1
Z0

∫
dA χ{h}(A2) e−NTr 1

2A2
. (61)

This integral had yet no known general solution in terms of the representation
{h}. A conjecture was also given in [76]. It was proposed that

〈χ{h}(A2)〉0 = kN
1

N#h

3∏
ε=0

Δ(2h(ε))2
∏

i

(2h
(ε)
i )!!, (62)

where the set of integers {h} has been divided into four sets {h(0)}, ..., {h(3)}
according to equivalence modulo 4.

The conjecture stated in (62), given in [76], can be rewritten as

kN =
〈χ{h}(A2)〉0

1
N#h

∏3
ε=0 Δ(2{h}(ε))2

∏
i(2h

(ε)
i )!!

, (63)
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where {h}(ε) = {a ∈ {h} | a = ε mod 4} and for a set B, we define 2B =
{2b | b ∈ B}. kN only depends on N , and not on {h}. We can test this conjec-
ture by applying it to some representations which we already know the result.
Fix N = 4. For the trivial representation, which is given by {h} = {3, 2, 1, 0},
the conjecture (63) tells us that the proportionality factor is kN = 1/768.
On the other hand, for the defining representation, which is given by {h} =
{4, 2, 1, 0}, the conjecture tells us that the proportionality factor should be
kN = 1/(8 · 768). Therefore, a contradiction.

Furthermore, let us look at representations that have size proportional
to N . For example, the kth power determinant representation is one. The
representation {h} for which χ{h}(A2) = det(A2q) is given by {h} = {q +
N − 1, q + N − 2, ..., q + 1, q}. Evaluating the average integral (14) for f(A) =
det(A2q) we obtain

〈detA2q〉0 = N−Nq

N
2 −1∏
k=0

(2q + 2k + 1)!!(2q + 2k − 1)!!
(2k + 1)!!(2k − 1)!!

(64)

According to (63), we would have

kN =

∏N
2 −1

k=0
(2q+2k+1)!!(2q+2k−1)!!

(2k+1)!!(2k−1)!!

2N2N(N
4 −1)

(∏N
4 −1

i=0 i!
)8∏N

k=1(q + N − k)!
. (65)

We then see that kN depends on the representation through q, which again
goes against the assumption that kN only depends on N .

7.2. Character Expansion for CDT-Like Matrix Model Coupled with Ising
Model

For CDT-like matrix model coupled with Ising model, the expression is more
involved. We write its partition function as

Z =

∫
dA1dA2 e

−NTr[ 1
2

A2
1+

1
2

A2
2−γA1A2− 1

2
g2

1−γ
(A2

1C2)2− 1
2

g2

1−γ
(A2

2C2)2− 1
2

γg2

1−γ2 ((A2
1+A2

2)C2)2],

(66)

and diagonalize the kinetic part,

Z =
∫

dUdV e−NTr[ 12 (1−γ)U2+ 1
2 (1+γ)V 2− 1

4
g2

1−γ ((U2+V 2)C2)
2−1

4
g2

1+γ ((UV +V U)C2)
2],

(67)

where U = (A1 + A2)/
√

2 and V = (A1 − A2)/
√

2. The character expansion
(52) for the latter partition function (67)

Z ∼
∑

{h1},{h2}

(
Ng2

4(1 − γ)

)#h1/2(
Ng2

4(1 + γ)

)#h2/2

c{h1}c{h2} I{h1},{h2}

(68)
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where the sum is performed over representations labeled by {h1} and {h2},
and we defined the integral

I{h1},{h2} =
∫

dUdV e−NTr[ 12 (1−γ)U2+ 1
2 (1+γ)V 2] χ{h1}((U2 + V 2)C2)

χ{h2}((UV + V U)C2). (69)

Transform U = Ω1Λ1Ω
†
1 and V = Ω2Λ2Ω

†
2, and furthermore, by substituting

Ω2 = Ω1Ω, we have

I{h1},{h2} =
∫
RN ×RN

dΛ1dΛ2 Δ(Λ1)2Δ(Λ2)2e−NTr[ 12 (1−γ)Λ2
1+

1
2 (1+γ)Λ2

2]

∫
U(N)×U(N)

dΩ1dΩ χ{h1}(Ω1(Λ2
1 + ΩΛ2

2Ω
†)Ω†

1C2) χ{h2}(Ω1(Λ1ΩΛ2Ω†

+ ΩΛ2Ω†Λ1)Ω
†
1C2), (70)

that allows us to integrate over Ω1, however, the orthogonality relation (59)
is not enough, but one has to be equipped with a more general expression for
Schur orthogonality relation.

8. Unitary Integral of Degree 4 Monomial

A more general way to state the Schur orthogonality relation is that for a
compact group G and for matrix elements φα

ij(g) of an element g ∈ G, where
the upper index indicates the representation and the lower indices indicate the
corresponding elements of a given orthogonal basis,∫

G

φα
ij(g)φβ

kl(g)dg =
1
dα

δαβδikδjl. (71)

Here, with G as U(N) and for α = β = h by multiplying both sides by φh
jl(Λ

2)
and φh

ki(C2) and summing over the repeated lower indices, we recover (59). Let
us apply (71) to the unitary integral of (70), by defining the matrices which
are independent of Ω1 as M1 = Λ2

1 + ΩΛ2
2Ω

† and M2 = Λ1ΩΛ2Ω† + ΩΛ2Ω†Λ1.
Then, we can factorize the expression

χ{h1}(Ω1M1Ω
†
1C2) χ{h2}(Ω1M2Ω

†
1C2)

= φh1

ab (Ω1)φh1

bc (M1)φh1

cd (Ω†
1)φ

h1

da(C2)φh2

pq (Ω1)φh2

qr (M2)φh2

rs (Ω†
1)φ

h2

sp (C2).

(72)

Then, in (70), we have an integral

Iij =
∫

U(N)

φα
ab(g)φβ

cd(g)φα
āb̄

(g)φβ

c̄d̄
(g)dg, (73)

where g = Ω1. This integral has some properties similar to the previous one
(71), but has the double amount of matrix elements. This integral is also
similar to the type of integral studied with the Weingarten calculus, however,
here, more than one representations α and β appear.
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Putting all together, (70) becomes

I{h1},{h2} = Iij φh1

da(C2)φh2

sp (C2)

×
∫
RN ×RN

dΛ1dΛ2 Δ(Λ1)2Δ(Λ2)2e−NTr[ 12 (1−γ)Λ2
1+

1
2 (1+γ)Λ2

2]

∫
U(N)

dΩ φh1

bc (M1)φh2

qr (M2), (74)

and with the Theorem 8.1 below, we can evaluate Iij .

Proposition 8.1. Given g ∈ U(N) and a representation α, set its matrix ele-
ments as φα

ab(g), where the indices a and b are associated with some chosen
basis. The following holds true for a Haar integral:∫

U(N)

φα
ab(g)φβ

cd(g)φα
āb̄

(g)φβ

c̄d̄
(g)dg =

∑
r,m,n,p,q

crm∗
acp crn

āc̄pc
rm
bdqc

rn∗
b̄d̄q d−1

r . (75)

Proof. In order to apply the Weingarten calculus [118] to the left hand side of
(75), we need to know a basis for the invariant space of α ⊗ β ⊗ ᾱ ⊗ β̄. Indeed,
finding the basis for the invariant space amounts to identifying the trivial
representations 1⊕lαβᾱβ̄

1 , upon decomposing the tensor product representation
into irreducible representations,

α ⊗ β ⊗ ᾱ ⊗ β̄ =
⊕

all irrep r

r⊕lαβᾱβ̄
r , (76)

where lαβᾱβ̄
r is the number of times the representation r appears in the expan-

sion of the tensor product, known as Littlewood-Richardson coefficients. One
can decompose separately the products α ⊗ β and ᾱ ⊗ β̄, i.e.,

α ⊗ β =
⊕

r

r⊕lαβ
r , ᾱ ⊗ β̄ =

⊕
r̄

r̄⊕lᾱβ̄
r̄ =

⊕
r

r̄⊕lᾱβ̄
r̄ . (77)

Then, using lᾱβ̄
r̄ = lαβ

r , we can write

α ⊗ β ⊗ ᾱ ⊗ β̄ =
⊕
r,s

r⊕lαβ
r ⊗ s̄⊕lᾱβ̄

s̄

=
⊕

r

r⊕lαβ
r ⊗ r̄⊕lαβ

r ⊕
⊕
r �=s

r⊕lαβ
r ⊗ s̄⊕lαβ

s , (78)

but the representation orthogonality relation tells us that for two irreducible
representations r and s, lrs̄

1 = δrs. Therefore, we notice that the second big
sum contains no trivial representations and the first contains one trivial rep-
resentation for each product. In the end, we arrive at

α ⊗ β ⊗ ᾱ ⊗ β̄ =
⊕

r

1⊕(lαβ
r )2 ⊕

⊕
all irrep r

r �=1

r⊕lαβᾱβ̄
r . (79)

Therefore, we conclude

lαβᾱβ̄
1 =

∑
r

(lαβ
r )2. (80)
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Remark that there are infinite number of representations to sum over, however,
only finite number of them have nonzero lαβ

r . Equation (80) is important to us
because it allows to verify that the set we find later in (93) for the invariant
space is indeed a basis because it contains as many elements as the dimension
of the invariant space.

Let us analyze a basis for the invariant space
⊕

r 1⊕(lαβ
r )2 , since it allows

us to evaluate Iij in (73). First, let us define a basis for the vector space of the
tensor product representation α ⊗ β ⊗ ᾱ ⊗ β̄,

|Ei〉 = |Eab āb̄〉 = |ea〉|eb〉〈eā|〈eb̄|, (81)

where a, ā, b, b̄, and i are integers and i is a relabelling of indices abāb̄ with
1 ≤ i ≤ (dα)2(dβ)2, and |ea〉, |eb〉, 〈eā| and 〈eb̄|, with 1 ≤ a ≤ dα, 1 ≤ ā ≤ dα,
1 ≤ b ≤ dβ , 1 ≤ b̄ ≤ dβ , are respectively a basis for representations α, β, ᾱ

and β̄. Writing Tμ as a basis for this invariant space, where 1 ≤ μ ≤ lαβᾱβ̄
1 , let

us define the A matrix

Aiμ = 〈Ei|Tμ〉, (82)

and the Weingarten matrix w through the inverse of a matrix

w−1
μν = 〈Tμ|Tν〉. (83)

The Weingarten theorem states that (73) can be expressed as

Iij =
∑
μ,ν

AiμwμνA†
νj , (84)

which is a function of T . T being invariant under α ⊗ β ⊗ ᾱ ⊗ β̄ is equivalent
to

MTM−1 = T, (85)

for every M ∈ α ⊗ β. Furthermore, there exists a V ∈ U(dα dβ) such that, for
every M , V transforms M into a block diagonal matrix,

V MV −1 = MD, (86)

where,

MD =

⎛
⎜⎜⎜⎝

Mr1 0 · · · 0
0 Mr2 · · · 0
...

...
. . .

...
0 0 · · · Mrn

⎞
⎟⎟⎟⎠ , (87)

with n =
∑

r lαβ
r . For every representation r appearing in the decomposition

of α ⊗ β as in (77), Mr is M in the specific representation r and appears as a
block element in the diagonal of MD, appearing as many times as it appears
in the decomposition (77), i.e., lαβ

r times. Now, transform T by a change of
basis by V

V TV −1 = TD, (88)

which implies

MDTDM−1
D = TD. (89)
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TD can be found by focusing on the sector of a representation r that appears
in the decomposition, where a sector is the block consisting of lαβ

r number of
block diagonal Mr matrices. Evaluating

M−1
D =

⎛
⎜⎜⎜⎝

M−1
r1

0 · · · 0
0 M−1

r2
· · · 0

...
...

. . .
...

0 0 · · · M−1
rn

⎞
⎟⎟⎟⎠ , (90)

and using properties of block matrix multiplication, each section can act inde-
pendently. As an illustration, suppose that r appears twice, i.e., lαβ

r = 2,

MD =

⎛
⎜⎜⎜⎜⎝

. . . 0 0 0
0 Mr 0 0
0 0 Mr 0

0 0 0
. . .

⎞
⎟⎟⎟⎟⎠ . (91)

Then, denoting 1r as the identity in the representation r, it is easy to see that

TD =

⎛
⎜⎜⎜⎜⎝

. . . 0 0 0
0 γ111r γ121r 0
0 γ211r γ221r 0

0 0 0
. . .

⎞
⎟⎟⎟⎟⎠ (92)

satisfies (89) for any complex numbers γ11, γ12, γ21, and γ22. In general, (92)
can be written as

TD = γr
mnTmn

r , (93)

where for any representation r, that appears lαβ
r times, we can construct (lαβ

r )2

independent matrices Tmn
r by putting an identity matrix in an element of the

lαβ
r × lαβ

r matrix block corresponding to the representation r. If we consider
all representations, we find as many independent invariants as (80), thus we
have a complete basis for the invariant space. Using Tmn

r T pq
s = δrstδ

npTmq
t

and Tmn
r

† = Tnm
r (where δrst = 1 for r = s = t and zero otherwise), the

graham matrix elements are given by

〈T pq
s |Tmn

r 〉 = Tr T pq
s

†Tmn
r = Tr T qp

s Tmn
r = δsrtδ

pmTr T qn
t = δsrtδ

pmδqndt, ‘
(94)

where repeated indices are summed over. Consequently, Tmn
r is an orthogonal

basis and

〈Tmn
r |Tmn

r 〉 = dr, (95)

where dr is the dimension of the representation r. Recalling (83), we can readily
invert (94) to obtain

wmnpq
rs = δsrtδ

pmδqnd−1
t . (96)
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We also need to calculate the A matrix defined in (82), but from (88) we see
that

|Tμ〉 = V −1|Tmn
r 〉. (97)

Therefore, the A matrix is given by

Aiμ = 〈Ei|V −1|Tmn
r 〉 = Tr E†

i V
−1Tmn

r V = Tr
[(

V EiV
−1
)†

Tmn
r

]
, (98)

where in the last expression, we insert

V EiV
−1 = V |ea〉|eb〉〈eā|〈eb̄|V −1 = V |ea〉|eb〉(V |eā〉|eb̄〉)†. (99)

Notice that we can also write, now being more explicit on the representation,

V |eα
a 〉|eβ

b 〉 = crk
abp|erk

p 〉, (100)

where crk
abp are the Clebsch-Gordan coefficients, and the representations α and

β are written explicitly on the left but not on the right. We also introduce a
new index k, an integer which satisfies 1 ≤ k ≤ lαβ

r to distinguish the same
representation r which appears lαβ

r times in the decomposition of α⊗β. Then,
we can compute (98)

Aiμ = Tr csk∗
abpcs̄k̄

āb̄p̄|es̄k̄
p̄ 〉〈esk

p |Tmn
r = csk∗

abpcs̄k̄
āb̄p̄〈esk

p |Tmn
r |es̄k̄

p̄ 〉 (101)

and using the coefficients for Tmn
r in this basis, 〈esk

p |Tmn
r |es̄k̄

p̄ 〉 = δss̄rδpp̄δ
kmδk̄n,

we further compute

Aiμ = csk∗
abpcs̄k̄

āb̄p̄δ
rss̄δpp̄δ

kmδk̄n = δrss̄csm∗
abp cs̄n

āb̄p = crm∗
abp crn

āb̄p, (102)

where in the last expression there is a sum only over p. However, remark that
there is no known formula for these coefficients for a general representation,
therefore one cannot compute explicitly Aiμ with the expression above (102).
Nevertheless, inserting (102) in the expression (84), we get

Iij =
∑
μ,ν

AiμwμνA†
νj =

∑
r,m,n,t,u,v

δrss̄csm∗
abp cs̄n

āb̄pδ
tkk̄cku

bdqc
k̄v∗
b̄d̄q δrtgδ

umδvnd−1
g ,

(103)

Performing some of the sums, we find that Iij in (73) can be expressed in
terms of the (unknown) Clebsch-Gordan coefficients as

Iij =
∑

r,m,n,p,q

crm∗
abp crn

āb̄pc
rm
bdqc

rn∗
b̄d̄q d−1

r . (104)

�

We comment that the result in (104) is expressed in terms of the Clebsch-
Gordan coefficients which are base dependent. The possibility of choosing dif-
ferent bases shows that there is a degree of freedom in the summation. This
freedom is manifest in the summation over the indices p and q. Further sim-
plification could be achieved by expressing (104) in a base invariant way.
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9. Evaluation of 〈χr(A)〉0 and 〈χr(A
2)〉0

In this section, we study and present several computational results on the
large N limit of the Hermitian Gaussian matrix model averages 〈χr(A)〉0 and
〈χr(A2)〉0 as the latter appeared as a key quantity as in (61) and the former can
be an useful exercise and preparation for computing the latter. The Gaussian
average of a character of A for a given representation {h} is given by

〈χ{h}(A)〉0 =
1
Z0

∫
dA e−NTr 1

2A2
χ{h}(A), (105)

where Z0 is an Gaussian integral of A;

Z0 =
∫

dA e−NTr 1
2A2

. (106)

Similarly to (105), the Gaussian average of a character of A2 for a given rep-
resentation, given by

〈χ{h}(A2)〉0 =
1
Z0

∫
dA e−NTr 1

2A2
χ{h}(A2). (107)

For {h}e = {a ∈ {h}| a is even} and {h}o = {a ∈ {h}| a is odd}, (105) evalu-
ates to [119]

〈χ{h}(A)〉0 = N− n
2 dh

∏
i(h

e
i − 1)!!ho

i !!∏
i,j(h

e
i − ho

j)
= N− n

2 dh

χ{h}(C2)
χ{h}(C1)

, (108)

where n =
∑

i hi − N(N − 1)/2 is the size of the representation, and dh is the
dimension of the representation h, which can be evaluated as

dh = χ{h}(�) =
Δ(h)∏N−1
k=1 k!

. (109)

We also used ∏
i(h

e
i − 1)!!ho

i !!∏
i,j(h

e
i − ho

j)
=

χ{h}(C2)
χ{h}(C1)

, (110)

as presented in more detail in the appendix of [78].

Lemma 9.1. If there exists a GL(N) matrix M such that Di Francesco-Itzykson
integral (105) can be computed as the character of M ;

〈χ{h}(A)〉0 = χ{h}(M), (111)

then the integral of our interest (61) can be solved as:

〈χ{h}(A2)〉0 = χ{h}(M2). (112)

Proof. The function χ{h}(A2) is a class function of A, therefore there exists
an expansion

χ{h}(A2) =
∑
{h′}

c{h},{h′}χ{h′}(A). (113)
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This expansion is finite, since it is the same as the present in the identity
χ{h}(A2) = χSym2{h}(A) − χAlt2{h}(A). Thus,

〈χ{h}(A2)〉0 =
1
Z0

∫
dA χ{h}(A2) e−NTr 1

2A2

=
1
Z0

∫
dA

∑
{h′}

c{h},{h′}χ{h′}(A) e−NTr 1
2A2

=
1
Z0

∑
{h′}

c{h},{h′}

∫
dA χ{h′}(A) e−NTr 1

2A2

=
1
Z0

∑
{h′}

c{h},{h′}I
(1)
{h′}(1)

=
∑
{h′}

c{h},{h′}χ{h′}(M) = χ{h}(M2).
(114)

We note that the exchange between the summation and the integral is legal,
since the summation is finite. �

Lemma 9.1 suggests that we shall study the expression in (108) in order
to see if we can find such a M as in (111). Let us present a more general
normalized version of (105);

I
(1)
{h}(B) =

∫
dA χ{h}(A)e−NTr 1

2AB−1AB−1
. (115)

The generalized normalized Di Francesco-Itzykson integral (115) can be ex-
pressed as a product of characters

I
(1)
{h}(B)

Z(B)
=

χ{h}(B)χ{h}(C2)
χ{h}(C1)

, (116)

where we used (110) and Z(B) =
∫

dA e−NTr 1
2AB−1AB−1

is a normalization
factor. Remark that on the right hand side of (116), the only part that depends
on the choice of B is χ{h}(B).

If we set B = 1 in (116), we indeed recover (108). By setting B = C1 in
(116), we find that

I
(1)
{h}(C1) =

∫
dA χ{h}(A) e−NTr 1

2AC−1
1 AC−1

1 = Z(C1) χ{h}(C2). (117)

Since (C2)2 = C1 in the large N limit, by summing over all representations as
in (113) on both sides of (117) we obtain

I
(1)
{h}(C1) ∼ χ{h}(C1), (118)

or performing change of variables,

I
(1)
{h}(C1) ∼

∫
dA χ{h}((C1A)2)e−NTr 1

2A2 ∼ χ{h}(C1), (119)

which can also be written as

〈χ{h}(C1A)2〉0 ∼ χ{h}(C1), (120)
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where ∼ denotes equal up to a constant in N , and 〈〉0 denotes the Gaussian
average over A as defined in (14). This result is nearly the expression we aim
at computing in (61), except for the extra C1 in the left hand side.

On this note, let us now investigate further what the condition in (108)
tells us about the matrix M in (111).

Proposition 9.2. Given a representation r of GL(N) defined through the set of
shifted weights hi, i = 1, ...N,, consider χr the character in that representation
r. If M is a GL(N) matrix that satisfies∫

dA χ{h}(A) e−NTr 1
2A2

= χ{h}(M), (121)

then, for a positive integer q,

1
N

Tr(M2q) = qq. (122)

Proof. From (50) we can deduce that

Tr(Mp) =
N∑

k=1

χ{hp,k}(M)
χ{h}(M)

(123)

by using a representation {h} where χ{h}(M) �= 0 and the modified repre-
sentations {hp,k} where the shifted weights are related to the ones of {h} by
hp,k

i = hi + p δk,i, for i = 1, ..., N .
Using (109) in (108) we can deduce that, for some constant cN ,

χ{h}(M) = cN N− n
2 Δ({h}e)Δ({h}o)

∏
i

(he
i − 1)!!ho

i !!. (124)

We assume N and p even. For i even, we set hi = p(N −i)/2+1, therefore hi is
always odd for ieven. For i odd, we set hi = p(N − i − 1)/2+2, therefore hi is
always even for i odd. Consequently, for i even, hp,k

i = p(N − i)/2 + 1 + p δk,i,
making hp,k

i odd and, for i odd, hp,k
i = p(N − i − 1)/2 + 2 + p δk,i, making

hp,k
i even. Notice that {h}e = {a + 1 | a ∈ {h}o}, thus the Vandermonde

determinants Δ({h}e) and Δ({h}o) are

Δ({h}o) = Δ({h}e) =
∏
i<j

(hi − hj) =
∏
i<j

(
p
N − i

2
+ 1 − p

N − j

2
− 1
)

=
∏
i<j

p
j − i

2
, (125)

where the indices i and j are always even. Because of this, by setting i = 2m
and j = 2n we find

Δ({h}o) = Δ({h}e) = p
1
2

N
2 (N

2 −1) ∏
m<n

(n − m) = p
1
2

N
2 (N

2 −1)
N
2 −1∏
m=1

m!. (126)
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We then get that

Δ({h}o)Δ({h}e) = p
N
2 (N

2 −1)
N
2 −1∏
m=1

(m!)2, (127)

which will be necessary for the normalization in (123). The terms involving
double factorials in (124) are:

∏
i

(he
i − 1)!! =

∏
i

ho
i !! =

N
2∏

m=1

(
p

(
N

2
− m

)
+ 1
)

!!. (128)

The size of the representation is

n =
∑

i

hi − N(N − 1)
2

=
1
2

N

2
(p(N − 2) + 6) − N(N − 1)

2
. (129)

This way the character of M in the representation {h} is

χ{h}(M) = cN N− n
2 p

N
2 (N

2 −1)
N
2 −1∏
m=1

(m!)2
N
2∏

m=1

(
p

(
N

2
− m

)
+ 1
)

!!2. (130)

Now, for the representations {hp,k}, set {hp,k}e = {a ∈ {hp,k}| a is even} and
{hp,k}o = {a ∈ {hp,k}| a is odd}. For k odd, {hp,k}e = {h}e, then

Δ({hp,k}e) = Δ({h}e) = p
1
2

N
2 (N

2 −1)
N
2 −1∏
m=1

m!. (131)

For k even, {hp,k}o = {h}o, then

Δ({hp,k}o) = Δ({h}o) = p
1
2

N
2 (N

2 −1)
N
2 −1∏
m=1

m!. (132)

Another consequence for k even is

Δ({hp,k}e) =
∏
i<j

i,j even

(hp,k
i − hp,k

j)

=
∏
i<j

i,j even

(
p
N − i

2
+ 2 + p δk,i − p

N − j

2
− 2 − p δk,j

)

=
∏
i<j

i,j even

(
p
j − i

2
+ p(δk,i − δk,j)

)
. (133)

Setting i = 2m, j = 2n, and k = 2r we find

Δ({hp,k}e) = p
1
2

N
2 (N

2 −1) ∏
m<n

(n − m + (δr,m − δr,n)) . (134)
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Let us emphasize that n > 1 since n > m ≥ 1. For k = 2,

Δ({hp,2}e) = p
1
2

N
2 (N

2 −1) ∏
m<n

(n − m + δ1,m) = p
1
2

N
2 (N

2 −1) N

2

N
2 −1∏
i=1

i!. (135)

For k > 2, k even, since the factor for m = r − 1 and n = r in the product is
zero,

Δ({hp,k}e) = 0. (136)

It is also true that {hp,k}o = {a − 1| a ∈ {hp,k+1}e}, then Δ({hp,1}o) =
Δ({hp,2}e), therefore

Δ({hp,1}o) = p
1
2

N
2 (N

2 −1) N

2

N
2 −1∏
i=1

i!. (137)

For k odd with k > 2, since Δ({hp,k}o) = Δ({hp,k+1}e),

Δ({hp,k}o) = 0. (138)

Using (131), (132), (135), (136), (137) and (138) we get

Δ({hp,k}e)Δ({hp,k}o) =

{
p

N
2 (N

2 −1) N
2

∏N
2 −1

i=m (m!)2 if k = 1, 2
0 if k > 2

. (139)

The consequence of (139) in the sum in (123) is that only the terms for k = 1
and k = 2 are nonzero. For k = 1 or k = 2, the double factorial terms in (124)
is

∏
i

(he
i − 1)!!ho

i !! =
(pN

2 + 1)!!(
p
(

N
2 − 1

)
+ 1
)
!!

N
2∏

m=1

(
p

(
N

2
− m

)
+ 1
)

!!2. (140)

The size of the representation is

np,k =
∑

i

hp,k
i − N(N − 1)

2
= p +

1
2

N

2
(p(N − 2) + 6) − N(N − 1)

2
.

(141)

This way the character of M in the representation {hp,k} is, for k = 1 or
k = 2,

χ{hp,k}(M) = cN N− np,k

2 p
N
2 (N

2 −1) N

2

N
2 −1∏
m=1

(m!)2
(pN

2 + 1)!!(
p
(

N
2 − 1

)
+ 1
)
!!

N
2∏

m=1

(
p

(
N

2
− m

)
+ 1
)

!!2, (142)

and zero for k ≥ 3. Hence, inserting (130) and (142) in (123), we find that

Tr(Mp) = N1− p
2

(
pN

2 + 1
)
!!(

p
(

N
2 − 1

)
+ 1
)
!!

. (143)
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We evaluate a large N limit by keeping only the largest order in N ,

Tr(Mp) = N1− p
2

p/2∏
j=1

(
p

(
N

2
− 1
)

+ 1 + 2j
)

= N
(p

2

) p
2 (

1 + O(N−1)
)
.

(144)

Setting the integer q = p/2, we get the trace property

1
N

Tr(M2q) = qq. (145)

�

In principle, this information should be enough to find M up to matrix
conjugation, similarly to what is done in (30) for the matrix Cm. We leave this
possibility of computation of M to future studies.

Let us now evaluate 〈χr(A2)〉0 for a finite N . In particular, in Theo-
rem 9.3, the integral over matrices has been evaluated and replaced with a
summation over integers.

Theorem 9.3. Let A be a random variable for a N×N Hermitian matrix under
the Gaussian measure. Given a representation r of GL(N) defined through the
set of shifted weights hi, i = 1, ...N, and considering χr the character in that
representation r the following holds true:

〈χr(A
2)〉0 =

N
N(N−1)

2∏N−1
k=0 k!

∏
i(2hi)!

(2N)
∑

i hi
Pf
i,j

∑
k+l=2hi
u+v=2hj

(−1)u − (−1)k

2

(k + u)!!(l + v − 2)!!

k!u!l!v!
.

(146)

Proof. For a Hermitian matrix A of size N whose eigenvalues are denoted by x,
we write X as a diagonal matrix whose diagonal elements are the eigenvalues
x’s. For a given representation r, we are interested in:

〈χr(A2)〉0 =
1
Z0

∫
dAχr(A2) e− N

2 TrA2

=
c̃N

N !

∫
RN

dX
∏
i<j

(xi − xj)2
det
i,j

(
x

2hj

i

)
∏

(x2
i − x2

j )
e− N

2 TrX2

=
c̃N

N !

∫
RN

dX det
i,j

(
x

2hj

i

)∏
i<j

xi − xj

xi + xj
e− N

2 TrX2
, (147)

where

c̃N =
1
Z0

vol(U(N))
(2π)N

= N
N2
2 (2π)− N

2

(
N−1∏
k=0

k!

)−1

. (148)

See [120], [121], and [122] for the change of variables from A to X. We use de
Bruijn’s formula [123],
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1
N !

∫
RN

dμ(X) det
i,j

fi(xj) Pf
i,j

A(xi, xj) = Pf
i,j

∫
R2

dμ(x)dμ(y) fi(x) A(x, y) fj(y),

(149)

so we can reduce the integration over the N variables on the left hand side to
a Pfaffian of an integral over two variables on the right hand side. dμ(x) sets
the measure on x. Here, it is a Gaussian measure dμ(x) = e− N

2 x2
. Since [124]

∏
i<j

xi − xj

xi + xj
= Pf

i,j

(
xi − xj

xi + xj

)
, (150)

let us first rewrite (147),

〈χr(A2)〉0 =
c̃N

N !

∫
RN

dX det
i,j

(
x

2hj

i

)
Pf
i,j

(
xi − xj

xi + xj

)
e− N

2 TrX2
. (151)

An important thing to notice is that when xi + xj = 0, the Pfaffian has a
divergence that is controlled by the zero in the determinant. However, when
we use the de Bruijn’s formula the determinant is removed. Therefore, it is
best to deal with this divergence already here. We introduce a damping with
a small constant ε to prevent a divergence from appearing. We take care of
this by multiplying the elements in the Pfaffian by the term (xi+xj)

2

(xi+xj)2+ε2 . We
regularize (151) by defining, for ε > 0,

〈χr(A2)〉ε =
c̃N

N !

∫
RN

dX det
i,j

(
x

2hj

i

)
Pf
i,j

(
x2

i − x2
j

(xi + xj)2 + ε2

)
e− N

2 TrX2
. (152)

We expand the Pfaffian in (152), a polynomial, into its monomials. We do
the same for the Pfaffian in (151). By comparing the absolute values of these
integrands, term by term, we see that the ones from (152) are bounded by the
ones from (151). Therefore, the dominated convergence theorem [125] tells us
that

〈χr(A2)〉0 = lim
ε→0

〈χr(A2)〉ε. (153)

Now we can use the de Bruijn’s formula in (149) and we obtain the damped
average

〈χr(A2)〉ε = c̃N Pf
i,j

∫
R2

dxdy
x2 − y2

(x + y)2 + ε2
x2hiy2hj e− N

2 (x2+y2). (154)

We remark that at this point, if we take the ε → 0 limit, the integral in (154)
turns into a principal value integral. Let us define

Tij =
∫
R2

dxdy
x2 − y2

(x + y)2 + ε2
x2hiy2hj e− N

2 (x2+y2). (155)

Then, according to (154),

〈χr(A2)〉ε = c̃NPf
i,j

Tij . (156)
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We can simplify the N dependence by changing variables x, y → N− 1
2 x,N− 1

2 y,

Tij =
1

Nhi+hj+1

∫
R2

dxdy
x2 − y2

(x + y)2 + Nε2
x2hiy2hj e− 1

2 (x2+y2). (157)

Introducing sources α and β through the terms αx and βy in the exponential,
we can turn the factors x2hi and y2hj into derivatives:

Tij =
1

Nhi+hj+1

d2hi

dα2hi

d2hj

dβ2hj

∫
R2

dxdy
x2 − y2

(x + y)2 + Nε2
e− 1

2 (x
2+y2)+αx+βy

∣∣∣∣
α,β=0

.

(158)

Let us also define

II(α, β) =
∫
R2

dxdy
x2 − y2

(x + y)2 + Nε2
e− 1

2 (x2+y2)+αx+βy, (159)

thus

Tij =
1

Nhi+hj+1

d2hi

dα2hi

d2hj

dβ2hj
II(α, β)

∣∣∣∣
α,β=0

. (160)

By changing integration variables to u = (x+ y)/
√

2 and v = (x− y)/
√

2, and
also defining a = (α + β)/

√
2 and b = (α − β)/

√
2, it becomes

II(α, β) =
∫
R2

dudv
uv

v2 + 2Nε2
e− 1

2 (u2+v2)+au+bv. (161)

Here we notice that the integration over u and over v are independent, hence
we can separate them,

II(α, β) =
∫
R

du u e− 1
2u2+au

∫
R

dv
v

v2 + 2Nε2
e− 1

2 v2+bv = II(1)(a)II(2)Nε(b),

(162)

where we define the integrals

II(1)(a) =
∫
R

du u e− 1
2u2+au and II(2)ε (b) =

∫
R

dv
v

v2 + 2Nε2
e− 1

2v2+bv.

(163)

The first integral is easily evaluated as

II(1)(a) =
√

2π a e
1
2a2

. (164)

The second integral we solve by introducing another integral,

II(2)ε (b) =
∫ b

0

db̃

∫
R

dv
v2

v2 + 2Nε2
e− 1

2v2+b̃v. (165)

At this point we can evaluate the ε → 0 limit due to the dominated convergence
theorem. Thus, by defining

II(2)0 (b) = lim
ε→0

II(2)ε (b), (166)
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we find that

II(2)0 (b) =
∫ b

0

db̃

∫
R

dv e− 1
2 v2+b̃v. (167)

The integral over v in (167) is a simple Gaussian, and we can evaluate it to
find

II(2)0 (b) =
√

2π

∫ b

0

db̃ e
1
2 b̃2 . (168)

This function is, up to normalization conventions, the imaginary error function.
Joining (164) and (168) in (162), we deduce that

II(α, β) = 2π a e
1
2a2
∫ b

0

db̃ e
1
2 b̃2 . (169)

Going back through (160) and (156), we obtain

〈χr(A2)〉0 = c̃NPf
i,j

2π

Nhi+hj+1

∂2hi

∂α2hi

∂2hj

∂β2hj
a e

1
2a2
∫ b

0

db̃ e
1
2 b̃2

∣∣∣∣∣
α,β=0

,

(170)

and by using that

a e
1
2a2

=
∞∑

k=0

a2k+1

2kk!
and

∫ b

0

db̃ e
1
2 b̃2 =

∞∑
k=0

b2k+1

(2k + 1)2kk!
(171)

and that a = (α+β)/
√

2 and b = (α−β)/
√

2, we can evaluate the derivatives
in (170) to find that

〈χr(A2)〉0 = c̃NPf
i,j

2π

Nhi+hj+1

(2hi)!(2hj)!
2hi+hj

∑
k+l=2hi
u+v=2hj

k+u is odd

(−1)u (k + u)!!(l + v − 2)!!
k!u!l!v!

,

(172)

which becomes (146) by using (148), Pfaffian properties and that (−1)k =
−(−1)u for k + u odd and (−1)k = (−1)u for k + u even. �

We wish to remark here about the quantity 〈χr(A2)〉0 which we computed
by taking the limit of ε → 0 in the expression 〈χr(A2)〉ε given in (156). For a
given (in other words, finite) N , the expression we obtained in (172) is valid
and therefore Theorem 9.3. However, if we pay attention the expression (157),
we notice that N comes with ε. Then, one notices that once we send N to
infinity, this procedure becomes sensitive to the ratio in which N → ∞ and
ε → 0 are sent.

One naturally wonders if the expression obtained in Theorem 9.3 may
become simpler in large N limit. Let us explore this possibility in Proposi-
tion 9.4.
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Proposition 9.4. Let A be a random variable for a N×N Hermitian matrix un-
der the Gaussian measure. Given a representation r of GL(N) defined through
the set of normalized shifted weights h̃i = hi/N , i = 1, ...N,. Consider χr the
character in that representation r. Defining

〈χr(A2)〉ε =
1
Z0

vol(U(N))
N ! (2π)N

∫
dX det

i,j
x

2Nh̃j

i Pf
i,j

x2
i − x2

j

(xi + xj)2 + ε2
e− N

2 TrX2
, (173)

which satisfies 〈χr(A2)〉0 = limε→0〈χr(A2)〉ε, the following holds true:

lim
N→∞

〈χr(A2)〉ε

c̃N

∏
k 2e−Nh̃k(2h̃k)Nh̃kPf

i,j

[
(h̃i−h̃j)(h̃i+h̃j+ε2/2)

(h̃i−h̃j)2+ε2(h̃i+h̃j)+ε4/4

] = 1, (174)

where c̃N = N
N2
2 (2π)− N

2 (
∏N−1

k=0 k!)−1.

Proof. We apply the saddle point method to compute (154). Let us first rescale
integers hi to h̃i = hi/N ;

〈χr(A2)〉ε = c̃N Pf
i,j

∫
R2

dxdy
x2 − y2

(x + y)2 + ε2
x2Nh̃iy2Nh̃j e− N

2 (x2+y2)

(175)

and prepare in a form proper to use the saddle point approximation,

〈χr(A2)〉ε = c̃N Pf
∫
R2

dxdy
x2 − y2

(x + y)2 + ε2
e−N( 1

2x2+ 1
2y2−2h̃iln|x|−2h̃j ln|y|).

(176)

Laplace’s method of integration [126] can be expressed as
∫
Rd

dX g(X) e−Nf(X) =
∑
X0

(
2π

N

)d/2
g(X0)e−Nf(X0)√
det
(
H(f)(X0)

) (1 + O(N−1)),

(177)

where X is a set of d real variables, f is a twice-differentiable complex valued
function of X, H(f) is the Hessian matrix of f , the points X0 are local maxima
of f , and g is a complex valued function of X nonzero at X0. Comparing (176)
and (177) we identify

f(X) =
1
2
x2 +

1
2
y2 − 2h̃iln|x| − 2h̃j ln|y| and g(X) =

x2 − y2

(x + y)2 + ε2
.

(178)

Computing the saddle point equations x − 2h̃ix
−1 = 0 and y − 2h̃jy

−1 = 0,
we find four saddle points:

x = ±
√

2h̃i with y = ±
√

2h̃j . (179)

Therefore, we see that the term associated with f is the same for any X0 and
is

e−Nf(X0) = (2h̃i)Nh̃i(2h̃j)Nh̃j e−N(h̃i+h̃j), (180)
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and therefore, for the Hessian,

H(f)(X0) =
(

2 0
0 2

)
and

√
det
(
H(f)(X0)

)
= 2. (181)

Additionally,

∑
X0

g(X0) = 2
2h̃i − 2h̃j

(
√

2h̃i +
√

2h̃j)2 + ε2
+ 2

2h̃i − 2h̃j

(
√

2h̃i −
√

2h̃j)2 + ε2

= 4
(h̃i − h̃j)(h̃i + h̃j + ε2/2)

(h̃i − h̃j)2 + ε2(h̃i + h̃j) + ε4/4
. (182)

Joining everything, we obtain the saddle point approximate for the regularized
character of A2 as

〈χr(A
2)〉ε = c̃NPf

i,j

[
1

2
e−N(h̃i+h̃j)(2h̃i)

Nh̃i (2h̃j)
Nh̃j 4

(h̃i − h̃j)(h̃i + h̃j + ε2/2)

(h̃i − h̃j)2 + ε2(h̃i + h̃j) + ε4/4

]

×(1 + O(N−1)). (183)

Using some Pfaffian properties we can simplify the expression (183) and get

〈χr(A2)〉ε = c̃N2
N
2

∏
k

e−Nh̃k(2h̃k)Nh̃kPf
i,j

[
(h̃i − h̃j)(h̃i + h̃j + ε2/2)

(h̃i − h̃j)2 + ε2(h̃i + h̃j) + ε4/4

]

(1 + O(N−1)). (184)

Applying the limit N → ∞, we find

lim
N→∞

〈χr(A2)〉ε

c̃N2
N
2
∏

k e−Nh̃k(2h̃k)Nh̃kPf
i,j

[
(h̃i−h̃j)(h̃i+h̃j+ε2/2)

(h̃i−h̃j)2+ε2(h̃i+h̃j)+ε4/4

] = 1. (185)

�

One may wish to apply ε → 0 limit to (185) and if the limits ε → 0 and
N → ∞ commute, then, (185) can be manipulated to say that in the large N
limit, 〈χr(A2)〉0 is equal to

c̃N2
N
2

∏
k

e−Nh̃k(2h̃k)Nh̃kPf
i,j

[
h̃i + h̃j

h̃i − h̃j

]
. (186)

We computed 〈χr(A2)〉0 using (146) and (186) for 1 ≤ N ≤ 30 (we should
note here that if we use integral form for 〈χr(A2)〉0, then even N = 6 the com-
putation becomes slow) using Mathematica for trivial, defining, and determi-
nant representations. However, for the above values of N that we tested, the
values of the expression (186) do not converge to the values computed using
the expression achieved in (146).

Now, we present first a new way of computing 〈χR(A)〉0 below in Proposi-
tion 9.5, whose similar technique is used to compute 〈χR(A2)〉0 in Theorem 9.6.
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Proposition 9.5. Let A be an N × N Hermitian matrix under the Gaussian
measure. Given a representation R of GL(N) defined through the set of shifted
weights hi, i = 1, ...N, and considering χR the character in the representation
R, the following holds true:

〈χR(A)〉0 =
χR(1)χR(C2)

χR(C1)

= (−1)
1
2

N
2 (N

2 −1)N− n
2

Δ(h)∏N−1
i=0 i!

∏
i(h

e
i − 1)!!ho

i !!∏
i,j(h

o
i − he

j)
, (187)

where the numbers h are separated in a set of �N/2� even numbers he and
�N/2� odd numbers ho. If such a separation is not possible, then the average
is 0.

Proof. For A ∈ GL(N), using character orthogonality for the symmetric group
Sn, we can write the character of A as

χR(A) =
∑
r	n

δR,rχr(A) =
∑
r	n

( ∑
σ∈Sn

1
n!

χ̄R(σ)χr(σ)
)
χr(A), (188)

where the bar on χ̄R(σ) denotes complex conjugate. Interchanging the sums
and using Schur-Weil duality,∑

r	n

χr(σ)χr(A) = Tr(σA⊗n), (189)

we obtain

χR(A) =
∑

σ∈Sn

1
n!

χ̄R(σ)Tr(σA⊗n). (190)

Now, we take the average of the above quantity. Wick’s probability theorem
tells us that

〈A⊗n〉0 = N− n
2

∑
γ∈[2

n
2 ]

γ, (191)

where [2
n
2 ] is the conjugacy class of permutations in Sn with n/2 2-cycles.

Therefore we obtain

〈χR(A)〉0 =
∑

σ∈Sn

∑
γ∈[2

n
2 ]

N− n
2

1
n!

χ̄R(σ)Tr(σγ)

=
∑

σ∈Sn

∑
γ∈[2

n
2 ]

∑
r	n

N− n
2

1
n!

χ̄R(σ)χr(σγ)χr(1), (192)

where we used (189) in the last equality, with A = 1. Again using orthogonality
relations, rewrite

∑
σ∈Sn

1
n!

χ̄R(σ)χr(σγ) = δR,r
1
sR

χR(γ), (193)



J. L. A. Abranches et al. Ann. Henri Poincaré

where we denote the dimension of the Sn representation sR = χR(id), where
id is the identity permutation, and

〈χR(A)〉0 =
∑

γ∈[2
n
2 ]

∑
r	n

N− n
2 δR,r

1
sR

χR(γ) dr = N− n
2

dR

sR

∑
γ∈[2

n
2 ]

χR(γ).

(194)

In order to perform
∑

γ∈[2
n
2 ]

, we use the following trick. Let us first return to
the relation (190) for some matrix M ,

χR(M) =
∑

σ∈Sn

1
n!

χ̄R(σ)Tr(σM⊗n). (195)

We observe that (195) sums over all elements in Sn, whereas (194) sums over a
subset of Sn. We aim to extract (194) from (195). We choose M such that the
summation in Sn is restricted to elements of [2

n
2 ], achieved by Tr(σM⊗n) = 0

for σ not in [2
n
2 ] and constant for when σ is in [2

n
2 ]. Using the notation [

∏
k kck ]

for the cycle [σ] which σ belongs to, we wish to find M such that

Tr(σM⊗n) = a δ
[σ],[2

n
2 ]

= a δc2, n
2

∏
k �=2

δck,0. (196)

for some constant a (that might depend on N or n but not on σ). But also,
we can write

Tr(σM⊗n) =
∏
k

Tr(Mk)ck , (197)

leading us to the identification, for k �= 2,

Tr(Mk)ck = δck,0. (198)

Hence, the possibility of a nonzero ck with a general permutation σ tells us
that

Tr(Mk) = 0 (199)

for k �= 2. Then, recalling

Tr(Ck
2 ) = Nδk,2, (200)

we conclude M = C2 with a = N
n
2 is a possible solution. Then, setting M = C2

in (195) with (197), we find that

χR(C2) =
∑

σ∈Sn

1
n!

χ̄R(σ)
∏
k

Tr(Ck
2 )ck . (201)

Finally, using (200)

χR(C2) =
∑

σ∈[2
n
2 ]

1
n!

χ̄R(σ)N
n
2 , (202)
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we succeeded in restricting the sum to [2
n
2 ]. Identifying the last summation in

(194) as ∑
σ∈[2

n
2 ]

χR(σ) = n!N− n
2 χ̄R(C2), (203)

we achieve an expression for the average of character,

〈χR(A)〉0 = n!N−n dR

sR
χ̄R(C2). (204)

Let us now compute sR. We perform a similar trick as above, by con-
sidering [1n] instead of [2

n
2 ]. This time there is no summation in [1n] because

the only element in this class is the identity permutation. We can show in a
similar fashion that we find the result through the matrix C1 instead of C2.
Skipping to the equivalent of (201), just changing the condition from k = 2
to k = 1 in relevant places, we are able to isolate the character of the identity
permutation,

χR(C1) =
1
n!

χ̄R(id)Nn. (205)

Identifying sR = χ̄R(id) = χR(id), the dimension of the Sn representation can
be written in terms of χR(C1) by

sR = n!N−nχ̄R(C1). (206)

Finally, using (206) in (204) also with dR = χR(1) we find that

〈χR(A)〉0 =
χR(1)χR(C2)

χR(C1)
. (207)

Additionally, with a formula for the character of Cm [78]

χR(Cm) = c

(
N

m

) 1
m

∑
i hi

m−1∏
ε=0

Δ(h(ε))
∏

i

(
h
(ε)
i −ε
m

)
!
sgn

⎡
⎣ ∏

0≤ε1<ε2≤m−1

∏
i,j

(h(ε2)
i − h

(ε1)
j )

⎤
⎦ , (208)

where {h(ε)} = {a ∈ {h} | a = ε mod m}, we can also find a different
expression for 〈χR(A)〉0, by inserting (208) into (207)

〈χR(A)〉0 = (−1)
1
2 � N

2 
(� N
2 
−1)N− n

2
Δ(h)∏N−1
i=0 i!

∏
i(h

(e)
j − 1)!!h(o)!!∏

i,j(h
(o)
i − h

(e)
j )

. (209)

This expression is written in terms of the highest weights {h}. �

Following a similar argument as Proposition 9.5, we compute 〈χr(A2)〉0.
Theorem 9.6. Let A be an N ×N Hermitian matrix under the Gaussian mea-
sure. Given a representation r of GL(N) defined through the set of shifted
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weights hi, i = 1, ...N, and considering χr the character in that representa-
tion, the following holds true:

〈χr(A2)〉0 =
χr(1)2

χr(C1)
(
1 + O(N−2)

)
= N−n

∏
i

hi!Δ(h)
(
1 + O(N−2)

)
.

(210)

Proof. We start from the relation

χr(A2) =
∑

σ∈Sn

1
n!

χ̄R(σ)Tr(σ(A2)⊗n). (211)

We wish to express in terms of A instead of A2. We use the relation

Tr
(
σ(A2)⊗n

)
= Tr

(
(σ ⊗ 1)A⊗2nα

)
(212)

where α = (1, 1+n)(2, 2+n) · · · (n, 2n) and on the left the trace considers the
vector space C

⊗n
N , while on the right the vector space considered is C

⊗2n
N . This

relation can be shown by using the definition of trace on both sides. We then
just write (211),

χr(A2) =
∑

σ∈Sn

1
n!

χ̄R(σ)Tr((σ ⊗ 1)A⊗2nα), (213)

and just like before in Theorem 9.5, taking the average and using Wick’s
theorem we obtain

〈χr(A2)〉0 =
∑

σ∈Sn

∑
γ∈[2n]

N−n 1
n!

χ̄R(σ)Tr((σ ⊗ 1) γ α). (214)

At this point we need a relation that we prove in Appendix X, which is∑
γ∈[2n]

Tr((σ ⊗ 1) γ α) =
∑

ρ∈Sn

Tr(ρ)Tr(σ ρ)
(
1 + O(N−2)

)
, (215)

where on the right hand side, the traces act on C
⊗n
N . Using this equation we

then get

〈χr(A2)〉0 =
∑

σ∈Sn

∑
ρ∈Sn

N−n 1
n!

χ̄R(σ)Tr(ρ)Tr(σ ρ)
(
1 + O(N−2)

)
. (216)

The summation over σ can then be evaluated by using the summation over
representations (189) with the identity matrix in place of A and the summation
over permutation (193);

〈χr(A2)〉0 =
∑

ρ∈Sn

N−nTr(ρ)
dR

sR
χr(ρ)

(
1 + O(N−2)

)
. (217)

Repeating for the summation in ρ, and using χr(id) = sR and (206), we find

〈χr(A2)〉0 = n!N−n d2
R

sR
(1 + O(N−2)) =

χr(1)2

χr(C1)
(1 + O(N−2)). (218)
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Finally, using (109) and (208) we find that

〈χr(A2)〉0 = N−n
∏

i

hi!Δ(h)
(
1 + O(N−2)

)
. (219)

This interesting new result is valid considering N � n. �

10. Conclusions

A comprehensive understanding of quantum gravity-matter systems is not only
important for phenomenological applications but also to check the consistency
of the the underlying quantum theory. A fundamental theory that encompasses
quantum-gravitational degrees of freedom as well as matter fluctuations de-
pends on the synergy between the collective quantum fluctuations of the full
theory. A paradigmatic example is QCD that loses asymptotic freedom and,
thus, UV-completeness when the number of fermions is sufficiently large. Like-
wise, an asymptotically safe theory of quantum gravity can lose its UV fixed
point for a sufficiently intricate matter content. Therefore, understanding the
impact of matter degrees of freedom to the continuum limit of a candidate
theory of quantum gravity is an essential ingredient in its construction. Con-
versely, quantum-gravity fluctuations can affect the dynamics of the underly-
ing matter fields and trigger non-trivial effects that can leave imprints in the
infrared. Furthermore, the large body of evidence reported by the CDT com-
munity reveals that the implementation of causality constraints can be central
for a suitable continuum limit of the lattice-regularized path integral of quan-
tum gravity. Thus, in view of what was said above, it is natural to investigate
the continuum limit of CDT coupled to matter degrees of freedom. Actually,
it is an active field of interest to understand the relation, if any, between the
Euclidean and Lorentzian formalisms, see, e.g., [127–131].

In the present work, we have defined a toy model that generated two-
dimensional CDT configurations coupled to Ising model degrees of freedom.
This was proposed under the framework of dually-weighted multi-matrix mod-
els. Matrix models enjoy rich analytical tools and, in many occasions, allow for
the establishment of mathematical rigorous results such as eigenvalue decom-
position techniques to explicitly compute matrix-integrals, large N expansion
where the sphere topology dominates at leading order in a Feynman expansion
of the partition function [37,132–135], double-scaling limit in which all topolo-
gies are taken into account [41,136,137], topological recursion which lets us
recursively solve the loop equations of matrix models and bridges combinato-
rial maps with algebraic and enumerative geometry [138], Weingarten calculus
to compute matrix integrals [118], etc. Matrix models indeed generate the
Brownian sphere at criticality and rigorously proven to be equivalent to 2d
Liouville gravity [139–144]. Equipped with such abundant and rich tools, they
therefore provide with us an enticing platform to further explore interesting
mathematics and physics, with also possibly more physically relevant (higher
dimensional) generalization in the context of quantum gravity; Matrix models
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have a higher dimensional generalization, i.e., tensor models [44,47,145–150]
where it is of interest to understand how to incorporate causality.

The initial hope of formulating CDT coupled to the Ising model as a
multi-matrix model was to find an exact/analytical solution for it (in other
words compute exactly the partition function), possibly using new techniques
developed in the last decade since the work by Benedetti-Henson in [76]. For
example, one new interesting result [151] in recent works is the generaliza-
tion of the Harish–Chandra–Itzykson–Zuber (HCIZ) integral, where the gen-
eralization considers integrals over tensor powers of U(N). They studied the
integral

∫
dU etTr(AUBU∗), where U ∈ U(N)⊗D, A and B are self-adjoint op-

erators in (CN )⊗D, and N and D are positive integers. The HCIZ result is
recovered by setting D = 1. For our purposes, a generalization of the HCIZ
integral for a trace with a different power would have been useful. That is,∫

dU etTr(AUBU∗)k

, where U ∈ U(N), A and B are self-adjoint operators in
C

N , and N and k are positive integers. Instead, we made use of Weingarten
calculus (in Proposition 8.1), Schur-Weyl duality (in Proposition 9.5, Theo-
rem 9.6), theory of symmetric group algebra (in Proposition 9.5, Theorem 9.6,
and Lemma 10.1), etc to achieve our results in this paper.

Even though matrix models enjoy vast amount of analytical results, it
seems that solving exactly the partition functions of the pure CDT-like matrix
model of Benedetti-Henson and the CDT-like matrix model coupled with Ising
models remains quite difficult.

One problem we faced was the necessity to do the character expansion
more than once for the CDT-like matrix model with Ising model. See (67) and
(68). In Proposition 8.1, the appearance of multiple representations from the
expansion required us to use the theory of decomposition of reducible represen-
tations. The current state of this theory is not sufficient for our purposes, since
it lacks closed formulas in terms of the representations involved; the existence
of algorithms is not enough. For example, given a representation R in terms of
a set of shifted highest weights {h}, the decomposition of the representation
R⊗R is doable through the Littlewood-Richardson rule. However, this process
is not written in terms of functions which we could apply the standard theory
of calculus (e.g., derivatives and integrals) to; for example, closed formulas for
the Littlewood-Richardson rule, as well as for the Clebsch-Gordan coefficients
are not known.

Indeed, we foresee a similar problem when we consider solving for 〈χ{h}
(A2)〉, by expressing the character in terms of the symmetric square and
alternating representations (which are, in general, reducible). There exists
a relation {h} ⊗ {h} = Sym2{h} ⊕ Alt2{h}. This expression tells us that
χ{h}(A)2 = χSym2{h}(A)+χAlt2{h}(A). Another known formula is χ{h}(A2) =
χSym2{h}(A) − χAlt2{h}(A). This last decomposition can be done with the
Carré–Leclerc domino tableaux algorithm, in a similar way the Littlewood-
Richardson rule gives an algorithm to decompose the product of irreducible
representations into a direct sum of irreducible representations. Nevertheless,
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this is just an algorithm, and does not give a closed formula to which represen-
tations contribute, and it seems that such formula is not known. Therefore, we
seem to encounter the similar problem as we did in the Proposition 8.1, where
Clebsch-Gordan coefficients are unknown. In order to solve for the partition
functions of the CDT-like matrix models, we do need general explicit formulas
for such coefficients.

Another difficulty lies in the fact that the representations that contribute
most to the character expansion are expected to have the size proportional
to N2. More specifically, the number of shifted weights is N and each shifted
weight grows proportionally to N . See Theorem 9.6. When applying the theory
of symmetric group algebra, one of the symmetric groups considered is Sn,
where n is the size of the representation (corresponding to the number of
boxes of Young diagram of a given representation). In principle, the size of
the representation n should be proportional to N2 [152] [153]. Therefore, if we
want to compute the partition functions (68) and (60), then we need to take
care of the N dependence in n. However, in this current work, our results in
Theorem 9.6 and Lemma 10.1 relied on us taking large N limit but keeping n
finite. Working with Sn for large n is challenging because the dependence of n
is involved in expressions like (213).

Nevertheless, we have achieved several new results concerning the aver-
ages of character of Hermitian matrix or Hermitian matrix squared for a given
representation, which may be of interest in the mathematics community and
alike.

In particular, the results in Theorems 9.4, 9.3 and 9.6 add to the known
properties of the decomposition of the product of representations r⊗r in terms
of irreducible representations.

In Theorem 9.3, the expression of 〈χR(A2)〉 in (146) is for finite N and
n. This result reduces the average integral in (14) to a finite sum over integers,
therefore, more computable. The next step is either evaluate this sum, that
has only products and ratios of factorials as terms, or possibly evaluating the
Pfaffian without computing the sum.

We also found an expression for 〈χR(A2)〉 at large N and n in Propo-
sition 9.4. The expression itself of the Pfaffian Pf

[
h̃i+h̃j

h̃i−h̃j

]
is similar to the

known result in (150), except that in (174) each matrix element is inverse to
the respective element in (150) and is unknown to our knowledge.

In Theorem 9.6, we explicitly found the leading order expression of the
character of A2 for a given representation in the large N limit for a finite n.
This result is related to cell modules in Brauer algebra [154].

Additionally, the results Theorem 6.1 on the matrix Cm (which is respon-
sible for yielding the causal structure to the Feynman graphs generated) are
new to our knowledge. We explicitly found the distribution of eigenvalues of
Cm.

For future works, we can consider several possible extensions and addi-
tions of our current work. It should be possible to extend the result of Theo-
rem 9.6 to any powers of A by generalizing the expression used in (215). This
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expression, shown in Appendix X, is obtained by combinatorial evaluations,
which we expect can be applied to extend our result to higher powers of A.

In [76], the critical value of the coupling g in (1) was computed. By solving
for the distribution of highest weights, they were able to observe a critical
behavior where the distribution extended over the entire positive real line. This
criticality happened for coupling g = 1/2, which is the same as the criticality
found in [108]. We may be able to obtain the critical property of partition
functions (1) if we can understand the properties of Pfaffians Pf

[
h̃i+h̃j

h̃i−h̃j

]
in

(174) well enough, even if we do not know the explicit expression for it.
In summary, the present work puts forward a dually-weighted multi-

matrix model that, for a particular choice of weight, corresponds to two-
dimensional CDT coupled to the Ising model. To the best of our knowledge,
there is no known exact solution for CDT coupled to Ising even in two dimen-
sions. Hence, one possibility to be explored is whether the model here proposed
can be well-suited for different approximations of the CDT-Ising model as, e.g.,
by means of Monte-Carlo simulations. A reformulation of the underlying theory
by a different formalism can lead to new insights and this is worth exploring in
the future. Moreover, we have now the possibility to couple more sophisticated
matter models to two-dimensional CDT in the matrix-model frameowork, such
as the Potts model. This will be reported elsewhere. Lastly, the dually-weighted
multi-matrix model can be investigated on its own, i.e., beyond the choice of
the causal constraint as mainly emphasized in this work.
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Appendix

We show how to derive the relation in (215). First we show a more general
relation in the following Lemma 10.1, and we obtain (215) by performing left
multiplication on both sides of the equation (220) by σ and taking the trace.

Lemma 10.1. Consider the trace Tr over a vector space C⊗2n
N = C⊗n

N ⊗ C⊗n
N .

Let P2Tr be the partial trace over the second C⊗n
N vector space, and α =

(1, 1 + n)(2, 2 + n) · · · (n, 2n) be the permutation that switches the first and
second C⊗n

N vector spaces. For a given n,
∑

γ∈[2n]

P2Tr(γ α) =
∑

ρ∈Sn

Tr(ρ) ρ
(
1 + O(N−2)

)
. (220)

Before we begin our proof, let us see an example of (220), checking it for
n = 2. The permutations in [22] are shown in Fig. 17. For each permutation σ
in [22], P2Tr(σ α) is shown in Fig. 18. This way, we indeed check
∑

γ∈[22]

P2Tr(γ α) = [1 + N2](1)(2) + N(1 2) = [N2(1)(2) + N(1 2)][1 + O(N−2)].

(221)

Figure 17. Permutations in [22]

Figure 18. Partial trace of permutations in [22]

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Proof. Let γ ∈ [2n]. Defining the interval of integers [a, b] = {x|x ∈ Z, a ≤
x ≤ b} and the sets pf = {x|x ∈ [1, n], γx ∈ [1, n]} and pi = {αx|x ∈ [n +
1, 2n]|γx ∈ [n + 1, 2n]}, where α = (1, 1 + n)(2, 2 + n) · · · (n, 2n). Remark
α = α−1 and γ = γ−1. Noticing the cardinalities of pf and pi are equal, we
call s = |pf | = |pi|. Define the permutation νf ∈ [2

s
2 ] by

νfx =

{
γx if x ∈ pf

x if x ∈ [1, n] \ pf

. (222)

Define the permutation νi ∈ [2
s
2 ] by

νix =

{
αγαx if x ∈ pi

x if x ∈ [1, n] \ pi

. (223)

Define also μ ∈ Sn by

μx =

{
γαx if x ∈ [1, n] \ pi

(γα)−k(x)x if x ∈ pi

, (224)

where k(x) = min{m|m ≥ 0, (γα)−mx ∈ pf}. Checking each case we see that

γx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

νfx if x ∈ pf

ανiαx if x ∈ αpi

μαx if x ∈ [n + 1, 2n] \ αpi

(μα)−1x if x ∈ [1, n] \ pf

, (225)

and applying a multiplication by α,

γαx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

νfαx if x ∈ αpf

ανix if x ∈ pi

μx if x ∈ [1, n] \ pi

αμ−1αx if x ∈ [n + 1, 2n] \ αpf

. (226)

Let us review the definition of partial trace of an operator η ∈ End(C2n
N ). The

tensor coefficients of η are defined by

ηj1,...,j2n

i1,...i2n
= 〈ej1 , ..., ej2n

| η |ei1 , ..., ei2n
〉, (227)

where |ei1 , ..., ei2n
〉, for 1 ≤ ik ≤ N with 1 ≤ k ≤ 2n, is a basis of C

2n
N . In the

case η is a permutation, the coefficients (227) can be evaluated as

ηj1,...,j2n

i1,...,i2n
= δ

jη(1)
i1

...δ
jη(2n)
i2n

= δj1
l1

...δj2n

l2n
δ

lη(1)
i1

...δ
lη(2n)
i2n

. (228)

We define the partial trace of η as a trace over its last n indices,

P2Tr(η)j1,...,jn

i1,...,in
=

∑
kn+1,...,k2n

η
j1,...,jn,kn+1,...,k2n

i1,...,in,kn+1,...,k2n
. (229)

If η is a permutation in Sn represented in End(C2n
N ), its partial trace is equal

to

P2Tr(η)j1,...,jn

i1,...,in
=

∑
kn+1,...,k2n

l1,...,l2n

δj1
l1

...δjn

ln
δ

kn+1
ln+1

...δk2n

l2n
δ

lη(1)
i1

...δ
lη(n)
in

δ
lη(n+1)

kn+1
...δ

lη(2n)

k2n
,
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(230)

Let cy(μ) be the number of cycles in μ (note that indeed cy(μ) = cy(μ−1)).
Checking case by case, we then see that for η = γα,

P2Tr(γα)x =

{
N cy(μmu)−s μx if x ∈ [1, n] \ pi

N cy(μ−1)−s νf μ−k(x) νi x if x ∈ pi

, (231)

where the power of N, which is cy(μ) − s, is the number of cycles of αγ which
contains only elements from n + 1 to 2n. This power also counts the number
of closed loops in the graphic representation, see Fig. 18. By noticing that the
two cases are both equal to νfμνi restricted to their conditions, simply we can
write

P2Tr(γα) = N cy(μ)−s νf μ νi. (232)

If s = 0, then νf = νi = id and γα = μ ⊗ μ−1, therefore

P2Tr(αγ) = N cy(μ)μ. (233)

If s > 0, the coefficient of νfμνi is of lower order than from the from (νf μ νi)⊗
(νf μ νi)−1, therefore∑

γ∈[2n]

P2Tr(γα) =
∑

μ∈Sn

P2Tr(μ ⊗ μ−1)
(
1 + O(N−2)

)

=
∑

μ∈Sn

N cy(μ)μ
(
1 + O(N−2)

)
, (234)

where the order is O(N−2) since s is even.
�

As an illustration of the proof above, we consider a permutation γ in [210]
given by

γ = (1 5)(2 17)(3 18)(4 15)(6 12)(7 10)(8 13)(9 11)(14 16)(19 20) (235)

and is represented graphically in Fig. 19. For all the lines connecting the bot-
tom to the top, call x and y the values at the bottom and top of the line,
respectively. Each pair x and y falls into one of four distinct cases: 1 ≤ x ≤ 10
and 1 ≤ y ≤ 10; 11 ≤ x ≤ 20 and 11 ≤ y ≤ 20; 11 ≤ x ≤ 20 and 1 ≤ y ≤ 10;
1 ≤ x ≤ 10 and 11 ≤ y ≤ 20. In Fig. 19 we highlight the first two cases in red,
the third case in green and the fourth case in pink.

The sets pi and pf used in the lemma 10.1 are pi = {4, 6, 9, 10} and
pf = {1, 5, 7, 10}. The permutation νf defined in (222) is the permutation
associated with the case 1 ≤ x ≤ 10 and 1 ≤ y ≤ 10, shown in red on the left
side of Fig. 19, and given by

νf = (1 5)(7 10)(2)(3)(4)(6)(8)(9). (236)

The permutation νi defined in (223) is the permutation associated with the
case 11 ≤ x ≤ 20 and 11 ≤ y ≤ 20, shown in red on the right side of Fig. 19,
and given by

νi = (4 6)(9 10)(1)(2)(3)(5)(7)(8). (237)
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Figure 19. An example of a permutation in [210]

The permutation μ defined in (224) is the permutation associated with the
case 11 ≤ x ≤ 20 and 1 ≤ y ≤ 10, shown in green in Fig. 19, and given by

μ = (1 9)(5 4)(7 2 6)(3 8)(10). (238)

The permutation γα is

γα = (1 9 20 7 2 6 14 15)(5 4 16 12 17 10 19 11)(3 8)(18 13), (239)

and according to (232), its partial trace is

P2Tr(γα) = N (1 9 7 2 6)(3 8)(4 10 5). (240)
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[109] Itzykson, C., Zuber, J.B.: The planar approximation. J. Math. Phys. 21, 411
(1980)

[110] Mehta, M.L., Mahoux, G.: A Method of integration over matrix variables. Com-
mun. Math. Phys. 3, 327–340 (1990)

[111] Eynard, B.: Eigenvalue distribution of large random matrices, from one matrix
to several coupled matrices. Nucl. Phys. B 506, 633 (1997)

[112] Eynard, B.: Large N expansion of the 2 matrix model. JHEP 01, 051.
arXiv:hep-th/0210047

[113] Bertola, M., Eynard, B.: Mixed correlation functions of the two matrix model.
J. Phys. A 36, 7733 (2003). arXiv:hep-th/0303161

[114] Kazakov, V.: Ising model on a dynamical planar random lattice: exact solution.
Phys. Lett. A 119, 140 (1986)

[115] Mehta, M.: Random Matrices. Elsevier, Amsterdam (2004)

[116] Walker, P.: The zeros of the partial sums of the exponential series. Am. Math.
Mon. 110, 337 (2003)

[117] Zemyan, S.M.: On the zeroes of the nth partial sum of the exponential series.
Am. Math. Mon. 112, 891 (2005)

[118] Collins, B., Matsumoto, S., Novak, J.: The Weingarten calculus (2021).
arXiv:2109.14890 [math-ph]

[119] Francesco, P.D., Itzykson, C.: A generating function for fatgraphs (1992).
arXiv:hep-th/9212108 [hep-th]

[120] Eynard, B., Kimura, T., Ribault, S.: Random matrices (2015).
arXiv:1510.04430 [math-ph]
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[136] Brézin, E., Kazakov, V.: Exactly solvable field theories of closed strings. Phys.
Lett. B 236, 144 (1990)

[137] Shenker, S.H.: The strength of nonperturbative effects in string theory. In:
Alvarez, O., Marinari, E., Windey, P. (eds.) Random Surfaces and Quantum
Gravity, pp. 191–200. Springer, Boston (1991)

[138] Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expan-
sion. Commun. Num. Theor. Phys. 1, 347 (2007). arXiv:math-ph/0702045

[139] Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map II:
geodesics and continuity of the embedding (2021). arXiv:1605.03563 [math.PR]

[140] Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map III:
the conformal structure is determined (2016). arXiv:1608.05391 [math.PR]

[141] Marckert, J.-F., Mokkadem, A.: Limit of normalized quadrangulations:
the Brownian map. Ann. Probab. (2006). https://doi.org/10.1214/
009117906000000557

[142] Gall, J.F.L., Paulin, F.: Scaling limits of bipartite planar maps are homeomor-
phic to the 2-sphere (2006). arXiv:math/0612315 [math.PR]

[143] Gall, J.-F.L.: The topological structure of scaling limits of large planar maps.
Inventiones Mathematicae 169, 621 (2007)

[144] Gall, J.F.L., Miermont, G.: Scaling limits of random trees and planar maps
(2012). arXiv:1101.4856 [math.PR]

[145] Bonzom, V., Gurau, R., Riello, A., Rivasseau, V.: Critical behavior of col-
ored tensor models in the large N limit. Nucl. Phys. B 853, 174 (2011).
arXiv:1105.3122 [hep-th]

[146] Rivasseau, V.: Quantum gravity and renormalization: the tensor track. AIP
Conf. Proc. 1444, 18 (2012). arXiv:1112.5104 [hep-th]

[147] Rivasseau, V.: The tensor track: an update. In: 29th International Colloquium
on Group-Theoretical Methods in Physics (2012). arXiv:1209.5284 [hep-th]

[148] Rivasseau, V.: The tensor track, III. Fortsch. Phys. 62, 81 (2014).
arXiv:1311.1461 [hep-th]

[149] Rivasseau, V.: Random tensors and quantum gravity. Symmetry Integr. Geom.
Methods Appl. (2016). https://doi.org/10.3842/sigma.2016.069

[150] Rivasseau, V.: The tensor track, IV, PoS CORFU2015, 106 (2016).
arXiv:1604.07860 [hep-th]

[151] Collins, B., Gurau, R., Lionni, L.: The tensor Harish–Chandra–Itzykson–Zuber
integral I: Weingarten calculus and a generalization of monotone Hurwitz num-
bers (2022). arXiv:2010.13661 [math.CO]

[152] Kazakov, V.A., Zinn-Justin, P.: Two-matrix model with ABAB interaction.
Nucl. Phys. B 546, 647 (1999)

http://arxiv.org/abs/math-ph/0702045
http://arxiv.org/abs/1605.03563
http://arxiv.org/abs/1608.05391
https://doi.org/10.1214/009117906000000557
https://doi.org/10.1214/009117906000000557
http://arxiv.org/abs/math.PR/0612315
http://arxiv.org/abs/1101.4856
http://arxiv.org/abs/1105.3122
http://arxiv.org/abs/1112.5104
http://arxiv.org/abs/1209.5284
http://arxiv.org/abs/1311.1461
https://doi.org/10.3842/sigma.2016.069
http://arxiv.org/abs/1604.07860
http://arxiv.org/abs/2010.13661


J. L. A. Abranches et al. Ann. Henri Poincaré
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