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Good Inducing Schemes for Uniformly
Hyperbolic Flows, and Applications to
Exponential Decay of Correlations

Tan Melbourne and Paulo Varandas

Abstract. Given an Axiom A attractor for a C'T flow (a > 0), we
construct a countable Markov extension with exponential return times
in such a way that the inducing set is a smoothly embedded unstable
disk. This avoids technical issues concerning irregularity of boundaries of
Markov partition elements and enables an elementary approach to certain
questions involving exponential decay of correlations for SRB measures.

1. Introduction

Statistical properties of Anosov and Axiom A diffeomorphisms [3,33] were
developed extensively in the 1970s. Key tools were the construction of finite
Markov partitions [10,32] and the spectral properties of transfer operators
[28]. In particular, ergodic invariant probability measures were constructed
corresponding to any Holder potential [12,29,31]; moreover, it was shown that
hyperbolic basic sets for Axiom A diffeomorphisms are always exponentially
mixing up to a finite cycle for such measures, see for example [12,22,29].

Still in the 1970s, finite Markov partitions were constructed [11,26] for
Anosov and Axiom A flows. This allows us to model each hyperbolic basic
set as a suspension flow over a subshift of finite type, enabling the study of
thermodynamic formalism (see e.g. [14]) and statistical properties (see e.g.
[17,27]). By the Anosov alternative [3,23], a transitive Anosov flow is mixing
if and only if it is a constant suspension over an Axiom A diffeomorphism.

However, rates of mixing for Axiom A flows are still poorly understood.
By [24,30], mixing Axiom A flows can mix arbitrarily slowly. Although there
has been important progress starting with [16,18,20], it remains an open ques-
tion whether mixing Anosov flows have exponential decay of correlations. Very
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recently, this question was answered positively [35] in the case of C*° three-
dimensional flows.

It turns out that using finite Markov partitions for flows raises technical
issues due to the irregularity of their boundaries [5,15,34]. Even in the discrete-
time setting, it is known that the boundaries of elements of a finite Markov
partition need not be smooth [13]. In this paper, we propose using the approach
of [36] to circumvent such issues at least in the case of SRB measures. In
particular, we show that

Any attractor! for an Aziom A flow can be modeled by a suspension
flow over a full branch countable Markov extension where the in-
ducing set is a smoothly embedded unstable disk. The roof function,
though unbounded, has exponential tails.

A precise statement is given in Theorem 2.1 below.

Remark 1.1. The approach of Young towers [36] has proved to be highly ef-
fective for studying discrete-time examples like planar dispersing billiards and
Hénon-like attractors where suitable Markov partitions are not available. How-
ever, as shown in the current paper, there can be advantages (at least in con-
tinuous time) to working with countable Markov extensions even when there
is a well-developed theory of finite Markov partitions. The extra flexibility of
Markov extensions can be used not only to construct the extension but to
ensure good regularity properties of the partition elements.

As a consequence of Theorem 2.1, we obtain an elementary proof of the
following result:

Theorem 1.2. Suppose that A is an Axiom A attractor with SRB measure p
for a C'* flow ¢, with C'* stable holonomies® and such that the stable and
unstable bundles are not jointly integrable. Then for all Holder observables
v, w: A — R, there exist constants ¢,C' > 0 such that

‘/vwogbtd,uf/vdu/wdu’SC’efCt for allt > 0.
A A A

Remark 1.3. Joint nonintegrability holds for an open and dense set of Axiom A
flows and their attractors, see [19] and references therein. It implies mixing and
is equivalent to mixing for codimension one Anosov flows. It is conjectured to
be equivalent to mixing for Anosov flows [23].

Remark 1.4. (a) In the case when the unstable direction is one-dimensional
and the stable holonomies are C2, this result is due to [4,5,8,9]. In par-
ticular, using the fact that stable bunching is a robust sufficient condition
for smoothness of stable holonomies together with the robustness of joint
nonintegrability, [4] constructed the first robust examples of Axiom A
flows with exponential decay of correlations. The smoothness condition
on stable holonomies was relaxed from C? to C'* in [6] extending the

1Here, an attractor is an attracting hyperbolic basic set, and so is topologically transitive
with an open basin of attraction.
2C1t means C™ for some 7 > 1.



Good inducing schemes for uniformly hyperbolic flows

class of examples in [4]. This class of examples is extended further by

Theorem 1.2 with the removal of the one-dimensionality restriction on

unstable manifolds.

(b) There is no restriction on the dimension of unstable manifolds in [8], and
it is not surprising that the smoothness assumption on stable holonomies

can also be relaxed as in [6]. However, there is a crucial hypothesis in [8]

on the regularity of the inducing set in the unstable direction which is

nontrivial in higher dimensions.

Theorem 1.2 is stated in the special case of Anosov flows in [15]. In [15,
Appendix] it is argued that at least in the Anosov case the Markov partitions
of [26] are sufficiently regular that the methods in [8] can be pushed through.
In [5], a sketch is given of how to prove Theorem 1.2 also in the Axiom A case,
but the details are not fully worked out.

As mentioned, our approach in this paper completely bypasses such issues
since our inducing set is a smoothly embedded unstable disk. Moreover, our
method works equally well for Anosov flows and Axiom A attractors. As a
consequence, we recover the examples in [15], in particular that codimension
one volume-preserving mixing C'*t Anosov flows are exponentially mixing in
dimension four and higher.

The remainder of the paper is organized as follows. In Sect. 2, we state
precisely and prove our result on good inducing for attractors of Axiom A
flows. In Sect.3, we prove a result on exponential mixing for a class of skew
product Axiom A flows, extending/combining the results in [6,8]. In Sect. 4,
we complete the proof of Theorem 1.2.

2. Good Inducing for Attractors of Axiom A Flows

Let ¢y : M — M be a C't flow defined on a compact Riemannian manifold
(M,dp), and let A C M be a closed ¢s-invariant subset. We assume that A
is an attracting transitive uniformly hyperbolic set with adapted norm and
that A is not a single trajectory. In particular, there is a continuous Dg;-
invariant splitting ThaM = E° & E° & E" where E° is the one-dimensional
central direction tangent to the flow, and there exists A € (0,1) such that
|Dorv| < A|o| for all v € E*, t > 15 |[Dp_v| < Xv| for all v € E¥, t > 1.
Since the time-s map ¢5 : A — A is ergodic for all but countably many choices
of s € R [25], we can scale time by a constant close to one if necessary so that
¢—1 : A — A is transitive. Then there exists p € A such that (J,~, ¢_;p is
dense in A. -

We can define (local) stable disks W3 (y) = {z € W*(y) : dm(y,2) < 8}
for 6 > 0 sufficiently small for all ¥y € A. Define local center-stable disks
W52 (y) = Ujyy<s 9:W;5 (y). Let Leb and d denote induced Lebesgue measure
and induced distance on local unstable manifolds. It is convenient to define
local unstable disks Wi'(y) = {z € W"(y) : d(y,2) < §} using the induced
distance.



I. Melbourne and P. Varandas Ann. Henri Poincaré

For g small, define D = W§! (p) and D= Usep Wi (). Define 7 : D —
D such that 7|W;*(zx) = . Whenever ¢,y € D, we set gny = T(Pny).

We are now in a position to give a precise description of our inducing
scheme.

Theorem 2.1. There exists an open unstable disk Y = W' (p) C D (for some
5 €(0,00)) and a discrete return time function R:Y — Z+ U{co} such that

(i) Leb(R > n) = O(y™) for some v € (0,1);
(ii) Fach connected component of {R = n} is mapped by ¢, into D and
mapped homeomorphically by g, onto Y.

Remark 2.2. Let P be the partition of Y consisting of connected components
of {R =n} for n > 1. (It follows from Theorem 2.1(i) that P is a partition of
Y mod 0.) Define F: Y — Y| F = gr = mo¢dg. Note that F is locally the com-
position of a time-R map ¢r (where R is constant on each partition element)
with a center-stable holonomy. Since center-stable holonomies are Holder con-
tinuous, it follows that F' maps partition elements U € P homeomorphically
onto Y and that F|y : U — Y is a bi-Hoélder bijection. If moreover, the center-
stable holonomies are C', then the partition elements are diffeomorphic to
disks (in contrast to the situation for finite Markov partitions of A [13]).

In the remainder of this section, we prove Theorem 2.1. Our proof is
essentially the same as in [36, Section 6] for Axiom A diffeomorphisms, but
we closely follow the treatment in [2] which provides many of the details of
arguments sketched in [36].

Choice of constants. We can choose d; > 0 such that the following bounded
distortion property holds®: there exists C; > 1 so that
|det Do, ()| 2| _
| det D (y)| E¥] ~
for every n > 1 and all x,y € A with ¢, z, ¢,y in the same unstable disk such
that d(¢;x, ¢jy) < 4dp for all 0 < j < n.

By standard results about stable holonomies, 7 is absolutely continuous
and C® for some o € (0,1) when restricted to unstable disks in D. For &,
sufficiently small, there exists Cy, C3 > 1 such that

—1 _ Leb(n(E))
G < Leb(E)

(2.1)

<Oy (2.2)

for all Lebesgue-measurable subset £ C Wy (y) N D and all y € A, and
d(rx,my) < Csd(z,y)* (2.3)
for all 2,y € D with z,y in the same unstable disk such that d(z,y) < 4do.

3 The function ¢ = log | det D¢y |E"| is Hélder (since the flow is C'* and the bundle E% is
Holder). Hence Z?:_()l {¥(pjz) —h(¢jy)} is bounded for the specified n, z,y. Estimate (2.1)

follows.
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Let d, = dim E* and fix L > 3 so that

2du — 1 1
(L—1)du 4

By the local product structure, there exists 61 € (0, dp) such that W (x)N
Wit (y) consists of precisely one point for all z,y € A with da(z,y) < 44;.
Similarly, there exists § € (0,d1) such that Wg*(z) N Wy (y) consists of pre-
cisely one point for all z,y € A with dar(z,y) < (L + 1)d. Since local center-
stable/unstable manifolds lie in the corresponding cones, and the center-stable/
unstable cones are uniformly transverse, the intersection point z € ng(x) N
Wi (y) satisfies d(2,y) < Cydp(z,y) where Cy > 1 s a constant. Shrink J > 0
if necessary so that C3(36)® < 269 and Cy4(L + 1)d < 9. Choose Ny > 1 such

that UfV:ll _;p is 0-dense in A.

C,C; (2.4)

Construction of the partition. We consider various small neighborhoods D, =
o5(p) with ¢ € {1,2, L — 1, L}. Define D, = {J,cp, W5’ (2).
Take Y = Dj. Define a partition {I : k > 1} of Dy \ Dy,

I, = {y €Dy 5(1 +)\ak) < d(yvp) < 5(1 + )\a(kfl))}.

Fix ¢ > 0 small (as stipulated in Propositions 2.4 and 2.5 and Lemma 2.9
below). We define sets Y,, and functions ¢, : ¥, — N, and R : Y — Z*
inductively, with Y;, = {R > n}. Define Yy = Y and ¢ty = 0. Inductively,
suppose that ¥;,_1 =Y \ {R < n} and that ¢,,_1 : Y,,_1 — N is given. Write
Yn,1 = An,1 UBn,1 where

An—l = {tn—l = O}a Bn—l = {tn—l > 1}

Consider the neighborhood
A = {y € Va1 d(dny, A1) < £}

of the set A,,_1. Define Urgj, j > 1, to be the connected components of Agfll N

gi),nﬁ 1, that are mapped inside D . by ¢, and mapped homeomorphically onto
D1, by gn. Let

U, =UknNg,'De fore=1,2,L—1.
Define R|U,}; = n for each U}; and take Y, = Y, \ U; U, ;- Finally, define
tn: Y, — Nas
k, yEU]- Uﬁj and g,y € I for some k > 1
tw(y) =40, y €An \UJ U72zj
tn-1(y) — 1, y € By \UJ Uq%j
and take A, = {t, =0}, B, ={t, > 1} and Y,, = A, UB,,.

Remark 2.3. By construction, property (ii) of Theorem 2.1 is satisfied. It re-
mains to verify that Leb(R > n) decays exponentially.
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FIGURE 1. Visualisation of Y after 7 generations where there
is one return at time 2 and one return at time 7. The pink
region By consists of collars around the sets { R = 2} and {R =
7} that have made a return. The two outermost shells {t7 = 1}
and {t; = 2} of each collar are shown. The collars in B; are
diffeomorphic by g2 and g7, respectively, to an annulus; in
reality the collar around {R = 2} should be slightly distorted
and the collar around {R = 7} more so (and smaller)

Visualisation of B,,. The set B, is a disjoint union B,, = J! _; Cp,(m) where
Cp(m) is a disjoint union of collars around each component of {R = m}.
Each collar in C),(m) is homeomorphic under g,, to Uk2n—m+1 I, with outer
ring homeomorphic under g,, to I,,_,4+1, and the union of outer rings is the
set {t, = 1}. This picture presupposes Proposition 2.4 below which guar-
antees that each new generation of collars C,,(n) does not intersect the set
Ui <m<n_1 Cn—1(m) of collars in the previous generation. A sample visualiza-
tion after 7 generations is shown in Fig. 1.

We now turn to the proof of Proposition 2.4. A cautionary diagram is
shown in Fig. 2.

Proposition 2.4. Choose £ < (C3'0)Y/ sufficiently small that W*(x) C D for
all z € Dy,. Then Uj U,fj_l C A, foralln > 1.

Proof. We argue by contradiction. There is nothing to prove for n = 1. Let
n > 2 be least such that the result fails and choose j such that Ufj_l intersects
B,,_1. Then either (i) Ufj_l C Bp—1, or (ii) Urfj_l intersects 0A,,_1.

In case (i), choose x € Urf{l (so in particular ¢,z € 13) with g,z = p.
Since Ufj_l c UL C ASil, there exists y € A,,—1 with d(¢,z, ¢py) < . In
particular, ¢,y € D so gny is well-defined. Note that x € Urfj_l and y & Urfj_l
since Urfj_l C B,,—1. Hence the geodesic ¢ in D joining g,z and g,y intersects

gnﬁUfj_l. Choose z € 8U7fj_1 N g, 1¢. Since g, = o ¢y, it follows from (2.3)
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F1GUurReE 2. This diagram indicates some subtleties in the
proof of Proposition 2.4. The solid black curve denotes part
of the boundary of A, _; formed by a much earlier return.
The dashed black curve denotes the corresponding part of the
boundary of Agfll. The red curve denotes the boundary of a
Uﬁj. Even though Ufj is contained in Aﬁfll it is not clear that
Ufjfl is contained in A,,_1

that
0 < (L - 1)6 = d(gnx7gnz) < d(gnxagny) < CBd(¢n$7 (bny)a <C3e“ <6

which is a contradiction. This rules out case (i).
In case (ii), choose = € Urf{l N 0A,—_1. We show below that there exists

y € 8A£fll such that d(¢,z, dny) < e. In particular, g, and g,y are well-
defined and d(g,z, gny) < C3e® < 6. Since U}, C A®  we have that y ¢ Uk

n—1»
It follows that g,z € Dy_; while g,y ¢ Dr,. Hence d(g,x, gny) > ¢ which is
the desired contradiction.

It remains to verify that there exists y € 314521 such that d(¢nx, dny) <
€. Since n is least, B,_1 is a disjoint union of collars as described in the
visualization above. Hence there exists a collar Q C C,_1(n — k) intersected
by Urfjfl for some 1 < k < n such that « lies in the outer boundary 9,Q of Q.

Note that 0,Q = 0A,,_1 N Q. Let D denote the disk enclosed by 9,Q and let
S=DNI(p_pB(¢n0D)).
We claim that S # () and S C Q. Then S is a (dimY — 1)-dimensional sphere

contained in 5A7(21 and there exists y € S with the desired properties, see
Fig. 3. (The point of the claim is that S lies entirely in Y, _1.)
Note that g, maps @ homeomorphically onto the set J = J;~, i

which is an annulus of radial thickness 6A%*. By (2.3), ¢,,_x maps Q homeo-
morphically onto a set .J = 7~ 1.J of radial thickness at least (Cy '6A*)1/* =
(C3ro) M/ aNk,

Moreover, ¢x(J N qﬁn,kAgfll) - ¢nz4£21 is contained in the set of points
within d-distance e of ¢n8A(E) so by definition of A we have that J N

n—1»
qbn,kAgle is contained in the set of points within d-distance eA* of the outer
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FIGURE 3. Schematic of the claim in the proof of Proposi-
tion 2.4. The pink region is a collar Q. The blue curve denotes
the boundary of a Ufj_l. The claim is that the relevant part

S of 8A£l€21 lies inside @ enabling the choice of a point y close
to, but not too close to, x

boundary of .J. Since £ < (C58)1/, we obtain that J N ¢n_k8A,(n€ll is homeo-
morphic to a (dim Y —1)-dimensional sphere contained entirely inside .J. Hence
S = Qﬂ@Aﬁil is homeomorphic to a (dim Y —1)-dimensional sphere contained
entirely inside @), as required. O

Proposition 2.5. Choose ¢ < {C'6(A\™* — 1)}1/04' Then for all n > 1,

(a) Agil ClyeY,_1:tn_1(y) <1} foralln > 1.
(b) ¢_n W) C AC | for allz e A,_;.

Proof. (a) Suppose that ¢,,_1(y) > 1. Then there exists a collar in Cy,_1(n — k)
containing y. Let Q denote the outer ring of the collar with outer boundary
Q1 and inner boundary Q5. Then t,,_1|Q = 1 and ¢,_1(y) > 1, so y lies inside
the region bounded by Q.

Suppose for contradiction that y € Agfll. Then we can choose © € A,,_1
with d(¢nx, pny) < €. Let £ be the geodesic in W (¢, z) connecting ¢nx to
¢ny and define g; € Q; Np_p L for j =1,2.

Recall that () is homeomorphic under g,_x to Ij. Moreover, g,—rg; lie
in distinct components of the boundary of I, so

A(Gn—kq1s gn—rgz) > SN — XKy = §(A7 — 1)Ak,
Hence
A(Pnqr, ngz) = N d(dn—ka1, dn—kd2)
> )\_k'{Cgld(gn,kql,gn,kqQ)}l/a > {03—15()\—a — 1)}1/a > €.
But d(¢nq1, dng2) < d(dny, dnx) < € so we obtain the desired contradiction.

(b) Let x € A,,—1 and y € ¢p_, W (ppx). Note that y € Afle if and only
if y € Y,,_1. Hence we must show that y € Y,,_1. If not, then there exists k > 1
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such that y € {R = n — k}. Define @ C C,,—1(n — k) to be the outer ring of
the corresponding collar. Choosing ¢; and ¢2 as in part (a) we again obtain a
contradiction. O

Lemma 2.6. There exists a; > 0 such that for alln > 1,
( ) Leb( n—1 N An) Z aq Leb(B,L_l).

(b) Leb(A4,—1 N B,) < %Leb(An_l).

(c) Leb(A,—1 N{R =n}) < + Leb(4,_1).

Proof. (a) Let y € B,,_1. By Proposition 2.4, y ¢ Uj UnLjf1 so in particular
y € Y,. Note that ¢,(y) = 0 if and only if ¢,_1(y) = 1. Hence B,_1 N A, =
{tn—1 =1}

Now let Q C C,—1(n—k) C By,—1 be a collar (1 < k < n) with outer ring
QNA,=Qn{t,—1 =1}. Then g, = 7 0 ¢,,— maps @ homeomorphically
onto J;~ I; and QN {t,—1 = 1} homeomorphically onto Ij. Let d,, = dim E".
By (2.1) and (2.2),

Leb@ _  Leb(Q) -0 Leb(¢n—1Q)
Leb(QNA,)  Leb(QN{tny =1}) = "Leb(¢n_r(QN {tn_1 = 1}))
< C@M = C1C2D(dy, A, k)

Leb(Iy)

14 \et)du — 1 Lo
where D(d,, \, k) = a Jr()\kl)du )(1 VST Since limg_, 00 D(dy, A\ k) =
(1 —X\)~!, we obtain that Leb(Q) < C1C2D Leb(Q N A,,) where D = sup~,
D(dy, A%, k) is a constant depending only on d,, and A*. Summing over collars
Q, it follows that Leb(B,_1) < C1C3D Leb(B,,_1 N A,).

(b) By Proposition 2 4, Uﬁj c UnL{1 C A,_1 for each j. It follows that
Au_10 B, =, U2\ U}, By (2.1), (2:2) and (2.4),

Leb(U2; \ U,);) o Leb(Ds \ D) 2du 1 1
R oo N 00— < =
Leb(ULT) = 172 Leb(Dy 1) L1y ST
Hence
Leb(A,_1 N By) - > Leb(U’l’%j \ U711j) - 1
Leb(A,—1) — > Leb(UL»_l) 4

¢) Proceeding as in part (b) with U2, \ U!. replaced by U!., leads to the
nj nj

estimate
Leb(A,_1 N{R =n}) - >, Leb(Uy)) < C1C3 -
Leb(A,_1) =Y, Leb(Uih) T

’ﬂ]’

1
(L—1)d 4

Corollary 2.7. For alln > 1,
(a) Leb(A,—1 N A,) > 2 Leb(A,_1).
(b) Leb(Bp—1 N By) < (1 —ay)Leb(By_1).
(c) Leb(B,) < 1 Leb(A,_1) 4+ (1 — a1) Leb(B,_1).
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(d) Leb(A,) > % Leb(A,_1) + ay Leb(B,,_1).
Proof. Recall that A, 1 C Y,,_; = Y, U{R = n} = A,UB,U{R = n}.
Hence by Lemma 2.6(b,c),
Leb(A, 1) = Leb(4,,_1 N A,) + Leb(A4,,_1 N B,) + Leb(A,_1 N {R =n})
< Leb(A,—1 N A,) + 3 Leb(A,_1),
proving (a). Similarly, by Lemma 2.6(a),
Leb(B,-1) = Leb(B,—1 N A,,) + Leb(B,,—1 N By,) + Leb(B,,—1 N {R = n})
> a1 Leb(Bp—1) + Leb(B,_1 N By),
proving (b).
Next, recall that B, = B,NY,_1 = B, N (An,l U Bn,l). Hence part (c)

follows from Lemma 2.6(b) and part (b). Similarly, A, = A, N (An,l U Bn,l)
and part (d) follows from Lemma 2.6(a) and part (a). O

Corollary 2.8. There exists ag > 0 such that Leb(B,) < aoLeb(A4,) for all
n > 0.

24 a1

Proof. Let ag = . We prove the result by induction. The case n = 0

is trivial since By = (). For the induction step from n — 1 to n, we con-
sider separately the cases Leb(B,_1) > iLeb(An,l) and Leb(B,_1) <
- Leb(A,-1).

Suppose first that Leb(B,—1) > 5 - Leb(A;—1). By Corollary 2.7(c),

2u

Leb(B {2a1 +(1—ay) }Leb 1) = (1 — %al) Leb(B,—1) < Leb(B,,—1).
By Corollary 2.7(d),
Leb(A4,) > (3 + a1 2a YLeb(A,—1) = Leb(A,—1).
Hence by the induction hypothesis,
Leb(B,,) < Leb(B,_1) < agLeb(A,—1) < ag Leb(A,,),

establishing the result at time n.
Finally, suppose that Leb(B,_1) < i Leb(A,,—1). By Corollary 2.7(a,c),

Leb(B,,) < § Leb(A,—1) + Leb(B,—1) < (5 + ﬁ) Leb(A,_1)
<(3+ afll)Leb(A ) = ap Leb(A,,),
completing the proof. O

Lemma 2.9. Let ¢ € (0, %50) be small as in Propositions 2.4 and 2.5. There
exist c; > 0 and N > 1 such that

N
Leb <U{R =n+ i}) > c1Leb(A, 1) foralln > 1.

=0
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Proof. Fix A € (0,1), L >1,0<d < 61 < dp and N; > 1 as defined from the
outset. Recall that C3(36)* < %50 and Cy(L 4+ 1)6 < dg. Choose Na > 1 such
that AV2 < ¢/8y and take N = N; + No.
We claim that
(*) For all z € A, there exists ¢ € {1,..., N1} such that (¢ N, W2(z) N
5[,) D Dy.
Fix z € A. By the definition of Ny, there exists 1 < ¢ < N;j such that
da(p—ip, dN,2) < 0. Let y € Dp. Then

dr(9—iy, &N, 2) < d(d—iy, d—ip) + dri (d—ip, PN, 2)
Using the local product structure and choice of J, we can define x € W§*(é_;y)N
Wi (¢n,2). Then ¢z € Wis(y) C Dy, and g;z = mhix = y. Also,
d(z, ¢n,2) < Cadnr(9—iy, PN, 2) < Ca(L +1)6 < do.
By the definition of Ns,
iz € piWit (dN,2) C dip N, WL (2).

Hence we obtain that y = w¢;x € m(¢iyn, W (z) N Dy) proving (¥).

Next, we claim that
(**) For all z € ¢, Ap—1, n > 1, there exist ¢ € {0,..., N} and j such that
U%—H’,j - ¢—nW¢%(Z)

To prove (**), define V. = ¢_, W (z). By Proposition 2.5(b), V. C Affll.
We now consider two possible cases.

Suppose first that V. C A, 4; for all 0 < i < N. By claim (*), there exists
1 <¢< N = N; + N5 such that

T(¢n4iVe N Dr) = m(¢;W2(2) N Dr) D Dy,

while V. € A, 1;_1 by assumption. This means that V. D UL

nyi; for some j.
Hence

Uﬁﬂ',j - Urgﬂ',j C Ve Co_nWs, (2),
and we are done.

In this way, we reduce to the second case where there exists 0 < ¢ < N
least such that V. ¢ A,,4;. Since i is least, V. C Afﬂiiﬂ. (The ¢ is required in
case i = 0.) By Proposition 2.5(a), Vo C {t4i—1 < 1}. Hence

Ve\An—&-i = (VsmBn—&-i) U (Vaﬂ{R:n+i})

C{tnyicr <1 tn 21} U {R=n+i} c | JUZ,, ;.
J
Since Ve \ Ap4q # 0, this means that there exists j so that V. intersects UTQL-H,]'-
Hence we can choose ay € W¥(z) N U2, ..
Recall that ¢n1;Up"%,; ; C Dy and gn4iUpYy,; j = D for m = 1,2. In

particular, bo = ¢;a0 € 252 and co = g;as € Ds.
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Let c1 € Dl. Then dM(Cl,bQ) S dM(Cl,CQ) + dM(CQ,bQ) < 30 + 51 < 461
Hence, using the local product structure and definition of §;, we can define
b € Wg:(cl) nws (b2) and a; = ¢_;b1. Note that

odia, = by, b, =c¢., T=12.
Hence
d(al,ag) < d(bl,bg) < ng(61,62)a < 03(35)04 < %50,

and so d(ay, z) < d(a1,a2)+d(az, 2) < 80+ < &o. It follows that a; € Wit (2)
and thereby that c; € g;(W3 (2) N ¢_;Dy). This proves that D; C gi(Ws (2) N
¢_i;D1). Hence UnJr” C 9 (n+iyD1 C ¢—n Wi (2) verifying claim (**).

We are now in a position to complete the proof of the lemma. Let n > 1,

and let Z C ¢,A,,_1 be a maximal set of points such that the balls %/2(2)
are disjoint for z € Z. If © € ¢, A,,—1, then W(;L /2( x) intersects at least one
Wi 12(2), 2 € Z, by maximality of the set Z. Hence ¢ppAn—1 C U.ez Wi (2).
It follows that

An € | oW (2).

z2€EZ

Let z € Z and let U, = U,,,; be as in claim (**). In particular,
gntiU, = D1 = Wi (p). Also, Leb(qS,H_Z U.) < |D¢y|E*|7" Leb(¢,U.) where
m = dim E". Hence, by (2.2),

1 . 1 . 1

Lav(onty) = IPOIE " [ oy < PP " Ly
By (2.1),
Leb(¢,nW§f)(z)) - Leb(Wy! (2)) -
Leb(U.) = 'Leb(¢nU.) ~
sup, ey Leb(W (y))

here K = D¢y |E®|Nm
where C1Cs| D¢ | E™| o Leb(WE(p))

Finally, the sets U, are connected components of (J,,« y{R = n + i}
lying in distinct disjoint sets ¢, W' (2). Hence

Leb(An-1) <Y Leb(¢_n, Wy (2))

z€Z

<K Leb(U.) <KLeb | |J {R=n+i}|,
2€2 0<i<N

as required. O

We can now complete the proof of Theorem 2.1.
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Corollary 2.10. Leb(R > n) = O(y™) for some v € (0,1).

Proof. By Corollary 2.8 and Lemma 2.9,
Leb(R > n) = Leb(A,—1) + Leb(B;,—1)

N
< (1+ag)Leb(A,_1) < do Leb (U{R —n+ i})

i=0
where dy = ¢; (1 + ag). Tt follows that
dy*Leb(R >n) <Leb(R=n) +---+ Leb(R=n+ N)
= Leb(R > n) — Leb(R > n+ N).
Hence
Leb(R >n+ N) < (1 —dy ') Leb(R > n).

In particular, Leb(R > kN) < 4*N with v = (1 — dy")*/Y and the result
follows. O]

3. Exponential Decay of Correlations for Flows

In this section, we consider exponential decay of correlations for a class of
uniformly hyperbolic skew product flows satisfying a uniform nonintegrabil-
ity condition, generalising from C? flows as treated in [8] to C1** flows. In
doing so, we remove the restriction in [6,9] that unstable manifolds are one-
dimensional.

The arguments are a straightforward combination of those in [6,8]. We
follow closely the presentation in [6], with the focus on incorporating the ideas
from [8] where required.

Quotienting by stable leaves leads to a class of semiflows considered in
Subsection 3.1. The flows are considered in Subsection 3.2.

The current section is completely independent from Sect. 2, so overlaps
in notation will not cause any confusion.

3.1. C'* Uniformly Expanding Semiflows

Fix a € (0,1). Let Y C R™ be an open ball? in Euclidean space with Euclidean
distance d. We suppose that diamY = 1. Let Leb denote Lebesgue measure
on Y. Let P be a countable partition mod 0 of Y consisting of open sets.

Suppose that F : (JyepU — Y is C'T on each U € P and maps U
diffeomorphically onto Y. Let H = {h : Y — U : U € P} denote the family
of inverse branches, and let H,, denote the inverse branches for F". We say
that F is a C'*® uniformly expanding map if there exist constants C; > 1,
po € (0,1) such that

(i) |Dh|oo < Cipf for all h € Hy,, n > 1;

(i) |log|det Dh||o < Cy for all h € H;

4More generally, we could consider a John domain as in [8] but the current setting suffices
for our purposes.
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where [1)]o = sup,_,, [¥(y) — ¥(y)|/d(y,y')*. Under these assumptions, it
is standard [1] that there exists a unique F-invariant absolutely continuous
measure u. The density du/dLeb is C%, bounded above and below, and p is
ergodic and mixing.

We consider roof functions r : (J,cp U — RT that are C'' on partition
elements U with infr > 0. Define the suspension Y = {(y,u) € Y xR : 0 <
u <r(y)}/ ~ where (y,r(y)) ~ (Fy,0). The suspension semiflow F; : Y7 — Y"
is given by Fi(y,u) = (y,u+t) computed modulo identifications, with ergodic
invariant probability measure " = (u x Lebesgue)/T where 7 = fY rdu. We
say that F, is a C'T* uniformly expanding semiflow if F is a C'T® uniformly
expanding map and we can choose C; from condition (i) and & > 0 such that
(iii) |D(r o h)|ee < Cy for all h € H;

(iv) Y pep €57t | det Dh|s < 0.

Let r, = Z;:()l r o FJ and define
whl,hg :’rnohl _Tnohg . Y—)R,
for hi,hs € H,. We require the following uniform nonintegrability condition
[8, Equation (6.6)]:

(UNI) There exists E > 0 and hq, ho € H,,, for some sufficiently large ng > 1,
with the following property: There exists a continuous unit vector field
£:R™ — R™ such that |Diyp, n,(y) - €(y)| > E for ally € Y.
(The requirement “sufficiently large” can be made explicit as in [6, Equa-
tions (2.1) to (2.3)].) From now on, ng, hy and hy are fixed.
Define F,(Y") to consist of L* functions v : Y" — R such that ||[v||, =
[V|oo + |v]a < 00 where

. vy, u) — vy, u)
[v|a = sup v .
(y,u)#(y’ u) d(yv Y )
Define F, 1, (Y™") to consist of functions with ||v||a.r = Z?:o 107v]|o < oo where
0y denotes differentiation along the semiflow direction.

We can now state the main result in this section. Given v € L'(Y™),
w € L>®(Y"), define the correlation function

Pow(t) :/vwoFtduT—/vdur/wdur.

Theorem 3.1. Suppose that F, : Y™ — Y7 is a C'T uniformly expanding
semiflow satisfying (UNI). Then there exist constants ¢,C > 0 such that

1pow®)] < Ce U vllaillwlas for allt >0 and all v, w € F,1(Y"),
(alternatively, all v € F o(Y"), w € L>®(Y")).

In the remainder of this subsection, we prove Theorem 3.1.
For s € C, let P, denote the (non-normalized) transfer operator

P, = Z As s Agpv = e " det Dh|v o h.
heM
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For v : Y — C, define [[v]o = max{[v|o, [v]a} Where [v]o = sup, .,
[v(y) —v(y)|/d(y,y")*. Let C*(Y") denote the space of functions v : ¥ — C
with ||v]|la < co. We introduce the family of equivalent norms

[ollp = max{[v]oo, [v]a/(1 +[6]*)},  beR.

Proposition 3.2. Write s = o + ib. There exists ¢ € (0,1) such that the fam-
ily s — Ps of operators on C*(Y) is continuous on {o > —e}. Moreover,
SUP|g < || Ps[lp < 00

Proof. The first five lines of the proof of [6, Proposition 2.5] should be changed
to the following:

Using the inequality 1—t < — logt valid for ¢t > 0, we obtain fora > b > 0
that @ — b = a(l — ) < —alog? = a(loga — logb). Hence ||det Dh(z)| —
|det Dh(y)|| < | det Dh|o (log | det Dh(xz)| — log | det Dh(y)|) and so by (ii),

|| det Dh(z)| — | det Dh(y)|| < C1| det Dh|og d(z,y)* for all h € H,z,y €¥1)

The proof now proceeds exactly as for [6, Proposition 2.5] (with R, h’ and
| — y| changed to r, det Dh and d(z,y)). O

The unperturbed operator Py has a simple leading eigenvalue \g = 1 with
strictly positive C* eigenfunction fy. By Proposition 3.2, there exists e € (0,1)
such that P, has a continuous family of simple eigenvalues A, for |o| < & with
associated C'* eigenfunctions f,. For s = o + ib with |o| < ¢, we define the
normalized transfer operators

Lo = (A\ofo) " Pa(fov) = Mo fo) ™" D Asn(fov)
heH

In particular, L,1 =1 and | Lo < 1.
Set Cy = C%/(1 — p), p= pg. Then

(iiy) |log|det Dh||o < Cy for all h € H,, n > 1,
(iiiy) [D(rpoh)|e < Cs for all h € H,, n > 1.

Write

L'v=\"f"! Z Aghn(fov), Agpnv=e *"°"det Dhlv o h.
heH,

Lemma 3.3 (Lasota-Yorke inequality). There is a constant Cs > 1 such that
[IL§vla < C3(1+ [b[*) 0] + C3p"[v]a < C3(1 + [B]*){[v|oc + p"[[0]lb},
foralls =0 +ib, |o| <e, and alln > 1, v e C*(Y).

Proof. Tt follows from (ii;) that

|| det Dh(z)| — | det Dh(y)|| < Ca|det Dh|oo d(z,y)* < C2e“?|det Dh(z)| d(z,y)*

for all h € H,,, n > 1, 2,y,2 € Y. The proof now proceeds exactly as for [6,
Lemma 2.7]. O
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Corollary 3.4. ||L7||, <2C5 for all s =0 +1ib, |o| < e, and alln > 1.
Proof. This is unchanged from [6, Corollary 2.8]. O
Given b € R, we define the cone

Cy = { (u,v) :u,v € C*Y), u>0,0< |v] <u, [logu|s < Cylb|¥,
[v(@) — v(y)| < Cibluy)d(e,y)* forallzy ey .

(The constant Cy is specified in Lemma 3.8.)
Throughout Bs(y) = {z € R™ : d(z,y) < d}.

Lemma 3.5 (Cancellation Lemma). Assume that the (UNI) condition is satis-
fied (with associated constants E > 0 and ng > 1). Let hy,hy € H,, be the
branches from (UNI).

There exists 0 < 6 < A = 4w /E such that for all s = o +ib, |o| < &,
|b| > 1, and all (u,v) € Cy, we have the following:

For every y' € Y with Bisiayp(y') C Y, there exists y" € By (y')
such that one of the following inequalities holds on Bs ) (y"):

Case hy: |As,h1,no (fa'v) + AS,hQ,nO (fav)‘ < %Aa—,hl,no (fau) + AU,hQ,'fLQ (fcru);
Case hy: |A5,h1,no (fdv) + A57h21n0 (fU/U)‘ < AU,hl,no(fUu) + %A(Ehz,no (fdu)'

Proof. Let 0 = V — by, p, where p, h, = Tpy 0 h1 — 1py 0 hg and V =
arg(v o hy) — arg(v o ha).
We follow the following steps from [6, Lemma 2.9]:
(1) Reduce to the situation where |[v(hpy’)| > Fu(hmy’) for both m =1 and
m=2.
(2) Establish the estimate |V (y) — V(y')| < 7/6 for all y € Bisay /i (y)-
(3) Construct y” € Baypp|(y') such that

b(whl,hz (y//) - ¢h1,h2 (yl)) = e(yl) —m mod 2m.
(4) Deduce that |0(y) — 7| < 27/3 for all y € Bsyay/ s (v')-
(5) Conclude the desired result.
Only step (3) requires any change from the argument in [6, Lemma 2.9].
We provide here the modified argument. Approximate the continuous unit
vector field ¢ : R™ — R™ in (UNI) by a smooth vector field ¢ : R™ — R™
with |[¢(z)] <1 for all z € R™. By condition (iiiy), the approximation can be
chosen close enough that

0

| Dtpn, o (y) - £(y)| > %E for all y € Y. (3.2)
Let g : [0, A/]b]] — R™ be the solution to the initial value problem
@ fr—

P =log, g(0)=vy

and set y; = g(t). Note that d(y:;,y") < fot [€(g(s))|ds < A/|bl, so y €
By (y') for all t € [0, A/[b]]. By the mean value theorem applied to ¢, n,0g :
[0,A/]b]] — R and (3.2),

|wh1,h2 (yt) - whhhz (y/)| 2 t lnf Iszh],hQ (ys) : €<y5)| 2 %Et - (ZW/A)t
s€[0,A/]b]]
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for allt € [0, A/|b|]. It follows that b(¥n, h, (Y¢) —Un, .k, (y')) fills out an interval
around 0 of length at least 27 as ¢ varies in [0, A/[b]]. In particular, we can
choose y" € Bapp (y') such that (3) holds. O

Let {y1,...,y,} C Y be a maximal set of points such that the open balls
Bsay/p (y;) are disjoint and contained in Y.

Let (u,v) € Cp. For each i = 1,...,k, there exists a ball B; = Bs s (v;)
on which the conclusion of Lemma 3.5 holds. Write type(B;) = h,, if we are
in case h,,. Let B; = B%(S/lb‘(yg’)

There exists a universal constant C' > 0 and a C* function w; : Y — [0, 1]
such that w; = 1 on By, w; = 0 on Y \ By, and ||lw;||cx < C|b|/5. Define
w:Y —[0,1],

_ X vpe(iy=n, Wil F™0Y), y € vange iy, m = 1,2
w(y) = )
0 otherwise.

Note that [|w]c: < C'|b] where C' = C4 is independent of (u,v) € Cp and
s € C, and we can assume that C’ > 4. Then x = 1 —w/C’ : Y — [3,1]
satisfies | Dx| < |b|. Moreover, if type(B;) = h,, then x = n on range h,,, where
n=1-1/C"€ (0,1).

Corollary 3.6. Let §, A be as in Lemma 3.5. Let |b] > 1, (u,v) € Cp. Let x =
x(b,u,v) be the C function described above (using the branches hyi,ha € Hp,
from (UNI)). Then |L2°v| < L2 (xu) for all s = o +ib, |o] < e.

Proof. This is immediate from Lemma 3.5 and the definition of x. O
Define the disjoint union B = U B;.

Proposition 3.7. Let K > 0. There exists ¢; > 0 such that [zwdp > ¢1 [, wdp
for all C% function w : Y — (0,00) with |logwl|, < K|b|%, for all |b| > 167/E.

Proof. Let y € Y. Since (6 + A)/[b] < 2A/|b| = 87/(Eb|) < 3, there exists
z € Y with B(s4a)/5(2) C Y such that d(z,y) < (6+A)/|b]. By maximality of
the set of points {yj,...,¥;}, there exists y; such that B(5,a)/s/(2) intersects
B(5+A)/\b|(y§)- Hence Y C U§:1 B: where Bz* = B3(5+A)/\b|(y;)- Since the
density du/d Leb is bounded above and below, there is a constant ¢ > 0 such
that ,u(éz) > cou(BY) for each i.

Let 2 € By, y € Bf. Then d(z,y) < 4(5+A)/|b| and so |w(z) /w(y)| < X’
where K" = {4(6 + A)}*K. Tt follows that

/A wdp > u(éi)igfw > CQefK/u(Bf)supw > c1/ w dp,
- B; B;

i i

where ¢ = cze_K/. Since the sets El C Y are disjoint,

wdp = /wd,ch / wd,ch/wdu
/E zz:éi lzi: By Yy

as required. O
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Lemma 3.8 (Invariance of cone). There is a constant Cy depending only on
C1, Cy, |fo_1|OO and |fola such that the following holds:
For all (u,v) € Cy, we have that

(LZO(XU)’ LZOU) € Cb,
forall s = o+ib, |o| <e, |b| > 1. (Here, x = x(b,u,v) is from Corollary 3.6.)
Proof. This is unchanged from [6, Lemma 2.12]. O

Lemma 3.9 (L? contraction). There exist €,3 € (0,1) such that
[ 1ol < gl
y

forallm > 1, s =0 +1b, |o] < ¢, |b] > max{167/E,1}, and all v € C*(Y)
satisfying vl < Calb|*|u]oo.

Proof. Define ug = 1,v9 = v/|v| and inductively,
Um+1 = LZU (Xmum)7 Um+1 = L?O (’Um),

where X = x(b, Um, U ). It is immediate from the definitions that (ug,vg) €
Cp, and it follows from Lemma 3.8 that (t,, v.y,) € Cp for all m. Hence induc-
tively the x,, are well-defined as in Corollary 3.6.

We proceed as in [6, Lemma 2.13] in the following steps.

(1) It suffices to show that there exists § € (0,1) such that [, u? ; dp <

B [ u2, du for all m.
(2) Define w = Ly°(u2,). Then

§(o)w(y) yeY\B

where (o) can be made as close to 1 as desired by shrinking e. Here,
m € (0,1) is a constant independent of v, m, s, y.

(3) The function w : Y — R satisfies the hypotheses of Proposition 3.7; con-
sequently || gwdp >y fy\ 5 wdp. This leads to the desired conclusion.

O

ﬁ+ﬂw§{awmw@> yeB

Lemma 3.10 (C* contraction). Let E' = max{167/E,2}. There exists ¢ €
(0,1), v € (0,1) and A > 0 such that |P?|y <A™ for all s = o +ib, |o| < ¢,
b > B, n > Alog|b].

Proof. This is unchanged from [6, Proposition 2.14, Corollary 2.15 and Theo-
rem 2.16). O

Proof of Theorem 3.1. This is identical to [6, Section 2.7]. We note that there
is a typo in the statement of [6, Lemma 2.23] where |b| < D’ should be |b] > D’
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(twice). Also, for the second statement of [6, Proposition 2.18] it would be more
natural to argue that

e"dLeb = / e*" d Leb
), 2 v,
=> / e="°"| det Dh|dLeb < Leb(Y) Y _ eIl | det Dh|o
heH Y heH

which is finite by condition (iv). Hence [, " du < oo by boundedness of
dp/dLeb.

3.2. C't Uniformly Hyperbolic Skew Product Flows

Let X = Y x Z where Y is an open ball of diameter 1 with Euclidean
metric dy and (Z,dz) is a compact Riemannian manifold. Define the met-
vie d((y, 2), (', #)) = dy (5,9/) + dz(2,#) on X. Let f(y,2) = (Fy,G(y,))
where F:Y - Y, G: X — Z are C'+,

We say that f : X — X is a C'*® uniformly hyperbolic skew product if F :
Y — Y is a C'T uniformly expanding map satisfying conditions (i) and (ii) as
in Sect. 3.1, with absolutely continuous invariant probability measure u, and
moreover

(v) There exist constants C' > 0, 7 € (0,1) such that d(f"(y, 2), f"(y,2")) <
CAd(z,2) forally € Y, 2,2/ € Z.

Let 7 : X — Y be the projection 7°(y, z) = y. This defines a semicon-
jugacy between f and F and there is a unique f-invariant ergodic probability
measure px on X such that 7dux = p.

Suppose that r : (Jyep U — Rt is C' on partition elements U with
infr > 0. Define r : X — R™ by setting 7(y, z) = r(y). Define the suspension
X" ={(z,u) € X xR :0 < u < r(x)}/ ~ where (x,r(z)) ~ (fz,0). The
suspension flow f; : X" — X" is given by fi(z,u) = (z,u + t) computed
modulo identifications, with ergodic invariant probability measure ps = (pux ¥
Lebesgue) /7.

We say that f; is a C1T uniformly hyperbolic skew product flow provided
f: X — X is a C'® uniformly hyperbolic skew product as above, and
r:Y — R satisfies conditions (iii) and (iv) as in Sect.3.1. If F: Y — Y and
r:Y — RT satisfy condition (UNI) from Sect. 3.1, then we say that the skew
product flow f; satisfies (UNI).

Define F,(X") to consist of L>° functions v : X" — R such that ||v]|, =
[V|so + |v]a < 00 where

o= sup  LB2W v 2w
() £y 2y Ay, 2), (Y5 2))*

Define F,, ;(X") to consist of functions with |[v|ar = Z?:o 1070]lo < o0
where 0; denotes differentiation along the flow direction.
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We can now state the main result in this section. Given v € L'(X"),
w € L>®°(X"), define the correlation function

ponlt) = [vwo fidi ~ [ods [wa.

Theorem 3.11. Assume that f; : X — X is a C'T® hyperbolic skew product
flow satisfying the (UNI) condition. Then there exist constants ¢,C > 0 such
that

[Po.w(t)] < Ce™]lallwlla,,

for all t > 0 and all v, w € F,1(X") (alternatively all v € Fpo(X"), w €
Fo(X7)).

Proof. This is unchanged from [6, Section 4]. O

4. Proof of Theorem 1.2

We return to the situation of Sect.2, so A C M is a uniformly hyperbolic
attractor for a O+ flow, a € (0, 1), defined on a compact Riemannian man-
ifold. Define the open unstable disk ¥ = W§'(p) with discrete return time
R:Y — Z" and induced map F = 1o ¢r:Y — Y as in Theorem 2.1.

Under smoothness assumptions on holonomies, we verify the conditions
on the suspension flow f; in Sect. 3 and obtain Theorem 1.2 as an easy conse-
quence.

Proposition 4.1. Suppose that the center-stable holonomies are C*+. (In par-
ticular, w: D — D is C**®.) Then (after shrinking &y in Sect. 2 if necessary)
F is a O wuniformly expanding map.

Proof. As in Remark 2.2, it is immediate that F|y : U — Y is a C** diffeo-
morphism for all U € P. Let h: Y — U be an inverse branch with R|y = n,
and define my = 7|y, () : ¢n(U) — D. Then

AHol < ATl < [Dén ()| < |(D7y) ™ oo|DF ()]
for all z € U, v € T,,Y. Hence |Dh|s < pg where py = Asupy |(D7my) ™ oo

Shrinking &g, we can ensure that pg < 1. In particular, condition (i) in Sect. 3.1
holds (with Cy = 1). Condition (ii) is the standard distortion estimate. O

In the remainder of this section, we suppose moreover that the stable
holonomies are C'T2. Shrink d; € (0,1) as in Proposition 4.1 and shrink
61 € (0,00) so that ¢(W;5 (y)) C W5 (¢ry) for all t > 0, y € A. Recall that
D =W (p) and

D=wew = o | U Wew
yeD [t| <80 yeD
The projection 7° : J,cp W5 (y) — D given by 7%|Wy (y) = y is C*T°.

Moreover, 7 = 7° 0 ¢y, where ¢, : D — | W5 (y) and 7 : D — (=80, 8o) is

yeD
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C'e. Define r = R+7rg on Y. The choice §y < 1 ensures that infr > 1—8g > 0.
Define the corresponding semiflow F; : Y™ — Y.

Proposition 4.2. F; : Y™ — Y7 is a C'F% uniformly expanding semiflow.

Proof. By Proposition 4.1, F is a C'*® uniformly expanding map. In partic-
ular, conditions (i) and (ii) are satisfied.

Notice that F = 7° o0 ¢, where r = R+19 : ¥ — RT is C'*® on
partition elements U € P. Since Dr = Dry on partition elements, it is im-
mediate that supycy [D(r 0 h)|oe < |Droloc sUppey [Dhloo < po|Droles < 00
verifying condition (iii) on r. Recall that Leb(R > n) = O(y") for some
~v € (0,1), so we can choose ¢ > 0 such that fY ef®dLeb < oco. Condition
(ii) ensures that | det Dh|o < (LebY)~'e®t Leb(range h) for all h € H. Hence
S nen €517 | det Dbl < 30, qy €515 Leb(range h) = [, e# dLeb < oo
verifying condition (iv) on 7. O

We now make a C'*% change of coordinates so that D is identified with
D x W§ (p) x (—0d0,d0) where {y} x W (p) is identified with W (y) for all
y € D and (—dg, dp) is the flow direction. Let X =Y x Z where Z = W (p)
and define 7 : X — (0,00) by r(y, z) = r(y). Also, define f = ¢, : X — X and
the corresponding suspension flow f; : X7 — X"

Proposition 4.3. f, : X" — X" is a C'T uniformly hyperbolic skew product
flow.

Proof. Note that 7%(X) =Y and 7°(y, 2) = y. Also, f(y,2) = (Fy,G(y, 2))
where G : X — Z is C'*“. Since Z corresponds to the exponential contracting
stable foliation, condition (v) in Sect.3.2 is satisfied. Hence f : X — X is a
C'*e uniformly hyperbolic skew product and the corresponding suspension
flow f, : X” — X" is a C'T® uniformly hyperbolic skew product flow. ]

Next we recall the standard argument that joint nonintegrability implies
(UNT) in the current situation. (Similar arguments are given for instance in |7,
Section 3] and [21, Section 5.3].)

Joint nonintegrability is defined in terms of the temporal distortion func-
tion. To define this intrinsically (independently of the inducing scheme) we
have to introduce the first return time 7 : X — R™ and the Poincaré map
g: X — X given by

7(z) = inf{t > 0: di(z) € X}, 9(2) = dr(a) (2).
Note that 7 is constant along stable leaves by the choice of X.
For x1, 29 € X, define the local product [z, 2] to be the unique intersec-

tion point of W*(x1) N W#(x2). The temporal distortion function D is defined
to be

D(zy,z2) = Y {7(g’z1) — 7(¢’ w1, 22)) — 7(¢[w2, 71]) + T(g722) }

j=—00
at points z1,29 € X. The stable and unstable bundles are jointly integrable if
and only if D = 0.
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Lemma 4.4. Joint nonintegrability of the stable and unstable bundles implies
(UNI).

Proof. For points z,z’ € X with 2/ € W*(x), we define

Z{T T2) —1(g jx’)}.

Since 7 is constant along stable leaves,

D(z1,72) Z{T ) =79 w1, w2)) — (g7 w2, 1)) + T(9 7 22) )

= D()(.’El, [!El,.’EQD + D[)(x27 [x27 (EID

Next, we find a more convenient expression for Dy in terms of r and f.
Note that for any x € X, there exists N(x) € ZT (the number of returns to X
up to time r(z)) such that

ra)= S rlg'e),  fl@) =gV

Corresponding to the partition P of Y, we define the collection P =
{U x Z : U € P} of closed subsets of X. Suppose that z,2" € Vg, Vy € P, with
x' € W¥(z). The induced map f : X — X need not be invertible since it is not
the first return to X. However, we may construct suitable inverse branches z;,
2} of z, o as follows. Set 29 = x, z; = 2. Since f is transitive and continuous
on closures of partition elements, there exists V; € P and z1 € Vi such that
fz1 = 2. Since F is full-branch, f(W"(z1) N V1) D W¥(2p), so there exists
z] € W¥(z1) N'Vq such that fz; = z{. Inductively, we obtain V,, € P and
2j, 2} € Vo with 2% € W¥(2;) such that fz; = z; 1 and fz} = 2/_,.

By construction, z;_; = fz; = gN(%)z;. Hence z; = g~ NG+ +N () g

and
N(z;)—1 N(z1)++N(z5)
T(gtg N E) TNz gy — Z (g~ ).
=0 {=N(z1)++N(zj_1)+1

We are now in a position to complete the proof of the lemma, showing
that if (UNI) fails, then D = 0. To do this, we make use of [8, Proposition 7.4]
(specifically the equivalence of their conditions 1 and 3). Namely, the failure
of the (UNI) condition in Sect. 3.1 means that we can write r = o F — £ 4 (
on Y where £ : Y — R is continuous (even C') and ¢ is constant on partition
elements U € P. Extending ¢ and ( trivially to X =Y x Z, we obtain that
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r=¢of—&+Con X where £ : X — R is continuous and constant on stable
leaves, and ( is constant on elements V € P. In particular,

For z,2' € Vp, Vi € P, with 2/ € WH(x), it follows that
D {r(z) —r()} = @) =€) — &(za) + €(20)-
j=1

Taking the limit as n — oo, we obtain that Dg(z,z’) = &(z) — £(a’). Hence
D(z1,22) = &(z1) — &([x1, 22]) — &([x2,21]) + &(22). Since & is constant on
stable leaves, D(x1,x9)= 0 as required. O

Proof of Theorem 1.2. By Proposition 4.3 and Lemma 4.4, f, is a C'*t® uni-
formly hyperbolic flow satisfying (UNI). The result for C1T observables fol-
lows from Theorem 3.11. As in [18], the result follows from a standard inter-
polation argument (see also [6, Corollary 2.3]).
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