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Null Hamiltonian Yang–Mills theory: Soft
Symmetries and Memory as Superselection

A. Riello and M. Schiavina

Abstract. Soft symmetries for Yang–Mills theory are shown to correspond
to the residual Hamiltonian action of the gauge group on the Ashtekar–
Streubel phase space, which is the result of a partial symplectic reduction.
The associated momentum map is the electromagnetic memory in the
Abelian theory, or a nonlinear, gauge-equivariant, generalisation thereof
in the non-Abelian case. This result follows from an application of Hamil-
tonian reduction by stages, enabled by the existence of a natural normal
subgroup of the gauge group on a null codimension-1 submanifold with
boundaries. The first stage is coisotropic reduction of the Gauss con-
straint, and it yields a symplectic extension of the Ashtekar–Streubel
phase space (up to a covering). Hamiltonian reduction of the residual
gauge action leads to the fully reduced phase space of the theory. This
is a Poisson manifold, whose symplectic leaves, called superselection sec-
tors, are labelled by the (gauge classes of the generalised) electric flux
across the boundary. In this framework, the Ashtekar–Streubel phase
space arises as an intermediate reduction stage that enforces the supers-
election of the electric flux at only one of the two boundary components.
These results provide a natural, purely Hamiltonian, explanation of the
existence of soft symmetries as a byproduct of partial symplectic reduc-
tion, as well as a motivation for the expected decomposition of the quan-
tum Hilbert space of states into irreducible representations labelled by
the Casimirs of the Poisson structure on the reduced phase space.
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1. Introduction

1.1. Overview

Asymptotic quantisation of Maxwell and gravitational theories in asymptoti-
cally flat spacetimes is an idea that goes back to [5,6], motivated by questions
on the non-perturbative quantisation of theories with long-range interactions,
and it requires studying the observables of the theory at null infinity (see [8] for
a recent account). The long-range nature of the interaction is tied to Gauss’s
law, whose implementation in a quantum setting has been shown to require a
decomposition of quantum observables into “superselection sectors” (e.g. [13];
see item 7. in Sect. 7.1.2 for more references, and different approaches).

More recently, a third observation enriched the discussion on this topic:
that there should be an underlying symmetry descriptor linking asymptotic
quantisation to soft scattering theorems. Specifically, this is the observation
that certain soft theorems, most notably [98], are to be interpreted as Ward
identities for certain new symmetries that the theory enjoys at null infin-
ity [49,56]. A host of literature was subsequently produced to understand
the nature of these soft (or asymptotic or, sometimes, “large”) symmetries
in the context of Maxwell, non-Abelian Yang–Mills, and gravity theories (for
an overview, see [93] and references therein). However, a full description of
this phenomenon from a Hamiltonian point of view, which could link soft be-
haviour to superselection, has been lacking. This is where our work finds its
main application.

We analyse the Hamiltonian assignment in Yang–Mills theory (YM) to
a null codimension-1 submanifold with boundary and construct the reduced
phase space of the theory by means of a procedure known as Hamiltonian
reduction by stages [67].

We show that the (extended1) Ashtekar–Streubel (eAS) phase space is
the result of partial Hamiltonian reduction by appropriate subgroups of the
gauge group that naturally exist due to the presence of boundaries. Since the
reductions leading to these spaces are only partial, we characterise the residual
(gauge) group action on the AS phase space (and its extensions) and show it
recovers the “soft symmetries” of [49,56,93] (however, cf. [54]), to which we
thus give a purely Hamiltonian explanation.

Additionally, our explicit description of the reduced phase space goes
through the construction of classical analogues of what in the literature are
known as (quantum) “superselection sectors”. This interplay between reduc-
tion and superselection is at the heart of our explanation of the relationship
between asymptotic quantisation, superselection sectors and soft/asymptotic
symmetries.

More specifically, our (classical) superselection sectors arise from the fact
that the charge (momentum map) which generates gauge transformations fails
to vanish on-shell in the presence of boundaries—which, in this case, one can
picture as the past and future “celestial spheres”.

1The extension we find is formally analogous to e.g. that in [15], but a one-to-one mapping
is far from obvious.
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Instead, said charge is given by the flux2 of the (generalised) electric
field through the boundary, whose gauge classes then label the superselection
sectors. In the partially reduced extended Ashtekar–Streubel phase space, the
charge generates residual gauge transformations corresponding to the above-
mentioned soft symmetries.

In the case of Abelian Yang–Mills, one can alternatively choose one of
the superselection labels to be the electromagnetic memory of3 [35,52,77,91],
which is then tied both to symmetry and superselection. Our formalism natu-
rally extends to the subtler non-Abelian case, where we define a non-Abelian
generalisation of memory as a superselection label. However, our proposal dif-
fers from the notion of “colour memory” introduced in [78] (see Definition 7.11
and Remark 7.12), and other terms and conditions apply (see Theorem 7.6 and
Sect. 7.2 for precise statements).

Our results are obtained through a careful and rigorous application of
symplectic reduction by stages [1,67,68,71]—adapted to the Fréchet setting as
in [24,25]—and the construction is completely and manifestly gauge-invariant.
(We follow [87] for the implementation.)

Moreover, each stage of the reduction procedure has its own physical
meaning:
(1) The first stage implements the (Gauss) constraint and produces the ex-

tended Ashtekar–Streubel phase space (Theorem 5.2).
(2) The second stage reduces the residual “boundary” gauge symmetries

(when present) and leads to the superselection sectors (Theorem 6.10).
(3) The Ashtekar–Streubel phase space is recovered as the result of an in-

termediate reduction, interpreted as superselection of the electric flux
through only one boundary component (Proposition 7.4 and Theorem
7.9).
Many of these statements can be expressed effectively by means of a new

symplectic basis for the Ashtekar–Streubel phase space, which we introduce
in Proposition 3.10. This basis generalises the naive Fourier basis to correctly
take into account zero-modes, which play a crucial role in the soft theorems
and the memory effect.

Although our results hold in any spacetime dimension at finite distance,
in dimension 4, where YM theory is classically conformal, they provide relevant
information on the asymptotic data as well, see Sect. 7. Then, our approach
recovers results of [49,56,77] and places them within a precise Hamiltonian
framework (see Sect. 7).

1.2. A Note on Boundary Gauge Transformations

A conceptual question that emerges from our framework is whether “boundary
symmetries” should be quotiented out or not: after all only “bulk symmetries”
are in the kernel of the (on-shell) symplectic structure and their reduction

2Note: in this work, the wording “electric flux” is a short-hand for “normal component of
the electric field at the boundary”.
3Herdegen [55] advances a criticism of the interpretation of memory proposed by [10]. This
is irrelevant for our purposes, but worth noting.
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yields a symplectic space, which could be a viable candidate for the phase
space (this corresponds to the first-stage reduced phase space described above).
Residual boundary symmetries could therefore be interpreted differently than
“gauge”. In the literature, these are commonly thought of as a new type of
global symmetries (see e.g. [9,16,28,39,50] among many others).

Our interpretation of boundary symmetries as gauge hinges on the mean-
ing we assign to “boundaries” of region in field theory. A manifold with bound-
ary (Σ, ∂Σ) is here thought of as the closure of an open subspace of a boundary-
less universe. From this perspective, we find it natural to demand that the
“observables” that are supported on (Σ, ∂Σ) be represented by appropriate
observables supported on the entire universe.

Since observables are gauge-invariant by definition, this suggests that the
observables associated to (Σ, ∂Σ) ought to be invariant with respect to the ac-
tion of the entire gauge group—i.e. including those gauge transformations that
are non-trivial at the boundary. Insisting on this point, and thus proceeding
to the second stage of reduction, we obtain a fully reduced phase space that
is only Poisson and hence exhibits a superselection structure defined by its
symplectic foliation.

However, regardless of the philosophical perspective on this question,
we believe this article provides necessary clarifications on the degrees of free-
dom and symmetries present in both the first-stage (i.e. “bulk”) and second-
stage (i.e. “boundary”) reduced phase spaces of Yang–Mills theory on a null
codimension-1 submanifold of a Lorentzian manifold.

1.3. Specifics

The Hamiltonian description of field theory on a (spacetime) Lorentzian man-
ifold M assigns, to a codimension-1 submanifold Σ ↪→M , a symplectic mani-
fold of fields (P, ω), together with a locus of constrained configurations C ⊂ P

representing a necessary condition4 that fields should satisfy to be extendable
to a solution of the Euler–Lagrange equations in M . In regular cases, C is a
coisotropic submanifold and its reduction by the characteristic foliation Cω is
a symplectic manifold C

.= C/Cω.
When Σ is a closed manifold, in local Hamiltonian gauge theory, the con-

straint surface C can be seen as the zero level-set of an equivariant momentum
map for a Hamiltonian gauge group action G � P; the reduced phase space of
gauge-inequivalent physical configurations C

.= C/G coincides with C
.= C/Cω

and is therefore a symplectic manifold.
However, when (Σ, ∂Σ) is a submanifold with boundary, we have previ-

ously shown5 that there exists a normal subgroup G◦ ⊂ G, called the constraint
gauge group, such that coisotropic reduction of the constraint set coincides with
symplectic reduction w.r.t. the action of G◦, i.e. C .= C/Cω � C/G◦ [87]. We

4Observe that sometimes this condition is also sufficient, but it typically requires restricting
to spacelike hypersurfaces. We will not elaborate on this aspect any further, as it would lead
us astray.
5See [27,70] for earlier results in the particular case of Chern–Simons theory.
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called C the constraint-reduced phase space and showed that it carries a resid-
ual Hamiltonian action of G .= G/G◦. Note that G◦ is an appropriate closure of
the set of gauge transformations supported in the interior of Σ; in this sense G◦
and G give a precise meaning to the informal notions of “bulk” and “boundary”
gauge transformations.

As a consequence of this residual action, the fully reduced phase space
C = C/G � C/G—defined as the space of constrained configurations modulo
gauge—fails in general to be a symplectic manifold, and it is instead6 only
Poisson. In particular, C is foliated by symplectic leaves S[f ], which we called
flux superselection sectors and proved to be labelled by co-adjoint orbits Of

of fluxes, i.e. elements f ∈ Lie(G)∗ ⊂ Lie(G)∗ that are in the image of the
(on-shell) momentum map ι∗CH : C→ Lie(G)∗ (see Definitions 2.2 and 2.4):

C =
⊔

Of

S[f ], S[f ] = (ι∗CH)−1(Of )/G.

In this paper we present the Hamiltonian gauge-theory assignment, in
the form of the data above, for Yang–Mills theory (YM) in the non-trivial
case where (Σ, ∂Σ) is a null7 codimension-1 submanifold-with-boundary of a
Lorentzian manifold M , of the form Σ � I×S with S spacelike and I = [−1, 1]
a null interval. Starting from the standard Yang–Mills theory assignment of
the geometric phase space (P, ωnYM) to a null submanifold Σ (Definition 3.6),
we provide a description of the constraint-reduced symplectic manifold C and
of the fully reduced Poisson manifold C, including an explicit characterisation
of the flux superselection sectors S[f ].

More precisely, we find (Theorem 5.2) that C is a smooth symplectic
Fréchet manifold,8 and that it can be described as a symplectic covering space
of the extended Ashtekar–Streubel phase space PeAS

9

C �loc PeAS
.= Â× T ∗GS

0 ,

where the Ashtekar–Streubel phase space Â � C∞([−1, 1],Ω1(S, g)) is a sym-
plectic space of “spatial” connections (see Definition 3.8 after [4]), and GS

0

the identity component of the mapping group” GS .= C∞(S,G), for G the
(connected) structure group of Yang–Mills theory.

The fibre K of the covering C → PeAS is the group of components of
the relative (connected) mapping group GΣ

0,rel
.= {g ∈ GΣ

0 g|∂Σ = 0}, which
we explicitly characterise in a number of particular cases, such as when G is
simply connected and dim(Σ) = 1, 2, 3, or when G is Abelian (Theorem 5.5).
(Earlier results in this direction can be found, e.g. in [39].)

6This is true only up to important details related to the infinite-dimensionality of the prob-
lem. However, in some cases this can be checked explicitly, as we do in this paper.
7The case of Σ non-null is discussed in [87].
8Provided the G◦-action is proper and the symmetry action generates a symplectically closed
distribution (see [25, Section 4] and references therein).
9The symbol �loc denotes a local symplectomorphism. If G is Abelian, we show that C �
Â : × T ∗gS is a global symplectomorphism, and the symplectic covering is given by the
branches of the logarithm for the toric factors of G.
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To explicitly describe the (infinite dimensional) symplectic reduction C

�loc PeAS, we develop a rigorous version of the dressing field method [31],
related to a particular choice of gauge fixing of the G◦-action. This provides a
concrete model for the reduction C, by means of a non-local map C → PeAS,
which can be thought of as a dressing by a family of Wilson lines along the
null direction of Σ.

The groups of residual gauge transformations acting on either the
constraint-reduced phase space C or the model PeAS—i.e. G and G∂Σ

0 = GS
0 ×

GS
0 , respectively—are shown to differ by a discrete central extension by K

(Proposition 6.2), G/K � G∂Σ
0 . In both cases, the corresponding group actions

are Hamiltonian (Propositions 6.4 and 6.6), and the local symplectomorphism
C �loc PeAS is equivariant with respect to them.

These residual gauge actions must similarly be reduced, and it is only
after this “second stage” reduction that one is led to the fully reduced phase
space

C
.= C/G � C/G � PeAS/G∂Σ

0 ,

which has the structure of a Poisson manifold and whose symplectic leaves we
call (flux) superselection sectors. We describe these superselection sectors in
Theorem 6.10, and more explicitly in Theorem 7.6 (for the Abelian case).

The algebra of (classical) observables of the theory can then be identified
with the space of functions.10 over the fully reduced Poisson manifold C. Since
C is not symplectic, this algebra has a centre Z ⊂ C∞(C): the Casimirs of the
Poisson structure which label the symplectic leaves.

We stress that the Ashtekar–Streubel phase space Â does not correspond
to either C or C. It instead arises as one of the symplectic leaves of an inter-
mediate reduction of C �loc PeAS by one of the two copies of GS

0 ↪→ G∂Σ
0 ; as

such it also carries an action by the remaining copy of GS
0 . This fact can be

summarised with the slogan: the Ashtekar–Streubel phase space is a partially
reduced and partially superselected space.

More specifically, in going from C to Â, the initial (resp. final) value of
the electric field is superselected (to zero, see Proposition 7.4 and Theorem 7.9,
and the subsequent remarks), and the Ashtekar–Streubel space carries a resid-
ual (non-local) gauge action of GS

fin (resp. GS
in). An important byproduct of

these results is the realisation that, in 4 spacetime dimensions, the residual
symmetry acting on the Ashtekar–Streubel phase space can be identified with
the “soft/large gauge symmetry” of [49,56].

(We note that, contrary to folklore, there is no need of fixing the magnetic
fields through the two components of ∂Σ in order to have well-defined phase
spaces.)

Additionally, one of the labels for the superselection sectors of null,
Abelian, Yang–Mills theory is the “electromagnetic memory” [10,77]—a gauge

10Truly, since C is an infinite-dimensional (partial) Poisson manifold, we have to restrict to

Hamiltonian functions. See [87, Definition 2.5].
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invariant quantity parametrised by the difference between the value of the elec-
tric fields at the two boundary components of (Σ, ∂Σ) (Theorem 7.6). Finally,
“colour memory”, as defined in [78], is not the correct label for the super-
selection sectors—in particular it is not gauge invariant, as opposed to its
nonlinearised version (see Theorem 7.9 and Remark 7.13). As a consequence,
“colour memory” fails to generalise to the non-Abelian case the property of
electromagnetic memory of being a viable superselection label.

1.4. A Note on Quantisation

The considerations contained in this paper are purely classical. However, we
believe that they provide insights about what is expected from quantisation.

If a quantisation of the (infinite dimensional) constraint reduction C �loc

Â × T ∗GS was available, in the sense of a Lie algebra morphism between
its Poisson algebra of functions and operators on some Hilbert space that is
equivariant under the action of G, then one could extract a subrepresentation
given by functions on C pulled back along C → C to G-invariant functions
on C. Since C∞(C) has a centre (the Casimirs of the Poisson structure), the
subrepresentation will also have a centre and thus decompose the Hilbert space
into “blocks”.

If a statement such as “quantisation commutes with reduction” [45,47]
was to hold in this scenario (of C w.r.t. G), one would have that the Hilbert
“blocks” would also correspond to the quantisation of the symplectic leaves S[f ]

of the Poisson manifold11 C. (Observe that Verlinde formula [97] was proven
as an application of reduction by stages to Chern–Simons theory in [69]. See
also [87, Section 8.1].) The quantisation of the Casimir functions of the fully
reduced phase space should, then, generate the quantum flux superselection
sectors (see e.g. [13,33,34,73] as well as [29,30,40] for a review).

To obtain a quantisation of C one can resort to several techniques. (1)
Since C is symplectic, directly applying geometric quantisation is—at least in
principle—an option, although highly non-trivial due to the infinite dimension-
ality of the problem. In null, Abelian, YM theory, C has a relatively simple
structure: it is (non-canonically) isomorphic to the direct product of two spaces
of local fields (i.e. sections of a bundle), one affine (Â) and the other a linear
cotangent bundle (T ∗gS). In the non-Abelian case a similarly simple descrip-
tion holds locally in field space, with the linear cotangent bundle replaced by
the nonlinear T ∗GS .12

(2) Another option is to apply Batalin–Fradkin–Vilkovisky (BFV) quan-
tisation. The (classical) BFV formalism starts with the data of C ⊂ P as input
and resolves it by constructing a (classical) complex C•

BFV whose cohomology
in degree zero is C∞(C) [89,92]. Then, quantisation of this structure outputs
a (quantum) complex whose cohomology in degree zero can then be taken as a
quantisation of C (ideally, a Hilbert space of “states” for the theory). Note that

11The correct statement is that C is a partial Poisson manifold, meaning that there is a

subalgebra of all smooth functions that admits a Poisson structure [79,87].
12Cf. [87] for results on C in non-null YM theory.
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this procedure trades the addition of non-physical (ghost) fields, required by
the cohomological resolution, for linearity and locality: One now needs to quan-
tise a local symplectic dg vector space instead of the nonlinear and non-local
symplectic manifold C. This procedure fits within the program of quantisation
of field theory on manifolds with boundary of [19,20], which has the advantage
of communicating with the bulk Batalin–Vilkovisky (perturbative) quantisa-
tion of Yang–Mills theory. The BV-BFV bulk-to-boundary correspondence at
the quantum (or at least semi-classical) level is key to link soft symmetries and
their Ward identities to soft scattering phenomena, which was first analysed at
physics level of rigor in [94] (for more references, see Sect. 7.1.2). The BV quan-
tisation of YM theory has been also studied within the perturbative algebraic
quantum field theory setting [12,46] by [83] (although without boundaries).
A classical link between BV-enriched PAQFT quantisation and the BV-BFV
analysis is given by [84], where soft symmetries (and their conserved charges)
are interpreted in this language.

(3) Finally, since C∞(C) is Poisson, one could try to directly perform
deformation quantisation. One obvious difficulty is that C has a more involved
structure than C even in the Abelian (matterless, linear) theory—it is in par-
ticular spatially non-local. For interacting QFT’s deformation quantisation of
Poisson algebras over infinite dimensional manifolds is subject of current study
[48].

Consequently, we shall defer any further consideration on a rigorous quan-
tisation of the relation between memory as a momentum map for soft sym-
metries and scattering phenomena to further work. In Sect. 7.1.2, we provide
a few more considerations on the interpretation and expectation we place on
the quantisation of our classical picture, especially in relation to the role and
emergence of superselection sectors—with references to the literature.

1.5. Structure of the Paper

In Sect. 2 we outline the preliminaries of Hamiltonian gauge theories on man-
ifolds with corners, thought of as boundaries of codimension 1 hypersurfaces
over which the Hamiltonian theory is specified. This is mostly a review of [87].

In Sect. 3 we lay the geometric foundations of null Hamiltonian Yang–
Mills theory, the topic we will focus on throughout the rest of the paper. We
also introduce a number of key ingredients that will play a role in the remainder
of the work, such as the Ashtekar–Streubel phase space and a novel “Darboux
basis”, expressed in terms of Fourier modes (Proposition 3.10).

Section 4 describes the superselection structure for null, Yang–Mills the-
ory as a consequence of the general theorem [87, Theorem 1]. This is a short-
hand version of the paper which gives direct access to Sect. 7.

Sections 5 and 6 are dedicated to an explicit description of the first and
second stage of the symplectic reduction, leading to the reduced phase space
of Yang–Mills theory described in Sect. 4. Appendix E details the specifics of
the Abelian case, where global results can be obtained.
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Finally, in Sect. 7 we apply our results to the problem of asymptotic/soft
symmetries, and we draw a detailed comparison between our work and the
literature, most notably [93].

While the logical development of the paper is linear, the reader interested
in the applications to soft symmetries can skip Sects. 5 and 6 at first and
go directly to Sect. 7 after Sect. 4, which is necessary to its understanding.

The reader is invited to use Appendix F as quick reference, as it summarises
the notations used throughout the paper.

2. Theoretical Framework

In this section we review the theoretical framework for the symplectic reduc-
tion of a locally Hamiltonian gauge theory. This framework was developed
in a previous publication [87] to which we refer for details. A summary of the
application of this theoretical framework to Maxwell theory on a spacelike sub-
manifold of a Lorentzian manifold is given in Appendix A. This condenses the
results of [87], as well as earlier results from [85] (see also [86] for a pedagogical
overview, as well as [42,43]).

In this introductory section, (Σ, ∂Σ) denotes a smooth, orientable, man-
ifold with boundary, with

n
.= dim Σ ≥ 1.

This manifold should be understood as a boundary component of a spacetime
manifold M (with corners); however, we will omit discussing the Lagrangian
origin of the field-theoretic data we employ. The induction of a locally Hamil-
tonian gauge theory (on Σ) from a Lagrangian theory (on a cobordism of Σ)
is explained in [87, Appendix D] (see also [61]).

Remark 2.1 (Null Σ). If Σ is a compact null submanifold of a globally hyper-
bolic manifold M , then ∂Σ �= ∅. The goal of this article is to explore the role
of ∂Σ.

2.1. Locally Hamiltonian Gauge Theory

In short, the notion of a locally Hamiltonian gauge theory is a special case
of an infinite-dimensional Hamiltonian G-space for which there exist stronger,
local, versions of all the defining quantities and relations—and in particular
of the Hamiltonian flow equation—which must hold pointwise over Σ. The
reader not familiar with the notion of locality is referred to Appendix B and
references therein.

Definition 2.2 (Equivariant locally Hamiltonian gauge theory [87]). A locally
Hamiltonian gauge theory (P,ω,G,H) over Σ is given by

(i) a space of local fields φ ∈ P
.= Γ(Σ, E), for E → Σ a fibre bundle, called

“geometric phase space”,
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(ii) a local symplectic density ω ∈ Ωtop,2
loc (Σ×P), i.e. a d-closed local (top, 2)-

form such that ω =
∫
Σ

ω ∈ Ω2(P) is symplectic;13

(iii) a local Lie algebra action ρ : P × G → TP of a real Lie algebra G that
exponentiates to an action of the (connected) Lie group G

.= 〈expG〉,
(iv) an R-linear local map H : G → Ω0,top

loc (Σ × P), ξ �→ 〈H, ξ〉, called (co-
)momentum form which is equivariant,14 Lρ(ξ)〈H, η〉(ϕ) = 〈H(ϕ), [ξ, η]〉
for all ξ, η ∈ G and ϕ ∈ P,

such that the following local Hamiltonian flow equation holds:

iρ(ξ)ω = d〈H, ξ〉 ∀ξ ∈ G.

♦
Remark 2.3 (Duals). Let W = Γ(M,W ) be the space of sections of a vec-
tor bundle over a compact manifold, W → M . This space can be given the
structure of a nuclear Fréchet vector space, and one can consider the topo-
logical dual with strong topology W∗

str, which is itself a nuclear vector space.
Being W a space of sections, we can further introduce the useful notion of
local dual W∗

loc ⊂W∗
str given by integrals of local, R-linear, maps from W into

Γ(M,Dens(M)) � Ωtop(M) (see Appendix B). If one instead considers sec-
tions Γ(M,W ∗ ⊗M Dens(M)), a non-degenerate pairing with W is given by
integration on M . The subset of the local dual given by integrating against
an element of Γ(M,W ∗⊗M Dens(M)) is called densitised dual, and we simply
denote it by W∗:

∫

M

: Γ(M,W ∗ ⊗M Dens(M))→W∗
loc, W∗ .= Im

(∫

M

)
.

Another characterisation of W∗ is in terms of ultralocal elements α ∈
W∗

loc, i.e. elements such that 〈α,w〉 does not involve any derivative of w ∈W.
A thorough discussion of the subtleties arising from dualisation in this

setting is given in [87, Appendix A]. (See also [87, Definition 2.9] where the
densitised dual is instead denoted by •∨ rather than •∗, which there stands
for the strong dual).

2.2. Constraint and Flux Forms

Whenever a Lagrangian gauge theory over a spacetime M admits a locally
Hamiltonian formulation at a codimension-1 hypersurface Σ ↪→M , a relation
between the symplectic generator of gauge transformation and a subset of
the equations of motion known as constraints can be established [66]. In our
framework this relation is captured by the following proposition/definition [87,
Appendix D]:

13A 2-form ω on P is weakly (resp. strongly) symplectic iff it is closed and ω� : TP → T ∗P
is injective (resp. bijective). In this paper, all symplectic forms are “weak”, and we thus
drop the qualifier.
14A more general treatment of the equivariance properties of H allowing for non-trivial
boundary Chevalley–Eilenberg cocycles—and thus central extensions—is given in [87, Sec-
tions 3.5 and 3.6] (see also [70]).
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Definition 2.4 (Constraint and flux forms). A local momentum form H ∈
Ωtop,0

loc (Σ× P,G∗
loc) can be uniquely written as the sum

H = H◦ + dh,

where H◦ is order-0, and dh is d-exact [87, Prop. 4.1]; H◦ and dh are sepa-
rately equivariant.

We call H◦ the constraint form, dh the flux form associated to the mo-
mentum form H, and h =

∫
Σ

dh the flux map.
The constraint surface C ⊂ P is the vanishing locus of the constraint

form, i.e.

C = {φ ∈ P 〈H◦(φ), ξ〉 = 0 ∀ξ ∈ G}.
We denote by ιC the embedding C ↪→ P and refer to C as “the shell”.

The split of H into H◦ + dh can be thought of as integration-by-parts.
Note that we will often view the flux map h in a “dual” manner, i.e. as a map
P → G∗

loc; we will do so without changing the notation for h. The flux map
and its properties control our entire construction.

Remark 2.5 (Noether current, charges, and the constraints). For a general
analysis of the properties a Lagrangian gauge theory must satisfy to yield a
locally Hamiltonian gauge theory (Definition 2.2), we refer to [87, Appendix D]
(see also [7,23,100] and in particular [66]). In particular, if these conditions are
met the (co-)momentum form H : G→ Ωtop,0(Σ× P) is the pullback to Σ of
the (off-shell) Noether current associated to a gauge symmetry. The Noether
current then encodes the constraint of the theory—which are given by H◦—up
to a total derivative, the flux form dh; the flux map h is the (boundary) on-
shell Noether charge. The constraint C is the space of “physical” configurations
in P.

2.3. Symplectic Reduction: Overview

Our ultimate goal is to apply the theory of Marsden–Weinstein–Meyer sym-
plectic reduction [68,71,76], or the appropriate infinite-dimensional generali-
sation thereof (e.g. [25] and references therein), to understand the symplectic
properties of the reduced phase space C—defined as the space of on-shell con-
figurations modulo all gauge transformations:

Definition 2.6 (Reduced phase space). Let (P,ω,G,H) be a locally Hamilton-
ian gauge theory. The (fully )reduced phase space of the theory is C

.= C/G.

Once a locally Hamiltonian gauge theory is specified as per Definition 2.2,
the symplectic reduction of (P, ω) by G proceeds by stages [87] (for a general
reference to reduction by stages, see [1,67]).

The two stages can be loosely described as follows:

(1) The first stage, called constraint reduction, is the reduction of (P, ω) by
“bulk” gauge transformations G◦ generated by H◦ alone; it implements
coisotropic reduction of the constraint set.
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(2) The second stage, called flux superselection, takes care of the residual
group of “boundary” gauge transformations G

.= G/G◦ which can be
thought of as being generated by the flux map h.

(If ∂Σ = ∅, only the first stage is relevant: G◦ = G and one recovers the
standard gauge reduction procedure.)

The main difference between the first and second stages is that whereas
in the first stage the reduction procedure is performed at a canonical value
of the momentum map, i.e. at H◦ = 0 (thus coinciding with the coisotropic
reduction of the constraint configurations, C/Cω), in the second stage one is
free to choose at which value f ∈ G∗

loc of the flux map h to reduce (as long as
the chosen value is compatible with the constraints). This freedom of choosing
f—or, equivalently, of choosing a coadjoint orbit Of ⊂ G∗

loc—is the origin of
the fact that C/G is not symplectic but instead a (continuous) disjoint union
of symplectic leaves, i.e. a Poisson manifold.

In sum: whenever ∂Σ = ∅, the space C is symplectic, but when ∂Σ �= ∅
then C is in general at best a Poisson manifold. This Poisson is foliated by
disjoint symplectic leaves, each labelled by certain coadjoint orbits in Of ⊂
G∗

loc. We will call these symplectic leaves superselection sectors and denote
them S[f ].

This two-stage reduction procedure is summarised in the following com-
mutative diagram. The goal for the remainder of this section is to explain
it.

(P, ω)

constraint
reduction

(w.r.t. G◦ at 0)
���������������������������������� (C, ω)

flux
superselection

(w.r.t. G at Of )
������������������������������ (S[f ], ω[f ])

C
� �

ιC

�������������
π◦

�� ���������������
h−1(Of )
� �

ι[f]

��������������
π[f]

�� �������������

h−1(Of ) ∩ C
� �

ιC[f]

����������������
π◦,[f]

�� ��������������
� 	

ι[f]

��

�	
��



�
�

�
�

�
�

�

π[f]

�� ��

� � � � � �
�

�
�

�
�

 
!

(1)

2.4. Constraint Reduction

We start by introducing some definitions and results that allow us to identify
the ingredients entering the reduction procedure:

Definition 2.7 (Annihilators). Let W be a nuclear Fréchet vector space, or the
strong dual of a nuclear Fréchet space.15 Moreover, let X ⊂ W and Y ⊂ W∗

str

15Recall, if W is nuclear Fréchet, its strong dual is nuclear but in general not Fréchet.
However, if W is either a nuclear Fréchet vector space or the strong dual of one, W is
reflexive, i.e. it is canonically isomorphic to its strong bi-dual: W∗∗

str = W.
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be subsets. The annihilator of X in Y is the set

Ann(X,Y) = {y ∈ Y | 〈y, x〉 = 0 ∀x ∈ X} ⊂W∗
str.

♦
Lemma 2.8. Let W be as above, and X ⊂W be a closed vector subspace, then

Ann(Ann(X,W∗
str),W) = X.

Proof. See Appendix D.1 �
Definition 2.9.

(i) The space of (on-shell) fluxes is

F
.= Im(ι∗Ch) ⊂ G∗

loc;

its elements are denoted by f ∈ F, and their coadjoint orbits by Of ⊂ F.
(ii) The constraint gauge algebra G◦ ⊂ G is the annihilator of the space of

fluxes, i.e.16

G◦
.= Ann(F,G) ≡ {ξ ∈ G 〈h(φ), ξ〉 = 0 ∀φ ∈ C}.

(iii) The constraint gauge group is the subgroup of G generated by G◦:

G◦
.= 〈expG◦〉 ⊂ G

(iv) The first-stage reduced, or constraint-reduced, phase space is

C
.= C/G◦;

we denote π◦ : C � C the corresponding projection. ♦
Remark 2.10 (Equivariance). Observe that the latter definition makes sense
because G◦ ⊂ G and the action of G preserve C as a consequence of the equiv-
ariance of H◦ (Definition 2.4).

From [87, Theorem 4.33] it follows in particular that:

Proposition 2.11. The constraint algebra G◦ is a Lie ideal of G and hence G◦
is a normal subgroup of G.

Remark 2.12 (Smoothness of C). Although in the following theorem the smooth-
ness of C is assumed, in the specific cases treated in this article its smooth-
ness can be proven. Similarly, in these cases, one can prove the (weak) non-
degeneracy of ω defined as in the following theorem; the relevant assumption
in the theorem is the symplectic closure of ρ(G◦) [25, Chapter 4].

Theorem 2.13 (First stage: Constraint reduction). If ρ(G◦) is symplectically
closed and the space C

.= C/G◦ is smooth then C � C/Cω when equipped with
the unique (symplectic) 2-form ω ∈ Ω2(C) such that

π∗
◦ω = ι∗Cω, π◦ : C � C.

We call (C, ω) the constraint-reduction of (P, ω).

16Although ultimately equivalent, this definition is not the same as the one given in [87], see

Theorem 4.33 ibidem Observe that this definition is well posed because F ⊂ G∗
loc ⊂ G∗

str

and G = G∗∗
str.
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Diagrammatically, this shows the leftmost part of the diagram in Eq. (1):

(P, ω)

constraint
reduction

(w.r.t. G◦ at 0)
������������������ (C, ω)

C

 �

ιC

		"""""""" π◦



 

########

In the diagram above, “w.r.t. G◦ at 0” stands for: “with respect to the action
of G◦ at J−1

◦ (0), the zero-level set of the corresponding momentum map J◦”.

2.5. Flux Superselection

If ∂Σ �= ∅, the constraint-reduced phase space (C, ω) fails to be fully gauge
invariant: on it one still has the residual action of the flux group G whose Lie
algebra is the flux gauge algebra G

.= G/G◦. Moreover, this action is itself
Hamiltonian. Indeed, a consequence of the equivariance properties of H, and
the fact that G◦ ⊂ G is a Lie ideal, is that the locally Hamiltonian action of G
on (P,ω) descends to a Hamiltonian action of the flux gauge group G on the
constraint-reduced phase space (C, ω):

Proposition 2.14 (Hamiltonian action on (C, ω)).
(i) The flux gauge algebra is G

.= G/G◦ and

G
.= G/G◦

is the flux gauge group; one has Lie(G) = G.
(ii) One can identify G∗

str � Ann(G◦,G∗
str), and there is a unique map

h : C→ G∗
str such that π∗

◦h = ι∗Ch.

We call it the reduced flux map. Furthermore, F .= Im(ι∗Ch) � Im(h).
(iii) The action ρ : P×G→ TP descends to an action ρ : C×G→ TC.
(iv) The action ρ of G on (C, ω) is Hamiltonian with momentum map h, i.e.

for every ξ ∈ G

iρ(ξ)ω = d〈h, ξ〉.
Remark 2.15. Proposition 2.14 is phrased in terms of the strong dual G∗

str,
and it characterises Im(h) ⊂ G∗

str as a subset of G∗
str. Note that according

to our definitions Im(ι∗Ch) ⊂ G∗
loc and Im(h) ⊂ G∗

str live a priori in different
dual spaces. However, the statement in the proposition makes sense because
in the strong dual there exists the dual of the projection map, G∗

str → G∗
str,

as well as the embedding G∗
loc ↪→ G∗

str. In the present article we look at null
YM theory, where G is either g∂Σ � C∞(∂Σ, g) or g∂Σ/g (see Definition 3.13
to fix the notation). We can relate to the previous discussion noting that, in
this case, we also have the embedding of the densitised dual in the strong dual
G∗ ↪→ G∗

str. In fact, in this case, Proposition 2.14 can be phrased in terms of
densitised and local duals as:

G∗ � Ann(G◦,G∗
loc),



A. Riello and M. Schiavina Ann. Henri Poincaré

with G∗ � (g∂Σ)∗ or G∗ � Ann(g, (g∂Σ)∗) ⊂ (g∂Σ)∗, respectively. Further
details can be found in Lemma 4.5 and Proposition 4.6.

We can thus proceed to a second stage of the reduction procedure. We
start by introducing the flux superselection sectors via an orbit-reduction pro-
cedure:

Lemma 2.16 (Flux superselection sectors). Consider a flux f ∈ F � Im(h) ⊂
G∗ and its coadjoint orbit Of ⊂ G∗. Then

S[f ]
.= h−1(Of )/G

carries a symplectic 2-form ω[f ] ∈ Ω2(S[f ]) uniquely defined by the equation

π∗
[f ]ω[f ] = ι∗[f ]

(
ω − h∗Ω[f ]

)
,

where (i) π[f ] : h−1(Of ) � S[f ] is the projection associated to the quotient
by G, (ii) ι∗[f ] : h−1(Of ) ↪→ C is the natural embedding, and (iii) Ω[f ] is the
canonical (Kirillov–Konstant–Souriau, or KKS) symplectic structure on Of .
We call S[f ] a flux superselection sector.

Theorem 2.17 (Second stage: flux superselection). The fully reduced phase-
space C

.= C/G � C/G is a Poisson space whose symplectic leaves are the flux
superselection sectors:

C �
⊔

Of⊂F

S[f ].

Diagrammatically:

h−1(Of ) �

 ι[f]

��

π[f]

����

C

π

����

S[f ]
� 


symplectic leaf

�� C

which in particular encodes the rightmost part of the diagram in Eq. (1).

Remark 2.18 (quantisation of superselections and Casimirs). As a consequence
of Theorem 2.17, the pullback along h of any Casimir function on17 F ⊂ G∗ is a
Casimir function on the Poisson manifold C that descend to a central function
in C. Assuming that a quantisation of C—and of its algebra of Hamiltonian18

functions—exists, one deduces that the quantisation of said Casimirs induces
a decomposition into irreducible blocks of the quantum (Hilbert) space associ-
ated to C. This is what motivates our use of the term “superselection sectors”.
More on this in Sect. 7.1.2 (bullet point 7.).

17The Poisson structure on G∗ naturally restricts to F in virtue of the equivariance of h.
Cf. Footnote 14 for generalisations allowing for central extensions.
18Cf. Footnote 10.
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Remark 2.19 (Noether charge algebra). If ∂Σ �= ∅, the would-be Dirac–Bargmann
algebra of first class constraints, is replaced on-shell by an algebra of non-
vanishing (boundary) Noether charges. Given the relationship between H and
the Noether current, and the fact that on-shell H =

∫
Σ

H reduces to the flux
map h =

∫
Σ

dh, one expects the boundary Noether charge algebra to coincide
with the Poisson manifold F ⊂ G∗ and thus to provide a representation of the
algebra G.

A rigorous, and general, construction of the “Noether charge algebra”
is given in [87, Theorem 3] where a Poisson manifold (C∂ ,Π∂) of on-shell,
boundary field configurations is constructed out of the flux map h. The space
(C∂ ,Π∂) fibrates over the same space of superselection sectors as (C,Π) and
can hence be used as a simpler proxy for the latter when it comes to studying
the space of superselections of a given theory.

A succinct exemplification of the results discussed in this section through
Maxwell theory on a spacelike manifold with boundary is available in Appen-
dix A.

3. Yang–Mills Theory on Null Boundaries: Geometric Setup

In this section we outline the geometric setup underpinning the phase space of
Yang Mills theory on a manifold with a null boundary Σ.19 The relationship
between the definitions provided in this section and the theory’s Lagrangian
formulation is standard and reviewed in [87, Appendix D].

3.1. The Null Manifold

Let (Σ, γ) be a null, n-dimensional, manifold of signature (1, . . . , 1, 0), and
cylindrical topology Σ � S×I, I = [−1, 1] with S a connected, closed manifold.
Since the boundary of Σ has two diffeomorphic connected components, it will
be convenient to denote:

Sin/fin
.= S × {∓1} ↪→ Σ.

Denote by � ∈ X(Σ) the global null vector γ(�, �) = 0. We consider
coordinates (xi, u) on S × I, such that the metric γ and the null vector field �
take the form:

γ = γij(x)dxidxj , � = ∂u,

with γij non-degenerate. With reference to the spacetime picture (Remark 5.6),
we refer to u as “retarded time”. Notice that we assumed γ to be u-independent.
This is done only for simplicity of exposition.

Definition 3.1 (Spatial forms and vectors). A vector field v ∈ X(Σ) and a
differential form α ∈ Ωk(Σ) are called spatial iff, respectively, ivdu = 0 and

19More precisely: on a pseudo-Riemannian manifold M with corners, whose boundary ∂M
has a null connected component Σ.
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i�α = 0. We denote by a hat the operation of projecting along the “spatial”
foliation: for any v ∈ X(Σ) and α ∈ Ωk(Σ), define

v̂
.= v − (ivdu)� and α̂

.= α− du ∧ (i�α),

so that v̂ and α̂ are spatial: iv̂du = 0 and i�α̂ = 0. In coordinates, spatial
vector and forms read v̂ = v̂i∂i and α̂ = α̂i1···ikdxi1 ∧ · · · ∧ dxik .

Denote by Ω•
spatial(Σ) the space of horizontal forms, equipped with the

nilpotent spatial differential

Dα̂
.= dα̂− du ∧ L�α̂, D2 = 0,

which can be identified with the de Rham differential over S, i.e. D ≡ dS .

Note that γ(v, w) = γ(v̂, ŵ) and—despite the fact that the inverse of γ is
not defined—the quantities γ−1(α̂, β̂) for α, β 1-forms (or covectors) are well
defined. In our coordinate system, γ(v̂, ŵ) = γij v̂

iv̂j and γ−1(α̂, β̂) = γijα̂iβ̂j ,
where γij .= (γij)−1 is the inverse of the positive definite metric on S. On
spatial tensors, we use γij and γij to raise and lower indices.

Notation 3.2. We denoted the measures over Σ and S, respectively, by

volΣ
.= du ∧ volS and volS =

√
det(γij) dtopx.

3.2. The Geometric Phase Space

Let G be a real Lie group which we will assume to be either (i) Abelian or
(ii) semisimple. Let g

.= Lie(G) be its (real) Lie algebra, and denote by tr(··)
a non-degenerate, Ad-invariant, bilinear form on g; if g is semisimple, tr can
be chosen to be its Killing form.

Let P → Σ be a G-principal bundle over Σ, and

A
.= Conn(P ) � A

be the space of principal connections, or gauge potentials over P → Σ; this is
the space of sections of the bundle J1P/G→ Σ, which is locally modelled on
Ω1(Σ, g).

For simplicity of exposition we will assume that:

Assumption A (Connectedness and Trivial bundles). G is connected and the
principal G-bundle P → Σ is trivial, i.e. P � Σ×G.

As a consequence, one has a (global, non-canonical) isomorphism

A � Ω1(Σ, g).

In our coordinate system over Σ � S × I, all gauge potentials A ∈ A can
be decomposed as

A � A� × Â, A�→(A�, Â) .= (i�A, A− (i�A)du),

where A� � Ω0(Σ, g) and Â � Ω1
spatial(Σ, g).

If F = dA + 1
2 [A,A] is the principal curvature of A, we introduce the

spatial 1-form (in components, F�i ≡ Fui)

F�
.= i�F = F�idxi ∈ Ω1

spatial(Σ, g).
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Its variation is given by

dF� = L�dÂ−DdA�, (2)

where

L�
.= L� + [A�, ·] and D

.= D + [Â, ·].
When acting on g-valued scalars (0-forms), one can replace L� with ∂u+[A�, ·].

Now, let Ad∗P → Σ denote the associate coadjoint bundle20 to P , i.e.
Ad∗P .= P ×Ad∗ g∗. Thanks to Assumption A this bundle is also trivial:
Ad∗P � Σ× g∗. Hence, we introduce the space of electric fields

E
.= Ωn−1

spatial(Σ,Ad∗P )
(ass.A)� Ωn−1

spatial(Σ, g∗),

and we denote by E ∈ Ωn−1
spatial(Σ,AdP ) the spatial two form representing the

electric field. Note that any E ∈ E can be uniquely encoded in a Lie algebra-
valued function E ∈ C∞(Σ, g) subordinate to a choice of a fixed volume form21

on S, viz.

E � C∞(Σ, g), E = tr(E · )volS .

To keep the notation more consistent with the literature, we note here that
most of our formulas will be written in terms of E—as opposed to E—and we
will indeed leave the above isomorphism implicit. Nevertheless, it pays off to
keep in mind the definition of electric field given above.

Remark 3.3 (The retarded-time evolution picture). We can identify

Â � C∞(I,Ω1(S, g)), A� � C∞(I,Ω0(S, g)), E � C∞(I,Ω0(S, g)),

i.e. we can view the decomposition of fields along the spatial foliation as maps
that assign to each value of the retarded time u ∈ I a spatial 1- or 0-form on
S. In the following, we will seamlessly switch between these different points of
view.

Notation 3.4. For brevity:
∫

N
tr( · )volN ≡

∫
N
tr( · ).

Notation 3.5. Let W be a vector space and Q a spatial W -valued p-form, i.e.
Q ∈ Ωp

spatial(Σ,W ) � C∞(I,Ωp(S,W )). Then, we denote

Qin .= Q(u = −1) and Qfin .= Q(u = 1), (3a)

and view them as elements of Ωp(S,W ). Similarly, it is convenient to intro-
duce:

Q
∫ .=

∫ 1

−1

du′ Q(u′), Qavg .= 1
2 (Qin + Qfin), and Qdiff .= Qfin −Qin.

With all of this at hand, we can thus define:

20The adjoint bundle is AdP
.
= P ×Ad g = (P × g)/ ∼, defined by the equivalence relation

(p · g, ξ) ∼ (p, Adgξ). The coadjoint bundle is defined analogously.
21Recall, we assumed that the metric γ is constant in u.
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Definition 3.6 (Null YM: geometric phase space). The geometric phase space
of null Yang–Mills theory (nYM) (P,ωnYM) is the space

P
.= A× E � Â×A� × E,

equipped with the symplectic density

ωnYM
.=
(
tr(dE ∧ dA�) + tr(dF i

� ∧ dÂi)
)
volΣ ∈ Ωtop,2

loc (Σ× P).

♦
Remark 3.7. In Appendix D.2 we prove that ωnYM is indeed a symplectic
density in the sense of Definition 2.2(ii): that is, we prove dωnYM = 0 and
Ker(ω	

nYM) = 0 where ωnYM =
∫
Σ

ωnYM (Cf. Footnote 13.)

An important space for nYM theory is the Ashtekar–Streubel phase space
over Σ. We now discuss some of its basic properties.

Definition 3.8 (Ashtekar–Streubel phase space [4]). The Ashtekar–Streubel (AS)
phase space (Â,�AS) over Σ � I×S is the space of purely spatial connections
a ∈ Â � C∞(I,Ω1(S, g)) equipped with the symplectic 2-form

�AS
.=
∫

Σ

tr((L�dai) ∧ dai) ∈ Ω2(Â).

♦
The proof that (Â,�AS) is a symplectic manifold is analogous to that for

(P, ωnYM) provided in Appendix D.2. It is easy to see that the AS phase space
can be embedded as a symplectic submanifold of the geometric phase space of
nYM theory e.g. as the submanifold {(A,E) = (0, 0)}. Similarly, T ∗A� can also
be embedded in P as the symplectic submanifold {Âi = 0} � A� × E � T ∗A�.
However, although (P, ωnYM) is diffeomorphic to the product Â × T ∗A�, the
two are not symplectomorphic.

The space (Â,�AS) is often taken as the phase space of “physical degrees
of freedom” of YM theory on a null surface. One of the goals of this paper is
to assess this statement by clarifying the relationship between �AS and ωnYM.
This is achieved in Theorems 5.2 and 7.6, with further clarifications provided in
Sect. 7 (see e.g. Proposition 7.4 and Theorem 7.9 and the subsequent remarks).

The Ashtekar–Streubel field ai, seen as a function of u ∈ [−1, 1] (Re-
mark 3.3), can in principle be expanded on the Fourier modes e±iπku, with k
a positive integer. The AS symplectic structure will then be block-diagonal in
k, with the real and imaginary parts of eiπku conjugate to each other. There
are however two major (related) problems with this expansion, both due to
the fact that all the terms in the Fourier series are periodic.

The first problem is that the quantity adiff .= a(u = 1)−a(u = −1), which
encodes the lack of periodicity, does not appear in the Fourier expansion but
nevertheless features in �AS and plays a crucial role in the reduction procedure.
In particular, it is central for our understanding of the memory effect (see
Sect. 7). The second problem is that the zero-mode in the expansion,22 being

22Meaning the coefficient of eiπ0u = 1.
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purely real, lacks a symplectic partner w.r.t. �AS among the Fourier modes
eiπku; this problem could have also been detected by noting that it is rather
the real and imaginary parts of

√
πkeiπku that are canonically conjugate to

each other, and these are not well-defined for k = 0.
Both these issues can be solved by including in the Fourier analysis one

extra “zero” mode linear in u—and then performing the Gram–Schmidt algo-
rithm to find the (complex) Darboux basis {ψk(u)} described in the following
lemma.

Lemma 3.9. Equip C∞(I,C) with the Hermitian structure

G(φ1, φ2)
.= − i

2

∫ 1

−1

(φ̇1φ
∗
2 − φ1φ̇

∗
2)du.

Then,23

ψk(u) .=

{
1 + iu

2 if k = 0
(−1)k + cos(πku) + i sin(πku)

2πk if k ≥ 1

is a (complex) orthonormal basis of C∞(I,R), i.e.

G(ψk, ψl) = δkl and G(ψk, ψ∗
l ) = 0,

and for all f ∈ C∞(I) the sequence {fN}N∈N converges uniformly,24

fN
.=

N∑

k=0

(
f̃(k)∗ψk + c.c.

)
unif.−−−−→

N→∞
f, f̃(k) .= G(ψk, f).

Proof. See Appendix D.3. �

Proposition 3.10 (Ashtekar–Streubel mode decomposition). Let g = (R,+),
and a ∈ Â � C∞(I,Ω1(S)). For each k ∈ N, define the Ashtekar–Streubel
k-mode ãi(k) ∈ Ω1(S) as

ãi(k, x) .= G(ψk, ai(x));

in particular, the Ashtekar–Streubel zero-mode is

2 ãi(k = 0, x) = (a
∫

i (x)− aavg
i (x)) + iadiff

i (x),

Then, the expansion of ai(u, x) on the basis ψk(u) converges uniformly, i.e.

N∑

k=0

( ã∗
i (k, x)ψk(u) + c.c.) unif.−−−−→

N→∞
ai(u, x),

23Although one can interpret Im(ψk=0) as the limit k → 0 of Im(ψk), this limiting proce-
dure would fail by a factor of 2 in the case of the Re(ψk)—say after setting (−1)k = cos(πk).
Also, ψk and ψ−k are equal rather than complex conjugate to each other. For this reason in

the following we only consider ψk with k ≥ 0.
24Recall, uniform convergence of fN (u) → f(u) means that for every ε > 0 there exists an
Nε such that |fN (u) − f(u)| < ε for all u ∈ I and N > Nε.



A. Riello and M. Schiavina Ann. Henri Poincaré

and

�AS = 2i

∫

S

∞∑

k=0

d ã∗
i (k, x) ∧ d ãi(k, x) volS ,

=
∫

S

dadiff ∧ d(a
∫
− aavg) volS + 2i

∫

S

∞∑

k=1

d ã∗
i (k, x) ∧ d ãi(k, x) volS .

Proof. See Appendix D.4. �

Remark 3.11. For G a more general structure group, a ∈ Â � C∞(I,Ω1(S, g))
takes values in g, and therefore G needs to be tensored with the bilinear form
tr(··). The above construction carries over with minimal changes, see Sect. 7.2.

Remark 3.12 (Comparison with [93]). The mode decomposition of Proposi-
tion 3.10 allows us to compare with the standard reference [93] and address
some of the issues raised there. The first important distinction is that our
mode expansion is aimed at functions on a bounded interval [−1, 1], where it
is rigorous, as opposed to the whole real line. This allows us to include the
linear basis element Im(ψk=0)

.= u/2 as well as the quantity adiff .
Next, in [93, Eqs. 2.6.6–7], the author extracts a u-constant term from a

and assumes it to be exact. More precisely, the u-constant term is identified
with aavg and thus there is a decomposition: a = a′ + aavg with aavg = Dφ for
φ ∈ gS , constant in u, and a′ the “u-non-constant” remainder. Furthermore,
in [93, Eq. 2.5.16] the quantity N ∈ gS is introduced, so that DN = adiff

(analogously to aavg, the difference adiff is also assumed to be exact). We can
use this dictionary to rewrite the second term in the “zero mode” contribution
to �AS as defined in [93, Eq. 2.6.8] as:

[93]
∫

S

γijd∂iN ∧ d∂jφ volS �
∫

S

γijdadiff
i ∧ daavg

j volS [here].

But the latter expression is not the zero-mode part of �AS, since this reads

�AS =
∫

S

γijdadiff
i ∧ d(a

∫

j − aavg
j ) volS + (AS-modes with k > 0).

Indeed, apart from the restrictive request of [93] that aavg and adiff be exact
(see below), the main difference between the two approaches is that the zero
mode of the AS field, in our basis, reads instead

2ã(k = 0) = (a
∫
− aavg) + iadiff ,

with its real and imaginary parts canonically conjugate to each other.
This means that, in our symplectic basis ã(k, x), the symplectic compan-

ion of adiff = Im(a(0))—which in [93] is denoted DN , assumed to be exact—is
the zero mode Re(2ã(0)) = a

∫
− aavg. Note that this in general differs from

aavg (although they coincide if a happens to be u-constant).
Finally, observe that we do not assume that aavg and adiff—or equiva-

lently ain and afin—are D-exact, i.e. we do not assume that “the magnetic field
vanishes at the boundary [of the null surface Σ]” (cit. p. 23 ibid.). That is, our
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analysis covers the case where the magnetic fields through ∂Σ are included in
the picture (cf. Footnote 5 ibidem). We expand on this comparison in Sect. 7.

3.3. Gauge Transformations

We start the discussion of the gauge group for null YM theory setting out the
notation and providing some preliminary considerations on mapping algebras
and group (see [62,75,99] for extensive discussions).

Definition 3.13 (Mapping algebras and groups). Given a compact manifold
with boundary (N, ∂N), and G a Lie group, the mapping Lie algebra and
mapping Lie group are

gN .= C∞(N, g) and GN .= C∞(N,G)

equipped with the natural pointwise Lie algebra structure (i.e. [ξ, η](x) =
[ξ(x), η(x)]) and group multiplication, respectively.

Furthermore, the relative mapping Lie algebra and group are the Lie
ideal of functions that vanish at the boundary, and the normal subgroup of
functions whose value at the boundary is the identity, respectively:

gN
rel

.= {ξ ∈ gN : ξ|∂N = 0} and GN
rel

.= {g ∈ GN : g|∂M = 1}
Finally, if G is Abelian,25 we denote

g ↪→ gN and G ↪→ GN

the space of constant-valued functions in gN and GN .

Definition 3.14 (Identity and relative components).
(i) For H a group, H0 is the identity component of H; if H is a subgroup, H0

still denotes the set of elements of H which are connected to the identity
through paths that lie within H itself.

(ii) For H ⊂ GM a subgroup, the relative component of H is Hrel
.= H∩GN

rel,
i.e. the set of elements of H that are equal to the identity at the boundary.

In the following, we use commas instead of parentheses—e.g. H0,rel,0 ≡
((H0)rel)0—and, since G = G0 is assumed connected, we forgo the parentheses
around GN as well, e.g. GN

0 ≡ (GN )0 etc.

Remark 3.15. If H is a subgroup of H̃, H0 need not coincide with26 H ∩ H̃0,
i.e. there might be elements in H which are connected to the identity within
H̃, but not within H ⊂ H̃. In particular, if H is a subset of GN , H0 needs
not coincide with H ∩ GN

0 , and in particular GN
rel,0 needs not coincide with

GN
0,rel—a fact that will be relevant later.

Remark 3.16 (Locally exponential (sub)groups). The mapping Lie algebra is
the Lie algebra of the mapping group, gN = Lie(GN ), and the mapping group
is locally exponential, i.e. it admits an exponential map exp : gN → GN which

25See Remark 3.20, explaining why we introduce g ↪→ gN only in the Abelian case.
26This is also a subgroup of H, but one for which we will not need a notation.
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is a local diffeomorphism at the identity. Therefore, the identity component
GN

0 is the subgroup of GN generated by the mapping algebra,

GN
0 = 〈exp gN 〉.

Moreover, although Lie(GN
rel) = gN

rel and gN/gN
rel � g∂N , exponentiating one

only recovers the identity component:

GN
rel,0 = 〈exp gN

rel〉 and GN/GN
rel ⊂ GN/GN

rel,0,

and the equalities hold in the absence of topological obstructions. In Lemma 5.22,
we will characterise the topological obstructions that might arise when N =
Σ � I × S and S � Sn−1.

After these preliminaries, we can now consider the gauge structure on P.
Note that the following definitions exclude gauge transformations that are not
connected to the identity.

Definition 3.17 (Gauge group and relative gauge group). Given a principal G-
bundle P → Σ (trivial by Assumption A), the local Lie algebra of gauge
transformations, or gauge algebra, is

G
.= Γ(Σ,AdP )

(Ass.A)� gΣ.

Moreover, we call gauge group the group generated by G,

G
.= 〈expG〉 (Ass.A)� GΣ

0 ,

while the relative gauge group Grel is the normal subgroup of G corresponding
to the relative component of G � GΣ

0 ,

Grel

(ass.A)� GΣ
0,rel ≡ GΣ

0 ∩GΣ
rel.

♦
Remark 3.18 (Normality of Grel). Since GΣ

0,rel is the intersection of two normal
subgroups of the mapping group GΣ, it is a normal subgroup itself. In partic-
ular, the relative gauge group Grel is a normal subgroup of the gauge group
G.

Definition 3.19 (Gauge action). The right action of the group of gauge trans-
formations on the geometric phase space of nYM theory is

G× P→ P, (g,A,E) �→ (g−1Ag + g−1dg, g−1Eg).

The corresponding fundamental vector fields are

ρ : G→ X(P), ρ(ξ) =
∫

Σ

dAξ
δ

δA
+ [E, ξ]

δ

δE
.

♦
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Remark 3.20 (Constant gauge transformations). Mapping algebras arise as
a particular case of the gauge algebra G

.= Γ(AdP ): if G is Abelian then
Γ(AdP ) � gΣ without further assumptions, whereas in the non-Abelian case
Γ(AdP ) � gΣ only if P is trivial (Assumption A). Therefore, the notion of
“constant gauge transformations” is generally meaningful (and, in fact, useful
for us) only in the Abelian case. Ultimately, this is because, for G Abelian,
g ↪→ gΣ is a global stabiliser—i.e. g = Ker(ρ) for ρ seen as a map gΣ → X1(P)
(see [87, Remark 4.7]). We restricted the definition of g ↪→ gN to the Abelian
case to ensure that all our statements generalise to non-trivial bundles.

We can now show that the triplet (P,ω,G) indeed defines a locally Hamil-
tonian G-space by identifying the momentum form H : G → Ωtop,0(Σ × P).
Subsequently, we will split H into its constraint and flux form components,
H◦ and dh.

Proposition 3.21. (P,ω) is a locally Hamiltonian G-space,

iρ(ξ)ω = d〈H , ξ〉,
with momentum form

〈H(A,E), ξ〉 .= −tr(EL�ξ + F i
�Diξ)volΣ.

Moreover, with reference to Definition 2.4, the momentum form splits into an
equivariant (Gauss) constraint form H◦ and an equivariant flux form dh =
H −H◦, respectively, given by

〈H◦(A,E), ξ〉 = tr(G ξ)volΣ, G(A,E) .= L�E + DiF�i, (4a)

and

〈dh(A,E), ξ〉 = −(
∂utr(E ξ) + Ditr(F�i ξ)

)
volΣ. (4b)

Whence, the constraint surface C of “on-shell” configurations is the space of
field configurations that satisfy the Gauss constraint:

C
.= H−1

◦ (0) = {(A,E) ∈ P G(A,E) = 0}.
Proof. Contracting ω with an infinitesimal gauge transformation ρ(ξ), one
obtains:

iρ(ξ)ω =
(
tr([E, ξ]dA�)− tr(dEL�ξ) + tr([F i

� , ξ]dai)− tr(dF i
�Diξ)

)
volΣ

Rearranging, one finds the sought expression for the momentum form H. We
can then split this expression into its constraint and flux terms, H = H◦ +dh.
Indeed, from

H =
(
tr((L�E + DiF�i)ξ)− L�tr(Eξ)−Ditr(F�iξ)

)
volΣ,

we can readily isolate the part H◦ of H which is of order-0 in ξ ∈ G,.27 as
well as the remainder flux form, dh = H−H◦, as per Eqs. (4a) and (4b). The
equivariance of H◦ and dh is manifest. �
27Recall: “order-0” means that 〈H ◦, ξ〉 is linear and ultralocal in ξ, i.e. it does not involve
any derivative of ξ. This property uniquely determines the constraint form H ◦ once the
momentum form H is given, see [87, Proposition 4.1].
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In sum, YM theory on a null boundary is a locally Hamiltonian gauge
theory with an equivariant flux map and therefore complies with the symplectic
reduction by stages framework summarised in Sect. 2.

4. Superselection in Null Yang–Mills Theory

We now investigate the superselection structure of YM theory on a null bound-
ary. Recall, superselection sectors are labelled by the coadjoint orbits Of of
the on-shell fluxes f ∈ F

.= Im(ι∗Ch). To understand what these are in null YM
theory we need first to have a better grasp on the shell condition—i.e. of the
constraint surface C.

Gauss constraint (4a),

G(A,E) .= L�E + DiF�i = 0, (5)

can be viewed as a parallel transport equation for E(u, x) along the null direc-
tion �, i.e. as a linear first-order evolution equation (ODE) for E(u, x) in the
retarded time u (Remark 3.3). Therefore, the Gauss constraint admits a solu-
tion E(A,Ein) fully and uniquely determined by the value of A over Σ = S×I
as well as the “initial” value of E at u = −1 (Lemma C.1).

We summarise this discussion in the following proposition. First, however,
we introduce some notation:

Remark 4.1. The densitised dual of gS = C∞(S, g) is the space of local,
C∞(S)-linear maps from C∞(S, g) to R. Integration over S yields the iso-
morphism: (gS)∗ � Ωtop(S, g∗). Note that gS is isomorphic to the pullback of
the elements of G to either one of the two boundary components Sin/fin ⊂ ∂Σ.
When it comes to the initial values of the electric field ι∗Sin

E ∈ Ωtop(S, g∗) and
their identification with functions Ein ∈ C∞(S, g), ι∗Sin

E ≡ tr(Ein·)volS , here
and below we will most often leave the following isomorphism implicit :

gS 
−→ Ωtop(Sin, g∗) � (gS)∗, Ein �→
∫

S

tr(Ein·) =
∫

Sin

ι∗Sin
E(·)

and thus often abuse notation and write Ein ∈ (gS)∗. This will be useful in
late sections.

Proposition 4.2 (Constraint surface). The constraint surface C ⊂ P is a smooth
connected submanifold. Moreover, the map sin, defined as follows, is a diffeo-
morphism:

hcalA× (gS)∗ sin−−→ C ↪−→ P = A× E, (A,Ein) sin�−→ (A,E(A,Ein))

where E ≡ E(A,Ein) ∈ E is the unique solution to the Gauss constraint with
initial condition E(u = −1) = Ein ∈ C∞(S, g∗) � (gS)∗,

{
L�E + DiF�i = 0,

E(u = −1) = Ein.
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In the Abelian case, the solution E(A,Ein) can be written explicitly as

E(A,Ein)(u, x)
(Ab.)
= Ein(x)−

∫ u

−1

du′ DiF�i(u′, x). (6)

Henceforth we will keep the map sin implicit and simply write (A,Ein) ∈ C.

Proof. Follows from Lemma C.1. �

Now that we have characterised the constraint surface, we can address
the on-shell fluxes after introducing some notation.

Notation 4.3. We use •in/fin (and •avg/diff) to denote maps from (spatial) ob-
jects defined over Σ to objects defined over S, as per Notation 3.5; instead, we
use •in/fin as mere labels for objects intrinsically defined on Sin/fin ⊂ ∂Σ. This
subscript/superscript notation allows us to formally keep track of the nature of
the various quantities, but in practice one can simply ignore the distinction.

Remark 4.4. We observe that

g∂Σ � gS × gS , (7)

where each copy of gS corresponds to the mapping algebra on Sin/fin ⊂ ∂Σ,
respectively. Accordingly, we will often write (cf. Notation 4.3)

(ξin, ξfin) ∈ g∂Σ.

The Gauss constraint boundary condition of Proposition 4.2 can be written
as Ein = Ein, while the restriction map ι∗∂Σ : gΣ → g∂Σ reads (ξin, ξfin) =
(ξin, ξfin).

Moreover, using Eq. (4b), the flux map h : P→ G∗
loc can be written as

〈h(A,E), ξ〉 = −
∫

S

tr(Efinξfin − Einξin)

= −
∫

S

tr(Eavgξdiff + Ediffξavg); (8)

similarly, in the Abelian case, this notation allows us to rewrite Eq. (6) for the
on-shell difference of initial and final electric fluxes in terms of the zero-mode
of F�i:

Ediff = −DiF
∫

�i (Abelian). (9)

In the following lemma—and throughout the rest of the paper—we will
use the notion, and notation, for the annihilators Ann(X,Y) ⊂W∗

str introduced
in Definition 2.7, with W = gN , X = g ↪→ gN , and Y = (gN )∗ (the densitised
dual) or Y = W∗

str = (gN )∗
str (the strong dual). For example, we have:

Ann(g, (g∂Σ)∗) .= {f ∈ (g∂Σ)∗ : 〈f, χ〉 = 0 ∀χ ∈ g}
� {(fin, ffin) ∈ (gS)∗ × (gS)∗ : 〈fin, χ〉 = 〈ffin, χ〉 ∀χ ∈ g}.

(10)
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We also note that we have the following natural embedding of the densi-
tised dual (g∂Σ)∗ into the strong dual (gΣ)∗

str (notice the change in the domain,
from ∂Σ to Σ):

C∞(∂Σ, g) 
−→ (g∂Σ)∗ ↪→ (gΣ)∗
str, η �→

∫

∂Σ

tr(η·) �→
∫

Σ

dtr(η̄·) ∧ volS

where in the rightmost term η̄ is any element of C∞(I, S) � gΣ such that
η̄|∂Σ = η (e.g. one that vanishes outside of a tubular neighbourhood of ∂Σ).

Lemma 4.5. Let (g∂Σ)∗ ↪→ (gΣ)∗
str. Then,

Ann((g∂Σ)∗, gΣ) � gΣ
rel, and Ann(gΣ

rel, (g
Σ)∗

str) � (g∂Σ)∗.

Proof. Looking for elements in gΣ that annihilates the image of the embedding
(g∂Σ)∗ ↪→ (gΣ)∗

str means looking at

Ann((g∂Σ)∗, gΣ) .=
{
ξ ∈ gΣ : 〈η, ξ〉 =

∫
Σ
dtr(η̄ξ) ∧ volS

=
∫

∂Σ
tr(ηξ|∂Σ) = 0 ∀η ∈ C∞(∂Σ, g∗)

}
,

which is precisely given by gΣ
rel = {ξ ∈ gΣ ξ|∂Σ = 0}. The second isomorphism

follows from Lemma 2.8 which implies Ann(Ann((g∂Σ)∗, gΣ), (gΣ)∗
str) = (g∂Σ)∗

since (g∂Σ)∗ is a vector subspace of the nuclear space (g∂Σ)∗
str. �

We can now characterise the flux space:

Proposition 4.6 (On-shell fluxes). Let h : P→ G∗
loc be the flux map h =

∫
Σ

dh,
and F

.= Im(ι∗Ch) ⊂ G∗
loc the space of on-shell fluxes. Then, with reference to

Eqs. (7–10),

F �
{

Ann(gΣ
rel, (g

Σ)∗
str) � (g∂Σ)∗ G semisimple,

Ann(g + gΣ
rel, (g

Σ)∗
str) � Ann(g, (g∂Σ)∗) G Abelian.

Finally, the diffeomorphism

(g∂Σ)∗ → (gS)∗ × (gS)∗, f �→ (fin, fdiff) = (fin, ffin − fin)

identifies Ann(g, (g∂Σ)∗) � (gS)∗ ×Ann(g, (gS)∗).

Proof. Following Remark 4.1, the maps

e→ tr(e·)volS →
∫

S

tr(e·)volS ≡
∫

S

tr(e·)

represent the chain of diffeomorphisms C∞(S, g) � Ωtop(S, g∗) � (gS)∗. We
will seamlessly switch between these three spaces. Moreover, the diffeomor-
phism sin : A × (gS)∗ → C, left implicit, allows us to write (A,Ein) ∈ C

(Proposition 4.2).
(i) G semisimple—Restricting to C the expression for h of Eq. (8) (and

implicitly precomposing with sin), it is sufficient to show that the map

C � A× (gS)∗ → (gS)∗ × (gS)∗, (A,Ein) �→ (Ein, E(A,Ein)fin)

is surjective, since:

〈ι∗Ch(A,Ein)), ξ〉 = −
∫

S

tr
(
E(A,Ein)finξfin − Einξin

)



Null Hamiltonian Yang–Mills Theory

is equivalent to ι∗Ch(A,Ein) = (Ein,−E(A,Ein)fin) ∈ (g∂Σ)∗. This shows, in
particular, that F ↪→ (g∂Σ)∗.

Surjectivity of (A,Ein) → (Ein,−E(A,Ein)fin) is the statement that for
every pair (Ein,−Efin) ∈ (gS)∗ × (gS)∗ there exists an A ∈ A such that
E(A,Ein)fin = Efin. We are now going to prove this statement constructively.

Consider the subset of C given by configurations (A = A� + Â, E(A,Ein))
with A� = 0 and Â = a+ub, where a and b are constant in u, i.e. a, b ∈ Ω1(S, g).
Denoting28

Da : C∞(S, g)→ Ω1(S, g)
ξ �→ Dξ + [a, ξ] and D†

a : Ω1(S, g)→ C∞(S, g)
b �→ Dibi + [ai, bi]

for these configurations, L�E = ∂uE, F� = b, and DiF�i = D†
ab, whence Gauss

constraint (6) becomes

∂uE + D†
ab = 0, Ein = Ein.

and, being a and b u-independent,

E(a + ub,Ein)fin = Ein − 2D†
ab.

Therefore, the statement follows if we can prove that the following map is
surjective:

Ω1(S, g)× Ω1(S, g)→ C∞(S, g), (a, b) �→ D†
ab.

i.e. that for any e ∈ C∞(S, g) there exists a pair (a, b) such that e = D†
ab.

We will now show that for any a irreducible, there exists a (unique) b for
which this is true. An element a ∈ Ω1(S, g) is said irreducible iff Da has trivial
kernel; if g is semisimple, irreducible elements exist (in fact, they are dense in
Ω1(S, g)). The key point is that, if a is irreducible, then the covariant Laplacian
Δa

.= D†
a ◦ Da on S is an elliptic operator with trivial kernel. Then, by the

Fredholm alternative theorem, Δa is invertible and we can thus define η = η(e)
as the unique solution to the equation

Δaη = e.

Therefore, for any e ∈ C∞(S, g), we can construct a preimage (a, b)=(a,Daη(e))
∈ Ω1(S, g)× Ω1(S, g), thus proving the statement.

(ii) G Abelian—This case can be addressed along similar lines. Using
Eqs. (8–9), we express ι∗Ch as

〈ι∗Ch(A,Ein), ξ〉 =
∫

S

tr
(
Ein(ξin − ξfin) + (DiF

∫

�i)ξ
fin

)
, (11)

where we recall the notation Q
∫ .=

∫ 1

−1
du′ Q(u′). From this formula it is

readily clear that given χ ∈ g ↪→ gΣ we have 〈ι∗Ch, χ〉 = 0, that is to say
F ⊂ Ann(g, (gΣ)∗

str). Moreover, we also observe that for any ξ◦ ∈ gΣ
rel we have

〈ι∗Ch, ξ◦〉 = 0, that is Ann(gΣ
rel, (g

Σ)∗
str). Then, using Lemma 4.5, we obtain:

F ⊂ Ann(g, (gΣ)∗
str) ∩Ann(gΣ

rel, (g
Σ)∗

str) � Ann(g, (gΣ)∗
str) ∩ (g∂Σ)∗.

28The definition of D†
a is equivalent to D†

a = 
SDa
S , where 
S is the Hodge operator on
S, with respect to the induced metric γ.
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To prove the opposite inclusion, we first consider the isomorphism of
vector spaces

(g∂Σ)∗ � (gS)∗ × (gS)∗ 
−→ (gS)∗ × (gS)∗, (fin, ffin) �→ (fin, fdiff)
.= (fin, ffin − fin).

A moment of reflection shows that, in the light of the identity

〈ffin, ξfin〉 − 〈fin, ξin〉 = 〈fin, (ξfin − ξin)〉+ 〈fdiff , ξfin〉,
we have

Ann(g, (gΣ)∗
str) ∩ (g∂Σ)∗ � (gS)∗ ×Ann(g, (gS)∗) � (fin, fdiff).

(Observe that this equation proves the last statement of the proposition.)
Therefore, we can equivalently prove that

(gS)∗ ×Ann(g, (gS)∗) ⊂ F.

Using the (vector space) identification (gS)∗ � gS , we can now identify f ∈
(gS)∗×Ann(g, (gS)∗) with the pair (ηin, ηdiff) ∈ gS×gS such that

∫
S
tr(ηdiffχ)

volS = 0 for all χ ∈ g ↪→ gS .
In light of this identification as well as Eq. (11), we find that (gS)∗ ×

Ann(g, (gS)∗) ⊂ F iff for (ηin, ηdiff) as above there exists a (A,Ein) such that

Ein = ηin and DiF
∫

�i = ηdiff .

The first condition is immediate; the second requires us to find at least one
A ∈ A that satisfies it.

We thus look for such an A among the connections of the form A� = 0
and Â = ub, with b ∈ Ω1(S, g). Then, F� = b and DiF

∫

�i = 2Dibi. Denoting
{τα} a basis of g and ηα

diff = tr(ηα
diffτα), Hodge theory [90] then tells us that

the equation

Δλα = ηα
diff

has a solution λα = λα(ηdiff) (unique up to the addition of harmonic functions,
i.e. constants if S is a sphere) iff ηα

diff integrates to zero—i.e. iff ηdiff corresponds
to an element of Ann(g, (gS)∗) ⊂ (gS)∗ � gS . Therefore, setting b = 1

2Dλ(ηdiff)
we conclude the proof. �

Having characterised the shell C and the space of on-shell fluxes F (Propo-
sitions 4.2 and 4.6), we apply Theorem 2.17 of review Sect. 2 (cf. [87, Theo-
rem 1]) to obtain the superselection structure of null YM theory:

Theorem 4.7 (Superselection of null YM theory). The fully reduced phase space
of Yang–Mills theory on the null manifold Σ � I × S, defined as the space of
on-shell configurations modulo all gauge transformations

C
.= C/G =

⊔

Of⊂F

S[f ],

is a Poisson manifold. Explicitly, the superselection sectors S[f ] correspond to:
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(i) if G is semisimple, G-equivalence classes of those on-shell configurations
whose (electric) flux belongs to the same coadjoint orbit in (g∂Σ)∗, i.e.
pairs (A,E) ∈ C ↪→ P such that

(∫

S

tr(Ein·),−
∫

S

tr(Efin·)
)
∈ (Ofin ,Offin) ⊂ (gS)∗ × (gS)∗

(ii) if G is Abelian, G-equivalence classes of those on-shell configurations with
the same value of the (electric) flux in F � Ann(g, (g∂Σ)∗) ⊂ (g∂Σ)∗, i.e.
pairs (A,E) ∈ C ↪→ P such that

(∫

S

tr(Ein·),−
∫

S

tr(Ediff ·)
)

= (fin, fdiff) ∈ (gS)∗ ×Ann(g, (gS)∗)

where Ediff = Efin − Ein = −DiF
∫

�i (Eq. (9)).

In the next two sections we are going to explicitly compute the symplectic
structure on the superselection sectors (S[f ], ω[f ]) and compare them to the
symplectic structure on the constraint-reduced phase space (C, ω) and on the
AS phase space (Â,�AS)—spoiler: they all differ.

In order to attain an explicit characterisation of the physical d.o.f. of
YM theory on a null surface we will have to choose a gauge fixing and thus
introduce a level of arbitrariness in the description of said degrees of freedom.

5. Symplectic Reduction of Null YM Theory: First Stage

The reader interested in applications to soft symmetries can skip this section
at first.

First stage, or constraint reduction is about enforcing the Gauss constraint
G = 0 and quotienting out the action of the constraint gauge group G◦ that
it generates. As discussed in Sect. 2, the constraint gauge group G◦ = expG◦
is infinitesimally generated by the constraint gauge ideal G◦ = Ann(F, gΣ) ≡
Ann(Im(ι∗Ch), gΣ). Diagrammatically:

(P, ω)

constraint
reduction

(w.r.t. G◦ at 0)
������������������ (C, ω)

C

 �

ιC

		"""""""" π◦



########

The goal of this section is to provide an explicit description of the
constraint-reduced phase space (C, ω),

C
.= C/G◦, π∗

◦ω = ι∗Cω,

in terms of the following extensions of the AS phase space (Â,�AS) defined in
Definition 3.8:
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Definition 5.1 (Extended Ashtekar–Streubel phase space). Denote by ΩS the
canonical symplectic structure on T ∗GS

0 , and by ωS that on T ∗gS . The ex-
tended Ashtekar–Streubel phase space is the symplectic manifold

(PeAS,�eAS)
.= (Â× T ∗GS

0 ,�AS + ΩS),

while the linearly-extended Ashtekar–Streubel phase space is the symplectic
manifold

(Plin
eAS,�

lin
eAS)

.= (Â× T ∗gS ,�AS + ωS).

♦
Theorem 5.2 (Constraint reduction). If G � P is proper, the constraint-reduced
phase space (C, ω) is a smooth, connected symplectic covering space of the
extended Ashtekar–Streubel phase space (PeAS,�eAS). In particular, these two
spaces are locally symplectomorphic:

(C, ω) �loc (PeAS,�eAS). (12)

Moreover, if G is Abelian, the constraint-reduced phase space is globally sym-
plectomorphic to the linearly extended Ashtekar–Streubel phase space:

(C, ω) � (Plin
eAS,�

lin
eAS) �loc (PeAS,�eAS) (Abelian). (13)

♦
Remark 5.3. Theorem 5.2 concludes that C = C/G◦ is connected and smooth,
and that the reduction C is symplectic. Connectedness follows from the fol-
lowing simple observation: since C � A × (gS)∗ is affine it is also connected,
which then implies C

.= C/G◦ is connected as well. As for smoothness: in YM
theory the set C is a smooth submanifold in virtue of Proposition 4.2, but the
smoothness of the quotient depends on whether the action of G◦ on C is free
and proper. Properness is generally granted when G is compact, since we are
assuming that Σ is also compact [74,88]. For G semisimple, the action of G◦
can be proven to be free, since the equation dAξ = 0 has no (nonzero) solutions
for ξ ∈ gΣ

rel and G◦ � GΣ
rel,0 = 〈exp gΣ

rel〉, a fact proved in Proposition 5.8. For G

Abelian, a similar result holds up to a global stabiliser (the kernel of the action
map), which does not affect the smoothness of the reduced space C. Finally, the
symplectic nature of C follows from [87, Theorem 1], provided one checks that
the image of G◦ under the action map ρ is symplectically closed. To prove this
abstractly, one could adapt the argument in [24] (see also [87, Section 5.2]).
Here, instead, we explicitly computed the constraint-reduced symplectic form
and showed it is non-degenerate.

Remark 5.4 (Plin
eAS vs. PeAS). If G is Abelian, the cotangent bundle T ∗gS is

locally symplectomorphic to T ∗GS
0 , i.e. T ∗gS �loc T ∗GS

0 , through the map
exp : gS → GS

0 . The obstruction to a global extension is directly related to the
fact that the exponential map g → G is itself only a local diffeomorphism in
general. In fact, if G contains a U(1) factor, this map is a local diffeomorphism,
but does not possess a global inverse (it is many-to-one). Therefore, although
in the Abelian case C is globally symplectomorphic to Plin

eAS
.= Â× T ∗gS , it is

only locally symplectomorphic to PeAS
.= Â× T ∗GS

0 .
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Theorem 5.5 (Characterisation of the fibre). The covering fibre of

pV : C→ PeAS

is the (discrete) group of components of Grel, i.e.

K
.= Grel/(Grel)0.

If, moreover, S is diffeomorphic to the sphere Sn−1 (with S0 .= {pt}), then29

(i) if G is simply connected and n = 1, 2 then K is trivial and the symplec-
tomorphism (C, ω) � (PeAS,�eAS) is global;

(ii) if G is simply connected and n = 3 then K � π3(G) � Zs for some
s ∈ N;30

(iii) if G � U(1)t × Rk (Abelian) and n �= 2 then K � Zt;
(iv) in general: K is a subset of

π0(GΣ
rel) �

{
π1(G) if n = 1, 2
π1(G)⊕ πn(G) if n > 2

and coincides with it if π0(GΣ) � πn−1(G) is trivial.

Remark 5.6 (Spacetime picture). Recall that, from a spacetime perspective,
Σ is a codimension-1 hypersurface. Therefore, since n

.= dim Σ, the cases
n = 1, 2, 3 analysed in Theorem 5.5 correspond, respectively, to spacetime
regions of dimensions 2, 3 and 4 with spherical boundary surfaces. In particular,
the case n = 3 of the Corollary is the one relevant for the study of classical
YM theory at asymptotic null infinity discussed in Sect. 7.

Remark 5.7 (Winding number). In the Abelian case, the isomorphism K � Zt

holds as groups, in virtue of the fact that one can define an additive winding
number, w(g1g2) = w(g1)+w(gs), which provides an irreducible representation
of the group of components K, see Remark E.5. Moreover, an analogous result
can be obtain when n = 3 using the Wess–Zumino winding number computed
on the smash product S3 � S2 ∧ S1 that appears in the proof of point (ii) of
the theorem.

5.1. Proof of Theorem 5.2

This section is devoted to the proof of the local symplectomorphism between
C and PeAS, claimed to exist in Theorem 5.2. Loosely, our proof relies on the
“dressing-field method” associated to the “gauge condition” A� = 0. The claim
of global symplectomorphism between C and Plin

eAS will be proved in Appendix E
using a “linear” version of the dressing field method which is available in the
Abelian case only.

(For an algebraic and geometrical account of the dressing field method
see [31,42], whereas some of its applications to the symplectic structure of
gauge theories can be found in [17,32,42,43].)

Before addressing reduction, we must characterise the constraint gauge
ideal G◦ ⊂ G and two closely related groups.

29Recall, G is assumed finite dimensional and connected throughout the article.
30s > 0 if G is semisimple, and s = 1 if G is simple.
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Proposition 5.8 (Constraint gauge transformations).
For G semisimple,
(1.i) the constraint gauge ideal is

G◦
.= Ann(F, gΣ) � gΣ

rel;

(1.ii) the constraint gauge group G◦
.= 〈expG◦〉 is the identity component of

the relative gauge group Grel which in turn equals the identity component
of the relative mapping group GΣ

rel:

G◦ � (Grel)0 � GΣ
rel,0;

(1.iii) K
.= Grel/G◦ is a discrete group, the group of components of Grel.

For G Abelian, let g ↪→ gΣ be the Lie ideal of constant gauge transformations,
and G ↪→ GΣ

0 ↪→ GΣ the normal subgroup of constant gauge transformations;
then
(2.i) the constraint gauge ideal is given by gauge transformations over Σ whose

restriction to ∂Σ is constant31

G◦
.= Ann(F, gΣ) � g + gΣ

rel (Abelian);

(2.ii) the constraint gauge group G◦
.= 〈expG◦〉 is the identity component of

the group of gauge transformations over Σ whose restriction to ∂Σ is
constant32

G◦ � (G · Grel)0 � G ·GΣ
rel,0 (Abelian);

(2.iii) K
.= (G ·Grel)/G◦ is a discrete group, the group of components of G ·Grel.

Proof. We start from the case of G semisimple.
(1.i) The characterisation of the constraint gauge ideal G◦

.= Ann(F, gΣ)
follows from F � (g∂Σ)∗ (Proposition 4.6) and Ann((g∂Σ)∗, gΣ) � gΣ

rel

(Lemma 4.5).
(1.ii) Notice that since G◦ ⊂ G = gΣ, we have G◦ ⊂ G = GΣ

0 , and that
since G◦ = gΣ

rel, we have also G◦ ⊂ GΣ
rel. Therefore G◦ ⊂ GΣ

0 ∩GΣ
rel ≡ GΣ

0,rel
.=

Grel. Since Lie(GΣ
0,rel) = gΣ

rel = G◦, we see that G◦ is the identity component
of GΣ

0,rel, i.e.

G◦ � GΣ
0,rel,0 ≡ (Grel)0.

In virtue of the equation above, the second claimed characterisation, G◦ �
GΣ

rel,0, is equivalent to

GΣ
0,rel,0 = GΣ

rel,0,

which we now prove. Recall: GΣ
0,rel ≡ GΣ

0 ∩GΣ
rel. One can verify that33 GΣ

0,rel,0 ⊂
GΣ

rel,0. To prove the opposite inclusion, we start by observing that, on the one
hand, GΣ

rel,0 ⊂ GΣ
rel and that, on the other, GΣ

rel ⊂ GΣ implies GΣ
rel,0 ⊂ GΣ

0 .

31g + gΣ
rel = {ξ ∈ gΣ : ∃χ ∈ g such that ξ|∂Σ = χ}.

32G · GΣ
rel = {g ∈ GΣ : ∃k ∈ G such that g|∂Σ = k}.

33This is because the homotopies that connect elements to the identity in GΣ
0,rel,0 live in

GΣ
0 ∩ GΣ

rel and thus, in particular, in GΣ
rel.
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Therefore, comparing with the definition of GΣ
0,rel, we obtain: GΣ

rel,0 ⊂ GΣ
0,rel.

But since GΣ
rel,0 is connected to the identity as a group, one has a fortiori

that it is contained in the identity component of GΣ
0,rel. Therefore, as desired,

GΣ
rel,0 ⊂ GΣ

0,rel,0 as well.
(1.iii) From (1.ii) G◦ = (Grel)0 and the identity component is always an

open normal subgroup. Thus K
.= Grel/G◦ = Grel/(Grel)0 is a discrete group.

Next we consider the case G Abelian.
(2.i) Follows from Proposition 4.6 and Lemma 2.8, since

Ann(F, gΣ) = Ann(Ann(g + gσ
rel, (g

Σ)∗
str), g

Σ) = g + gσ
rel.

(2.ii) One can easily adapt the first argument of (1.ii) to find G◦ ⊂ GΣ
0 ∩

G ·GΣ
rel, and hence

G◦ � (G ·GΣ
0,rel)0 ≡ (G · Grel)0.

Then, since G is connected, (G ·GΣ
0,rel)0 = G ·GΣ

0,rel,0 and therefore we can use
the second argument in (1.ii) to conclude.

(2.iii) The proof is the same as in (1.iii). �

Remark 5.9. Note that the relative subgroup of the identity component of
GΣ does not necessarily coincide with the identity component of its relative
subgroup, i.e. in general GΣ

0,rel �= GΣ
rel,0. Indeed, in the previous proposition we

proved that the latter is the identity component of the former.

Remark 5.10 (Abelian isotropy). In the Abelian case, G◦ differs from the
relative algebra gΣ

rel by constant gauge transformations. These act trivially
on P—and in particular on C—and therefore constitute the (configuration-
independent) isotropy algebra Ker(ρ) = g ↪→ gΣ of the Lie algebra action,
which in particular is an ideal. Sometimes the isotropy algebra is called the
“reducibility” algebra and its elements “reducibility parameters”. Therefore,
albeit G◦ � Grel,0, both G◦ and Grel,0 = 〈exp gΣ

rel〉 have the same orbits on C:

C
.= C/G◦ = C/Grel,0.

The distinction between G◦ and gΣ
rel remains nevertheless crucial for its rela-

tion to the integrated Gauss’s34 for the Abelian fluxes—and therefore to the
superselection sectors (second-stage reduction, Sect. 6).

After this characterisation of G◦ and Grel, we turn our attention to the
dressing field method as a tool for “gauge fixing” A ∈ A to some a such that
a� = 0, i.e. to some a ∈ Â. With this goal in mind, we use Lemma C.3 to
introduce the following object—the terminology for which will be explained in
Remark 5.16 below:

34This is why, in the presence of charged matter over Σ, one would find G◦ � gΣ
rel even in

the Abelian case.
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Definition 5.11 (Dressing field). The dressing field V : P → C∞(I,GS
0 ) is the

unique solution to the boundary value problem:
{

L�V V −1 = −A�

V fin = 1.

♦
Remark 5.12 (Wilson lines). V (A) can be thought of as a collection of holonomies,
a.k.a. path-ordered exponentials or Wilson lines,35 along the flows of the null
vector field � ∈ X1(Σ). It is thus convenient to introduce the notation:

V (A)(u, x) =
−−−→
Pexp

∫ 1

u

du′ A�(u′, x), V (A) ∈ C∞(I,GS
0 ) � GΣ

0 � G.

(Here we use an arrow on top of Pexp to stress that the path-ordering composes
left to right; cf. item (iii) of Lemma 5.14.)

We can use the dressing field to define:

Definition 5.13 (Dressing map). The on-shell36 dressing map is

V̌ : C→ PeAS
.= Â× T ∗GS

0 , (A,Ein) �→
⎛

⎝
a
Λ
e

⎞

⎠ =

⎛

⎝
AV (A)

V (A)in

Ad(V (A)in)−1 · Ein

⎞

⎠ ,

where, henceforth, we leave the left-invariant trivialisation T ∗GS
0 � GS

0 ×(gS)∗

implicit.

Note that we used (a,Λ, e) to denote variables in PeAS, and we think of
the components of the dressing map V̌ (A,Ein) = (a(A),Λ(A), e(A,Ein)) as
(Σ-nonlocal) functions on C. The dressing map is thus expressed in the chosen
variables as, e.g. a = a(A), etc.

The following lemma shows a few important properties of the dressing
field and map, and in particular proves that the previous definition is well-
posed (items (i–ii)):

Lemma 5.14. For all (A,Ein) ∈ C, g ∈ G, and g◦ ∈ Grel:
(i) V (A)in ∈ GS

0 ;
(ii) (AV (A))� = 0;
(iii) V [Ag] = g−1V (A)gfin;
(iv) V [Ag◦ ] = g−1

◦ V (A).

Proof. (i) That Λ(A), or equivalently Λ(A) = V (A)in, lies in GS
0 ⊂ GS can

be seen in two different ways, both insightful. Indeed, both H1(t) =
V (A)(u)|u=1−2t = V (A)(1 − 2t) and H2(t) = V (tA)in define smooth
homotopies [0, 1]→ GS with H1,2(0) = 1 and H1,2(1) = Λ(A).

(ii) Straightforward: (AV (A))� = (V (A)−1A�V (A) + V (A)−1L�V (A)) = 0.

35Note: a priori this takes values in GS , but it lies in fact in GS
0 because V [tA] is a homotopy

to the identity. See also Lemma 5.14(i).
36Off-shell extensions are possible, but not needed and less natural.
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(iii) Standard, see Lemma C.3.
(iv) It follows from (iii) and the fact that gin

◦ = gfin
◦ = 1.

♦ �

Remark 5.15 (Locality properties of Λ(A) and e(A,Ein)). Recall that

Λ(A) .= V (A)in =
−−−→
Pexp

∫ 1

−1

du′ A�(u′)

is a collection of Wilson lines stretching from the initial to the final boundary
surfaces, Sin and Sfin, along the flows of � on top of each x ∈ S. Under the
action of g ∈ G, these transform as

Λ(A) �→ Λ[Ag] = (gin)−1Λ(A)gfin. (14)

Interpreted as Wilson lines stretching from Sin to Sfin, Λ(A) defines a
non-local object over Σ which transforms under the action of G according to
the left/right bi-local action formula above. But this can also be re-interpreted
as follows: the map Λ on A can be seen as valued in GS = C∞(S,G), and as
such it carries two, commuting, local actions of GS , one on the left and one on
the right. If we parametrise the (abstract) left and right actions using gin and
gfin, respectively, we can reproduce the bi-local transformation we encountered
above.

The relationship between these two viewpoints is enabled by the invari-
ance of Λ(A) under the action of Grel ⊃ G◦, which guarantees that the action of
G on Λ descends to a residual boundary action—indeed, G/Grel � GS

0 ×GS
0 ⊂

G∂Σ, as we will prove in Proposition 6.2.
Similarly, the dressed field e ≡ e(A,Ein) = Ad(V (A)in)−1 · Ein is a non-

local functional that depends both on the initial value of the electric field,
Ein = Ein, and on the entire Wilson line V (A)in. Therefore, the action of
g ∈ G on C is mapped to,

e(A,Ein) �→ e(Ag, eg
in) = Ad((gin)−1V (A)gfin)−1 · (Ad(gin)−1 · Ein)

= Ad(gfin)−1 · e(A,Ein).

♦
Remark 5.16 (Dressing fields). Our dressing field V is closely related to the
notion of dressing field for the action of Grel as introduced by [31,32]. Their
definition requires V to be both Grel-equivariant and Grel-valued, whereas in
our case it is G-valued. As a consequence of this mismatch, the dressing map
V̌ assigns to each gauge connection A two objects: not only its corresponding,
desired, purely spatial, “gauge-fixed” version w.r.t. the action of Grel, denoted
a(A)—but also the Wilson line Λ(A) (cf. Remark 5.15). (See also [41] for a
discussion on the difference between gauge-fixing and dressing, and [42] for
the relation to field-space connections.) In Lemma E.7 we use the original
notion of a G◦-dressing (there called U◦), and the extra field (there called λ)
is introduced by other means.
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In the next two statements, we apply the dressing field method to show
that the dressing map descends to a covering map pV : C→ PeAS, which is also
a local symplectomorphism.

Proposition 5.17. The dressing map

V̌ : C→ PeAS
.= Â× T ∗GS

0

is surjective and has Grel fibre.

Proof. Recall that the dressing map has the following components:

V̌ : (A,Ein) �→
⎛

⎝
a(A)
Λ(A)

e(A,Ein)

⎞

⎠ =

⎛

⎝
AV (A)

V (A)in

Ad(V (A)in)−1 · Ein

⎞

⎠ .

To prove the proposition, we can suppress the third component of the dressing
map e from our notation. This is motivated by the fact that e = Ad(Λ−1) ·Ein,
the adjoint map AdΛ : gS → gS is a diffeomorphism, and Grel acts triv-
ially on Ein. In the following we will thus focus on the components (a,Λ) =
(a(A),Λ(A)) of the dressing map, i.e. we prove that A �→ (a(A),Λ(A)) is sur-
jective with Grel-fibre.

First, we show that it is surjective, i.e. for any (a�,Λ�) ∈ Â×GS
0 we find

an A ∈ A such that (a(A),Λ(A)) = (a�,Λ�). Pick any such (a�,Λ�). Since Λ�

is in the identity component GS
0 ⊂ GS , a homotopy.37 H : [0, 1] → GS

0 such
that H(0) = 1 and H(1) = Λ� exists. From this homotopy, define VH ∈ G �
C∞(I,GS) as

VH(u) = H( 1
2 (1− u))

so that V fin
H = 1 and V in

H = Λ�. We then claim that

AH
.= VHa�V

−1
H − dVHV −1

H

is such that (a[AH ],Λ[AH ]) = (a�,Λ�). Indeed, since (AH)� = −L�VHV −1
H and

V fin
H = 1, one uses Lemma C.3 to conclude that V [AH ] = VH . Hence,

(a[AH ],Λ[AH ]) =
(
A

V [AH ]
H , V [AH ]in

)
=

(
AVH

H , V in
H

)

=
(
V −1

H (VHa�V
−1
H − dV −1

H )VH + V −1
H dVH ,Λ�

)

= (a�,Λ�)

and thus AH is in the preimage of (a�,Λ�) along the (a,Λ)-components of V̌ .
We now prove that V̌ has Grel as a fibre. This is equivalent to showing

that: given A,A′ ∈ A, (a(A),Λ(A)) = (a[A′],Λ[A′]) iff there exists a g ∈ G

such that A′ = Ag and g ∈ Grel:
(⇐) Assume A′ = Ag for g ∈ Grel, then using Lemma 5.14:

(a[A′],Λ[A′]) = (a[Ag],Λ[Ag]) = (a(A)gfin
, (gin)−1Λ(A)gfin) = (a(A),Λ(A))

where the last equality follows from g ∈ Grel =⇒ gfin = gin = 1.

37If two maps are homotopic they are also smoothly homotopic [65,
Prop. 10.22 (1st ed.) or Thm. 6.29 (2nd ed.)] We thank the n-lab for their help in
finding accurate references.
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(⇒) Assume now (a(A),Λ(A)) = (a[A′],Λ[A′]). The equality between the a-
components, i.e. a(A) = a[A′], reads

V −1AV + V −1dV = V ′−1A′V ′ + V ′−1dV ′,

which is equivalent to A′ = Ag for g
.= V V ′−1, where we denoted V ≡

V (A) and V ′ ≡ V [A′]. Since V fin = V ′fin = 1, it follows that gfin = 1.
The equality between the Λ-components, i.e. Λ(A) = Λ[A′], reads V in =
V ′in, which implies gin = 1. Therefore g ∈ GΣ

rel. Since Grel
.= GΣ

0 ∩ GΣ
rel,

we are only left to show that g ∈ GΣ
0 lies in the identity component of

the mapping group. Making its dependence from (A,A′) explicit again,
i.e. g = V (A)V [A′]−1, we see that a homotopy H(t) ∈ GΣ between g and
the identity is given by H(t) = V [tA]V [tA′]−1.

�

Calculation 5.18. V̌ ∗(�AS + ΩS) = ι∗Cω.

Proof. Recall that in the left-invariant trivialisation T ∗GS
0 � GS

0 × (gS)∗, and
under our usual identification of gS and (gS)∗ provided by e �→ tr(e·)volS , the
canonical symplectic form ΩS reads

ΩS(Λ, e) = d
∫

S

tr(e Λ−1dΛ)

=
∫

S

tr(de ∧ Λ−1dΛ− 1
2e[Λ

−1dΛ,Λ−1dΛ])

By a direct calculation, performed in Appendix D.5, one can show that for
any U ∈ C∞(P,G),

ω(AU , EU ) = ω(A,E)− d
∫

Σ

tr(G dUU−1) + ΩS(Ufin,Ad(Ufin)−1 · Efin)

− ΩS(U in,Ad(U in)−1 · Ein).

The claim then follows by imposing the Gauss-constraint, setting U = V (A),
and noting that:

(1) on-shell of the Gauss constraint, G|C = 0, one has E = E(A,Ein) with
Ein = E(A,Ein)in = Ein (Proposition 4.2);

(2) on-shell, e(A,Ein) = Ad(V (A)in)−1 · Ein (Definition 5.13);
(3) V (A)fin ≡ 1 and V (A)in = Λ(A) (Definition 5.13);
(4) the quantity a(A) = AV (A) is purely spatial, i.e. (AV (A))� = 0 (Lemma 5.14

(ii));
(5) the restriction of ω to the space of purely spatial connections i.e. to con-

nections such that A� = 0, is given by the AS 2-form �AS (in particular,
the dependence on E drops out).
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Indeed, if (A,Ein) ∈ C one finds:

ι∗Cω(A,Ein) = ω(A,E(Ein;A))

= ω(AV (A), E(Ein;A)V (A))− ΩS(V (A)fin,Ad(V (A)fin)−1 · Efin)

+ ΩS(V (A)in,Ad(V (A)in)−1 · Ein)

= �AS(a(A)) + ΩS(Λ(A), e(A,Ein))

= (�AS + ΩS)(V̌ (A,Ein)) = V̌ ∗(�AS + ΩS)(A,Ein).

♦ �

Remark 5.19. Calculation 5.18 allows us to give a solid mathematical interpre-
tation to the dressing map V̌ , by showing how it effectively allows to present
(up to a covering, see below) the constraint-reduced phase space C, in terms
of the—much easier to handle—extended AS phase space. This is one way to
correctly interpret the following procedure, used in many other contexts (typ-
ically in Chern–Simons/BF theory, or general relativity on null or Riemann-
ian/spacelike Σ’s): (1) choose a “naive” gauge fixing, (2) build the associated
dressing, (3) plug it into the on-shell symplectic form and interpret the result
in terms of an “extended phase space”. See e.g. [17,28,31,32,42,43].

Proof of Theorem 5.2. The map V̌ : C → PeAS is a surjection with fibre Grel

(Proposition 5.17). Being Grel-invariant, it is in particular G◦-invariant. Hence,
there exists a (smooth!) map pV : C → PeAS such that V̌ = π∗

◦pV . Now, since
C = C/G◦, there is a residual action of the discrete group K = Grel/G◦ on C.
The map pV is invariant under this discrete action because V̌ was invariant
under the whole of Grel, meaning that the fibre of pV is discrete and is thus a
covering. To show that pV is a symplectic covering,

ω
!= p∗

V �eAS,

we use the injectivity of π∗
◦ and the following string of equalities:

π∗
◦(p∗

V �eAS) = V̌ ∗�eAS = ι∗Cω = π∗
◦ω,

which hold in virtue of the definition of pV (first equality), of Calculation 5.18
(second equality) and the definition of ω (third equality).

In sum, we showed that pV : C→ PeAS, the dashed arrow of diagram (15),
is a symplectic covering and therefore a local symplectomorphism a fortiori.

The proof of the very last point of Theorem 5.2, the global symplectomor-
phism C � PeAS, only valid in the Abelian case, is performed in Appendix E.
The logic is similar, but V (A) .= Pexp

∫ 1

u
A�, well-defined for any G, is replaced

by its “logarithm”, well-defined only if G is Abelian. The discrete fibre of the
symplectic covering corresponds to the periodicity of the exponential function
in the U(1) factors of the Abelian group G. (see Appendix E, in particular
Remark 5.4). �
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We summarise the relation between first stage reduction and the extended
AS phase space with the following diagram:

C
π◦ ��

V̌

��
C

pV ��$$$ PeAS (15)

Remark 5.20 (Dressing vs. symplectic reduction). In the discussion above we
have always assumed that C is a smooth symplectic manifold. As discussed in
[87] and references therein, smoothness depends on several factors, including
checking that the action of G on C is free and proper. In infinite dimensions,
to have an honest symplectic manifold one additionally needs to check that
the image of the (constraint) gauge algebra along the infinitesimal action map
is symplectically closed (see the discussion in [87, Proposition 5.8], and [25,
Proposition 4.1.7 and Lemma 4.2.14]). This can often be done [24–26], but we
offer here an alternative perspective. Indeed, the “dressing field method” we
outlined here can be taken as a concrete construction to explicitly produce
a manifestly smooth and symplectic “realisation” of C, in the present case,
the extended AS phase space, built as the image of the dressing map, in the
sense that the constraint-reduced phase space C is a symplectic covering of said
“realisation”. For a concrete example see Appendix E where we explicit identify
the constraint reduced space in the Abelian case and explain the relevant
covering in terms of the branching of the logarithm on the toric factors of G.

5.2. Proof of Theorem 5.5

In order to provide a characterisation of the fibre of the symplectic covering,
i.e. K = Grel/G◦, we start by characterising the connected components of the
mapping group and of its relative component.

Remark 5.21 (Pointed maps). Let us recall a standard notion: given two pointed
spaces M and N , C�(M,N) is the space of pointed (continuous) maps which
by definition map the base point of M onto the base point of N . We also
denote GM

� ⊂ GM the pointed subgroup of elements that are the identity at a
given point over M .

Lemma 5.22 (Connected components). For G any finite-dimensional connected
Lie group, Σ � S × I and S � Sn−1 a sphere, with S0 = {pt},

π0(GΣ) � πn−1(G) and π0(GΣ
rel) �

{
π1(G) if n = 1, 2
π1(G)⊕ πn(G) if n > 2.

In particular,
(i) if G is simply connected, then

• for n = 1, 2: π0(GΣ) = π0(GΣ
rel) = 1,

• for n = 3: π0(GΣ) = 1 and π0(GΣ
rel) � π3(G) � Zs for s ∈ N;38

(ii) if G � U(1)t × Rk (Abelian), then

38We have that s > 0 if G is semisimple, and s = 1 if G is simple.
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• for n = 2: π0(GΣ) � π0(GΣ
rel) � Zt,

• for n �= 2: π0(GΣ) = 1, while π0(GΣ
rel) � Zt.

Proof. First, we (implicitly) replace all smooth mapping groups with contin-
uous ones; this replacement does not affect their homotopy type in view of
the “approximation theorem” [75, Theorem V.2.11] (see references therein),
or “weak homotopy equivalence” [99, Theorem 3.2.13] (where the result is
generalised to gauge groups associated to non-trivial bundles).

Let us begin by computing the zeroth homotopy of GΣ. Notice that since
Σ � I × S, any g(u, x) ∈ GΣ is homotopic to a constant function over I—e.g.
via the homotopy H(t)(u, x) = g(tu, x). Therefore if S � Sn−1,

π0(GΣ) = π0(GS) ≡ π0(C(S,G)) � π0(C�(S,G)) ≡ πn−1(G),

where the third step holds in virtue of G being connected.
For the second part of the lemma, we start by noting that, since g ∈ GΣ

rel

iff gin = gfin = 1, one can identify GΣ
rel � C�(S1, GS). It follows that

π0(GΣ
rel) � π1(GS).

In homotopy theory, the natural definition of the zeroth sphere is as a
pair of points {−1,+1}. Since here we instead set S0 .= {pt}, we need to
distinguish the case n = 1 from the rest.

If n = 1, S = {pt} and GS � G, which leads to

π0(GΣ
rel) � π1(GS) � π1(G) (n = 1).

If n > 1,39 recall that GS � C(S,G), and thus introduce GS
� � C�(S,G)

after choosing a base point over S—say the North pole if S � Sn−1. Hence,
we note that from GS � GS

� � G, it follows that, for any connected Lie group
G,

π1(GS) � π1(GS
� )⊕ π1(G).

We thus need to compute π1(GS
� ). Since π1(GS

� ) � π0(C�(S1, C�(S,G)) �
π0(C�(S1 ∧ S,G)) where S1 ∧ S denotes the smash product between S1 and
S. Then, if S � Sn−1, we have that S1 ∧ Sn−1 � Sn and therefore

S � Sn−1 =⇒ π1(GS
� ) � πn(G).

Thus, putting everything together, we conclude:

π0(GΣ
rel) � π1(GS) � πn(G)⊕ π1(G) (n > 1).

Now, let us consider the following facts (see e.g. [72]):
(1) any connected, finite dimensional, Lie group G is diffeomorphic to H×Rk

for some k ∈ N and H ⊂ G a compact connected Lie subgroup;
(2) any compact, connected, Lie group H is isomorphic to a quotient H �

H̃/Z of a group H̃ � K1 × · · · ×Ks × U(1)t—where t ∈ N and the Ki’s
are compact, connected, simply connected, simple Lie groups—by a finite
central subgroup Z ⊂ H̃;

39One can adapt the proof for the case n > 1 to the case n = 1 by noting that, with our
definition of a zeroth sphere, while S1 ∧ S0 �� S1, one has C�(S0, G) � {pt} and therefore
π1(GS

� ) = 1.
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(3) for any finite dimensional Lie group G, π2(G) = 1;
(4) for any connected, compact, simple, Lie group π3(K) � Z.

From (1) it follows that πm(G) � πm(H) for all m. Thus, from (2) we deduce:

1→ Zt → π1(G)→ π0(Z)→ 1.

and

πm(G) � πm(K1)⊕ · · · ⊕ πm(Ks) form > 1.

Finally, from (3–4), we deduce the particular cases (i–ii) of the lemma’s state-
ment. �
Remark 5.23 (Strategy of proof: Grel vs. GΣ

rel). We can now address the proof of
Theorem 5.5. In Theorem 5.2 we have seen that C is a symplectic covering space
of the extended AS phase space, with fibre K characterised in Proposition 5.8
as the group of components of Grel � GΣ

0,rel (resp. G · Grel � G · GΣ
0,rel in

the Abelian case). Since K is discrete, to see whether it is trivial or not it
is enough to observe that its elements are in 1-to-1 correspondence with the
connected components of GΣ

0,rel i.e. with the elements of π0(GΣ
0,rel). Computing

the homotopy type of GΣ
rel is, however, more practical in virtue of the fact

that this is a mapping group—but of course the two computations coincide
whenever GΣ is connected, since obviously GΣ = GΣ

0 implies GΣ
rel = GΣ

0,rel.
Lemma 5.22 then characterises the connectedness of GΣ and GΣ

rel in terms of
the homotopy groups of the finite dimensional group G and thus allows us to
deduce information about K in many cases of interest.

Proof. From the proof of Theorem 5.2 it emerges that the fibre of the covering
pV : C → Â × T ∗GS

0 is given by K � Grel/G◦ in the semisimple case, and by
K � (G · Grel)/G◦ in the Abelian case.

An immediate corollary of Proposition 5.8 is that K is the (discrete)
group of components of GΣ

0,rel and that GΣ
0,rel,0 = GΣ

rel,0, so that—in both the
semisimple and Abelian cases—we can write:

K � GΣ
0,rel/GΣ

rel,0.

Next, introduce the (discrete) group of components of GΣ
rel, i.e. K′ .=

GΣ
rel/GΣ

rel,0. Since GΣ
0,rel ⊂ GΣ

rel is a normal subgroup (cf. Remark 3.15), we
deduce that K ⊂ K′ is a normal subgroup, and thus that

π0(K) ⊂ π0(K′) � π0(GΣ
rel).

If GΣ is connected, i.e. if GΣ = GΣ
0 , one has that K is isomorphic to K′.

In other words:

π0(GΣ) = 1 =⇒ K � K′.

Therefore, from the last two equations we see that we can deduce prop-
erties on the nature of the covering fibre K by studying the zeroth homotopy
type of GΣ and GΣ

rel. Lemma 5.22 characterises these sets in many cases of in-
terests that yield the case analysis given in the statement of the theorem—in
particular, the general statement (iv).

In fact,
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(i) when G is simply connected and n = 1 or 2, we have that: π0(GΣ) �
πn−1(G) = 1 which implies K � K′ � π1(G) = 1. Since the covering
fibre K is trivial, we also conclude that the map pV : C→ PeAS is a global
symplectomorphism;

(ii) when G is simply connected and n = 3, we have again that π0(GΣ) �
πn−1(G) = π2(G) = 1, and thus K � K′ � π0(GΣ

rel) � π3(G) � Zs for
some s (s > 0 if G is semisimple, and s = 1 if G if simple);

(iv) finally, when G � U(1)t×Rk (Abelian) and n �= 2, we have that, in virtue
of Lemma 5.22, π(GΣ) = πn−1 �=1(G) = πn−1 �=1(U(1))⊕t = 1, which tells
us that K � K′ � π1(G) � Zt. ♦

�

6. Symplectic Reduction of Null YM Theory: Second Stage

The reader interested in applications to soft symmetries can skip this section
at first.

From the general theory of reduction by stages we know that C carries a
Hamiltonian action of G with momentum map h : C → G∗. In the previous
section we have built a local40 model for the constraint-reduced phase space
(C, ω) in terms of the extended AS phase space PeAS

.= Â×T ∗GS
0 . In particular

(PeAS,�eAS) is a symplectic cover of (C, ω) with fibre K. We will use the model
Hamiltonian action G∂Σ

0 � (PeAS,�eAS) to infer the structure of the second-
stage reduction of C by G.

6.1. Strategy

Our first goal is to show that the Hamiltonian action of G on (C, ω) is related
to the Hamiltonian action of G∂Σ

0 on (PeAS,�eAS) by means of the following
diagram (cf. Equation (15)):

(C,G, ι∗Ch)
π◦ ��

V̌




(C,G, h)

pV ��$$$ (PeAS, G
∂Σ
0 , heAS)

Remark 6.1. While (PeAS,�eAS) admits a natural action by G∂Σ
0 for any G,

when G is Abelian the subgroup G of constant transformations acts trivially,
whence the G∂Σ

0 -action effectively reduces to that of G∂Σ
0 /G. For simplicity of

exposition, when working over PeAS we will only refer to the action of G∂Σ
0 and

simply observe that it appropriately descends to G∂Σ
0 /G when G is Abelian.

(See items (1) and (4) in the list below.)

To prove that the above diagram commutes, we will proceed by steps,
showing that:

40“Local” here refers to field-space, and not to Σ.
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(1) K ⊂ G is a (discrete) normal subgroup, and one has (Proposition 6.2)

G/K �
{

G∂Σ
0 if G semisimple,

G∂Σ
0 /G if G Abelian;

(2) the flux map h : C→ G∗ is K-invariant (Lemma 6.3);
(3) G∂Σ

0 admits a Hamiltonian action on (PeAS,�eAS) with momentum map
heAS such that (Proposition 6.6, see also Eq. (16))

ι∗Ch = V̌ ∗heAS;

(4) in the Abelian case G ↪→ G∂Σ
0 acts trivially on PeAS and therefore heAS

automatically defines a momentum map for G/K in both the semisimple
and Abelian cases (Eqs. 17a and 17b).

The proof of the facts (1–4) can be found in Sect. 6.2 below. From these,
recalling that pV : C → PeAS is a smooth K-covering, we see that the flux
momentum map h on (C, ω) descends along pV to a momentum map heAS on
(PeAS,�eAS).

The following commutative diagram summarises the relation between the
various flux momentum maps in the semisimple case:

C

V̌

��

π◦
��

ι∗
Ch

�� G∗
loc

C

pV

��
%
%
%

h
�� G∗

��

PeAS

heAS �� (g∂Σ)∗



��

��
(16)

(When G is Abelian, replace (g∂Σ)∗ � (g∂Σ/g)∗ � Ann(g, (g∂Σ)∗) ⊂ (g∂Σ)∗.
Note that Ann(g, (g∂Σ)∗) � G∗ still holds.)

After having clarified the relationship between the Hamiltonian struc-
tures on (C, ω, h) and (PeAS,�eAS, heAS), we turn our attention to the study of
the symplectic leaves of the second-stage reduced Poisson space C

.= C/G =⊔
Of⊂F S[f ],

S[f ]
.= h−1(Of )/G,

called flux superselection sectors. Once again, our strategy will be to model
them on the (symplectic) AS sectors (Definition 6.9) labelled by the same flux
orbit Of ⊂ F = Im(h) � Im(heAS) (Proposition 6.6), so that we can use the
extended Ashtekar–Streubel phase space to model second stage reduction:

SPAS

[f ]

.= h−1
eAS(Of )/G∂Σ

0 , S[f ] � SPAS

[f ] , C � PeAS/G∂Σ
0 .

6.2. Proof of Statements (1–4)

First, in the next proposition and lemma, we clarify the relationship of K to
G and h:
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Proposition 6.2. G is a connected central extension by the discrete group K

of G∂Σ
0 if G is semisimple, or of G∂Σ

0 /G if G is Abelian. In particular, there
exists a short exact sequence of groups:

{
1→ K→ G→ G∂Σ

0 → 1 G semisimple
1→ K→ G→ G∂Σ

0 /G→ 1 G Abelian

Proof. Connectedness of G .= G/G◦ is a consequence of that of G, while nor-
mality of K

.= Grel/G◦ in G
.= G/G◦, follows from the normality of Grel ⊂ G

(Remark 3.18).
To prove the centrality of K in G we need to show that, for every [h] ∈ K

and every [g] ∈ G,

[h][g][h]−1 = [g].

Since G◦ is normal we have [h][g◦] = [hg◦], so that the above condition becomes
[h][g][h]−1[g]−1 = [hgh−1g−1] = [1], that is to say

K = Grel/G◦ central in G = G/G◦ ⇐⇒ ∀(h, g) ∈ Grel × G, hgh−1g−1 ∈ G◦

Now, since h ∈ Grel (a normal subgroup of G), we see that f
.= hgh−1g−1 ∈

Grel as well, so that for it to be in G◦ � (Grel)0 we are left to prove that f
is connected to the identity (cf. Proposition 5.8). However, g ∈ G � GΣ

0 is
connected to the identity, and thus there exists a homotopy g(t) with g(0) = 1
and g(1) = g. Then, we can construct the homotopy f(t) = hg(t)h−1g(t)−1 and
easily check that f(0) = 1 and f(1) = f = hgh−1g−1, proving the statement.

Finally, to prove the exact sequences given in the statement, we will focus
on the semisimple case, where we will show that

G/K
(1)� G/Grel

(2)� ι∗∂ΣG
(3)� GS

0 ×GS
0

(4)� G∂Σ
0 .

(In the Abelian case, one can prove the following sequence of isomorphism in
a similar manner:

G/K � G/(G · Grel) � (ι∗∂ΣG)/G � G∂Σ
0 /G.

We omit the explicit proof in this case.)
(1) This follows from Proposition 5.8: G/Grel � (G/G◦)/(Grel/G◦)

.= G/K.
(2) This follows from the definition of Grel = {g ∈ G g|∂Σ = 1} � GΣ

0 ∩GΣ
rel.

The morphism ι∗∂Σ : G → ι∗∂ΣG is surjective by construction and Grel =
Ker(ι∗∂Σ). Indeed, for any two g, g′ ∈ GΣ

0 � G one has that: ι∗∂Σg =
ι∗∂Σg′ =⇒ ι∗∂Σ(g′g−1) = 1, i.e. g′g−1 ∈ GΣ

0 ∩GΣ
rel � Grel, and Ker(ι∗∂Σ) ⊂

Grel. The opposite inclusion is obvious, and we conclude that ι∗∂Σ descends
to a bijection G/Grel → ι∗∂ΣG.

(3) This is a consequence of G � GΣ
0 and the fact that ι∗∂ΣGΣ

0 and GS
0×GS

0 are
included in each other. Indeed, let g ∈ GΣ

0 and thus consider a homotopy
H(t) ∈ GΣ

0 between g and the identity; then it follows that ι∗Sin
H(t) ∈ GS

is a homotopy between ι∗Sin
g ∈ GS and the identity, and therefore that

ι∗∂ΣGΣ
0 ⊂ GS

0 × GS
0 . For the opposite inclusion, consider (gin, gfin) ∈

GS
0 × GS

0 and Hin/fin(t) the respective homotopies with the identity in
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GS
0 . Then, define g̃ ∈ C(I,GS) as g̃(u) .= Θ(−u)Hin(−u)+Θ(u)Hfin(u), a

continuous function I → GS with the property that ι∗∂Σg̃ = (gin, gfin). Us-
ing standard arguments in homotopy theory, we can construct a smooth
homotopy g ∈ C∞(I,GS) � GΣ out of the continuous homotopy g̃. (See
Footnote 37.) It is then easy to see that such a g is connected to the
identity in GΣ (retract to Sin and then to the identity) and thus prove
ι∗∂ΣGΣ

0 ⊃ GS
0 ×GS

0 .
(4) Obvious.

�

Lemma 6.3. The flux map h : C→ G∗
loc is K-invariant.

Proof. This follows from the fact that the flux map h : P→ G∗
loc is manifestly

invariant under the whole of Grel, and not just its identity component G◦.
Hence, for k = [g̃] ∈ K = Grel/G◦ and φ = [φ] ∈ C = C/G◦, if we denote
(k ·h)(φ) .= h(φ � k) and (g̃ ·h)(φ) .= h(φ � g̃) = Ad∗(g̃) ·h(φ) = h(φ), we have

π∗
◦(k · h) = g̃ · h = h = π∗

◦h,

and we conclude in virtue of the injectivity of π∗
◦ . �

Next, we study the action of G∂Σ
0 on (PeAS,�eAS):

Lemma 6.4. The dressing map V̌ : C→ PeAS is equivariant with respect to the
(right) action of G on P and the following (right) action of G∂Σ

0 � GS
0 × GS

0

on PeAS
.= Â× T ∗GS

0 :
⎛

⎝
a
Λ
e

⎞

⎠ � (gin, gfin) =

⎛

⎝
g−1
fin agfin + g−1

fin Dgfin

g−1
in Λgfin

Ad(g−1
fin ) · e

⎞

⎠ .

Infinitesimally, denoting (ξin, ξfin) ∈ gS × gS � g∂Σ, this action becomes

� : g∂Σ → X(Â× T ∗GS
0 ), �(ξin, ξfin)

⎛

⎝
a
Λ
e

⎞

⎠ =

⎛

⎝
Dξfin

−ξinΛ + Λξfin

−ad(ξfin) · e

⎞

⎠ ,

where D = D + [a, ·] and D is the de Rham differential on S.
Moreover, in the Abelian case, the above action reduces to an action of G∂Σ

0 /G.

Proof. The fact that the map presented in the statement of the Lemma is
indeed a right group action is straightforward from its expression. We then need
to show that it commutes with the dressing map V̌ . The result follows from the
definitions of the dressed, and hence Grel-invariant, quantities a(A) .= AV (A),
Λ(A) .= V (A)in, and e(A,Ein) .= Ad(V (A)in)−1 · Ein, as well as from the (bi-
local) equivariance of Λ(A) and e(A,Ein) under the action of G (Remark 5.15).
Indeed one immediately sees that the action of G on P translates into the given
action of G∂Σ

0 on PeAS.
Finally, it is immediate to see that, when G is Abelian, the subgroup

G ↪→ G∂Σ
0 of constant maps acts trivially. �
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Remark 6.5 (Residual gauge of the AS modes). If G is Abelian, the action of
(ξin, ξfin) ∈ g∂Σ on Â can be expressed in terms of the AS modes ã(k) ∈ Ω1(S, g)
of Proposition 3.10. One then finds that only the real part of the AS zero-mode
transforms 2ã(0) = a

∫
− aavg + iadiff transforms non-trivially:

�(ξin, ξfin)Re(2ã(k = 0)) = Dξfin,

while

�(ξin, ξfin)Im(ã(k = 0)) = �(ξin, ξfin)ã(k ≥ 1) = 0.

In the next proposition we will see that, since the Hamiltonian counterpart of
Re(2ã(0)) = a

∫
− aavg is Im(2ã(0)) = adiff , in the extended AS phase space

it is indeed adiff that “generates the large gauge transformations” associated
with the final copy of GS

0 (cit. [93, p. 23], see also Remark 3.12).

We now see that the action of G∂Σ
0 on PeAS is Hamiltonian:

Proposition 6.6 (Reduced flux map). The action

G∂Σ
0 � (PeAS,�eAS),

detailed in Lemma 6.4, is Hamiltonian,

i
(ξin,ξfin)�eAS = d〈heAS, (ξin, ξf )〉,

with momentum map heAS : PeAS → (g∂Σ)∗,41

〈heAS, (ξin, ξfin)〉 =
∫

S

tr
(
(DiL�ai)

∫
ξfin + e (Ad(Λ)−1 · ξin − ξfin)

)
, (17a)

such that

ι∗Ch = V̌ ∗heAS,

where in this equality we left understood the inclusion (g∂Σ)∗ ↪→ (gΣ)∗
str. In

particular, for G Abelian, the previous expression reduces to:

〈heAS, (ξin, ξfin)〉 =
∫

S

tr
(
(Diadiff

i )ξfin + e (ξin − ξfin)
)

(Abelian). (17b)

Proof. By direct computation we prove that the G∂Σ
0 action on the extended

AS phase space PeAS of Lemma 6.4 is Hamiltonian with momentum map given

41Recall: Q
∫ .

=
∫ 1
−1 du′Q(u′).
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by the r.h.s. of Eq. (17a):

i
(ξin,ξfin)�eAS = i
(ξin,ξfin)(�AS + ΩS)

=
∫

Σ

tr
(
(L�Diξfin)dai − (L�da

i)Diξfin

)

+
∫

S

tr
(
− [ξin, e]dΛΛ−1 + (de) (Λ−1ξinΛ− ξfin)

)

+
∫

S

tr
(
e
[
Λ−1ξinΛ− ξf ,Λ−1dΛ

])

=
∫

Σ

tr
(
[L�ai, ξfin]dai − (L�da

i)Diξfin

)

∫

S

tr
(
(de)Λ−1 · ξinΛ + e (Λ−1ξindΛ− Λ−1dΛΛ−1ξin)− deξfin

)

= d
∫

Σ

tr
(
− (L�a

i)Diξfin

)
+ d

∫

S

tr

(
e (Ad(Λ)−1 · ξin − ξfin)

)

= d
∫

S

tr
(
(DiL�a

i)
∫
ξfin + e (Ad(Λ)−1 · ξin − ξfin)

)
,

where in the first step we used i
(ξin,ξfin)Λ−1dΛ = −Λ−1ξinΛ+ξfin (Lemma 6.4);
in the second we used that L�ξfin = 0 since ξfin is u-independent; in the third we
used the ad-invariance of the trace viz. tr([L�a

i, ξfin]dai) = −tr(L�a
i[ai, ξfin]);

and finally, in the last step, we performed the integration in u by remembering
once again that ξfin is independent of u.

We now compute explicitly V̌ ∗heAS and verify that it equals ι∗Ch. First,
we note the following identities involving the curvature F = F (A): first, we
have

F�i(AV (A)) = L�a(A)i −Dia(A)� + 1
2 [a(A)�, a(A)i] = L�a(A)i,

which follows from (AV (A))� = 0 (Lemma (ii)); second, from the equivariance
of the Gauss constraint G = L�E + DiF�i, we obtain E(AV (A), E

V (A)in

in ) ≡
Ad(V (A)−1) · E(A,Ein) ≡ EV (A) as well as

Di
a(A)L�a(A)i =Di

AV (A)F�i(AV (A))
(Gauss)

= − L�E
V (A) − [AV (A)

� , EV (A)] = −L�E
V (A)

where a(A) .= AV (A) and Da = D + [a, ·]; third, and last, using V (A)fin = 1
and V (A)in .= Λ(A):

(DiL�a(A)i)
∫

= −(L�E
V (A))

∫
= −(EV (A))fin + (EV (A))in

= −E(A,Ein)fin + Ad(Λ(A)−1) · Ein.



A. Riello and M. Schiavina Ann. Henri Poincaré

This, together with the expression (V̌ ∗e)(A,Ein) = Ad(Λ(A)−1) · Ein,
allows us to compute:

V̌ ∗〈heAS, (ξin, ξfin)〉 = V̌ ∗
∫

S

tr
(
(DiL�a

i)
∫
ξfin + e

(
Ad(Λ−1) · ξin − ξfin

))

=
∫

S

tr
((− E(A,Ein)fin + Ad(Λ−1) · Ein

)
ξfin

+
(
Ad(Λ(A)−1) · Ein

)(
Ad(Λ(A)−1) · ξin − ξfin

))

= −
∫

S

tr
(
E(A,Ein)finξfin − Einξin

)

= 〈ιCh(A,Ein), (ξin, ξfin)〉.
Finally it is immediate to verify that the Abelian formula descends from the
general case, since then:

(DiL�ai)
∫

= (DiL�ai)
∫

= Di(L�ai)
∫

= Diadiff
i (Abelian)

(An alternative, straightforward, derivation of Eq. (17b), can be obtained us-
ing the AS modes by combining the results of Proposition 3.10 and Remark
6.5.) �
Remark 6.7 (Interpretation). With reference to Eq. (17a), the fact that the
contraction between e and ξfin is mediated by the adjoint action of Λ has
an intuitive explanation: whereas e and ξin are quantities naturally defined
on Sin, the initial sphere, ξfin, is naturally defined on the final sphere Sfin

and therefore needs to be parallel-transported back to Sin by means of the
appropriate Wilson line Λ(A) .= V (A)in = Pexp

∫ 1

−1
du′ A�(u′), so that it can

be contracted with e.
Remark 6.8 (On-shell fluxes). We note that a consequence of Proposition 6.6—
in particular of the equation ι∗Ch = V̌ ∗heAS, together with surjectivity of V̌ , is
that

Im(heAS) � Im(ι∗Ch) .= F �
{

(g∂Σ)∗ G semisimple
Ann(g, (g∂Σ)∗) G Abelian

where the last isomorphism is proved in Proposition 4.6. Therefore, there is a 1-
to-1 correspondence between the values the momentum map heAS can take and
the on-shell fluxes: if G is semisimple these correspond to all possible elements
of (g∂Σ)∗, whereas if G is Abelian only the elements of (g∂Σ)∗ compatible with
the integrated Gauss’s, viz.

∫
∂Σ

E = 0, are allowed.
6.3. Superselection Sectors

Now that we have established that there is a model Hamiltonian space G∂Σ
0 �

(PeAS,�eAS), reduction in the absence of a preferred value of the momentum
map applied to the model requires42 one to first select a G∂Σ

0 -coadjoint orbit
in the image of the flux map heAS.

42Alternatively, a symplectomorphic space is obtained by reducing at a fix value f =

(fin, ffin) of the flux heAS by the action of the stabiliser Stab(f) ⊂ G∂Σ
0 . See the discussion

of point- and orbit-reduction in Sect. 2.
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Since G∂Σ
0 � GS

0 × GS
0 , a coadjoint orbit of G∂Σ

0 is determined by pairs
of “initial and final” elements of (gS)∗:

O(fin,ffin) = Ofin × Offin ⊂ (gS)∗ × (gS)∗.

Moreover, in virtue of Proposition 6.6, the preimage along heAS of a generic
flux (f ′

in, f ′
fin) is given by all the (a,Λ, e) ∈ PeAS such that

⎧
⎪⎨

⎪⎩

〈f ′
in, •〉 =

∫

S

tr ((Ad(Λ) · e) • )

〈f ′
fin, •〉 =

∫

S

tr
(
(DiL�ai(A))

∫
− e) •

)
.

(18)

In the Abelian case, the flux f = (fin, ffin) in the image of heAS is actually
an element of Ann(g, (g∂Σ)∗) ⊂ (g∂Σ)∗, as it is readily verified using Eq. (17b).

From the general theory of Hamiltonian reduction, the preimage in PeAS

of the orbits Ofin × Offin = O(fin,ffin), modulo the action of G∂Σ
0 � GS

0 × GS
0 ,

is a symplectic manifold (when smooth). In view of this observation we are
going to describe the symplectic leaves (superselection sectors) of C through
the symplectic leaves of the Hamiltonian reduction PeAS/G∂Σ

0 , which we call
“Ashtekar–Streubel sectors”, by means of a symplectomorphism.

Definition 6.9. The Ashtekar–Streubel sector associated to O(fin,ffin) is the
symplectic manifold SeAS[fin,ffin]:

SeAS[fin,ffin]
.= SeAS[fin,ffin]/G∂Σ

0 ,

where

SeAS[fin,ffin]
.= h−1

eAS(O(fin,ffin))

=
{
(a,Λ, e) : Eq.(18) holds for some (f ′

in, f ′
fin) ∈ O(fin,ffin)

}
.

Theorem 6.10. The (Poisson) reduction of (C, ω) by the action of G .= G/G◦,
described in Sect. 2, is diffeomorphic to the (Poisson) reduction of (PeAS,�eAS)
by the action of G∂Σ

0 , i.e.

C/G � PeAS/G∂Σ
0

as Poisson manifolds. In particular, the symplectic leaves of C/G are symplec-
tomorphic to the Ashtekar–Streubel sectors, i.e. the fully reduced phase space
C

.= C/G � C/G decomposes as

C �
⊔

O(fin,ffin)

SeAS[fin,ffin],

where F � (g∂Σ)∗ if G is semisimple, and F � Ann(g, g∂Σ)∗) if G is Abelian
(and in both cases, F � G∗).

Proof. Recall that (C, ω)
pV→ PeAS is a symplectic covering of the AS extended

phase space with fibre K (Theorem 5.2), and that G is a connected central
extension of G∂Σ

0 by the discrete group K (Proposition 6.2). This, together
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with the fact that the flux map h is K-invariant (Lemma 6.3), implies that,
given f ∈ G∗ and Of its coadjoint orbit, h−1(Of ) = pV

−1 ◦ h−1
AS(Of ), and

h−1(Of )/G = pV
−1 ◦ h−1

AS(Of )/G � (pV
−1 ◦ h−1

AS(Of )/K)/G∂Σ
0 � h−1

AS(Of )/G∂Σ
0 ,

where we used the fact that G∗ � (g∂Σ)∗ and F = Im(h) � Im(heAS) (Re-
mark 6.8) to view a flux f ∈ F simultaneously in the image of h and of heAS.
The fact that the coadjoint orbits of an element f along the action of G and
G∂Σ

0 coincide follows from the fact that G is a central extension of G∂Σ
0 , i.e. K

acts trivially on F.
Since all orbit-reductions of the space C are symplectomorphic, the reduc-

tion C = C/G is diffeomorphic (as a Poisson manifold) to PeAS/G∂Σ
0 , concluding

the proof. �

7. Asymptotic Symmetries and Memory as Superselection

We invite the reader to follow the summary of notations and concepts
introduced up to here, available in Appendix F, for quick reference.

In this section we discuss asymptotic symmetries of QED [49,56,93] and elec-
tromagnetic memory [10,35,52,77,91] in the light of our results. Our work is
tailored to (and rigorous for) the treatment of finite-distance boundaries. Since
YM theory in 4 spacetime dimension is (classically) conformally invariant, one
can take our results as a model for asymptotic case when dim Σ = 3, up to a
discussion of equivalence classes of embeddings Σ ↪→ I.

With this in mind, we henceforth interpret Σ = I×S as a compact subset
of (past) null infinity I = R× S, i.e.

Σ ⊂ I.

with S � S2 the “celestial sphere”. The reason for choosing past asymptotic
null infinity will be explained shortly.43

Note that in this context A and a become (spatial) connection one-forms
over Σ ⊂ I, while the “electric field” E and “magnetic field” F stand for the
r−2-order of the (ur)- and (ij)-component of the spacetime field strength F̄μν

in Bondi coordinates, i.e.

E = lim
r→∞ r2F̄ru and Fij = lim

r→∞ r2F̄ij .

Remark 7.1 (Caveat). Our treatment of the asymptotic limit is equivalent to
working in a set of fixed Bondi coordinates with the embedding Sin/fin ↪→ I

defined by cuts of constant u. This is tantamount to taking a naive r → ∞
limit, as done in the standard reference [93] and much of the related literature
(see, however, [3,8,64]). Therefore, “asymptotic infinity” is here understood as
the boundary of one conformal compactification of spacetime. That is, we are

43We apologise for the ensuing mislabelling of the advanced time coordinate, here denoted
u rather than the conventional v.
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not implementing the notion of equivalence classes of different conformal com-
pactifications that plays a central role in the geometric approach to conformal
infinity [36,80,81], nor do we study the dependence of our results from the
choice of “cut” of I, i.e. of the embedding of Σ ↪→ I. We leave the investigation
of these important questions to future work.

Assumption B. In this section we fix Σ to be a 3d null cylinder with the
(celestial) 2-sphere as a base:

dim Σ .= n = 3, ∂Σ = Sin × Sfin, Sin/fin � S2.

Hence, G∂Σ � GS
in×GS

fin, where GS
in/fin

.= C∞(Sin/fin, G), and, since π2(G) = 0
for all Lie group [72], these mapping groups are necessarily connected, i.e.
GS

0 = GS .

7.1. G Abelian

Consider first Maxwell theory, which is a particular case of the general results
of Theorems 5.2, 5.5 and 6.10 (see also Lemma 6.4, Proposition 6.6 and Ap-
pendix E)—which we summarise here for ease and are proven in Sects. 5 and 6
(see also Appendix E):

Theorem 7.2 (Maxwell: Asymptotic constraint reduction). Let G = U(1),
dim Σ .= n = 3, and S � S2. Then:

(1) The constraint gauge group G◦ ⊂ G is given by the identity component
of the relative mapping group on Σ, G◦ � GΣ

rel,0. The constraint-reduced
phase space (C, ω) .= (P, ω)//0G◦ at Σ = I is symplectomorphic to the
linearly extended Ashtekar–Streubel phase space (Plin

eAS,�
lin
eAS):

Plin
eAS

.= Â× gS × gS � (a, λ, e)

with

�lin
eAS(a, λ, e) =

∫

Σ

√
γ γij(L�dai) ∧ daj +

∫

S

√
γ de ∧ dλ,

where, owing to the Gauss constraint, the asymptotic (gauge-invariant)
electromagnetic field (E,F ) at (u, x) ∈ Σ ⊂ I is given by

E = e + Diain
i −Diai(u) and F = Da.

In particular, E and F are independent of λ, while the initial and final
electric fields at ∂Σ are given by:

Ein = e and Efin = e−Diadiff
i .

(2) The residual flux gauge group G
.= G/G◦ is a connected central extension of

the identity component of the boundary mapping group G∂Σ/G � (GS
in ×

GS
fin)/G by Z:

1→ Z→ G→ (GS
in ×GS

fin)/G
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The constraint reduced phase space (C, ω) � (Plin
eAS,�

lin
eAS) carries the

Hamiltonian action of G � (gS
in × gS

fin)/g � (ξin, ξfin),

�(ξin, ξfin)

⎛

⎝
a
λ
e

⎞

⎠ =

⎛

⎝
Dξfin

ξfin − ξin

0

⎞

⎠ ,

with momentum map

〈heAS, (ξin, ξfin)〉 =
∫

S

√
γ

(
(Diadiff

i )ξfin − e(ξfin − ξin)
)
.

(3) The fully reduced phase space C
.= C/G is a Poisson space foliated by

symplectic leaves S[fin,ffin], called flux superselection sectors, labelled by
pair of initial and final fluxes (fin, ffin) ∈ Ann(g, (g∂Σ)∗), and defined as

S[fin,ffin]
.= h−1

AS (fin, ffin)/G

� {
(a, e) ∈ Â× gS that satisfy Eq. (19) below

}/
GS

fin

viz. {
〈fin, · 〉 =

∫
S

√
γ

(
e · )

〈ffin, · 〉 =
∫

S

√
γ

(
(e−Diadiff

i ) · ). (19)

All superselection sectors are symplectomorphic to each other.44

Remark 7.3. If instead of G = U(1) one chooses G = R, the only difference
in the above theorem would be in point (2), where G � G∂Σ/G—with no
extension.

7.1.1. Memory as Superselection. In the absence of massive, charged, parti-
cles, one can restrict the attention to the case in which the electric field at
I−
− (and I++) vanishes. If we wanted to implement such a condition in our for-

malism we would have to require that Ein vanishes. (Note that since Σ must
be compact, Ein is necessarily computed at a finite value of advanced time
albeit possibly one “very far into the past”.) This corresponds to performing a
partial flux-superselection at which only the value of Ein = e is fixed—at the
special value of zero. Mathematically, this is yet another reduction in stages:
we first perform symplectic reduction at the zero level set of the (component
of the) momentum map

∫
S

√
γ (e · ) for the action of a copy of GS

in. As a
result of this reduction, not only is e fixed to zero, but λ is quotiented out as
well. Then, and only then, one is left with a symplectic manifold given by the
(non-extended) Ashtekar–Streubel phase space [4]:

Proposition 7.4. The symplectic reduction of (C, ω,G) � (Plin
eAS,�

lin
eAS, G

∂Σ/G),
with respect to the Hamiltonian action of the initial copy of GS

in ⊂ G∂Σ at
fin = 0 (i.e. e = 0), yields the Ashtekar–Streubel symplectic space (Â,�AS),

(Plin
eAS,�

lin
eAS)//0G

S
in � (Â,�AS).

44This is analogous to what happens in Maxwell theory when Σ spacelike—cf. Appendix A.
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This space carries the following residual action of the gauge symmetry group
GS/G:

�AS(ξfin)a = Dξfin.

with momentum map

〈hAS, ξfin〉 =
∫

S

√
γ

(
(Diadiff

i )ξfin

)
.

The (asymptotic, gauge-invariant) electromagnetic field (E,F ) at (u, x) ∈ Σ ⊂
I is then given by

E = Diain
i −Diai(u) and F = Da (e = 0).

Remark 7.5. Observe that this corresponds to “gauge-fixing” A� = 0. The
combination of the two stages is tantamount to symplectic reduction w.r.t. G◦
plus the (superselection) condition Ein = 0. This can be thought of symplec-
tic reduction with respect to the subgroup of gauge transformations that are
trivial at Sfin at the on-shell configurations such that Ein = 0.

This partially superselected phase space is the one that directly compares
to the setup of [49,56,93].45 What in their language is a “new symmetry of
QED” is here rather found to be a residual gauge symmetry of QED that still
acts on the AS phase space.46 We notice that this symmetry is associated to
Sfin ⊂ ∂Σ, which (morally) corresponds to I−

+: which is precisely what one
would expect according to the analysis of [93].

Moreover, this residual action of GS
fin on (Â,�AS) is Hamiltonian, and

the momentum map is given by the sphere-divergence of the AS zero mode
Im(2ã(0)) = adiff (cf. Proposition 3.10):

a �→
∫

S

√
γ
(
(Diadiff

i ) · ).

This is of course in agreement with [93], where additionally a
in/fin
i is assumed to

be D-exact (absence of magnetic fluxes at I−
±). We see that no such restriction

is in fact necessary.
We also observe that adiff .= afin−ain is invariant under the residual gauge

symmetry at Sfin. In particular, its divergence equals (minus) the difference
between the initial and final electric fields (see e.g. Equation (9)):

Ediff ≡ Efin(a, e)− Ein(e) = −Diadiff
i .

This is the (so-called ordinary) electromagnetic memory, which plays an im-
portant role in the memory effect, first identified by [91] and confirmed e.g.
by [52], and later revisited by [10] in the context of particle scattering off a
burst of electromagnetic radiation, as well as [77] in the context of asymptotic
symmetries and Weinberg’s soft theorems (see also [35]). (Note that recent
controversy on such interpretations was brought to light by [55].)47

45To avoid clutter, we will only keep citing Strominger’s lecture notes.
46With reference to the reduction by stages procedure, quotienting out this residual gauge
symmetry is interpreted as “third stage” reduction.
47Note: E|here = limr→∞ r2F̄ur is denoted by W |there in [10] and by Au|there in [77].
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It is often convenient to express the memory in term of the quantity
[10]48

μ
.= Δ−1Ediff = −Δ−1Diadiff

i ∈ Ann(g, (gS)∗), (20)

where Δ is the Laplacian on S. If ain/fin = Dϕin/fin, as is assumed in [56,77,93],
then

μ = −Δ−1Δϕdiff = −ϕdiff .

We will come back to this equation shortly. The take away message is that
“memory is a (co-) momentum map” on the (partially superselected) AS phase
space.

(In both [10,77], an extra contribution is present due to the flux of parti-
cles through Σ ↪→M , which they call “null memory” and “hard contribution”,
respectively. This term does not appear here because we have worked in the ab-
sence of matter fields. Including these contributions would be straightforward
and would yield results in agreement with theirs.)

As we already observed, the (residual) gauge symmetry GS
fin is generated

by the charge/momentum map Diadiff
i . Using the non-local basis of Â given

by the AS modes introduced of Proposition 3.10, it is then immediate to see
that only the AS zero mode Re(2ã(0)) = a

∫
− aavg is affected by this action:

�AS(ξfin)
(
Re(2ã(0))
Im(2ã(0))

)
=

(
Dξfin

0

)
and �AS(ξfin)ã(k ≥ 1) = 0.

We are going to explicitly describe the fully reduced phase space C by means
of a suitable gauge-fixing for this action.

Consider the Hodge decomposition of the AS modes ã(k, x):

ã(k) = Dϕ̃(k) + D × β̃(k), (21a)

where D ≡ dS is the differential on the sphere and D× .= �D� ≡ d�
S denotes the

codifferential (a.k.a. curl); we also used the fact that no non-trivial harmonic
1-form exists on the two sphere.

In this decomposition, the D-exact (a.k.a. electric) zero-mode Re(2ϕ̃(0))
of ã(k) is “pure gauge”:49

�AS(ξfin)Re(2ϕ̃(0)) = ξfin, (21b)

whereas all other modes are gauge invariant, including Im(2ϕ̃(0)). This quan-
tity parametrises, in this language, the momentum map hAS, since

Im(2ϕ̃(0)) = ϕdiff = Δ−1Diadiff
i = −μ. (21c)

From this we conclude:

48With reference to [10], Φ|there = μ|here.
49Mathematically, this means that gS acts transitively on it, so that the quotient is a point,
meaning that Re(2ϕ̃(0)) is eliminated by reduction.
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Theorem 7.6 (Maxwell: memory as superselection). The flux superselection
sector (S[fin,ffin], ω[fin,ffin]) associated with the flux f =(fin, ffin)∈Ann(g, (g∂Σ)∗)
with

〈fin, ·〉 = 0 and 〈ffin, ·〉 =
∫

S

√
γ(μΔ·) ∈ Ann(g, (gS)∗)

is symplectomorphic to the symplectic space (Âμ,�ASμ) defined by

Âμ
.= {a ∈ Â 2Diãi(0) = iΔμ}

and

�ASμ =
∫

S

√
γ

(
� β̃(0)∗ ∧Δdβ̃(0) +

∑

k≥1

dã(k)∗
i ∧ dã(k)i

)

where Δ ≡ dSd�
S + d�

SdS. The asymptotic (gauge-invariant) electromagnetic
field (E,F ) is at (u, x) ∈ Σ ⊂ I is then given by

E = Δ(φk≥1(u)− φin
k≥1) and F = Δ

(
Re(2β) +

u

2
Im(2β)

)
,

where ϕk≥1
.= ϕ−Re(2ϕ̃(0))− u

2Im(2ϕ̃(0)), so that ϕdiff
k≥1 = ϕ

∫

k≥1−ϕavg
k≥1 = 0.

It is not hard to gather that all superselection sectors are in fact sym-
plectomorphic to each other, i.e. to (Âμ,�ASμ), even when the restriction
0 = 〈fin, ·〉 =

∫
S

√
γ(e·) is lifted.

The electromagnetic memory μ is a viable superselection label because
−Diadiff

i is the momentum map for the diagonal subgroup GS ↪→ GS
in ×GS

fin,
g �→ (gin, gfin) = (g, g). (See item (2) of Theorem 7.2.) However, this fact is
a consequence of the Abelian nature of Maxwell theory, which fails to have
a non-Abelian analogue. Moreover, the diagonal subgroup is not normal. If
one superselects the memory before superselecting the initial electric field, one
would obtain a symplectic space without either a residual group action or a
momentum map.

Remark 7.7 (Soft Symmetries). Another way to see this is by noticing that we
have the group homomorphism

G∂Σ → GS
diag �AD GS

diff , (gfin, gin) �→ (gdiag, gdiff) .= (gfin, gfing−1
in ),

where the multiplication in GS
diff is from the right :

(gdiag, gdiff) · (hdiag, hdiff) =
(
gdiaghdiag, gdiaghdiffg−1

diaggdiff

)
.

At the infinitesimal level, we have that the pairing between g∂Σ and its dual
can be rewritten as

〈f, ξ〉 = 〈ffin, ξfin〉 − 〈fin, ξin〉
= 〈ffin − fin, ξfin〉+ 〈fin, ξfin − ξin〉
≡ 〈fdiff , ξdiag〉+ 〈fin, ξdiff〉.
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where fdiff
.= ffin − fin ∈ (gS)∗ and (ξdiag, ξdiff) .= (ξfin, ξfin − ξin) ∈ gS

diag �ad

gS
diff .

In the Abelian case, The momentum map heAS of Theorem 7.2(3) splits
into its (gS)∗

in and (gS)∗
diff components as follows:

{
〈fin, · 〉 =

∫
S

√
γ

(
e · )

,

〈fdiff , · 〉 =
∫

S

√
γ(μΔ · ) =

∫
S

√
γ

(
(−Diadiff

i ) · ). (22)

Note that this is not the case for G non-Abelian, owing to the (field-dependent)
“parallel transport” Ad(Λ−1) · ξin − ξfin (cf. Equation (17a)).

The subgroup GS
diff � {1}×GS

diff ↪→ G∂Σ is normal. The quotient group

GS
soft

.= (G∂Σ/GS
diff)/G � GS

diag/G,

is the gauge group of soft symmetries—this can be naturally identified with
the diagonal subgroup of G∂Σ (modulo constant gauge transformations). After
reduction in stages by the action of GS

diff , we are left with a Hamiltonian action
of GS

soft on PAS, with momentum map given by the electromagnetic memory.

7.1.2. The Physical Meaning of Superselection. We take a passage of the stan-
dard reference [93] as a starting point for a series of remarks on superselection.
In [93, Section 2.11] a parallel is drawn between ϕ, that is the electric part of
ai, and a Goldstone boson arising in the presence of a broken (large) symmetry
(italisation and text within square brackets is our own):

We have a charge Q+
ε [:=

∫
S
(
√

γ (−Diadiff
i )ε)] that generates a sym-

metry of the Lagrangian of any Abelian gauge theory. However,
this charge does not annihilate the vacuum [ai = 0]. Instead, it cre-
ates an extra soft photon mode φ [our Re(2ϕ̃(0))], which, according
to (2.7.3), transforms inhomogeneously under the broken symmetry
[see our Eq. (21b)]. Hence the soft photons are the Goldstone bosons
of spontaneously broken large gauge symmetry [our GS

fin]. There is
an infinite vacuum degeneracy, since we can add any number of soft
photons to any vacuum state and obtain another vacuum state with
the same zero energy. Classically, the infinite-dimensional space of
vacua can be labelled by flat Abelian connections ∂zε(z, z̄) on the
sphere [Dε in our notation].

There is a crucial difference between the usual Mexican hat
story of spontaneous global symmetry breaking and the spontaneous
breaking of the large gauge symmetries. In the usual story, the differ-
ent vacua form superselection sectors (i.e. no physical finite energy
operator exists that can move us from one vacuum to another).

[. . . ] Such superselection sectors clearly do not arise for the
large gauge symmetry. The vacuum state is changed by soft photon
creation, which occurs in nearly all scattering processes. The S-
matrix elements do not factorise into superselection sectors.

The dictionary between the terminology used in [93] and our own is the
following (to simplify the discussion and be consistent with their choice of
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phase space, i.e. (Â,�AS); here, we assume that we are working in the partial
superselection sector: fin =

∫
S

√
γ(e · ) = 0):

i. The “charge” Q+
ε is the Hamiltonian generator (momentum map) for

GS
fin, i.e. Q+

ε :=
∫

S
(
√

γ (−Diadiff
i )ε) =

∫
S

√
γ Efinε;

ii. The expression “large [or, asymptotic] gauge symmetries” (LGS) is de-
fined in [93, Section 2.10] as the “allowed gauge symmetries” (AGS) mod-
ulo the “trivial gauge symmetries” (TGS). The AGS are “any [gauge
symmetries] that respect the boundary [and fall-off] conditions”, while
the TGS are “the ones that act trivially on the physical data of the the-
ory”. In [93], the state space of the theory is taken to be (Â,�AS), which
we recognise in our language as the constraint-reduced, partially superse-
lected, space of Proposition 7.4. On this space there is a residual action of
GS

fin. Therefore we take LGT to correspond in our language to the resid-
ual gauge symmetry GS

fin that survives both constraint reduction and the
superselection of the initial flux fin = 0.50 This identification of LGS and
GS

fin is consistent with the identification of the associated charge;51 it
iii. In [93] both the following quantities are called “soft photon modes”

{
N |there = Im(2ϕ̃(0)) = ϕdiff = −μ,

φ|there = Re(2ϕ̃(0)) = ϕ
∫
− ϕavg.

There, this is justified because they are seen as conjugate fields on (Â,�AS).
Here, however, we see that their physical status is different: while φ is
“pure gauge” (Eq. (21c)), N is gauge invariant and encodes memory. (As
noted in Remark 3.12 there is a slight discrepancy in the way we and [93]
extract the “zero (or, soft) mode” from a given asymptotic field.)

Remark 7.8. We can now compare and contrast our results and the picture
summarised in the above excerpt. In this comparison, it is important, however,
to keep in mind Strominger’s warning [93, Section 2.11], the italic is ours:

Large gauge symmetries are unlike any previously discussed sym-
metry both in their asymptotic angle dependence and in the fact
that the action is described at null, not spatial, infinity.

Phrases like ‘spontaneous symmetry breaking,’ ‘Goldstone bo-
son,’ ‘superselection sector,’ and even ‘conservation law’ are used
with slightly different meanings in different physical contexts. In
importing those words to the present context, I have necessarily
adapted and refined their meanings. I have done so in the way I
thought most natural, but other adaptations might be possible.

We clearly do not agree with the first assertion in the previous quotation. As
for the second: The same cautionary measures apply to our analysis.

50More precisely the corrected residual symmetry group is GS
fin/G, but since G ↪→ GS

fin acts

trivially on Â, the quotient can be dropped without altering the result.
51We do not attempt to formalise, in our language, the idea of the quotient LGS = AGS
/ TGS. But loosely speaking the TGS include spacetime gauge transformations that are
trivial at I, gauge transformations on Σ ⊂ I that are trivial at ∂Σ (our G◦), and gauge

transformations at ∂Σ that are trivial at Sfin ⊂ ∂Σ (our GS
in).



A. Riello and M. Schiavina Ann. Henri Poincaré

1. Our reduction by stages procedure is manifestly gauge invariant. Al-
though the choice of describing the superselection sector S[fin,ffin] � Âμ

in terms of AS fields with Re(2ϕ̃(0)) = 0 appears to be breaking the
residual gauge symmetry, this is nothing but a choice of gauge-fixing,
akin to setting A� to a constant in u to gauge-fix G◦ � P. Now, the
“gauge-fixed” space Âμ carries no residual action of GS

fin. Conversely,
before gauge fixing, all AS fields a ∈ Â that are related by a gauge trans-
formation in GS

fin represent the same physical fields (Proposition 7.4). In
fact Âμ = {a 2ϕ̃(0) = iμ} intersects all the gauge orbits of those configu-
rations with fixed memory μ once and only once.52 Another way of saying
this is that the condition Re(2ϕ̃(0)) = 0 specifies a (global!) section of
the principal bundle Â→ Â/GS

fin, which is itself foliated into symplectic
spaces {Âμ}μ∈Ann(g,(gS)∗) of fixed memory.

2. In light of the previous remark, we do not see how to make the “Goldstone
boson” interpretation stringent. The (admittedly) imported terminology
of “symmetry breaking” seems to be more appropriately replaced by the
more standard notions of gauge fixing and symplectic reduction we just
described.

3. We now turn to the notion of “vacuum degeneracy” or—more generally—
“state degeneracy”. As we described at point (1), all configurations re-
lated by the action of GS

fin are gauge-related and therefore physically
equivalent. With reference the quoted passage of [93], the observation that
one can add an infinite number of modes φ|there(x) ≡ Re(2ϕ̃(0))|here(x)
to any vacuum state is directly explained by the fact that these modes
are pure gauge (Eq. 21), and disappear after reduction.

4. All superselection sectors are symplectomorphic to each other and to the
space of “radiative modes” Ârad

53

S[fin,ffin] � Ârad = {arad = Dϕk>1 + D × β}.
Therefore, a given arad ∈ Ârad can correspond to many physically differ-
ent configurations, each corresponding to a different superselection sector,
i.e.

C �
⊔

(fin,ffin)∈F

S[fin,ffin] � F× Ârad, F � G∗ � Ann(g, (g∂Σ)∗)

From the viewpoint of C as a Poisson space foliated by symplectic leaves
(the superselection sectors), using e = Ein and μ = Δ−1Ediff to label the
sectors as per Eq. (22), and arad to label the points in Ârad, is tantamount
to treating arad as a “coordinate” on the leaves of C, and (e, μ) as “coordi-
nates” transverse to said leaves. (In other words, Ârad is the generic fibre

52This follows from the global nature of the Hodge decomposition in Ω1(S), Assumption A.
53The space Ârad corresponds to the space of AS fields with no electric zero-modes, i.e. with

Re(2ϕ̃(0)) = 0. It is readily identified with Âμ=0, but we restrain from doing so because,

as we will see shortly, Ârad � Âμ for any: value of μ.
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of the symplectic fibration54 C → F.) In particular, the “coordinates”
(e, μ) then Poisson commute with each other and with arad, which is why
we say they are “superselected”.55 In this “coordinatisation” of C, the
physical magnetic and electric fields at (e, μ, arad) ∈ C are

F = Darad = Δβ (23a)

and56

E = e +
u

2
Δμ + (Diarad

i )in −Diarad
i

= e +
u

2
Δμ + Δϕin

k>1 −Δϕk>1. (23b)

Note that the electric field’s zero-modes (intended as in Lemma 3.9) are
the ones that depend on (e, μ). Thus we see that a sort of “state de-
generacy” exists in our formalism and is given by the notion of super-
selection sectors—thus reaching a conclusion rather different from that
of the quote above. However, the “states” or, more appropriately, the
field configurations of Eq. (23) are not physically degenerate, since they
correspond to distinct asymptotic electromagnetic fields. In particular
arad = 0 could be considered a “dynamical” vacuum configuration, but
is nevertheless associated to different electric fields in different superse-
lection sectors. (It can be seen as a zero-section of C → F.) The “true
vacuum” E = F = 0 belongs to just one superselection sector: the one
with e = μ = 0. The “state degeneracy” we just described, in the language
of [93] (where e = 0, see point (ii) of the above dictionary), corresponds
to different radiative states associated to different values of the “soft pho-
ton N |there = −μ” and not to different values of its pure-gauge conjugate
mode φ|there = Re(2ϕ̃(0)).

5. The origin and nature of the superselection sectors in our picture is quite
different from the one alluded to in the quote, which instead refers to the
breaking of a global symmetry by a choice of vacuum state in a Mexican
hat potential. First, not all (our) sectors carry the same energy. Moreover,
no (gauge) symmetry is ever broken (but rather fixed), and strictly no
Hamiltonian flow exists over C that connects two different superselection
sectors (since the superselection sectors are the symplectic leaves of C, all
Hamiltonian vector fields are tangent to them).57 Indeed, the whole point
here is that the fully reduced (i.e. the fully gauge-invariant) phase space is
not symplectic but rather a disjoint collection of symplectic spaces—the
superselection sectors.

54In [87] we called the space of symplectic leaves the “space of superselections” B. In this
simple application, B � F.
55Here, we have reintroduced the possibility that e �= 0 for completeness.
56Note that, although u-dependent, the second term of E in this formula is bounded by the
fact that u ∈ [−1, 1]. In the asymptotic limit the factor of 2 has to be replaced by the length
of the (compact) u interval.
57Adapting the language used in the quote, we could rephrase: over C, no physical operator

exists that can (continuously) move us from one vacuum to the other, neither of finite or
infinite energy, for such an operator would have to be gauge-breaking.
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6. In light of Appendix A, the discussion at the previous point holds pretty
much unaltered even if Σ is a spacelike hypersurface. This in principle
allows one to “glue” the phase spaces associated to a spacelike and a null
hypersurface with a common boundary S. This gluing has to happen a
superselection sector at the time, i.e. preserving the electric field through
S—which labels the superselection sectors in both phase spaces. Mathe-
matically this might take the form of a fibre product. (See [43, Sect. 6] for
a theorem about gluing of spacelike regions; to ensure smoothness of the
glued field the introduction of a “buffer” zone between the two regions
might be required, cf. e.g. [2]; see also [18] for a different option.)

7. Upon quantisation, the fact that C = C/G is foliated by symplectic super-
selection sectors will presumably translate into the following statements:
(1) the algebra of gauge invariant observables possesses a centre, corre-
sponding to (electric) flux and memory operators; (2) the Hilbert space
associated to the algebra of gauge-invariant observables splits into a di-
rect sum of Hilbert spaces (“soft sectors”) labelled by the values of the
electric fluxes (and/or memory). An analogous conclusion about the split
of the Hilbert space into soft sectors was reached, by a variety of means,
starting from the 1960s—e.g. by studying IR divergences and asymptotic
states in QED scattering amplitudes [22,58–60,63] (see also [21,44,57],
as well as [82] for a critical analysis), or by quantising the asymptotic AS
phase space (“asymptotic quantisation”) [3] (see also [8,64]), or by study-
ing the consequences of the Gauss constraint in algebraic quantum field
theory [13,33,34] (see also [73] and references therein), or by studying the
symmetry structure of asymptotic fields [37,38]. We plan to investigate
the quantisation of our formalism, and its relation to these matters, in
future work (cf. Section 1.4).

8. One important point we have not yet touched upon, that is nonetheless
central to the analysis of asymptotic symmetries and their relation to the
soft theorems, is that of “soft charge conservation” [56,93]. The reason
we have neglected this point so far is because such a conservation is a
matter of dynamics, not kinematics, and therefore cannot be fully probed
by simply analysing the action of gauge symmetries over phase space.
However, if our interpretation in terms of superselection sectors is not
only kinematically but also dynamically correct, then what emerges here
is the prospect that the “conservation of soft charges” is nothing else
than the statement that dynamics “happens within a given superselection
sector”. This interpretation is in fact compatible with the analysis of [84]
(see also [51,53,54], and the approaches of [14,21]). We plan to come back
to this point in the future.

7.2. G Semisimple

To conclude this discussion, we briefly comment on the generalisation of mem-
ory as a superselection label in the non-Abelian case. The morale of the story
is that “colour memory” of [78] fails in general to be a well-defined, gauge-
invariant, notion. We propose below an alternative definition of non-Abelian



Null Hamiltonian Yang–Mills Theory

memory. This discussion will reinforce some of the points made above in rela-
tion to the ideas of “symmetry breaking” and “vacua”.

The simplest scenario to consider is once again the one in which a partial
reduction with respect to GS

in at fin = 0 is performed.
From Theorem 5.2 and Eq. (17a), one obtains:

Theorem 7.9. The symplectic reduction of (C, ω,G) � (PeAS,�eAS, G
∂Σ), with

respect to the Hamiltonian action of the initial copy of GS
in ⊂ G∂Σ at fin = 0

(i.e. e = 0) yields the Ashtekar–Streubel symplectic space (Â,�AS),

(PeAS,�eAS)//0G
S
in � (Â,�AS).

This space carries the following residual action of the gauge symmetry group
GS:

�AS(ξfin)a = Dξfin
.= Dξfin + [a, ξfin].

with momentum map given by

〈hAS, ξfin〉 =
∫

S

√
γ tr((DiL�ai)

∫
ξfin).

The asymptotic (gauge-covariant) electromagnetic field (E,F ) at (u, x) ∈ Σ ⊂
I is then given by

E =
∫ u

−1

du′ (DiL�ai)(u′) and F = Da.

Corollary 7.10. The real part of the AS zero-mode Re(2ã(0)) is a connection
for a principal G-bundle over S; all other AS modes are equivariant w.r.t. the
adjoint representation:

�AS(ξfin)Re(2ã(0)) = Dξfin +
[
Re(2ã(0)), ξfin

]
,

�AS(ξfin)Im(2ã(0)) =
[
Im(2ã(0)), ξfin

]
,

�AS(ξfin)ã(k) =
[
ã(k), ξfin

]
k ≥ 1.

Thus define the AS covariant derivative,

D0
.= D +

[
Re(2ã(0)), · ]. (24)

The AS symplectic structure, as well as the momentum map heAS, diagonalises
in the AS modes decomposition according to:

�AS =
∫

S

√
γ
∑

k≥0

tr
(
dIm(2ã(k)i) ∧ dRe(2ã(k)i)

)

and

(DiL�ai)
∫

= Di
0Im(2ãi(0)) +

∑

k≥1

[
Re(2ã(k)i),Im(2ã(k)i)

]
.
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Proof. We prove the first statement last. The mode decomposition of �AS

was computed in Proposition 3.10. The mode decomposition of heAS can be
computed analogously (see Lemma 3.9):

∫ 1

−1

du DiL�ai =
∫ 1

−1

du
(
DiL�ai + [ai, L�ai]

)

=
∫ 1

−1

du L�D
iai −

∫ 1

−1

du
(
ȧα

i a
iβ − ȧβ

i a
iα

)
1
2fγ

αβτγ

= (Diai)diff − 2iG(aα, aβ) 1
2fγ

αβτγ

where we decomposed a in a basis of the Lie algebra {τα}. Hence, we get the
result by observing that

G(aα, aβ) =
∑

k≥0

ãα(k)∗ ãβ(k)− c.c. = 2i
∑

k≥0

Re(ãα(k))Im(ãβ(k))− (α↔ β),

and recalling that adiff is the imaginary part of 2ã(k = 0).
Plugging this expression in the formula for the momentum map for the

GS action on PeAS we immediately obtain the claimed expression for the AS
mode decomposition of the infinitesimal action, since the real and imaginary
parts of AS modes are canonically conjugate to one another. �

Theorem 7.6 and its corollary suggest a non-Abelian generalisation of
electromagnetic memory. This definition is not equivalent to “colour memory”
as proposed in [78]. See Remark 7.12.

Definition 7.11 (Non-Abelian memory). In the superselection sector where fin

= 0, the non-Abelian memory μ is the solution to the elliptic equation

−D2
0μ

.= (DiL�ai)
∫

= Di
0Im(2ã(0)i) +

∑

k≥1

[
Re(2ã(k)i),Im(2ã(k)i)

]
.

where D2
0 is the AS Laplacian58 associated to D0 (Eq. (24)).

Remark 7.12. Definition 7.11 is a viable generalisation of Eq. (20).
Although μ is not gauge invariant, it is gauge-equivariant with respect to

the residual gauge action by GS
fin, and superselection sectors (with fi = 0) are

indeed labelled by the coadjoint orbit Oμ of μ ∈ (gS)∗.
Note, however, that the non-Abelian memory μ (or its coadjoint orbit)

fails to be a viable superselection label as soon as fin �= 0. This is due to the
nonlinearity of the coadjoint orbits. (See also Remark 7.13.)

In the scenario where fin = 0 (i.e. Ein = 0) and non-Abelian memory
as superselection does make sense, we see however that it fails to split into
quantities defined at Sin and Sfin, as opposed to the Abelian case:

(DiL�ai)
∫

= Diadiff
i +

∑

k≥0

[
Re(2ã(k)i),Im(2ã(k)i)

] �= Diadiff
i .

owing to Im(2ãi(0)) = adiff
i .

58If Re(2ã(0)) is irreducible then D2
0 is invertible; otherwise, μ is only determined up to

elements of the stabiliser of Re(2ã(0)).
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There is therefore no obvious sense in which memory is about a net change
in the ai: it is instead about a net change in the value of the electric field, up
to an appropriate transport by Λ (cf. the proof of Proposition 6.6):

Efin = Ad(Λ−1) · Ein

︸ ︷︷ ︸
=0

+Diadiff
i +

∑

k≥0

[
Re(2ã(k)i),Im(2ã(k)i)

] �= Diadiff
i .

(25)

In other words, even setting F in = F fin = 0, as is assumed in [78,93],
and thus being able to set ain = U−1

in DUin and afin = U−1
fin DUfin, a description

of non-Abelian memory as a superselection label in terms of the “vacuum
transition” (or “colour memory” [78]) U = U−1

in Ufin is not possible: the entire
history of ai along I is necessary to compute μ, rather than just its initial
and final values. Comparing to [78], we see that Eq. (25) is the same as their
Eq. (19), upon identification our the last term with their integral of the “colour
flux Ju”.

Remark 7.13. For G semisimple, reduction at fin = 0 is qualitatively different
than reduction at fin �= 0 and would not yield the AS phase space as a result.
This is because only Ofin=0 is point-like. Here, we refrain from providing a
more general statement.
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Appendix A. Example: Maxwell Theory on a Spacelike Slice

We now give a succinct summary of Abelian YM theory on a 3-dimensional
Riemannian manifold (Σ, γ)—thought of as a spacelike codimension-1 subman-
ifold of M Lorentzian—as an exemplification of the theory outlined in Sect. 2.
Details can be found in [85,87].

For N a manifold, we denote RN .= C∞(N,R).
Let P = T ∗A � (A,E), with A ∈ A � Ω1(Σ), E ∈ T ∗

AA � Ω2(Σ),
and ω = dE ∧ dA, be the symplectic space of “magnetic potentials and elec-
tric fields” over Σ. The (Abelian) gauge algebra is G = RΣ; it acts on P as
ρ(ξ)(A,E) = (dξ, 0). Assume that the first de Rham cohomology of Σ is triv-
ial, and denote n the normal to the boundary of ∂Σ and ∗ the Hodge dual
on (Σ, γ). Then, using the Hodge–Helmholtz decomposition, it is not hard to
show that Arad

.= {A ∈ A d ∗ A = 0, inA|∂Σ = 0} is (the image of) a global
section of A→ A/G and hence Arad � A/G.

The momentum form H decomposes into the sum of a (Gauss) constraint
form 〈H◦, ξ〉 = −ξdE, and a flux form 〈dh, ξ〉 = d(Eξ) which, once integrated
on Σ, gives the smeared electric flux through ∂Σ. The constraint gauge group
is G◦ = {ξ ∈ G ∃χ ∈ R such that ξ|∂Σ = χ} (constant gauge transformations
play a role because of Gauss’s law); the flux gauge group is G � R∂Σ/R, where
R ↪→ R∂Σ as constant functions, while flux space is found to be F � G∗ �
Ann(R,R∂Σ).

The first- and second-stage reduced phase spaces are isomorphic (as sym-
plectic or Poisson, resp.) manifolds to the following spaces:

C � T ∗Arad × T ∗G and C � T ∗Arad ×G∗

Manifestly, C is a symplectic manifold, whereas C is only Poisson. Since the
flux space is F � G∗, the last formula states that all the superselection sectors
are all isomorphic:

S[f ] � T ∗Arad.

Physically T ∗Arad encodes the radiative degrees of freedom (the “photons”)
over Σ, while F � G∗ encode the electric “Coulombic” degrees of freedom (i.e.
the co-exact part of E, d � ϕ) as parametrised by ι∗∂ΣE|∂Σ, the electric flux
through ∂Σ. This is possible because of the Gauss constraint H◦ = dE, which
in the given decomposition is given by the equations Δϕ = 0 and indϕ|∂Σ =
�∂Σι∗∂ΣE.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Note that, whereas in C the electric fluxes are conjugate to the gauge
variant elements of G—sometimes called “edge modes” [28]—they have no
symplectic partner in C. Indeed, in C, they are precisely the central coordinates
in C whose value labels the superselection sectors.

In the non-Abelian case, analogous results hold where T ∗G is replaced
by T ∗G, but the symplectomorphisms are only local [87, Section 6.5].

Appendix B. Notes on Definition 2.2 and Locality

The central notion used in the definition of a locally Hamiltonian gauge theory
(Definition 2.2) is that of locality. Here, we briefly clarify this notion and refer
to [87] for a detailed discussion (for a more general viewpoint see e.g. [11]).

1. Let Yi → Σ, i = 1, 2, be two fibre bundles, and Yi = Γ(Σ, Yi) the cor-
responding spaces of sections, denoted ϕi; then, a map f : Y1 → Y2 is
said local iff ϕ2(x) .= f(ϕ1)(x) can be expressed as a function of x, ϕ1(x),
and a finite number of its derivatives (called the order of the map) also
evaluated at x. A map of order 0 is said ultralocal.

2. There exists a notion of “local forms” α ∈ Ωp,q
loc(Σ × P) ⊂ Ωp,q(Σ × P)

that generalises that of local maps and function(al)s discussed above [11].
We denote by (d, i, L) and (d, i,L) the symbols of Cartan calculus on
local forms Ω•,•

loc(Σ × P). We will see that whereas Hamiltonian Yang–
Mills theory on a spacelike Σ features an ultralocal symplectic density,
Hamiltonian Yang–Mills theory on a null Σ does not.

3. A (real) Lie algebra G is said local if its elements ξ are sections of a (real)
vector bundle Ξ→ Σ and its Lie bracket [·, ·] : G∧G→ G is a local map.

4. The action ρ : P×G→ TP is said local iff it is a local map.
5. Local R-linear maps G→ Ωtop,0(Σ×P) can be identified with local forms

Ωtop,0
loc (Σ × P,G∗

loc) valued in the local dual (defined in Remark 2.3), or
with local forms in the triple complex Ωtop,0,0

loc (Σ × P × G) which are
linear in G [87, Defintion 2.12]. Throughout, we will deliberately merge
these notions. With reference to the definition of a locally Hamiltonian
gauge theory this means merging the momentum and co-momentum map
viewpoints, and only talking about momentum forms and maps when
referring to H and derived objects.

6. The quantity dk(ξ, η) is a Chevalley–Eilenberg cocycle of G. It does not
depend on the fields (ddk(ξ, η) = 0) [87, Sect. 3.5]. Its d-exactness is
here imposed to match the Lagrangian origin of the locally Hamiltonian
gauge theory, where equivariance up to a boundary cocycle is a conse-
quence of Noether’s theorem and encodes the first-class nature of the
gauge constraints [87, Appendix D].

Appendix C. Wilson Lines and Path-Ordered Exponentials

In this appendix, G denotes a Lie group which is either (i) Abelian, or (ii)
compact and semisimple.
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We begin with a statement about a 1-dimensional parallel transport prob-
lem for each of the k-components of the map Y : I → Ωk(S, g); the lemma
readily follows from the theory of ODEs in one variable:

Lemma C.1 (Parallel transport along �). Let Y,Z : I → Ωk(S, g) and Z0 =
Ωk(S, g). Then, for all smooth A ∈ A, Z and Z0, the boundary value problem59

{
L�Y = Z

Y |u=−1 = Z0

admits a unique smooth solution Y (u) = (Y (A,Z,Z0))(u).

Next, we recall a standard result on the definition of Wilson lines (some-
times referred to as “holonomies” or “parallel transports”) of a gauge connec-
tion along the integral curves of � = ∂u:60

Notation C.2. Let x ∈ S. By definition (L�UU−1)(x) .= i�U
∗
xϑ, where Ux

.=
evx ◦ U : I → G and ϑ ∈ Ω1(G, g) is the right-invariant Maurer–Cartan form
on G. This quantity is valued in C∞(S, g) = gS.

Lemma C.3 (Wilson lines along �). Let U ∈ C∞(I,GS). Then, for all smooth
A ∈ A, the boundary value problem

{
L�V V −1 = −A�

V (u = +1) = 1

admits a unique smooth solution V (u) = (V (A))(u), which we call the Wilson
lines (of A along �), and denote

(V (A))(u) ≡ −−−→Pexp
∫ 1

u

du′ A�(u′).

In the Abelian case one has the identity

(V (A))(u) = exp
∫ 1

u

du′ A�(u′) (Abelian)

Thanks to the smoothness and uniqueness of the Wilson lines V (A), one
deduces:

Corollary C.4 (of Lemma C.3). The Wilson lines V (A) =
−−−→
Pexp

∫
A� : I →

GS can be interpreted as maps: A → GΣ � C∞(I,GS) which are bi-locally
equivariant under the action of gauge transformations g ∈ GΣ,

(V (Ag))(u) = (g(u))−1(V (A))(u)gfin.

In particular if A = g−1dg,

(V (g−1dg))(u) ≡ −−−→Pexp
∫ 1

u

du′ g−1L�g(u′) = (g(u))−1gfin.

59Recall: L�Y
.
= L�Y + [A�, Y ].

60Here we phrase the lemma in terms of a “final condition” rather than an “initial one”. Of
course this makes little difference, and is in fact the form of the lemma that will be most
useful for this article.
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Appendix D. Proofs of Some Lemmas

D.1. Proof of Lemma 4.5

Let X ⊂W and Y = Ann(X,W∗
str). From

Ann(X,W∗
str) � (W/X)∗

str , Ann(Y,W) � (W∗
str/Y)∗

str

we obtain

Ann(Ann(X,W∗
str),W) � (

W∗
str/ (W/X)∗

str

)∗
str

Dualising the short exact sequence

X→W→W/X

we conclude that X∗
str � W∗

str/ (W/X)∗
str. Hence, since both nuclear Freéchet

vector spaces and their strong duals, as well as their closed subspaces,61 are
reflexive [62, Rmk. 6.5], one finds

Ann(Ann(X,W∗
str),W) � (X∗

str)
∗
str � X∗∗

str = X.

D.2. The Two-Form of Definition 3.6 is Symplectic

According to Definition 2.2(ii), ωnYM of Definition 3.6 is a symplectic density
iff ωnYM is d-closed and ωnYM =

∫
Σ

ωnYM is (weakly) symplectic. The form
ωnYM is obviously d-closed, and therefore so is ωnYM. Therefore, the crux is
proving the (weak) non-degeneracy of ωnYM, i.e. iXωnYM = 0 iff X = 0.

For ease of notation, we henceforth drop the subscript ·nYM, i.e. ωnYM �
ω, etc.

Using the identity of Eq. (2) for dF�, the form ω can be rewritten as

ω =
(
tr(dE ∧ dA�) + tr(−DidA� ∧ dÂi) + tr(L�dÂ

i ∧ dÂi)
)
volΣ.

Denoting

X =
∫

XE
δ

δE
+ X̂i δ

δÂi
+ X�

δ

δA�
,

one finds:

iXω =
(
tr(XEdA�)− tr(dEX�)

+ tr((L�X̂
i −DiX�)dÂi)− tr((L�dÂ

i −DidA�)X̂i)
)
volΣ.

61Any closed subspace of a nuclear Fréchet space is both nuclear and Fréchet. A quotient
by a closed subspace also retains the nuclear Fréchet property.
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Factoring out a total divergence (i.e. “integrating by parts”), one finds:

iXω =
(
− tr(X�dE) + tr(XEdA�) + tr((L�X̂

i)dÂi)

+ tr((−L�dÂ
i + DidA�)X̂i)

)
volΣ (26a)

=
(
− tr(X�dE) + tr((XE −DiX̂i)dA�) + 2tr((L�X̂

i)dÂi)

+ Ditr(X̂idA�)− ∂utr(X̂idÂi)
)
volΣ (26b)

.= (iXω)src + (iXω)bdry, (26c)

where the “source” (top, 1)-form (iXω)src is defined by the first line of Eq. (26b),
while the “boundary” (top, 1)-form (iXω)bdry is defined by the second line of
the same equation.62

We now use these formulas to prove that ω is (weakly) non-degenerate,
i.e. that if 0 = iXω =

∫
Σ
iXω then X = 0.

If 0 = iXω, then iYiXω = 0 for all Y with (YE , Y�, Ŷi) of compact support
in Σ̊, the open interior of Σ. Using Takens’ theorem, we notice that for such
Y’s 0 = iYiXω =

∫
Σ
iY(iXω)src. From the fundamental lemma of the calculus of

variations, it follows that (iXω)src = 0, that is:

iXω = 0 =⇒ (iXω)src = 0 ⇐⇒ X� = XE −DiX̂i = L�X̂
i = 0,

where Eq. (26b) was used in the last step. Now recall that iXω =
∫
Σ
(iXω)src +

(iXω)bdry. Leveraging the previous conditions, and using similar arguments,
we also find that

iXω = 0 =⇒ 0 =
∫

Σ

iXωbdry =
∫

∂Σ

tr(X̂idAi) ⇐⇒ X̂i(u = ±1) = 0.

Combining this with the previous conditions on X�, XE and L�X̂
i as well as

Lemma C.1, we conclude that iXω = 0 implies X� = XE = X̂i = 0 i.e. X = 0.

Remark D.1. Staring from Eq. (26b), it is similarly possible to use Takens’s
theorem (Footnote 62) and Lemma C.1 to show that ω is (weakly) non-
degenerate, i.e. that ω	 is injective. However, in general, ω	 injective does
not imply ω	 injective (in fact from the previous argument it is clear that the
opposite is true, since Ker(ω	) ⊂ Ker(ω	) ⊂ Ker(ω	

src)).

D.3. Proof of Lemma 3.9

Let f ∈ C∞(I,R) and define

f̄(u) .= f(u)− (f0 − favg)− u

2
fdiff .

Observe that

f̄0 = f0 − 2(f0 − favg) = favg − (f0 − favg) = f̄avg,

62Recall: a (top, 1)-form is said “source” iff no derivative acts on the field-space 1-form
terms dφ; it is said “boundary” iff it is d-exact. A theorem by Takens [95,96,100] then
states that the space of (top, 1)-forms is the direct sum of the space of source and boundary
(top, 1)-forms. See [87, Theorem 2.18] or [11] for more details.



Null Hamiltonian Yang–Mills Theory

whence, f̄diff = 0 = f̄0 − f̄avg. In particular, f̄ is C∞ and periodic over I.
Therefore, the partial Fourier series FN [f̄ ],

FN [f̄ ](u) .=
1
2
ā(0) +

N∑

k=1

ā(k) cos(πku) + b̄(k) sin(πku), ā(k) + ib̄(k)

.=
∫ 1

−1

f̄(u)eiπku,

converges to f̄ uniformly. In particular,

1
2
ā(0) +

N∑

k=1

(−1)kā(k) = FN [f̄ ]avg → f̄avg = f̄0 = ā(0). (27)

Moreover, note that the Fourier coefficients of f are related to those of f̄
via

a(k) + ib(k) .=
∫ 1

−1

f(u)eiπku =

{
ā(0) + 2(f0 − favg) k = 0,

ā(k) + i
(
b̄(k)− (−1)k

πk fdiff
)

k ≥ 1.

Consider now the partial series

SN [f ](u) .=
N∑

k=0

f̃(k)∗ψk(u) + c.c.,

where

2f̃(k) .= 2G(ψk, f) =

{
(f0 − favg) + ifdiff k = 0
a(k) + i

(
2πkb(k) + 2(−1)kfdiff

)
k ≥ 1

(28)

Then, decomposing ψk = ψR
k + iψI

k, and f̃ = f̃R + if̃ I , into their real and
imaginary parts,

SN [f ](u) = 2
N∑

k=0

f̃R(k)ψR
k (u) + f̃ I(k)ψI

k(u)

= (f0 − favg) +
u

2
fdiff +

N∑

k=1

ā(k)ψR
k (u) + 2πkb̄(k)ψI

k(u)

= (f0 − favg) +
u

2
fdiff +

N∑

k=1

ā(k)((−1)k + cos(πku)) + b̄(k) sin(πku)

= (f0 − favg) +
u

2
fdiff + FN [f̄ ](u)− 1

2
ā(0) +

N∑

k=1

(−1)kā(k)

where we used that for k ≥ 1, ā(k) = a(k), as well as the expression for b(k)
in terms of b̄(k). Finally, from the uniform convergence of the Fourier series
FN [f̄ ](u)→ f̄(u) and Eq. (27), we find

SN [f ](u) unif.−−−−→
N→∞

(f0 − favg) +
u

2
fdiff + f̄(u) = f(u).
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D.4. Proof of Proposition 3.10

Generalising the result of Lemma 3.9 (Appendix D.3) to the case where f ∈
C∞(I) is replaced by a ∈ Â � C∞(I,Ω1(S)), one finds

SN [ai(x)](u) .=
N∑

k=0

( ã∗
i (k, x)ψk(u) + c.c.) unif.−−−−→

N→∞
ai(u, x),

and thus

�AS
.=
∫

S

∫ 1

−1

(L�dai(u, x)) ∧ dai(u, x)du volS

= 2i

∫

S

G(dai(x), dai(x))volS

= 2i

∫

S

lim
N,M→∞

G(SN [dai(x)], SM [dai(x)])volS

= 2i

∫

S

∞∑

k=0

d ã∗
i (k, x) ∧ d ãi(k, x)volS ,

where in the third equality we used the fact that the convergence is uniform to
pull out the limit from the integral over u ∈ I that is implicit in the definition
of G. The final expression of �AS where the k = 0 term is singled out is
straightforward.

D.5. Details of Calculation 5.18

We compute ω(AU , EU ). Recall Definition 3.6:

ω(A,E) .= tr
(
dF i

� ∧ dAi + dE ∧ dA�)volΣ.

Thus, we compute:

ω(AU , EU ) = tr
(
d(U−1F i

�U) ∧ d(U−1AiU + U−1∂iU)

+ d(U−1EU) ∧ d(U−1A�U + U−1∂udU
)
volΣ

= ω(A,E)

+ tr
(
[F i

� , dUU−1] ∧Di(dUU−1) + [E, dUU−1] ∧ L�(dUU−1)
)
volΣ

+ tr
(
dE ∧ L�dUU−1 − dF i

� ∧DidUU−1

+ [F i
� , dUU−1] ∧ dAi + [E, dUU−1] ∧ dA�

)
volΣ (29)

We focus first on the second line of (29). Recalling that the Gauss constraint
reads G = L�E + DiF

i
� , and using the identity

[dUU−1,L�dUU−1] = 1
2L�[dUU−1, dUU−1] = L�d(dUU−1),
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we find:

[2nd] = tr
(
F i

� [dUU−1,DidUU−1] + E[dUU−1,L�dUU−1]
)
volΣ

= −tr
(
Gd(dUU−1)

)
volΣ

+ L�tr
(
Ed(dUU−1)

)
volΣ + Ditr

(
F i

�d(dUU−1)
)
volΣ

Next, we focus on the third and fourth lines of (29). Using the following identity
for the variation of the Gauss constraint,

tr
(
(dG)ξ

)
= tr

(
(L�dE + DidF

i
� + [dA�, E] + [dAi, F

i
� ])ξ

)

= tr
(− dE L�ξ − dF i

� Diξ + [dA�, E]ξ + [dAi, F
i
� ]ξ

)

+ L�tr
(
(dE)ξ

)
+ Ditr

(
(dF i

� )ξ
)
,

we find:

[3rd + 4th] = −tr(dG ∧ dUU−1)volΣ

+ L�tr
(
dE ∧ dUU−1

)
volΣ + Ditr

(
dF i

� ∧ dUU−1)volΣ

Summing the two contributions, we obtain:

ω(AU , EU ) = ω(A,E) + dtr
(
GdUU−1)volΣ

+ L�dtr(EdUU−1)volΣ + Didtr(F i
�dUU−1)volΣ,

and thus, integrating over Σ � S × I, we conclude:

ω(AU , EU ) = ω(A,E) + d
∫

Σ

tr
(
GdUU−1)

+ d
∫

Sfin

tr
(
EfindUfin(Ufin)−1

)− d
∫

Sin

tr
(
EindU in(U in)−1

)
.

Appendix E. Proof of Equation (13) on Abelian YM in
Theorem 5.2

In this appendix we prove that

(C, ω) � (Plin
eAS,�

lin
eAS) �loc (PeAS,�eAS) (Abelian),

where

(Plin
eAS,�

lin
eAS)

.= (Â× T ∗gS ,�AS + ωS).

In other words, we prove that there exists a global symplectomorphism between
(C, ω) � (Plin

eAS,�
lin
eAS).

The fact that (Plin
eAS,�

lin
eAS) is locally symplectomorphic to (PeAS,�eAS)

is straightforward and relies on the multi-valuedness of the log : GS
0 → gS .

Moreover, we note that the local symplectomorphism (C, ω) �loc (PeAS,�eAS)
was proved on general grounds in the main Sect. 5.
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E.1. Preliminaries

Notation E.1. If (the connected real Lie group) G is Abelian then it is the
direct product of a torus and the real line. We write

G � U(1)t × Rk and g � (iR)t × Rk.

Notation E.2. Recall that G ↪→ GΣ as the space of constant mapping functions.
Then,

G ·GΣ
rel ≡ {g ∈ G ∃k ∈ G such that g|∂Σ = k}.

Lemma E.3 (Abelian winding number). Let g ∈ G · GΣ
rel, then the following

g-valued is valued in an integer lattice of g ↪→ gS,

w(g) .=
1
2π

∫ 1

−1

du′ g−1L�g(u′) ∈ (iZ)t × {0}.

Moreover, w(g1g2) = w(g1) + w(g2). We call w(g) the winding number of
gS ∈ G ·GΣ

rel.

Proof. Consider a ≤ b in I, and recall the identity (for g ∈ G):

W (g; a, b) .= exp
∫ b

a

du′ g−1∂u′g = g−1(a)g(b).

This formula can be read as the gauge-equivariance of the (Abelian) path-
ordered exponential—i.e. at each x ∈ S this formula is the holonomy (a.k.a.
Wilson line, see Appendix C), drawn at constant x, between (x, u = a) and
(x, u = b) (see Appendix C). Then, if g ∈ G̃ · GΣ

rel, we have exp 2πw(g) =
W (g;−1, 1) = 1, and therefore w(g) ∈ iZt × {0}.

We conclude by observing that the additivity w(g1g2) = w(g1) + w(g2)
follows immediately from the definition since

(g1g2)−1L�(g1g2) = g−1
2 g−1

1 (L�g1g2 + g1L�g2) = g−1
1 L�g1 + g−1

2 L�g2.

�

Recall that the space of on-shell fluxes is F
.= Im(ι∗Ch), the constraint

gauge algebra is G◦
.= Ann(F, gΣ), and the constraint gauge group is G◦

.=
〈expG◦〉. Now, if G is Abelian, Proposition 5.8(2) tells us that

G◦ � gΣ
rel + g,

and

G◦
.= 〈expG◦〉 � (G ·GΣ

rel)0 = G ·GΣ
rel,0.

The next proposition provides a more explicit characterisation of G◦:

Proposition E.4 (Abelian constraint gauge group G◦). The Abelian constraint
gauge group G◦

.= 〈expG◦〉 is isomorphic to

G◦ � G ·GΣ
rel,0 =

{
g ∈ G ·GΣ

rel w(g) .= 1
2π (g−1∂ug)

∫
= 0

}
.
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Proof. We prove the statement by showing the two inclusions.
Lemma E.3 states that w(g) is valued in an integer lattice (iZ)p ×{0} ⊂

g ↪→ gS . But then, since w(g) ∈ gS is continuous over S, w(g) is constant
on S. Additionally, w : G ·GΣ

rel → g is a constant function over the connected
components of G·GΣ

rel—and in particular it vanishes on the identity component.
Therefore:

G ·GΣ
rel,0 ⊂ {g ∈ G ·GΣ

rel w(g) = 0}.
Next, let g ∈ G ·GΣ

rel—so that gin = gfin ≡ k ∈ G—and assume w(g) = 0.
For all t ∈ [0, 1], define

gt
.= k exp t

∫ u

−1

du′ g−1L�g(u′).

Then, gt=0 = gin and gt=1 = k(g−1)ing = g. Moreover, since w(g) = 0, we have
that gfin

t = k exp(2πtw(g)) = k. Therefore for all t ∈ [0, 1], gin
t = gfin

t = k ∈ G
and hence gt ∈ G · GΣ

rel. We thus conclude that gt is an homotopy in G · GΣ
rel

between g and a constant k ∈ G. Since G is by hypothesis connected, g is not
only homotopic within G ·GΣ

rel to k but also to the identity 1 ∈ G ·GΣ
rel. Thus,

G ·GΣ
rel,0 ⊇ {g ∈ G ·GΣ

rel w(g) = 0}.
�

Remark E.5 (Group homomorphism). Recall Notation E.1. If t = 0 then it
is easy to see that any g ∈ G · GΣ

rel is homotopic to the identity, and thus
G◦ = G·GΣ

rel. On the other hand, if G = U(1) and n ∈ Z, then the only element
g(n)(u, x) = − exp(πniu) ∈ G · GΣ

rel that is also in the identity component
G◦ = G · GΣ

rel,0 = expG◦ is the identity itself, i.e. g(0).63 The quantity w(g)
is a topological invariant classifying the connected components of G · GΣ

rel; in
particular w(g(n)) = in. Moreover, w(g1g2) = w(g1) + w(g2). Indeed, if S =
Sn−1 and n �= 2, the winding number w(g) provides a group homomorphism
between G ·GΣ

rel and the group of components of G ·GΣ
rel � GS1×S � Zt.

E.2. Gauge Fixing

We now turn our attention to the action of the constraint gauge group on the
constraint surface C ⊂ P. Since G◦ � gΣ

rel + g “differs” from gΣ
rel only by the

(C-global) isotropy Ker(ρ) = g ↪→ G, one has

C
.= C/G◦ = C/GΣ

rel,0.

Recall Proposition 4.2 which states that

C � A× (gS)∗.

Lemma E.6. The action of GΣ
rel,0 on C induces the following action of GΣ

rel,0

on A× (gS)∗:

GΣ
rel,0 � A× (gS)∗, (g◦, A,Ein) �→ (Ag◦ , Ein).

63Indeed, ξ ∈ G◦ iff ξin = ξfin ∈ g, and −πin = πin iff n = 0.
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This action defines the principal GΣ
rel,0-bundle

π◦ : A× (gS)∗ → (A× (gS)∗)/GΣ
rel,0,

with (A× (gS)∗)/GΣ
rel,0 = (A× (gS)∗)/G◦ � C. Diagrammatically:

A× (gS)∗
sin


 ��

π◦
��

C

π◦

��

(A× (gS)∗)/GΣ
rel,0


 �� C

Proof. The only step of the proof that is not obvious and requires some care
is proving that the action of GΣ

rel,0 is free on A and therefore on A × (gS)∗.
This follows from Ker(ρ) = g ↪→ gΣ and g ∩ gΣ

rel = {0}. �

Now, since C � A × (gS)∗ is a principal GΣ
rel,0-bundle and C

.= C/G◦ �
C/GΣ

rel,0, the question of reduction can be directly addressed if we can find
a (global) gauge fixing of the action of GΣ

rel,0 on C, i.e. a (global) section
of the principal GΣ

rel,0-bundle (A × (gS)∗, π◦). We proceed in two steps: first
we introduce a trivialisation of this principal bundle, and then leverage it to
construct a global section.

Lemma E.7. Viewing GΣ
rel,0 ⊂ GΣ � C∞(I,GS), let

υ◦ : A→ gΣ � C∞(I, gS),

A �→ (υ◦(A))(u) .= −
∫ u

−1

du′ A�(u′) + 1
2 (u + 1)(A�)

∫
.

Then, the following map is a principal GΣ
rel,0-bundle trivialisation:

τ◦ : A× (gS)∗ → Plin
eAS ×GΣ

rel,0 ≡ Â× T ∗gS ×GΣ
rel,0

(
A

Ein

)
�→

⎛

⎜⎜⎝

a(A)
λ(A)
e(Ein)
U◦(A)

⎞

⎟⎟⎠
.=

⎛

⎜⎜⎝

Â + Dυ◦(A)− 1
2 (u− 1)D(A�)

∫

(A�)
∫

Ein

exp υ◦(A)

⎞

⎟⎟⎠

where e ∈ T ∗
λg

S � (gS)∗ (cf. Remark 4.1). Diagrammatically:

Plin
eAS ×GΣ

rel,0

π12
��&&&&&&&&&&&

A× (gS)∗

π◦
��

τ◦



��

Plin
eAS

where π12 denotes the projection on the first two factors, and we have π◦ =
π12 ◦ τ◦.
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Proof. Proving the lemma requires showing that (1) τ◦ is invertible, and (2) it
maps right-translations of the GΣ

rel,0-factor in Â×T ∗gS×GΣ
rel,0 onto the action

of GΣ
rel,0 on A× (gS)∗. Throughout the proof, it is useful to keep in mind that

λ(A) is constant in u.
To prove (1), it is enough to show that the following map is indeed both

a left and a right inverse of τ◦:

τ−1
◦ : Â× T ∗gS ×GΣ

rel,0 → A× (gS)∗

(a, λ, e, U◦) �→
(

A
Ein

)

=
(
a + 1

2 (u− 1)Dλ + 1
2λdu− dU◦U◦−1

e

)
. (30)

Proving the left-inverse property is straightforward once one notices that
the first component a(A) of τ◦(A,Ein) satisfies

a(A) + 1
2 (u− 1)Dλ(A) + 1

2λ(A)du = A + U◦(A)−1dU◦(A).

We leave the details to the reader.
Proving the right-inverse property is instead subtler. For this we need

some preliminary results. Denote the first component of τ−1
◦ (a, λ, e, U◦) by

A′ = A′(a, λ, e, U◦)
.= a + 1

2 (u− 1)Dλ + 1
2λdu− dU◦U◦−1.

Then,

A′
� = 1

2λ− L�U◦U◦−1.

From these, recalling that λ is constant in u, we compute:

λ(A′) .= (A′
�)

∫
= λ− (L�U◦U◦−1)

∫
= λ

where we used the fact that U◦ ∈ GΣ
rel,0 and therefore w(U◦) = 1

2π (U−1
◦ L�U◦)

∫

= 0 (Proposition E.4). Similarly, we find

(υ◦(A′))(u) .= −
∫ u

−1

du′ A′
� + 1

2 (u + 1)(A′
�)

∫
= −

∫ u

−1

du′ U−1
◦ L�U◦(u′),

and thus (see also Appendix C)

U◦(A′) .= exp υ◦(A′) = U◦(U◦in)−1 = U◦.

Now, with these two formulas, it is easy to see that τ−1
◦ is indeed a right inverse

of τ◦ as well. This concludes the proof of (1).
Finally, to prove (2) we appeal to (1) which tells us that it is enough to

prove that U◦ �→ g◦U◦ maps A′ �→ A′ + g−1
◦ dg◦, a fact that is obvious when

looking at the explicit form of τ−1
◦ . �

Now that we have an explicit, global, trivialisation τ◦ of the principal
GΣ

rel,0-bundle π◦ : A × (gS)∗ → Â × T ∗gS , it is immediate to produce one of
its (global) sections, σ◦:
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Corollary E.8. The map σ◦ : Plin
eAS → A× (gS)∗ defined as

σ◦
.= τ−1

◦ (·, ·, ·, 1),

where 1 ∈ GΣ
rel,0 (cf. Equation (30)), is a section of A× (gS)∗ π◦−→ Plin

eAS.

E.3. Abelian Constraint Reduction

Recall now that Plin
eAS is equipped with the symplectic structure �lin

eAS
.= �AS +

ωS , and that A× (gS)∗ � C ⊂ P:

Lemma E.9. Define the embedding map σP
◦

.= ιC ◦ sin ◦ σ◦ as per the commu-
tative diagram

A× (gS)∗ sin



�� C

� 
 ιC �� P

Â× T ∗gS
��

σ◦

��

σP
◦

��

Then, σP
◦ is a symplectic embedding, i.e. (σP

◦ )∗ω = �lin
eAS or, more explicitly,

(σP
◦ )∗ω(a, λ, e) = �lin

eAS(a, λ, e) .= �AS(a) + ωS(λ, e)

=
∫

Σ

tr(L�da
i ∧ dai) +

∫

S

tr(de ∧ dλ).

Proof. This can be proved by inserting the following formula for (A,E) into
ω(A,E),

(A,E) = σP
◦ (a, λ, e) = sin(a + 1

2 (u− 1)Dλ(A) + λdu, e) ∈ C ⊂ P,

and recalling that E(A,Ein) is by construction a solution of the Gauss con-
straint G = 0: in our notation, sin(A,Ein) ≡ (A,E(A,Ein)) (Proposition 4.2).

A more conceptual proof along the lines of that provided for Calcula-
tion 5.18 (see Appendix D.5) can be found in v1 of this article on the arXiv
repository. The advantage of this alternative proof is that it shines a light on
the relationship between symplectic reduction, the dressing field method, and
its close relation to “edge modes”. �

Combining these results, we can finally prove:

Theorem E.10 (Equation (13) of Theorem 5.2). For G Abelian, the constraint-
reduced phase space (C, ω) of Yang–Mills theory at a null boundary Σ, which
is defined by

C
.= C/G◦ and π∗

◦ω
.= ι∗Cω,

is symplectomorphic to the linearly extended Ashtekar–Streubel phase space,

(C, ω) � (Plin
eAS,�

lin
eAS)

.= (Â× T ∗gS ,�AS + ωS),

by means of the map sin
.= π◦ ◦ sin ◦ σ◦ : Â× T ∗gS → C.

Moreover,

(C, ω) �loc (PeAS,�AS)
.= (Â× T ∗GS

0 ,�AS + ΩS),
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by means of the map64 slog
in

.= sin ◦ (id
Â

, logGS
0
, id(gS)∗) : Â × T ∗GS

0 → C.
Explicitly,

(slog
in )∗ω(a,Λ, e) = �eAS(a,Λ, e) .= �AS(a) + ΩS(Λ, e)

=
∫

Σ

tr(L�da
i ∧ dai) +

∫

S

tr(de ∧ dΛΛ−1).

Proof. The theorem is a consequence of the previous lemmas and the following
commutative diagram:

A× (gS)∗ sin



��

π◦
��

C
� 
 ιC ��

π◦

��

P

constraint
reduction��

��
��
��
��

������Plin
eAS

sin



��

��

σ◦

��

C

Indeed, Corollary E.8 tells that the first and second columns of the diagram
are diffeomorphic principal GΣ

rel,0-bundles.
Then, using Lemma E.9, we compute:

�lin
eAS = (σP

◦ )∗ω ≡ (ιC ◦ sin ◦ σ◦)
∗ω

= (sin ◦ σ◦)
∗ι∗Cω = (sin ◦ σ◦)

∗π∗
◦ω

= (sin ◦ σ◦)
∗(sin ◦ π◦ ◦ s−1

in )∗ω

= (sin ◦ π◦ ◦ σ◦)
∗ω = s∗

inω

from which we obtain the sought identity:

�lin
eAS = s∗

inω.

The remainder of the proof is obvious. �

Appendix F. Summary of Notations

Geometry and Differential Calculus on Spacetime

M ←↩ Σ M is the smooth, orientable, spacetime (i.e. Lorentzian) man-
ifold, and Σ a codimension-1 manifold inside it. Possibly,
∂Σ �= ∅. Section 3.1.

n ≥ 1 The (finite!) dimension of Σ. Section 3.1.
L, i, d Lie, interior, and exterior derivatives of differential forms

over Σ.
γ, � γ is the metric over Σ. Σ is said null iff there exists a vec-

tor field � such that Ker(γ : TΣ → T ∗Σ) = Span(�). We
assume that the non-null eigenvalues of γ are positive, and
(for simplicity) that L�γ = 0. Section 3.1. (C.f. the entry
about (u, xi) for more information.)

Σ � I × S When Σ is null, we take it to be a cylinder: I = [−1, 1] and
∂S = ∅; typically, S is an (n− 1)-sphere. Section 3.1.

64If exp is not a global diffeomorphism, the logarithm is defined only locally. This happens
if G has at least a U(1) factor.
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•in, •fin These subscripts highlight that a map or field is defined on
Sin/fin = S × {u = ∓1} ↪→ Σ, which stand for the “initial
and final” spheres.

•in, •fin These superscripts denote the evaluations of a quantity • de-
fined on Σ, at u = ∓1, respectively. In most cases •in/fin and
•in/fin can be conflated; however, note that objects defined
on Sin/fin may not extend to Σ. Notation 3.5.

•
∫
, •avg, •diff Different types of “zero modes” for functions of u ∈ I:

namely Q
∫ .=

∫ 1

−1
du′ Q(u′), Qavg .= 1

2 (Qin + Qfin), and
Qdiff .= Qfin −Qin. Notation 3.5.

xa = (u, xi) Coordinates on Σ = I × S. We assume that � = ∂u. Since
γ(�) = 0 and L�γ = 0, γ can be identified with a spacelike
metric over S. Section 3.1.

volS , volΣ The volume forms over S and Σ, respectively. Note that volS
is a metric volume form, while volΣ = du ∧ volS is not.
Notation 3.2.

•� Contraction of a differential form over Σ with the vector �,
i.e. α� = i�α. Section 3.1.

•̂ Projector on the space of spatial tensors, i.e. forms α and
vectors v on Σ such that i�α = 0 and ivdu = 0. Definition 3.1.

D Exterior derivative on the space of spatial forms. It can
be identified with the de Rham differential over S. Defini-
tion 3.1.

G, g G is a real, connected, Lie group assumed to be either Abelian
or semisimple. We denote g = Lie(G) its Lie algebra. Sec-
tion 3.2.

tr(··) Non-degenerate, Ad-invariant, bilinear form on g. Section 3.2.∫
N
tr(··) Short-hand notation for

∫
N

tr(··)volN . Notation 3.4
P → Σ Principal G-bundle over Σ, assumed to be trivial, P � Σ×G.

Section 3.2, Assumption A.
A � A The space of connections on the (trivial) principal G-bundle

P . We identify A � Ω1(Σ, g). This is the space of “gauge
fields” on Σ. The spatial/null decomposition of A is denoted
A � Â×A�, with A = Â+A�du. Section 3.2, Assumption A,
Remark 3.3.

L�,D Gauge-covariant analogues of L� and D, i.e. L� = L� + A�

and D = D + Â. Section 3.2.
F The curvature (field strength) of A, F = dA + A ∧ A. Sec-

tion 3.2.

Geometry and Differential Calculus on Field Space

W∗
str,W

∗
loc,W

∗ Let W = Γ(W → Σ) be the (nuclear Fréchet) space of sec-
tions of a real vector bundle over a compact manifold. W∗

str

is the topological dual endowed with the strong topology.
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W∗
loc ⊂W∗

str is the local dual, while W∗ ⊂W∗
loc denotes the

densitised dual. Remark 2.3, Appendix B.
Ann(X,Y) If X ⊂ W and Y ⊂ W∗

str, Ann(X,Y) = {y ∈ Y : 〈y, x〉 =
0 ∀x ∈ X} ⊂W∗

str. Definition 2.7, Lemma 2.8.
GN , GN

rel The mapping group GN = C∞(N,G) equipped with point-
wise multiplication and the relative mapping group: the sub-
group GN

rel ⊂ GN of functions that are equal to the identity
(in G) at the boundary of N , g|∂N = 1. Definitions 3.13
and 3.14.

gN , gN
rel As above, but for Lie algebras. Definition 3.13.

•0 Denotes the identity component of a group, e.g. G0 is the
identity component of G and GN

rel,0 is the identity compo-
nent of the relative mapping group. Since G is connected by
assumption, we write GN

0 ≡ (GN )0. Definition 3.14.
L, i, d Lie, interior, and exterior derivatives of differential forms

over an infinite dimensional manifold. (C.f. the discussion in
[87, Remark A.5].)

E � E, E E = Ωn−1
spatial(Σ,Ad∗P ) � Ωn−1

spatial(Σ, g∗) is the space of elec-
tric fields. We identify E ∈ E with a E ∈ C∞(Σ, g) via
E = tr(E·)volS . Section 3.2, Assumption A, Remark 3.3.

(P,ωnYM) P = A × E, and ωnYM is a (weak) symplectic density on it,
i.e. ωnYM ∈ Ωtop,2

loc (Σ×P). This means that ωnYM =
∫
Σ

ωnYM

is a (weak) symplectic two-form on P. The symplectic space
(P, ωnYM) is the off-shell, “geometric”, phase space of null-
YM theory. Definition 3.6.

ω, ω Short-hand notation for ωnYM and ωnYM.
(Â,�AS) The Ashtekar–Streubel phase space [4]. See the entry for A

and Definition 3.8.
a Configuration in Â. Definition 3.8.
ϕ̃(k), ãi(k, x) Ashtekar–Streubel k-mode, k ∈ N ∪ {0}, of a function ϕ ∈

C∞(I) and of the Ashtekar–Streubel field a(u, x), respec-
tively. Lemma 3.9 and Proposition 3.10.

(PeAS,�eAS) The extended Ashtekar–Streubel phase space, PeAS = Â ×
T ∗GS

0 and �eAS = �AS + ΩS where ΩS is the canonical
symplectic form on the densitised cotangent bundle T ∗GS

0

(cf. Remark 2.3). Definition 5.1, Theorem 5.2.
(Plin

eAS,�
lin
eAS) The linearly extended Ashtekar–Streubel phase space, Plin

eAS =
Â × T ∗gS and �eAS = �AS + ωS where ωS is the canonical
symplectic form on the densitised cotangent bundle T ∗gS

(cf. Remark 2.3). Definition 5.1, Theorem 5.2.
(a,Λ, e) Configurations in PeAS � Â×GS

0 × (gS)∗.
(a, λ, e) Configurations in Plin

eAS � Â× gS × (gS)∗.
� The action of g∂Σ on PeAS, defined in Lemma 6.4.
G,G, ρ,H G is the (connected) gauge group acting (in a locally Hamil-

tonian way) on P, and G its Lie algebra. In null-YM theory
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we take G = gΣ and G = GΣ
0 . The action ρ : G × P →

TP is a locally Hamiltonian action on (P,ωnYM) given by
(ξ, (A,E)) �→ (dAξ, [E, ξ]). Its momentum form is the lin-
ear, equivariant, local map H : G → Ωtop,0(Σ × P). Defini-
tions 2.9, 3.17 and 3.19; Proposition 3.21.

K The (discrete) group of components Grel/(Grel)0. Theorem 5.5.
H◦, dh,G According to [87, Prop. 2.2 and Def. 4.1] the momentum

form H uniquely decomposes into the sum of a constraint
form H◦ (such that 〈H, ξ〉 does not involve any derivative
of ξ) and of a (boundary) flux form dh, i.e. H = H◦ + dh.
Finally, G(A,E) = L�E + DiF�i is the Gauss constraint,
H◦ = tr(G·)volΣ. Definitions 2.2 and 4.2, Proposition 3.21.

H,H◦, h These are the integrals over Σ of H, H◦, and dh, respec-
tively, e.g. 〈h, ξ〉 =

∫
Σ
〈dh, ξ〉. One can think of these maps

as being valued in G∗
str. H◦ is equivariant, and in null-YM

so is h. Proposition 3.21.
F � f The (on-shell) flux space F = Im(ι∗Ch) ⊂ G∗

loc. Its elements
f are called fluxes. Definition 2.9, Propositions 2.14 and 4.6.

(Of ,Ω[f ]) In null-YM, where h is equivariant, Of denotes the coad-
joint orbit of f ∈ F ⊂ G∗

str. One has Of ⊂ F. Furthermore,
Ω[f ] is the Kirillov–Konstant–Souriau symplectic structure
on Of . See [87] for more on the definition of Ω[f ] in infinite
dimensions.

G◦,G,G◦,G G◦ = Ann(F,G) = {ξ ∈ G 〈h(A,E), ξ〉 = 0 ∀(A,E) ∈ C ⊂
P} is the maximal constraint Lie ideal (see [87, Thm. 4.33]).
The flux gauge algebra is the quotient G = G/G◦. The con-
straint group G◦ = 〈expG◦〉, is the normal Lie subgroup
generated by G◦, while the flux gauge group G = G/G◦ is a
Lie group with Lie algebra G. See Definition 2.9, including
Footnote 16, as well as Propositions 2.11 and 2.14. For the
local nature of G, see Remark 2.15. For specifics in the case
of null YM theory: Proposition 5.8

C ↪→ P The constraint set C = H−1
◦ (0) = {(A,E) ∈ P : G(A,E) =

0}. Proposition 4.2
V The dressing field, V : P→ C∞(I,GS

0 ). It can be interpreted
as a (family of) Wilson lines of A along the flow of � starting
from the initial sphere Sin ↪→ Σ. Cf. Definition 5.11.

V̌ The on-shell dressing map, V̌ : C→ PeAS. Definition 5.13.
pV A map C→ PeAS such that V̌ = π∗

◦pV (π◦ is defined below).
Theorem 5.5

•, • As a rule of thumb, one underscore refers to (first stage) con-
straint reduction, i.e. to quantities defined modulo to the ac-
tion of G◦. Similarly, two underscores refer to (second stage)
flux superselection, i.e. to quantities defined modulo the ac-
tion of G or, heuristically, modulo the subsequent actions of
G◦ and G.
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Cω The characteristic foliation of C.
(C, ω), π◦ The constraint-reduced phase space, C = C/Cω � C/G◦. The

projection corresponding to this quotient is denoted π◦ : C→
C. And ω is the (Marsden–Weinstein) reduced symplectic
structure on C, defined by ι∗Cω = π∗

◦ω.
h, ρ The reduced flux map, h : G→ C∞(C). Intuitively, it can be

thought of as the “projection” to C of the flux map h : G→
C∞(C). It is a momentum map for the (residual) action of
G on (C, ω), denoted ρ : G×C→ TC. Propositions 2.14, 6.6.

ι[f ], π[f ] , Respectively, the embedding h−1(Of ) ↪→ C and the projec-
tion h−1(Of )→ h−1(Of )/G = S[f ].

(C,Π), π The fully reduced phase space, C = C/G � C/G, with its (par-
tial) Poisson bivector Π [87]. The associated (second stage)
quotient map is denoted π : C → C. Definition 2.6, Theo-
rems 2.17, 4.7, and 6.10.

(S[f ], ω[f ]) The flux superselection sector associated to Of , is the sym-
plectic manifold S[f ] = h−1(Of )/G ⊂ C equipped with the
unique symplectic structure such that π∗

[f ]ω[f ] = ι∗[f ]

(
ω −

h∗Ω[f ]

)
. The superselection sectors provide a symplectic fo-

liation of (C,Π), C � ⊔
Of⊂F S[f ]. This turns C into a (par-

tial) Poisson manifold [87]. Lemma 2.16, Theorems 2.17, 4.7,
and 6.10.

The following diagram summarises the two-stage reduction procedure:

(P, ω)

constraint
reduction

(w.r.t. G◦ at 0)
���������������������������������� (C, ω)

flux
superselection

(w.r.t. G at Of )
������������������������������ (S[f ], ω[f ])

C
� �

ιC

�������������
π◦

�� ���������������
h−1(Of )
� �

ι[f]

��������������
π[f]

�� �������������

h−1(Of ) ∩ C
� �

ιC[f]

����������������
π◦,[f]

�� ��������������
� 	

ι[f]

��

�	
��



�
�

�
�

�
�

�

π[f]

�� ��

� � � � � �
�

�
�

�
�

 
!
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