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A Classification of Supersymmetric
Kaluza—Klein Black Holes with a Single
Axial Symmetry
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Abstract. We extend the recent classification of five-dimensional, super-
symmetric asymptotically flat black holes with only a single axial symme-
try to black holes with Kaluza—Klein asymptotics. This includes a similar
class of solutions for which the supersymmetric Killing field is generically
timelike, and the corresponding base (orbit space of the supersymmetric
Killing field) is of multi-centred Gibbons—Hawking type. These solutions
are determined by four harmonic functions on R*® with simple poles at
the centres corresponding to connected components of the horizon, and
fixed points of the axial symmetry. The allowed horizon topologies are
53, 5% x 8!, and lens space L(p, 1), and the domain of outer communi-
cation may have non-trivial topology with non-contractible 2-cycles. The
classification also reveals a novel class of supersymmetric (multi-)black
rings for which the supersymmetric Killing field is globally null. These
solutions are determined by two harmonic functions on R® with simple
poles at centres corresponding to horizon components. We determine the
subclass of Kaluza—Klein black holes that can be dimensionally reduced
to obtain smooth, supersymmetric, four-dimensional multi-black holes.
This gives a classification of four-dimensional asymptotically flat super-
symmetric multi-black holes first described by Denef et al.
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1. Introduction

Black holes are in the focus of gravitational research. In four-dimensional vac-
uum gravity, or Einstein—-Maxwell theory, asymptotically flat black holes have
a surprisingly simple moduli space due to the well-known uniqueness theorems
(see e.g. [1,2]). In contrast, higher-dimensional general relativity has a much
richer structure, and black hole uniqueness does not hold even in the asymp-
totically flat vacuum case (for review, see e.g. [3]), which became clear with
the discovery of rotating vacuum black holes with S? x S' horizon topology,
known as black rings [4]. Rather surprisingly, for a range of asymptotic charges,
black rings coexist with the spherical Myers-Perry black holes [5], providing
an explicit example of non-uniqueness.

Much is known in general about higher-dimensional stationary black
holes. The topology of the horizon is restricted to be of positive Yamabe type,
i.e. they admit metrics with positive scalar curvature [6], which becomes less re-
strictive as we go to higher dimensions. Further restrictions have been derived
in the literature for black holes with an axial symmetry [7]. This assumption
was motivated by the rigidity theorem, which states that analytic solutions
with rotating black holes must also admit an axial U(1) symmetry [8-10].
The topology of the domain of outer communication (DOC) is also restricted
by topological censorship. In the asymptotically flat case, it is required to be
simply connected [11]. This has been generalised to asymptotically Kaluza—
Klein spacetimes [12], where the quotient space of the DOC by the symmetry
group corresponding to translations in the compact dimensions must be sim-
ply connected. In cases when the spacetime admits biaxial U(1)? symmetry, a
uniqueness theorem for black holes has also been established [13-15]; however,
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it has been conjectured (for the vacuum case) that solutions with fewer sym-
metries must exist [16]. Evidence for the existence of such solutions has long
been gathering in the literature [17,18], but the first explicit examples have
been constructed only recently in five-dimensional supergravity [19].

Black hole non-uniqueness is also present in higher-dimensional super-
gravity theories, even among supersymmetric solutions. For five-dimensional
minimal supergravity, the first known black hole was the BMPV solution [20]
with a spherical horizon. Later, a black ring solution [21] and concentric black
ring/black hole solutions [22] were also found. Asymptotic charges of the latter
one can overlap with those of the BMPYV solution, and even more surprisingly,
they can have greater total horizon area than the corresponding BMPV so-
lution. This has since been shown for even single-black hole solutions of this
theory [23,24]. This finding is particularly puzzling, given that the microscopic
derivation of Bekenstein—-Hawking entropy in string theory for given charges
matches the entropy of the BMPV solution [20,25]. This ‘entropy enigma’ is
yet to be resolved, but microscopic counting of entropy provides further moti-
vation to determine the moduli space of supersymmetric black holes.

Although the full moduli space is yet to be explored, this theory is known
to admit various black hole solutions. On top of the aforementioned spheri-
cal and ring solutions, black holes with lens space horizons L(p, 1) have been
constructed with flat asymptotics [24,26-29], but later also with Kaluza—Klein
asymptotics [30]. An important feature that contributes to the richness of so-
lutions is that this theory admits solitonic solutions, termed ‘bubbling space-
times’, which are smooth, horizonless solutions admitting non-trivial topology
in the form of non-trivial 2-cycles, supported by magnetic fluxes of the Maxwell
field [31,32]. It is also possible to construct black hole solutions with ‘bubbling’
domain of outer communication, which include examples that contribute to the
single black hole entropy enigma mentioned above[23,24,33].

The general local form of a supersymmetric solution of minimal five-
dimensional supergravity is known [34,35]. Using Killing spinor bilinears, one
can show that such a solution admits a globally defined causal Killing field,
a scalar function, and three 2-forms. When the supersymmetric Killing field
is timelike, the solution takes the form of a timelike fibration over a hyper-
Kahler base manifold for which the three supersymmetric 2-forms are the
complex structures. Furthermore, if the solution admits a triholomorphic U(1)
isometry (i.e. an isometry that preserves the complex structures of the base),
the base manifold takes the form of a multi-centred Gibbons—Hawking space
[36-38], and the solution is locally fully determined by four harmonic functions
on R3 [34]. This is the case if the spacetime has biaxial symmetry (U(1)?) [29],
or a single axial symmetry which preserves the Killing spinor [19].

Using the aforementioned local results, a number of classification the-
orems have been proven for supersymmetric black holes. The near-horizon
geometries have been determined in [16] (assuming that the supersymmetric
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Killing field becomes timelike outside the horizon), and the possible geome-
tries are locally isometric to' S3 or S2 x S!. In the asymptotically flat case,
global results are known as well. First it was shown that a locally spherical
black hole with a supersymmetric Killing field that is timelike on the domain
of outer communication must be isometric to the BMPV solution [16]. This as-
sumption, however, is restrictive and excludes the majority of the moduli space
of black holes (black lenses and black holes in bubbling spacetimes). A common
feature of all near-horizon geometries, and in fact all the solutions mentioned
so far, is biaxial (U(1)?) isometry. In [29], a classification of asymptotically flat
black hole solutions with such symmetry has been achieved. These solutions
have Gibbons-Hawking base with the associated harmonic functions having
simple poles at collinear centres on R3, corresponding to horizon components
or fixed points of the triholomorphic U(1) symmetry.

Recently, these results have been generalised to asymptotically flat so-
lutions admitting only a single axial symmetry that preserves the Killing
spinor [19]. Similarly to the biaxial case, these solutions are of multi-centred
type, with harmonic functions having simple poles at generic (not necessar-
ily collinear) points. This provided the first explicit construction of a higher-
dimensional asymptotically flat black hole with just a single axial symmetry,
confirming the conjecture of [16] for supersymmetric black holes.

In this paper, we will focus on asymptotically Kaluza—Klein solutions,
which are asymptotically diffeomorphic to a circle fibration over flat Minkowski
space. This includes trivial circle products, and also non-trivial fibrations like
the Kaluza—Klein monopole. Many explicit Kaluza—Klein black hole solutions
of five-dimensional supergravity are known in the literature [30,39-50]; further-
more, a uniqueness theorem for non-supersymmetric, biaxisymmetric, spher-
ical black holes of this theory has also been proven [51]. A classification of
more general or supersymmetric solutions is not yet available, however. The
main motivation of studying such solutions is that they can be dimensionally
reduced to four dimensions, which might have more physical relevance for our
universe. For five-dimensional minimal supergravity, the bosonic sector of the
reduced theory contains gravity, two Maxwell fields, and two scalars, a dilaton
and an axion. Previously, an interesting connection has been unveiled between
five-dimensional Kaluza—Klein and four-dimensional asymptotically flat black
holes of supergravity theories [39,40,52,53]. Five-dimensional supersymmetric
(multi-)black holes/rings with Taub-NUT base space correspond to (multi-
)black hole solutions of the four-dimensional theory first derived by Denef et
al. [54-56].

The purpose of this paper is to generalise the results of [19] to Kaluza—
Klein asymptotics, and classify all supersymmetric black hole or soliton solu-
tions with an axial symmetry that ‘commutes’ with the supersymmetry, i.e.
it preserves the Killing spinor. The latter assumption is the supersymmetric
generalisation of the usual requirement that the axial symmetry commutes
with the stationary symmetry. Furthermore, when considering reductions of

Mn [16], T2 has also been derived as a possible geometry; however, it is excluded by [6].
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the solutions to 4D, as a result of this assumption we obtain supersymmetric
solutions in the lower dimensional theory.

The main difference to the asymptotically flat case is that the super-
symmetric Killing field is no longer naturally identified with the stationary
Killing field. Instead, we assume that the stationary Killing field is a constant
linear combination of the axial and supersymmetric Killing fields. This leads
to—from the five-dimensional perspective—two qualitatively different classes
of solutions depending on whether the supersymmetric Killing field is timelike
on a dense submanifold or globally null. The former one is similar to the one
found in the asymptotically flat case [19], and its classification is provided by
the following theorem (for the full statement, see Theorem 2).

Theorem A. A supersymmetric, asymptotically Kaluza—Klein (in the sense of
Definition 1) black hole or soliton solution of D =5 minimal supergravity with
an azial symmetry that preserves the Killing spinor and a supersymmetric
Killing field that is not globally null must have a Gibbons—Hawking base (on
a dense submanifold), and is globally determined by four associated harmonic
functions on R® which are of ‘multi-centred’ form, with parameters satisfying
a set of algebraic constraints. The centres either correspond to fixed points of
the axial Killing field, or connected components of the horizon, each of which
has topology S®, L(p,1) or S? x St.

Despite the similarity to the asymptotically flat classification, there are
technical differences in its proof. The main complication comes from the fact
that the DOC is not simply connected in general, hence certain closed 1-
forms do not necessarily define the global functions that play a key role in the
asymptotically flat proof. In order to overcome this, first we show that the
axial Killing field must be tangent to the Kaluza—Klein direction, then after
excluding the possibility of orbits with a discrete isotropy group (exceptional
orbits), we apply topological censorship to deduce simple connectedness of the
orbit space of the axial Killing field [12]. This allows us to define certain U(1)-
invariant functions globally. From this point, the proof is almost identical to
that of the asymptotically flat case.

The lack of exceptional orbits follows purely from the axial Killing field
preserving three linearly independent two-forms (Killing spinor bilinears, which
are the complex structures of the hyper-Kéhler base in the timelike case). This
result, together with the orientability of the spacetime, restricts the possible
horizon topologies to S3, L(p, 1) or S? x S1. These are the only allowed? Seifert
three-manifolds (with orientable fibres and base) that do not contain any orb-
ifold points. Such orbifold points would require the presence of exceptional
orbits in the DOC [7], which are ruled out as mentioned above.

Even in the case when the supersymmetric Killing field is timelike on a
dense submanifold, the limit of its norm at infinity can be zero. We call this
case asymptotically null, in contrast to the asymptotically timelike case, when
we normalise the supersymmetric Killing field to have unit norm at infinity.
These should not be confused with the globally null case, which we detail next.

20nly orbifolds with positive Euler characteristic are allowed [7].
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The other main class of solutions contains spacetimes on which the super-
symmetric Killing field is globally null, for which we have the following result
(the full statement can be found in Theorem 3).

Theorem B. An asymptotically Kaluza—Klein (in the sense of Definition 1),
supersymmetric black hole or soliton solution of D = 5 minimal supergravity
with an axial Killing field W preserving the Killing spinor and for which the
supersymmetric Killing field V' is globally null has a metric of the form
1
777G
where W = 0, V = 0,, and G, Q are harmonic functions on R® with simple
poles at centres corresponding to connected components of the horizon, each
with topology S? x S*.

(Qdu® + 2dudv) + G*da' dx’, (1)

To our knowledge, these ‘null’ Kaluza—Klein black ring solutions have not
been previously described. Similar ‘null’ solutions have been previously found
in [57], which describe static black strings, those, however, cannot be compact-
ified to obtain smooth, asymptotically Kaluza—Klein black holes; hence, they
are not part of our classification. As the supersymmetric Killing field does not
become timelike outside the horizon in this case, the proof of the near-horizon
classification in [16] is no longer valid. Therefore, we extend this near-horizon
analysis (with no symmetry assumptions) to the null case, and we find that
the near-horizon geometry in the null case agrees with the null limit of the
timelike case. This is in agreement with the results of [58] in which it has been
shown that near-horizon geometries of this theory are necessarily maximally
supersymmetric.

It turns out that, if one relaxes a condition on the harmonic functions
of Theorem A so that they allow the supersymmetric Killing field to be glob-
ally null (which is a priori not clear that one is allowed to do), then one
obtains precisely the solutions of Theorem B. Presumably, this is because they
have common higher-dimensional origin, as both timelike and null solutions
can be uplifted—at least locally—to obtain supersymmetric solutions of six-
dimensional minimal supergravity [59]. A general feature of the six-dimensional
solutions is that the supersymmetric Killing field is null everywhere, similarly
to the solutions in Theorem B. Interestingly, the Cartesian coordinates in both
Theorem A and B (those of the Gibbons-Hawking base, and z? in (1), respec-
tively) originate from a Gibbons—Hawking base that is used to construct the
six-dimensional solutions. It would be interesting to investigate the classifica-
tion from a six-dimensional perspective.

In all cases, we find that the axial Killing field is tangent to the Kaluza—
Klein direction; thus, it is natural to consider the reduction of these solutions
to four dimensions, which are also supersymmetric. We prove that the obtained
four-dimensional solution is smooth on and outside the horizon, provided that
there are no fixed points of the U(1) Killing field. This is automatically true
in the null class, but restricts the timelike class. Conversely, given a four-
dimensional supersymmetric, asymptotically flat black hole solution of a cer-
tain four-dimensional supergravity with two scalar fields and Maxwell fields,
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it uplifts to a supersymmetric, asymptotically Kaluza—Klein solution of mini-
mal supergravity in D = 5. A condition for a smooth uplift is that one of the
Maxwell fields corresponds to a principal U(1)-bundle, and hence, its magnetic
charges are quantised. Thus, with this assumption, we obtain a classification
theorem of four-dimensional supersymmetric black holes of the theory (for the
detailed statement, see Theorem 6).

Theorem C. Consider a supersymmetric, asymptotically flat black hole solu-
tion of D = 4 N' = 2 supergravity coupled to a vector multiplet in which one of
the Mazwell fields is the curvature of a connection on a principal U(1)-bundle
over the spacetime. Furthermore, assume that the supersymmetric Killing field
is timelike on the DOC. Then, the solution must belong to the class of multi-
black holes derived in [54-56].

The structure of this paper and the proof of theorems are as follows:
In Sect.2, we briefly summarise the general form of such solutions based on
[34] and present the local solutions in the timelike and null case separately. In
Sect. 3, we derive that the U(1) Killing field must be tangent to the Kaluza-
Klein direction, by using that it preserves the Killing spinor bilinears, showing
that any Killing field must approach that of a flat space with a compact direc-
tion. In Sect. 4, we perform a near-horizon analysis of the null case (following
and completing that of [16]). In Sect. 5, we analyse the structure of the orbit
space. In particular, we show that any exceptional orbits are excluded; then,
using topological censorship [12], we show that the Cartesian coordinates de-
fined by the axial Killing field and the two-form bilinears define a global chart
on the orbit space. This also restricts the general form of the solution to those
with associated harmonic functions having simple poles in both the null and
timelike cases. In Sect. 6, we derive the sufficient conditions for smoothness of
such multi-centred solutions. In Sect. 7, we state and prove the main classifica-
tion theorems (Theorem 2-3). In Sect. 8, we perform a Kaluza—Klein reduction
to four dimensions and show that the four-dimensional solution is smooth on
and outside the horizon, provided there are no fixed points of the axial symme-
try in 5D. Finally, we use this correspondence to prove a classification theorem
for four-dimensional asymptotically flat black hole solutions to minimal super-
gravity coupled to a vector multiplet (Theorem 6).

2. Supersymmetric Solutions in Five Dimensions with
Axisymmetry

The theory in consideration is the bosonic sector of five-dimensional minimal
supergravity, given by the action

1 8
= — 1—-2FA%F — ——=FANFANA 2
S 6 Rx A 373 NFANA, (2)

where F' = dA. We work in the conventions of [16], so the signature of the met-
ric is ‘mostly plus’. The most general local form of a supersymmetric solution
has been derived in [34] using Killing spinor bilinears which globally define a
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function f, a vector field V, and three 2-forms X, i = 1,2, 3. These satisfy
the following algebraic equations.

g(V,V) = —f?, (3)
wX® =0, (4)

by X = — fx0) (5)
XX = 65 (F g + VW) — Fein XD, (6)

where €5, is the Levi-Civita symbol with €123 = 1. Using the Killing spinor
equation, one further obtains

2
df = —ﬁLvF, (7)
ViV =0, (8)
wv=-—Ltip 2 pav), )

V3 V3

i 1 o i o i oK i
VHXup) = ﬁ <2Flt (*X( ))m/p - 2F[l/ (*X( ))p]uo + gu[uF (*X( ))p]an)~
(10)

In particular, V is Killing, X9 are closed, and V preserves X and the
Maxwell field. Further specification of the local solution depends on whether
V' is timelike or null in some open region, which we will describe in detail in
the following sections.

In this paper, we are considering asymptotically Kaluza—Klein space-
times, for which we use the following definition.

Definition 1. (M, g) is stationary and asymptotically Kaluza—Klein, if
(i) the domain of outer communication (DOC), denoted by ((M)), has an
end diffeomorphic to R x 3y, with ¥ being a circle fibration over R\ B3,
where B? denotes a 3-ball, and the R factor corresponds to orbits of a
timelike Killing field (stationary Killing field),
(ii) the metric on this end can be written as: g,, = §u + O(F~7) for some
decay rate 7 > 0 and

§ = —dudu® + 6;;du’du’ + L2dy?, (11)

where L is a positive constant, u® and (u?)3_; are the pull-back of the
Cartesian coordinates on R x R3, i.e. dy is the stationary Killing field,
and 7 = /ululoy;, 1@ is a 4m-periodic coordinate on the fibres, and in
these coordinates 8%81’/?)9” =0F T Hfor 1 <k+1<3,

(iii) the components of the Ricci tensor in these coordinates fall off as R, =
O(7~772) and its R? derivatives as 9; R, = O(7F~7~2).

Remarks.

1. Definition 1 only requires that the spacetime is a circle fibration at infin-
ity. This includes trivial fibrations (standard Kaluza—Klein asymptotics),
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as well as non-trivial fibrations such as the Kaluza—Klein monopole. In
terms of the ‘sphere’ at infinity, Definition 1 allows not only S? x S*,
but also spherical geometries such as (squashed) S3 or lens spaces, when
the fibration is non-trivial. The nature of the fibration is determined by
subleading terms (in coordinates of Definition 1) in the metric (see later
in Sect.6.1.1).

2. Definition 1 requires that the circle direction has bounded length at in-
finity. It is motivated by the physical picture that one obtains a four-
dimensional effective description when the Kaluza—Klein direction is small
enough. Alternatively, one may consider different definitions, such as cu-
bic volume growth of a spatial slice at infinity. This alternative definition
also allows for the possibility of a spatial geometry such as the Euclidean
Kerr instanton, where the circle direction has unbounded length. Such
spacetimes are not included in the present work. Nevertheless, it is an
interesting question whether such supersymmetric solutions exist.

3. The fall-off of the components of the Ricci tensor is in fact equivalent
(through the Einstein equations) to requiring that the Maxwell field falls
off as F' ~ O(7#~7/271) at spatial infinity. This can be seen by looking
at Tpo, which is a positive definite quadratic in the components of the
Maxwell field. The fall-off for the third derivative of the metric and the
derivative of the Ricci tensor is a technical assumption, to ensure that
components of the Riemann tensor fall off as R*,,y, = O(7~7~2) as shown
in Appendix A. Alternatively, one can assume the fall-off of the Riemann
tensor directly.

We now list our assumptions. These are, except for asymptotics, equiv-
alent to Assumptions 1 and 2 of [19]. We assume that (M, g, F') is a solution
of (2) such that

(i) it admits a globally defined Killing spinor € (i.e. supersymmetric),
(ii) the DOC is globally hyperbolic, that is, it admits a Cauchy surface 3,
(iii) the spacetime is stationary and asymptotically Kaluza—Klein as in Def-
inition 1,
(iv) the supersymmetric Killing field V' is complete,
(v) the horizon H admits a smooth, compact cross-section (which may not
be connected),
(vi) the closure of the Cauchy surface ¥ in M is a union of a compact set
and an asymptotically Kaluza—Klein end,
(vii) (M, g) admits a smooth Killing field W with periodic orbits that pre-
serves the Killing spinor € and the Maxwell field F,
(viii) the stationary Killing field is an R-linear combination of V' and W,
(ix) at each point of the DOC there exists a timelike linear combination of
V and W,
(x) the metric and the Maxwell field are smooth (C°) on and outside the
horizon.
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From global hyperbolicity of the DOC and completeness of V' follows that
the DOC has topology ({(M)) ~ R x 3, where X is a smooth manifold, which
we can identify with the orbit space of V.3

We emphasise that we do not assume that the stationary Killing field co-
incides with the supersymmetric Killing field, in contrast to the asymptotically
flat solutions considered in [19]. Neither do we assume that the axial Killing
field is tangent to the Kaluza—Klein direction at infinity. In Sect. 3, we show
that the latter is indeed true, so the U(1) Killing field (and the length of its
orbits) is bounded in the asymptotic region. This means that its linear com-
bination with the causal vector field V' can be timelike, so assumption (viii)
is natural to make. The solution in the coordinates adapted to these Killing
fields generally will not be in the rest frame. Indeed, this is the case for the
asymptotically Kaluza—Klein black holes considered in [30,39].

Another important difference to the asymptotically flat case is that in
general the DOC is not simply connected. Therefore, we cannot a priori assume
that closed 1-forms globally define scalar functions. However, in Sect. 5 we will
show that this is indeed the case for the U(1)-invariant one-forms considered
during the proof.

An important consequence of assumption (vii) is that all the Killing
spinor bilinears are preserved by W, that is

W(f)=0, [V,W]=0, LwX9=0. (12)
The assumption that W preserves F' is redundant. We will see that either
the timelike or null region is dense in the DOC, and in both cases F' can be
expressed by U(1)-invariant quantities (17) and (37). Thus, by continuity of
Lw F, the Maxwell field is U(1)-invariant everywhere.

2.1. Timelike Case with Axial Symmetry

Let us define M C ((M)) as the region where f # 0, that is, where V is

timelike. Around each point of M, one can define a local chart in which the
metric is given by

guﬁrﬁ%&+wf+%h (13)

where V = 0y, w and h is a 1-form and metric on the four-dimensional Rie-
mannian base manifold B := M /Ry C 3. Note that h is invariantly defined on
M, and w is defined by tyw = 0 and dw = —d(f~2V) up to a gradient. Since
Ly XD =1, X0 =0, X can be regarded as 2-forms on B. Using properties
of the Killing spinor, one can show that (B, h, X)) is hyper-Khler, i.e.*

vmxh — o, (14)
XOXD = —55hap + €u X0, (15)

3 See remark 2 after Assumption 1 in [19].

4 Unless otherwise stated, Greek letters u, v... denote spacetime indices, while Latin letters
a,b,c... denote base space indices, and i, 7, k... denote R3 indices. Indices are raised and
lowered with g, h and § on the spacetime, base space, and R3, respectively.
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*p XD = —x 0 (16)

where V(") is the Levi-Civita connection of h, and ), denotes the Hodge star
on the base with orientation 1 defined by the spacetime orientation f(dt+w)An.
On M, the Maxwell field is given by:

P —§d (‘Jf) - %G*, (17)

where GT = 1(1 4 ;) fdw.

From our assumptions, using Lemma 1 of [19] it follows that the two
Killing fields commute, and W defines a triholomorphic U(1) action on B (i.e.
Ly X® = 0). We will use the gauge Lyt = 0, thus W also preserves w. It is
well known that a hyper-Kéhler four-manifold with triholomorphic U(1) action
can locally be written in Gibbons-Hawking form [38]

h = %(dw +x)? + Hdz'da", (18)

where z%, i = 1,2, 3 are Cartesian coordinates on R*, W = 9y, H is a harmonic
function on R3, and the 1-form Yy satisfies

xg dy = dH. (19)

Here %3 denotes the usual Hodge star operator on R? with respect to the
Euclidean metric. In this chart, the Cartesian coordinates are related to X (¥
via

da’ = 1y X, (20)

Note that (20) can be regarded as an equation on B C ¥, as both X and W
can be regarded as tensors on X, the orbit space of V. An important difference
to the asymptotically flat case is that (20) does not define the functions z°
globally on the DOC.

A useful result of [34] is that if the solution admits a U(1) Killing field
commuting with V that is also triholomorphic on B, then the whole solution
is locally determined by H and three further harmonic functions, K, L, M on

R3 as follows. Let us define a function and two 1-forms (up to a gradient) on
R3 by

K3 3KL

W¢—m+§7+M7 (21)
3
*3dd):HdM—MdH+§(KdL—LdK), (22)
*3dé = —dK. (23)
Then, f and w can be written as:

H

I =ferhr 29

w=wy(dY+x)+w, (25)
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while the Maxwell field takes the form

V3

F:dA:2d<f(dt+w) K(dzp+x)—£>. (26)

H
We would like to emphasise again that this is a fully local result on M. Given
a local solution, the corresponding set of harmonic functions H, K, L, M is not
unique. Indeed, one can check that

H =H, K =K+c¢H, L =L-2K —¢H,
3 3 1
M =M — ZcL+ =c*K + =cH (27)
2 2 2
yield the same solution for any ¢ € R.
Following [29], let us define a key spacetime invariant as

gV, v) g(V.Ww)| _ f 1

N = — . ——
gW,V)gW, W)l H K2+ HL

(—detg)~¥2,  (28)

where the last three equalities are valid on M when N > 0. Note that N is
preserved by both Killing fields, and its zeros in ({(M)) exactly coincide with
F ={p € ((M))|W, =0} by our assumption that the span of Killing fields is
timelike on ((M)) [19]. It is also worth noting that from (20) and (6) we have

g (dat da?) = N§¥ (29)

irrespective of whether V' is timelike.
We now use the facts above to prove the following result for a general
(not necessarily timelike) solution.

Lemma 1. Either M is dense in ((M)) or V is null on ((M)).

Proof. Let N be the set on which V is null in the DOC, i.e. N := f~1({0}) N
({(M)). This is closed in the DOC by the continuity of f, hence N’ = int N U
ON. If int NV = 0, then M is dense in ((M)). If int NV # 0, then assume
for contradiction that there exists some p € dint N, and look at a simply
connected neighbourhood U of p in ({(M)). Since U is simply connected, we
can integrate (20) to obtain x = (z',22,2%) : U — R3. Since f(p) = 0,
p is not a fixed point of W (otherwise the span of Killing fields would be
null contradicting assumption (ix)). It follows that N(p) > 0, and thus, by
continuity it is also positive on (a possibly smaller) U, and by (29), « is a
submersion, therefore open. We extend the definition of H to U by H := f/N,
which is smooth on U and harmonic on the open set (U) C R3. In particular,
it is zero on the open set (U Nint ). Since H is harmonic and therefore
analytic in 2?, it follows that H = 0 on U, but then f = 0 on U, which is
a contradiction. We conclude that dint A/ = (), and hence, it must be that
N = ((M)), so V is null on ((M)). O

In the context of classifying global solutions, we will refer to the first case
in Lemma 1 as timelike case and to the latter one as null case.
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2.2. Null Case with Axial Symmetry

In this section, we consider the case where V' is null on the DOC. The metric
locally takes the form [34]

g = -G 1(Qdu? + 2dudv) + G*(dz’ 4 b'du)(dz® + b'du), (30)
where Q(u, ), b'(u, z) are functions, G(u, x) for each u is a harmonic function
on R3 with cartesian coordinates z* (i.e. 9;0;G(u,x) =0), V = 9,, and

X = du A da'. (31)
We now assume the existence of an axial Killing field that preserves V'
and X and deduce the following lemma.

Lemma 2. For any point in ((M)), there exist local coordinates in which the
metric takes the form (30) and the Killing field W = 8, hence G, Q,b" only

depend on x*.

Proof. We will use properties of W together with the gauge freedoms that
preserve the form of the solution [34]. From [V,W] =0 = W#* = W#(u,z?),
and

da’, (32)

B , (WG auwu) AU

so W* only depends on u. Note that N = (W%*)2/G? > 0 on ((M)), thus
W¥(u) # 0. We define du’ = (W*(u))"*du, ' = G/W*, and 2/ = W"z* so
that the forms of ¢, V, X are unchanged, while in these coordinates W =
O + W' + W?9,. Then, in the new coordinates (omitting primes)

0=LwX® =d (LWX“)) = d(dz’ — Widu) = du A dW?, (33)

which implies 9;W* = 0, i.e. W' = W¥(u). The coordinate transformation
¥ = 2" + v'(u) preserves the form of the solution (after redefining Q and
b), and the choice dv’/du = —W¥(u) yields W = 9, + W?9,. Finally, the
remaining gauge freedom allows us to change the v = const surfaces by v’ =
v+h(u, x). With 9, h(u, ) = —W?(u, x), the axial Killing field becomes W =
0y as claimed. In this coordinate system, all metric functions are independent
of w. O

It is useful to note that the remaining gauge freedom that preserves the
form of the metric, the two-forms X9, and the Killing fields is

v =v+ h(z). (34)
This, however, changes Q and b as [34]
Q' =Q-2V'0ih+ G *9;hd;h, b =b—G *dh, (35)

hence these quantities are not gauge-invariant.

The lack of dependence on w simplifies the analysis of [34], and the full
solution can be obtained as follows. b® is determined up to a gradient term
(corresponding to the gauge freedom (34-35)) by

*3 d(G3b) = GdK — Kdg, (36)
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where x3 is the Hodge-star on flat R, and (%) is another harmonic function
on R3. Choosing positive orientation to be given by dv A du A dz! Adz? A da?,
(9-10) yields®

1 K\ | V3

Defining Dy := b'0; and W;; := —8;;DpG — GO;b", Q is a solution of
2
0;,0;Q = —292Dan' + 2QW(U)WW) + ggW[ij]W[ij]. (38)

Note that (38) only determines Q up to a harmonic function Qp; hence, the
local solution is determined by three harmonic functions G, K, Q.

From Lemma 2 follows that locally da* = 1y X (as in the timelike case
(20)). Our assumption that the span of Killing fields must be timelike excludes
any fixed points of W in the DOC for the null case, and therefore, N > 0 on
the DOC. It follows that G is globally defined by

G l=—g(W,V)=+VN #£0. (39)

We can flip the sign of G by redefining u — —u and Q@ — —Q, so without loss
of generality we will take

G>0 (40)

on the DOC. On the horizon W must be orthogonal to the generators of the
horizon (since every Killing field is tangent to the horizon), which must be
proportional to V', thus N = 0 and G must diverge.

Note that from (37) and Lemma 2, it follows that

wF = 2—\1/§d (g) . (41)

The left-hand side is invariantly defined, but since the DOC is not necessarily
simply connected, this does not define IC globally. Still, in each local (suf-
ficiently small) patch we find that £/G is bounded. In particular, near the
horizon K can diverge at most as G does. Later we will show that (41) indeed
globally defines K on ((M)).

3. Asymptotics

In this section, we determine the asymptotic behaviour of the U(1) Killing
field W, and the Cartesian coordinates x’ using Definition 1. As discussed
in the previous section, generally we take the stationary Killing field, dy in
asymptotic coordinates (11), to be a linear combination of the other two, i.e.

9 :7*1V+”THW (42)

with v, vy constants. For this, we first need to look at the asymptotic form of
Killing fields in an asymptotically Kaluza—Klein spacetime.

5 The sign difference compared to [34] is due to the opposite orientation chosen.
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3.1. Asymptotic Form of Killing Fields

We first narrow down the possible form of the axial Killing field near spatial
infinity. Proposition 2.1 of [60] for asymptotically flat spacetime states that
the Killing fields asymptotically approach those of Minkowski. The statement
carries over to asymptotically Kaluza—Klein spacetimes.

Lemma 3. Let (M,g) be stationary and asymptotically Kaluza—Klein as in
Definition 1, and K a Killing field that commutes with 0y. Then there exist
constants Aij = —Aj; such that

S1-7
S e
If all A vanish, then there exist constants A, such that
K,—A,=0@F"T). (44)
If all A = A =0 then K = 0.

Proof. The proof is identical to the one in Appendix C of [61], but for com-
pleteness we outline it here in a bit more detail. It is well known that for a
Killing field K

VHVVKA = Rnuu)\KVw (45)
Using this, we can write
oK, =V, K, + I‘ZVK,{, (46)
OuVy K\ = Ry )\K,. + FZVVHK,\ + F';,\V,,KH. (47)
This means that for the 7-derivatives we obtain
0K, = = (Vi, + T3 Ky) (48)
i
OrV, Ky = = (R¥ Ko+ TV, K+ TRV K, (49)

where we used 0; = 7~ ''0;. In Appendix A, we derive from Definition 1 that
RH;W/\ = O(f_T_Q)v Fﬁ, = 0(7:_7_1)7
noo_ ~—T1—1 no_ ~—T
Db, =0, T =0(F). (50)
Let us define X =Y, fAf4 for f4 = (K,,7V,K,), for which

20'X
<X (51)

1
|0 X| = =
-

2 Z Capff?
AB

where the explicit form of the matrix C4p(u’, %) can be obtained from (49)
and C’ > 0 is a constant. For a uniform bound on Cap (second relation in
(51)), we used that due to (50) Cap(7,0,¢,1) < B(6,¢, )i < C', where
GN,QNS (together denoted by 64) are angular coordinates on S? and B is some
function. Therefore, by integrating (51), there exists a 8 such that K,, = O(7),
V,.K, = O(~1). Let us assume that 8 > 1+ 7. Using our estimates for
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K, VK in the right-hand side of (49) and then (48), we obtain an improved
estimate with § — [ — 7. We iterate this procedure until 1 < 5 < 1+ 7. Then
(47) yields

OV K, =0F %), 0;V,K, =0F ). (52)

From Lemma® of Appendix A in [62] it follows that VK, — A, = O(7F#~771)
with some A,, constants, which we first assume that are not all zero. This
substituted back into (47) improves the estimates to 3 — 1 and K, = O(F).
Finally, we obtain

|Kp.(u07/,~17 9'4,1/;) - Au,uuy| < ‘Kp(ugvaae(I?v'l/}O) - Auuu6|
+‘ / d(K, — A,,Hu“)’ =0T (53)
T

with T' connecting uf; with u* for some ufj. Now, consider for k € Z at a given

(t,7,0,9)
4k _
/0 (05 Ky = Ag,,)ddp

This should hold for Vk € Z, which implies that AW =0.Ap; =0by 0=
Lo, KF = 0y K*. Thus, we obtained (43).

If A;; = 0, we have V,K, = O(F ") and K, = O(7'~7). By a similar
procedure, we can improve this estimate by —7 at each iteration until 0, K, =
OF %) with 1 — k7 < 0 < 1— (k—1)7 and k € N. Then again by Lemma
of Appendix A in [62] and the arguments above, there is a constant A, such
that K, — A4, =0(r™ 7).

If A;j; =0 and A, = 0, by the iterative process K, = O(7~"*) for any
k > 0. Then integrating (51) as

/
X o x (55)

7
we obtain 72¢" X (7o) < 72" X (F) — 0 as 7 — oo, thus X (7o) = 0, which means
that the Killing field and its first derivative is zero at a point, hence it is zero
everywhere. O

—4r ‘kAW‘ < oFlT. (54)

3.2. Chart at Spatial Infinity from Supersymmetry

In this section, we construct a chart at spatial infinity defined from Killing
spinor bilinears as described in Sect. 2. We also show that W is tangent to the
Kaluza—Klein direction.

The proof is quite different depending on whether vy = 0 or vy # 0 in
(42), and for the former, we first need to derive the asymptotic form of the
hyper-Kéhler structure. In this case, the supersymmetric Killing field V' co-
incides with the stationary one, which means V is timelike in the asymptotic

6 The Lemma considers a function on a boost-type domain in 4D. Since here nothing depends
on 1Y%, in our case it holds for R x ¥g. The proof carries over with the only change being
that (A.2) has an extra integral in the Kaluza—Klein direction that vanishes in the # — oo

limit due to 81LV;I,KV — 0.
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region (thus we are in the timelike case since V' is not globally null). Further-
more, its limit at infinity is also timelike (i.e. lims_ o g(V, V) < 0), and hence,
we are in the asymptotically timelike case, as opposed to the (timelike or null)
case when lim;_, o g(V, V) = 0, which we call asymptotically null.

For the case vy = 0, let us normalise the Killing spinor such that v =1,
i.e. V = 0y in the asymptotic coordinates (11). Definition 1 implies that on
the asymptotically Kaluza—Klein end we have”

f=1+0@FT), (56)

w=0(F"7)du’, (57)

h =6 du’du? + L2dy? +O(F T )dudu, (58)
=:hg

and the asymptotically Kaluza-Klein end ¥y, C B is a circle fibration over
R3\ B3. For the asymptotic form of the hyper-Kihler structure, we prove the
following lemma.

Lemma 4. Assuming vy = 0, on the asymptotically Kaluza—Klein end, the
complex structures of (B, h) can be written as®

X0 =%+ o), (59)

where Q% are a standard basis of anti-self-dual 2-forms on R3 x S with respect
to the orientation Ldip A du* A du? A du?,

) .~ o1 ;

Proof. The proof is analogous to the asymptotically flat case (Lemma 4 of [19]).
From the quaternion algebra X ). X® = —4 (no sum over 7), hence to leading
order X{g? = O(1). The curvature of h is Ricci-flat (since it is hyper-Kéahler),
and for that one can show that I'%, = O(F~"~!) and FZ‘M = O™ ") (see

Appendix A). Then V" X @) = 0 implies that
9, X5 =0, 9;x) =0T, aﬁxgj? =0@F™), (61)

which after integration yields X2 = X' 4 0(7=7), where X' are constants.
Let us now define X\ := 2(1 £ %y ) X@ as the SD/ASD part of X
with respect to hg (defined in (58)). Then using
s XD = XD 4 O(F ) = sy XD+ 0F ) = X - X9 4 07 7)
(62)

we deduce by anti-self-duality of X that the constant )_(_(:) =0O@F7) =0.
Equation (15) implies that X () obeys the quaternion algebra with respect to

"The solution is invariant under changing the sign of f, H, L, 4, t simultaneously, so without
loss of generality we take f > 0 at infinity.

8 Error terms of tensors throughout this section refer to their components in the asymptotic
coordinates of Definition 1.
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ho. Since (60) forms a basis of ASD 2-forms with respect to hg also satisfying
the quaternion algebra, we can always perform a global SO(3) rotation of X (_l)
such that X = ! O

Next we use Lemma 3 and triholomorphicity to deduce the asymptotic
form of W. The following result holds for both timelike and null cases.

Lemma 5. For any values of vy, on the asymptotically Kaluza—Klein end we
can choose coordinates such that the metric is of the form (11) with the sta-

tionary Killing field 0y, and the U(1) Killing field is given by
W =0;. (63)

Proof. By Lemma 3, the leading-order behaviour of W is determined by con-
stants A;; and A, (using the notation of the Lemma). Since W has closed
orbits, Ag = 0 and W must be subleading in 7.

First we will consider the general case vy # 0, and assume that A;; are
not all zero for W. Then W generates a rotation on R? (possibly simultane-
ously with a rotation in the Kaluza—Klein direction); therefore, without loss
of generality we can write

W = A0 +O(F'7), (64)

where (7,0, ¢) are the usual spherical coordinates on R? and A is a constant.
Then, the norm of V

_ v? v
0>~"%9(V,V) = goo + E—gfg(w, W) — 2THW0

2
= %A?f? sin2 0 + O(#2~7) + O(1). (65)

It follows that A = 0, therefore A;; = 0, and by Lemma 3
W = A;0; + AyOy + O(F 7). (66)

Since W has closed orbits, A; = 0, therefore W = 81; + O(F~7), where the
normalisation has been chosen such that W has 47-periodic orbits.

In the spacetime, the integral curves of W wind around the Kaluza—
Klein direction; hence, we can adapt coordinates (uo,ui,@) — (u® u?, Y’ ) =
(u® + A%, u? + A h + A¥) to the action of W such that W = O exactly? and
V = 9y’. To see this, note that W commutes with the stationary Killing field,
thus 9y A* = 0, and the stationary Killing field is unchanged by the coordinate
transformation, i.e. 9y = 9y’. Since A\ = O(7~7), the metric only receives
O(7~7) corrections, so g’ has the same form as (11). Thus, (after omitting
primes) we get the claimed result.

For the special case vy = 0, we work on the hyper-Kéhler base and use
the triholomorphic property of W. LV = 0 and Ly f = 0, and thus, the
projection of 7, (W% W®) = W¢ defines a Killing vector on the base space. To
leading order W is equal to 7, W (thus in the following we do not distinguish

9 W acts freely for large enough #, as fixed points are excluded by the form of the metric,
and we will see in Sect. 5 that exceptional orbits are excluded by triholomorphicity.
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between the two). Again, assuming that A;; are not all zero for W, without
loss of generality we can write it as (64). Using the asymptotic form of the
complex structures from Lemma 4, one can check that d4 preserves only one of
them, which would contradict triholomorphicity. It follows again that A = 0,
and by the same arguments as for the general case, W must have the claimed
form. 0

Next, we construct the asymptotic charts for the cases when V' is asymp-
totically timelike or null separately. For the asymptotically timelike case we
have the following result.

Lemma 6. Assume that V is asymptotically timelike. Then the base of the
asymptotically Kaluza—Klein end is covered by a single chart in which (together
with the vertical coordinate ) the spacetime metric is of Gibbons—Hawking
form ((13) with (18)). The Gibbons-Hawking coordinates are related to the
asymptotic coordinates by

=~ 1o, ¢:1;+%Hu° ~ 1 + 4, (67)
' = Lyu' + O(F77), (68)
where (with appropriate normalisation of V')

1

PY - /;1 — ’U%{7
and the Killing fields are given by V = 0, and W = 0y, and the Cartesian
coordinates x* provide a surjection to ]R?’\B% for some R > 0.

(69)

Proof. The supersymmetric Killing field is given by V = ~0y — vafflad;.
Since it is asymptotically timelike, we can normalise it such that

fP=—g(V\V) =91 =) + O(F7) =1+ OF "), (70)
which in terms of the constants v, vy yields (69) with |vg| < 1. Let us define
t=~"1u?, @b:d}—i—%{uo, (71)

so that W = 0y, and V' = 0. In these coordinates, the base metric becomes
h = L242dy? + 6 du’du? + O(F 7). (72)

This has the same form as the base metric in Lemma 4 with L2 — L242. One
can use similar arguments to deduce that the hyper-Kéahler two-forms are

. ~ . 1 .
X® = Lydy Adu® + 3 €igkdu’ A du® + O(FT). (73)
Hence, for the Cartesian one-forms we get
XD = Lydu® + OFT). (74)

Since 1w (tiw X) = 0 = Ly (b X)), and W is tangent to the circle fibres,
the closed 1-form 1y X descends to the base of the fibration R?\ B3, which is
simply connected. Hence, by (20) the Cartesian coordinates z* can be globally
integrated on (and uplifted to) the asymptotic end to get (68). Since (u?, u’)
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form a single chart of the base of the asymptotically Kaluza-Klein end, so do
the Gibbons-Hawking coordinates (¢, z%). On this chart N = L242+O(7~7) >
0, hence by (28) the metric is invertible. O

Finally, we consider the case when V' is asymptotically (or globally) null,
ie. lims— o g(V,V) =0, and thus, without loss of generality we can take

V=0y— L0 (75)
We then have the following result.

Lemma 7. AssumeV is asymptotically (possibly globally) null as in (75). Then,
the base of the asymptotically Kaluza—Klein end is covered by a single coordi-
nate chart of (t,x") with

t=u", ' = Lu' + O(F~7/%). (76)
Let
Y=+ L 0 ~p+drm (77)
parametrise the fibres. In such a chart V =0, and W = 0y.

Proof. From (4), it follows that the most general form of X® is

. : - 1y
X0 = 71(du® + Ldg) Adu? + SR A du (78)

j
for some functions Tj(i) and R§2 From the 00 component of (6) using (11), we
obtain
(O + O NTITY = 635+ OF), (79)
hence Tj(i) = O(1). From (11), (75) and (3) follows f = O(7~7/?), and using
(5), one can check that Ryk) = O(7~7/2). The spacetime covariant derivative
of X has the form VX ~ F« X (10), thus
0,1 = 8,X§) = 0(F=7/>1), (80)

where we used that the relevant Christoffel symbols decay as O(7~"~1) (Ap-
pendix A) and that F = O(7#~7/271) (see Remark after Definition 1). After
integration of (80), we get

0 =Ty oG7?) (81)

J J

for some constants T;Z). Furthermore, these constants satisfy (79), hence T €

O(3). By a global orthogonal transformation of u’, we can arrange that
X = (du® + Ldy) A du’ + OF/?), (82)
and thus
X9 = Ldu! + O(F7/?). (83)
By the same argument as in Lemma 6 z° can be integrated to get

o' =Lu' + O(F'~7/?), (84)
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and (¢t = u®,2%) is a global chart on the base of the asymptotically Kaluza—
Klein end. g

The notation of the coordinates (¢,v,z') matches that of the timelike
(but here asymptotically null) case ((13) and (18)), but the result is valid for
the globally null case as well. Then, the coordinates of (30) are given by v = u®
and u = v instead.

We have thus in each case constructed a chart on the asymptotically
Kaluza—Klein end that is adapted to the Killing spinor bilinears. In particular,
a suitable time coordinate ¢ and the Cartesian coordinates z', related to the
bilinears X ) by (20), provide a single chart of the base of the fibration at
infinity.

4. Near-Horizon Analysis of Null Supersymmetric Solutions

4.1. Classification of Null Supersymmetric Near-Horizon Geometries

The near-horizon analysis and classification of near-horizon geometries in [16]
assume that the supersymmetric Killing field becomes timelike in some neigh-
bourhood of the horizon, which is no longer true in the globally null case. In
this section, we show that the same results apply in the null case, and we
deduce some technical results for later use.

The results of [58] show that a supersymmetric near-horizon geometry,
even in the null class, must be maximally supersymmetric. These solutions
were classified in [34], and thus, the near-horizon geometry must be AdS3 x S?
or a plane wave solution. While there is only one way AdSsz x S? is realised as a
near-horizon geometry of a null solution, as it has a unique null supersymmetric
Killing field, if one were to use these results, one would need to determine how
the plane wave geometry is compatible with being a near-horizon geometry.
Instead, we prefer to give our self-contained treatment using the method of [16],
which will reveal that the only other possible near-horizon geometry is the
trivial plane wave with flat geometry.

Following [16], we introduce Gaussian null coordinates near a connected
component of the horizon. In these coordinates, the horizonisat A =0,V = 0,
and the metric takes the form

g = 2dAdv + 2 hdv + 7, (85)

where v and h are a family of metrics and 1-forms on the 3-manifolds H, j,
which are the v = const, A = const hypersurfaces. Note that since V = 0, is
Killing, the metric components do not depend on v. Let H = H, ¢ denote a
spatial cross-section of the horizon. Equations (4-5) imply that we can choose
a coframe {Z(W}2_ of v such that

X = (d\+ Ah) A 2D, (86)

Equation (9) implies that V is hypersurface orthogonal, which is equivalent
to

dh = Ah A DD, (87)
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where d denotes the exterior derivative projected onto H,  (i.e. it does not
include \ derivatives). Closedness of X () is equivalent to (87) together with

4z = 9, (Ah A Z(“) . (88)

To determine the Maxwell field, following [34], it is convenient to work
in the spacetime coframe

et =d 4+ Xh, e =dv, e =20, (89)

Equation (7) implies that F' = F.;e* Ae'+ 3 F;je Ael. Fy; is determined by (9),

while + + j component of (10) determines Fy;. Choosing e~ AeT Ael Ae? Ae3
to be positively oriented, after some algebra we get

311 ‘ ,

F= g [Eiml (29.0020) XO —x (4 205m) [, (90)

3
where *,, is the Hodge star of v with orientation el Ae? Ae?, and we used that
X0 = et Aet,

Equation (90) agrees with (3.35) of [16] in the null limit, but its deriva-
tion does not rely on the assumption that V becomes timelike outside the
horizon. The analysis of [16] determines the leading-order behaviour of the
metric quantities h, Z(*),~, which applies without modification. For complete-
ness, we sketch it here as well. (87) and Bianchi identity for (90) implies

dh =0 and (Ai*yh:O on H, (91)
respectively, from which follows
0=—(d%y dsy+xydxyd)h = V2h—Ric-h on H, (92)

where V and Ric are the Levi-Civita connection of ~ and its Ricci tensor, and -
is with respect to y 1. The j+k component of (10) at A = 0 yields an expression
for VZ() on H, which after taking another derivative and antisymmetrising
yields
Ric=h*>y—h®h—Vh on H. (93)
Then considering the integral I = [, |[Vh|2 dvol, after integration by parts
and using (91-93), one can show that
Vh=0 onH. (94)

Equation (88) implies that Z (1) are hypersurface orthogonal, and without loss
of generality there exist coordinates z° and a function K(z) such that

70 =Kdz'+0O(\)  and  h=dlogK +O(\). (95)

Equation (94) imposes a condition on K, which has two solutions, one corre-
sponding to flat near-horizon geometry with 7 horizon topology, which is not
allowed [6], the other one is

K = K(] exp(—¢), (96)
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where 1) = %1og(zizi) and K is some constant. This corresponds to S? x St
horizon geometry with

h=—dy+00), ZW=Ky(&'dy +di’) + O\,
v = K3(dy? + ditdit) + O(N), (97)

where we introduced ¢ = 2% exp(—1) that satisfy 2°4" = 1 and d2'd#? is the
round metric on S2.

4.2. Imposing Axial Symmetry

Building on the above results of [16], it has been shown in [19] that a U(1)
Killing field that preserves V and X must be of the form W = W¥0y +
Wvd, + O(X) for a constant nonzero W¥ and a function W¥ on H. In fact,
since W is spacelike on the horizon,'® one can choose v = const surfaces such
that W is tangent to H, i.e. W¥ = 0, in which case one can show that

W =Wv0, (98)

exactly in some neighbourhood of the horizon (see Remark after Lemma 6
of [19]). In the following, we will work in such a coordinate system.

Another result of [19] is that ty X @ oc dA,'! hence if one can integrate
(20) to obtain functions z*, these are constant on each connected component
of the horizon (i.e. each connected component of the horizon is mapped to
a point in R?). In the null case, the horizon topology is S? x S! and W is
tangent to the circle fibres; thus, in a neighbourhood of the horizon one can
integrate (20) to obtain (up to an additive constant which for simplicity we
set to zero) [19]

zt = —WYKo i’ + O(\?), (99)
and the radial distance on R3 from a horizon component is
= Vaizt = WYKo\ + O(\?). (100)

For later reference, we now look at the next order in A\ and prove the
following lemma.

Lemma 8. Near a horizon component g(W,W) = ag + ray + O(r?) for some
constants og, o .

Proof. From the leading-order metric and (98) follows that g(W, W) =
(WYKg)? + O(r) thus ag = (W¥Kp)? is trivially constant. In the second-
to-leading order, we introduce

70 — K, [ﬁgidw +dat A (fofpdw + Z{”) + O(AQ)} : (101)
h = —dt) + A(h1.pdth + hy) + O(A2), (102)

10Tf W were null at the horizon, it would be parallel to V = 8y, and since [V, W] = 0, W?
would not depend on v. Thus, the coordinate v would be periodic by the periodicity of the
orbits of W, which cannot happen.

n fact, the explicit form of W is not necessary for this result. From (29) da* are null on
the horizon, and since ¢ty ey X (¥ = 0 by (4), b X® oc VP =dX on H.
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where ZY?)L and h; 4 are functions, and ZAY) and h; are one-forms on S2. (Note

that h and Z) cannot depend on v, since 0y is Killing that also preserves
X (@) (87) implies that

hi = dhy y, (103)
and from (88) it follows that
2\ = 2hy y@" +4C°, 20 =2k ydi +2d¢ (104)
for some functions ¢* on S2. The norm of W is given by:
g(W, W) = (KgW*)* + 4| KoW¥| (hy.y + 2C'3) r + O(0?).  (105)
We now show that hy  and (‘2% are constants. Bianchi identity for (90)
in second-to-leading order yields that
dxod (hiy + (') =0 (106)
e’ d(da?, d¢*) = ejrd’(Fda’ (107)
where *2 and (,) are the Hodge star operator and the inverse metric on the
unit S?, where the orientation is related to the horizon orientation by e, =
K3dy Aegz. From (106) and the compactness of S? follows that hy 4 + ('2° is
constant. (107) can be written as
* dxo d (¢(Fdi’) = —d (¢'2"). (108)

Acting with xgdxg on (108) yields that ¢?2¢ is harmonic on S?, hence it is
constant. Thus, both hy 4 and (2" are constants, and the norm of W has the
claimed form. O

The above proof solely relies on the near-horizon geometry and does not
use the form of the solution in the DOC. If one uses (30), (37), and Lemma
2, there is an alternative way of proving that h; 4 and (’Z' are constants.
Integrating (20) to second-to-leading order yields

r= WYKol [A+ (hiy + 2¢°2") X?] + O(X?). (109)
Using this, the inner product of Killing fields becomes
W¥r n 272
|[KoW?| — WYK?
On the other hand, from (30) g(V,W) = —G~!, so G diverges as ~ 1/r and

harmonicity on R? implies that

hiy+ ('3t =C (111)

g(V,W) = \uwh = (hiy +('2") + O(r®).  (110)

for some constant C'.
The two expressions for the Maxwell field (37) and (90) evaluated on the
horizon using (31), (86), and (99) yield, respectively,

Pl — sgn(WYKo)(y-160 — K-170)
|0 = — W,

dA A dy
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3 o
+ %’Y_1 sgn(WwKo)eijkild:E] Adik, (112)

Flamo = —2ei2°(d27, dCF)dA A dop + ?Koeijk:fcid:ij A dzF+

V3

+ 7%d)\ A eij (289 ¢Rdat + (da?, d¢*)dit) (113)
where G =: y_1/r + v + O(r), K =: k_1/r + ko + O(r) with constants
Y—1,%0,K—1, Ko, where we used the boundedness of /G and the harmonic-
ity of JC. Thus, by comparison one obtains

i) s 1 _
Koeijpd' (di7, d¢) = —3 sgn(W¥Ko)y~3 (v-160 — K-170), (114)
2¢tdat = 2'd(, (115)

where for (115) we have applied x2 on the one-form in the second line of (113).
Taking xod of (115) and substituting into (114) yields

Y-1k0 — K—170 = 0, (116)
and therefore the first term of (112) vanishes, which, to leading order, cor-
responds to the first term of (90). Thus, the Maxwell field must be of the
form

F= —? xy (B4 AOxh) + ON)dAX + O(A)dv + O(A\?)dz!
_ V3K . V3KoX

eijritdad A dik 5
+2dyp A *2(¢'dE")] + O(A)dA + O(A*)dv + O(X*)dz", (117)

where we used (111). The dA A dy A dZ terms of the Bianchi identity for (117)
imply

[(2¢°2" — (A¢P, dE"))epumaddt A di™

¢‘di' =0 = (' = (3, (118)
for some function ¢(2), and by (115) ¢ = (2% is a constant, and by (111) so
is hl’,/,.

Corollary 1. There exists a gauge choice of (34—35) such that around a horizon
component Q = q_1/r + qo + O(r) for some constants q_1, qo.

Proof. The invariant g(W, W) = —Q/G + G?|b|>. By (36) and using that K =
O(r=') and G = O(r~1), one can see that (with an appropriate gauge choice
of (34-35)) we have G%|b|> = O(r?). Thus, from harmonicity of G and Lemma
8 follows the claim. O

5. Orbit Space and the General Global Solution

The next step is to determine the structure and topology of the orbit space.
We will show that even if the DOC is not simply connected, it is still possible
to define invariants (scalar functions) from certain closed 1-forms that are
left invariant by V, W and thus descend to the three-dimensional orbit space
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3= ((M))/[Ry x U(1)w]. Using these functions, one can ‘almost globally’
define the harmonic functions and prove that the solution is globally defined by
a set of harmonic functions of multi-centred type, i.e. with isolated singularities
where they diverge as 1/r on R3.

5.1. Orbit Space Analysis and Invariants

Let us now look at the structure of the orbit space f), which has been analysed
in detail in [7]. It is a topological manifold [63,64] with boundary 8% = S2, U;
SZu; H ;, where S2 is a 2-sphere at infinity, S? are non-isolated fixed points
corresponding to ‘bolts’ [65], and flj are quotients of horizon components.
Generally, the orbit space can be written as S =FUEU f/, where F7 E,
L denotes fixed points (U(1) isotropy), exceptional orbits (discrete isotropy),
and regular orbits (trivial isotropy), respectively. Lis open in f), and has the
structure of a smooth manifold. F consists of curves in 3 that are either closed,
end on an isolated fixed point, or on a horizon component H;. F' consists of
isolated fixed points or the previously mentioned 2-spheres S?.

A crucial observation is that the orbit space of the asymptotic region
S0 = Yo/U(L)w ~ R*\B? is simply connected, so we can use topological
censorship for Kaluza—Klein asymptotics (Theorem 5.5 of [12]) to conclude
that ¥ = Y /U(1)w is simply connected. This, however, is not sufficient to
define potentials for closed 1-forms, as the orbit space, in general, fails to be a
smooth manifold at fixed points and exceptional orbits. To rule the existence
of the latter out, we have the following lemma.

Lemma 9. There are no exceptional orbits in ({(M)).

Proof. Let us assume for contradiction that there exists an exceptional orbit
E. C ({(M)) with isotropy group Z,, and let e € E. be a point on that orbit,
ie. ?7/P . ¢ = ¢, where €' € U(1) with a ~ a + 2. First, we will construct
a local chart around E, as follows.

By assumption S, := span{W,, V. } C T, M is timelike and non-degenerate,
hence S:- is spacelike. Since Ly'V = Ly W = 0 and W is Killing, e?7/P is an
isometry that preserves S, and S, so R := e27/P | s+ is a three-dimensional
orientation-preserving'? rotation. Furthermore, RP = Idg., thus R must be a

rotation by 27n/p for some n € Z. Let Z, € S+ be the unit vector preserved
by R, and X,.,Y, € S} such that {Z., X, Y.} is an orthonormal frame in S;-

and
X\ [ cos(2mn/p) sin(2mn/p)\ [Xe
R <Ye> B (— sin(2mn/p) cos(2mn/p) ) \Ye ) (119)
Now let us extend Z., X., Y, along E. by

LwZ =0, LwX= —%Y, LY = %X, (120)

12 This can be seen by the fact that W preserves V2 AW Avyyr XM Ay X Ay XB) £ 0
for N > 0.
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(The factor of 2 only appears because W is normalised such that it is 4z-
periodic.) Simply Lie-dragging X, Y along W would rotate them according to
(119), which is cancelled by the right-hand side of (120) (recall that the excep-
tional orbit is 27 /p-periodic), so extending X and Y as in (120) is necessary
in order for them to be single-valued along E.. Finally, let us extend X,Y, Z
along the integral curves of V' to some 2-surface E by

Ly X =LyY =LyZ =0. (121)

This is possible since [V, W] = 0. Thus, we have constructed an orthonormal
frame along F in the normal bundle N E. Let A parametrise the integral curve
of 2p~'W along E, so that A ~ X\ + 27 on E, and 7 be the affine parameter
distance from E, along an integral curve of V. By the Tubular Neighbourhood
Theorem (see e.g. [66]), we can introduce coordinates {x,y,z} by exponen-
tiating linear combinations of {X,Y, Z} such that F is at x = y = z = 0,
which together with A, 7 form a local chart in some neighbourhood U of E..
Since W,V are Killing, they map geodesics to geodesics, hence V = 9, and
components of W can be deduced from its action on the orthonormal frame
in NE, that is (cf. (2.20) of [7])

paA-+ 5 (@0, = yd,). (122)

Now we look at X9 on E. From (4), it follows that X () have no 7 leg.
The two-forms are preserved by W; thus,

0= LX) mffmxg+gxg, (123)
0=LwX)|e= fmx ;Xg, (124)

for a = A, z. Taking a A\ derivative of these equations, and substituting the
originals back yields that
3/\ a X()

ax’

(125)

and similarly for X, (l) Equation (125) admits solutions which are 27p/n-
periodic in A. The exceptional orbits, however, are 2m-periodic in A, which
means n/p € Z. In that case, the neighbouring orbits (for z,y > 0) would
have the same isotropy as the exceptional one, which cannot happen. Hence,
the only solution to (125) is Xéw) X(SZ) = 0 for a = A, z. Thus, at each
point of the exceptional orbit X" € span{d\ A dz,dx A dy}, which is two-
dimensional, contradicting linear independence of the three two-forms
following from (6). O

Remark. The key assumptions for Lemma 9 is that the axial Killing field pre-
serves three linearly independent 2-forms possibly having legs in four directions
(recall that they have no dv legs). This follows from supersymmetry in both
timelike and null case, but it is a more general result.

From the assumption that the span of Killing fields is timelike (assump-
tion (ix)), it follows that F' C int B, so F' is a set of fixed points of a triholo-
morphic Killing field, which must be isolated (see [38] and the proof of Lemma
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8 in [19]). This rules out any ‘bolts’ [65] in the orbit space. Thus, we have the
following result (cf. Lemma 8 of [19]).

Corollary 2. The orbit space 3= ﬁUﬁ', where L corresponds to reqular orbits,
and F is a finite set of points corresponding to isolated fized points of the U(1)
action. Its boundary is 0% = H U S%..

O
Corollary 3. L is sitmply connected.

Proof. Corollary 2 is an immediate consequence of Lemma 9. Corollary 3 fol-
lows from the fact that a simply connected 3-manifold stays simply connected
after the removal of finite many points. O

Lemma 10. The equations
. . 3
o X0 = dit, oy F = gdqf (126)

define smooth functions z*, ¥ globally on ((M)) UH (up to an additive con-
stant).

Proof. From their definition, we have tyydz’ = iy X = 0, Lyyda! =
d(twdz?) = 0, vydz® = e X@ = 0 by (4), Lyda’ = d(tydz’) = 0 and
similarly for d¥ using (7), so they descend as smooth 1-forms on L. Since L
is a simply connected smooth manifold by Corollary 3, they define smooth
functions z’ and ¥ on L. In fact, since W3 # 0 and the orbits of connected
horizon components H; = H;/(R x U(1)) ~ S? are simply connected [7],
the functions can be defined on the horizon as well. Then, we can uplift
these functions to (((M)) U H\F)/R by Lyz' = Ly ¥ = 0. We then ex-
tend the functions to the isolated fixed points continuously. This is possible,
since the functions can be integrated on some small 4-ball around a fixed
point with a constant chosen such that the function agrees with the one on
(((M)) U H\F)/R. Finally, we uplift z° and ¥ to the spacetime by
,Cvl‘i = Z:V\I/ =0. O

5.2. General Global Solution
We are now ready to deduce the global form of the general solution that

satisfies our assumptions, heavily relying on results of [16,19,29].

Theorem 1. For any solution (M, g, F) of D = 5 minimal supergravity satis-
fying assumptions (1)-(x), the DOC is globally determined by a set of harmonic
functions (H, K, L, M when f #0, G, Qo,K when f =0) on R\ UX | {a;} of
the form

i

|z — a;]’

N
H(z)=h+)Y_ (127)
i=1
where h, h; are constants and a; are the positions of centres corresponding to
connected components of the horizon or fized points of the axial symmetry (the
latter only possible when f #0).
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In the timelike case (f # 0) the metric is of Gibbons—Hawking form
1 H ..
+—(dp +x)* + —dz'da’, (128
A+ (128)
determined by (21-24), and the Mazwell field is determined by (26). In partic-
ular, (128) and (26) smoothly extends in coordinates (t,1) z*) to regions where
f=0.
In the null case (f = 0), the solution is determined by (30-37), where
for the inhomogeneous part Qr := Q — Qq, which satisfies (38), we impose the
boundary conditions that Qr is bounded on R® and vanishes as |z| — oc.

g=—F(dt + wy(dp + x) + @)?

Proof. The functions z° are globally defined on ((M)) UH by Lemma 10. By
Lemma 1, V is either globally null, or V' is timelike on some dense subset of
({(M)). The near-horizon analysis of Sect. 4 for the null case and that of [16,19]
for the timelike case implies that each connected component of the horizon is
mapped to a single point of R by x (Lemma 6 of [19]). Furthermore, there are
no exceptional orbits of W (Lemma 9). Thus, we can apply Lemma 9 of [19]
to deduce that = : L — Rj\m(ﬂ U F) is a global diffeomorphism. Hence, the
three-dimensional orbit space with each horizon component added as a single
point, S U; {H;} is in bijection with R3. We next analyse the null and timelike
cases in turn.

Null case (f = 0): We have seen that the solution must have the form (30-37).
a; must correspond to horizon components, as fixed points are ruled out (see
discussion after Lemma 2). G is globally defined and nonzero on ((M)) by
(39). This means that G is a nonzero harmonic function on R\ U; {a;}, which
diverges at each a; as ~ 1/|x — a;|. This follows from the near-horizon analysis
(see proof of Lemma 8), or by Bécher’s Theorem (see e.g. [67]). This determines
the singular structure of G, and its regular part is a harmonic function on R?
which approaches G — L~ by (11), (39) and (75), therefore it is constant.
From (41) and (126) follows that (up to an additive constant)

K =360, (129)

which defines K on ((M)). It also follows that K has (at most) simple poles
at horizon components. Since d¥ ~ F ~ O(|z|~7/?>71) (see Remark after
Definition 1), ¥ — const at infinity, which we are free to choose to be zero.
(This corresponds to the ‘gauge’ freedom K — K 4 ¢G for some constant c.)
Thus, the regular part of K on R? is constant (in fact zero in this ‘gauge’).
Finally, let us look at Q. The norm of the axial Killing field g(W, W) =
f% + G2|b|%. From the asymptotic behaviour of G and K, by (36), we deduce
that [b] = O(|z|~1), and thus Q = —L + O(|&|~"). By Corollary 1, near a
horizon component there exists a gauge such that
gty

|z — a

Q:

+ay + Oz — ail), (130)

with constants ¢* ; and gf. It follows that we can impose the following bound-
ary conditions on the inhomogeneous part Q;: we require that it vanishes at
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infinity, and it is bounded at each horizon component. This fixes the inhomo-
geneous part,'® and thus the homogeneous part Qp = ¢* | /|x — a;| + O(1) at
the " centre and approaches —L at infinity. By the same arguments as for G,
Qg has the claimed form.

Timelike case (f # 0): We have already established that the base has Gibbons—

Hawking form on M \F. Now let us focus on the associated harmonic functions.

Since N > 0 on ((M))\F, by Lemma 1 of [29] the metric (128) is smooth,

invertible with smooth inverse, the Maxwell field given by (26) is smooth, and

the harmonic functions are smooth, and they are invariantly defined by
f _ fgW, W) +29(V, W)W — fu?

H==4, L N , (131)
K= f¥ —g(V,W) M= g(W, W)g(V,W) = 3fVg(W,W) — 3W3g(V, W) + fU?
- N ’ - 2N ’
(132)

even on the set f = 0, where N must be nonzero by our assumption that
the Killing fields span a timelike vector space. Here we used that W is glob-
ally defined due to Lemma 10 up to an additive constant, changing of which
corresponds to shifting the harmonic functions as in (27).

Now that we have established that the harmonic functions are smooth at
generic points of the spacetime, let us look at their behaviour at fixed points
of W and the horizon. For fixed points, note that the expression for H in (132)
implies that the zeros of H and f must coincide on ((M)). Also, f(p) # 0 at a
fixed point p and (by continuity) on some neighbourhood, thus H is nonzero
in some neighbourhood of p. As N(p) = 0, by (132) H must diverge at p and
by Bocher’s theorem H must have a simple pole at (p) = a; for some . From
(132) it follows that all harmonic functions have the same type of singularity
at a;. For the horizon components, using the near-horizon analysis of [16],
triholomorphicity implies that the harmonic functions have (at most) simple
poles at the horizon components (Lemma 9 of [19]).

This fixes the form of the harmonic functions up to a globally defined
harmonic function on R?, which, as in the null case, is determined by the
asymptotic conditions. By calculating the invariants f, ¥, g(V, W), g(W, W)
at infinity and using (132), we find that the regular part of the harmonic
functions must be a constant. Depending on whether f — 1 or f — 0 at
infinity (asymptotically timelike and null cases respectively), the values of
these constants are different.

In the asymptotically timelike case by Lemma 6 f2 = 1+ O(|z|™7),
gW, W) = L? + O(|lz|7"), and g(V,W) = —Lyvg + O(|z|~7), thus N =
v2L? 4+ O(|z|~7). Without loss of generality, we can require that f — 1. Then
using (132) we see that H = (Ly)~2 + O(|x|~"), where the fall-off of the
subleading terms are determined by harmonicity on R3. The Maxwell field
(17) falls off as F = O(|x|~*~7/?), hence by (126) ¥ = ¥y + O(|x|~7/?),

13This can be seen by the fact that the difference of any two such particular solutions is a
bounded harmonic function on R3\ U; {a;} that goes to zero at infinity, and thus identically
Z€ro.
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where ¥y is a constant of integration, which we are free to set ¥y = ff/va
for convenience.'* This implies through (132) that near spatial infinity

H=(L7)7?+0(z[™), L=1+0(=""), K=O0(z"),
M = Lyvg + O(|z|™Y), (133)

where the subleading fall-off has again been determined by harmonicity.
In the asymptotically null case, we obtain by a similar calculation that

H=0(z|™"), L=0(z|™"), K=L"+0(z™"),
M =—L/2+0O(z|™"), (134)
where for simplicity we set ¥y = 0. O

Remark. Note that for all cases harmonicity on R? sets 7 = 1 in Definition 1
for the fall-off at infinity.

6. Regularity and Asymptotic Conditions

Theorem 1 necessarily includes the most general global solution under the
stated assumptions; however, it does not guarantee that all such solutions are
smooth, asymptotically Kaluza—Klein black hole solutions. In order to establish
the sufficient criteria for this, we need to check the asymptotics and regularity
of these solutions. This analysis is different in the timelike (f # 0) and globally
null (f = 0) case, so we consider them in turn.

6.1. Timelike Case

By Theorem 1, the solution is globally determined by harmonic functions

Z|az—az b, K($):;|w—ai|+k
l;
:c):;rﬂli| +1, Z ‘micm m, (135)

and the asymptotic values of the harmonic functions depend on whether f — 1
or f — 0 as || — 00, as in (133-134), that is respectively

h = (Ly)~2, k=0, [=1, m = Lyvg, (136)
and

h=0, k=L =0, m=—L/2. (137)

First we analyse the asymptotic geometry, and then, we determine the regu-
larity conditions near the horizon and around fixed points.

14We choose the constant such that the regular part of K vanishes at infinity. This is the
same gauge as the one used in [39] and [30]



D. Katona Ann. Henri Poincaré

6.1.1. Geometry at Spatial Infinity. At spatial infinity (J&| — o0), we can
expand the harmonic functions as

N
H(x) :h+M+O(|x|’2), (138)

and similarly for K, L, M.

As we will shortly see, in the timelike case the geometry of the ‘sphere’
at infinity is governed by the second-to-leading order terms in H. After inte-
gration, (19) yields

X = Xod¢ + ho cos 0dp + O(r~2)da?, (139)

where we defined ho = Zf\il h;, on R*® we use standard spherical coordi-
nates (r,60,¢), and Xo is a constant of integration. We can set the latter to
an arbitrary value by a coordinate change (v, ¢) — (¢ + ¢¢, ¢) which shifts
X0 — Xo — ¢. We will shortly see that the bundle structure requires that ho is
an integer, so for convenience we work in a gauge in which yg = ho mod 2.

We now look at the geometry of a constant time hypersurface in the limit
7 — 00, in which the spatial metric has the form

. s } 2
Wd;"p + h3L2 (7'111’2’;”“ + cos 9d¢>>

g t= const = +7;72i2(d92 + Sin2 0d¢2) + - ) if ﬁo 74— O,
A + L2 (A9 + Xod¢)® + 575 (402 +sin? 0d?) + - -+ , if ho =0,

(140)

with v = 1 in the asymptotically null case, and ... represent lower order terms
in each metric component. It is explicit that at constant r the metric takes the
local form that of a squashed S? if hg # 0, or $% x S if hg = 0. In the latter
case, the angles are identified as (¢, @) ~ (¢ + 4w, ¢) ~ (¥, ¢ + 27).

In the locally spherical case, let us define ¢F := (¢ + (Yo =+ ho)¢)/ho so
that the leading order angular metric (on the ‘sphere’ at infinity) takes the
form

g‘t L= h2L? (d¢™ £ (1 % cos 9)dq§)2 + r2y72L72(d6? 4 sin® 0dp?) + - - - .
(141)

In these coordinates, the U(1) connection £(1 £ cos@)d¢ is regular on the
northern and southern hemisphere, respectively, so we use ¢+ as vertical co-
ordinates on the fibres on the N/S hemisphere. Independent 4m-periodicity
of v for each ¢,6 (which we assume by Definition 1) implies that ¢& are
47 [ ho-periodic. Therefore, we may parametrise U(1) (now identified with the
complex unit circle) as exp(iﬁorj)i/Q). Also, ¢ = ¢~ + 2¢, so the transition
function between the N/S hemisphere is exp(iﬁo(,b), which is single-valued on
the equator only if ho is an integer as previously stated. Also, independent
periodicity of ¢ ~ ¢ + 27 for fixed ¢F implies

(1, ¢) ~ (¥ + 27 (Xo £ ho), ¢ + 2m). (142)
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Since we have set yo + ho to be even, and ¢ is independently 4m-periodic, this
implies that

(¥, ¢) ~ (¢, ¢+ 27). (143)

One can check that the geometry of the ‘sphere’ at infinity is L(|ho|,1) or S*
if |ho| = 1.

In summary, the geometry at infinity is S2 x S! for hy = 0, S® for
ho = £1, and L(p, 1) for |ho| = p € Z. In all cases, the angles are identified as
(1, ) ~ (¢ + 47, ¢) ~ (, ¢ + 27).

6.1.2. Regularity. Regularity has to be established at (i) generic points, (ii)
the horizon, (iii) at fixed points of W. Recall that assumption (ix) implies
that N > 0 on ((M))\F. For generic points, smoothness of the solution is
established by Lemma 1 of [29], which states that if

N '=K*+HL>0 (144)

and H, K, L, M are smooth, then (g, F) is smooth, and g is invertible with
smooth inverse. Therefore, (144) must be imposed on the harmonic functions
everywhere on their domain. Much like in the asymptotically flat case, it is
currently an open problem to reformulate (144) as an explicit condition on the
parameters h;, k;, l;, a;.

The smoothness of a solution determined by harmonic functions of the
form (135) has been analysed for the asymptotically flat case, and the suffi-
cient conditions have been determined at the horizon and fixed points in [29]
for axisymmetric, and in [19] for general (non-symmetric) harmonic functions.
Reference [19] (a) uses a local expansion of harmonic functions in terms of
spherical harmonics, (b) assumes that the periodicity of the angular coordi-
nates are determined by asymptotic conditions, and they are 1 ~ ¢ + 47 and
¢ ~ @+ 27 independently, where ¢ is the azimuthal angle in a spherical coor-
dinate system of the R? base of (128). For (a), around each centre (which we
take to be the origin) we expand the harmonic functions as

h_
g =t

r

o0

tho+ D> hmr" Y0, 9), (145)

k=1

|m|<k
and similarly for the other harmonic functions. This has the same form ir-
respective of asymptotics, and thus, the same sufficient conditions hold for
asymptotically Kaluza—Klein spacetimes. For (b) we have seen in Sect.6.1.1,
that the angle coordinates ¢, ¢ admit the same identifications as in the asymp-
totically flat case. This means that the regularity analysis is identical. We here
only present the results, details can be found in [19].

If the centre corresponds to a horizon component, existence of a coordi-

nate transformation to Gaussian null coordinates (and also positivity of the
horizon area) requires that
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3
—h2 m?%, —3h_qk_ql_ym_1 +h_ 11>, —2k3 im_, + 11&112_1 > 0.

(146)
Integrating (19) and (22) yields
X = (xo + h—1cos8)do + X, (147)
w = (wg +w_1 cosB)do + @, (148)
where o, wg are constants of integration,
w_1 = hogm_1 — mgh_1 + %(kol,l —lok-1), (149)

and Y, @ contain higher-order terms in . Smoothness at the axes § = 0,7 is
equivalent to

W_1 =wy = 0. (150)
The horizon topology is determined by
h_1€Z. (151)

For h_; = 0 the topology is S? x S', for h_; = =+1 it is S3, otherwise
L(|h_1],1). Correct identification of the angles requires that

Xo =h_1 mod 2. (152)

If the centre is a fixed point of W, then there is a curvature singularity
at the centre unless

h_y ==+l (153)

The Killing fields having timelike span implies that f # 0 at the centre, which
is equivalent to

l_1+h_1k%, =0, 154
1

and the spacetime has the correct signature around a fixed point if and only
if

h_l(lo — hok‘%l + Qh_lk’_lko) > 0. (155)
Smoothness of w is equivalent to

m_y =3k, (156)
W_1 =Wy = O, (157)

and the correct identification of the angle coordinates, similarly to the horizon,
requires that

Xo =1 mod 2. (158)
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6.2. Null Case

By Theorem 1, the solution is determined by the harmonic functions on R3\ U;

{ai}
1. g
g(z)_i+;|w

, K(m)ZZL, Qo(z) = _L"’Z

a;l ~ |z —a, |£B —a,|
(159)
Our assumption that there exists a timelike linear combination of the
Killing fields in the DOC (assumption (ix)) excludes any fixed point of W;
hence, all centres must correspond to connected components of the horizon.
We start our analysis at the horizon.
Let us focus on a single horizon component, around which we will use
standard spherical coordinates (7,6, ) on R?, so the horizon is at the origin.
Then, we can expand locally the harmonic functions and, using Corollary 1,

Q as
G="1490+6, Q——+qo+Q K——+mo+lc (160)

with some constants y_1,%0,9—1, 490, k—1, ko- The quantities with tilde are of
O(r), and in the case of G, K harmonic.'® Recall that G is positive in the DOC
and must diverge at the horizon, which means that

y_1 > 0. (161)
In Sect. 4 we have seen that the axial Killing field W' is spacelike on the horizon.
Recall that 0 < g(W, W) = —Q/G + G?|b|* and by (36), G%|b|> = O(r?) (with
a suitable gauge choice of (34-35)), which implies that
g1 <0. (162)
Equation (36) can be locally integrated to obtain

c:=G3 = (c_1cos6 + cp)do + ¢,

l
~ CimT m
ei= Y TV (163)
>1
Im[<i

where ¢y is a constant of integration, Y, are the spherical harmonics, x5 is
the Hodge star on the two-sphere, and the coefficients are defined by

Cc_1:=" k-1 — KoY—1, Z clmrlYlm =v1K —k_1G. (164)
1>1
Im|<I
Note that ¢ is analytic in r and smooth on the two-sphere. The metric (30) has
a coordinate singularity at the horizon. The coordinate change that removes
this singularity is of the form

A A B
dv' = dv — (0 + 1) dr, du’ = du — —dr, (165)
r2 o T

159 contains the inhomogeneous part of Q, hence not harmonic.
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with Ag, A1, B constants. In these coordinates, the metric becomes

2
_2dudv _ 2Bdedr <AO+BQr A Bl )dudr

TG rg grr Gr o G

2cdu o 2A0B+2A,Br+ B?*Qr  B2?|c]? 5 . Bedr
- d 2
g " <g Gr? T )T TG
Q el 2 2,20302 1 qin2 2
+ _§+? du® + G*r*(d6” + sin” 6d¢*), (166)

where the norm is with respect to the flat metric on R3. Setting the 1/r% and
1/r terms in g, and the 1/r terms in g,, to zero is equivalent to

“1(qov-1 + 3q—
Ao = t1/—g 18, A _ V-1l@0r-1 43¢ 170)7
2y/—q-1

B=4—L (167)

The near-horizon geometry ((r,v) — (er,v/e), in the limit ¢ — 0) is given by:

2rdvd _ _
INH = — reve 4 2, |- qudr — =L qu? + 72, (d6? + sin? Adp?),
q-1 Y-1

T-1

(168)

which corresponds to a black ring, in agreement with the near-horizon analysis
in Sect. 4. Regularity of (166) at the axes 6 = 0, 7 requires that ¢ is a smooth
I-form on S2. Setting ¢y = 41 makes it smooth at § = 0,7, respectively,
however, the required coordinate change between the two charts (covering the
northern and southern hemisphere) by (34-35) is v" = v’ — 2¢, which is well-
defined only if v is periodic, but that cannot happen. Hence, smoothness at
the horizon is equivalent to

co =0, (169)
C_1 =YK-1—RoY-1 = 0. (170)

Note that the same constraint as (170) for £ and G has been derived in the
near-horizon analysis in (116).
The regularity condition (170) has the following consequence.

Lemma 11. K =0 on R3.

Proof. By Theorem 1 G(x) = Y ~;/|& — a;| + L' and K() = XN #i/|x —
a;|, and all centres correspond to horizon components. In terms of the param-
eters of the harmonic functions, (170) at each centre (horizon component) is

equivalent to

N

Z Viki T Yikj +L 7', =0 for each ¢, (171)
s

i=1 Y
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where a;; := |a; —a;]| +5ij.16 We look at this as a system of IV linear equations
for N unknown r; of the form A;;r; = 0, where the matrix A is given by:

N
Aij = <[~/1 + Z Zk> 0ij — % (172)
=1 ik 1]

Since L~! and 4; are positive, A is a strictly row diagonally dominant matrix,
that is

N N N

T— Tk Tk .

|Au| =L + E w > E ar g [ Ak for each 1. (173)
kA ¢ k£i ¢ ki

As a consequence, A is invertible (see e.g. (5.6.17) of [68]), and thus x; = 0 for
all 7, so £ =0. O

Corollary 4. b =0, and thus Q = Qg is harmonic.

Proof. As a consequence of Lemma 11 and (169), using (36), b is pure gauge, so
it can be set to zero by a transformation of the form (34-35). Thus, the right-
hand side of (38) vanishes, hence the inhomogeneous part Q; is harmonic, and
by our boundary conditions in Theorem 1, Q; = 0. 0

As a consequence, the Maxwell field is simply given by

F= ? 3 dG. (174)

In (160) o+ G is smooth at 7 = 0, thus so is their contribution in (174). Also,
X3 d% = —y_15in0d0 A do, (175)

which is smooth on S?, so the Maxwell field is smooth at the horizon. We have
thus seen that given (161-162), (170), the solution is smooth at the horizon.

In the DOC G > 0 and Q are smooth, hence all metric components are
smooth. The metric is invertible, its inverse is given by

g_l - ggav ® 81) - 2gau © 61} + g_26i ® aia (176)

which is explicitly smooth. The Maxwell field is trivially smooth on the DOC
by (174). This concludes the regularity analysis.

7. Classification Theorem for Supersymmetric Kaluza—Klein
Black Holes

We are now ready to present our main result, the classification theorem for
supersymmetric, axisymmetric, asymptotically Kaluza—Klein black holes (cf.
Theorem 3 of [19]). Recall that by Lemma 1 the supersymmetric Killing field
is either generically timelike or globally null. We present the two cases in turn.

16The second term is added so that the sum in (171) can be taken over all indices, the
numerator will cancel for the case when i = j.
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Theorem 2. An asymptotically Kaluza—Klein (in the sense of Definition 1),
supersymmetric black hole or soliton solution (M, g, F) of D =5 minimal su-
pergravity with an axial symmetry satisfying assumptions (i)-(x) of Sect. 2, with
supersymmetric Killing field which is not globally null, must have a Gibbons—
Hawking base (wherever f #0), and is globally determined by four associated
harmonic functions, which are of ‘multi-centred’ form, i.e.

Y by ks o
H:h—i—zr—z, K:k—s—zr—z, L:l+zr—1, M= m+z -
=1 1=1 =1

(177)
where r; == |x — a;|, a; = (v;,y;, z;) € R3, and the parameters are given by
h = (Ly)~2, k=0, 1=1,  m=Lyy, (178)
or
h =0, k=L"' 1=0, m=—L/2, (179)

in the asymptotically timelike (f — 1) and asymptotically null case (f — 0),
respectively, with constants L > 0, |vg| < 1 and v = (1 — v})~ Y2, The
centres either correspond to fized points of the axial Killing field, or connected
components of the horizon. The 1-forms can be written as:

hi(z — z) Y ki(z — )
X = Z o+ M)y g E=-) ———doi,  (180)
i=1 ¢
a 3
w= ,Zl (hlm] + 2k¢lj> ﬁij s (181)
o
where & are integers such that
Xb + hi € 2Z, (182)
and
dyy = Z )W — (v —v)d (183)

(x =)+ (y —wi)?
By = ((w—az‘)'(ai—a;‘) _(®—aj)-(ai—a;) (z—ai) (z—ay) +1)

lai —ajlri lai —ajlr; TiT;

((a; —aj;) x (x —aj)) - do

184
(@i —a;) X (x —aj)|? (184)
The parameters h;, k;, l;, m; must satisfy for each centre i =1,..., N,
N
3 hym; —mjih; + 5 (kl Lik;)

hm; —mh; + = (kl; — lk; ! ! =0, (185

m m + 2( ) + ; |a2 — a]| ) ( )
J#i

and for the asymptotically null case

Ji such that h; # 0. (186)
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Moreover, if a; corresponds to a fized point of the axial Killing field,

1
hi = +1, li + hik? =0, m; = §k§, (187)
satisfying
N 2%kike; — hi(hik? — 1)
hil — hkZh; + 2kk; + Y =L "I 5, (188)
= lai — a;]
J#i

whereas if a; corresponds to a horizon component h; € Z and

—hZm? — 3hik;lim; + hil} — 2k3m; + Zkfl? > 0. (189)
The horizon topology is S' x S? if h; = 0, S® if hy = £1 and a lens space
L(|h;|,1) otherwise. Finally, for all x € R*\{a1,...,an}, the harmonic func-
tions must satisfy

K*+ HL > 0. (190)

The topology of the ‘sphere’ at infinity (t = const, |x| — oo) is S for ho =
+1, §% x ST for hg =0, or L(|hol|,1) otherwise, where hg = Zf\;l h;.

Proof. The functional form of the harmonic functions (177-179) is required
by Theorem 1 and (136-137). By Lemma 1 f # 0 on a dense submanifold,
and since zeros of f and H coincide by (28) and assumption (ix), H cannot
be identically zero, which implies (186). Smoothness requires that h; = +1
at a fixed point (153), and h; € Z at a horizon component (151), which also
determines the horizon topology. The 1-forms x, ¢ then obtained by simple
integration of (19, 23), where we introduced constants of integration x{ such
that x¢ + h; € 2Z for all i. The latter requirement follows from the correct
identification of the angles around a horizon component (152) and fixed point
(158). For the integration of (22), we follow [27,32,69], and introduce 1-forms
Bi; as a solution to

1 1 1 1 1 1 1
ity = La() - La(D) e La(2 1),
Ti T‘j Tj Ti Tij T Tj

with 7;; = |a; — a;|. One can easily check that 3;; as given in (184) is a
smooth 1-form away from the centres on R?, in particular, it is free of string
singularities. (22) is then solved by

N N
3 _
G= > (himj + 27%'51) Bij + Y wiabi, (192)
i, =1 i=1
i# ]

where
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—mjh; + 3(kili — Ljk;)

la; — aj]

. hjm;

W' 1 = hm; — mh; —|—3 —|—Z i
J#Z

(193)

Notice that for a local expansion around a centre as in (145) the first two
coefficients for the harmonic functions are given by

N

k-
h_1 = hy, ho_h""ZT k_1 =k, k0:k+2—3, (194)
—1 ij — Tij
3751 Jj;ﬁi
N I N m
-1 =1 lo = 2 L =m. _ oy
1 79 0 l + Z Tij ) m_i mq, mo m + Z Tij (195)
Jj=1 j=1
J#i J#i

Thus, we see that at each centre (157) and (150) is equivalent to w? ; = 0, which
yields (185) and (181). With the lack of string singularities in & all conditions
of (157) and (150) are satisfied. The remaining smoothness conditions at fixed
points (153-156) give (187-188) and at a horizon component (146) yields (189).
(190) is the necessary and sufficient condition for smoothness of the solution
at generic points (144). Up until this point the proof is in essence identical to
that of the asymptotically flat classification in [19].

All that remains to be checked is that the solution is asymptotically
Kaluza—Klein. In the asymptotically timelike case, using (21) and (24) we
have f = 1+ O(|z|™Y), wy = Lyvy + O(|z|~1). In the asymptotically null
case, it is simpler to evaluate the metric components directly by using (10)
of [29] to obtain

gie = O(z|™), gy = =L+ O(jz[ "),

- 4 H - -
v = 2+ 0(la ™), = 172+ O(al ™). (196)
In both cases from (191) and (181) & = O(|x|~2)da?, and x is given by
71 P
X = — | do+O(jz|7)dx (197)

where

~ N N .
ho = Zlhi,f(o = ZIXB- (198)

It is straightforward to check that the metric is asymptotically Kaluza—Klein
with the coordinates defined in (67-68) for the asymptotically timelike case,
and (76-77) for the asymptotically null case. From (182), it follows that ho +
Xo € 27, so the given solution is compatible with our initial assumption made
in Sect. 6.1.1, and the geometry of the ‘sphere’ at infinity is indeed that of S3
(for hg = +1), 82 x S* (for hg = 0), or L(|hol, 1). O
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Theorem 3. An asymptotically Kaluza—Klein (in the sense of Definition 1),
supersymmetric black hole or soliton solution (M, g, F) of D = 5 minimal
supergravity with an axial symmetry satisfying assumptions (i)-(x) of Sect. 2,
for which the supersymmetric Killing field V' is globally null, must be of the
form

1 o
9= —5(Quii® + 2dudv) + G2 o' da’, (199)
3
F= g *3 dG, (200)
with
) N, - N g
@) =172, pogy @@=kl gmoy e
=1 7 =1 v
with constants
L>0, %>0, ¢<0, (202)

and a; € R? correspond to connected components of the horizon with topology
52 x S1. The topology at infinity is S% x ST.

Proof. Theorem 1 says that the solution is globally determined by three multi-
centred harmonic functions through (30) and (36-38), where each centre corre-
sponds to a connected component of the horizon. The constant terms in (201)
are fixed by asymptotic behaviour of the metric. Regularity of the horizon
requires that L = 0 by Lemma 11, and thus by Corollary 4 the metric and
the Maxwell field are of the claimed form with @ = Qg. The constant Lis
positive by Definition 1, and (161- 162) for each centre translate to (202). In
Sect. 6.2 we have seen that this is sufficient for the solution to be smooth on
and outside the horizon. One can also easily check that the metric asymptotes
to (11) with coordinates defined by

u =, Y=u—L "o, u' = L7 'at (203)
One can check that the geometry at infinity (v = const, r — o0) is
S? x St O

Remarks.

1. If one removes the condition (186) from Theorem 2, which violates the
assumption that the solution is in the timelike class, one exactly obtains
the solutions in Theorem 3 with

H=0, K=G, L=0, M=Q/2. (204)

The proof of Theorem 2 heavily relies on the timelike Gibbons—Hawking
ansatz, so it is not obvious a priori that one can relax (186). A possible
explanation is that these solutions have a common six-dimensional origin,
from which one can obtain the timelike and null class by a Kaluza—Klein
reduction along different directions [59].
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. The null solutions in Theorem 3 can also be obtained as a limit of certain
asymptotically null solutions in Theorem 2, where we define

T :=ex, a;:=e€a;, v =¢ck;, q :=2m;, (205)

and we take e — 0 while keeping &, @;, 7 and ¢’ fixed. Then & becomes
the cartesian coordinate of the null solutions and a; are the positions of
the centres. One can check that the parameter constraints of Theorem 2
are consistent with those of Theorem 3.

. In the null case, the geometry of a spatial slice X is given by:

glv: const — _QOg_ldu2 + gzdxidxi, (206)

thus the DOC has the topology of a trivial circle fibration over R*\UY ; a;
(and hence the ‘sphere’ at infinity has S? x S' geometry). This is a
consequence of the lack of fixed points and that all horizon components
correspond to black rings. The latter is a necessary consequence of the
near-horizon analysis, while the former follows from the assumption that
the Killing fields have a timelike linear combination at each point of the
DOC. It would be interesting to investigate whether solutions violating
this assumption exist.

. The constants have the following physical meaning. vy is velocity of the
horizon in the Kaluza—Klein direction with respect to the asymptotic ob-
server [39], and ~ is the corresponding relativistic factor. This is apparent
from V = v(0y — vy W), where W is the unit vector in the KaluzaKlein
direction, and V' is tangent to the generators of the horizon. L sets the
length of the Kaluza—Klein direction at infinity.

. Known constructions of supersymmetric Kaluza—Klein black holes of this
theory [30,39-50] use the timelike ansatz with a hyper-Kéhler base, in
particular (multi-)Taub-NUT space, and hence, they all belong to the
asymptotically timelike case of Theorem 2. This can be seen from the
asymptotic behaviour of the harmonic function H. For example in [39],
one centre corresponds to a ‘nut’-type fixed point (or a spherical black
hole when they ‘hide’ the nut singularity behind a horizon), while another
one to a black ring.

. As with flat asymptotics, in the timelike case it is not known whether
(185-190) guarantees that the DOC is globally hyperbolic. In fact, it
is not clear what the sufficient conditions are for it to be stably causal
(¢g"* < 0), which is a consequence of global hyperbolicity. In [70], it has
been conjectured that positivity of N=! = K2 + HL (which is necessary
for smoothness at generic points) implies the lack of closed timelike curves
for soliton solutions, which has been supported by numerical evidence.
In line with this conjecture, in [19,24] numerical tests found no smooth
asymptotically flat black holes with positive ADM mass that violated
stable causality. In contrast, in the null case by (176) ¢** = GQ < 0, so
the spacetime is stably causal automatically with no further constraints
on the parameters.
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7. All solutions of Theorem 3, and those of Theorem 2 for which K = 0
(which includes all static solutions) have been argued to be exact string
backgrounds [59].

8. A Classification of Four-Dimensional Supersymmetric Black
Holes from Kaluza—Klein Reduction

In this section, we consider the dimensional reduction of the five-dimensional
solutions classified in Theorem 2-3 and determine the subclass for which the
reduced solutions are smooth on and outside the horizon. We perform the
Kaluza—Klein reduction along the direction of W in coordinates adapted to
it,!” so that W = 9y, For the dimensionally reduced theory, we will follow the
field definitions of [39], which are given by

g=:e®/V3gW 4 =22/ (qy 4 A)2 A= AW 4 pdyp, (207)
FW .= dA®W —dpA A, GW = dA. (208)

Here we used that since Ly F' = 0, we are free to work in a gauge in which
LwA=0.¢" is the four-dimensional metric, A and A are one-form poten-
tials, and @, p are scalar fields. The action (2) then reduces to

1
- 167TG4

L vBe G @ g /VER@ @ _ 8 g 4@ dA<4>> ,
2 Ne
(209)

1
/ (R(4)*12*d<I>Ad<I>2e2‘I’/‘/§*dp/\dP
My

where G4 = G/4m, and R denotes the Ricci scalar of g(4).

It is important to establish which fields are physical, as we will require
the smoothness of those only. Physical fields must be invariant under five-
dimensional coordinate changes of the form ' = 1 + u(t,z') and gauge
transformations which preserve the gauge condition Ly A = 0. Since tyydA
is invariant, and 0 = Ly (A’ — A) = d(ew A’ —tw A), the allowed gauge trans-
formations must be of the form A’ = A + d\(¢, 2%) + cdy with some constant
c. Under such transformations, the fields transform as

AW = A® pd(X —cp) —pdp, A =A—du,  p =p+ec, (210)

9(4)/ - 9(4)7 FW = p@) GW' =gW, P = P, dp’ = dp,
(211)

hence the physical fields are those in (211).

17 This v coordinate in general may be different from previous sections, but for certain
gauge choice coincides with the 1 coordinate of the timelike case, or the u coordinate of the
null case.
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Remarks.

1. Even though the last term of (209) contains gauge-dependent fields, the
theory is gauge invariant since the five-dimensional theory is. Indeed, one
can check that the equations of motion of (209) contain only the physical
fields (211).

2. Ref. [40] uses an alternative definition for the 2-form field F*)| that is

FO = @ _ pq® — ¢ (A<4> - pA) : (212)

thus it is closed (as opposed to F(M)). It is evident from its definition that
smoothness of F® is equivalent to the smoothness of F®) (assuming
the other fields in (211) are smooth), since for solutions with a simply
connected DOC (which are the relevant ones here due to topological
censorship), p is globally defined by dp up to an additive constant, so dp
is smooth if and only if p is smooth.

Now we establish the subclass of solutions classified in Theorem 2 and 3
that reduce to a four-dimensional solution that is smooth on and outside the
horizon.

Theorem 4. A solution to five-dimensional minimal supergravity as in The-
orem 2 defines a four-dimensional, asymptotically flat black hole solution of
(209) if and only if all centres correspond to horizon components (i.e. there
are no fized points of the axial Killing field) and

D= %KQLZ —2K*M + HL? ~3HKLM — H*M? > 0 (213)
for all x € R*\{a1,...,an}. Then, the four-dimensional solution is given by
gW = —D7V2(dt +&)? + D2 dx' da’, (214)
V3 V3 KL +2HM
d=—L"100(DN? =t ~ 21
5 log(DN7), L ormL T (215)
2H>M +3HKL +2K*
G =dA=d|x— + + (dt +)|, (216)
2D
V3 H
FO =Ygl " _(dt+a)-— —c)d
5 K2+HL( +w) =& +(p—c)dx
2H2M + 3HKL + 2K3
+ i - TERT oA (d+ 0, (217)

where N~! = K2 4+ HL, c is an arbitrary constant, H, K, L, M are given by
(177-179), and 1-forms x,®,& are given by (180-184).

Theorem 5. A solution to five-dimensional minimal supergravity as in The-
orem 3 defines a four-dimensional, asymptotically flat black hole solution of
(209), given by

dv? oo \/g Q
W 4 \/—0Gdrtds! d=_—""log | -= 21
g @4’ QG” dz' dx*, 5 Og( g)’ (218)
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p=0, F®= ? x3 dG,  GW =Q 2dv A dQ, (219)

where G and Q are given by (201) with (202).

Proof of Theorem 4 and 5. It is easy to see that the four-dimensional fields
are related to five-dimensional smooth invariants by

3
g = gW, W) 2 — gW, W) VPW e W, B = —§logg<w, w),

_ W _py WE) AWy <Wb>

dp wk, F F+ FUATEE G d UATIA (220)
Hence, in Theorem 4 the four-dimensional fields (214-217) are smooth!® if and
only if g(W, W) = N2D > 0. Since W # 0 on the horizon (Corollary 3 of [19]),
this is satisfied if and only if (i) there are no fixed points of W in the DOC, i.e.
all the centres of (177) correspond to horizon components, and (ii) D > 0 away
from the centres (213). A calculation using the explicit form of the solution
together with equation (10) of [29] yields the right-hand sides of (214-217).

In the null case in Theorem 5 g(W, W) > 0, so the four-dimensional fields
are smooth, and (218-219) comes from direct calculation using (199-200) and
(207-208).

Finally, using the asymptotic explicit form of the harmonic functions,
one can easily check that the four-metric approaches the Minkowski metric in
coordinates'?

F=LY2 (1-2%) "%, F =LY (1— )2, (221)
and
t =LY%, =LY%, (222)
20

in the asymptotically timelike and null case,*” respectively. O

Remarks.

1. As seen for the five-dimensional solutions (see Remark 1 after Theorem 3),
Theorem 4 can be extended, by omitting (186) from its assumptions, to
include solutions of Theorem 5. The identification of harmonic functions
is then given by (204).

2. For globally hyperbolic, hence stably causal, five-dimensional solutions of
Theorem 4, W must be spacelike in the DOC, so (213) must hold. In some
neighbourhood of each horizon component (189) guarantees that (213) is
satisfied, however there is no known sufficient condition for it to hold on
the whole of the DOC. There is numerical evidence that this does not
restrict the moduli further than the smoothness conditions (see Remark

18 Since they are invariant under W, i.e. W - X = 0 = Ly X for all X in (214-216), they
descend to My smoothly, which we can identify with the orbit space of the U(1) action.
19The factors of L1/2 appear in (221-222) because we chose to reduce along a dimensionless
coordinate 1, so 9(4) has length dimension 3, and thus, the asymptotic coordinates &, Z*
have 3/2.

20In the asymptotically but not globally null case we have t instead of v in (222).



D. Katona Ann. Henri Poincaré

after Theorem 2). For Theorem 5 there is no analogous requirement, as
for all such five-dimensional solutions g(W, W) > 0 in the DOC.

. The solutions of Theorem 4 and 5 have been first described by Denef et al.
[54-56], with the explicit form of the solutions given in Section 4 of [56].
Spherically symmetric solutions of the same form appear in [71]. The
connection to five-dimensional solutions has been explored in detail in
[39,40,52,53]. Here we extend this connection by providing a classification
of these solutions.

. The five-dimensional Killing spinor locally defines a four-dimensional
Killing spinor of (209) as shown in Appendix B. We have not investi-
gated the possible spin structures of M or M, and their compatibility
(for more details, see e.g. [72]); hence, the Killing spinor might be defined
only up to a sign globally. The proofs only use the Killing spinor bilinears
which are invariant under such sign change.

Now we establish the converse of Theorems 4-5 to classify the asymp-

totically flat black hole solutions of (209). For asymptotic flatness, we use the

following definition.

21

Definition 2. A four-dimensional spacetime is asymptotically flat if it has an
end diffeomorphic to Rx (R*\ B#), and on this end the metric g*) = —du®du’+
§ijduidul + O(R™*)dudu’ for some o > 0, where (u%,u®), i = 1,2, 3 are the
pull-back of the cartesian coordinates on R x R® and R := /d;;u’u/, and
the k" derivatives of the metric fall off as O(R™*~F) for k = 1,2 in these
coordinates.

We assume that (Mg, g™, @, p, F®, G®) is a solution of (209) such that

(i) the solution admits a globally defined Killing spinor €™, i.e. it is su-
persymmetric,

ii) the DOC, ((My)) is globally hyperbolic,

iii) ((My)) is asymptotically flat in the sense of Definition 2,

(iv) the supersymmetric Killing field V(¥ is complete, timelike on ((My)),

and in the asymptotic coordinates of Definition 2 it is given by V4 =
607

(v) the horizon H, admits a smooth compact cross-section (which may not
be connected),

(vi) ((Ma)) UHy admits a Cauchy surface ¥4 that is a union of a compact

set and an asymptotically flat end,

(vii) the metric and the fields are smooth (C'*°) on and outside the horizon,
(viii) there exists a gauge such that the k" derivatives of the fields @, p, A, A

in the asymptotic chart fall off as O(R7P~F) for k = 1,2 and some
p >0,

(ix) G¥ is the curvature of a smooth connection 1 on a principal U(1)-

bundle over My.

21In this section, indices abc... denote four-dimensional spacetime indices in contrast to
previous sections.
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Theorem 6. Let (My, g, @, p, FY GW) be a solution of (209) satisfying as-
sumptions (i)-(ix). Then, it must belong to the class derived in Theorems j—
5. In particular, it is globally determined by four harmonic functions of the
form (177-179) satisfying (185), (189-190), (213), and the solution is given
by (214-217) together with (180-184).

Proof. By assumption (ix), we can uplift the solution to five dimensions, iden-
tifying M with the total space of the U(1)-bundle, on which we define the
five-dimensional metric g and Maxwell field F as

g= eq’/‘/gw*g(‘g + 672<1>/\/§772’ F=mF% 41 dpAn, (223)

where 7 : M — My is the bundle projection. The Killing spinor € lifts to
a five-dimensional Killing spinor €, invariant under the U(1)-symmetry [73]
(also see Appendix B). Thus, (M, g, F\¢) is a supersymmetric solution of (2)
(as we have just undone the dimensional reduction). We will now show that it
satisfies the assumptions of Theorem 2 or 3, hence (My, g, ®, p, FD G¥)
must belong to the class of Theorem 4 or 5. Note that we include the latter
solutions by not assuming (186) for the harmonic function H (see also Remark
1 after Theorem 5).

We first prove that the five-dimensional DOC, ((M)), is globally hyper-
bolic by showing that ¥ = 7=1(2,) is a Cauchy surface. Let p € ({(M)), v an
inextendible causal curve through p in (M, g), and U its tangent vector. From
causality of

0> g(U,U) = e/ V3D (m.U, m.U) + e 22/ V3 [(U)]? > €/ V3¢ (m.U, 7.U),
(224)

thus m,U defines a causal curve 74 in My. By assumption (ii) v4 goes through
34, hence v goes through X. Acausality of ¥ follows from a similar argument;
therefore, it is a Cauchy surface, and ((M)) is globally hyperbolic.

Next we show that (M, g) is asymptotically Kaluza—Klein according to
Definition 1. By compactness of the fibres and assumption (vi), Definition 1(i)
is satisfied. The Dirac currents of € and ¢ define the supersymmetric Killing
fields V and V® on M and My, respectively. Let W be the generator of the
U (1) action normalised such that its integral curves are 4r-periodic.?? [W, V] =
0 since ¢ is U(1)-invariant, and 7,V = V) (for details see Appendix B). Let
us adapt local coordinates to the vertical vector field so that W = 9, and
¥ ~ 1p+4m. Tt is obvious that W is a Killing field of ¢ (that also preserves F).
In such a chart the connection is given by n = dy + A. V preserves g and W,
so it must also preserve n = W”/g(W,W). We may partially fix the gauge by
requiring Ly A = 0, then we have

0=Lydy = deydy =dVY, (225)

thus V¥ = ¢ for some constant c¢. By assumption (iv) on the asymptotic end
TV =V® = 0o, hence

V= 80 + Caw. (226)

22 Here we use an uncanonical parametrisation of U(1), where the parameter is 4w-periodic.
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It follows from assumption (viii) that

d=>0,+OR"), GW=dA=0OR P )du® Adu’. (227)
Our gauge condition (225) and (226) imply

digyA = —19,dA = O(RP Hdu* = Ay=¢+0O(R"), (228)

with some constant ¢. Equation (227) implies that the rest of A can be written
in a gauge without changing the form of the Killing fields such that

A= (E+O(R 7)) du® + O(R")du'. (229)
The leading-order behaviour of the five-dimensional metric then becomes
g = e®/V3p,dutdu® + 6_2¢)0/\/§(dw + édu®)? + O(R™7)dutdu”  (230)

for some 7 = min{«, 8}, and 7, denoting the 4D Minkowski metric. By
defining ¢’ = 1 + éu’ and rescaling the coordinates by constants, we get
a metric of the form (11), with ®y determining the asymptotic length scale
L of the Kaluza Klein direction. By assumption (viii) and because there is
no dependence on v, the first two derivatives of the metric have the fall-off
as in Definition 1(ii), and the components of the Riemann tensor fall off as
O(R~772). We also see from (226) and from the final coordinate change that
0y is a constant linear combination of V' and W.

Finally, we need to check if the span of the supersymmetric and U(1)
Killing field is timelike. For this, by (28) and (223) on ((M))

2
N = = | Virt gV, V) 4 e 20V p(V)2] €20/ VE 4 [em20 Vi (v)|

=~ PV ), (21)

which is positive on ({M)) by assumption (iv). That is, at each point of ({M))
the determinant of the inner product matrix of Killing fields is negative, hence
there exists a timelike linear combination of V' and W. g

Remarks.

1. Let us emphasise that we have not assumed any isometry apart from
stationarity, which is guaranteed by supersymmetry (for a class of D = 4
supergravities see [74]). Indeed, generically, solutions of Theorem 6 only
have a single Killing field.

2. Assumption (ix) quantises the magnetic charges of the black holes asso-
ciated with G®, which in terms of the harmonic functions means that
h; € Z for H in (177). Omitting this requirement leads to a more general
class of black holes in four dimensions, however those cannot be uplifted
to get a smooth black hole solution in five dimensions.

3. The requirement that the supersymmetric Killing field is timelike in as-
sumption (iv) was also required for uniqueness of four-dimensional su-
persymmetric, asymptotically flat black holes in minimal supergravity
[75], which shows that the general solution belongs to the Majumdar—
Papapetrou (MP) class. Alternatively, in minimal supergravity, one can
assume the existence of a maximal hypersurface with a finite number of
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asymptotically flat or weakly cylindrical ends and prove that the Killing
field is strictly timelike and static (see Theorem 1.2 of [75]). This reason-
ing would not work for the black holes considered in the current work, as
these solutions are not static in general.

4. The black holes of Theorem 5 are a generalisation of the aforementioned
MP black holes. They are static solutions that depend on two harmonic
function on R3, and they are, in general, solutions to the full theory (209).
If @ = —G, we obtain solutions to four-dimensional minimal supergrav-
ity?® (Einstein-Maxwell), which describe magnetically charged MP black
holes. In detail,

g(4) _ _g—Qd,UQ + demidxi’ F(4) — ? *3 dg (232)

In contrast, the electrically charged and dyonic MP black holes (with
quantised charges) belong to the asymptotically timelike class of Theo-
rem 4 with harmonic functions K = 0, L = v> H, M = ~?vgH, and
parameter L = 1. For the detailed derivation see the end of Section 3.7
in [34], with the only difference that we used ‘gauge’ freedom (27) to
set K = 0 in agreement with our previous choice in Theorem 1 for the
asymptotic values of the harmonic functions. The solution is given by

gW = —(vH)72dt? + (vH)*da'dz’,
F& = ? [(vH)~2dt A dH + yvg 3 dH] . (233)

Thus, for 0 < |vg| < 1 we obtain dyonic MP black holes, while vy = 0
yields electrostatic MP black holes.

5. In Remark 4, all static, supersymmetric solutions of minimal four-
dimensional supergravity (with quantised charges) have been obtained.
It is an interesting task to determine all static solutions of the full the-
ory (209) (again, with quantised charges). This includes all solutions in
Theorem 5, but also requires deriving the set of harmonic functions that
yield dw = 0 and satisfy the constraints of Theorem 2 and 4. Staticity in
the timelike case implies that f~1 is harmonic [34], thus by (24) K = cH
for some constant ¢ (so we are in the asymptotically timelike case by
(178-179)). By (22) d& = 0 requires M + 3¢L/3 = kH for some other
constant k. Again, changing the ‘gauge’ of (27) such that K = 0 yields
that M = ¢’ H for a constant ¢/, and L is unconstrained. H, L, ¢’ must be
such that (189-190) and (213) are satisfied. Asymptotic constants (178)
fix ¢ = L3~y3vy. Inequality (190) yields (together with (178)) that H > 0
and L > 0 on their domain, i.e. h; > 0 and I; > 0. Then, (213) (which
implies (189)) is satisfied if and only if I; > |¢/|*/3h; at each centre, and
does not impose any further constraint on the parameters vy and L.
In summary, as in the null case (Theorem 5), the static solutions of the

23Consistent truncation of (209) to 4D Einstein-Maxwell is achieved by ® = 0, dp = 0,
F® = Y35, GW [34].
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timelike case are determined by two harmonic functions, with parameters
satisfying I; > Ly|vg|*/®h; > 0 and h; € Z.

Acknowledgements

I would like to thank James Lucietti for suggesting this project, the many help-
ful conversations, and his comments on the manuscript. This work is supported
by an EPSRC studentship.

Funding The author is supported by an EPSRC studentship.

Data Availability Statement Data sharing is not applicable to this article as
no datasets were generated or analysed during the current study.

Declarations

Conflict of interest The author has no relevant financial or non-financial in-
terests to disclose.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Appendix A: Asymptotic Fall-Off of Riemann Tensor

We obtain the following estimate on the curvature of the Levi-Civita connec-
tion for g on the asymptotically Kaluza—Klein end.

Claim. The components of the Riemann tensor of g fall off as RFyye =
O(F~772) in asymptotic coordinates of Definition 1.

Proof. We will use ijk... indices for {ul,u? u®}, abe... for {u°, u'}, and pw...
for all coordinates {u®,1}. Since dy is Killing, all u® derivatives vanish. It is
easy to check from Definition 1 that the Christoffel symbols have the following
fall-off

1. o P o
G0 = =59 050m + O, Tl = =2¢"050m + O,

a
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a 1 ac ~—T ~—T— ) ~ T JUPS
F'z,[?b = 59 ngbc + O(T )a,l[)gcb + O(T 1), Ffﬂ; = O(’r )81/_,96& + O(T 1),

&5 =0T, rh =O®F 7). (234)
Now we use the assumed fall-off of the Ricci tensor in Definition 1 to get

m—T— c ) 1 ~—T ~—T—
O(F7%) = Rap = Ract + BY .y = =75 959a0 + O 7904+ O(F 1),
(235)

One can show using boundedness of the 1& direction and the Mean Value The-
orem that sz)gab = O0(F™%) = 0pgap = O(7~%). Using this iteratively with

(235), one deduces that 9;gay = O(F~™=1). Thus,
©woo_ ~—71—1 noo_ ~—T
e = 0O(r ), FJ)J; =0 7). (236)
Taking a derivative 9. of (235) and using our assumption about the fall-off of
OcRap, by the same argument for 9,9,;gsc, we obtain I = O(F772).
It immediately follows that R%yeq = O(F72), R¥ 4. = O(F~772), and

by the fall-off of the Ricci tensor so does me[;b = —Rp +OF ™72 =
O(7~772). Using symmetries of the Riemann tensor, we also have

(nea + OF )R 5y = =95 R wiy + 9558 bea + 94 Rbea = OF77)
= R, = OF72).
(237)
Using the algebraic Bianchi identity, we obtain Rﬁl—)ab = chbd-)a + Rcai;b =
O(7~7=2), and by the fall-off of the Ricci tensor qu&zﬁa = fRdd;da +0O(F"772)
= O(7~"72). Finally, we have

(e + O NRY 55 = =9ew RY 550 + 9558 1o + 954 R 15 = OF772)
= Ry, =O@F 77?). (238)
O

When f # 0 and the base is well-defined as a Riemannian manifold, it
is Ricci flat. The above argument works with just replacing abc... indices with
ijk....

Appendix B: Killing Spinor Equation in Four and Five
Dimensions

In this section we reduce the five-dimensional Killing spinor equation to four
dimensions, and derive the four-dimensional Killing spinor. We also prove that
its Dirac-current is the four-dimensional projection of the five-dimensional
supersymmetric Killing field.
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The Killing spinor equation (KSE) of five-dimensional minimal super-
gravity is given by [34]

1
Va+ —=Fpe ab0+4530)e=o, 239
(Ta+ g e (2 + 4621) (239)

where abc. .. are five-dimensional orthonormal frame indices, V,, is the spinor

Levi—Civita connection, and the gamma matrices satisty {va,v5} = —2gap. Let
us now choose a frame {e,} = {ea,e5}, A =0,...,3 and co-frame such that

e = eicb/‘/gn, ed = e®/2V3pA Lye* =0, (240)

where 7 is the U(1)-connection, and {E4}3_, is a co-frame of the four-
dimensional metric ¢*, and the U(1) Killing field in this frame is W =
e‘fb/ ‘/565.

The lie derivative of the Killing spinor with respect to W (which we
assume to vanish) is defined as [76]

1 1
0=Lwe:=Vye— Zde ce=Wi(e) — 3 2w Wap + (de)ab 4P, (241)

where wyy is the spin connection. One can check that in this frame (de)ab =
—2Lw wap, hence (241) simplifies to
Lye=e"*V3es(e) =0. (242)

We now derive the four-dimensional Killing spinor equation from the
five-dimensional one. Let us write the following field components in the four-
dimensional co-frame:

dd =: D B4, dp =: paEA,
1 1
G = §Gf§gEA AEB,  FW = §F£‘4,;EA NEB. (243)
In this frame (239) is given by
_ 1 e~ V32/2
KSEy = e V3 (vf;‘) w: \/gqngmf’ - Gun"
e—®/2V3 4
LW F5 (7P +2055°)
e®/V3 B.5 B.5
VAL (vaBy° +205~°) | e =0, (244)
e—®/2V3 e—2%/V3
KSEs; = (2\/5 Py P + —5 Gg)CVBC
e—®/V3 e®/2V3
+ W3 FomsyPC - TPB’YB €e=0, (245)

where V() denotes the four-dimensional spinor Levi-Civita connection, and
for (245) we used that 0 = e5(e) by (242).
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Following [34], we choose the four-dimensional orientation n*) such that
—e® A is positively oriented. Then, by multiplying (245) by y47°, substi-
tuting into (244), and making use of the gamma matrix identity €qpeqey?® =
—29abe, after some gamma-matrix algebra we get that (244-245) is equivalent
to

—V3®/2 —® /23 /3
1 e \/ge \/58

(4) (4) (4) BC

v — P * G ——F _
(A 13 A+< 16 Bo t 3 Bc>7 YA + 3

pay’ | e=0,
(246)

e~ ®/2V3

FXL}%yAB + 26@/\/5

\/ge—ﬁé/z
<®A7A _¥ee T GE;}})BWAB n

1 PA'YS"YA> e=0.

(247)

In general, a Killing spinor, that is parallel with respect to a superco-

variant connection D gel® =: V 4e — Bae® = 0, defines a Killing vector by its

Dirac-current e ~y4¢® . The Killing equation for the Dirac-current holds only
if the supercovariant connection satisfies

’705&%73) +vBBa) = 0. (248)

This condition is not satisfied by the ® 4 term in (246); therefore, ¢ must be
rescaled so that this term is cancelled. This is achieved by setting

2

W = /3¢, (249)
so that (246-247) becomes

—V3d/2 V3 —®/2v/3 V3 /3
(V(f T+ (e G + 5 — F(4>> yBCya+ Y

16 * G o 3 B 2 pA'y5 5(4)20,

(250)
e—®/2V3

o Fapr P + 26" Ppariyt | D =,

* G(:])B’YAB +

\/gef\ﬁ@/z
<(DMA 4

(251)

which correspond to the gravitino and dilatino transformations, respectively.
Conversely, a solution of (250-251) defines a W-invariant solution of (239).
Also, the rescaling of the Killing spinor compensates for the rescaling of the
tetrads, thus, we have that

VW =AW p, = E’yAeefé/?‘/gEA =eylees = mEy e, = .V,
(252)

where in the penultimate step we used that m.e5 = 0 since es is vertical.
The supercovariant connection of (250) satisfies (248), so the four-dimensional
Dirac current V® is Killing and coincides with the projection of the five-
dimensional Killing vector field, as claimed.
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