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Global Existence and Long-Time Behavior
in the 1+1-Dimensional Principal Chiral
Model with Applications to Solitons

Jessica Trespalacios

Abstract. In this paper, we consider the 1+ 1-dimensional vector-valued
principal chiral field model (PCF) obtained as a simplification of the
vacuum Einstein field equations under the Belinski–Zakharov symmetry.
PCF is an integrable model, but a rigorous description of its evolution
is far from complete. Here we provide the existence of local solutions
in a suitable chosen energy space, as well as small global smooth solu-
tions under a certain non degeneracy condition. We also construct virial
functionals which provide a clear description of decay of smooth global
solutions inside the light cone. Finally, some applications are presented
in the case of PCF solitons, a first step toward the study of its nonlinear
stability.
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1. Introduction and Main Results

1.1. Setting

The Einstein field vacuum equations and its consequences are key in the
physics of the past century. For a gravitational Lorentzian field g̃ = g̃μν of
local signature (−1, 1, 1, 1), one seeks for solving the vanishing of the Ricci
tensor

Rμν(g̃) = 0. (1.1)
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This equation can be seen as a system of nonlinear quasilinear wave equations.
Its importance lies in the fact that many of the characteristic features of the
dynamics of the Einstein field equations are already present in the study of
the vacuum equations. See Wald [37] for a detailed description of the Physics
behind these equations.

Under certain symmetries and assumptions, the Einstein field equation
can be identified and reduced to the integrable Symmetric Principal Chiral
Field Equation,

∂t

(

∂tgg−1
) − ∂x

(

∂xgg−1
)

= 0, (t, x) ∈ R × R, (1.2)

valid for a 2 × 2 Riemannian metric g. This last equation will be the main
subject of this work. This equation is compatible with a certain class of con-
straints on the metric g that effectively “reduce” Eq. (1.2) to a system of
quasilinear wave equations. We will prove existence of local solutions, global
small solutions and describe in part the asymptotic behavior of globally defined
solutions. The principal chiral field is a nonlinear σ-model which is related to
various classical spinor fields and received huge attention in the 1980s and
1990s. The first description of the integrability of this model in the language
of the commutative representation (1.2) was given in [43]; subsequently, dif-
ferent results associated with integrability, conserved quantities and soliton
solutions were obtained [5,16,34], as well as different analyses of this equation
using Backlund transformation and Darboux transformation [13,19]. In the
literature, there are several results associated with the study of the reduction
of the principal chiral field equation in homogeneous spaces of Lie groups. In
particular, Zakharov and Mikhailov in [41] studied the model of the principal
chiral field for the special unitary group SU(N); as well as in [42], they stud-
ied the connection of this equation with the Nambu–Jona-Lasinian model. In
this work, we study a particular case of the reduction problem on “symmetric
spaces” such as the work of [6,8,18]. The symmetric space considered is the
invariant manifold of symmetric matrices sitting in the Lie group SL(2;R).
This space is not a Lie group, but it can be identified with a hyperboloid in
Minkowski spacetime, see [32].

In order to explain the emergence of (1.2) starting from (1.1), one needs
to consider the so-called Belinski–Zakharov symmetry ansatz [8]. Symmetry
has been a successful method for understanding complicated dynamics in a
series of works related to dispersive models, see, e.g., [15,17,36]. On the other
hand, this assumption is not restrictive, in the sense that several important
cases of physical Einstein vacuum metrics are contained under this restriction.

1.2. Belinski–Zakharov Spacetimes

Belinski and Zakharov recalled the particular case in which the metric tensor
g̃μν depends on two variables only, which correspond to spacetimes that admit
two commuting Killing vector fields, i.e., an Abelian two-parameter group of
isometries, [7,8]. The metric depends on a time-like coordinate x0, and one
space-like coordinate x1 (possibly nonnegative). This choice, as will stay clear
below, corresponds to considering non-stationary gravitational fields and was
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first consider by Kompaneets [25]. In the particular case that one has a diagonal
metric, this type of spacetime is often referred to as Einstein–Rosen spacetimes
and was first considered in 1937 by Einstein and Rosen [15].

In this work, we take these variables to be the time-like and the space-
like coordinates x0 = t and x1 = x, respectively. In this case, the coordinates
are typically expressed using Cartesian coordinates in which xi ∈ {t, x} with
i ∈ {0, 1}, and xa, xb ∈ {y, z}, where the Latin indexes a, b ∈ {2, 3}. Then the
spacetime interval is a simplified block diagonal form:

ds2 = f(t, x)
(

dx2 − dt2
)

+ gab(t, x)dxadxb. (1.3)

Recall that repeated indexes mean sum, following the classical Einstein con-
vention. Here with abuse of notation, we denote g = gab. Due to the axioms
of general relativity, the matrix g must be real and symmetric. As mentioned
above, the structure of this metric is not restrictive, since, from the physi-
cal point of view, we find many applications that can be described according
to (1.3). Such spacetimes describe cosmological solutions of general relativity,
gravitational waves and their interactions and also have many applications
in gravitational theory, [7]. We can emphasize that these types of spacetimes
belong to the classical solutions of the Robinson–Bondi plane waves [9], the
Einstein–Rosen cylindrical wave solutions and their two polarization gener-
alizations, the homogeneous cosmological models of Bianchi types I–VII in-
cluding the Kasner model [23], the Schwarzschild and Kerr solutions, Weyl
axisymmetric solutions, etc. For many more contemporary results, the reader
can refer to [26]. All this shows that in spite of its relative simplicity a metric
of the type (1.3) encompasses a wide variety of physically relevant cases.

In order to reduce Einstein vacuum equations (1.1), one needs to compute
the Ricci curvature tensor in terms of the components of the metric g = gab.
The consideration of the metric in the form (1.3) results in that the components
R0a and R3a of the Ricci tensor are identically zero. Therefore, one can see
that system of the Einstein vacuum equations (1.1) decomposes into two sets
of equations. The first one follows from equations Rab = 0, and this equation
can be written as single matrix equation

∂t

(

α∂tgg−1
) − ∂x

(

α∂xgg−1
)

= 0, det g = α2. (1.4)

We shall refer to this equation as the reduced Einstein equation. The trace of
Eq. (1.4) reads

∂2
t α − ∂2

xα = 0. (1.5)

This is the so-called trace equation; the function α(t, x) satisfies the 1D wave
equation; for details of the derivation of Eqs. (1.4) and (1.5), see [7, p. 11] and
[18, pp. 27 and 147]. The second set of equations expresses the metric coefficient
f(t, x) in terms of explicit terms of α and g, where det g̃μν := −f2α2. For the
moment, this expression is not relevant in this introduction; for more details,
see [7].
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1.3. New Coordinates

The fact that the 2 × 2 matrix g is symmetric allows one to diagonalize it for
fixed t and x. One writes g = RDRT , where D is a diagonal matrix and R is
a rotation matrix, of the form

D =
(

αeΛ 0
0 αe−Λ

)

, R =
(

cos φ − sin φ
sin φ cos φ

)

. (1.6)

Clearly, det g = α2. Here Λ is the scalar field that determines the eigenvalues
of g, and the scalar field φ determines the deviation of g from being a diagonal
matrix. Since φ is considered as an angle, we assume φ ∈ [0, 2π]. Therefore,
Λ, φ and α can be considered as the three degrees of freedom in the symmetric
matrix g, [18]. Written explicitly, the matrix g is given now by

g = α

(

cosh Λ + cos 2φ sinh Λ sin 2φ sinh Λ
sin 2φ sinh Λ cosh Λ − cos 2φ sinh Λ

)

. (1.7)

Some analog representations have been used in various results associated, for
example, with the Einstein–Rosen metric [10]. Note that Minkowski gμν =
(−1, 1, 1, 1) can be recovered by taking Λ = 0, α = 1 and φ free. Now, with
this representation, Eq. (1.4) reads

⎧

⎪

⎨

⎪

⎩

∂t(α∂tΛ) − ∂x(α∂xΛ) = 2α sinh 2Λ
(

(∂tφ)2 − (∂xφ)2
)

,

∂t

(

α sinh2 Λ∂tφ
) − ∂x

(

α sinh2 Λ∂xφ
)

= 0,

∂2
t α − ∂2

xα = 0,

(1.8)

and

∂2
t (ln f) − ∂2

x(ln f) = G, (1.9)

where G = G[Λ, φ, α] is given by

G := − (

∂2
t (ln α) − ∂2

x(ln α)
) − 1

2α2

(

(∂tα)2 − (∂xα)2
)

− 1
2
(

(∂tΛ)2 − (∂xΛ)2
) − 2 sinh2 Λ

(

(∂tφ)2 − (∂xφ)2
)

.

(1.10)

Note that the equation for α is the standard one-dimensional wave equation
and can be solved independently of the other variables. Also, given α, Λ and φ,
solving for ln f reduces to use D’Alembert formula for linear one-dimensional
wave with nonzero source term. Consequently, the only nontrivial equations in
(1.8) are given by

{

∂t(α∂tΛ) − ∂x(α∂xΛ) = 2α sinh 2Λ
(

(∂tφ)2 − (∂xφ)2
)

∂t

(

α sinh2 Λ∂tφ
) − ∂x

(

α sinh2 Λ∂xφ
)

= 0,
(1.11)

for α solution to linear 1D wave. Because of the difficulties found dealing with
this system, we shall concentrate efforts in a more modest case. If one settles
α ≡ 1 constant, in this case the metric (1.3) is diffeomorphic to Minkowski
[7,18]. In this paper, we avoid this oversimplification by only taking (1.11)



Global existence and long-time behavior

with α ≡ 1, not considering the function f , namely
⎧

⎨

⎩

∂2
t Λ − ∂2

xΛ = −2 sinh(2Λ)
(

(∂xφ)2 − (∂tφ)2
)

,

∂2
t φ − ∂2

xφ = − sinh(2Λ)
sinh2(Λ)

(∂tφ∂tΛ − ∂xφ∂xΛ) .
(1.12)

(1.12) is a set of coupled quasilinear wave equations, with a rich analytical and
algebraic structure, as we shall see below. Also, it coincides with (1.2) under
g as in (1.7) and α ≡ 1. Understanding this particular case will be essential to
fully understand the general case of non constant α. It is very notable that the
basic set of equations of the Einstein equation for the metric (1.3) coincides
with the main chiral field equation (1.2) when α is constant. If we only con-
sider this set of equations, the principal chiral field equation formally admits
nontrivial solutions which would correspond to a special subclass of chiral field
theory solutions, [7]. It should be noted that in the particle case where α is
constant, the reduced Einstein equation (1.4) corresponds to the Chiral Field
Equation (1.2), as mentioned above; however, as we will see later, from the
definitions of energy and momentum densities of the chiral field equation, we
cannot deduce relevant results from the Einstein field equation when α is an
arbitrary function, and the non-constant α case requires a different treatment.
As a consequence of the above observation, in the constant α case, the equation
(1.9) is no longer coupled to the system to be worked.

Remark 1.1. Notice that the choice α ≡ 1 is also made because the equations
(1.8) may have a different behavior depending on the properties of the function
α. Even in this case (α ≡ 1), the PCF model is sufficiently rich to produce a
complex dynamics. In our recent result [33], posted online very recently, we
consider the more demanding case α non constant, but still under some par-
ticular conditions that are natural generalizations of the hypotheses presented
here. Finally, the current work has been essential to obtain the general results
presented in [33].

As we can see from the matrix form (1.7), the solutions in terms of the
fields Λ and φ are not unique, since these fields satisfy a gauge invariance, that
is,

(Λ, φ) solution, (Λ, φ + kπ) solution, k ∈ Z. (1.13)

It should be noted that although (1.12) is strictly nonlinear in the fields Λ(t, x)
and φ(t, x), it has many similitudes with the classical linear wave equation and
with Born–Infeld equation [2]: given any C2 real-valued profiles h(s), k(s), then
the following functions are solutions for Eq. (1.12)

Λ(t, x) = h(x ± t) = h(s), φ(t, x) = k(x ± t) = k(s). (1.14)

This property will be key when establishing the connection between the local
theory that will be presented in the following section and the analysis of explicit
solutions to the equation in Sect. 5. System (1.12) is a Hamiltonian system,
having the conserved energy
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E[Λ, φ](t) :=
∫ (

1
2
(

(∂tΛ)2+(∂xΛ)2
)

+ 2 sinh2 Λ
(

(∂tφ)2 + (∂xφ)2
)

)

(t, x)dx.

(1.15)

Note that the energy is well-defined if (Λ, ∂tΛ) ∈ Ḣ1 ×L2, but a suitable space
for (φ, ∂tφ) strongly depends on the weight sinh2 Λ, which can easily grow
exponential in space, since Ḣ1 can easily contain unbounded functions. In this
sense, making sense of E[Λ, φ](t) (even for classical solution such as solitons)
is subtle and requires a deep and careful analysis which will be done later.

The notion of the energy and the law of conservation of energy play a key
role in all mathematics–physical theories. However, the definition of energy
in relativity is a complex matter, and this problem has been given a lot of
attention in the literature [37,39]. The most likely candidate for the energy
density for the gravitational field in general relativity would be a quadratic
expression in the first derivatives of the components of the metric [37]. In this
case, we have a particular structure of spacetime and the equation (1.7) gives
us a decomposition of the metric in terms of the fields Λ and φ.

Coming back to our problem, and using inverse scattering techniques,
Belinski and Zakharov [8] considered (1.4) giving a first approach to this prob-
lem. They introduce a Lax-pair for (1.4)–(1.5), together with a general method
for solving it. Localized structures and multi-coherent were found, but they are
not solitons in the standard sense; unless α is constant, a more in-depth study
on the subject is also made in [7,8]. More recently, Hadad [18] explored the
Belinski–Zakharov transformation for the 1 + 1 Einstein equation. It is used
to derive explicit formula for solutions on arbitrary diagonal background, in
particular on the Einstein–Rosen background.

1.4. Main Results

One of the main purposes of this paper is to give a rigorous description of the
dynamics for (1.2) in the so-called energy space associated to the problem, and
close to important exact solutions. We will present three different results: local,
global existence, and long-time behavior of solutions, in particular solitons.

Our first result is a classical local existence result for solutions in the en-
ergy space. As mentioned above, the system (1.12) is a set a coupled quasilinear
wave equations, with a rich analytical and algebraic structure.

Clearly in the analysis of the initial value problem for this system, we
have a component of difficulty related to the regularity of the term sinh(2Λ)

sinh2(Λ)

when the function Λ(t, x) is zero, which must be carefully analyzed in order
to be able to construct a result of local well-posedness associated to (1.12). In
order to develop the results related to the local theory for the nonlinear wave
equation, let us write the function Λ(t, x) in the form

Λ(t, x) := λ + Λ̃(t, x), λ �= 0. (1.16)

Notice that this choice makes sense with the energy in (1.15), in the sense that
Λ ∈ Ḣ1 and ∂tΛ ∈ L2. Without loss of generality, we assume λ > 0. The basic
idea is to establish the conditions that are required on λ and Λ̃ in order to
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obtain the desired regularity results. With this choice, the system (1.12) can
be written in terms of the function Λ̃(t, x) as follows:

⎧

⎪

⎨

⎪

⎩

∂2
t Λ̃ − ∂2

xΛ̃ = −2 sinh(2λ + 2Λ̃)
(

(∂xφ)2 − (∂tφ)2
)

,

∂2
t φ − ∂2

xφ = − sinh(2λ + 2Λ̃)
sinh2(λ + Λ̃)

(∂tφ∂tΛ̃ − ∂xφ∂xΛ̃).
(1.17)

This is the system we are going to analyze along this paper.
Let us consider the following notation:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Ψ =
(

Λ̃, φ
)

, ∂Ψ =
(

∂tΛ̃, ∂xΛ̃, ∂tφ, ∂xφ
)

,

|∂Ψ|2 =
∣

∣∂tΛ̃
∣

∣

2 +
∣

∣∂xΛ̃
∣

∣

2 + |∂tφ|2 + |∂xφ|2 ,

F (Ψ, ∂Ψ) = (F1, F2) ,

F1(Ψ, ∂Ψ) := 2 sinh(2λ + 2Λ̃)
(

(∂xφ)2 − (∂tφ)2
)

,

F2(Ψ, ∂Ψ) :=
sinh(2λ + 2Λ̃)
sinh2(λ + Λ̃)

(

∂tφ∂tΛ̃ − ∂xφ∂xΛ̃
)

.

(1.18)

With this notation, the initial value problem for (1.17) can be written in vector
form as follows

{

∂α(mαβ∂βΨ) = F (Ψ, ∂Ψ)
(Ψ, ∂tΨ)|{t=0} = (Ψ0,Ψ1) ∈ H.

(1.19)

where mαβ are the components of the Minkowski metric with α, β ∈ {0, 1},
and

(Ψ, ∂tΨ) ∈ H := H1(R) × H1(R) × L2(R) × L2(R). (1.20)

Notice that from (1.16), Λ ∈ Ḣ1. We are also going to impose the following
condition on the initial data

‖(Ψ0,Ψ1)‖H � λ

2D
, (1.21)

where the assumptions on the constant D � 1 will be indicated below. An evo-
lution equation is said to be well-posed in the sense of Hadamard, if existence,
uniqueness of solutions and continuous dependence on initial data hold.

The following proposition shows that the equation (1.19), in terms of the
function Λ̃ introduced in (1.16), is locally well-posed in the space L∞([0, T ];H)
with the norm in this space defined by

‖(Ψ, ∂tΨ)‖L∞([0,T ];H) = sup
t∈[0,T ]

(

‖Ψ‖H1(R)×H1(R) + ‖∂tΨ‖L2(R)×L2(R)

)

,

with (Ψ, ∂tΨ) introduced in (1.18). Our first result is the following.

Proposition 1.1. If (Ψ0,Ψ1) satisfies the condition (1.21) with an appropriate
constant D � 1, then:
(1) (Existence and uniqueness of local-in-time solutions). There exists

T = T

(

∥

∥

∥

(

Λ̃0, φ0

)∥

∥

∥

H1(R)×H1(R)
,
∥

∥

∥

(

Λ̃1, φ1

)∥

∥

∥

L2(R)×L2(R)
, λ

)

> 0,
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such that there exists a solution Ψ to (1.19) with

(Ψ, ∂tΨ) ∈ L∞([0, T ];H).

Moreover, the solution is unique in this function space. If the data have
more regularity, the solution is classical, see Appendix C.

(2) (Continuous dependence on the initial data). Let Ψ(i)
0 ,Ψ(i)

1 be sequence
such that Ψ(i)

0 −→ Ψ0 in H1(R) × H1(R) and Ψ(i)
1 −→ Ψ1 in L2(R) ×

L2(R) as i −→ ∞. Then taking T > 0 sufficiently small, we have
∥

∥

∥

(

Ψ(i) − Ψ, ∂t(Ψ(i) − Ψ)
)∥

∥

∥

L∞([0,T ];H)
−→ 0.

Here Ψ is the solution arising from data (Ψ0,Ψ1), and Ψ(i) is the solution
arising from data

(

Ψ(i)
0 ,Ψ(i)

1

)

.

Note that the above proposition does not directly give us a classical solu-
tion to the problem; however, if it is assumed that the initial data is sufficiently
regular, in fact the solution can be understood as classical, see Appendix C.
Energy estimates for the wave equation will be key to prove the previous result.
The importance of this methodology lies in the fact that it is robust enough
to deal with situations in which the solution of the equation may not be ex-
plicit. In particular, they are of crucial importance in the study of nonlinear
equations, as is our case. Additionally, they allow to obtain decay inequali-
ties for the nonlinear terms of the equation and provide results on the local
existence for certain quasilinear wave equations, generally with small Cauchy
data. Global results are also based on energy estimates, the Sobolev theorem,
as well as the generalized Klainerman Sobolev inequalities, which make use of
vector fields preserving the wave equation. For an exhaustive study of energy
estimates for the wave equation, see, e.g., [12].

Having established the existence of solutions, our second result involves
whether or not local solutions can be extended globally in time. This is not
an easy problem, mainly because Λ(t, x) may achieve the zero value in finite
time. Therefore, an important aspect of the proof will be to ensure uniform
distance from zero of the function Λ(t, x).

Theorem 1.1. Consider the semilinear wave system (1.19) posed in R
1+1, with

the following initial conditions:
{

(φ, Λ̃)|{t=0} = ε(φ0, Λ̃0), (φ0, Λ̃0) ∈ C∞
c (R × R),

(∂tφ, ∂tΛ̃)|{t=0} = ε(φ1, Λ̃1), (φ1, Λ̃1) ∈ C∞
c (R × R).

(1.22)

Then, there exists ε0 sufficiently small such that if ε < ε0, the unique solution
remains smooth for all time and have finite conserved energy (1.15).

The condition that the initial data are compactly supported can be re-
laxed, but it is essential to have enough decay. For simplicity of exposition, we
shall assume that the data are compactly supported, as it is usually done in
the literature, see, for example, [12].
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The global existence problem stated above a key part of the analysis
comes from the fact that (1.19) can be written as

⎧

⎪

⎨

⎪

⎩

�Λ̃ = −2 sinh(2λ + 2Λ̃)Q0(φ, φ),

�φ =
sinh(2λ + 2Λ̃)
sinh2(λ + Λ̃)

Q0(φ, Λ̃),
(1.23)

where Q0 represents the well-known fundamental null form

Q0(φ, Λ̃) = mαβ∂αφ∂βΛ̃, (1.24)

where mαβ to denote the standard Minkowski metric on R
1+1. The smallness

in the initial data implies that the nonlinear equation can be solved over a
long period of time and the global solution can be constructed once the non-
linearity decays enough. Moreover, the slower decay rate in low dimensions
can be compensated by the special structure of the nonlinearity.

Global existence of small solutions to nonlinear wave equations with null
conditions has been a subject under active investigation for the past four
decades. The approach to understand the small data problem with null con-
dition was introduced by Klainerman in the pioneering works [24] and by
Christodoulou [11], for the global existence of classical solutions for nonlinear
wave equations with null conditions in three space dimensions. Alinhac in [3]
studied the problem for the case of two space dimensions. We remark here that
in R

3+1 the null condition is a sufficient but not necessary condition to obtain
a small data global existence result, see, e.g., [29,30]. More recently, Huneau
and Stingo [20] studied the global existence for a toy model for the Einstein
equations with additional compact dimensions, where the nonlinearity is lin-
ear combinations of the classical quadratic null forms. In one space dimension
waves do not decay, and nonlinear resonance can lead to finite time blow-up.
Nevertheless, Luli, Yang and Yu in [31] proved, for Cauchy problems of semi-
linear wave equations with null conditions in one space dimension, the global
existence of classical solutions with small initial data. The authors proposed
a weighted energy and use the bootstrap method for obtain the result. The
system in Theorem (1.1) does not obey the classical null condition. However,
the factors Q0(φ, φ) and Q0(φ, Λ̃) provide decay, and with the appropriate con-
dition on λ, global regularity can be obtained. Inspired by Luli, Yang and Yu’s
result [31] in the semilinear case, it is natural to conjecture that the Cauchy
problem for one-dimensional system of quasilinear wave equations (3.1) admits
a global classical solution for small initial data. The main aim of this theorem
is to verify this conjecture.

Now we discuss the long-time behavior of globally defined solutions. Here,
virial identities will be key to the long-time description.

Theorem 1.2. Let (Λ, φ) be a global solution to (1.12) such that its energy
E[Λ, φ](t) is conserved and finite. Then, for any v ∈ (−1, 1) and ω(t) =
t/ log2 t, one has

lim
t→+∞

∫ vt+ω(t)

vt−ω(t)

(

(∂tΛ)2 + (∂xΛ)2 + sinh2 Λ((∂tφ)2 + (∂xφ)2)
)

(t, x)dx = 0.
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This result establishes that inside the light cone, all finite energy solutions
must converge to zero as time tends to infinity. It is also in concordance with
the solutions found in (1.14), which are a natural counterexample in the case
v = ± 1. A similar outcome has been recently found in [2], where the less
involved Born–Infeld model is considered. Note that Theorem 1.2 is valid under
general data, and compared with the obtained asymptotic result in Theorem
1.1, reveals that the decay property may hold under very general initial data,
and unlike [2], our model is in some sense semilinear.

As a final comment on this part of our results, we should mention the
work by Yan [38] dealing with the blow-up description in the Born–Infeld
theory. We strongly believe that the blow-up mechanism in the PCF model is
triggered by the threshold Λ = 0.

1.5. Application to Soliton Solutions

An important outcome of our previous results is a clear background for the
study of soliton solutions of (1.12). Belinski and Zakharov in [8] proposed that
the Eq. (1.4) has N−soliton solutions, see also [7] for further details. Hadad
[18] also showed explicit examples of soliton solutions for Eq. (1.12) using
diagonal backgrounds, also called “seed metric”. Basically, one starts with a
background solution of the form

g(0) =

[

eΛ(0)
0

0 e−Λ(0)

]

. (1.25)

The function Λ(0)(t, x) satisfies the wave equation ∂2
t Λ(0) − ∂2

xΛ(0) = 0. In
this case, if we want identify the solution in terms of Eq. (1.7), we have that
Λ = Λ(0), φ = nπ, with n ∈ Z, and α = 1. The gauge choice for us will be
n = 0.

As expressed in [18], an important case is the one-soliton solution, which
is obtained by taking Λ(0) time-like and equals to t and φ(0) = 0. Note that
with this choice the energy is not well-defined, but a suitable modification will
make this metric regular again. Indeed, the energy proposed in (1.15) is not
finite, but one can consider the following modified energy

Emod[Λ, φ](t) :=
∫ (

1
2
(

(∂tΛ)2 − 1 + (∂xΛ)2
)

+ 2 sinh2(Λ)
(

(∂tφ)2 + (∂xφ)2
)

)

,

(1.26)

which is also conserved and identically zero. Hadad computed the correspond-
ing 1-soliton solution using Belinski and Zakharov techniques, obtaining

g(1) =

⎡

⎢

⎢

⎣

etQc(x − vt)
Qc(x − vt − x0)

−1
c
Qc(x − vt)

−1
c
Qc(x − vt)

e−tQc(x − vt)
Qc(x − vt + x0)

⎤

⎥

⎥

⎦

, (1.27)
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where, for a fixed parameter μ > 1, one has

Qc(·) =
√

c sech(
√

c(·)), c =
(

2μ

μ2 − 1

)2

,

v = −μ2 + 1
2μ

< −1, and x0 =
ln |μ|√

c
.

Notice that the first component of g(1) grows in time. The parameter μ repre-
sents a pole in terms of scattering techniques; however, this point of view will
be considered in another work. Therefore, we have a traveling superluminal
soliton which travels to the left (if μ > 0). Also, representing g(1) in terms of
corresponding functions Λ(1), φ(1) is complicated and done in Sect. 5.

In this paper, we propose a modification of this “degenerate” soliton solu-
tion by cutting off the infinite energy part profiting of the wave-like character
of solutions Λ(0). Although it is not so clear that they are physically meaning-
ful, these new solutions have finite energy and local well-posedness properties
in a vicinity.

Indeed, consider a smooth function θ ∈ C2
c (R). Additionally, consider the

constraint 0 < μ < 1. For any λ > 0, and ε > 0 small, let

Λ(0)
ε := λ + εθ(t + x), φ(0) := 0.

Clearly, Λ(0)
ε solves the wave equation in 1D and has finite energy E[Λ(0)

ε , φ
(0)
ε ] <

+∞. This will be for us the background seed. The corresponding 1-soliton is
now

g(1) =

⎡

⎢

⎢

⎣

eλ+εθ sech(β(λ + εθ))
sech(β(λ + εθ) − x0)

− 1√
c

sech(β(λ + εθ))

− 1√
c

sech(β(λ + εθ))
e−(λ+εθ) sech(β(λ + εθ))

sech(β(λ + εθ) + x0)

⎤

⎥

⎥

⎦

, β =
μ + 1
μ − 1

,

(1.28)

which also has finite energy. Perturbations of the fields Λ and φ associated
with this soliton will be globally defined according to Theorem 1.1:

Corollary 1.1. Suitable perturbations of any soliton as in (1.28) are globally
well-defined.

This result has an important outcome: it allows us to try to study the
stability of these solutions, which will be done in a forthcoming work. Addi-
tionally, there are other possible choices of metrics in Einstein’s field equations
that lead to the KdV model, see, e.g., [35].

Organization of this Paper

This paper is organized as follows: Sect. 2 is devoted to the proof of local
existence of solutions. In Sect. 3 we prove global existence of small solutions
close to a nonzero value. Section 4 is devoted to the long-time behavior of
solutions, and finally, Sect. 5 considers the particular case of solitons.
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2. The Initial Value Problem: Local Existence

This section is devoted to the proof of Proposition 1.1. First, recall the follow-
ing result [12] that we will use to prove Proposition 1.1.

Lemma 2.1. Let ψ : I × R −→ R, I ⊆ R, be the solution of the initial value
problem

{

∂2
t ψ − Δψ = f(t, x), (t, x) ∈ I × R,

(ψ, ∂tψ)|{t=0} = (ψ0, ψ1) ∈ Hk(R) × Hk−1(R),
(2.1)

where k is a positive integer. Then for some positive constant C = C(k), the
following energy estimate holds

sup
t∈[0,T ]

‖(ψ, ∂tψ)‖Hk(R)×Hk−1(R) � C(1 + T )

(

‖(ψ0, ψ1)‖Hk(R)×Hk−1(R) +
∫ T

0

‖f‖Hk−1(R) (t)dt

)

.
(2.2)

Proof of Proposition 1.1. The proof is standard in the literature, but for the
sake of completeness, we include it here.

(1). This part of the Proposition is proved by Picard’s iteration. Using a
density argument, it is sufficient to assume the initial data (Ψ0,Ψ1) ∈ S4 (S
being the Schwartz class), along with condition (1.21). Define a sequence of
smooth functions Ψ(i), with i � 1 such that

Ψ(1) = (0, 0),

and for i � 2, Ψ(i) is iteratively defined as the unique solution to the system
{

∂α(mαβ∂βΨ(i)) = F (Ψ(i−1), ∂Ψ(i−1))
(Ψ(i), ∂tΨ(i))|{t=0} = (Ψ0,Ψ1) ∈ H.

(2.3)

It is important to note that from (1.18) and (1.21) we can assure that for
j = 1, 2,

∑

γ=0,1

sup
|x|,|p|� λ

2

|∂γ
x,pFj |(x, p) � Cj, 12λ. (2.4)

Indeed, this can be seen from the fact that for (x, p) = (x1, x2, p1, p2, p3, p4)
and |x| � λ

2 ,

F1(x, p) = 2 sinh(2λ + 2x1)
(

p2
4 − p2

3

)

,

F2(x, p) =
sinh(2(λ + x1))
sinh2(λ + x1)

(p3p1 − p2p4) .

Define bounded functions in the class C1.
It is important to note that condition (2.4) allows this iterative definition

of the functions Ψ(i) to be possible, since it maintains each component of
F with the required regularity, see [12]. First, it will be shown that for a
sufficiently small T > 0, the sequence (Ψ, ∂tΨ) is uniformly (in i) bounded in
L∞([0, T ];H), then it will be shown that it is also a Cauchy sequence. For the
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first part, the idea is to use the energy estimates (2.2); we want to prove that
there is a constant 0 < A � λ

2 such that
∥

∥

∥

(

Ψ(i−1), ∂tΨ(i−1)
)∥

∥

∥

L∞([0,T ];H)
� A, (2.5)

implies that
∥

∥

∥

(

Ψ(i), ∂tΨ(i)
)∥

∥

∥

L∞([0,T ];H)
� A.

The energy estimation (2.2) allows us to write for (2.3) the following estimate:

sup
t∈[0,T ]

∥

∥

∥

(

Ψ(i), ∂tΨ(i)
)∥

∥

∥

H
� C(1 + T )(‖(Ψ0,Ψ1)‖H)

+ C(1 + T )
∫ T

0

(

∥

∥

∥F1

(

Ψ(i−1), ∂Ψ(i−1)
)∥

∥

∥

L2(R)

+
∥

∥

∥F2

(

Ψ(i−1), ∂Ψ(i−1)
)∥

∥

∥

L2(R)

)

(t)dt. (2.6)

With this estimate, our goal is to bound the integral on the right hand side
of the inequality above. For this, we will use the conditions (1.21) for each Fj

which is satisfied by the hypothesis in (2.5), which results in the following; if
B = max{C1, λ

2
, C2, λ

2
}, then

sup
t∈[0,T ]

∥

∥

∥

(

Ψ(i), ∂tΨ(i)
)∥

∥

∥

H
� C(1 + T ) (‖(Ψ0,Ψ1)‖H + 2BT ) , (2.7)

we can choose T > 0 sufficiently small such that

2BT � ‖(Ψ0,Ψ1)‖H ,

so
∥

∥

∥

(

Ψ(i), ∂tΨ(i)
)∥

∥

∥

L∞([0,T ];H)
� 2C ‖(Ψ0,Ψ1)‖H .

If we choose D > 4C in (1.21) and A := 2C||(Ψ0,Ψ1)||H � 2Cλ
D � λ

2 , we have
thus shown the desired implication.

We now move to the second part in which we show that the sequence
is Cauchy in a larger space L∞([0, T ];H). For every i � 3, we consider the
equation for Ψ(i) − Ψ(i−1) :

∂α

(

mαβ∂β

(

Ψ(i) − Ψ(i−1)
))

= F
(

Ψ(i−1), ∂Ψ(i−1)
)

− F
(

Ψ(i−2), ∂Ψ(i−2)
)

.

Using the condition (2.5) and the mean value theorem to show that there exists
some C > 0 (depending on initial data but independent of i and T ),

∥

∥

∥Fj

(

Ψ(i−1), ∂Ψ(i−1)
)

− Fj

(

Ψ(i−2), ∂Ψ(i−2)
)∥

∥

∥

L2(R)

� C
∥

∥

∥∂
(

Ψ(i−1) − Ψ(i−2)
)∥

∥

∥

L2(R)×L2(R)
.

Now, applying again the energy estimation (2.2)

sup
t∈[0,T ]

∥

∥

∥

(

Ψ(i) − Ψ(i−1), ∂t

(

Ψ(i) − Ψ(i−1)
))∥

∥

∥

H
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� CT
∥

∥

∥

(

Ψ(i−1) − Ψ(i−2), ∂t

(

Ψ(i−1) − Ψ(i−2)
))∥

∥

∥

H
.

Using (2.5) we have

sup
t∈[0,T ]

∥

∥

∥

(

Ψ(2) − Ψ(1), ∂t

(

Ψ(2) − Ψ(1)
))∥

∥

∥

H
� C1;

therefore, choosing T sufficiently small, for i � 3 we have

sup
t∈[0,T ]

∥

∥

∥Ψ(i) − Ψ(i−1)
∥

∥

∥

H1×H1
� 1

2
sup

t∈[0,T ]

∥

∥

∥Ψ(i−1) − Ψ(i−2)
∥

∥

∥

H1×H1
,

which implies that

sup
t∈[0,T ]

∥

∥

∥Ψ(i) − Ψ(i−1)
∥

∥

∥

H1×H1
� C1

2i−2
.

Therefore, we have that the sequence is a Cauchy sequence on L∞([0, T ];H),
hence convergent. That is, there exists (Ψ, ∂tΨ) in L∞([0, T ];H). The unique-
ness proof is the result of considering again the energy estimation.

Finally, for the continuous dependence on initial data taking i ∈ N suf-
ficiently large, let us bound the difference Ψ(i) − Ψ and use again the energy
estimate for the equation:

∂α

(

mαβ∂β

(

Ψ(i) − Ψ
))

= F
(

Ψ(i), ∂Ψ(i)
)

− F (Ψ, ∂Ψ)

Applying the same reasoning as above and the energy estimation, we can again
write:

sup
s∈[0,t]

∥

∥

∥

(

Ψ(i) − Ψ, ∂tΨ(i) − ∂tΨ
)∥

∥

∥

H
� C

∥

∥

∥

(

Ψ(i)
0 − Ψ0,Ψ

(i)
1 − Ψ1

)∥

∥

∥

H

+ C

∫ t

0

∥

∥

∥

(

Ψ(i) − Ψ, ∂tΨ(i) − ∂tΨ
)∥

∥

∥

H
.

Using Gronwall’s inequality (see Appendix A) and (2.2), we have for a constant
C = C(T ) > 0,

sup
t∈[0,T ]

∥

∥

∥

(

Ψ(i) − Ψ, ∂tΨ(i) − ∂tΨ
)∥

∥

∥

H
� C

∥

∥

∥

(

Ψ(i)
0 − Ψ0,Ψ

(i)
1 − Ψ1

)∥

∥

∥

H
.

Taking i −→ ∞ the right-hand side of the inequality tends to zero, then

sup
s∈[0,t]

∥

∥

∥

(

Ψ(i) − Ψ, ∂tΨ(i) − ∂tΨ
)∥

∥

∥

H
−→ 0.

This last property ends the proof of Proposition 1.1. �

3. Global Solutions for Small Initial Data

In this section, we prove Theorem 1.1. As in the previous section, let us consider
the field Λ(t, x) described as Λ(t, x) := λ + Λ̃(t, x); then, let us establish the
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conditions on λ that guarantee the regularity conditions necessary to study
the system (1.17)
⎧

⎪

⎨

⎪

⎩

∂2
t Λ̃ − ∂2

xΛ̃ = −2 sinh(2λ + 2Λ̃)
(

(∂xφ)2 − (∂tφ)2
)

= −2 sinh(2λ + 2Λ̃)Q0(φ, φ),

∂2
t φ − ∂2

xφ =
sinh(2λ + 2Λ̃)

sinh2(λ + Λ̃)

(

∂xφ∂xΛ̃ − ∂tφ∂tΛ̃
)

=
sinh(2λ + 2Λ̃)

sinh2(λ + Λ̃)
Q0(φ, Λ̃),

(3.1)

with Q0 given in (1.24). The constant λ > 0 will play an important role in
the overall analysis of the problem, and the conditions assumed on it will be
verified using a continuity method. We will use two coordinate systems: the
standard Cartesian coordinates (t, x) and the null coordinates (u, u):

u :=
t − x

2
, u :=

t + x

2
.

Remark 3.1. Consider the two null vector fields defined globally as

L = ∂t + ∂x, L = ∂t − ∂x.

Then, one can rewrite the right-hand side of (3.1) as

(∂xφ)2 − (∂tφ)2 = Q0(φ, φ) = 2LφLφ, (3.2)

∂xφ∂xΛ̃ − ∂tφ∂tΛ̃ = Q0

(

φ, Λ̃
)

=
1
2
LφLΛ̃ +

1
2
LΛ̃Lφ. (3.3)

It can be also noticed that the null structure commutes with derivatives:

∂xQ0

(

φ, Λ̃
)

= Q0

(

∂xφ, Λ̃
)

+ Q0

(

φ, ∂xΛ̃
)

. (3.4)

Also, based on this, we have the following inequality

Q0 (∂p
xφ, ∂q

xφ) � |L∂p
xφ| |L∂q

xφ| + |L∂p
xφ| |L∂q

xφ| . (3.5)

Before presenting the proof, there are certain results and definitions to
be mentioned before; for details and proofs, see [4,31]. From now on, we will
consider the conformal killing vector field on R

1+1 given by
(

1 + |u|2
)1+δ

L,
(

1 + |u|2
)1+δ

L,

with 0 < δ < 1, and the following integration regions: Σt0 denotes the following
time slice in R

1+1:

Σt0 := {(t, x) : t = t0}. (3.6)

Dt0 denotes the following region of spacetime

Dto
:= {(t, x) : 0 � t � t0}, Dt0 =

⋃

0�t�t0

Σt0 . (3.7)

The level sets of the functions u and u define two global null foliations of Dt0

(Fig. 1). More precisely, given t0 > 0, u0 and u0, we define the rightward null
curve segment Cu0 as:

Cu0 :=
{

(t, x) : u =
t − x

2
= u0, 0 � t � t0

}

,
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Σ0

Σt

Cu Cu

Figure 1. The entire region enclosed by Σ0 and Σt is Dt.

and the segment of the null curve to the left Cu0
as:

Cu0
:=

{

(t, x) : u =
t + x

2
= u0, 0 � t � t0

}

.

The space time region Dt0 is foliated by Cu0
for u0 ∈ R, and by Cu0 for

u0 ∈ R. Let us also consider the following energy estimate proposed in [4,31]
for the scalar linear equations �ψ = ρ given by:

∫

Σt

[

(

1 + |u|2
)1+δ

|Lψ|2 +
(

1 + |u|2
)1+δ

|Lψ|2
]

dx

+ sup
u∈R

∫

Cu

(

1 + |u|2
)1+δ

|Lψ|2 dτ + sup
u∈R

∫

Cu

(

1 + |u|2
)1+δ

|Lψ|2 dτ

� C0

∫

Σ0

[

(

1 + |u|2
)1+δ

|Lψ|2 +
(

1 + |u|2
)1+δ

|Lψ|2
]

dx

+ C0

∫∫

Dt

[

(

1 + |u|2
)1+δ

|Lψ| +
(

1 + |u|2
)1+δ

|Lψ|
]

|ρ| . (3.8)

Motivated by the above estimation (3.8) and [31], we define the spacetime
weighted energy norms valid for k = 0, 1:

Ek(t) =

∫

Σt

[

(

1 + |u|2
)1+δ ∣

∣

∣L∂k
xΛ̃

∣

∣

∣

2
+
(

1 + |u|2
)1+δ ∣

∣

∣L∂k
xΛ̃

∣

∣

∣

2
]

dx,

Ek(t) =

∫

Σt

[

(

1 + |u|2
)1+δ ∣

∣

∣L∂k
xφ

∣

∣

∣

2
+
(

1 + |u|2
)1+δ ∣

∣

∣L∂k
xφ

∣

∣

∣

2
]

dx,

Fk(t) = sup
u∈R

∫

Cu

(

1 + |u|2
)1+δ ∣

∣

∣L∂k
xΛ̃

∣

∣

∣

2
ds + sup

u∈R

∫

Cu

(

1 + |u|2
)1+δ ∣

∣

∣L∂k
xΛ̃

∣

∣

∣

2
ds,

Fk(t) = sup
u∈R

∫

Cu

(

1 + |u|2
)1+δ ∣

∣

∣L∂k
xφ

∣

∣

∣

2
ds + sup

u∈R

∫

Cu

(

1 + |u|2
)1+δ ∣

∣

∣L∂k
xφ

∣

∣

∣

2
ds.

(3.9)

Finally, we define the total energy norms as follows:

E(t) = E0(t) + E1(t).

Analogously, one defines F(t), E(t), and F(t).



Global existence and long-time behavior

Remark 3.2. We note that if t = 0 then F(0) = F(0) = 0 and for E(t) the
initial data determines a constant C1 so that

E(0) = C1ε
2. (3.10)

We will use the method of continuity as follows: we assume that the
solution Λ̃ exists for t ∈ [0, T ∗] so that it has the following bound

E(t) + F(t) � 6C0C1ε
2, (3.11)

E(t) + F(t) � 6C0C1ε
2, (3.12)

and

sup
t∈[0,T ∗]

∥

∥

∥Λ̃
∥

∥

∥

L∞(R)
� λ

2
. (3.13)

We want to show that for all t ∈ [0, T ∗] there exists a universal constant ε0

(independent of T ∗) such that the estimates are improved for all ε � ε0. It is
important recall that the terms related to the functions sinh(·), cosh(·) coth(·)
and csch(·) can be written using the Taylor expansion as:
⎧

⎪

⎨

⎪

⎩

sinh
(

2λ + 2Λ̃
)

= sinh(2λ) + 2 cosh(2λ)Λ̃ + 4 sinh(2λ + 2ξ1)Λ̃2,

cosh
(

2λ + 2Λ̃
)

= cosh(2λ) + 2 sinh(2λ)Λ̃ + 4 cosh(2λ + 2ξ2)Λ̃2,

(3.14)

and under (3.13),
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

coth
(

λ + Λ̃
)

= coth(λ) − csch(λ)Λ̃ − csch(λ + ξ3) coth(λ + ξ3)Λ̃2,

csch2
(

λ + Λ̃
)

= csch2(λ) − 2 csch2(λ) coth(λ)Λ̃ +
{

2 csch2(λ + ξ4)

coth2(λ + ξ4) + csch4(λ + ξ4)
}

Λ̃2,

(3.15)

with ξ1, ξ2, ξ3, ξ4 between 0 and Λ̃, which satisfies (3.13). Then, from this con-
dition (3.13) and (3.14) one has

∣

∣

∣sinh
(

2λ + 2Λ̃
)∣

∣

∣ � λ0(λ),
∣

∣

∣cosh
(

2λ + 2Λ̃
)∣

∣

∣ � λ1(λ).
∣

∣

∣coth
(

λ + Λ̃
)∣

∣

∣ � λ3(λ), and
∣

∣

∣csch
(

λ + Λ̃
)∣

∣

∣ � λ4(λ).
(3.16)

Using the assumptions (3.11) and (3.12), the following pointwise bounds were
established in [31].

Lemma 3.1. ([31], Lemma 3.2) Under assumptions (3.11)–(3.13), there exists
a universal constant C2 > 0 such that:

|LΛ̃(t, x)| � C2ε

(1 + |u|2)1/2+δ/2
, |Lφ(t, x)| � C2ε

(1 + |u|2)1/2+δ/2
,

|LΛ̃(t, x)| � C2ε

(1 + |u|2)1/2+δ/2
, |Lφ(t, x)| � C2ε

(1 + |u|2)1/2+δ/2
.
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Proof. It is sufficient to prove one of the four inequalities, since the other
inequalities are completely analogous. The proof is based on the bootstrap
assumptions (3.11)–(3.13). Indeed, according to the Sobolev inequality on R,
since

∣

∣

∣

∣

∂x

(

1 + |u|2
)1/2+δ/2

∣

∣

∣

∣

�
(

1 + |u|2
)1/2+δ/2

,

one has
∣

∣

∣

∣

(

1 + |u|2
)1/2+δ/2

Lφ(t, x)
∣

∣

∣

∣

2

� ||(1 + |u|2)1/2+δ/2Lφ||2L2(Rx) + ||∂x(
(

1 + |u|2
)1/2+δ/2

Lφ)||2L2(Rx)

� ||
(

1 + |u|2
)1/2+δ/2

Lφ||2L2(Rx) + ||∂x(
(

1 + |u|2
)1/2+δ/2

)Lφ||2L2(Rx)

+ ||
(

1 + |u|2
)1/2+δ/2

L∂x(φ)||2L2(Rx)

� ||
(

1 + |u|2
)1/2+δ/2

Lφ||2L2(Rx) + ||
(

1 + |u|2
)1/2+δ/2

L∂x(φ)||2L2(Rx)

� E(t)

� 6C0C1ε
2.

Consequently, we have the desired inequality. �

Now we have all the ingredients to prove Theorem 1.1.

3.1. Proof of Theorem 1.1

For simplicity, we work with the first equation of the system (1.23). On the
other hand, we can substitute in the following proof Λ̃ by φ and then sum the
estimates to complete the test for the original system, see Appendix B for
details of the estimates for the second equation in (3.1), which complete the
proof. We prove this using the bootstrap method; i.e., we will assume that this
weighted energy is bounded by some constant. Then, we can show that the
solution decays. Since the initial data are small, this allows us to show that the
weighted energy is bounded by some better constant. Thus, by continuity, we
conclude that the weighted energy cannot grow to infinity in any finite time
interval, and therefore, using the local existence theorem, the solution exists
for all time.

Proof. Using (3.2) and (3.4) in the first equation of the (3.1), we obtain:

�∂xΛ̃ = −2
[

sinh
(

2λ + 2Λ̃
)

(Q0(∂xφ, φ) + Q0(φ, ∂xφ))

+2∂xΛ̃ cosh
(

2λ + 2Λ̃
)

Q0(φ, φ)
]

. (3.17)

We can see that the null structure is “quasi-preserved” after differentiat-
ing with respect to x. We will use a bootstrap argument as in the (3 + 1)-
dimensional case [24]. Fix δ ∈ (0, 1). Under the assumptions (3.11)–(3.13) for
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all t ∈ [0, T ∗], we assume that the solution remains regular, to later show that
these bounds are maintained, with a better constant.

Consider k = 0, 1. Using (3.8) on (3.17), with ψ = ∂k
xΛ̃, and taking the

sum over k = 0, 1, we obtain

E(t) + F(t) � 2C0E(0)

+ 2C0

∫∫

Dt

(

(

1 + |u|2
)1+δ

|LΛ̃| +
(

1 + |u|2
)1+δ

|LΛ̃|
)

| sinh
(

2λ + 2Λ̃
)

||Q0(φ, φ)|

+ 4C0

∫∫

Dt

(

(

1 + |u|2
)1+δ

|L∂xΛ̃| +
(

1 + |u|2
)1+δ

|L∂xΛ̃|
)

| sinh
(

2λ + 2Λ̃
)

||Q0(φ, ∂xφ)|

+ 4C0

∫∫

Dt

(

(

1 + |u|2
)1+δ

|L∂xΛ̃| +
(

1 + |u|2
)1+δ

|L∂xΛ̃|
)

s|∂xΛ̃ cosh
(

2λ + 2Λ̃
)

||Q0(φ, φ)|

=: 2C0E(0) + 2C0

6
∑

j=1

Ij , (3.18)

where the integrals Ii, i ∈ {1, 2, 3..., 6} are defined as follows:

I1 :=
∫∫

Dt

(

(

1 + |u|2
)1+δ

|LΛ̃|
)

| sinh
(

2λ + 2Λ̃
)

||Q0(φ, φ)|,

I2 :=
∫∫

Dt

(

(

1 + |u|2
)1+δ

|LΛ̃|
)

| sinh
(

2λ + 2Λ̃
)

||Q0(φ, φ)|,

I3 := 2
∫∫

Dt

(

(

1 + |u|2
)1+δ

|L∂xΛ̃|
)

| sinh
(

2λ + 2Λ̃
)

||Q0(φ, ∂xφ)|,

I4 := 2
∫∫

Dt

(

(

1 + |u|2
)1+δ

|L∂xΛ̃|
)

| sinh
(

2λ + 2Λ̃
)

||Q0(φ, ∂xφ)|,

I5 := 2
∫∫

Dt

(

(

1 + |u|2
)1+δ

|L∂xΛ̃|
)

|∂xΛ̃ cosh
(

2λ + 2Λ̃
)

||Q0(φ, φ)|,

I6 := 2
∫

Dt

(

(

1 + |u|2
)1+δ

|L∂xΛ̃|
)

|∂xΛ̃ cosh
(

2λ + 2Λ̃
)

||Q0(φ, φ)|.
(3.19)

The goal is to control the right-hand side of the above estimate. Essentially,
we have six terms to control, but several are equivalent and we only need to
consider essentially two cases. Indeed, it will be sufficient to bound the terms
corresponding to LΛ̃ and L∂xΛ̃, since by symmetry, the procedure for the other
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terms will be analogous. First, we start to bound the term:

I35 := I3 + I5 =
∫∫

Dt

(

(

1 + |u|2
)1+δ ∣

∣

∣L∂xΛ̃
∣

∣

∣

)

×
(

2|∂xΛ̃ cosh
(

2λ + Λ̃
)

||Q0(φ, φ)|

+ 2| sinh
(

2λ + 2Λ̃
)

||Q0(φ, ∂xφ)|
)

.

(3.20)

Taking into account (3.5), (3.13) and (3.14), we can write for (3.20):

I35 �
∫∫

Dt

(

(

1 + |u|2
)1+δ |L∂xΛ̃|

)

(

|∂xΛ̃||Lφ||Lφ| + |L∂xφ||Lφ| + |Lφ||L∂xφ|
)

=: I35,1 + I35,2 + I35,3.

(3.21)

Since ∂xΛ̃ = 1
2 (L − L)Λ̃, we have

I35,1 =
∫∫

Dt

(

1 + |u|2
)1+δ

|L∂xΛ̃||∂xΛ̃||Lφ||Lφ|

� 1
2

∫∫

Dt

(

1 + |u|2
)1+δ

|L∂xΛ̃||LΛ̃||Lφ||Lφ|

+
(

1 + |u|2
)1+δ

|L∂xΛ̃||LΛ̃||Lφ||Lφ|
=: I35,1,1 + I35,1,2.

(3.22)

Recall that by Fubini’s Theorem the spacetime Dt in (3.7) is foliated by Cu

for u ∈ R, and also by {t} × Σt, t ∈ R. Using Lemma 3.1 and defining ϕ(x) =
(

1 + |x|2
)1+δ

(to simplify the notation), we have the following:

I35,1,1 �
∫∫

Dt

ε
(

ϕ(u)−3/4ϕ(u)1/2|L∂xΛ̃|
)

︸ ︷︷ ︸

L2
t L2

x

(

ϕ1/2(u)|Lφ|
)

︸ ︷︷ ︸

L∞
t L2

x

(

ϕ(u)−1/4ϕ(u)1/2|Lφ|
)

︸ ︷︷ ︸

L2
t L∞

x

� ε

(

∫∫

Dt

ϕ(u)|L∂xΛ̃|2
ϕ(u)3/2

)1/2

︸ ︷︷ ︸

T1

sup
t∈[0,T ∗]

(∫

Σt

ϕ(u)|Lφ|2
)1/2

︸ ︷︷ ︸

T2

×
⎛

⎝

∫ t

0

∥

∥

∥

∥

∥

ϕ(u)1/2

ϕ(u)1/4
|Lφ|

∥

∥

∥

∥

∥

2

L∞(Στ )

dτ

⎞

⎠

1/2

.

︸ ︷︷ ︸

T3

Let us study each of the factors Tj . For T1, one has:

T 2
1 �

∫

R

[

∫

Cu

ϕ(u)|L∂xΛ̃|2
ϕ(u)3/2

ds

]

du =
∫

R

1
ϕ(u)3/2

[

∫

Cu

ϕ(u)|L∂xΛ̃|2ds

]

︸ ︷︷ ︸

�F1(t)

du
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�
∫

R

ε2

ϕ(u)3/2
du,

since the integral is finite, we have T1 � ε. The integral T2 is part of the
energy norm E0(t) in (3.9) then T2 � ε. For the term T3 one can use the same
argument as in [31]: using Lemma A.2, one gets

T3 �
(

∫ t

0

∥

∥

∥

∥

ϕ(u)1/2

ϕ(u)1/4
Lφ(t, x)

∥

∥

∥

∥

2

L2(Στ )

+
∫ t

0

∥

∥

∥

∥

ϕ(u)1/2

ϕ(u)1/4
L∂xφ(t, x)

∥

∥

∥

∥

2

L2(Στ )

)1/2

�
(∫∫

Dt

ϕ(u)
ϕ(u)1/2

|Lφ|2 +
∫∫

Dt

ϕ(u)
ϕ(u)1/2

|L∂xφ|2
)1/2

.

Both terms above are of the same form as T1, and then we have that T3 � ε.
We conclude that I35,1,1 � ε4.

Now we control the integral I35,1,2 in (3.22). Using again Lemma 3.1, we
have:

I35,1,2 =
∫∫

Dt

(

1 + |u|2
)1+δ

|L∂xΛ̃||LΛ̃||Lφ||Lφ| �
∫∫

Dt

ε2|L∂xΛ̃||Lφ|

=
∫∫

Dt

ε2 ϕ(u)1/2

ϕ(u)1/2
|L∂xΛ̃|ϕ(u)1/2

ϕ(u)1/2
|Lφ|

�
∫∫

Dt

ε2

(

ϕ(u)
ϕ(u)

|L∂xΛ̃|2 +
ϕ(u)
ϕ(u)

|Lφ|2
)

�
∫

R

ε2

ϕ(u)

[

∫

Cu

ϕ(u)|L∂xΛ̃|2ds

]

︸ ︷︷ ︸

�F1(t)

du+
∫

R

ε2

ϕ(u)

[∫

Cu

ϕ(u)|Lφ|2ds

]

︸ ︷︷ ︸

�F0(t)

du�ε4.

Putting all estimates together for I35,1, we can conclude that I35,1 � ε4. A
similar result is obtained for I46 := I4 + I6.

Now we treat the term I1 + I2 + I35,2 + I35,3 from (3.18) and (3.21). We
have from (3.5) and (3.16),

∫∫

Dt

ϕ(u)|L∂xΛ̃| (|L∂xφ||Lφ| + |Lφ||L∂xφ|)

+
∫∫

Dt

(

ϕ(u)|LΛ̃| + ϕ(u)|LΛ̃|
)

(|Lφ||Lφ| + |Lφ||Lφ|)

Using the condition (3.13), the situation matches Case 1 developed in [31]. All
these integrals can be written as

∼
∫∫

Dt

(

ϕ(u)|L∂xΛ̃||Lφ||L∂xφ| + ϕ(u)|L∂xΛ̃||L∂xφ||Lφ|
)

.
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We bound this term in the following form: take j, k ∈ {0, 1}, ψ = Λ̃, φ, so that
∫∫

Dt

ϕ(u)
∣

∣L∂k
xψ

∣

∣ |Lψ| ∣∣L∂j
xψ

∣

∣ �
∫∫

Dt

ε

ϕ(u)1/2
ϕ(u)

∣

∣L∂k
xψ

∣

∣

∣

∣L∂j
xψ

∣

∣

�
∫∫

Dt

ε

ϕ(u)1/2

(

ϕ(u)
∣

∣L∂k
xψ

∣

∣

2
+ ϕ(u)

∣

∣L∂j
xψ

∣

∣

2
)

�
∫

R

[

∫

Cu

ε

ϕ(u)1/2

(

ϕ(u)
∣

∣L∂k
xψ

∣

∣

2
+ ϕ(u)

∣

∣L∂j
xψ

∣

∣

2
)

ds

]

du

=
∫

R

ε

ϕ(u)1/2

[

∫

Cu

(

ϕ(u)
∣

∣L∂k
xψ

∣

∣

2
+ ϕ(u)

∣

∣L∂j
xψ

∣

∣

2
)

ds

]

︸ ︷︷ ︸

�E+F+E+F

du

�
∫

R

ε3

ϕ(u)1/2
du � ε3.

(3.23)

See also Luli, Yan and Yu [31] for detailed computations. So, we can conclude
that in this case we can bound them by ε3. Finally, from the energy estimate
(3.8), we can take all the estimates together for some universal constant C4, C5

we have that for all t ∈ [0, T ∗]:

E(t) + F(t) � 2C0C1ε
2 + C4ε

3 + C5ε
4. (3.24)

Now, we take ε0 such that

ε0 � C0C1

C4
, ε2

0 � C0C1

C5
, (3.25)

we can see that for all 0 < ε � ε0 and for all t ∈ [0, T ], we have

E(t) + F(t) � 4C0C1ε
2. (3.26)

This improves the constant in (3.11). In the same way, an analogous reasoning
is used for the analysis of the equation in terms of φ, using in this case Eq.
(3.3), which results in an improvement of the constant involved in the estimate
(3.12).

To improve condition (3.13), using the Fundamental Theorem of Calculus
and Lemma 3.1, one can write Λ̃(t, x), t � 0, in the following form:

∣

∣

∣Λ̃(t, x)
∣

∣

∣ � ε
∣

∣

∣Λ̃0(x)
∣

∣

∣ +
∫ t

0

∣

∣

∣∂tΛ̃(τ, x)
∣

∣

∣ dτ

� εK1 +
1
2

∫ t

0

∣

∣

∣LΛ̃ + LΛ̃
∣

∣

∣ dτ

� εK1 +
1
2

∫ t

0

(

C2ε

ϕ(u)1/2
+

C2ε

ϕ(u)1/2

)

dτ

� εK1 + εC2K2 � Kε,
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for some universal constant K. Next, we take ε0 > 0 that satisfies the condition
(3.25) and such that

Kε0 <
λ

4
, (3.27)

taking sup over t ∈ [0, T ∗], we conclude that for all 0 < ε � ε0 we improved
estimate (3.13). As mentioned before, the proof is completed by doing an
analogous study in terms of the φ field and then taking the sum over the
estimates for the final conclusion. �

4. Long-Time Behavior

Recall the energy introduced in (1.15):

E[Λ, φ](t) =
∫ (

1
2
(

(∂xΛ)2 + (∂tΛ)2
)

+ 2 sinh2(Λ)
(

(∂xφ)2 + (∂tφ)2
)

)

(t, x)dx.

We first start with a simple computation, already present in [18].

Lemma 4.1. If Λ(t, x), φ(t, x) are the solutions of (1.2) with Λ(t, x) ∈ C∞
0 (R)

and φ(x) ∈ C∞
0 (R), then the energy of the system is conserved, that is

d

dt
E[Λ, φ](t) = 0.

4.1. Energy and Momentum Densities

In terms of the fields Λ and φ, let us introduce the energy and momentum
densities

p(t, x) := ∂xΛ∂tΛ + 4 sinh2(Λ)∂xφ∂tφ,

e(t, x) :=
1
2
(

(∂xΛ)2 + (∂tΛ)2
)

+ 2 sinh2(Λ)
(

(∂xφ)2 + (∂tφ)2
)

.
(4.1)

Lemma 4.2. Using the definition above in Eq. (4.1), one has the following con-
tinuity equations

∂tp(t, x) = ∂xe(t, x),

∂te(t, x) = ∂xp(t, x),
(4.2)

and the inequality

|p(t, x)| � e(t, x). (4.3)

Proof. First, we prove ∂tp(t, x) = ∂xe(t, x). Using (1.12) we can prove the
continuity Eq. (4.2). Let us star with the first derivatives

∂x

(

−1
2
(

(∂xΛ)2 + (∂tΛ)2
) − 2 sinh2(Λ)

(

(∂xφ)2 + (∂tφ)2
)

)

= −∂xΛ∂2
xΛ + ∂tΛ∂txΛ − 2 sinh(2Λ)

(

(∂xφ)2 + (∂tφ)2
)

∂xΛ

− 4 sinh2(Λ)
(

∂xφ∂2
xφ + ∂tφ∂txφ

)

,

and
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∂t

(

∂xΛ∂tΛ + 4 sinh2(Λ)∂xφ∂tφ
)

= ∂xtΛ∂tΛ + ∂xΛ∂2
t Λ + 4 sinh(2Λ)∂tΛ∂xφ∂tφ

+ 4 sinh2(Λ)∂xtφ∂tφ + 4 sinh2(Λ)∂zφ∂2
t φ.

Subtracting these two last equations gives:

2 sinh 2Λ
(

(∂xφ)2 + (∂tφ)2
)

∂xΛ + ∂xΛ
(

∂2
xΛ − ∂2

t Λ
)

+ 4 sinh2
(

∂2
xφ − ∂2

t φ
)

∂xφ − 4 sinh(2Λ)∂tΛ∂xφ∂tφ

= 4 sinh(2Λ)(∂xφ)2∂xΛ − 4(∂xφ)2∂xΛ sinh(2Λ) + 4 sinh(2Λ)∂xφ∂tφ∂tΛ

− 4 sinh(2Λ)∂tΛ∂xφ∂tφ = 0.

Second, we prove ∂te(t, x) = ∂xp(t, x); in effect, using (1.12) we have

∂te(t, x) = ∂xΛ∂xtΛ + ∂tΛ∂ttΛ + 2∂tΛ sinh(2Λ)
(

(∂xφ)2 + (∂tφ)2
)

+ 4 sinh2(Λ)∂xφ∂xtφ + 4 sinh2(Λ)∂tφ∂ttφ

= − 2∂tΛ sinh(2Λ)
(

(∂xφ)2 − (∂tφ)2
)

+ 2∂tΛ sinh(2Λ)
(

(∂xφ)2

+(∂tφ)2
)

+ 4 sinh2(Λ)∂xφ∂xtφ + 4∂tφ∂xxφ sinh2(Λ)

+ 4 sinh(2Λ)∂tφ∂xφ∂tΛ + ∂xΛ∂xtΛ + ∂tΛ∂xxΛ

− 4(∂tφ)2∂tΛ sinh(2Λ)

= ∂x

(

∂xΛ∂tΛ + 4 sinh2(Λ)∂tφ∂xφ
)

.

Then, Eq. (4.2) is satisfied. As we can see, the continuity equation can be
written explicitly as

∂t

(

∂xΛ∂tΛ + 4 sinh2 Λ∂xφ∂tφ
) − ∂x

(

1
2
(

(∂xΛ)2

+(∂tΛ)2
)

+ 2 sinh2(Λ)
(

(∂xφ)2 + (∂tφ)2
))

= 0.

(4.4)

To prove the inequality, let us take into account Cauchy’s inequality, then

|∂xΛ∂tΛ| � 1
2
(

(∂xΛ)2 + (∂tΛ)2
)

, |∂xφ∂tφ| � 1
2
(

(∂xφ)2 + (∂tφ)2
)

,

so that

|p(t, x)| � 1
2
(

(∂xΛ)2 + (∂tΛ)2
)

+ 2 sinh2(Λ)
(

(∂xφ)2 + (∂tφ)2
)

. (4.5)

That is, the energy density exerts a control on the momentum density, which
will be of key importance, since all the analysis and results will attempt to
establish the energy space of the coupled system. �

4.2. Virial Estimate

The purpose of this section is to present a Virial identity which is related to
the energy presented above. Let us take into account certain considerations
following a proposal similar to the one used in [2]. However, in our case the
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semilinear character of the model enters and no smallness in a smaller space
is needed. In what follows, we consider t � 2 only, and

ω(t) :=
t

log2 t
,

ω′(t)
ω(t)

=
1
t

(

1 − 2
log t

)

. (4.6)

Furthermore, let us consider (Λ, φ) continuous in time such that E[Λ, φ](t) <
+∞ is conserved. We introduce a Virial identity for the chiral field equation
(1.12). Indeed, let ρ := tanh(·), and let I(t) be defined as

I(t) := −
∫

R

ρ

(

x − vt

ω(t)

)

(

∂xΛ∂tΛ + 4∂xφ∂tφ sinh2(Λ)
)

dx, v ∈ (−1, 1).

(4.7)

A time-dependent weight was also considered in [2], with the same goals. The
choice of I(t) is motivated by the momentum and energy densities. Recall that
∫

=
∫

R
.

Lemma 4.3 (Virial identity). We have

d

dt
I(t) =

ω′(t)
ω(t)

∫

x − vt

ω(t)
ρ′
(

x − vt

ω(t)

)

(∂xΛ∂tΛ + 4∂xφ∂tφ sinh2(Λ))

+
1

ω(t)

∫

ρ′
(

x − vt

ω(t)

)(

1
2
(∂xΛ)2 + 2(∂tφ)2 sinh2(Λ)

)

+
1

ω(t)

∫

ρ′
(

x − vt

ω(t)

)(

1
2
(∂tΛ)2 + 2(∂xφ)2 sinh2(Λ)

)

+
v

ω(t)

∫

ρ′
(

x − vt

ω(t)

)

(

∂xΛ∂tΛ + 4∂xφ∂tφ sinh2(Λ)
)

.

(4.8)

Proof. From (4.2) we readily have

d

dt
I(t) =

ω′(t)
ω(t)

∫

ρ′
(

x − vt

ω(t)

)

x − vt

ω(t)
p(t, x) +

v

ω(t)

∫

ρ′
(

x − vt

ω(t)

)

p(t, x)

−
∫

ρ

(

x − vt

ω(t)

)

∂xe(t, x),

using integration by parts and the Lemma 4.2

d

dt
I(t) =

ω′(t)
ω(t)

∫

ρ′
(

x − vt

ω(t)

)

x − vt

ω(t)
p(t, x) +

v

ω(t)

∫

ρ′
(

x − vt

ω(t)

)

p(t, x)

+
1

ω(t)

∫

ρ′
(

x − vt

ω(t)

)

e(t, x).

This proves (4.8) after replacing (4.1). �

4.3. Integration of the Dynamics

The goal of this subsection is to prove Theorem 1.2; let us start with the
following integral estimate
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Lemma 4.4. Let ω(t) given as in (4.6). Assume that the solution (Λ, φ)(t) of
the system (1.12) satisfies

E[Λ, φ](t) < +∞. (4.9)

Then we have the averaged estimate
∫ ∞

2

1
ω(t)

∫

R

sech2

(

x − vt

ω(t)

)

e(t, x)dxdt � 1, (4.10)

Moreover, there exists an increasing sequence tn → +∞ such that

lim
n−→+∞

∫

R

sech2

(

x − vtn
ω(tn)

)

e(tn, x)dx = 0. (4.11)

In order to show Lemma (4.4), we use the new virial identity for (4.7)
presented for the chiral field equation (1.2).

Proof. First note that from the condition (4.9) we have that clearly I(t) in
(4.7) is well-defined. Here we use the fact that both ∂xΛ and ∂tΛ are small in
L∞ thanks to the Sobolev embedding and in of the same form ∂xφ and ∂tφ.
Moreover,

sup
t∈R

|I(t)| � E[Λ, φ](t) � 1. (4.12)

On the other hand, from Lemma 4.3, we have the identity

d

dt
I(t) = J1 + J2, (4.13)

where

J1 =
ω′(t)
ω(t)

∫

ρ′
(

x − vt

ω(t)

)

x − vt

ω(t)
(

∂xΛ∂tΛ + 4∂xφ∂tφ sinh2(Λ)
)

,

and J2 is the remaining term of (4.8). From the definition of ω(t), (4.9) and
using Cauchy’s inequality for δ > 0 small, we have:

|J1| � 2
t

∫ |x − vt|
ω(t)

ρ′
(

x − vt

ω(t)

)

(|∂xΛ||∂tΛ| + 4|∂xφ||∂tφ| sinh2(Λ))

� 8Cδ

t2

∫

(x − vt)2

ω(t)
ρ′
(

x − vt

ω(t)

)(

1
2
(∂tΛ)2 + 2(∂tφ)2 sinh2(Λ)

)

+
δ

ω(t)

∫

ρ′
(

x − vt

ω(t)

)(

1
2
(∂xΛ)2 + 2(∂xφ)2 sinh2(Λ)

)

� 8Cδω(t)
t2

sup
x∈R

(

(x − vt)2

ω2(t)
ρ′
(

x − vt

ω(t)

))∫ (

1
2
(∂tΛ)2 + 2(∂tφ)2 sinh2(Λ)

)

+
δ

ω(t)

∫

ρ′
(

x − vt

ω(t)

)(

1
2
(∂xΛ)2 + 2(∂tφ)2 sinh2(Λ)

)

� C

t log2 t
+

δ

ω(t)

∫

ρ′
(

x − vt

ω(t)

)(

1
2
(∂xΛ)2 + 2(∂tφ)2 sinh2(Λ)

)

.



Global existence and long-time behavior

Furthermore, for J2(t) we have

|v|
ω(t)

∫

ρ′
(

x − vt

ω(t)

)

∣

∣∂xΛ∂tΛ + 4∂xφ∂tφ sinh2(Λ)
∣

∣

=
|v|

ω(t)

∫

ρ′
(

x − vt

ω(t)

)

|p(t, x)|

� |v|
ω(t)

∫

ρ′
(

x − vt

ω(t)

)

e(t, x).

With this estimate on J1 to obtain 1− |v| − δ > 0 for δ > 0 sufficiently small,

d

dt
I(t) � 1 − |v| − δ

ω(t)

∫

ρ′
(

x − vt

ω(t)

)

e(t, x) − C

t log2 t
. (4.14)

After integration in time, we get (4.10). Finally, (4.11) is obtained from (4.10)
and the fact that ω−1(t) is not integrable in [2,∞). �

Proof of Theorem 1.2. Let us consider ψ(·) = (ρ′)2 = sech4(·), then

d

dt

∫

ψ

(

x − vt

ω(t)

)

e(t, x) = −ω′(t)
ω(t)

∫

x − vt

ω(t)
ψ′

(

x − vt

ω(t)

)

e(t, x)

− v

ω(t)

∫

ψ′
(

x − vt

ω(t)

)

e(t, x)

+
1

ω(t)

∫

ψ′
(

x − vt

ω(t)

)

p(t, x).

Since
∣

∣

∣

x−vt
ω(t) ψ′

(

x−vt
ω(t)

)∣

∣

∣ � sech2
(

x−vt
ω(t)

)

and |p(t, x)| � e(t, x) we have:
∣

∣

∣

∣

d

dt

∫

ψ

(

x − vt

ω(t)

)

e(t, x)
∣

∣

∣

∣

� C

ω(t)

∫

sech2

(

x − vt

ω(t)

)

e(t, x), (4.15)

furthermore

lim
n−→∞

∫

sech4

(

x − vtn
ω(tn)

)

e(tn, x) = 0. (4.16)

Finally, using (4.15) for t < tn
∣

∣

∣

∣

∫

ψ

(

x − vtn
ω(tn)

)

e(tn, x) −
∫

ψ

(

x − vt

ω(t)

)

e(t, x)
∣

∣

∣

∣

�
∫ tn

t

2
ω(s)

∫

sech2

(

x − vs

ω(s)

)

e(s, x)dxds,

sending n to infinity, and using (4.16) we have
∣

∣

∣

∣

∫

ψ

(

x − vt

ω(t)

)

e(t, x)
∣

∣

∣

∣

�
∫ ∞

t

2
ω(s)

∫

sech2

(

x − vs

ω(s)

)

e(s, x)dxds,

(4.17)

which implies, thanks to Lemma 4.4,

lim
t−→∞

∫

sech4

(

x − vt

ω(t)

)

e(t, x) = 0,
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which finally shows the validity of Theorem 1.2. �

5. Application to Soliton Solutions

In this section, we apply our previous results to prove existence of global
solutions around a new class of soliton solutions of finite energy. First, we
consider the case treated by Hadad in [18]. See also [14,27,28] for other cases
of soliton-like solutions not treated here.

5.1. Singular Solitons

Consider the soliton introduced in (1.27). We claim that this solution is sin-
gular in the narrow sense that the energy of the system for this soliton is not
finite. Our first result is the following straightforward computation:

Lemma 5.1. One has,

Λ(t, x) = ln(|v| cosh(t)) + ln
(

1 − tanh(t) tanh(
√

c(x − vt))
|v|√c

+

√

(

1 − tanh(t) tanh(
√

c(x − vt))
|v|√c

)2

− sech2(t)
|v|2

⎞

⎠ ,

φ(t, x) =
π

4
− 1

2
arctan

[

cosh(t) cosh(
√

c(x − vt))(tanh(
√

c(x − vt))

+ v
√

c tanh(t))

]

.

(5.1)

Moreover, for Emod given in (1.26), the previous solution gives

Emod[Λ, φ](t) = 0. (5.2)

Remark 5.1. Notice that g(0) in (1.25) has also zero modified energy. This is
in concordance with the fact that g(1) is obtained from g(0) as seed.

Proof. We use the notation in (1.27) and γ :=
√

c(x − vt). Comparing the
soliton (1.27) with (1.7), we have the following equations:

et[cosh(ln μ) − sinh(ln μ) tanh(γ)] = cosh(Λ) + cos(2φ) sinh(Λ), (5.3)
e−t[cosh(ln μ) + sinh(ln μ) tanh(γ)] = cosh(Λ) − cos(2φ) sinh(Λ), (5.4)

− 1√
c cosh(γ)

= sin(2φ) sinh(Λ), (5.5)

where

cosh(ln(μ)) =
μ2 + 1

2μ
= −v, sinh(ln(μ)) =

μ2 − 1
2μ

=
1√
c
;

adding the first two equations, we obtain:

−v cosh(t) − 1√
c

sinh(t) tanh(γ) = cosh Λ.
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Then, since we have the constraint μ > 1 we can write the expression for Λ as

Λ(t, x) = ln(|v| cosh(t)) + ln

(

1 − tanh(t) tanh(γ)
|v|√c

+

√

(

1 − tanh(t) tanh(γ)
|v|√c

)2

− 1
|v|2 sech2(t)

)

.

Next, subtracting the same equations and using (5.5)

−v sinh(t) − 1√
c
cosh(t) tanh(γ) = cos(2φ) sinh(Λ),

−v sinh(t) − 1√
c
cosh(t) tanh(γ) = − 1√

c
cot(2φ) sech(γ)

sinh(γ) cosh(t) +
√

cv sinh(t) cosh(γ) = cot(2φ).

In order to make sense, one needs sin(2φ) �= 0, i.e., φ �= nπ

2
. Therefore, we can

write:

φ(t, x) =
π

4
− 1

2
arctan

(

sinh(γ) cosh(t) +
√

cv sinh(t) cosh(
√

c(x − vt))
)

=
π

4
− 1

2
arctan

(

cosh(t) cosh(
√

c(x − vt))(tanh(
√

c(x − vt))

+ v
√

c tanh(t))

)

.

Now, let us study the derivatives of the Λ and φ fields. Assuming the con-
straints for the parameter μ, we have that

∂xΛ = − sinh(t) sech2(γ)
√

(−v cosh(t) − 1√
c
sinh(t) tanh(γ))2 − 1

,

∂tΛ =
tanh(γ)

(

−v sinh(t) tanh(γ) − 1√
c
cosh(t)

)

√

(−v cosh(t) − 1√
c
sinh(t) tanh(γ))2 − 1

.

Additionally,

∂xφ = −1
2

(√
c cosh(t) cosh(γ)(1 + v

√
c tanh(t) tanh(γ))

1 + (sinh(γ) cosh(t) + v
√

c sinh(t) cosh(γ))2

)

,

∂tφ = −1
2

(

(1 − cv2) sinh(t) sinh(γ)
1 + (sinh(γ) cosh(t) + v

√
c sinh(t) cosh(γ))2

)

.

Simplifying, the energy density is:

(∂xΛ)
2

+ (∂tΛ)
2 − 1

=
sinh2(t) sech4(γ) − v2 sinh2(t) sech2(γ)(tanh2(γ) + 1) − v√

c
sinh(2t) tanh(γ) sech2(γ) − v2 + 1

(−v cosh(t) − 1√
c

sinh(t) tanh(γ))2 − 1
,
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and
sinh2(Λ)((∂xφ)2 + (∂tφ)2)

=
c cosh2(t) cosh2(γ) − vc

2
sinh(2t) sinh(2γ) + (c2v4 − cv2 + 1) sinh2(t) sinh2(γ)

(1 + (sinh(γ) cosh(t) + v
√

c sinh(t) cosh(γ))2)2
.

Then, the integrals can be calculated with the help of the computer algebra
system Mathematica, obtaining that the soliton has finite modified energy; in
fact, we have that

Emod[Λ, φ](t) = 0.

With the results obtained, we can see that the Λ and φ fields associated to
the soliton (1.27) do not belong to the energy space proposed in the previous
sections. �

5.2. Finite Energy Solitons

In this final section, we consider the case of finite energy solitons, their per-
turbations, and a corresponding global well-posedness result.

Proof of Corollary 1.1:. Identifying the 1-soliton in (1.28)

g(1) =

⎡

⎢

⎢

⎢

⎣

eλ+εθ sech(β(λ + εθ))
sech(β(λ + εθ) − x0)

− 1√
c

sech(β(λ + εθ))

− 1√
c

sech(β(λ + εθ))
e−(λ+εθ) sech(β(λ + εθ))

sech(β(λ + εθ) + x0)

⎤

⎥

⎥

⎥

⎦

, β =
μ + 1
μ − 1

,

(5.6)

with the geometrical representation (1.7), one gets the corresponding fields Λ̂ε

and φ̂ε, which have the following form:

Λ̂ε(t, x) := cosh−1

(

|v| cosh(λ + εθ) − 1√
c

tanh(β(λ + εθ)) sinh(λ + εθ)
)

,

φ̂ε(t, x) :=
π

4
− 1

2
arctan

(

cosh(β(λ + εθ)) cosh(λ + εθ)(tanh(β(λ + εθ))

+ v
√

c tanh(λ + εθ))

)

,

which are solutions for (1.23). From now on, we drop ε to make the notation
less cumbersome.

We claim that Λ̂ have the desired local and global well-posedness prop-
erties. Indeed, note that since 0 < μ < 1, then |v| > 1 and β < 0, so, for all
t, x ∈ R

|v| cosh(λ + εθ) − 1√
c

tanh(β(λ + εθ)) sinh(λ + εθ)

� |v| +
1√
c

tanh(|β|(λ + εθ)) sinh(λ + εθ) > 1;
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therefore, Λ̂ is well-defined and Λ̂(t, x) > 0 for all t, x ∈ R. Also, since θ ∈
L∞(R), for each t, we have to that Λ̂ is a bounded function. Since θ ∈ C2

0 , we
have that

Λ̂(t = 0, x) = C(λ), ∀x ∈ R \ supp θ,

then, define λ̃ := C(λ), which allows us to write Λ̂ := Λ̃ + λ̃. For the function
Λ̃, one has

Λ̃|{t=0} = εΛ̃0, with Λ̃0 ∈ C2
0 (R). (5.7)

where Λ̃0 is defined as:

Λ̃0(x) :=
1

ε

(

cosh−1

(

|v| cosh(λ + εθ(x)) − 1√
c

tanh(β(λ + εθ(x))) sinh(λ + εθ(x))

))

− 1

ε

(

cosh−1

(

|v| cosh(λ) − 1√
c

tanh(βλ) sinh(λ)

))

.

The dependence associated with ε for this function is suitable in the sense that
we can demonstrate straightforwardly that Λ̃0 is a bounded function when ε
tends to zero; indeed, we have that the limε−→0 Λ̃0 can be calculated using
L’Hôpital’s rule:

lim
ε−→0

Λ̃0

= lim
ε−→0

θ(x)
(

|v| sinh(λ + εθ) − β√
c

sech2(β(λ + εθ)) − 1√
c

tanh(β(λ + εθ)) cosh(λ + εθ)
)

√

(|v| cosh(λ + εθ) − 1√
c

tanh(β(λ + εθ)) sinh(λ + εθ))2 − 1

=
θ(x)

(

|v| sinh(λ) − β√
c

sech2(βλ) − 1√
c

tanh(βλ) cosh(λ)
)

√

(|v| cosh(λ) − 1√
c

tanh(βλ) sinh(λ))2 − 1
= Cθ(x)

On the other hand, the derivative of Λ̃ is given by

∂tΛ̃ =
εθ′

(

|v| tanh(γ) − 1√
c
β sech2(βγ) tanh(γ) − 1√

c
tanh(βγ)

)

sech(γ)

√

(

|v| cosh(γ) − 1√
c
sinh(γ) tanh(βγ)

)2

− 1

,

in this case γ := λ + εθ, then, is clearly that ∂tΛ̃|{t=0} ∈ C2
0 (R).

Next, for the field φ̂, we have a bounded function and φ̂(t, x) > 0 for all
t, x ∈ R. Again, since θ ∈ C2

0 (R) we have,

φ̂(t = 0, x) = C1(λ), ∀x ∈ R \ supp θ,

and we can define

φ(t, x) = φ̂ − ε with ε = C1(λ).

With this definition, one has:

φ(t = 0, x) = φ̂(t = 0, x) − ε,

then

φ(t = 0, x) = φ̂(t = 0, x) − ε = 0 ∀x ∈ R \ supp θ,
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if we choose

εφ0(x) = φ(t = 0, x) = φ̂(t = 0, x) − ε,

where φ0 is given as:

φ0(x) = − 1
2ε

arctan

(

cosh(β(λ + εθ(x))) cosh(λ + εθ(x))(tanh(β(λ + εθ(x)))

+ v
√

c tanh(λ + εθ(x)))

)

+
1
2ε

arctan
(

cosh(βλ) cosh(λ)(tanh(βλ) + v
√

c tanh(λ))
)

,

this definition is again a suitable consideration; we can compute the limε−→0 φ0

using L’Hôpital’s rule:

lim
ε−→0

φ0 = lim
ε−→0

θ(x)((1 + βv
√

c) sinh(γ) sinh(βγ) + (β + v
√

c) cosh(γ) cosh(βγ)
2(1 + (cosh(γ) sinh(βγ) + β

√
c sinh(γ) cosh(βγ))2)

= C1θ(x).

The function φ has the desired local and global well-posedness properties.
Indeed, the derivative of this function is:

∂tφ =
−εθ′(β + v

√
c + (1 + βv

√
c) tanh(βγ) tanh(γ))

2 sech(βγ) sech(γ)((cosh(γ) sinh(βγ) + v
√

c sinh(γ) cosh(βγ))2 + 1)
,

which is also a localized function. Finally, from the previous analysis, we can
conclude that for ∂tΛ, ∂tφ ∈ L2(R), with Λ(t, x) = Λ̂(t, x), then

E[Λ, φ] < ∞.

In the end, Λ̂ reads as

Λ̂ = ln(cosh(γ))

+ ln

⎛

⎝|v| − tanh(γ) tanh(βγ)√
c

+

√

(

|v| − tanh(γ) tanh(βγ)√
c

)2

− 1

⎞

⎠ .

This finishes the proof. �
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Appendix A. Some Useful Inequalities

This section starts by presenting the well-known Gronwall’s lemma:

Lemma A.1. Let f : R −→ R be a positive continuous function and g : R −→ R

be a positive integrable function such that

f(t) � A +
∫ t

0

f(s)g(s)ds,

for some A � 0 for every t ∈ [0, T ]. Then

f(t) � A exp
(∫ t

0

g(s)ds

)

, (A.1)

for every t ∈ [0, T ].

The second result to be presented is related to another pointwise bounds
that were presented for Luli et al. in [31] for the study of the global problem
in Sect. 3:

Lemma A.2. Under the assumption (3.11) and (3.12), there exists a universal
constant C3,

∥

∥

∥

∥

ϕ(u)1/2

ϕ(u)1/4
LΛ̃(t, x)

∥

∥

∥

∥

L∞(Σt)

� C3

(

∥

∥

∥

∥

ϕ(u)1/2

ϕ(u)1/4
LΛ̃(t, x)

∥

∥

∥

∥

L2(Σt)

+
∥

∥

∥

∥

ϕ(u)1/2

ϕ(u)1/4
L∂xΛ̃(t, x)

∥

∥

∥

∥

L2(Σt)

)

,

∥

∥

∥

∥

ϕ(u)1/2

ϕ(u)1/4
LΛ̃(t, x)

∥

∥

∥

∥

L∞(Σt)

� C3

(

∥

∥

∥

∥

ϕ(u)1/2

ϕ(u)1/4
LΛ̃(t, x)

∥

∥

∥

∥

L2(Σt)

+
∥

∥

∥

∥

ϕ(u)1/2

ϕ(u)1/4
L∂xΛ̃(t, x)

∥

∥

∥

∥

L2(Σt)

)

,

and
∥

∥

∥

∥

ϕ(u)1/2

ϕ(u)1/4
Lφ(t, x)

∥

∥

∥

∥

L∞(Σt)

� C3

(

∥

∥

∥

∥

ϕ(u)1/2

ϕ(u)1/4
Lφ(t, x)

∥

∥

∥

∥

L2(Σt)

+
∥

∥

∥

∥

ϕ(u)1/2

ϕ(u)1/4
L∂xφ(t, x)

∥

∥

∥

∥

L2(Σt)

)

,

∥

∥

∥

∥

ϕ(u)1/2

ϕ(u)1/4
Lφ(t, x)

∥

∥

∥

∥

L∞(Σt)

� C3

(

∥

∥

∥

∥

ϕ(u)1/2

ϕ(u)1/4
Lφ(t, x)

∥

∥

∥

∥

L2(Σt)

+
∥

∥

∥

∥

ϕ(u)1/2

ϕ(u)1/4
L∂xφ(t, x)

∥

∥

∥

∥

L2(Σt)

)

.
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Appendix B. Ending of Proof of Theorem 1.1

In this section, we describe the details of the estimates for the second equation
in (3.1) that complete the proof of Theorem 1.1.

For simplicity, in Sect. 3 we worked with the first equation of system (3.1).
Now we prove the estimates for the second equation.

Proof. The first step is the following: Using (3.3) and (3.4) in the second
equation of (3.1), we obtain:

� (∂xφ) = 2
[

coth(λ + Λ̃)
(

Q0(∂xφ, Λ̃) + Q0(φ, ∂xΛ̃)
)

− 2∂xΛ̃ csch2(λ + Λ̃)Q0(φ, Λ̃)
]

.

(B.1)

As in Sect. 3, fix δ ∈ (0, 1), under the assumptions (3.11)–(3.13) for all t ∈
[0, T ∗], we assume that the solution remains regular, to later show that these
bounds are maintained, with a better constant.

Consider k = 0, 1. Using (3.8) on (3.17), with ψ = ∂k
xφ, and taking the

sum over k = 0, 1, we obtain

E(t) + F(t) � 2C0E(0)

+2C0

∫∫

Dt

(

(

1 + |u|2
)1+δ

|Lφ| +
(

1 + |u|2
)1+δ

|Lφ|
)

2| coth
(

λ + Λ̃
)

||Q0

(

φ, Λ̃
)

|

+4C0

∫∫

Dt

(

(

1 + |u|2
)1+δ

|L∂xφ| +
(

1 + |u|2
)1+δ

|L∂xφ|
)

| coth
(

λ + Λ̃
)

||(Q0

(

∂xφ, λ̃
)

+ Q0(φ, ∂xΛ̃))|

+4C0

∫∫

Dt

(

(

1 + |u|2
)1+δ

|L∂xφ| +
(

1 + |u|2
)1+δ

|L∂xφ|
)

|∂xΛ̃ csch2
(

λ + Λ̃
)

||Q0

(

φ, Λ̃
)

|

=: 2C0E(0) + 2C0

8
∑

j=1

Ij ,

(B.2)

In this case, the integrals Ij , i ∈ {1, 2, .., 8} are defined as follows:

I1 := 2C0

∫∫

Dt

(

(

1 + |u|2
)1+δ

|Lφ|
)

| coth
(

λ + Λ̃
)

||Q0

(

φ, Λ̃
)

|

I2 := 2C0

∫∫

Dt

(

(

1 + |u|2
)1+δ

|Lφ|
)

| coth
(

λ + Λ̃
)

||Q0

(

φ, Λ̃
)

|

I3 := 2C0

∫∫

Dt

(

(

1 + |u|2
)1+δ

|L∂xφ|
)

| coth
(

λ + Λ̃
)

||(Q0

(

∂xφ, Λ̃
)

|

I4 := 2C0

∫∫

Dt

(

(

1 + |u|2
)1+δ

|L∂xφ|
)

| coth
(

λ + Λ̃
)

||Q0

(

φ, ∂xΛ̃
)

)|
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I5 := 2C0

∫∫

Dt

(

(

1 + |u|2
)1+δ

L∂xφ|
)

| coth
(

λ + Λ̃
)

||(Q0

(

∂xφ, Λ̃
)

|

I6 := 2C0

∫∫

Dt

(

(

1 + |u|2
)1+δ

|L∂xφ|
)

| coth
(

λ + Λ̃
)

||Q0

(

φ, ∂xΛ̃
)

)|

I7 := 2C0

∫∫

Dt

(

(

1 + |u|2
)1+δ

|L∂xφ|
)

|∂xΛ̃ csch2
(

λ + Λ̃
)

||Q0

(

φ, Λ̃
)

|

I8 := 2C0

∫∫

Dt

(

(

1 + |u|2
)1+δ

|L∂xφ|
)

|∂xΛ̃ csch2
(

λ + Λ̃
)

||Q0

(

φ, Λ̃
)

|.
(B.3)

The goal is to control the right-hand side of the above estimate. Essentially,
we have eight terms to control, but several are equivalent and we only need to
consider essentially two cases. Indeed, it will be sufficient to bound the terms
corresponding to L∂xφ and Lφ, since by symmetry, the procedure for the other
terms will be analogous. First, we start to bound the term I7 that represents
the most attention, given that it has different sub-terms to estimate, recalling
that we define ϕ(x) =

(

1 + |x|2)1+δ
, with 0 < δ � 1.

Taking into account (3.5), (3.13) and (3.15)–(3.16), and writing ∂xΛ̃ =
1
2 (L − L)Λ̃, we get

I7 � C0

∫∫

Dt

ϕ(u)|L∂xφ||LΛ̃||Lφ||LΛ̃| + C0

∫∫

Dt

ϕ(u)|L∂xφ||LΛ̃|2|Lφ|

+ C0

∫∫

Dt

ϕ(u)|L∂xφ||LΛ̃|2|Lφ| + C0

∫∫

Dt

ϕ(u)|L∂xφ||LΛ̃||Lφ||LΛ̃|
:= I7,1 + I7,2 + I7,3 + I7,4.

(B.4)

Recall that by Fubini’s Theorem the spacetime Dt in (3.7) is foliated by Cu

for u ∈ R, and also by {t} × Σt, t ∈ R. Using again Lemma 3.1, we obtain

I7,1 �
∫∫

Dt

ε
(

ϕ(u)−3/4ϕ(u)1/2|L∂xφ|
)

︸ ︷︷ ︸

L2
t L2

x

(

ϕ1/2(u)|LΛ̃|
)

︸ ︷︷ ︸

L∞
t L2

x

(

ϕ(u)−1/4ϕ(u)1/2|LΛ̃|
)

︸ ︷︷ ︸

L2
t L∞

x

� ε

(∫∫

Dt

ϕ(u)|L∂xφ|2
ϕ(u)3/2

)1/2

︸ ︷︷ ︸

T1

sup
t∈[0,T ∗]

(∫

Σt

ϕ(u)|LΛ̃|2
)1/2

︸ ︷︷ ︸

T2

(

∫ t

0

∥

∥

∥

∥

ϕ(u)1/2

ϕ(u)1/4
|LΛ̃|

∥

∥

∥

∥

2

L∞(Στ )

dτ

)1/2

.

︸ ︷︷ ︸

T3
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Let us study each of the factors Tj . For T1, one has:

T 2
1 �

∫

R

[

∫

Cu

ϕ(u)|L∂xφ|2
ϕ(u)3/2

ds

]

du =
∫

R

1
ϕ(u)3/2

[

∫

Cu

ϕ(u)|L∂xφ|2ds

]

︸ ︷︷ ︸

�F1(t)

du

�
∫

R

ε2

ϕ(u)3/2
du,

since the integral is finite, we have T1 � ε. The integral T2 is part of the
energy norm E0(t) in (3.9) then T2 � ε. For the term T3 one can use the same
argument as in [31]: using Lemma A.2 one gets

T3 �
(

∫ t

0

∥

∥

∥

∥

ϕ(u)1/2

ϕ(u)1/4
LΛ̃(t, x)

∥

∥

∥

∥

2

L2(Στ )

+
∫ t

0

∥

∥

∥

∥

ϕ(u)1/2

ϕ(u)1/4
L∂xΛ̃(t, x)

∥

∥

∥

∥

2

L2(Στ )

)1/2

�
(∫∫

Dt

ϕ(u)
ϕ(u)1/2

|LΛ̃|2 +
∫∫

Dt

ϕ(u)
ϕ(u)1/2

|L∂xΛ̃|2
)1/2

;

both terms above are of the same form as T1 and then we have that T3 � ε.
We conclude that I7,1 � ε4.

Now we control the integral I7,2 in (B.4), using again Lemma 3.1, the
assumption (3.12) and Cauchy–Schwarz inequality. We have:

I7,2 = C0

∫∫

Dt

ϕ(u)|L∂xφ||LΛ̃|2|Lφ| �
∫∫

Dt

C2ε
2 ϕ(u)1/2

ϕ(u)1/2
|L∂xφ|ϕ(u)1/2

ϕ(u)1/2
|Lφ|

� C2ε
2

(∫∫

Dt

ϕ(u)
ϕ(u)

|L∂xφ|2
)1/2 (∫∫

Dt

ϕ(u)
ϕ(u)

|Lφ|2
)1/2

� ε4.

To finish with the term I7, we need to estimate the terms I7,3 and I7,4 in (B.4),
which are similar in structure; for this case, we get:

I7,34 = I7,3 + I7,4 �
∫∫

Dt

ε2|L∂xφ||Lφ| +
∫∫

Dt

ε2|L∂xφ||LΛ̃|

=
∫∫

Dt

ε2 ϕ(u)1/2

ϕ(u)1/2
|L∂xφ|

(

ϕ(u)1/2

ϕ(u)1/2
|Lφ| +

ϕ(u)1/2

ϕ(u)1/2
|LΛ̃|

)

�
∫∫

Dt

ε2

(

ϕ(u)
ϕ(u)

|L∂xφ|2
)

+
∫∫

Dt

ε2

(

ϕ(u)
ϕ(u)

|Lφ|2
)

+
∫∫

Dt

ε2

(

ϕ(u)
ϕ(u)

|LΛ̃|2
)

�
∫

R

ε2

ϕ(u)

[

∫

Cu

ϕ(u)|L∂xφ|2ds

]

︸ ︷︷ ︸

�F1(t)

du +
∫

R

ε2

ϕ(u)

[∫

Cu

ϕ(u)|Lφ|2ds

]

︸ ︷︷ ︸

�F0(t)

du
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+
∫

R

ε2

ϕ(u)

[∫

Cu

ϕ(u)|LΛ̃|2ds

]

︸ ︷︷ ︸

�F0(t)

du � ε4.

Putting all estimates together for I7, we conclude that I7 � ε4. A similar
result is obtained for I8.

Now we treat the term I1 + I3 + I4 from (B.2). We have from (3.5) and
(3.15)–(3.16),

∫∫

Dt

ϕ(u)|L∂xφ|
(

|L∂xφ||LΛ̃| + |L∂xφ||LΛ̃| + |Lφ||L∂xΛ̃| + |Lφ||L∂xΛ̃|
)

+
∫∫

Dt

(ϕ(u)|Lφ|)
(

|Lφ||LΛ̃| + |LΛ̃||Lφ|
)

.

Using the condition (3.13), the situation matches Case 1 developed in [31]. All
these integrals can be written as

∼
∫∫

Dt

(

ϕ(u)|L∂xΛ̃||Lφ||L∂xφ| + ϕ(u)|L∂xΛ̃||L∂xφ||Lφ|
)

.

Then, we can use the estimate (3.23) in Sect. 3 to conclude the bounds on
these terms, which again are of order ε3. �

Appendix C. Classical Solution: Local Theory

As we can see, Proposition 1.1 does not directly provide us with a classical
solution for the initial value problem (1.17). In order to obtain such a classical
solution, we need an initial data with sufficient regularity, which allows us to
control the terms associated with the nonlinearity. The idea of the proof still
has the same structure.

Recall that the initial value problem for (1.17) can be written in vector
form as follows

{

∂α

(

mαβ∂βΨ
)

= F (Ψ, ∂Ψ)
(Ψ, ∂tΨ)|{t=0} = (Ψ0,Ψ1) ∈ Ĥ.

(C.1)

Where mαβ are the components of the Minkowski metric with α, β ∈ {0, 1},
and

(Ψ, ∂tΨ) ∈ Ĥ := H3(R) × H3(R) × H2(R) × H2(R). (C.2)

We are also going to impose the following condition on the initial data

‖(Ψ0,Ψ1)‖Ĥ � λ

2D
, (C.3)

where the assumptions on the constant D � 1 will be indicated below.
The following proposition shows that the equation (C.1), in terms of the

function Λ̃ introduced in (1.16), is locally well-posed in the space L∞([0, T ]; Ĥ)
with the norm in this space defined by

‖(Ψ, ∂tΨ)‖L∞([0,T ];H) = sup
t∈[0,T ]

(

‖Ψ‖H3(R)×H3(R) + ‖∂tΨ‖H2(R)×H2(R)

)

,
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with (Ψ, ∂tΨ) introduced in (1.18). The result is the following.

Proposition C.1. If (Ψ0,Ψ1) satisfies the condition (C.3) with an appropriate
constant D � 1, then:
(1) (Existence and uniqueness of local-in-time solutions). There exists

T = T

(

∥

∥

∥

(

Λ̃0, φ0

)∥

∥

∥

H3(R)×H3(R)
,
∥

∥

∥

(

Λ̃1, φ1

)∥

∥

∥

H2(R)×H2(R)
, λ

)

> 0,

such that there exists a (classical) solution Ψ to (C.1) with

(Ψ, ∂tΨ) ∈ L∞([0, T ]; Ĥ).

Moreover, the solution is unique in this function space.
(2) (Continuous dependence on the initial data). Let Ψ(i)

0 ,Ψ(i)
1 be sequence

such that Ψ(i)
0 −→ Ψ0 in H3(R) × H3(R) and Ψ(i)

1 −→ Ψ1 in H2(R) ×
H2(R) as i −→ ∞. Then taking T > 0 sufficiently small, we have

∥

∥

∥

(

Ψ(i) − Ψ, ∂t(Ψ(i) − Ψ)
)∥

∥

∥

L∞([0,T ];Hs(R)×Hs(R))×L∞([0,T ];Hs−1(R)×Hs−1(R))

−→ 0.

as i −→ ∞ for every 1 � s < 3. Here Ψ is the solution arising from data
(Ψ0,Ψ1) and Ψ(i) is the solution arising from data

(

Ψ(i)
0 ,Ψ(i)

1

)

.

Proof of Proposition C.1. (1). This part of the Proposition is proved by Pi-
card’s iteration. Using a density argument it is sufficient to assume the initial
data (Ψ0,Ψ1) ∈ S4 (S being the Schwartz class), along with condition (C.3).
Define a sequence of smooth functions Ψ(i), with i � 1 such that

Ψ(1) = (0, 0),

and for i � 2, Ψ(i) is iteratively defined as the unique solution to the system
{

∂α

(

mαβ∂βΨ(i)
)

= F
(

Ψ(i−1), ∂Ψ(i−1)
)

(

Ψ(i), ∂tΨ(i)
) |{t=0} = (Ψ0,Ψ1) ∈ H.

(C.4)

It is important to note that from (1.18) and (C.3) we can assure that for
j = 1, 2,

2
∑

γ=0

sup
|x|,|p|� λ

2

|∂γ
x,pFj |(x, p) � Cj, 12λ. (C.5)

Indeed, this can be seen from the fact that for (x, p) = (x1, x2, p1, p2, p3, p4)
and |x| � λ

2 ,

F1(x, p) = 2 sinh(2λ + 2x1)
(

p2
4 − p2

3

)

,

F2(x, p) =
sinh(2(λ + x1))
sinh2(λ + x1)

(p3p1 − p2p4) .

Define bounded functions in the class C1.
It is important to note that condition (C.5) allows this iterative definition

of the functions Ψ(i) to be possible, since it maintains each component of
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F with the required regularity, see [12]. First, it will be shown that for a
sufficiently small T > 0, the sequence (Ψ, ∂tΨ) is uniformly (in i) bounded in
L∞([0, T ]; Ĥ), then it will be shown that it is also a Cauchy sequence. For the
first part, the idea is to use the energy estimates (2.2), and we want to prove
that there is a constant 0 < A � λ

2 such that
∥

∥

∥

(

Ψ(i−1), ∂tΨ(i−1)
)∥

∥

∥

L∞([0,T ];Ĥ)
� A, (C.6)

implies that
∥

∥

∥

(

Ψ(i), ∂tΨ(i)
)∥

∥

∥

L∞([0,T ];Ĥ)
� A.

The energy estimation (2.2) allows us to write for (C.1) the following estimate:

sup
t∈[0,T ]

∥

∥

∥

(

Ψ(i), ∂tΨ(i)
)∥

∥

∥

Ĥ
� C(1 + T )(‖(Ψ0,Ψ1)‖Ĥ)

+ C(1 + T )
∫ T

0

(

∥

∥

∥F1

(

Ψ(i−1), ∂Ψ(i−1)
)∥

∥

∥

H2(R)

+
∥

∥

∥F2

(

Ψ(i−1), ∂Ψ(i−1)
)∥

∥

∥

H2(R)

)

(t)dt.

(C.7)

With this estimate, our goal is to bound the integral on the right hand side
of the inequality above. That is, we want to prove that there exists B =
B(A,F ) > 0 such that for t ∈ [0, T ], we have

2
∑

n=0

||∂n
x F

(

Ψ(i−1), ∂Ψ(i−1)
)

||L2(t) � B. (C.8)

For this, we will use the conditions (C.3) for each Fj which is satisfied by the
hypothesis in (C.6), if B1 = max{C1, λ

2
, C2, λ

2
}, and using chain rule we get

2
∑

n=0

||∂n
x F

(

Ψ(i−1), ∂Ψ(i−1)
)

||L2 � B1 + B1||∂xΨi−1||L2

+ B1||∂∂xΨi−1||L2 + B1||∂Ψi−1||2H2

+ B1||∂2
xΨi−1||L2

+ B1||∂∂xΨi−1 · ∂∂xΨi−1||L2 + ||∂∂2
xΨi−1||L2

� B,

where B = B(B1, A, λ), which results in the following estimate

sup
t∈[0,T ]

∥

∥

∥

(

Ψ(i), ∂tΨ(i)
)∥

∥

∥

Ĥ
� C(1 + T )

(‖(Ψ0,Ψ1)‖Ĥ + 2BT
)

, (C.9)

we can choose T > 0 sufficiently small such that

2BT � ‖(Ψ0,Ψ1)‖Ĥ ,
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so
∥

∥

∥

(

Ψ(i), ∂tΨ(i)
)∥

∥

∥

L∞([0,T ];Ĥ)
� 2C ‖(Ψ0,Ψ1)‖Ĥ .

If we choose D > 4C in (C.3) and A := 2C||(Ψ0,Ψ1)||Ĥ � 2Cλ
D � λ

2 . We have
thus shown the desired implication.

In Sect. 2 we showed that the last sequence is of Cauchy type in the larger
space L∞([0, T ];H). Therefore, the sequence is Cauchy on L∞([0, T ];H), and
hence convergent. That is, there exists (Ψ, ∂tΨ) in L∞([0, T ];H). The uniform
bounds (on i) in L∞([0, T ], Ĥ) guarantee that the limit in fact lies in the
smaller space L∞([0, T ], Ĥ), that is, for almost t ∈ [0, T ], (Ψ(i), ∂tΨ(i))(t) ∈ Ĥ,
uniform in i, and therefore by Banach–Alaoglu’s Theorem, there is a weak
limit in Ĥ (up to a subsequence). But the uniqueness of the limit ensures that
this limit must agree with (Ψ, ∂tΨ)(t). This concludes the proof of existence.

Finally, for the continuous dependence on initial data, we prove in Sect. 2
that taking i −→ ∞, we get

sup
s∈[0,t]

∥

∥

∥

(

Ψ(i) − Ψ, ∂tΨ(i) − ∂tΨ
)∥

∥

∥

H
−→ 0.

To obtain the result in general for 1 � s < 3, simply observe that

sup
t∈[0,T ]

||
(

Ψ(i) − Ψ, ∂tΨ(i) − ∂tΨ
)

||Hs×Hs×Hs−1×Hs−1(t)

� C sup
t∈[0,T ]

(

||
(

Ψ(i) − Ψ, ∂tΨ(i) − ∂tΨ
)

||H1×H1×L2×L2(t)
)

3−s
2

×
(

||
(

Ψ(i) − Ψ, ∂tΨ(i) − ∂tΨ
)

||H3×H3×H1×H1(t)
)

s−1
2 −→ 0.

This last property ends the proof of Proposition 1.1. �
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