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Expansion and Collapse of Spherically
Symmetric Isotropic Elastic Bodies
Surrounded by Vacuum

Thomas C. Sideris

Abstract. A class of isotropic and scale-invariant strain energy functions
is given for which the corresponding spherically symmetric elastic motion
includes bodies whose diameter becomes infinite with time or collapses
to zero in finite time, depending on the sign of the residual pressure. The
bodies are surrounded by vacuum so that the boundary surface forces
vanish, while the density remains strictly positive. The body is subject
only to internal elastic stress.

1. Introduction

We shall be concerned with C2 spherically symmetric and separable motions
of a three-dimensional hyperelastic material based on a class of isotropic and
scale-invariant strain energy functions. The solid elastic body is surrounded
by vacuum so that the boundary surface force vanishes, while the boundary
density remains strictly positive. The body is subject only to internal elastic
stress. Depending on the sign of the residual pressure, we shall show that the
diameter of a spherical body can expand to infinity with time or it can collapse
to zero in finite time.

In addition to the assumptions of objectivity and isotropy, we shall impose
the more severe restriction of scale invariance on the strain energy function W .
That is, W is a homogeneous function of degree h in the deformation gradient
F . In the next section, we will show that these basic assumptions imply that
W has the form:

W (F ) = (detF )h/3W (Σ(F )) = (det F )h/3Φ(tr Σ(F ), tr cof Σ(F )),
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for all F ∈ GL+(3,R), in which

Σ(F ) = (det F )−1/3(FF�)1/2,

is the shear strain tensor, see [26]. The factor (detF )h/3 accounts for compress-
ibility, and the quantity κ(h) = h

3

(
h
3 − 1

)
is the bulk modulus at F = I. It is

physically natural and mathematically advantageous to assume that κ(h) > 0,
and so, we take h ∈ R\[0, 3]. The function Φ measures the resistance of the ma-
terial to shear. The special case of a polytropic fluid arises when Φ is constant
and h/3 = −(γ − 1), where γ > 1 is the adiabatic index. Here, however, we
shall focus on the case where Φ is far from a constant. This will be measured
by the size of a parameter β which is proportional to the shear modulus. For
example, an admissible choice would be

W (Σ(F )) = 1 + c1
(
1
3 tr Σ(F ) − 1

)
+ c2

(
1
3 tr cof Σ(F ) − 1

)
, (1.1)

with c1, c2 > 0. This function satisfies

W (Σ(F )) − 1 ∼ β|Σ(F ) − I|2, β ≡ c1 + c2 > 0,

in a neighborhood of Σ(F ) = I. More generally, higher-order terms of the form
O (

β|Σ(F ) − I|3) may be included. We will return to this example in Sect. 11.
Little is known about the long-time behavior of solutions to the initial

free boundary value problem in elastodynamics. In order to gain some insight
into the possible behavior, we shall investigate the restricted class of sepa-
rable motions, the existence of which is dependent upon the scale invariance
hypothesis mentioned above. We shall call a motion separable if its material
description has the form:

x(t, y) = a(t)ϕ(y),

in which a : [0, τ) → R+ is a scalar function and ϕ : B → R
3 is a time-

independent deformation of the reference domain B ⊂ R
3. Separable motions

are self-similar in spatial coordinates. In order to have nonconstant shear Φ,
the function a(t) must be a scalar. This contrasts with the case of polytropic
fluids where there exist affine motions with a(t) taking values in GL+(3,R).

Under the separability assumption, the spatial configuration of the body
evolves by simple dilation, whereby the scalar a(t) controls the diameter. The
equations of motion split into an ordinary differential equation for the scalar
a(t) and an eigenvalue problem for a nonlinear partial differential equation
involving the deformation ϕ(y). The evolution of a(t) depends on the sign of
the residual pressure, which turns out to be − sgn h. When h < 0, the body
continuously expands for all time with a(t) ∼ t, as t → ∞. On the other hand,
when h > 3, we have a(t) → 0, as t → τ < ∞, so that the body collapses to a
point in finite time.

The main effort, then, will be devoted to solving the nonlinear eigenvalue
problem for the deformation ϕ in C2. This will be carried out under the as-
sumption of spherical symmetry, consistent with the objectivity and isotropy
of W , whence the PDE for ϕ reduces to an ODE. For spherically symmetric
bodies, the boundary surface force is a pressure, and the nonlinear vacuum
(traction) boundary condition requires that the pressure vanishes on ∂B. The
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vacuum boundary condition shall be fulfilled with the material in a nongaseous
phase, i.e. with strictly positive density on ∂B. This also contrasts with the
results on affine compressible fluid motion where the vacuum boundary con-
dition holds in a gaseous phase, i.e., both pressure and density vanish on the
boundary.

The existence of a family of spherically symmetric eigenfunctions {ϕμ}
close to the identity deformation with eigenvalue |μ| � 1 will be established
in Sect. 9 by a perturbative fixed point argument, for every value of the elastic
moduli κ(h) > 0 and β > 0. The behavior of W (Σ(F )) restricted to the set of
spherically symmetric deformation gradients plays a decisive role, see Sect. 8. If
β is sufficiently large, then there exists an eigenvalue for which the eigenfunc-
tion satisfies the nongaseous vacuum boundary condition. The positivity of the
shear parameter β rules out the hydrodynamical case. A detailed statemen-
t of the existence results for expanding and collapsing spherically symmetric
separable motion follows in Sect. 10.

In the final section, we aim to persuade the reader that the assumption-
s imposed on the strain energy function are physically plausible. We show
that any self-consistent choice for the values of W (Σ(F )), restricted to the
spherically symmetric deformation gradients, can be extended to all deforma-
tion gradients, and we also show that the assumptions are consistent with the
Baker–Ericksen condition [2].

Related Literature

The equations of motion for nonlinear elastodynamics with a vacuum bound-
ary condition are locally well-posed in Sobolev spaces under appropriate co-
ercivity conditions, see for example [16,21,22,25]. Local well-posedness for
compressible fluids was examined with a liquid boundary condition in [6,17]
and with a vacuum boundary condition in [7,15], respectively. Affine motion
for compressible hydrodynamical models has been studied extensively, see, for
example, [1,9,14,20], but without explicit discussion of boundary conditions.
Global in time expanding affine motions for compressible ideal fluids satisfy-
ing the gaseous vacuum boundary conditions were constructed and analyzed
in [24].

For self-gravitating polytropic fluids in the mass critical case, γ = 4/3
(i.e., h = −1), spherically symmetric self-similar collapsing solutions satisfying
the gaseous vacuum boundary condition were first studied numerically in [11]
and later constructed rigorously in [8,10,18]. In the mass supercritical case,
1 < γ < 4/3, the existence of spherically symmetric collapsing solutions with
continuous mass absorption at the origin was established in [12].

An interesting recent article [4] considers the separable (the term ho-
mologous is used instead) motion of self-gravitating elastic balls in the mass
critical case h = −1. Expanding solutions are constructed with a solid vacuum
boundary condition, and collapsing solutions with a gaseous vacuum boundary
condition are predicted on the basis of numerical simulations.



3532 T. C. Sideris Ann. Henri Poincaré

We emphasize that the present work neglects self-gravitation and external
forces. The sign of the residual pressure alone determines whether the body
collapses or expands.

2. Notation and Basic Assumptions

We denote by M
3 the set of 3 × 3 matrices over R with the Euclidean inner

product

〈A,B〉 = trAB�.

We define the groups

GL+(3,R) = {F ∈ M
3 : det F > 0}

SL(3,R) = {V ∈ GL+(3,R) : det V = 1}
SO(3,R) = {U ∈ SL(3,R) : U−1 = U�}.

Let

W : GL+(3,R) → [0,∞) (2.1a)

be a smooth strain energy function. We shall assume that W is objective:

W (F ) = W (UF ), for all F ∈ GL+(3,R), U ∈ SO(3,R), (2.1b)

and isotropic:

W (F ) = W (FU), for all F ∈ GL+(3,R), U ∈ SO(3,R). (2.1c)

Conditions (2.1a), (2.1b), (2.1c) allow for spherically symmetric motion. Final-
ly, we assume that W is scale-invariant, that is, it is homogeneous1 of degree
h in F for some h ∈ R:

W (σF ) = σhW (F ), for all F ∈ GL+(3,R), σ ∈ R+. (2.1d)

Homogeneity of W in F is necessary in order to obtain separable motions.
Since W (I) = σ−hW (σI), σ > 0, and since we expect on physical grounds
that W (σI) > 0, for σ �= 1, we assume that W (I) = 1.

Using the polar decomposition, it follows from objectivity (2.1b) that

W (F ) = W
(
(FF�)1/2

)
, F ∈ GL+(3,R).

The positive-definite symmetric matrix A(F ) = (FF�)1/2 is called the left
stretch tensor, and its eigenvalues are the principal stretches.

With the additional assumption of homogeneity (2.1d), we have

W (F ) = (det F )h/3W (Σ(F )), for all F ∈ GL+(3,R), (2.2)

where

Σ(F ) = (detF )−1/3(FF�)1/2 = det A(F )−1/3A(F )

1Use of the term homogeneous here should not be confused with the distinct notion of a
homogeneous material which in continuum mechanics refers to the independence of the strain
energy function with respect to the material coordinates in some reference configuration.
This has been tacitly assumed in (2.1a).
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is called the shear strain tensor. Note that Σ(F ) ∈ SL(3,R). The term W (Σ(F ))
measures the response of the material to shear.

If W is isotropic (2.1c), then W (Σ(F )) must be a function of the principal
invariants of Σ(F ) (see for example [19, Section 4.3.4]). Since Σ(F ) ∈ SL(3,R),
the nontrivial invariants are

H1(Σ(F )) = 1
3 tr Σ(F )

H2(Σ(F )) = 1
3 tr cof Σ(F ),

(2.3a)

with the normalizing factor of 1/3 included so that Hi(I) = 1, i = 1, 2. Thus,
under assumptions (2.1a), (2.1b), (2.1c), (2.1d), the strain energy function
takes the form:

W (F ) = (det F )h/3Φ(H1(Σ(F )),H2(Σ(F ))), (2.3b)

for some function

Φ : R2
+ → [0,∞), with Φ(1, 1) = W (I) = 1. (2.3c)

Note that detF and the invariants of Σ(F ) depend smoothly on F (see
[13], Section 3). Therefore, if Φ is Ck, then (2.3a), (2.3b), (2.3c) defines a Ck

function W (F ) satisfying (2.1a), (2.1b), (2.1c), (2.1d).
Associated with W , we define its (first) Piola–Kirchhoff stress

S : GL+(3,R) → M
3, S(F ) =

∂W

∂F
(F ) (2.4a)

and Cauchy stress

T : GL+(3,R) → M
3, T (F ) = (det F )−1S(F )F�. (2.4b)

If W satisfies (2.1d), then by differentiation with respect to F we find

S(σF ) = σh−1S(F ), for all F ∈ GL+(3,R), σ ∈ R+. (2.4c)

3. Equations of Motion for Separable Solutions

We shall be concerned with the problem of constructing certain smooth mo-
tions of an elastic body whose reference configuration B is the unit sphere

B = {y ∈ R
3 : |y| < 1}.

A motion is a time-dependent family of orientation-preserving deformations
x(t, y)

x : [0, τ) × B → R
3,

with

Dyx : [0, τ) × B → GL+(3,R).

The image, Ωt, of B under the deformation x(t, ·) represents the spatial con-
figuration of an elastic body at time t. The spatial description of the body can
be given in terms of the velocity vector u(t, x) = Dtx(t, y(t, x)) and density
	(t, x) = 	̄/det Dyx(t, y(t, x)) where y(t, ·) = x−1(t, ·) is the reference map
taking the spatial domain Ωt back to the material domain B and 	̄ > 0 is the
constant reference density.
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The governing equations of elastodynamics, in the absence of external
forces, can be written in the form:

	̄D2
t x − Dy · S(Dyx) = 0, in [0, τ) × B, (3.1a)

subject to the nonlinear vacuum boundary condition

S(Dyx(t, y)) ω = 0, on [0, τ) × ∂B, (3.1b)

where ω = y/|y| is the normal at y ∈ ∂B. The initial conditions

x(0, y), Dtx(0, y), y ∈ B
are also prescribed. Local well-posedness for this system was studied in [16,
21,22,25].

Remark. In the case of polytropic fluids,

W (F ) = (detF )h/3 = (det F )−(γ−1), γ > 1,

the Cauchy stress is

T (F ) = −(det F )−γI.

The vacuum boundary condition can only be fulfilled with vanishing density,
i.e., (det F )−1 = 0 on ∂B. In the sequel, we shall solely consider the case of
nonvanishing density on ∂B, in order that F ∈ GL+(3,R) on B.

We shall now impose the major restriction of separability, namely that
the motion can be written in the form

x(t, y) = a(t)ϕ(y), (3.2)

for some scalar function

a : [0, τ) → R+

and a time-independent orientation-preserving deformation

ϕ : B → R
3 with Dyϕ : B → GL+(3,R).

Thus, the spatial configuration of an elastic body under a separable motion
evolves by dilation, Ωt = {x = a(t)y : y ∈ B}.

In spatial coordinates, the reference map, velocity, and density of a sep-
arable motion are self-similar:

y(t, x) = ϕ−1
(
a(t)−1x

)
,

u(t, x) = ȧ(t)ϕ(y(t, x)) = ȧ(t)a(t)−1x,

	(t, x) = 	̄/det[a(t)Dyϕ(y(t, x))]

= a(t)−3	̄det Dxϕ−1
(
a(t)−1x

)
,

for x ∈ Ωt. We shall, however, continue to work in material coordinates.
Henceforth, we take 	̄ = 1.
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Lemma 3.1. Let h, μ ∈ R. Assume that W satisfies (2.1a), (2.1d), and let S be
defined by (2.4a).

Suppose that a ∈ C2 ([0, τ)) is a positive solution of:

ä(t) = μa(t)h−1, on [0, τ). (3.3)

Suppose that ϕ ∈ C2(B,R3)∩C1(B,R3) is an orientation-preserving deforma-
tion which solves

Dy · S(Dyϕ(y)) = μϕ(y), in B (3.4a)

and satisfies the boundary condition

S(Dyϕ(y))ω = 0, on ∂B. (3.4b)

Then,

x(t, y) = a(t)ϕ(y), (t, y) ∈ [0, τ) × B
is a motion satisfying the elasticity system (3.1a), (3.1b), with 	̄ = 1.

In addition, ϕ satisfies

μ

∫

B
|ϕ(y)|2dy = −h

∫

B
W (Dϕ(y))dy,

and −hμ ≥ 0.

Proof. Since a is assumed to be positive and ϕ is assumed to be a deformation,
x(t, y), as defined, is a motion.

By (2.4c), (3.3), (3.4a), the motion x satisfies the system (3.1a):

D2
t x(t, y) = ä(t)ϕ(y)

= μa(t)h−1ϕ(y) = a(t)h−1Dy · S(Dyϕ(y))
= Dy · S(a(t)Dyϕ(y)) = Dy · S(Dyx(t, y)).

The boundary condition (3.1b) is similarly verified using (3.4b) and the
homogeneity of S in F :

S(Dyx(t, y))ω = S(a(t)Dyϕ(y))ω = a(t)h−1S(Dyϕ(y))ω = 0.

Finally, by (2.1d),

hW (F ) = d
dσ σhW (F )

∣
∣
σ=1

= d
dσ W (σF )

∣
∣
σ=1

= 〈S(F ), F 〉,
for all F ∈ GL+(3,R). So, any solution of (3.4a), (3.4b) with Dϕ ∈ GL+(3,R)
satisfies

μ

∫

B
|ϕ(y)|2dy =

∫

B
〈D · S(Dϕ(y)), ϕ(y)〉dy

= −
∫

B
〈S(Dϕ(y)),Dϕ(y)〉dy

= − h
∫

B
W (Dϕ(y))dy.

�
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Remark. The PDE (3.4a) is the Euler–Lagrange equation associated with the
action ∫

B

(
W (Dyϕ) + μ

2 |ϕ|2) dy. (3.5)

We shall consider the initial value problem for (3.3) in the next sec-
tion. Sections 5–9 will be devoted to the solution of eigenvalue problem (3.4a),
(3.4b).

4. Dynamical Behavior

Lemma 4.1. If a(t) is a C2 positive solution of (3.3) with h �= 0, then the
quantity

E(t) = 1
2 ȧ(t)2 − μ

h a(t)h (4.1)

is conserved.
If h < 0 and μ > 0, then for every (a(0), ȧ(0)) ∈ R+ ×R, the initial value

problem for (3.3) has a positive solution a ∈ C2 ([0,∞)) with 0 < (2E(0))1/2 −
a(t)/t → 0, as t → ∞.

If ./ and μ < 0, then for every (a(0), ȧ(0)) ∈ R+ × R, the initial value
problem for (3.3) has a positive solution a ∈ C2 ([0, τ)), with τ < ∞ and
a(t) → 0, as t → τ .

Proof. If (a(0), ȧ(0)) ∈ R+ × R, then the initial value problem for (3.3) has
a C2 positive solution on a maximal interval [0, τ). If τ < ∞, then either
a(t) → 0 or a(t) → ∞, as t → τ .

Conservation of E(t) on the interval [0, τ) follows directly from (3.3).
Assume that h < 0 and μ > 0. Then by (4.1), a(t)−1 and |ȧ(t)| are

bounded above by some constant C0 on [0, τ). This implies that C−1
0 ≤ a(t) ≤

a(0) + C0t, on [0, τ). It follows that τ = +∞.
Let X(t) = 1

2a(t)2. Then

Ẍ(t) = ȧ(t)2 + μa(t)h .

From (4.1), we obtain

mE(0) ≤ Ẍ(t) ≤ ME(0), (4.2a)

in which

m = min{2,−h} and M = max{2,−h}.

This leads to the bounds

mE(0)t ≤ Ẋ(t) − Ẋ(0) ≤ ME(0)t (4.2b)

and

mE(0)t2 ≤ X(t) − Ẋ(0)t − X(0) ≤ ME(0)t2. (4.2c)

By (4.2b), we see that

ȧ(t) = Ẋ(t)/a(t) > 0, for t > −Ẋ(0)/(mE(0)),
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and by (4.2c), we deduce that

a(t) = (2X(t))1/2 ∼ t, as t → ∞.

With these facts, E(t) = E(0) implies that

0 < (2E(0))1/2 − ȧ(t) → 0, as t → ∞,

from which follows the asymptotic statement.
Now assume that h > 1 and μ < 0. Let

¯
a = inf{a(t) : t ∈ [0, τ)}. Since

μ < 0, (3.3) implies that

ä(t) = μa(t)h−1(t) ≤ μ
¯
ah−1 on [0, τ),

and so we obtain

0 ≤ a(t) ≤ a(t0) + ȧ(t0)(t − t0) + 1
2μ

¯
ah−1(t − t0)2, (4.3)

for all 0 ≤ t0 ≤ t < τ . If
¯
a > 0, then, since μ < 0, it follows from (4.3)

that τ < ∞. On the other hand, if
¯
a = 0, then since a(0) > 0, there exists

a t0 ∈ [0, τ) such that ȧ(t0) < 0, whence from (4.3) again there holds τ <
∞. �

Remark. When h > 1 and μ < 0, the time of collapse is given by

τ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫ a(0)

0

[2(E(0) + μ
h sh)]−1/2ds, if ȧ(0) ≤ 0

(∫ a(ȧ−1(0))

0

+
∫ a(ȧ−1(0))

a(0)

)
[
2
(
E(0) + μ

h sh
)]−1/2

ds, if ȧ(0) > 0.

Remark. In Lemma 4.1, we have only discussed the qualitative behavior of
solutions to equation (3.3) for the parameter range −hμ > 0 from Lemma 3.1
in which we can construct separable solutions to (3.1a), (3.1b).

5. Spherically Symmetric Deformations

Lemma 5.1. If

φ ∈ C2 ([0, 1]) , φ(0) = φ′′(0) = 0, and φ′ > 0 on [0, 1], (5.1)

then

ϕ(y) = φ(r)ω, r = |y|, ω = y/|y|
defines an orientation-preserving deformation ϕ ∈ C2(B,R3).

The function

λ(r) = (λ1(r), λ2(r)) = (φ′(r), φ(r)/r)

belongs to C1([0, 1],R2
+), positivity holds: λ1(r), λ2(r) > 0 on [0, 1], and λ(0) =

(φ′(0), φ′(0)).
The deformation gradient of ϕ, Dyϕ : B → GL+(3,R), is given by:

Dyϕ(y) = F (λ(r), ω), r = |y|, ω = y/|y|, (5.2a)
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with

F (λ, ω) = λ1P1(ω) + λ2P2(ω), λ ∈ R
2
+, ω ∈ S2, (5.2b)

and

P1(ω) = ω ⊗ ω, P2(ω) = I − P1(ω). (5.2c)

Proof. By writing

φ(r) =
∫ 1

0

Ds (φ(sr)) ds = r

∫ 1

0

φ′(sr)ds,

we see that the function

λ2(r) = φ(r)/r =
∫ 1

0

φ′(sr)ds

is strictly positive and C1 on (0, 1] with

λ2(r) → φ′(0) > 0, λ′
2(r) =

∫ 1

0

sφ′′(sr)ds → 1
2φ′′(0) = 0, as r → 0.

Thus, λ2(r) extends to a strictly positive function in C1([0, 1]). It follows that
the function

χ(r) = φ′(r) − φ(r)/r = λ1(r) − λ2(r)

belongs to C1([0, 1]), and χ(0) = χ′(0) = 0.
Clearly, ϕ ∈ C2(B \ {0}), so to prove that ϕ ∈ C2(B), we need only show

that the derivatives up to second order extend continuously to the origin.
The formula (5.2a) for Dyϕ(y) is easily verified for y �= 0, and it is

equivalent to

Dyϕ(y) = χ(r)P1(ω) + λ2(r)I. (5.3a)

This implies that

Dyϕ(y) → φ′(0)I, as y → 0,

and so ϕ ∈ C1(B).
From the formula (5.2a), we also see that Dyϕ(y) has the eigenspaces

span{ω} and span{ω}⊥, with strictly positive eigenvalues λ1(r), λ2(r), λ2(r).
Thus,

det Dyϕ(y) = λ1(r)λ2(r)2, for all y ∈ B,

which shows that Dyϕ : B → GL+(3,R). Since φ′ > 0, we see that ϕ is
a bijection of B onto its range. So we conclude that ϕ is a C1 orientation-
preserving deformation on B.

It remains to show that Dyϕ ∈ C1(B). For y �= 0, we find from (5.3a)
that

DjDkϕi(y) = (χ′(r) − 2χ(r)/r)ωiωjωk

+(χ(r)/r) (δijωk + δikωj + δjkωi) . (5.3b)



Vol. 25 (2024) Expansion and Collapse of Elastic Bodies 3539

Since χ(0) = χ′(0) = 0, we have that χ′(r), χ(r)/r → χ′(0) = 0, as r → 0.
Thus, we see that the second derivatives of ϕ extend to continuous functions
on B which vanish at the origin. �

A deformation of the form ϕ(y) = φ(r)ω is said to be spherically sym-
metric. From now on, we focus exclusively upon C2 spherically symmetric
orientation-preserving deformations of the reference domain B where φ satis-
fies (5.1).

Remark. The spatial configuration of a body at time t under a spherically
symmetric separable motion x(t, y) = a(t)φ(r)ω, defined on [0, τ) × B, is a
sphere of radius a(t)φ(1).

The next result summarizes the properties of the gradient of a spherically
symmetric deformation.

Lemma 5.2. The matrix F (λ, ω) defined in (5.2b), (5.2c) satisfies

• the eigenspaces of F (λ, ω) are span{ω} and span{ω}⊥,s
• the eigenvalues of F (λ, ω) are λ1, λ2, λ2,
• det F (λ, ω) = λ1λ

2
2,

• F : R2
+ × S2 → GL+(3,R),

• F (λ, ω) is positive-definite symmetric, and
• F (λ, ω) =

(
F (λ, ω)F (λ, ω)�)1/2 = A(F (λ, ω)).

6. Spherically Symmetric Strain Energy and Stress

Lemma 6.1. Let W be a strain energy function satisfying (2.1a), (2.1b), (2.1c).
If F (λ, ω) is given by (5.2b), (5.2c), then W ◦ F (λ, ω) is independent of ω.

Proof. Fix a vector ω0 ∈ S2. For an arbitrary vector ω ∈ S2, choose U ∈
SO(3,R) such that ω = Uω0. Then

F (λ, ω) = F (λ,Uω0) = λ1P1(Uω0) + λ2P2(Uω0) = UF (λ, ω0)U�.

From (2.1b) and (2.1c), we obtain

W ◦ F (λ, ω) = W ◦ F (λ, ω0),

which is independent of ω. �

Using the result of Lemma 6.1, we may define a C2 function L by

L : R2
+ → [0,∞), L(λ) = W ◦ F (λ, ω). (6.1a)

In other words, L is the restriction of W to the set of spherically symmetric
deformation gradients. By (5.2b), (2.1d), L scales like W :

L(σλ) = W (F (σλ, ω)) = W (σF (λ, ω)) = σhL(λ), σ ∈ R+. (6.1b)

We now obtain expressions for the stresses restricted to the set of spher-
ically symmetric deformation gradients.
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Lemma 6.2. If W satisfies (2.1a), (2.1b), (2.1c), and L is defined by (6.1a),
then the Piola–Kirchhoff stress defined in (2.4a) satisfies

S ◦ F (λ, ω) = L,1(λ)P1(ω) + 1
2L,2(λ)P2(ω), (6.2a)

and the Cauchy stress defined in (2.4b) satisfies

T ◦ F (λ, ω) = (λ1λ
2
2)

−1
[
λ1L,1(λ)P1(ω) + 1

2λ2L,2(λ)P2(ω)
]
. (6.2b)

Proof. Differentiation of (6.1a) with respect to λ yields

L,1(λ) = 〈S ◦ F (λ, ω), P1(ω)〉
L,2(λ) = 〈S ◦ F (λ, ω), P2(ω)〉, (6.3)

where 〈·, ·〉 is the Euclidean product on M
3.

It is a standard fact [19, Theorem 4.2.5] that the Cauchy stress T (F )
associated with an objective and isotropic strain energy function satisfies

T (F ) ∈ span{I,A(F ), A(F )2}.

By Lemma 5.2, we have

A(F (λ, ω)) = F (λ, ω).

Since

F (λ1, λ2, ω)k = F (λk
1 , λ

k
2 , ω) ∈ span{P1(ω), P2(ω)}, k ∈ Z,

we obtain

T ◦ F (λ, ω) ∈ span{P1(ω), P2(ω)}.

By (2.4b), there also holds

S ◦ F (λ, ω) ∈ span{P1(ω), P2(ω)}.

Hence, we may write

S ◦ F (λ, ω) = c1(λ, ω)P1(ω) + c2(λ, ω)P2(ω).

Taking the M
3-inner product with P1(ω) and P2(ω), we have from (6.3)

L,1(λ) = c1(λ, ω) and L,2(λ) = 2c2(λ, ω).

This proves (6.2a), and (6.2b) now follows from (2.4b) and Lemma 5.2. �

Corollary 6.3. Under the assumptions of Lemma 6.2, there holds

L,1(α, α) = 1
2L,2(α, α), for all α > 0. (6.4)

Proof. For any α > 0, the map ϕ(y) = αy = αrω is a smooth spherically
symmetric deformation, and Dyϕ(y) = αI. Since S : GL+(3,R) → M

3 is C1,
the map S(αI) is C1 in α. By (6.2a), we have

S(αI) = L,1(α, α)P1(ω) + 1
2L,2(α, α)P2(ω)

=
(L,1(α, α) − 1

2L,2(α, α)
)
P1(ω) + 1

2L,2(α, α)I

Now P1(ω) is bounded and discontinuous at the origin, so (6.4) must
hold. �
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Corollary 6.4. Under the assumptions of Lemma 6.2, there holds

T (αI) = α−2L,1(α, α)I ≡ −P(α)I.

Proof. This follows directly from Lemma 6.2 and Corollary 6.4. �

We define the residual stress to be S(I) = T (I) = −P(1)I. We shall refer
to P(1) as the residual pressure.

Corollary 6.5. Under the assumptions and notation of Lemmas 5.1 and 6.2,
we have for any spherically symmetric orientation-preserving deformation ϕ

S(Dyϕ(y)) = L,1(λ(r))P1(ω) + 1
2L,2(λ(r))P2(ω) (6.5)

and

T (Dyϕ(y)) =
(
λ1(r)λ2(r)2

)−1

× (λ1(r)L,1(λ(r))P1(ω)

+ 1
2λ2(r)L,2(λ(r))P2(ω)

)
.

7. The Nonlinear Eigenvalue Problem

Lemma 7.1. Suppose that W satisfies (2.1a), (2.1b), (2.1c) and that L is de-
fined by (6.1a).

Let μ ∈ R. If φ satisfies (5.1) and

Dr[L,1(φ′(r), φ(r)/r)]

+ 2
r [L,1(φ′(r), φ(r)/r) − 1

2L,2(φ′(r), φ(r)/r)]
= μφ(r), r ∈ [0, 1) (7.1a)

then ϕ(y) = φ(r)ω is a C2 spherically symmetric orientation-preserving de-
formation on B which solves (3.4a).

If

L,1(φ′(r), φ(r)/r)|r=1 = 0, (7.1b)

then ϕ satisfies the boundary condition (3.4b).

Proof. Set

Λk(r) = L,k(φ′(r), φ(r)/r), k = 1, 2,

so that by (6.5),

S(Dyϕ(y)) =
(
Λ1(r) − 1

2Λ2(r)
)
P1(ω) + 1

2Λ2(r)I.

Then, using the facts Dr = ωjDj , Djωj = 2/r, and Djr = ωj , we have

[Dy·S(Dyϕ(y))]i
=

[
Dy · ((

Λ1(r) − 1
2Λ2(r)

)
P1(ω) + 1

2Λ2(r)I
)]

i

= Dj

( (
Λ1(r) − 1

2Λ2(r)
)
ωiωj + 1

2Λ2(r)δij

)

= Dr

(
Λ1(r) − 1

2Λ2(r)
)
ωi +

(
Λ1(r) − 1

2Λ2(r)
)
ωiDjωj + 1

2DiΛ2(r)
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=
(
Λ′
1(r) + 2

r (Λ1(r) − 1
2Λ2(r))

)
ωi.

Thus, (7.1a) implies that (3.4a) holds.
If y ∈ ∂B, then r = 1, so we have from (6.2a)

S(Dyϕ(y)) ω|y∈∂B = Λ1(1)ω.

So (7.1b) implies (3.4b). �

Remark. The ODE (7.1a) is the Euler–Lagrange equation associated with the
action

4π

∫ 1

0

[L (φ′(r), φ(r)/r) + μ
2φ(r)2

]
r2dr,

which is the action (3.5) restricted to the set of spherically symmetric defor-
mations.

Remark. If L0 : R2
+ → [0,∞) is C2 and

L0
,11(λ) = 0, (λ1 − λ2)L0

,12(λ) + 2L0
,1(λ) − L0

,2(λ) = 0, λ ∈ R
2
+, (7.2)

then (7.1a) is unchanged by replacing L with L + L0. Condition (7.2) holds
provided there exists a pair of C2 functions ni : R+ → R, i = 0, 1, such that

L0(λ) = n1(λ2)λ1 + n0(λ2)

and

−λ2n ′
1(λ2) + 2n1(λ2) − n ′

0(λ2) = 0,

for all λ ∈ R
2
+. If W 0 satisfies (2.1a), (2.1b), (2.1c) and if W 0 is a null La-

grangian, see [3], then L0 = W 0 ◦ F (λ, ω) satisfies (7.2). Thus, we can think
of solutions of (7.2) as being spherically symmetric null Lagrangians.

8. Strain Energy with Scaling Invariance

It is convenient to define the quantities

v = det F (λ, ω) = λ1λ
2
2, u = λ1/λ2, λ ∈ R

2
+, (8.1a)

so that

λ1 = v1/3u2/3, λ2 = v1/3u−1/3, (u, v) ∈ R
2
+. (8.1b)

Note that u = 1 if and only if λ1 = λ2 if and only if F (λ, ω) is a multiple of
the identity if and only if Σ(F (λ, ω)) = I.

Lemma 8.1. If W is a Ck strain energy function satisfying (2.1a), (2.1b),
(2.1c), (2.1d), and L is defined by (6.1a), then there exists a Ck function

f : R+ → [0,∞), with f ′(1) = 0,

such that

L(λ) = vh/3f(u), for all λ ∈ R
2
+. (8.2)
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Proof. Define

f(u) = L(u2/3, u−1/3), u ∈ R+.

Then f is Ck and nonnegative, by (6.1a). It follows from Corollary 6.4 that

f ′(1) = 2
3L,1(1, 1) − 1

3L,2(1, 1) = 0.

By (8.1b) and (6.1b), we have

L(λ) = L(v1/3u2/3, v1/3u−1/3) = vh/3L(u2/3, u−1/3) = vh/3f(u),

so that (8.2) holds. �

A partial converse to Lemma 8.1 will be given in Theorem 11.1. We shall
also show, in Proposition 11.2, that condition (8.2) is physically plausible,
insofar as it is consistent with the Baker–Ericksen inequality, when f is convex.

Remark. We have by (2.2)

W (Σ(F (λ, ω))) = detF (λ, ω)−h/3W (F (λ, ω)) = f(u). (8.3)

That is, f is the restriction of W (Σ(F )) to the spherically symmetric defor-
mation gradients.

Remark. In the polytropic fluid case, W (F ) = (detF )−(γ−1), we see that
f(u) = 1.

Next, we explore the implications of (8.2) for the equation (7.1a).

Lemma 8.2. Suppose that W is a C3 strain energy function which satisfies
(2.1a), (2.1b), (2.1c), (2.1d) and that L is defined by (6.1a). By Lemma 8.1,
there is a C3 function

f : R+ → [0,∞), with f ′(1) = 0,

such that

L(λ) = vh/3f(u), for all λ ∈ R
2
+.

Define the C1 functions

U1(u) = κ(h)f(u) + 2h
3 uf ′(u) + u2f ′′(u),

U2(u) = 2κ(h)uf(u) + ( h
3 − 1)u2f ′(u)

+ (2u2 + u3)
f ′(u)
u − 1

− u3f ′′(u),

(8.4a)

in which

κ(h) = h
3

(
h
3 − 1

)
. (8.4b)

Suppose that φ satisfies (5.1) and define the positive functions

λ(r) = (λ1(r), λ2(r)) = (φ′(r), φ(r)/r), (8.4c)

and

v(r) = λ1(r)λ2(r)2, u(r) = λ1(r)/λ2(r). (8.4d)
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If φ solves the equation

U1(u(r))φ′′(r) + U2(u(r))
1
r

(φ′(r) − φ(r)/r)

= μ r v(r)−h/3+1u(r), r ∈ [0, 1) (8.5a)

and the boundary condition

g(u(1)) = 0, with g(u) ≡ h
3f(u) + uf ′(u), (8.5b)

then it also solves (7.1a), (7.1b) and ϕ(y) = φ(r)ω is a C2 spherically sym-
metric orientation-preserving deformation which solves (3.4a), (3.4b).

Proof. Carrying out the differentiation in (7.1a), we may write

L,11(λ(r)) φ′′(r) + L,12(λ(r)) 1
r (φ′(r) − φ(r)/r)

+ 2
r [L,1(λ(r)) − 1

2L,2(λ(r))] = μφ(r).

Since

φ(r) = rv(r)1/3u(r)−1/3 and φ′(r) − φ(r)/r = v(r)1/3u(r)−1/3(u(r) − 1),

this is equivalent to

L,11(λ(r)) φ′′(r) + L,12(λ(r)) 1
r (φ′(r) − φ(r)/r)

+v(r)−1/3u(r)1/3

[
2L,1(λ(r)) − L,2(λ(r))

u(r) − 1

]
1
r (φ′(r) − φ(r)/r)

= μ r v(r)1/3u(r)−1/3. (8.6)

From (8.1a), we derive

∂λ1 = v,1∂v + u,1∂u = v−1/3u−2/3(v∂v + u∂u)

∂λ2 = v,2∂v + u,2∂u = v−1/3u1/3(2v∂v − u∂u).

Direct computation from (8.2) yields

L,1(λ) = v(h−1)/3u−2/3[ h3f(u) + uf ′(u)]

L,2(λ) = v(h−1)/3u−2/3[2h3 uf(u) − u2f ′(u)]

L,11(λ) = v(h−2)/3u−4/3
[
κ(h)f(u) + 2h

3 uf ′(u) + u2f ′′(u)
]

L,12(λ) = v(h−2)/3u−1/3[2( h
3 )2f(u) + ( h

3 − 1)uf ′(u) − u2f ′′(u)].

(8.7)

Upon substitution of (8.7) relations into (8.6), we obtain (8.5a) after a bit of
simplification.

By (8.7), the boundary condition (7.1b) is equivalent to

v(1)(h−1)/3u(1)−2/3
[
h
3f(u(1)) + u(1)f ′(u(1))

]
= 0,

which reduces to (8.5b).
This shows that the problems (8.5a), (8.5b) and (7.1a), (7.1b) are equiv-

alent. By Lemma 7.1, ϕ(y) = φ(r)ω is a C2 spherically symmetric orientation-
preserving deformation which solves (3.4a), (3.4b). �
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Remark. The quantity κ(h) defined in (8.4b) corresponds to the bulk modulus,
as we shall explain in Lemma 11.3. Materials with a negative bulk modulus are
uncommon, and therefore, it is reasonable physically to assume κ(h) > 0. In the
next lemma, we will also see that positivity of κ(h) relates to the coercivity of
the differential operator in (8.5a), and hence, the hyperbolicity of the equations
of motion.

Remark. When (8.2) holds, we have

− P(α) = α−2L,1(α, α) = (h/3)f(1)αh−3, (8.8)

by Corollary 6.4 and (8.7).

Remark. We shall continue to use the notation (8.4c), (8.4d) below.

We now introduce the class to which function f in (8.2) will belong. For
a > 0, let us denote

U(a) = {|u − 1| ≤ a}.

Given M ≥ 0, define

C(M) = {f ∈ C3(U(1/8)) : f(1) = 1, f ′(1) = 0, f ′′(1) > 0,

‖f ′′′‖∞ ≤ Mf ′′(1)}.

The important parameter f ′′(1) will appear frequently, and for convenience we
shall label it as β(f) = f ′′(1). We shall see in Lemma 11.3 that this parameter
is proportional to the shear modulus. The family {C(M)}M≥0 is increasing
with respect to M . Note that for every B > 0, there exists fB ∈ C(M) with
β(fB) = B, as illustrated by the functions

fB(u) = 1 + 1
2B(u − 1)2, B > 0.

We have discussed the assumption that f(1) = W (I) = 1 in Sect. 2. We have
also seen in Lemma 8.1 that the condition f ′(1) = 0 is necessary. Along with
κ(h), the positivity of β(f) relates to the coercivity condition for (8.5a). The
restriction on the third derivative will enable us to establish estimates for the
coefficients in (8.4a) uniform with respect to β(f) for any f ∈ C(M) in the
following lemma, and this, in turn, will prove essential in establishing existence
of solutions.

Lemma 8.3. Fix h with κ(h) > 0, M ≥ 0, and let f ∈ C(M). Define

δ ≡ min{1/8, 1/(8|h|), 1/(8M)}. (8.9)

Let the functions Ui(u), i = 1, 2, be defined according to (8.4a). Then,

V1(u) = [2U1(u) − U2(u)]U1(u)−1

V2(u) = (κ(h) + β(f)) uU1(u)−1
(8.10a)

are well-defined C1 functions on U(δ) such that

V1(1) = 0, V2(1) = 1, V2(u) > 0, u ∈ U(δ), (8.10b)

and

|V (j)
i (u)| < C0, u ∈ U(δ), i, j = 1, 2, (8.10c)
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for some constant C0 depending only on h and M .
Suppose that φ satisfies (5.1) and u(r) = λ1(r)/λ2(r) = rφ′(r)/φ(r) sat-

isfies

u(r) ∈ U(δ), r ∈ [0, 1]. (8.11a)

Then, Eq. (8.5a) is equivalent to

φ′′(r) +
2
r

(φ′(r) − φ(r)/r) = V1(u(r))
1
r

(φ′(r) − φ(r)/r)

+μ (κ(h) + β(f))−1
r v(r)−h/3+1V2(u(r)), r ∈ [0, 1]. (8.11b)

If |h|/β(f) < δ, then the function g(u) defined in (8.5b) has a unique zero
u0 ∈ U(|h|/β(f)) and sgn(u0 − 1) = − sgn h. If u(1) = u0, then the boundary
condition (8.5b) is satisfied.

Proof. Fix h with κ(h) > 0 and M ≥ 0. Let f ∈ C(M), and recall the notation
β(f) = f ′′(1). It follows from Taylor’s theorem and the definition of C(M) that

|f(u) − 1 − 1
2β(f)(u − 1)2| ≤ 1

6Mβ(f)|u − 1|3,
|f ′(u) − β(f)(u − 1)| ≤ 1

2Mβ(f)|u − 1|2,
|f ′′(u) − β(f)| ≤ Mβ(f)|u − 1|,
|f ′′′(u)| ≤ Mβ(f),

(8.12a)

for u ∈ U(1/8).
Define the continuous function

q(u) =

⎧
⎨

⎩

f ′(u)
u − 1

− β(f), 0 < |u − 1| ≤ 1/8

0, u = 1.

Note that

q ′(u) =

⎧
⎨

⎩

f ′′(u) − β(f)
u − 1

− f ′(u) − β(f)(u − 1)
(u − 1)2

, 0 < |u − 1| ≤ 1/8

1
2f ′′′(1), u = 1

is also continuous, and thus, q is C1 on the interval U(1/8). Moreover, by
(8.12a), we have the inequalities

∣
∣q(u)

∣
∣ ≤ 1

2Mβ(f)|u − 1|,
∣
∣q ′(u)

∣
∣ ≤ 3

2Mβ(f),
(8.12b)

on U(1/8).
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We now restrict our attention to the interval U(δ) ⊂ U(1/8). From
(8.12a), (8.12b), and (8.9), we obtain the estimates

f(u) ≥ 1 + 1
2β(f)(u − 1)2 − 1

6Mβ(f)δ(u − 1)2 > 1,

f ′′(u) ≥ β(f) − Mβ(f)δ ≥ 7
8β(f),

|f(u)| ≤ 1 + 1
2β(f)(u − 1)2 + 1

6Mβ(f)|u − 1|3 ≤ 1 + β(f),

|f ′(u)| ≤ β(f)|u − 1| + 1
2Mβ(f)(u − 1)2 ≤ 2β(f)δ,

|f ′′(u)| ≤ β(f) + Mβ(f)|u − 1| ≤ 9
8β(f),

∣
∣q(u)

∣
∣ ≤ 1

16β(f),

(8.12c)

on the interval U(δ).
From (8.12c), we obtain the coercivity estimate

U1(u) ≥κ(h) + u2f ′′(u) − 2
3 |h||uf ′(u)|

≥κ(h) + (1 − δ)2f ′′(u) − 2
3 |h|(1 + δ)|f ′(u)|

≥κ(h) + (78 )3β(f) − ( 23 )(98 )(2|h|δ)β(f)

≥κ(h) + (78 )3β(f) − 3
16β(f)

≥κ(h) + 1
4β(f),

(8.13a)

on U(δ).
It follows that the functions Vi(u), i = 1, 2 in (8.10a) are well-defined and

C1 on U(δ). Therefore, the ODEs (8.5a) and (8.11a), (8.11b) are equivalent.
By inspection, (8.10b) holds.

Using (8.12a), (8.12b), (8.12c), it is straightforward to verify that the
functions Ui(u), i = 1, 2, defined in (8.4a) satisfy the bounds

|U (j)
i (u)| ≤ C(1 + β(f)), u ∈ U(δ), i, j = 1, 2. (8.13b)

The constant depends on h and M , but not β(f).
With the aid of (8.13a), (8.13b), we can now verify that the estimates

(8.10c) also hold.
Finally, we prove to the statement concerning the function g defined in

(8.5b). Returning to (8.12c), we have

‖g′′‖L∞(U(δ)) =
∥
∥(

h
3 + 2

)
f ′′(u) + uf ′′′(u)

∥
∥

L∞(U(δ))

≤ 9
8 (|h| + 2) β(f) + 9

8Mβ(f) = 9
8β(f) (|h| + 2 + M) .

Application of Taylor’s theorem yields

|g(u) − h/3 − β(f)(u − 1)| = |g(u) − g(1) − g′(1)(u − 1)|
≤ 1

2‖g′′‖L∞(U(δ))(u − 1)2

≤ 9
16β(f) (|h| + 2 + M) δ|u − 1|

≤ 9
16β(f)

(
1
8 + 1

4 + 1
8

) |u − 1|
≤ 1

2β(f)|u − 1|,
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on U(δ), and

|g′(u) − β(f)| = |g′(u) − g′(1)|
≤ ‖g′′‖L∞(U(δ))|u − 1|
≤ 9

8β(f) (|h| + 2 + M) δ

< 3
4β(f),

on U(δ).
From the first of these inequalities, it follows that if |h|/β(f) < δ, then

g(u) > 0, |h|/β(f) < u − 1 < δ,

g(u) < 0, −δ < u − 1 < −|h|/β(f).

Thus, g has a zero u0 ∈ U(|h|/β(f)). It follows from the second inequality,
that g is strictly increasing on U(δ) and since g(1) = h/3, that sgn(u0 − 1) =
− sgn h. �

Remark. The homogeneous solutions of (7.2) are given by:

L0(λ) = c0λ
h
2

(
h
3λ1/λ2 +

(
1 − h

3

))
= c0v

h/3u−h/3 (
h
3u +

(
1 − h

3

))
,

for any c0, h ∈ R. Thus, spherically symmetric null Lagrangians may be homo-
geneous of any degree in F . Null Lagrangians are necessarily homogeneous of
degree h = 1, 2, or 3 in F , see [3]. For example, the classical null Lagrangian
W 0(F ) = det F has h = 3 and L0(λ) = det F (λ, ω) = λ1λ

2
2 = v.

9. Existence of Eigenfunctions

We shall now address the question of existence of solutions to the problem
(8.11b), (8.5b).

Theorem 9.1. Fix h with κ(h) > 0, M ≥ 0, and let f ∈ C(M). There exists a
small constant R > 0 depending only on h and M such that if

|μ|/(κ(h) + β(f)) ≤ R,

then Eq. (8.11b) has a solution φμ ∈ C2([0, 1]) satisfying

φμ(0) = D2
rφμ(0) = 0, Drφ

μ(0) = 1, (9.1a)

as well as the estimates

|φμ(r)/r − 1|, |Drφ
μ(r) − 1|, |uμ(r) − 1| ≤ Rr2, (9.1b)

and

|D2
rφμ(r)| ≤ Rr, (9.1c)

for r ∈ [0, 1].
The map from {μ : |μ|/(κ(h) + β(f)) ≤ R} to C([0, 1]) given by

μ �→ φμ

is continuous.
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If μ > 0, then

λμ
1 (r) = Drφ

μ(r) > λμ
2 (r) = φμ(r)/r > 1, r ∈ (0, 1], (9.2a)

and if μ < 0, then

λμ
1 (r) < λμ

2 (r) < 1, r ∈ (0, 1]. (9.2b)

If β(f) is sufficiently large, then there exists an eigenvalue μ �= 0 with
sgn μ = − sgn h such that the solution φμ satisfies the boundary condition
(8.5b).

Remark. The assumption that Drφ
μ(0) = 1 in (9.1a) does not restrict the

possible initial data of the motion in (3.2).

Proof of Theorem 9.1. In order to handle the apparent singularity at r = 0, it
is convenient to make the ansatz

φ(r) = r + Kζ(r) ≡ r +
∫ r

0

(r − ρ)ρζ(ρ)dρ, with ζ ∈ C([0, 1]). (9.3)

Notice that K is a bounded linear operator from C([0, 1]) into C2([0, 1]). In
fact, it follows from (9.3) that

φ′(r) = λ1(r) = 1 +
∫ r

0

ρζ(ρ)dρ

φ(r)/r = λ2(r) = 1 +
1
r

∫ r

0

(r − ρ)ρζ(ρ)dρ

φ′(r) − φ(r)/r = λ1(r) − λ2(r) =
1
r

∫ r

0

ρ2ζ(ρ)dρ

φ′′(r) = rζ(r).

(9.4a)

In particular, φ(r) = r + Kζ(r) satisfies the conditions (9.1a).
Assume now that (9.3) holds with

ζ ∈ NR = {ζ ∈ C([0, 1]) : ‖ζ‖∞ < R}, R ≤ δ,

where δ = min{1/8, 1/(8|h|), 1/(8M)} was previously defined in (8.9).
Straightforward pointwise estimates for r ∈ [0, 1] yield

|φ(r) − r| ≤ 1
6‖ζ‖∞r3 ≤ 1

6Rr3

|φ′(r) − 1| = |λ1(r) − 1| < 1
2‖ζ‖∞r2 ≤ 1

2Rr2

|φ(r)/r − 1| = |λ2(r) − 1| ≤ 1
6‖ζ‖∞r2 ≤ 1

6Rr2

|λ1(r) − λ2(r)| ≤ 1
3‖ζ‖∞r2 ≤ 1

3Rr2

λ2(r) ≥ 1 − |λ2(r) − 1| ≥ 1 − 1
6Rr2 ≥ 2/3

|u(r) − 1| =
∣
∣λ2(r)−1(λ1(r) − λ2(r))

∣
∣ ≤ 1

2‖ζ‖∞r2 ≤ 1
2Rr2

|v(r) − 1| =
∣
∣λ1(r)λ2(r)2 − 1

∣
∣ ≤ 2‖ζ‖∞r2 ≤ 2Rr2.

(9.4b)

By (9.4b), it follows that (9.1b), (9.1c) hold, and as a consequence (5.1), (8.11a)
also are valid.
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Since ζ ∈ NR is small, we regard φ(r) = r + Kζ(r) as a perturbation of
the identity map. Explicitly, ζ(s) ≡ 0 implies that

φ(r) = r and λ1(r) = λ2(r) = u(r) = v(r) = 1.

Note that φ(r) = r solves (8.11b) with μ = 0.
Making the substitution (9.3) in equation (8.11b) and using (9.4a), we

find that

Lζ(r) = F(ζ, μ)(r), (9.5)

with

Lζ(r) = ζ(r) +
2
r3

∫ r

0

ρ2ζ(ρ)dρ

and

F(ζ, μ)(r) = V1(u(r))
1
r3

∫ r

0

ρ2ζ(ρ)dρ

+μ(κ(h) + β(f))−1v(r)−h/3+1V2(u(r)).

Recall that the functions Vi(u) depend on f ∈ C(M) and satisfy the conditions
(8.10b), (8.10c).

The operator L is an isomorphism on C([0, 1]) with bounded inverse

L−1η(r) = η(r) − 2
r5

∫ r

0

ρ4η(ρ)dρ.

From (9.5), we arrive at the reformulation

ζ(r) = L−1F(ζ, μ)(r). (9.6)

In order to solve (8.11b), (9.1a), it is sufficient to find a solution ζ of (9.6) in
NR, with R ≤ δ.

Let us define

ε = μ(κ(h) + β(f))−1,

since this expression appears repeatedly.
The claim is that for |ε| ≤ R � 1 the map

ζ �→ L−1F(ζ, μ)

is a uniform contraction on NR taking NR into itself.
Assume that

|ε| ≤ R ≤ δ. (9.7)

As a consequence of (8.10b), (8.10c), (9.4b), there exists a constant C1, inde-
pendent of R and β(f), such that

‖F(ζ1, μ) − F(ζ2, μ)‖∞
≤ C1 (R + ε) ‖ζ1 − ζ2‖∞ ≤ 2C1R‖ζ1 − ζ2‖∞, (9.8a)

for all ζ1, ζ2 ∈ NR. By (8.10b), we have F(0, μ)(r) = ε. It follows from (9.8a)
that

‖F(ζ, μ) − ε‖∞ ≤ 2C1R
2, (9.8b)
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for all ζ ∈ NR.
For the contraction estimate, we have from (9.8a)

‖L−1F(ζ1, μ) − L−1F(ζ2, μ)‖∞
≤ ‖L−1‖ 2C1R ‖ζ1 − ζ2‖∞ ≤ (1/10)‖ζ1 − ζ2‖∞, (9.9a)

for all ζ1, ζ2 ∈ NR, provided ‖L−1‖2C1R ≤ 1/10.
Since L−1ε = 3ε/5 for any constant function ε, by (9.8b), (9.7), there

holds

‖L−1F(ζ, μ)‖∞ = ‖L−1(F(ζ, μ) − ε) + 3ε/5‖∞
≤ ‖L−1‖2C1R

2 + 3ε/5 ≤ R/10 + 3R/5 < R,

(9.9b)

for all ζ ∈ NR, provided ‖L−1‖2C1R ≤ 1/10. This shows that the map leaves
NR invariant.

This establishes the claim under the restrictions

R ≤ δ and 2C1‖L−1‖R ≤ 1/10. (9.10)

We emphasize that these restrictions on R do not depend on the value of β(f),
and therefore, the estimates (9.9a), (9.9b) hold for all f ∈ C(M).

By the uniform contraction principle (see [5] Section 2.2, or [23] Section
5.3), the equation (9.6) has a unique solution ζμ ∈ NR ⊂ C([0, 1]), for each
μ = ε(κ(h) + β(f)) such that |ε| ≤ R. Moreover, the map μ �→ ζμ, from
{μ : |ε| < R} to C([0, 1]), is continuous. In particular, ζ0(r) ≡ 0, by uniqueness.

For each such ζμ, we obtain a C2 solution

φμ(r) = r + Kζμ(r), μ = ε(κ(h) + β(f)), |ε| ≤ R,

of (8.11b) which satisfies (9.1a), (9.1b), (9.1c) and depends continuously on
the parameter μ.2

Since, by definition (8.4c),

Drλ
μ
2 (r) =

1
r

(λμ
1 (r) − λμ

2 (r)) , (9.11)

it follows from (8.11b) that

Dr (λμ
1 (r) − λμ

2 (r)) +
3
r

(λμ
1 (r) − λμ

2 (r)) = V1 (uμ(r))
1
r

(λμ
1 (r) − λμ

2 (r))

+μ (κ(h) + β(f))−1
r vμ(r)−h/3+1V2 (uμ(r)) .

This, in turn, may be expressed in the form

DrX μ(r) = Yμ(r)X μ(r) + μZμ(r),

where

X μ(r) = r3 (λμ
1 (r) − λμ

2 (r))

Yμ(r) =
1
r
V1 (uμ(r))

2 The map (μ, f) �→ φµ,f , from the open set {(μ, f) : |ε| < R, f ∈ C(M)} in R× C(M) with
the product topology to C([0, 1]), is continuous.
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Zμ(r) = (κ(h) + β(f))−1
r4 vμ(r)−h/3+1V2 (uμ(r)) .

Note that, by (8.10b), (9.4b), the coefficients Yμ, Zμ are continuous on [0, 1]
and Zμ is strictly positive on (0, 1], by (8.10b). So we can write

X μ(r) = μ

∫ r

0

(
exp

∫ ρ

0

Yμ(s)ds

)
Zμ(ρ)dρ.

We conclude that if μ > 0, then X μ is strictly positive on (0, 1], and then from
(9.11), that Drλ

μ
2 (r) is strictly positive on (0, 1]. Thus, from (9.1a), we have

λμ
1 (r) > λμ

2 (r) > λμ
2 (0) = Drφ

μ(0) = 1, r ∈ (0, 1].

This proves (9.2a), and (9.2b) follows analogously.
For future reference, we also record the fact that

sgn(uμ(1) − 1) = sgnX μ(1) = sgn μ. (9.12)

We shall now show that for all h with κ(h) > 0 and β(f) sufficiently
large, the eigenvalue μ may be chosen so that the boundary condition (8.5b)
is fulfilled.

We continue to assume that R satisfies the conditions (9.10). Define

μ(ε) = ε(κ(h) + β(f)), |ε| ≤ R,

and consider the solution family

{φμ(ε)(r) = r + Kζμ(ε)(r) : |ε| ≤ R}.

The first step will be to establish lower bounds for |uμ(±R)(1) − 1|. Since
ζμ(ε) solves (9.6), we have from (9.8b), (9.10),

‖ζμ(ε) − 3ε/5‖∞ = ‖L−1(F(ζμ(ε), μ(ε)) − ε)‖∞
≤ ‖L−1‖2C1R

2 ≤ R/10.

Letting ε = ±R, this implies that

ζμ(R)(r) ≥ R/2 and ζμ(−R)(r) ≤ −R/2, for r ∈ [0, 1]. (9.13)

From (9.4a), (9.4b), (9.13), we obtain

λ
μ(R)
1 (1) − λ

μ(R)
2 (1) =

∫ 1

0

ρ2ζμ(R)(ρ)dρ ≥ (R/2)(1/3) = R/6

λ
μ(−R)
1 (1) − λ

μ(−R)
2 (1) =

∫ 1

0

ρ2ζμ(−R)(ρ)dρ ≤ −R/6

1 < λ
μ(R)
2 (1) = 1 +

∫ 1

0

(1 − ρ)ρζμ(R)(ρ)dρ ≤ 1 + R/6 < 7/6

1 > λ
μ(−R)
2 (1) = 1 +

∫ 1

0

(1 − ρ)ρζμ(−R)(ρ)dρ ≥ 1 − R/6 > 5/6.
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These estimates combine to show that

uμ(R)(1) − 1 =
λ

μ(R)
1 (1) − λ

μ(R)
2 (1)

λ
μ(R)
2 (1)

≥ R/6
7/6

= R/7

uμ(−R)(1) − 1 =
λ

μ(−R)
1 (1) − λ

μ(−R)
2 (1)

λ
μ(−R)
2 (1)

≤ −R/6
5/6

< −R/7.

(9.14)

Suppose now that f ∈ C(M) with β(f) sufficiently large:

β(f) ≥ 7|h|/R. (9.15)

Then

|h|/β(f) < R ≤ δ,

so that by Lemma 8.3, g has a unique zero u0 ∈ U(|h|/β(f)) ⊂ U(R). By
continuous dependence upon parameters, the function

z(ε) = uμ(ε)(1) − 1

is continuous for |ε| ≤ R. Using (9.14), (9.15), we find that

z(R) > R/7 > |h|/β(f) > u0 − 1 > −|h|/β(f) > −R/7 > z(−R).

So there exists |ε0| < R such that z(ε0) = u0 − 1, and thus,

g(uμ(ε0)(1)) = g(u0) = 0.

By Lemma 8.3 and (9.12), we also have that

− sgn h = sgn(u0 − 1) = sgn(uμ(ε0)(1) − 1) = sgnμ(ε0).

Therefore, we have shown that if the eigenvalue is taken to be μ(ε0) =
ε0(κ(h)+β(f)), then φμ(ε0) satisfies the boundary condition (8.5b) and sgnμ(ε0)
= − sgn h. �

Remark. The boundary condition uμ(ε0)(1) = u0 is equivalent to the linear
and homogeneous Robin boundary condition

Drφ
μ(ε0)(1) = u0φ

μ(ε0)(1).

Corollary 9.2. Fix h with κ(h) > 0 and M ≥ 0. Suppose that W satisfies
(2.1a), (2.1b), (2.1c), (2.1d), and using Lemma 8.1,

W ◦ F (λ, ω) = vh/3f(u), with f ∈ C(M),

for all λ ∈ R
2
+ and ω ∈ S2. Let S be defined by (2.4a).

If β(f) is sufficiently large, then there exists a C2 spherically symmetric
orientation-preserving deformation ϕ : B → R

3 and an eigenvalue μ with
sgn μ = − sgn h satisfying (3.4a), (3.4b).

If h < 0, then ϕ(B) ⊃ B and the principal stretches satisfy λ1(r) >
λ2(r) > 1, r ∈ (0, 1], while when h > 3, the inclusion and inequalities are
reversed.
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Proof. If β(f) is sufficiently large, Theorem 9.1 ensures the existence of an
eigenvalue μ ∈ R, with sgn μ = − sgn h, and an eigenfunction function φ =
φμ ∈ C2([0, 1]) satisfying the hypotheses of Lemma 8.3, the differential equa-
tion (8.11b), and the boundary condition (8.5b). Therefore, φ also solves the
differential equation (8.5a).

By assumption, f(u) is the restriction of an appropriate strain energy
function to the spherically symmetric deformation gradients. Therefore, Lem-
ma 8.2 yields the desired deformation ϕ(y) = φ(r)ω.

Since ϕ(B) is a sphere of radius φ(1) = λ2(1), the final statements follow
from (9.2a), (9.2b). �

Remark. Since we have assumed that the reference density is 	̄ = 1, the density
of the deformed configuration in material coordinates is 	 ◦ ϕ(y) = v(r)−1 =(
λ1(r)λ2(r)2

)−1. If h < 0, we have 	 ◦ ϕ(y) < 1, for r ∈ (0, 1], and if h > 3, we
have 	 ◦ ϕ(y) > 1, for r ∈ (0, 1].

10. Existence of Expanding and Collapsing Bodies

Putting together the results of Lemmas 3.1 and 4.1 with Corollary 9.2 yields
our main result.

Theorem 10.1. Under the assumptions of Corollary 9.2, let ϕ : B → R
3 be the

resulting C2 spherically symmetric orientation-preserving deformation solving
(3.4a), (3.4b) with corresponding eigenvalue μ, such that sgn μ = − sgn h.

Given the eigenvalue μ, let a : [0, τ) → R+ be the C2 solution of the
initial value problem for (3.3) with initial data (a(0), ȧ(0)) ∈ R+ × R, from
Lemma 4.1.

Then by Lemma 3.1, x(t, y) = a(t)ϕ(y) is a motion in C2([0, τ) × B)
satisfying (3.1a), (3.1b). Under this motion, the spatial configuration of the
elastic body at time t is a sphere Ωt of radius a(t)φ(1).

If h < 0, then the lifespan of the solution satisfies τ = +∞ and 0 <
(2E(0))1/2 − a(t)/t → 0, as t → ∞, where E(0) = 1

2 ȧ(0)2 − μ
h a(0)h .

If h > 3, then τ < ∞ and a(t) → 0, as t → τ .

Remark. By (8.8), the sign of the residual pressure P(1) = −h/3 determines
whether the body expands or collapses.

11. Constitutive Theory

The next result is a partial converse to Lemma 8.1.

Theorem 11.1. If f : R+ → R+ is smooth, with f ′(1) = 0, then there exists
a C2 strain energy function W satisfying (2.1a), (2.1b), (2.1c), (2.1d), such
that (8.2) holds.

Remark. Note that f is required to be strictly positive and sufficiently differ-
entiable.
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Proof of Theorem 11.1. The construction is motivated by (2.3b), (2.3c).
Recall from Lemma 5.2 that F (λ, ω) = A(F (λ, ω)) is positive definite

and symmetric with eigenvalues λ1, λ2, λ2. So from (2.3a), (8.1b), we have

det(F (λ, ω)) = λ1λ
2
2 = v, (11.1a)

H1(Σ(F (λ, ω))) = 1
3 tr Σ(F (λ, ω))

= 1
3 det(F (λ, ω))−1/3 tr F (λ, ω)

= 1
3 (λ1λ

2
2)

−1/3(λ1 + 2λ2)

= 1
3 (u2/3 + 2u−1/3)

≡ h1(u),

(11.1b)

and since Σ(F (λ, ω)) ∈ SL(3,R),

H2(Σ(F (λ, ω))) = 1
3 tr cof Σ(F (λ, ω))

= 1
3 tr Σ(F (λ, ω))−1

= 1
3 det(F (λ, ω))1/3 tr F (λ, ω)−1

= 1
3 (λ1λ

2
2)

1/3(λ−1
1 + 2λ−1

2 )

= 1
3 (u−2/3 + 2u1/3)

≡ h2(u).

(11.1c)

It is enough to find a C2 function Φ : R2
+ → R+ such that

Φ(h1(u), h2(u)) = f(u), u ∈ R+, (11.2)

for then, by (11.1a), (11.1b), (11.1c), the function

W (F ) = (detF )h/3Φ(H1(Σ(F )),H2(Σ(F )))

automatically satisfies the requirements (2.1a), (2.1b), (2.1c), (2.1d), (8.2).
The construction of Φ is not entirely routine because the curve

H = {(h1(u), h2(u))) : u ∈ R+} (11.3)

has a cusp at u = 1, as shown in Fig. 1.
Equivalently, (11.2) will be proven if we can find a C2 function Φ̃ : R2

+ →
R+ such that

Φ̃(�1(u), �2(u)) = f(u), u ∈ R+,

where

�1(u) = h1(u) − 1, �2(u) = h1(u) − h2(u),

because we can then simply take

Φ(x1, x2) = Φ̃ (x1 − 1, x1 − x2) , x ∈ R
2.

Observe that �1, �2 ∈ C∞(R+) and

�1(1) = �′
1(1) = 0, �′′

1(1) > 0,

�2(1) = �′
2(1) = �′′

2(1) = 0, �′′′
2 (1) > 0,

(11.4a)



3556 T. C. Sideris Ann. Henri Poincaré

so that

|�(k)2 (u)| ∼ |u − 1|3−k, k = 0, 1, 2, |u − 1| � 1. (11.4b)

The function �2 : R+ → R is a homeomorphism, and it can be written
as:

�2(u) = �̂2(u)(u − 1)3, (11.4c)

where �̂2 is a smooth positive function.
Let ξ = �−1

2 . Then by (11.4b),

|w| = |�2 ◦ ξ(w)| ∼ |ξ(w) − 1|3, |w| � 1,

and so

|ξ(w) − 1| ∼ |w|1/3, |w| � 1. (11.5a)

Now ξ ∈ C2(R \ {0}), and for w �= 0, we have

ξ′(w) = 1/�′
2 ◦ ξ(w), ξ′′(w) = −�′′

2 ◦ ξ(w)/ (�′
2 ◦ ξ(w))3 .

Thus, for 0 < |w| � 1, we obtain from (11.4b), (11.5a),

|ξ′(w)| ∼ |ξ(w) − 1|−2 ∼ |w|−2/3,

|ξ′′(w)| ∼ |ξ(w) − 1|−5 ∼ |w|−5/3.
(11.5b)

For u ∈ R+, define the smooth function

g(u) = f(u) − f(1) − g1�1(u) − g2�2(u) − g3�1(u)2 − g4�1(u)�2(u),

with {gk}4k=1 to be determined. Using the hypothesis f ′(1) = 0 and (11.4a),
we derive

g(1) = 0

g′(1) = 0

g(2)(1) = f (2)(1) − g1�
(2)
1 (1)

g(3)(1) = f (3)(1) − g1�
(3)
1 (1) − g2�

(3)
2 (1)

g(4)(1) = f (4)(1) − g1�
(4)
1 (1) − g2�

(4)
2 (1) − 6g3�

(2)
1 (1)2

g(5)(1) = f (5)(1) − g1�
(5)
1 (1) − g2�

(5)
2 (1) − 20g3�

(2)
1 (1)�(3)1 (1)

− 10g4�
(2)
1 (1)�(3)2 (1).

The system g(k)(1) = 0, k = 2, . . . , 5 is diagonal, and since �
(2)
1 (1), �(3)2 (1) �= 0,

there exist unique values {gk}4k=1 such that

g(k)(1) = 0, k = 0, . . . , 5.

Now g is smooth, so there exists G ∈ C2(R+) such that

g(u) = (u − 1)6G(u).

By (11.4c), we may write

g(u) = �2(u)2�̂2(u)−2G(u) ≡ �2(u)2Ĝ(u),



Vol. 25 (2024) Expansion and Collapse of Elastic Bodies 3557

with Ĝ = (�̂2)−2 · G ∈ C2(R+). This, in turn, may be expressed as:

g(u) = G̃ ◦ �2(u), with G̃(w) = w2Ĝ ◦ ξ(w), w ∈ R.

Although ξ is not differentiable at w = 0, it follows from (11.5a), (11.5b) that
G̃ ∈ C2(R).

For x ∈ R
2, define

Φ̃(x) = f(1) + g1x1 + g2x2 + g3x
2
1 + g4x1x2 + G̃(x2).

Then Φ̃ is in C2 and Φ̃(�1(u), �2(u)) = f(u), as desired.
Since f > 0, by assumption, the resulting function Φ is positive in a

neighborhood of the curve H, and it can modified away from H, if necessary,
to ensure positivity on its entire domain without changing its values along the
curve H. �
Example

Going back to the example (1.1) given in the Introduction, we have using
(2.3a) that W (Σ(F )) = Φ(H1(Σ(F )),H2(Σ(F ))), with

Φ(x1, x2) = 1 + c1(x1 − 1) + c2(x2 − 1)

= 1 + (c1 + c2)(x1 − 1) − c2(x1 − x2), c1, c2 > 0.

Thus, using (8.3) and the notation of the previous proof, we find

f(u) = Φ(H1(Σ(F )),H2(Σ(F )))
∣
∣
∣
F=F (λ,ω)

= 1 + (c1 + c2)(h1(u) − 1) − c2(h1(u) − h2(u))

= 1 + (c1 + c2)�1(u) − c2�2(u).

By (11.4a), we have β(f) = (c1+c2)�′′
1(1) > 0, and f ∈ C(M), for all c1, c2 > 0,

with M = �′′
1(1)−1(‖�′′′

1 ‖∞ +‖�′′′
2 ‖∞). It follows that example (1.1) satisfies the

hypotheses of Theorem 10.1 for all c1, c2 > 0, with c1 + c2 sufficiently large.
For positive-definite and symmetric matrices Σ ∈ SL(3,R), we find by

the consideration of eigenvalues that

H1(Σ) − 1 ∼ |Σ − I|2 and |H1(Σ) − H2(Σ)| ≤ C|Σ − I|3,
in a neighborhood of Σ = 1. Thus, W (Σ(F ))−1 has a relative minimum when
Σ(F ) = I, i.e. when F = σU for some σ > 0 and U ∈ SO(3,R).

More generally, we could take

Φ(x1, x2) = 1 + (c1 + c2)(x1 − 1) − c2(x1 − x2)G(x1, x2), c1, c2 > 0.

If G : R2
+ → R is any smooth function with ‖G(�1, �2)‖C3 uniformly bounded

independent of c1, c2, then there exists an M > 0, such that f(u) ∈ C(M), for
all c1, c2 > 0.

Remark. The range of the map F �→ (H1(Σ(F )),H2(Σ(F ))) from the domain
GL+(3,R) into R

2
+ is given by:

R = {(x1, x2) ∈ R
2
+ : Δ(x) ≡ 3x2

1x
2
2 − 4x3

1 − 4x3
2 + 6x1x2 − 1 ≥ 0}.

The boundary of this region corresponds to positive-definite symmetric matri-
ces Σ(F ) = (det A(F ))−1/3A(F ) with a repeated eigenvalue, and it is given by
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1 2 3 4

1

2

3

4

{H(u) : u > 1}

{H(u) : u < 1} R

x1

x2

Figure 1. The region R and its boundary H

the curve H defined in (11.3). See Fig. 1. This is because if A(F ) has eigenval-
ues {λi}3i=1 and

(x1, x2) = (H1(Σ(F )),H2(Σ(F )) ,

then

Δ(x) = 1
27 (λ1 − λ2)2(λ2 − λ3)2(λ3 − λ1)2/(λ1λ2λ3)2.

This expression is nonnegative and vanishes if and only if A(F ) has a repeated
eigenvalue.3 By the spectral theorem, a matrix A is positive-definite, symmet-
ric, with a repeated eigenvalue if and only if A = F (λ, ω), for some λ ∈ R

2
+,

ω ∈ S2, so ∂R = H, by (11.1b), (11.1c).

Proposition 11.2. Any C2 strain energy function W satisfying (2.1a), (2.1b),
(2.1c), (2.1d) is consistent with the Baker–Ericksen condition [2] along H,
provided (8.2) holds with

f ′(1) = 0 and f ′′(u) ≥ 0, u ∈ R+.

3The expression Δ(x) is the discriminant of the characteristic polynomial of the shear strain
tensor.
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Proof. As noted in Lemma 5.2, the eigenvalues of F (λ, ω) are λ1, λ2 with
corresponding eigenspaces span{ω}, span{ω}⊥. By (6.2b), the Cauchy stress
T ◦ F (λ, ω) shares these eigenspaces, with corresponding eigenvalues

t1(λ) =
(
λ1λ

2
2

)−1
λ1L,1(λ), t2(λ) =

(
λ1λ

2
2

)−1 1
2λ2L,2(λ).

Since the eigenvalue λ2 is repeated, the Baker–Ericksen inequality reads:
t1(λ) − t2(λ)

λ1 − λ2
≥ 0,

for all λ = (λ1, λ2) ∈ R
2
+ with λ1 �= λ2. This is equivalent to the statement

λ1L,1(λ) − 1
2λ2L,2(λ)

λ1 − λ2
≥ 0,

for all λ = (λ1, λ2) ∈ R
2
+ with λ1 �= λ2.

By (8.1a), (8.7), we have

λ1L,1(λ) − 1
2λ2L,2(λ)

λ1 − λ2

= v(h−1)/3u−2/3
h
3 (λ1 − λ2u)f(u) + (λ1u + 1

2λ2u
2)f ′(u)

λ1 − λ2

= v(h−1)/3u−2/3 3u2

2
f ′(u)
u − 1

,

for all λ1, λ2 ∈ R+ with λ1 �= λ2. This is nonnegative since f ′(1) = 0 and
f ′′ ≥ 0, by assumption. (Note that if f ′′ > 0, then the inequality is stri
ct.) �

Remark. Any function f ∈ C(M) satisfies the hypotheses of Theorem 11.2
with strict inequality in the neighborhood U(δ).

As a final result, we discuss the physical significance of the parameters
κ(h) and β(f).

Lemma 11.3. Let h ∈ R \ [0, 3] and M ≥ 0. Suppose that W satisfies (2.1a),
(2.1b), (2.1c), (2.1d), and for some f ∈ C(M)

W ◦ F (λ, ω) = vh/3f(u) for all λ ∈ R
2
+, ω ∈ S2.

Then, the bulk and shear moduli of W at F = I are

κ = κ(h) = h
3

(
h
3 − 1

)
and g = 3

4β(f),

respectively.

Proof. The bulk modulus at F = I is defined as the change in −P(α) with
respect to the fractional change in volume at α = 1. Thus, from (8.8), we find
that

κ = lim
α→1

−P(α) + P(1)
α3 − 1

= lim
α→1

h
3

(
αh−3 − 1

)

α3 − 1
= κ(h).

For isotropic materials, the linearization of the operator

D · S(Dyϕ)
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at ϕ(y) = y is

gΔϕ̄ +
(
κ + 1

3 g
) ∇(∇ · ϕ̄), ϕ̄(y) = ϕ(y) − y, (11.6)

where g is the shear modulus. In the case of spherically symmetric deforma-
tions, we have from (5.3b) that

Δϕ(y) = ∇(∇ · ϕ(y)) =
(
φ′′(r) + 2

r φ′(r) − 2
r2 φ(r)

)
ω,

and so (11.6) reduces to
(
κ + 4

3 g
) (

φ̄
′′(r) + 2

r φ̄
′(r) − 2

r2 φ̄(r)
)

ω, φ̄(r) = φ(r) − r.

Comparing this with (8.5a), we obtain

κ + 4
3 g = U1(1) = 1

2U2(1) = κ(h) + β(f),

which implies that g = 3
4β(f). �
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