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Abstract. In this paper, we introduce multiple skew-orthogonal polyno-
mials and investigate their connections with classical integrable systems.
By using Pfaffian techniques, we show that multiple skew-orthogonal
polynomials can be expressed by multi-component Pfaffian tau-functions
upon appropriate deformations. Moreover, a two-component Pfaff lat-
tice hierarchy, which is equivalent to the Pfaff–Toda hierarchy studied by
Takasaki, is obtained by considering the recurrence relations and Cauchy
transforms of multiple skew-orthogonal polynomials.
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1. Introduction

In recent decades, the interplay between random matrix theory and integrable
systems attracted much attention due to the development of both fields. A
crucial observation in this connection is that the partition functions of different
random matrix models can act as the τ -functions of corresponding integrable
hierarchies upon appropriate deformations. Such an observation was found
by making use of semiclassical orthogonal polynomials for different integrable
hierarchies, such as Painlevé hierarchy [12,49] and Toda hierarchy [3,10].

It is well known that a sequence of orthogonal polynomials {pn(x)}n∈N

can be characterized by an analytic, nonnegative weight ω(x) such that∫
R

pn(x)pm(x)ω(x)dx = δn,m. (1.1)

According to Favard’s theorem [21,26], the orthogonal relation (1.1) can be
equivalently expressed by a three-term recurrence relation

xpn(x) = anpn+1(x) + bnpn(x) + an−1pn−1(x), p−1(x) = 0, p0(x) = 1,
(1.2)
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for a sequence of coefficients {an, bn}n∈N, providing a Jacobi matrix form

L =

⎛
⎜⎜⎜⎝

b0 a0

a0 b1 a1

a1 b2 a2

. . . . . . . . .

⎞
⎟⎟⎟⎠ , xΨ(x) = LΨ(x), Ψ(x) = (p0(x), p1(x), · · · )�.

Semiclassical orthogonal polynomials were firstly considered by Shobat
[52] and later by Freud [29]. In such case, time parameters t = (t1, t2, · · · ) were
introduced into the weight such that

∂tn
ω(x; t) = xnω(x; t).

Therefore, orthogonal polynomials with semiclassical weight are time-dependent
and result in the formula

∂t1pn(x; t) = −1
2
bnpn(x; t) − anpn−1(x; t). (1.3)

In studies, there are several ways to derive integrable lattices from semiclassical
orthogonal polynomials. One is a direct method by using the compatibility
condition of (1.2) and (1.3), from which one gets

∂t1an =
1
2
an(bn − bn−1), ∂t1bn = a2

n−1 − a2
n.

This is the nonlinear form for the Toda lattice. Details and related discussions
can be found in monographs [23,28]. Another way is to express orthogonal
polynomials by τ -functions, and integrable hierarchies could be obtained by
the recurrence relation. It is known that by solving the orthogonal relation
(1.1), a determinantal expression for pn(x; t) is given by

pn(x; t) =
1√

τn(t)τn+1(t)
det

⎛
⎜⎜⎜⎝

m0 m1 · · · mn

...
...

...
mn−1 mn · · · m2n−1

1 x · · · xn

⎞
⎟⎟⎟⎠ ,

where

τn(t) = det(mi+j)n−1
i,j=0, mi =

∫
R

xiω(x; t)dx.

Shifting t backwards by [x−1] in the τ -function yields a polynomial in x. We
have

pn(x; t) = xn τn(t − [x−1])√
τn(t)τn+1(t)

, [x−1] =
(

x−1

1
,
x−2

2
, · · ·

)
. (1.4)

Moreover, if we substitutes such formula into the recurrence relation (1.2),
then a Toda lattice hierarchy with neighboring points could be obtained. If
one considers the Cauchy transform of orthogonal polynomials∫

R

pn(x; t)
z − x

ω(x; t)dx = z−n−1 τn+1(t + [z−1])√
τn(t)τn+1(t)

,
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then from the orthogonality, one has the formula

0 =

∫
R

pn(x; t)pn−1(x; t
′)ω(x; t)dx =

1

2πi

∮
C∞

τn(t − [z−1])τn(t
′ + [z−1])eξ(t,z)−ξ(t′,z)dz,

(1.5)

where ξ(t, z) =
∑∞

i=1 tiz
i. This formula is valid for all t, t′ ∈ C and it gives a

bilinear identity of KP hierarchy [3,36].
Relations between orthogonal polynomials and integrable systems are

clearly depicted by considering different generalizations of the orthogonal re-
lation (1.1), which, in fact, is given by a symmetric, positive definite, and real
bilinear form

〈·, ·〉 : R[x] × R[x] → R

such that 〈xi, xj〉 = 〈xj , xi〉. Therefore, the generalizations of orthogonality
are equivalent to the extensions of the bilinear form. A non-symmetric gener-
alization to the bilinear form admits

〈xi, xj〉 =
∫
R

xi+θjω(x)dx, θ ∈ R+.

This bilinear form is related to the random matrix models with additional
interaction proposed by Muttalib and Borodin, and corresponding polynomials
were referred to as bi-orthogonal polynomials [16,46]. There is another kind
of bi-orthogonality by considering a bilinear form acting on R[x] × R[y], such
that

〈xi, yj〉 =
∫
R2

xiyj
K(x, y)ω1(x)ω2(y)dxdy, (1.6)

where K(x, y) is a kernel function and ω1, ω2 are weights with respect to x
and y, respectively. Such bi-orthogonal polynomials were introduced by con-
sidering matrices coupled in a chain [25] and Cauchy two-matrix models [13].
Specifically, skew symmetric kernels arisen from orthogonal and symplectic
invariant ensemble in random matrix models are of particular interest. The
above-mentioned orthogonal polynomials are all related to integrable systems
if appropriate time deformations are assumed. Examples include Gelfand–
Dickey hierarchy (Muttalib–Borodin case) [55], 2d-Toda hierarchy (coupled
chain case) [4], CKP hierarchy (Cauchy two-matrix model case) [41], Pfaff lat-
tice/DKP hierarchy (orthogonal/symplectic ensemble case) [1,38] and BKP
hierarchy (Bures ensemble case) [33].

Multiple orthogonal polynomials (MOPs) as a generalization of orthogo-
nal polynomials are a sequence of polynomials orthogonal with several different
weights originated in the study of what is termed Hermite–Padé approxima-
tion. This is the simultaneous rational approximation of a family of functions
{fj} which allow for a decaying Laurent expansion at infinity. Such functions
can be written as

fj(z) =
∫

Ij

dμj(x)
z − x

, (1.7)
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for several measures {μj}. It is these measures which directly relate to the
orthogonality of MOPs; see, e.g., the brief survey [44]. A relatively recent ap-
plication of MOPs is in the field of random matrices. The Gaussian unitary
ensemble is the set of N ×N random complex Hermitian matrices {H}, chosen
with a probability density function (PDF) proportional to e−TrH2

. In partic-
ular, the diagonal entries are all independent real normal random variables
with mean zero and standard deviation 1/

√
2 (denoted N[0, 1/

√
2]), while the

upper triangular entries of H are similarly independent and identically dis-
tributed, with complex normal distribution N[0, 1/2] + iN[0, 1/2]. Modifying
this ensemble so that the entries have a nonzero mean, the corresponding PDF
becomes proportional to e−Tr (H−A)2 , where A is a fixed complex Hermitian
matrix. The new ensemble is referred to as the Gaussian unitary ensemble with
a source [18]. Let the eigenvalues of A be denoted {aj}. A result of Bleher and
Kuijlaars [15] gives that the average characteristic polynomial 〈xI − (H − A)〉
can be expressed in terms of a particular type II MOPs1—referred to as mul-
tiple Hermite polynomials—where the family of measures are proportional to
{e−x2+2ajx}N

j=1. This same random matrix model, and thus the relevance of
the multiple Hermite polynomials, relates to non-intersecting Brownian bridges
[9]. Moreover, in [24] the chiral generalization of the Gaussian unitary ensem-
ble with a source is related to particular type I and type II Laguerre MOPs.
With type I and type II MOPs closely related to non-intersecting Brownian
motions, a generalized MOP called mixed type MOPs was proposed in [22]
to make further assumptions on paths, and their applications into integrable
systems were considered in [6,7,11].

In this paper, we focus on a generalization of skew-orthogonal polyno-
mials called multiple skew-orthogonal polynomials (MSOPs) and consider as-
sociated integrable hierarchies. Skew-orthogonal polynomials arise when the
integral kernel in (1.6) is assumed to be skew symmetric. Therefore, to give a
proper definition of MSOPs, we firstly consider a bi-orthogonal generalization
of MOPs in Sect. 2.2. Symmetric and skew symmetric reductions are consid-
ered in Sect. 2.3 to give a determinant expressions for MSOPs. Section 3 is
devoted to the 2-component MSOPs, which are skew orthogonal with weights
ω1 and ω2. Proposition 3.1 states that 2-component MSOPs admit Pfaffian
expressions as well, from which 2-component Pfaffian τ -functions could be in-
volved. Then, we introduce two different sets of time variables t = (t1, t2, · · · )
and s = (s1, s2, · · · ) into weights ω1 and ω2, respectively, and prove some de-
formation identities by making use of Pfaffian notations. Such identities are
helpful in deriving integrable systems. Analogous to the standard orthogonal
polynomials and Toda lattice hierarchy, we apply three different methods to
derive integrable lattices from easy to difficult. The first one is shown in Sect. 3
by simply comparing the coefficients from the deformation identity, and sev-
eral simple equations are demonstrated. Furthermore, a systematic study in
the derivation of integrable lattice hierarchy is carried out in Sect. 4 from two

1For formal definitions of type I and type II MOPs, please refer to Sect. 2.1.
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different perspectives. One is to show that the above mentioned Pfaffian ex-
pressions can be alternatively expressed by τ -functions with time evolutions.
By substituting τ -functions expressions into identities satisfied by MSOPs,
we get an integrable hierarchy for neighboring τ -functions. A shortage in this
strategy is that only neighboring τ -functions are involved in resulting inte-
grable hierarchy. We improve this method by considering a Cauchy transform
method. In Sect. 4.2, we utilize the Cauchy transform of MSOPs and show
that Takasaki’s Pfaff–Toda hierarchy is equivalent to our 2-component Pfaff
lattice hierarchy. Our Sect. 5 is devoted to a combinatorial explanation for the
above-discussed 2-component Pfaffian τ -function, as a generating function of
non-intersecting paths considered by Stembridge.

2. Multiple Skew-Orthogonal Polynomials

In this part, we intend to introduce the concept of multiple skew-orthogonal
polynomials, which are skew orthogonal with respect to several different weights.
Multiple skew orthogonality is originated from the multiple orthogonality,
and thus, a brief review of the latter is firstly given to make the paper self-
consistent.

2.1. A Brief Review of MOPs

Multiple orthogonal polynomials (MOPs) are defined as polynomials of one
variable that satisfy orthogonality conditions with respect to several weights
[35, Chap. 23]. Given a multi-index �v ∈ N

p with length |�v| =
∑p

i=1 vi, and
p different weight functions (ω1, · · · , ωp) supported on the real line, there are
two types of MOPs. Type I MOPs are collected in a vector of p polynomials
(A�v,1, · · · , A�v,p), where each A�v,i has degree at most vi − 1, satisfying the
orthogonality relations∫

R

xk

(
p∑

i=1

A�v,i(x)ωi(x)

)
dx = δk,|�v|−1, 0 ≤ k ≤ |�v| − 1. (2.1)

By assuming

A�v,i(x) = ξi,vi−1x
vi−1 + · · · + ξi,0, i = 1, · · · , p,

the above relations give rise to a linear system of |�v| equations for |�v| unknown
coefficients {ξi,j , j = 0, · · · , vi − 1, i = 1, · · · , p}
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m
(1)
0 · · · m

(1)
v1−1 · · · m

(p)
0 · · · m

(p)
vp−1

...
...

...
...

m
(1)
v1−1 · · · m

(1)
2v1−2 · · · m

(p)
v1−1 · · · m

(p)
v1+vp−2

...
...

...
...

m
(1)
|�v|−vp

· · · m
(1)
|�v|+v1−vp−1 · · · m

(p)
|�v|−vp

· · · m
(p)
|�v|−1

...
...

...
...

m
(1)
|�v|−1 · · · m

(1)
|�v|+v1−2 · · · m

(p)
|�v|−1 · · · m

(p)
|�v|+vp−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ1,0

...
ξ1,v1−1

...
ξp,0

...
ξp,vp−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
...
0
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(2.2)

where moments are defined by m
(i)
j =

∫
R

xjωi(x)dx.
The polynomials {A�v,i, i = 1, . . . , p} are uniquely determined if and only

if the linear system has a unique solution, which requires the determinants of
moment matrices to be nonzero. This condition gives some restrictions on the
weights ω1, · · · , ωp. In general, there is no guarantee that for a given multi-
index, the corresponding MOPs exist. A multi-index �v is said to be normal for
type I MOPs if {A�v,i, i = 1, . . . , p} exists and is unique. If all multi-indices are
normal, then the system of weights (ω1, · · · , ωp) is said to be a perfect system.
There are two well-known perfect systems: One is the Angelesco system, and
the other is the Nikishin system, where the perfectness of the former is given
by the properties of zeros of orthogonal polynomials, and that of the latter is
due to the analytic property of weights. For details, please refer to [27,47].

By considering the dual construction, type II MOPs {P�v(x)} are defined
as scalar polynomials with degree |�v| by the orthogonal relation∫

R

P�v(x)xjωi(x)dx = 0, j = 0, · · · , vi − 1, i = 1, · · · , p. (2.3)

If we assume P�v(x) to be monic as a normalization condition, then a linear
system of |�v| equations is read from orthogonal relations. By assuming that
P�v(x) = x|�v| + η|�v|,|�v|−1x

|�v|−1 + · · · + η|�v|,0, we have
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m
(1)
0 · · · m

(1)
| �v|−1

.

.

.
.
.
.

m
(1)
v1−1 · · · m

(1)
| �v|+v1−2

.

.

.
.
.
.

m
(p)
0 · · · m

(p)
| �v|−1

..

.
..
.

m
(p)
vp−1 · · · m

(p)
| �v|+vp−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η| �v|,0
.
.
.

η| �v|,v1−1

.

.

.
η| �v|,| �v|−vp+1

.

..
η| �v|,| �v|−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m
(1)
| �v|
.
.
.

m
(1)
| �v|+v1−1

.

.

.

m
(p)
| �v|
..
.

m
(p)
| �v|+vp−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.4)

Similar to the type I case, we say that �v is a normal index for type II MOPs if
the linear system has a unique solution. By noting that the coefficient matrix
in (2.4) is the transpose of that for type I in (2.2), we know that a multi-index
is normal for type II if and only if it is normal for type I. Moreover, let’s denote
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u = (u1, · · · , up1) and v = (v1, · · · , vp2) as two multi-indices, �ω = (ω1, · · · , ωp1)
as a set of weights, and define type I function

Q �u(x) =
p1∑

i=1

A �u,i(x)ωi(x),

and type II MOP P�v(x) with regard to weight �ω. Then,there is a bi-orthogonality
property [35, Thm. 23.1.6]

∫
R

P�v(x)Q �u(x)dx =

⎧⎨
⎩

0 if �u ≤ �v,
0 if |�v| ≤ |�u| − 2,
1 if |�v| = |�u| − 1.

(2.5)

Except for type I and type II MOPs, a family of mixed MOPs was pro-
posed in the study of non-intersecting Brownian motions [22]. Let’s consider
a non-intersecting Brownian motion on R, with uα paths starting at aα ∈ R

(α = 1, · · · , p1), and with vβ paths ending at points bβ ∈ R (β = 1, · · · , p2).
Since the total number of paths is conserved, we require

p1∑
α=1

uα =
p2∑

β=1

vβ . (2.6)

This equation plays an important role in the definition of mixed MOPs and
will be explained later. Applications of mixed MOPs in recent years were
proposed in integrable system and random walks [6,7,17,22]. A feature of
mixed MOPs is that they are orthogonal with two different sets of weights.
Assume that �u = (u1, · · · , up1) and �v = (v1, · · · , vp2) are two multi-indices,
and �ω1 = (ω1,1, · · · , ω1,p1) and �ω2 = (ω2,1, · · · , ω2,p2) are two sets of weights,
then a family of polynomials A1, · · · , Ap1 with deg Ai ≤ ui−1 could be defined
by orthogonal relations
∫
R

(
p1∑

i=1

Ai(x)ω1,i(x)

)
ω2,j(x)xkdx = 0, k = 0, · · · , vj − 1, j = 1, · · · , p2.

(2.7)

Polynomials A1, · · · , Ap1 are called MOPs of mixed type since the function

P �u,�v(x) =
p1∑

i=1

Ai(x)ω1,i(x)

is a linear form of the first set of weights as in type I multiple orthogonality
(c.f. equation (2.1)) and has the same type of orthogonality with respect to
the second set of weights as in type II multiple orthogonality (c.f. equation
(2.3)). Given another pair of indices �u′ = (u′

1, . . . , u
′
p1

) and �v′ = (v′
1, . . . , v

′
p2

),
one can also consider a family of polynomials B1, . . . , Bp2 with deg Bi ≤ v′

i −1
such that the linear form

Q �u′,�v′(x) =
p2∑

i=1

Bi(x)ω2,i(x)
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satisfies the orthogonal relations
∫
R

xkω1,j(x)Q �u′,�v′(x)dx = 0, k = 0, · · · , u′
j − 1, j = 1, · · · , p1. (2.8)

As a simple observation, the orthogonality (2.7) and (2.8) can be established
equivalently by the formula

∫
R

P �u,�v(x)Q �u′,�v′(x)dx = 0 for �u ≤ �u′ or �v ≥ �v′. (2.9)

The partial order relation �u ≤ �u′ means that ui ≤ u′
i for every i ∈ {1, 2, . . . , p1}.

If we denote moments

m
(l,k)
j =

∫
R

xjω1,l(x)ω2,k(x)dx

and assume that Ai(x) = ξi,ui−1x
ui−1 + · · · + ξi,0, then orthogonal conditions

(2.7) result in the following linear system

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m
(1,1)
0 · · · m

(1,1)
u1−1 · · · m

(p1,1)
0 · · · m

(p1,1)
up1−1

...
...

...
...

m
(1,1)
v1−1 · · · m

(1,1)
u1+v1−2 · · · m

(p1,1)
v1−1 · · · m

(p1,1)
up1+v1−2

...
...

...
...

m
(1,p2)
0 · · · m

(1,p2)
u1−1 · · · m

(p1,p2)
0 · · · m

(p1,p2)
up1−1

...
...

...
...

m
(1,p2)
vp2−1 · · · m

(1,p2)
u1+vp2−2 · · · m

(p1,p2)
vp2−1 · · · m

(p1,p2)
up1+vp2−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ1,0

...
ξ1,u1−1

...
ξp1,0

...
ξp1,up1−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0

with |�v| equations and |�u| unknowns. Therefore, to ensure a nonzero solution of
the linear system, one needs to assume that |�u| = |�v|+1. (For Q �u′,�v′ , we require
|�u′| + 1 = |�v′|.) By solving the linear equations directly using the Cramer’s
rule, we see that the linear forms P �u,�v(x) and Q �u′,�v′(x) are proportional to
determinants

P �u,�v(x) =
p1∑

i=1

Ai(x)ω1,i(x) ∼ det

⎛
⎜⎜⎜⎝

A
(1,1)
u1,v1 · · · A

(p1,1)
up1 ,v1

...
...

A
(1,p2)
u1,vp2

· · · A
(p1,p2)
up1 ,vp2

ψ1(x) · · · ψp1(x)

⎞
⎟⎟⎟⎠ ,

Q �u′,�v′(x) =
p1∑

i=1

Bi(x)ω2,i(x) ∼ det

⎛
⎜⎜⎜⎝

A
(1,1)
u′
1,v′

1
· · · A

(p1,1)
u′

p1
,v′

1
ϕ1(x)

...
...

...
A

(1,p2)
u′
1,v′

p2
· · · A

(p1,p2)
u′

p1
,v′

p2
ϕp2(x)

⎞
⎟⎟⎟⎠ ,
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where

ψi(x) = ω1,i(x)(1, x, · · · , xui−1),

ϕi(x) = ω2,i(x)(1, x, · · · , xv′
i−1)′,

A(a,b)
ui,vj

=
(
m

(a,b)
l+k

)
k=0,··· ,vj−1
l=0,··· ,ui−1

.

Such formula implies that one can regard the block moment matrix as non-
abelian moment matrix. Therefore, MOPs of type I, type II and mixed type
are special non-abelian orthogonal polynomials discussed in [8,40]. Moreover,
if the polynomials {Aj}p1

j=1 and {Bj}p2
j=1 are unique up to a multiplicative

constant, then we call (�u, �v) a normal pair of indices for the sets of weights �ω1

and �ω2. Therefore, it is always possible to choose a proper normalization to
uniquely define MOPs of mixed type with regard to normal pair of indices. In
agreement with formula (2.6), we require that |�v| = |�u|, and P �u+�ea,�v(x) and
Q �u,�v+�eb

(x) are desired formula satisfying orthonormal condition
∫
R

P �u+�ea,�v(x)Q �u,�v+�eb
(x)dx = 1.

In the above formula,

�ek = (0, . . . , 1, . . . , 0) where 1 is in the kth position

is the unit vector, and 1 ≤ a ≤ p1 and 1 ≤ b ≤ p2 are fixed integers.
If we further assume that P �u+�ea,�v(x) and Q �u,�v+�eb

have the same coef-
ficients for the term xuaω1,a(x) and xvbω2,b(x), then by solving the linear
system, we have

P �u+�ea,�v(x) =
(−1)

∑p2
i=b+1 vi

c
(a,b)
�u,�v

det

⎛
⎜⎜⎜⎜⎝

A
(1,1)
u1,v1 · · · A

(a,1)
ua+1,v1

· · · A
(p1,1)
up1 ,v1

...
...

...
A

(1,p2)
u1,vp2

· · · A
(a,p2)
ua+1,vp2

· · · A
(p1,p2)
up1 ,vp2

ψ1(x) · · · ψ̃a(x) · · · ψp1(x)

⎞
⎟⎟⎟⎟⎠ ,

Q �u,�v+�eb
(y) =

(−1)
∑p1

j=a+1 uj

c
(a,b)
�u,�v

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A
(1,1)
u1,v1 · · · A

(p1,1)
up1 ,v1 ϕ1(x)

...
...

...
A

(1,b)
u1,vb+1 · · · A

(p1,b)
up1 ,vb+1 ϕ̃b(x)

...
...

...
A

(1,p2)
u1,vp2

· · · A
(p1,p2)
up1 ,vp2

ϕp2(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where A
(a,b)
ui,vj was defined before,

ψi(x) = ω1,i(x)(1, x, · · · , xui−1), (i 
= a), ψ̃a(x) = ω1,a(x)(1, x, · · · , xua),

ϕj(x) = ω2,j(x)(1, x, · · · , xvj−1)′, (j 
= b), ϕ̃b(x) = ω2,b(x)(1, x, · · · , xvb)′,
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and

c
(a,b)
�u, �v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
det

⎡
⎢⎢⎣

A
(1,1)
u1,v1 · · · A

(p1,1)
up1 ,v1

.

.

.
.
.
.

A
(1,p2)
u1,vp2

· · · A
(p1,p2)
up1 ,vp2

⎤
⎥⎥⎦det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
(1,1)
u1,v1 . . . A

(a,1)
ua+1,v1

. . . A
(p1,1)
up1 ,v1

.

..
.
..

.

..

A
(1,b)
u1,vb+1 . . . A

(a,b)
ua+1,vb+1 . . . A

(p1,b)
up1 ,vb+1

..

.
..
.

..

.

A
(1,p2)
u1,vp2

. . . A
(a,p2)
ua+1,vp2

. . . A
(p1,p2)
up1 ,vp2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/2

.

2.2. A Bi-Orthogonal Generalization of MOPs

This part is devoted to the bi-orthogonal generalization of MOPs with in-
ner product (1.6). Let’s consider two pairs of different multi-indices �u =
(u1, · · · , up1), �v = (v1, · · · , vp2) and �u′ = (u′

1, · · · , u′
p1

), �v′ = (v′
1, · · · , v′

p2
),

together with weights �ω1 = (ω1,1, · · · , ω1,p1) and �ω2 = (ω2,1, · · · , ω2,p2) sup-
ported on contours γ1 and γ2, respectively. Then, one can introduce a coupling
function

S(x, y) : γ1 × γ2 → R,

such that bi-moments

m
(a,b)
k,l =

∫
γ1×γ2

xkyl
S(x, y)ω1,a(x)ω2,b(y)dxdy

exist and are finite for any 1 ≤ a ≤ p1, 1 ≤ b ≤ p2. Therefore, we can define
polynomials {Ai}p1

i=1 together with its counterpart {Bj}p2
j=1 such that they

satisfy the orthogonal relations

∫
γ1×γ2

(
p1∑

i=1

Ai(x)ω1,i(x)

)
S(x, y)ykω2,j(y)dxdy = 0, k = 0, · · · , vj − 1,

j = 1, · · · , p2,∫
γ1×γ2

xkω1,j(x)S(x, y)

(
p2∑

i=1

Bi(y)ω2,i(y)

)
dxdy = 0, k = 0, · · · , u′

j − 1,

j = 1, · · · , p1.

To uniquely determine these multiple bi-orthogonal polynomials (MBOPs), we
follow our discussions about MOPs of mixed type, and the formal definition is
given below.

Definition 2.1. Suppose we have two pairs of multi-indices �u = (u1, · · · , up1),�v = (v1, · · · , vp2) and �u′ = (u′
1, · · · , u′

p1
), �v′ = (v′

1, · · · , v′
p2

) with |�u| = |�v| and
|�u′| = |�v′|, together with two sets of weights �ω1 and �ω2, which are supported
on contours γ1 and γ2, respectively. Fix integers 1 ≤ a ≤ p1 and 1 ≤ b ≤ p2. If
S(x, y) is a nice enough function from γ1 × γ2 to R so that all moments exist



Vol. 25 (2024) Multiple Skew-Orthogonal Polynomials 3343

and are finite, then there are unique multiple bi-orthogonal functions

P �u+�ea, �v(x) =
p1∑

i=1

Ai(x)ω1,i(x), where deg Ai(x) ≤ ui − 1(i �= a) and deg Aa(x) ≤ ua,

Q �u′, �v′+�eb
(y) =

p2∑
i=1

Bi(y)ω2,i(y), where deg Bi(y) ≤ v′
i − 1(i �= b) and deg Bb(y) ≤ v′

b

satisfying multiple orthogonal relations
∫

γ1×γ2

P �u+�ea,�v(x)S(x, y)Q �u′,�v′+�eb
(y)dxdy =

⎧⎨
⎩

0 if �u + �ea ≤ �u′,
0 if �v ≥ �v′ + �eb,
1 if �u = �u′ and �v = �v′.

(2.10)

It is required that P �u+�ea,�v(x) and Q �u,�v+�eb
(y) have the same normalization

factor.

By introducing

ψi(x) = ω1,i(x)(1, x, · · · , xui−1), ψ̃i(x) = ω1,i(x)(1, x, · · · , xui), i = 1, · · · , p1,

ϕi(x) = ω2,i(x)(1, x, · · · , xvi−1)′, ϕ̃i(x) = ω2,i(x)(1, x, · · · , xvi)′, i = 1, · · · , p2,

and solving the orthogonal relations (2.10), we know that

P �u+�ea,�v(x) =
(−1)

∑p2
i=b+1 vi

c
(a,b)
�u,�v

det

⎛
⎜⎜⎜⎜⎝

A
(1,1)
u1,v1 . . . A

(a,1)
ua+1,v1

. . . A
(p1,1)
up1 ,v1

...
...

...
A

(1,p2)
u1,vp2

· · · A
(a,p2)
ua+1,vp2

. . . A
(p1,p2)
up1 ,vp2

ψ1(x) · · · ψ̃a(x) . . . ψp1(x)

⎞
⎟⎟⎟⎟⎠ ,

Q �u,�v+�eb
(y) =

(−1)
∑p1

j=a+1 uj

c
(a,b)
�u,�v

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A
(1,1)
u1,v1 · · · A

(p1,1)
up1 ,v1 ϕ1(y)

...
...

...
A

(1,b)
u1,vb+1 · · · A

(p1,b)
up1 ,vb+1 ϕ̃b(y)

...
...

...
A

(1,p2)
u1,vp2

· · · A
(p1,p2)
up1 ,vp2

ϕp2(y)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where A
(i,j)
ui,vj = (m(i,j)

l,k )k=0,...,vj−1
l=0,...,ui−1

and

c
(a,b)
�u, �v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
det

⎡
⎢⎢⎣

A
(1,1)
u1,v1 · · · A

(p1,1)
up1 ,v1

.

.

.
.
.
.

A
(1,p2)
u1,vp2

· · · A
(p1,p2)
up1 ,vp2

⎤
⎥⎥⎦det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
(1,1)
u1,v1 . . . A

(a,1)
ua+1,v1

. . . A
(p1,1)
up1 ,v1

..

.
..
.

..

.

A
(1,b)
u1,vb+1 . . . A

(a,b)
ua+1,vb+1 . . . A

(p1,b)
up1 ,vb+1

.

.

.
.
.
.

.

.

.

A
(1,p2)
u1,vp2

. . . A
(a,p2)
ua+1,vp2

. . . A
(p1,p2)
up1 ,vp2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/2

.

Remark 2.2. When �u and �v have only one index, multiple bi-orthogonal poly-
nomials degenerate to normal bi-orthogonal polynomials, which have been well
investigated. For example, the case S(x, y) = e−cxy (where c is a coupling con-
stant) is related to a coupled Hermitian matrix model and was studied in [4,45].
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Moreover, the case S(x, y) = (x + y)−1 gives rise to the so-called Cauchy bi-
orthogonal polynomials, which has attracted attention in different fields like
random matrix, peakon systems and approximation theory [13,14,41,43].

2.3. Multiple Symmetric Bi-Orthogonal Polynomials and Multiple
Skew-Orthogonal Polynomials

In this part, we prepare to give a definition for multiple skew-orthogonal poly-
nomials. Due to the difficulties in skew orthogonality, we firstly take a look at
the multiple symmetric bi-orthogonal polynomials and then move to the skew
symmetric case.

2.3.1. Multiple Symmetric Bi-Orthogonal Polynomials. In the symmetric case,
we need to assume that multi-indices �u and �v as well as weights �ω1 and �ω2 are
the same; that is, we have only one multiple index �v = (v1, · · · , vp) and one
family of weights (ω1, · · · , ωp) supported on γ. Moreover, the coupling function
S(x, y) : γ × γ → R is a symmetric function, i.e., S(x, y) = S(y, x). Therefore,
moments under this setting could be written as

m
(i,j)
k,l :=

∫
γ×γ

xkyl
S(x, y)ωi(x)ωj(y)dxdy,

and obviously m
(i,j)
k,l = m

(j,i)
l,k . Let b ∈ Z and 1 ≤ b ≤ p, we have a sequence of

symmetric MBOPs {Ai(x)}p
i=1, where deg Ai ≤ vi −1 (i = 1, · · · , p, i 
= b) and

deg Ab ≤ vb, such that corresponding linear form P�v(x) =
∑p

i=1 Ai(x)ωi(x)
satisfies the orthogonal relation∫

γ×γ

P�v(x)S(x, y)P�v′(y)dxdy =
{

0 if �v + �eb ≤ �v′ or �v ≥ �v′ + �eb,
1 if �v = �v′. (2.11)

In order to solve the relations, it is useful to write the following equivalent
form∫

γ×γ

(
p∑

i=1

Ai(x)ωi(x)

)
S(x, y)ykωj(y)dxdy = 0, k = 0, · · · , vj − 1, j = 1, · · · , p

(2.12a)
∫

γ×γ

(
p∑

i=1

Ai(x)ωi(x)

)
S(x, y)yvbωb(y)dxdy = h

(b)
�v �= 0. (2.12b)

If we assume that Ai(x) = ai,vi−1x
vi−1 + · · · + ai,0 (i 
= b, 1 ≤ i ≤ p) and

Ab(x) = ab,vb
xvb + · · · + ab,0, then the above linear system is equivalent to⎛

⎜⎜⎜⎜⎜⎜⎜⎝

A
(1,1)
v1,v1 · · · A

(b,1)
vb+1,v1

· · · A
(p,1)
vp,v1

...
...

...
A

(1,b)
v1,vb+1 · · · A

(b,b)
vb+1,vb+1 · · · A

(p,b)
vp,vb+1

...
...

...
A

(1,p)
v1,vp · · · A

(b,p)
vb+1,vp

· · · A
(p,p)
vp,vp

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

α(1)

...
α(b)

...
α(p)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
...

�e�
b
...
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.13)

where

α(i) = (ai,0, · · · , ai,vi−1)′, (i 
= b, 1 ≤ i ≤ p), α(b) = (ab,0, · · · , ab,vb
)′



Vol. 25 (2024) Multiple Skew-Orthogonal Polynomials 3345

and �e�
b is the transpose of �eb. Therefore, we can obtain the following determi-

nant form

P�v(x) =
p∑

i=1

Ai(x)ωi(x) =
(−1)

∑p
i=b+1 vi

c
(b)
�v

det

⎛
⎜⎜⎜⎜⎝

A
(1,1)
v1,v1 · · · A

(b,1)
vb+1,v1

· · · A
(p,1)
vp,v1

...
...

...
A

(1,p)
v1,vp · · · A

(b,p)
vb+1,vp

· · · A
(p,p)
vp,vp

ψ1(x) · · · ψb(x) · · · ψp(x)

⎞
⎟⎟⎟⎟⎠ ,

where ψi(x) = ωi(x)(1, · · · , xvi−1) (i 
= b, 1 ≤ i ≤ p) and ψb(x) = ωb(x)(1, · · · ,
xvb). If we denote

τ(v1,··· ,vp) = det

⎛
⎜⎜⎝

A
(1,1)
v1,v1 · · · A

(p,1)
vp,v1

...
...

A
(1,p)
v1,vp · · · A

(p,p)
vp,vp

⎞
⎟⎟⎠ , A

(i,j)
α,β =

(
m

(i,j)
l+k

)
k=0,··· ,α−1
l=0,··· ,β−1

= A
(j,i)
β,α ,

then we have c
(b)
�v = (τ(v1,··· ,vp)τ(v1,··· ,vb+1,··· ,vp))

1/2 and h
(b)
�v in (2.12b) could

be expressed by (τ(v1,··· ,vb+1,··· ,vp)/τ(v1,··· ,vp))
1/2.

2.3.2. Multiple Skew-Orthogonal Polynomials. Let’s consider a skew symmet-
ric kernel S(x, y) = −S(y, x) such that

m
(a,b)
k,l :=

∫
γ×γ

xkyl
S(x, y)ωa(x)ωb(y)dxdy = −

∫
γ×γ

xlyk
S(x, y)ωb(x)ωa(y)dxdy

= −m
(b,a)
l,k .

Then for a multi-index �v = (v1, · · · , vp) and a sequence of weights (ω1, · · · , ωp),
we can define corresponding polynomials (R1(x), · · · , Rp(x)) where deg Ri ≤
vi − 1 (i = 1, · · · , p). Since our primary consideration is to seek for the linear
form

∑p
i=1 Ri(x)ωi(x), which is simultaneously skew orthogonal with respect

to several weights, we first consider the multiple skew-orthogonal relations
∫

γ×γ

(
p∑

i=1

Ri(x)ωi(x)

)
S(x, y)ykωj(y)dxdy = 0, k = 0, · · · , vj − 1, j = 1, · · · , p.

(2.14)

If we denote Ri(x) = ai,vi−1x
vi−1 + · · · + ai,0, then equation (2.14) implies

⎛
⎜⎜⎝

A
(1,1)
v1,v1 · · · A

(p,1)
vp,v1

...
...

A
(1,p)
v1,vp · · · A

(p,p)
vp,vp

⎞
⎟⎟⎠
⎛
⎜⎝

α(1)

...
α(p)

⎞
⎟⎠ = 0,

where A
(i,j)
ui,vj = (m(i,j)

l,k )k=0,...,vj−1
l=0,...,ui−1

and α(i) = (ai,0, · · · , ai,vi−1)′. Since the

matrix is skew symmetric, one knows that non-trivial solutions for α(i) always
exist when v1+· · ·+vp is odd (i.e., |�v| is odd). Therefore, it is a key observation
that MSOPs are valid only for |�v| being odd. The normalization condition is
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then given by

∫
γ×γ

(
p∑

i=1

Ri(x)ωi(x)

)
S(x, y)yvbωb(y)dxdy = h

(b)
�v 
= 0,

where b is a fixed integer between 1 and p. To conclude, we have the following
definition for multiple skew-orthogonal polynomials.

Definition 2.3. Given a multi-index �v = (v1, · · · , vp) such that |�v| = v1+· · ·+vp

is odd, if there are p different weights (ω1, · · · , ωp) supported on γ and S(x, y)
is a skew symmetric function from γ × γ to R so that all moments are finite,
then for a fixed integer b ∈ {1, 2, . . . , p}, there exist multiple skew-orthogonal
polynomials R1(x), · · · , Rp(x) and R̃b(x), such that

∫
γ×γ

(
p∑

i=1

Ri(x)ωi(x)

)
S(x, y)yjωk(y)dxdy = 0, j = 0, · · · , vk − 1, k = 1, · · · , p,

∫
γ×γ

(
p∑

i=1

Ri(x)ωi(x)

)
S(x, y)

⎛
⎜⎜⎝

p∑
i=1
i�=b

Ri(y)ωi(y) + R̃b(y)ωb(y)

⎞
⎟⎟⎠ dxdy = 1,

(2.15)

where deg Ri(x) ≤ vi −1 (i = 1, · · · , p), and deg R̃b(x) ≤ vb. Here, we assume
that coefficients in the highest-order terms of Rb and R̃b are the same.

Remark 2.4. Different from the orthogonal relations for symmetric MBOPs
(2.11), the skew inner product of MSOPs and itself is equal to zero, i.e.,

∫
γ×γ

(
p∑

i=1

Ri(x)ωi(x)

)
S(x, y)

(
p∑

i=1

Ri(y)ωi(y)

)
dxdy = 0.

Note that the skew orthogonality is not affected by the transformation R̃b(y) →
R̃b(y) + αRb(y) for all α ∈ R. Therefore, for later convenience, we denote
(R1(x), · · · ,

Rp(x), R̃b(x)) as a family of multiple skew-orthogonal polynomials and set
the coefficient of xvb−1ωb(x) in

∑p
i=1
i�=b

Ri(x)ωi(x) + R̃b(x)ωb(x) as 0.
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By assuming that coefficients in the highest-order terms of Rb(x) and
R̃b(x) are the same, equation (2.15) has a unique solution and we have

R
(b)
�v (x) :=

p∑
i=1

Ri(x)ωi(x) =
(−1)

∑p
i=b+1 vi

c
(b)
�v

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A
(1,1)
v1,v1 · · · A

(p,1)
vp,v1

...
...

A
(1,b)
v1,vb−1 · · · A

(p,b)
vp,vb−1

...
...

A
(1,p)
v1,vp · · · A

(p,p)
vp,vp

ψ1(x) · · · ψp(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(2.16a)

R̃
(b)
�v (x) :=

p∑
i=1
i�=b

Ri(y)ωi(y) + R̃b(y)ωb(y) (2.16b)

=
1

c
(b)
�v

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A
(1,1)
v1,v1 · · · A

(b,1)
vb−1,v1

· · · A
(p,1)
vp,v1 ψ1(y)′

...
...

...
...

A
(1,b)
v1,vb−1 · · · A

(b,b)
vb−1,vb−1 · · · A

(p,b)
vp,vb−1 ψ̃b(y)′

...
...

...
...

A
(1,p)
v1,vp · · · A

(b,p)
vb−1,vp

· · · A
(p,p)
vp,vp ψp(y)′

M
(1,b)
v1,vb · · · M

(b,b)
vb−1,vb

· · · M
(p,b)
vp,vb yvbωb(y)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.16c)

where

ψi(x) = ωi(x)(1, · · · , xvi−1), (i = 1, · · · , p),

ψ̃b(x) = ωb(x)(1, · · · , xvb−2),

M (k,l)
vi,vj

= (m(k,l)
i,vj

)vi−1
i=0

and the normalization factor c
(b)
�v is given by

(c
(b)
�v )2 = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A
(1,1)
v1,v1 · · · A

(p,1)
vp,v1

...
...

A
(1,b)
v1,vb−1 · · · A

(p,b)
vp,vb−1

M
(1,b)
v1,vb · · · M

(p,b)
vp,vb

A
(1,b+1)
v1,vb+1 · · · A

(p,b+1)
vp,vb+1

...
...

A
(1,p)
v1,vp · · · A

(p,p)
vp,vp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A
(1,1)
v1,v1 · · · A

(b,1)
vb−1,v1

· · · A
(p,1)
vp,v1

...
...

...

A
(1,b)
v1,vb−1 · · · A

(b,b)
vb−1,vb−1 · · · A

(p,b)
vp,vb−1

...
...

...

A
(1,p)
v1,vp · · · A

(b,p)
vb−1,vp

· · · A
(p,p)
vp,vp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2.17)

3. Pfaffian form of Multiple Skew-Orthogonal Polynomials

As is known, skew-orthogonal polynomials have Pfaffian expressions which are
widely used in integrable systems in terms of Pfaffian tau-functions [1,2,39].
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In this section, we plan to express MSOPs by Pfaffian and investigate its
evolution when time parameters are introduced. The 2-component case has to
be a primary consideration since the multiple-component case can be easily
generalized from the 2-component case. To this end, we assume an index set
v = (v1, v2) with odd v1 + v2.

3.1. Pfaffian Expressions for MSOPs

First, we note that determinant expressions in (2.16a), (2.16b) and (2.17) can
be alternatively written in terms of Pfaffians, which is stated as follows.

Proposition 3.1. For multiple skew-orthogonal polynomials (R1(x), R2(x),
R̃2(x)), we have

R
(2)
(v1,v2)

(x) := R1(x)ω1(x) + R2(x)ω2(x) =
1

d
(2)
�v

Pf

⎛
⎜⎝

A
(1,1)
v1,v1 A

(2,1)
v2,v1 −ψ1(x)

A
(1,2)
v1,v2 A

(2,2)
v2,v2 −ψ2(x)

ψ1(x) ψ2(x) 0

⎞
⎟⎠ ,

(3.1a)

R̃
(2)
(v1,v2)

(x) = R1(x)ω1(x) + R2(x)ω2(x) + R̃2(x)ω2(x)

=
1

d
(2)
�v

Pf

⎛
⎜⎜⎜⎝

A
(1,1)
v1,v1 A

(2,1)
v2−1,v1

(M (2,1)
v2,v1)� −ψ1(x)

A
(1,2)
v1,v2−1 A

(2,2)
v2−1,v2−1 (M (2,2)

v2,v2−1)
� −ψ̃2(x)

M
(1,2)
v1,v2 M

(2,2)
v2−1,v2

0 −xv2ω2(x)
ψ1(x) ψ̃2(x) xv2ω2(x) 0

⎞
⎟⎟⎟⎠ , (3.1b)

with a normalization factor

d
(2)
�v =

(
Pf

(
A

(1,1)
v1,v1 A

(2,1)
v2−1,v1

A
(1,2)
v1,v2−1 A

(2,2)
v2−1,v2−1

)
Pf

(
A

(1,1)
v1,v1 A

(2,1)
v2+1,v1

A
(1,2)
v1,v2+1 A

(2,2)
v2+1,v2+1

))1/2

.

Proof. Here, we give a clear explanation for formula (2.16a), and (2.16b) can
be similarly verified. By applying Jacobi determinant identity2 to⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m
(1,1)
0,0 · · · m

(1,1)
v1−1,0 m

(2,1)
0,0 · · · m

(2,1)
v2−1,0 −ω1(x)

...
...

...
...

...
m

(1,1)
0,v1−1 · · · m

(1,1)
v1−1,v1−1 m

(1,2)
0,v2−1 · · · m

(2,1)
v2−1,v1−1 −xv1−1ω1(x)

m
(1,2)
0,0 · · · m

(1,2)
v1−1,0 m

(2,2)
0,0 · · · m

(2,2)
v2−1,0 −ω2(x)

...
...

...
...

...
m

(1,2)
0,v2−1 · · · m

(1,2)
v1−1,v2−1 m

(2,2)
0,v2−1 · · · m

(2,2)
v2−1,v2−1 −xv2−1ω2(x)

ω1(x) · · · xv1−1ω1(x) ω2(x) · · · xv2−1ω2(x) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2The Jacobi identity, also referred to as the Desnanot–Jacobi identity, is applied for an
arbitrary matrix M = (mi,j)

N
i,j=1

|M | × |Ma,b
c,d | = |Ma

c | × |Mb
d | − |Ma

d | × |Mb
c |,

where |Mj1,··· ,jr
i1,··· ,ir

| stands for the determinant of the matrix obtained from M by deleting its

(i1, · · · , ir)-th rows and (j1, · · · , jr)-th columns.
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for last two rows and columns, and noting that the determinant of an odd-order
skew symmetric matrix is zero, we obtain

R
(2)
(v1,v2)

(x) =
1

c
(2)
(v1,v2)

Pf

(
A

(1,1)
v1,v1 A

(2,1)
v2−1,v1

A
(1,2)
v1,v2−1 A

(2,2)
v2−1,v2−1

)
Pf

⎛
⎜⎝

A
(1,1)
v1,v1 A

(2,1)
v2,v1 −ψ1(x)

A
(1,2)
v1,v2 A

(2,2)
v2,v2 −ψ2(x)

ψ1(x) ψ2(x) 0

⎞
⎟⎠

Moreover, by applying determinant identity to c
(2)
(v1,v2)

in (2.17) for the first
determinant, we have

c
(2)
(v1,v2)

= Pf

(
A

(1,1)
v1,v1 A

(2,1)
v2−1,v1

A
(1,2)
v1,v2−1 A

(2,2)
v2−1,v2−1

)3/2

Pf

(
A

(1,1)
v1,v1 A

(2,1)
v2+1,v1

A
(1,2)
v1,v2+1 A

(2,2)
v2+1,v2+1

)1/2

.

Thus, the proof is complete. �

Therefore, one can use Hirota’s Pfaffian notations [31] to make these
expressions more compact. If we denote

pf(i(k), j(l)) = m
(k,l)
i,j , pf(i(k), x) = ωk(x)xi, (k, l = 1, 2),

then formulas (3.1a) and (3.1b) could be equivalently expressed by

R
(2)
(v1,v2)

(x) =
1

d
(2)
(v1,v2)

Pf(0(1), · · · , v1 − 1(1), 0(2), · · · , v2 − 1(2), x),

R̃
(2)
(v1,v2)

(x) =
1

d
(2)
(v1,v2)

Pf(0(1), · · · , v1 − 1(1), 0(2), · · · , v2 − 2(2), v(2)
2 , x),

(3.2)

where d
(2)
(v1,v2)

= (τ(v1,v2−1)τ(v1,v2+1))1/2 and

τ(v1,v2−1) = Pf(0(1), · · · , v1 − 1(1), 0(2), · · · , v2 − 2(2)).

According to our discussions in the last section, there should be another family
of multiple skew-orthogonal polynomials (R(1)

(v1,v2)
(x), R̃(1)

(v1,v2)
(x)) such that

R
(1)
(v1,v2)

(x) =
1

d
(1)
(v1,v2)

Pf(0(1), · · · , v1 − 1(1), 0(2), · · · , v2 − 1(2), x),

R̃
(1)
(v1,v2)

(x) =
1

d
(1)
(v1,v2)

Pf(0(1), · · · , v1 − 2(1), v(1)
1 , 0(2), · · · , v2 − 1(2), x),

(3.3)

where d
(1)
(v1,v2)

=
(
τ(v1−1,v2)τ(v1+1,v2)

)1/2. Moreover, from (3.2) and (3.3), one

knows that R
(1)
(v1,v2)

(x) and R
(2)
(v1,v2)

(x) are the same up to a normalization
factor.

By using Pfaffian notations, the skew-orthogonal relations given by Def-
inition 2.3 have the following equivalent descriptions.
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Proposition 3.2. R
(1)
(v1,v2)

(x) and R
(2)
(v1,v2)

(x) are simultaneously skew orthogo-

nal with R̃
(1)
(v1,v2)

(x) and R̃
(2)
(v1,v2)

(x), i.e.,

〈R(1)
(v1,v2)

(x), R(1)
(u1,u2)

(y)〉 = 0, (3.4a)

〈R(1)
(v1,v2)

(x), R̃(1)
(u1,u2)

(y)〉 =
{

0, if u1 < v1 and u2 ≤ v2,
1, if u1 = v1 and u2 = v2,

(3.4b)

〈R(1)
(v1,v2)

(x), R̃(2)
(u1,u2)

(y)〉 =

{
0, if u1 ≤ v1 and u2 < v2,

d
(2)
(v1,v2)

/d
(1)
(v1,v2)

, if u1 = v1 and u2 = v2.

(3.4c)

Proof. Since e quations (3.4a) and (3.4b) have been shown in the last section,
we prove the third equation (3.4c) by using Pfaffian notations. Taking the
Pfaffian expressions (3.2) and (3.3) into the skew inner product, we have

d
(1)
(v1,v2)

d
(2)
(u1,u2)

〈R(1)
(v1,v2)

(x), R̃(2)
(u1,u2)

(y)〉
=
∑
i∈I1

∑
j∈I2

(−1)|i|+|j|Pf(I1\{i})Pf(I2\{j})〈pf(i, x), pf(j, y)〉,

(3.5)

where I1 = {0(1), · · · , v1−1(1), 0(2), · · · , v2−1(2)}, I2 = {0(1), · · · , u1−1(1), 0(2),
· · · , u2 −2(2), u(2)

2 }, and |i| represents the position of i in the set I1. By noting
that

〈pf(i(k), x), pf(j(l), y)〉 =
∫

γ×γ

xi
S(x, y)yjωk(x)ωl(y)dxdy = pf(i(k), j(l)),

then the right-hand side in (3.5) is equal to∑
j∈I2

(−1)|j|Pf(I1, j)Pf(I2\{j}). (3.6)

It is known that a Pfaffian is equal to zero if two indices in a Pfaffian are equal.
Therefore, if u1 ≤ v1 and u2 < v2, we know that j ∈ I1 and the above formula
is identically zero. If u1 = v1 and u2 = v2, then only when j = u

(2)
2 = v

(2)
2 , the

term is nonzero. In such a case, equation (3.6) is equal to τ(v1,v2+1)τ(v1,v2−1).
Therefore, we have

〈R(1)
(v1,v2)

(x), R̃(2)
(v1,v2)

(y)〉 =
τ(v1,v2+1)τ(v1,v2−1)

d
(1)
(v1,v2)

d
(2)
(v1,v2)

=
d
(2)
(v1,v2)

d
(1)
(v1,v2)

.

�

3.2. Semiclassical Weights and Deformed MSOPs

Let’s consider semiclassical weight functions. By introducing parameters t :=
(t1, t2, · · · ) and s := (s1, s2, · · · ) into weights ω1 and ω2, respectively, such that

ω1(x; t) = ω1(x) exp

( ∞∑
i=1

tix
i

)
, ω2(x; s) = ω2(x) exp

( ∞∑
i=1

six
i

)
,



Vol. 25 (2024) Multiple Skew-Orthogonal Polynomials 3351

we have
∂tiω1(x; t) = xiω1(x; t), ∂siω2(x; s) = xiω2(x; s), ∂tiω2(x; s) = ∂siω1(x; t) = 0.

Moreover, now moments are time-dependent and they obey the following
deformations.

Proposition 3.3. For moments {m
(k,l)
a,b , k, l = 1, 2}, they have the following

evolutions

∂ti
m

(1,1)
a,b = m

(1,1)
a+i,b + m

(1,1)
a,b+i, ∂ti

m
(1,2)
a,b = m

(1,2)
a+i,b, ∂ti

m
(2,2)
a,b = 0,

∂si
m

(2,2)
a,b = m

(2,2)
a+i,b + m

(2,2)
a,b+i, ∂si

m
(1,2)
a,b = m

(1,2)
a,b+i, ∂si

m
(1,1)
a,b = 0.

Equivalently, in Pfaffian notations we have

∂ti
pf(a(1), b(1)) = pf(a + i(1), b(1)) + pf(a(1), b + i(1)), ∂ti

pf(a(1), b(2))

= pf(a + i(1), b(2)),

∂si
pf(a(2), b(2)) = pf(a + i(2), b(2)) + pf(a(2), b + i(2)), ∂si

pf(a(1), b(2))

= pf(a(1), b + i(2)),

∂ti
pf(a(2), b(2)) = ∂si

pf(a(1), b(1)) = 0.

Proof. Let’s prove ∂ti
pf(a(1), b(1)) = pf(a + i(1), b(1)) + pf(a(1), b + i(1)), and

other cases could be similarly verified. We first have

∂ti
pf(a(1), b(1)) = ∂ti

∫
γ×γ

xa
S(x, y)ybω1(x; t)ω1(y; t)dxdy.

By noting that the moment is finite and weight ω1(x; t) is smooth with respect
to t, we know that the order of derivative and integration could be exchanged.
Therefore, the above formula is equal to∫

γ×γ

xa
S(x, y)yb(xi + yi)ω1(x; t)ω1(x; t)dxdy,

which is exactly pf(a + i(1), b(1)) + pf(a(1), b + i(1)). �
With such time parameters introduced, we can use derivative formulas

for Wronskian-type Pfaffians to deduce deformation relations for the linear
forms of MSOPs.

Proposition 3.4. R
(i)
(v1,v2)

(x; t, s) and R̃
(i)
(v1,v2)

(x; t, s) (i = 1, 2) have the follow-
ing derivative relations

∂t1

(
d
(1)
(v1,v2)

R
(1)
(v1,v2)

(x; t, s)
)

= d
(1)
(v1,v2)

R̃
(1)
(v1,v2)

(x; t, s),

∂s1

(
d
(2)
(v1,v2)

R
(2)
(v1,v2)

(x; t, s)
)

= d
(2)
(v1,v2)

R̃
(2)
(v1,v2)

(x; t, s).
(3.7)

Proof. Since t and s are dual to each other, we only prove the t1-derivative
formula. By using Pfaffian notations, it is equivalent to show that

∂t1Pf(0(1), · · · , v1 − 1(1), 0(2), · · · , v2 − 1(2), x)

= Pf(0(1), · · · , v1 − 2(1), v(1)
1 , 0(2), · · · , v2 − 1(2), x).

(3.8)
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If we introduce the index sets

I1 = {0(1), · · · , v1 − 1(1)}, Ĩ1 = {0(1), · · · , v1 − 2(1), v
(1)
1 }, I2 = {0(2), · · · , v2 − 1(2)},

then by expanding the Pfaffian, the left-hand side in (3.8) is equal to

∂t1

⎛
⎝∑

i∈I1

(−1)|i|Pf(I1\{i}, I2)pf(i, x) +
∑
j∈I2

(−1)|j|Pf(I1, I2\{j})pf(j, x)

⎞
⎠ .

By using derivative formula for Wronskian-type Pfaffians (see Appendix for
details), we know that the first term is equal to∑

i∈I1\{0(1)}
(−1)|i|Pf(I1\{i − 1}, I2)pf(i, x) +

∑
i∈Ĩ1\{v

(1)
1 }

(−1)|i|Pf(Ĩ1\{i}, I2)pf(i, x)

+
∑
i∈I1

(−1)|i|Pf(I1\{i}, I2)pf(i + 1, x),

(3.9)

and the second term equals∑
j∈I2

(−1)|j|Pf(Ĩ1, I2\{j})pf(j, x).

A cancellation can be applied to the first and third term in (3.9). Thus, by
combining these equations, we obtain∑

i∈Ĩ1

(−1)|i|Pf(Ĩ1\{i}, I2)pf(i, x) +
∑
j∈I2

(−1)|j|Pf(Ĩ1, I2\{j})pf(j, x),

which is exactly the expansion of the right-hand side in (3.8). �
In despite of time evolutions for the linear forms of MSOPs, there should

be spectral problems between R
(i)
(v1,v2)

(x) and R̃
(i)
(v1,v2)

(x) (i = 1, 2), which are
prominent in the derivations of integrable hierarchies. In below, we use Pfaffian
identities to characterize spectral problems.

Proposition 3.5. R
(i)
(v1,v2)

(x; t, s) and R̃
(i)
(v1,v2)

(x; t, s) (i = 1, 2) satisfy the fol-
lowing recurrence relations

τ(v1,v2−1)d
(2)
(v1+1,v2+1)R

(2)
(v1+1,v2+1)(x) = τ(v1+1,v2)d

(2)
(v1,v2)

R̃
(2)
(v1,v2)

(x)

− ∂s1τ(v1+1,v2)d
(2)
(v1,v2)

R
(2)
(v1,v2)

(x) + τ(v1,v2+1)d
(2)
(v1+1,v2−1)R

(2)
(v1+1,v2−1)(x),

(3.10a)

τ(v1−1,v2)d
(1)
(v1+1,v2+1)R

(1)
(v1+1,v2+1)(x) = τ(v1+1,v2)d

(1)
(v1−1,v2+1)R

(1)
(v1−1,v2+1)(x)

− τ(v1,v2+1)d
(1)
(v1,v2)

R̃
(1)
(v1,v2)

(x) + ∂t1τ(v1,v2+1)d
(1)
(v1,v2)

R
(1)
(v1,v2)

(x), (3.10b)

∂t1τ(v1,v2−1)d
(1)
(v1,v2)

R
(1)
(v1,v2)

(x) = τ(v1,v2−1)d
(1)
(v1,v2)

R̃
(1)
(v1,v2)

(x)

+ τ(v1−1,v2)d
(1)
(v1+1,v2−1)R

(1)
(v1+1,v2−1)(x) − τ(v1+1,v2)d

(1)
(v1−1,v2−1)R

(1)
(v1−1,v2−1)(x),

(3.10c)

∂s1τ(v1−1,v2)d
(2)
(v1,v2)

R
(2)
(v1,v2)

(x) = −τ(v1,v2−1)d
(2)
(v1−1,v2+1)R

(2)
(v1−1,v2+1)(x)

+ τ(v1−1,v2)d
(2)
(v1,v2)

R̃
(2)
(v1,v2)

(x) + τ(v1,v2+1)d
(2)
(v1−1,v2−1)R

(2)
(v1−1,v2−1)(x). (3.10d)
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Proof. We verify the first equation by making use of Pfaffian identity (A.1b),
and the others could be similarly verified. Taking symbols

a1 = v
(1)
1 , a2 = v2 − 1(2), a3 = v

(2)
2 , a4 = x,

� = {0(1), · · · , v1 − 1(1), 0(2), · · · , v2 − 2(2)}
in (A.1b), we arrive at the desired formula from Pfaffian expressions (3.2)–
(3.3) and by realizing that

∂s1τ(v1+1,v2) = Pf(0(1), · · · , v
(1)
1 , 0(2), · · · , v2 − 2(2), v(2)

2 ).

�

Several simple integrable lattices could be obtained directly by using these
relations. Expanding the linear form (3.3), we have

d
(1)
(v1,v2)

R
(1)
(v1,v2)

(x) = (−1)v1−1ω1(x)
(
xv1−1τ(v1−1,v2) − xv1−2∂t1τ(v1−1,v2) + · · · )

+ ω2(x)
(
xv2−1τ(v1,v2−1) − xv2−2∂s1τ(v1,v2−1) + · · · ) .

Moreover, if the equation (3.7) is taken into account, then equations
Dt1τ(v1,v2−1) · τ(v1,v2+1) = Ds1τ(v1+1,v2) · τ(v1−1,v2),

Ds1Dt1τ(v1−1,v2) · τ(v1−1,v2) = 2
(
τ(v1,v2−1)τ(v1−2,v2+1) − τ(v1,v2+1)τ(v1−2,v2−1)

)
(3.11)

are obtained by comparing the coefficients of xv1−2ω1(x) and xv2−2ω2(x), re-
spectively. Here, Dt is the Hirota’s bilinear operator defined by [31]

Dm
t Dn

xf(x, t) · g(x, t) =
∂m

∂sm

∂n

∂yn
f(t + s, x + y)g(t − s, x − y)

∣∣∣∣
s=0,y=0.

(3.12)

Equations (3.11) have appeared as a generalization of 2D Toda lattice, see,
for example, [30,32,50,54,56]. Before we proceed to further discussions about
the recurrence, we demonstrate a reduction from MSOPs to skew-orthogonal
polynomials (SOPs).

3.3. Reduction: from MSOPs to SOPs

As was shown in [54, Section 2.4], the hierarchy governing equations (3.11)
could be reduced to the DKP hierarchy from the perspective of fermionic
representation. We reconfirm the fact in this part by performing reductions of
MSOPs.

By considering one index set v = {0, · · · , 2n} and one weight function
ω(x), we could define skew-orthogonal polynomials {p2n(x), p2n+1(x)}n∈N by
the following skew orthogonal relation

〈p2n(x), p2m(x)〉 = 〈p2n+1(x), p2m+1(x)〉 = 0, 〈p2n(x), p2m+1(x)〉 = δn,m,

where 〈·, ·〉 is a skew symmetric bilinear form on R[x] × R[y] → R and

〈f(x), g(x)〉 =
∫

γ×γ

f(x)S(x, y)g(y)ω(x)ω(y)dxdy, S(x, y) = −S(y, x).
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This is a reductional version compared with Proposition 3.2. Moreover, {p2n(x),
p2n+1(x)}n∈N are polynomials with Pfaffian expressions [1, Thm. 3.1]

p2n(x) = d−1
n Pf(0, · · · , 2n, x), p2n+1(x) = d−1

n Pf(0, · · · , 2n − 1, 2n + 1, x),

where dn = (τ2nτ2n+2)1/2, τ2n = Pf(0, · · · , 2n − 1) and Pfaffian elements are
given by

pf(i, j) = 〈xi, yj〉, pf(i, x) = xi.

By introducing the time flows t = (t1, t2, · · · ) such that ∂ti
ω(x; t) = xiω(x; t),

it was found that the skew-orthogonal polynomials satisfy [1, Thm. 3.1]

(z + ∂t1)(dnp2n(z)) = dnp2n+1(z).

This equation coincides with equation (3.4) in multi-component case and plays
a role as spectral problem in integrable system theory.

In studies, the first study between SOPs and Pfaff lattice was carried
out in [1] from a view of Lie algebra splitting. Later on, the correspondence
was reformulated from different perspectives such as reductions from 2d-Toda
theory [2,41], Toda lattice and Pfaff lattice correspondence [5], symplectic ma-
trices [39], and so on. Therefore, it is natural to ask whether there is any local
recurrence for SOPs which could be applied to derive integrable systems. Un-
fortunately, we could not find a compact relation between p2n(z) and p2n+1(z)
as multi-component case in Proposition 3.5. By taking � = {0, · · · , 2n − 2},
a1 = 2n− 1, a2 = 2n, a3 = 2n+1 and a4 = x in the identity (A.1b) and using
the equation

(∂t2 + ∂2
t1)τ2n = 2Pf(0, 1, · · · , 2n − 2, 2n + 1),

one has

τ2n+2d2n−2p2n−2(x) =
1
2
(∂t2 + ∂2

t1)τ2nd2np2n(x) − ∂t1τ2nd2np2n+1(z)

+ τ2nPf(0, · · · , 2n − 2, 2n, 2n + 1, z).

This relation is non-compact since the last term could not be written in terms
of skew-orthogonal polynomials. However, due to the independency of func-
tion, integrable lattices could also be obtained by comparing the coefficients
of monomials on both sides. The simplest equation arises when comparing the
coefficients of x2n−2, and one has

(D4
1 − 4D1D3 + 3D2

2)τ2n · τ2n = 24τ2n−2τ2n+2.

This is the first member in the DKP hierarchy.

4. Integrable Lattice Hierarchies from Identities of MSOPs

In this part, we demonstrate that MSOPs could be expressed by 2-component
Pfaffian τ -functions {τ(i,j)(t, s)}i,j∈N with i+ j ∈ 2N. Since MSOPs are multi-
component generalizations of SOPs, we call the corresponding integrable hier-
archy as multiple-component Pfaff lattice hierarchy, especially a 2-component
Pfaff lattice hierarchy in this paper.
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There are two different ways to derive those integrable hierarchies, as
mentioned in the introduction part. One is to express polynomials by τ -
functions. By substituting τ -functions into recurrence relations, integrable hi-
erarchy involving neighboring τ -functions could be obtained. Another method
is to make use of bilinear form and Cauchy transform. By using these methods,
some famous integrable equations, such as the so-called Pfaff–Toda lattice and
modified coupled KP equations, are derived. It is also shown that 2-component
Pfaff lattice hierarchy derived from MSOPs is equivalent to Takasaki’s Pfaff–
Toda hierarchy.

4.1. From Recurrence Relations (3.10a)–(3.10d) to integrable hierarchy

In this part, τ -function expressions for the linear forms of MSOPs are given
to characterize the corresponding integrable hierarchy. To this end, we first
demonstrate an explicit connection between the linear forms of MSOPs and
2-component Pfaffian τ -functions.

Proposition 4.1. The linear forms R
(i)
(v1,v2)

(x; t, s) (i = 1, 2) of multiple skew-
orthogonal polynomials could be alternatively written by

d
(i)
(v1,v2)

R
(i)
(v1,v2)

(x; t, s) = (−1)v1−1ω1(x; t)xv1−1τ(v1−1,v2)(t − [x−1], s)

+ ω2(x; s)xv2−1τ(v1,v2−1)(t, s − [x−1]),
(4.1)

where symbol [α] represents the Miwa variable

[α] =
(

α,
α2

2
, · · · ,

αn

n
, · · ·

)
.

Proof. One could prove such a formula by column expansion to the moment
matrix and make use of Schur functions acting on moments; see, e.g., [6, prop
2.2]. In our proof, we adopt the method by directly acting Schur functions to τ -
functions. Recall that the linear forms of MSOPs admit the Pfaffian expression

d
(i)
(v1,v2)

R
(i)
(v1,v2)

(x; t, s) = Pf(0(1), · · · , v1 − 1(1), 0(2), · · · , v2 − 1(2), x).

If we expand this formula from x, then we have

d
(i)
(v1,v2)

R
(i)
(v1,v2)

(x; t, s) = ω1(x; t)
∑
i∈I1

(−1)ixipf(I1\{i}, I2)

+ ω2(x; s)
∑
i∈I2

(−1)v2−1−ixipf(I1, I2\{i}),
(4.2)

index set I1 = {0(1), · · · , v1 − 1(1)} and I2 = {0(2), · · · , v2 − 1(2)}. Therefore,
to demonstrate the equivalence between (4.1) and (4.2), one needs to verify the
formula

xv1−1τ(v1−1,v2)(t − [x−1], s) =
∑
i∈I1

(−1)v1−1−ixipf(I1\{i}, I2). (4.3)

It is known that the left-hand side in the above formula could be written as

τ(v1−1,v2)(t − [x−1], s) = e−ξ(∂̃t,x
−1)τ(v1−1,v2) =

∑
k≥0

pk(−∂̃t)τ(v1−1,v2)x
−k,
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where ∂̃t = (∂t1 , ∂t2/2, · · · ), ξ(t, x) =
∑∞

i=1 tix
i and pk are elementary sym-

metric functions defined by

eξ(t,x) =
∑
k≥0

pk(t)xk. (4.4)

Moreover, due to Proposition B.1 in Appendix, we know the fact that

pk(−∂̃t)τ(v1−1,v2) = Pf(0(1), · · · , ̂v1 − k(1), · · · , v
(1)
1 , 0(2), · · · , v

(2)
2 ),

where î means that the index i is missed, and then, equation (4.3) holds. �

Remark 4.2. According to the proof, we know that

d
(i)
(v1,v2)

R
(i)
(v1,v2)

(x; t, s) = (−1)v1−1ω1(x; t)
v1−1∑
�=0

(
p�(−∂̃t)τ(v1−1,v2)(t, s)

)
xv1−1−�

+ ω2(x; s)
v2−1∑
�=0

(
p�(−∂̃s)τ(v1,v2−1)(t, s)

)
xv2−1−�.

As a direct corollary, we have that

Corollary 4.3. R̃
(i)
(v1,v2)

(x; t, s) (i = 1, 2) could be expressed in terms of τ -
functions as

d
(1)
(v1,v2)

R̃
(1)
(v1,v2)

(x; t, s) = ∂t1

(
d
(1)
(v1,v2)

R̃
(1)
(v1,v2)

(x; t, s)
)

= (−1)v1−1ω1(x; t)
v1−1∑
�=0

(
∂t1p�(−∂̃t)τ(v1−1,v2)(t, s)

)
xv1−1−�

+ (−1)v1−1ω1(x; t)
v1−1∑
�=0

(
p�(−∂̃t)τ(v1−1,v2)(t, s)

)
xv1−�

+ ω2(x; s)
v2−1∑
�=0

(
∂t1p�(−∂̃s)τ(v1,v2−1)(t, s)

)
xv2−1−�,

d
(2)
(v1,v2)

R̃
(2)
(v1,v2)

(x; t, s) = ∂s1

(
d
(2)
(v1,v2)

R̃
(2)
(v1,v2)

(x; t, s)
)

= (−1)v1−1ω1(x; t)
v1−1∑
�=0

(
∂s1p�(−∂̃t)τ(v1−1,v2)(t, s)

)
xv1−1−�

+ ω2(x; s)
v2−1∑
�=0

(
∂s1p�(−∂̃s)τ(v1,v2−1)(t, s)

)
xv2−1−�

+ ω2(x; s)
v2−1∑
�=0

(
p�(−∂̃s)τ(v1,v2−1)(t, s)

)
xv2−�.
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By taking these expressions into (3.10a), and comparing the coefficients
of xv1−jω1(x) and xv2−jω2(x) (j = 1, 2, · · · ), respectively, we obtain

τ(v1,v2−1)pj(−∂̃t)τ(v1+1,v2) = −τ(v1+1,v2)∂s1pj−1(−∂̃t)τ(v1−1,v2)

+ ∂s1τ(v1+1,v2)pj−1(−∂̃t)τ(v1−1,v2) + τ(v1,v2+1)pj(−∂̃t)τ(v1,v2−1), (4.5a)

τ(v1,v2−1)pj(−∂̃s)τ(v1+1,v2) = τ(v1+1,v2)

(
∂s1pj−1(−∂̃s) + pj(−∂̃s)

)
τ(v1,v2−1)

− ∂s1τ(v1+1,v2)pj−1(−∂̃s)τ(v1,v2−1) + τ(v1,v2+1)pj−2(−∂̃s)τ(v1+1,v2−2).
(4.5b)

Moreover, we read from (3.10c) that

∂t1τ(v1,v2−1)pj−1(−∂̃t)τ(v1−1,v2) = τ(v1,v2−1)

(
∂t1pj−1(−∂̃t) + pj(−∂̃t)

)
τ(v1−1,v2)

− τ(v1−1,v2)pj(−∂̃t)τ(v1,v2−1) + τ(v1+1,v2)pj−2(−∂̃t)τ(v1−2,v2−1), (4.6a)

∂t1τ(v1,v2−1)pj−1(−∂̃s)τ(v1,v2−1) = τ(v1,v2−1)∂t1pj−1(−∂̃s)τ(v1,v2−1)

+ τ(v1−1,v2)pj−2(−∂̃s)τ(v1+1,v2−2) − τ(v1+1,v2)pj−2(−∂̃s)τ(v1−1,v2−2). (4.6b)

It should be remarked that integrable hierarchies (4.5a)–(4.5b) and (4.6a)–
(4.6b) are the same if one interchanges v1 with v2 and ∂t with ∂s. Moreover,
integrable hierarchies derived from (3.10b) and (3.10d) are the same with
(3.10a) and (3.10c). Therefore, it is reasonable to regard (4.5a)–(4.6b) as a
2-component Pfaff lattice hierarchy with neighboring lattices.

There are some integrable lattices obtained from those hierarchies. The
first equation of Pfaff–Toda lattice in (3.11) could be obtained from (4.5a) by
taking j = 1, and the second one could be obtained from (4.6b) by taking
j = 2. Besides, one could obtain another non-trivial simple example in (4.5b)
when j = 2, which reads

(Ds2 + D2
s1

)τ(v1,v2−1) · τ(v1+1,v2) = 2τ(v1,v2+1)τ(v1+1,v2−2). (4.7)

This is the bilinear form of the so-called modified coupled KP equation, play-
ing an important role in the study of commutativity of Pfaffianization and
Bäcklund transformation [34].

4.2. Bilinear Identities: from Bilinear form to Cauchy Transforms

In last subsection, we derived a 2-component Pfaff lattice hierarchy by directly
using the recurrence relations of MSOPs and neighboring Pfaffian τ -functions.
In this part, we find another approach to deduce more general integrable lattice
hierarchies from the perspective of Cauchy transforms. Firstly, let’s introduce
a Cauchy transform with respect to a non-degenerate bilinear form.

Proposition 4.4. Given a non-degenerate bilinear form 〈·, ·〉 : R[x] × R[y] → R

and an analytic weight function ψ(x), then for an integrable function g(x), a
Cauchy transform of g(x) with respect to the bilinear form is defined by

Cψg(z) =
〈

ψ(x)
x − z

, g(y)
〉

.
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Moreover, for any analytic function f(x), one has

〈f(x)ψ(x), g(y)〉 =
1

2πi

∮
C∞

f(z)Cψg(z)dz,

where C∞ is a circle around the infinity.

Proof. By assuming that f(z) is analytic, we have the expansion f(z) =∑∞
i=0 fiz

i, and thus,

1
2πi

∮
C∞

f(z)Cψg(z)dz =
1

2πi

∮
C∞

∞∑
i=0

fiz
i

∞∑
j=0

1
zj+1

〈xjψ(x), g(y)〉dz

=
∞∑

i=0

fi〈xiψ(x), g(y)〉 = 〈f(x)ψ(x), g(y)〉.

�

Therefore, by taking 〈·, ·〉 as a skew symmetric bilinear form, i.e.,

〈f(x), g(y)〉 =
∫

γ×γ

f(x)S(x, y)g(y)dxdy, S(x, y) = −S(y, x),

one could define a corresponding Cauchy transform

Cψg(z) =
∫

γ×γ

ψ(z)
x − z

S(x, y)g(y)dxdy. (4.8)

Moreover, the Cauchy transforms of MSOPs admit the following closed ex-
pressions.

Proposition 4.5. If R
(i)
(v1,v2)

(x; t, s) (i = 1, 2) are linear forms of multiple skew-
orthogonal polynomials defined in Proposition 3.2 with weights ω1(x; t) and
ω2(x; s), then we have

Cω1

(
d
(i)
(v1,v2)

R
(i)
(v1,v2)

)
= (−1)v1z−(v1+1)τ(v1+1,v2)(t + [z−1], s),

Cω2

(
d
(i)
(v1,v2)

R
(i)
(v1,v2)

)
= z−(v2+1)τ(v1,v2+1)(t, s + [z−1]).

Proof. We prove the first equation, and the second one could be similarly ver-
ified. By using (3.2) and (4.8), we have

Cω1

(
d
(i)
(v1,v2)

R
(i)
(v1,v2)

)
=
∫

γ×γ

ω1(x; t)
x − z

S(x, y)Pf(0(1), · · · , v1 − 1(1), 0(2)

, · · · , v2 − 1(2), y)dxdy

= −
∞∑

i=0

z−(i+1)

∫
γ×γ

xiω1(x; t)S(x, y)Pf(0(1), · · · , v1 − 1(1), 0(2)

, · · · , v2 − 1(2), y)dxdy

= −
∞∑

i=0

z−(i+1)
〈
pf(i(1), x),Pf(0(1), · · · , v1 − 1(1), 0(2), · · · , v2 − 1(2), y)

〉
.
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Then from the skew orthogonality, when i ≤ v1 − 1, the above skew inner
product is equal to zero. Therefore, the above formula is equal to

−
∞∑

i=v1

(−1)v2z−(i+1)Pf(0(1), · · · , v1 − 1(1), i(1), 0(2), · · · , v2 − 1(2))

= (−1)v1z−(v1+1)
∞∑

i=0

z−ipi(∂̃t)τ(v1+1,v2),

which is the expansion of the desired formula. �

In the followings, we show how to derive a bilinear integrable hierarchy
by Cauchy transforms.

Proposition 4.6. Two-component τ -functions {τ(i,j)(t, s)}i,j∈N with i+ j ∈ 2N

satisfy bilinear identity

(−1)u1+v1

∮
C∞

eξ(t−t′,z)zv1−u1−2τ(v1−1,v2)(t − [z−1], s)τ(u1+1,u2)(t
′ + [z−1], s′)dz

+ (−1)u1+v1

∮
C∞

eξ(t′−t,z)zu1−v1−2τ(v1+1,v2)(t + [z−1], s)τ(u1−1,u2)(t
′

× −[z−1], s′)dz

=

∮
C∞

eξ(s−s′,z)zv2−u2−2τ(v1,v2−1)(t, s − [z−1])τ(u1,u2+1)(t
′, s′ + [z−1])dz

+

∮
C∞

eξ(s′−s,z)zu2−v2−2τ(v1,v2+1)(t, s + [z−1])τ(u1,u2−1)(t
′, s′ − [z−1])dz,

(4.9)

which is valid for arbitrary t, t′, s, s′ ∈ C.

Proof. Since 〈·, ·〉 is a skew inner product, we know that

〈R(1)
(v1,v2)

(x; t, s), R(1)
(u1,u2)

(y; t′, s′)〉 = −〈R(1)
(u1,u2)

(x; t′, s′), R(1)
(v1,v2)

(y; t, s)〉,

which is true for arbitrary t, t′, s, s′ ∈ C and |�u|, |�v| ∈ 2N + 1. By multiplying
d
(1)
(u1,u2)

d
(1)
(v1,v2)

on both sides and expanding the linear forms of MSOPs in terms
of τ -function according to Prop. 4.1, we have

(−1)v1−1
〈
xv1−1τ(v1−1,v2)(t − [x−1], s)eξ(t,x)ω1(x), d(1)(u1,u2)

R(u1,u2)(y; t′, s′)
〉

+
〈
xv2−1τ(v1,v2−1)(t, s − [x−1])eξ(s,x)ω2(x), d(1)(u1,u2)

R(u1,u2)(y; t′, s′)
〉

= (−1)u1

〈
xu1−1τ(u1−1,u2)(t

′ − [x−1], s′)eξ(t′,x)ω1(x), d(1)(v1,v2)
R(v1,v2)(y; t, s)

〉

−
〈
xu2−1τ(u1,u2−1)(t′, s′ − [x−1])eξ(s′,x)ω2(x), d(1)(v1,v2)

R(v1,v2)(y; t, s)
〉

.
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Then by realizing that ω1(x; t) = eξ(x;t−t′)ω1(x; t′) and according to Proposi-
tion 4.4, we have

(−1)
v1−1 1

2πi

∮
C∞

e
ξ(t−t′,z)

z
v1−1

τ(v1−1,v2)(t − [z
−1

], s)Cω1

(
d
(1)
(u1,u2)R

(1)
(u1,u2)

)
(z; t

′
, s

′
)dz

+
1

2πi

∮
C∞

e
ξ(s−s′,z)

z
v2−1

τ(v1,v2−1)(t, s − [z
−1

])Cω2

(
d
(1)
(u1,u2)R

(1)
(u1,u2)

)
(z; t

′
, s

′
)dz

= (−1)
u1

1

2πi

∮
C∞

e
ξ(t′−t,z)

z
u1−1

τ(u1−1,u2)(t
′ − [z

−1
], s

′
)Cω1

(
d
(1)
(v1,v2)R

(1)
(v1,v2)

)
(z; t, s)dz

− 1

2πi

∮
C∞

e
ξ(s′−s,z)

z
u2−1

τ(u1,u2−1)(t
′
, s

′ − [z
−1

])Cω2

(
d
(1)
(v1,v2)R

(1)
(v1,v2)

)
(z; t, s)dz.

Taking a substitution of Cauchy transform in Prop. 4.5 into the above formula,
we complete the proof. �

Remark 4.7. Bilinear identity (4.9) should coincide with [54, eq. (2.1)] if one
changes z to z−1 and transforms the contour around the infinity into a circle
around zero.

If we take the variable transformations

t �→ t − α, t′ �→ t + α, s �→ s − β, s′ �→ s + β

and realize

τ(m,n)(t + α + [z−1], s + β)τ(u,v)(t − α − [z−1], s − β)

= e
∑∞

i=1 αiDti
+βiDsi

+ξ(D̃t,z
−1)τ(m,n)τ(u,v)

for arbitrary m + n, u + v ∈ 2N + 1, then the identity (4.9) becomes

(−1)u1+v1

∮
C∞

e−2ξ(α,z)zv1−u1−2e
∑∞

i=1(αiDti
+βiDsi

)−ξ(D̃t,z−1)τ(u1+1,u2) · τ(v1−1,v2)dz

+ (−1)u1+v1

∮
C∞

e2ξ(α,z)zu1−v1−2e
∑∞

i=1(αiDti
+βiDsi

)+ξ(D̃t,z−1)τ(u1−1,u2) · τ(v1+1,v2)

=

∮
C∞

e−2ξ(β,z)zv2−u2−2e
∑∞

i=1(αiDti
+βiDsi

)+ξ(D̃s,z−1)τ(u1,u2+1) · τ(v1,v2−1)dz

+

∮
C∞

e2ξ(β,z)zu2−v2−2e
∑∞

i=1(αiDti
+βiDsi

)−ξ(D̃s,z−1)τ(u1,u2−1) · τ(v1,v2+1)dz.

Therefore, according to the residue theorem, it is equivalent to

(−1)u1+v1

∞∑
n=0

pn(−2α)pn+v1−u1−1(D̃t)e
∑∞

i=1 αiDti
+βiDsi τ(u1+1,u2) · τ(v1−1,v2)

+ (−1)u1+v1

∞∑
n=0

pn(2α)pn+u1−v1−1(−D̃t)e
∑∞

i=1 αiDti
+βiDsi τ(u1−1,u2) · τ(v1+1,v2)

=
∞∑

n=0

pn(−2β)pn+v2−u2−1(D̃s)e
∑∞

i=1 αiDti
+βiDsi τ(u1,u2+1) · τ(v1,v2−1)

+
∞∑

n=0

pn(2β)pn+u2−v2−1(−D̃s)e
∑∞

i=1 αiDti
+βiDsi τ(u1,u2−1) · τ(v1,v2+1),

where {pk}k≥0 are elementary symmetric functions defined by (4.4) and
Dt, Ds are bilinear operators given by (3.12).
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Therefore, by comparing with the coefficients of αm
1 βn

1 for m,n ≥ 0, we
obtain the following integrable lattice hierarchies

(−1)u1+v1
1

n!
Dn

s1

⎛
⎝ ∑

k+l=m,k,l≥0

(−2)k

l!
pk+v1−u1−1(D̃t)D

l
t1

⎞
⎠ τ(u1+1,u2) · τ(v1−1,v2)

+ (−1)u1+v1
1

n!
Dn

s1

⎛
⎝ ∑

k+l=m,k,l≥0

2k

l!
pk+u1−v1−1(−D̃t)D

l
t1

⎞
⎠ τ(u1−1,u2) · τ(v1+1,v2)

=
1

m!
Dm

t1

⎛
⎝ ∑

k+l=n,k,l≥0

(−2)k

l!
pk+v2−u2−1(D̃s)D

l
s1

⎞
⎠ τ(u1,u2+1) · τ(v1,v2−1)

+
1

m!
Dm

t1

⎛
⎝ ∑

k+l=n,k,l≥0

2k

l!
pk+u2−v2−1(−D̃s)D

l
s1

⎞
⎠ τ(u1,u2−1) · τ(v1,v2+1).

(4.10)

The first equation in (3.11) is re-derived if (u1, u2) = (v1, v2) and (m,n) =
(1, 1), and the second equation in (3.11) is re-derived if (u1, u2) = (v1 − 2, v2)
and (m,n) = (0, 1).

To conclude, we can give molecule solutions to the 2-component Pfaff
lattice hierarchy.

Proposition 4.8. The 2-component Pfaff lattice hierarchy (4.9) admits the fol-
lowing molecule solutions

τ(v1,v2) = Pf(0(1), · · · , v1 − 1(1), 0(2), · · · , v2 − 1(2)), v1, v2 ∈ N, v1 + v2 ∈ 2N

with τ(0,0) = 1. Moreover, those Pfaffian elements satisfy following time evo-
lutions

∂tn
pf(i(1), j(1)) = pf(i + n(1), j(1)) + pf(i(1), j + n(1)), ∂tn

pf(i(1), j(2))

= pf(i + n(1), j(2)),

∂sn
pf(i(2), j(2)) = pf(i + n(2), j(2)) + pf(i(2), j + n(2)), ∂sn

pf(i(1), j(2))

= pf(i(1), j + n(2)),

∂tn
pf(i(2), j(2)) = ∂sn

pf(i(1), j(1)) = 0.

In fact, the above time evolutions for Pfaffian elements completely char-
acterize the molecule solution of the 2-component Pfaff lattice. Thus, we give
the following remark to generalize the expression of 2-component Pfaffian τ -
function.

Remark 4.9. If we define Pfaffian elements as

pf(i(k), j(l)) =

∫
γ×γ

φ
(k)
i (x)φ

(l)
j (y)S(x, y)ωk(x)ωl(y)dxdy, i, j ∈ N, k, l = 1, 2,

(4.11)

where {φ
(1)
i (x)}i∈N and {φ

(2)
i (y)}i∈N are t and s-dependent functions, respec-

tively, such that

∂tn
φ
(1)
i (x) = φ

(1)
i+n(x), ∂sn

φ
(2)
j (y) = φ

(2)
j+n(y),
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then the Pfaffian

τ(v1,v2) = Pf(0(1), · · · , v1 − 1(1), 0(2), · · · , v2 − 1(2)), v1, v2 ∈ N, v1 + v2 ∈ 2N

is a solution to the 2-component Pfaff lattice hierarchy (4.9). Therefore, we
refer a Pfaffian with moments defined by (4.11) as a 2-component Pfaffian
τ -function.

5. An Application of 2-Component Pfaffian τ -Function into
Combinatorics

In this section, we consider a combinatorial explanation for the 2-component
Pfaffian τ -function considered in previous sections. In particular, we focus on
the non-intersecting paths induced by Pfaffian discussed in [53].

Let D = (V,E) be an acyclic directed graph. If (u, v) is a pair of vertices,
let P(u, v) denote the set of all directed paths from u to v. Moreover, given any
pair of r-tuples u = (u1, · · · , ur) and v = (v1, · · · , vr) of vertices, let P(u,v)
denote the set of r-tuples of paths P = (P1, · · · , Pr) with Pi ∈ P(ui, vi). In
particular, P(u,v) is said to be non-intersecting if any two different paths
Pi and Pj have no vertex in common. We denote P0(u,v) to be the non-
intersecting paths from u to v. We assume that u and v are ordered sets and
say u is D-compatible with v if every path P ∈ P(ui, vl) intersects with path
Q ∈ P(uj , vk) whenever i < j and k < l.

Let’s denote w(P(u,v)) as the weight of an r-tuple path P(u,v), which
is defined to be the product of the weights of its components. Moreover, one
can define corresponding generating function

h(u,v) = GF (P(u,v)) =
∑

P∈P(u,v)

w(P).

In particular, if u and v are two separate vertices, then h(u, v) means the
weight of generating function of all paths from u to v. It is known from [53,
Thm. 3.2] that the generating function of non-intersecting paths of certain
specified vertex sets could be written as a Pfaffian.

Proposition 5.1. Let u = (u1, · · · , ur) and v = (v1, · · · , vs) be sequences of
vertices in an acyclic digraph D, and assume that r + s is even. If I is a
totally ordered subset of V such that u is D-compatible with v ⊕ I, where v
and I are disjoint, then the generating function of non-intersecting paths from
u to points in v ⊕ I could be written as a Pfaffian

GF (P0(u,v; I)) = Pf

[
(QI(ui, uj))1≤i,j≤r (h(ui, vs+1−j))1≤i≤r,1≤j≤s

− (h(vs+1−j , ui))1≤i≤r,1≤j≤s 0s×s

]
.

In the above formula, QI(ui, uj) is defined by

QI(ui, uj) =
∑

x<y∈I

h(ui, x)h(uj , y) − h(ui, y)h(uj , x).
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In fact, the generating function of such non-intersecting paths is a very
special two-component Pfaffian τ -function discussed previously. To make a
brief connection, we have the following proposition.

Proposition 5.2. By assuming that

S(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

sgn(y − x), x, y ∈ I,
S1(x, y), x ∈ I, y ∈ u,
−S1(y, x), x ∈ u, y ∈ I
0, otherwise,

(5.1)

where S1(x, y) is given by the formula∑
x∈I

h(ui, x)S1(x, y) = δ(ui − y),

and taking that ω1(x) =
∑

xi∈I⊕v δxi
, ω2(x) =

∑
xi∈u δxi

, then we have

GF (P0(u,v; I)) = (−1)(s−1)s/2Pf

(
M

(1,1)
r,r M

(1,2)
r,s

M
(2,1)
s,r M

(2,2)
s,s

)

with

M (1,1)
r,r =

(∫
x,y∈V

S(x, y)h(ui, x)h(uj , y)ω1(x)ω1(y)dxdy

)
i,j=1,··· ,r

,

M (1,2)
r,s =

(∫
x,y∈V

S(x, y)h(ui, x)h(y, vj)ω1(x)ω2(y)dxdy

)
i=1,··· ,r,j=1,··· ,s

,

M (2,1)
s,r =

(∫
x,y∈V

S(x, y)h(x, vi)h(uj , y)ω2(x)ω1(y)dxdy

)
i=1,··· ,s,j=1,··· ,r

,

M (2,2)
s,s =

(∫
x,y∈V

S(x, y)h(x, vi)h(y, vj)ω2(x)ω2(y)dxdy

)
i,j=1,··· ,s

.

(5.2)

Proof. This is a constructive proof. One could verify it by noting that∫
x,y∈V

S(x, y)h(ui, x)h(uj , y)ω1(x)ω1(y)dxdy

=
∑

x,y∈I

sgn(y − x)h(ui, x)h(ui, y) = QI(ui, uj),

and that ∫
x,y∈V

S(x, y)h(ui, x)h(y, vj)ω1(x)ω2(y)dxdy

=
∫

y∈V

(∑
x∈I

S1(x, y)h(ui, x)

)
h(y, vj)w2(y)dy

=
∫

y∈V

δ(y − ui)h(y, vj)w2(y)dy = h(ui, vj).

Therefore, by rearranging rows and columns, we obtain the generating function
of such non-intersecting paths. �
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It should be mentioned that moments given in (5.2) coincide with those in
(4.11) if we define φ

(1)
i (x) = h(ui, x) and φ

(2)
j (x) = h(x, vj). In fact, the result

of Stembridge has been generalized in [19]. It is said that the starting points
u could be generalized to a general region (u, J), while the ending points are
still (v, I). The total number of vertices in u and v is still r + s which is even.
Choose an ordering of the vertices in V such that for any u1 ∈ u (v1 ∈ v),
u2 ∈ J (v2 ∈ I), we have u1 < u2 (v1 < v2). If there are no paths from I to J ,
then the generating function of such non-intersecting paths is

GF (P0(u, J ;v, I)) = Pf
[

(QI(ui, uj))1≤i,j≤r (h(ui, vj))1≤i≤r,1≤j≤s

− (h(uj , vi))1≤i≤s,1≤j≤r (Qt
J(vi, vj))1≤i,j≤s

]
,

where Qt
J is defined as

Qt
J(vi, vj) =

∑
x<y∈J

h(x, vi)h(y, vj) − h(y, vi)h(x, vj).

For this general case, we have the following proposition.

Proposition 5.3. Let S1(x, y) be a function on v × u that satisfies

∑
x∈v

h(ui, x)S1(x, y) = δ(ui − y).

Then by taking

S(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sgn(y − x), x, y ∈ I or x, y ∈ J,

S1(x, y), x ∈ v, y ∈ u,

−S1(y, x), x ∈ u, y ∈ v,

0, otherwise,

(5.3)

and

w1(x) =
∑

xi∈I⊕v

δxi
, w2(x) =

∑
xi∈J⊕u

δxi
, (5.4)

we have

GF (P0(u, J ;v, I)) = Pf

(
M

(1,1)
r,r M

(1,2)
r,s

M
(2,1)
s,r M

(2,2)
s,s

)
,

where different Ms are given in (5.2) with kernels and weights defined in (5.3)
and (5.4), respectively.
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6. Concluding Remarks

In this paper, we develop ideas for how to properly define multiple skew-
orthogonal polynomials. This concept should be appealing, as multiple or-
thogonal polynomials have been widely investigated in the fields of random
matrices and integrable systems. As an application, we considered appropri-
ate time deformations on multiple skew-orthogonal polynomials, which were
turned out to have tight connections with Pfaff–Toda hierarchy considered
earlier by Takasaki. In our paper, we called the corresponding integrable hi-
erarchy as 2-component Pfaff lattice hierarchy because they could be viewed
from the perspective of multiple skew-orthogonal polynomials. As mentioned in
Takasaki’s paper [54], Pfaff lattice hierarchy and multi-component Pfaff lattice
hierarchy have many common properties. However, multiple skew-orthogonal
polynomials have compact recurrence relations shown in (3.10a)-(3.10d), which
play important roles in the formulation of spectral problems for 2-component
Pfaff lattice hierarchy. The solutions to this hierarchy are given by the Pfaffian
of moment matrices which are often known as Pfaffian τ -functions. An ana-
logue of this 2-component Pfaffian τ -function can be found in combinatorics
concerning the generating functions of non-intersecting paths in a digraph as
we discussed in the last section.

There are still interesting problems to continue. One is to seek for proper
applications into random matrix theory. Both the Gaussian and chiral unitary
models with a source are examples of determinantal point processes. In ran-
dom matrix theory, Pfaffian point processes also arise naturally, we expect to
find a random matrix model characterized by those multiple skew-orthogonal
polynomials. Besides, there are several 2-component BKP hierarchies [37,51]
and whether their solutions are related to those multiple skew-orthogonal poly-
nomials is worthy studying.
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Appendix A. Pfaffian identities

There are two different kinds of Pfaffian identities, c.f. [31, eq. 2.95’ & 2.96’]

pf(∗, a1, a2, a3, a4)pf(∗) = pf(∗, a1, a2)pf(∗, a3, a4)

− pf(∗, a1, a3)pf(∗, a2, a4) + pf(∗, a1, a4)pf(∗, a2, a3), (A.1a)

pf(�, a1, a2, a3)pf(�, a4) = pf(�, a2, a3, a4)pf(�, a1)

− pf(�, a1, a3, a4)pf(�, a2) + pf(�, a1, a2, a4)pf(�, a3), (A.1b)

where ∗ and � are sets of even and odd number symbols, respectively.

Appendix B. Derivative Formulas for Wronskian-Type Pfaffians

Wronskian-type Pfaffians are well investigated in soliton theory due to its wide
applications in coupled KP theory. In [31, Sec. 3.4], Pfaffian element pf(i, j)
satisfying the differential rules with respect to the variables t = (t1, t2, · · · ) by

∂tn
pf(i, j) = pf(i + n, j) + pf(i, j + n) (B.1)

was called Wronskian-type Pfaffians. For more details about Wronskian-type
Pfaffian and its discrete counterparts, please refer to [48]. It was shown that if
Pfaffian elements satisfy (B.1), then

∂tn
Pf(i0, i1, · · · , i2N−1) =

2N−1∑
k=0

Pf(i0, · · · , ik + n, · · · , i2N−1).

This was proved by induction.
In this paper, we need to introduce 2-component Pfaffian τ -functions,

indexed by I = {i0, · · · , in} and J = {j0, · · · , jm} with n,m ∈ N and n+m ∈
2N. Pfaffian elements in this case should satisfy a 2-component Wronskian-type
generalization (c.f. Prop 3.3)

∂tk
pf(iα, iβ) = pf(iα + k, iβ) + pf(iα, iβ + k),

∂tk
pf(iα, jβ) = pf(iα + k, jβ),

∂tk
pf(jα, jβ) = 0,

∂sk
pf(jα, jβ) = pf(jα + k, jβ) + pf(jα, jβ + k),

∂sk
pf(iα, jβ) = pf(iα, jβ + k),

∂sk
pf(iα, iβ) = 0,

and then, we have the following proposition.

Proposition B.1. If Pfaffian elements satisfy the above derivative relations,
then one has

∂tk
Pf(i0, · · · , in, j0, · · · , jm) =

n∑
α=0

Pf(i0, · · · , iα + k, · · · , in, j0, · · · , jm),

∂sk
Pf(i0, · · · , in, j0, · · · , jm) =

m∑
α=0

Pf(i0, · · · , in, j0, · · · , jα + k, · · · , jm).
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Proof. Here, we only prove the first equation by using induction, and the second
one can be similarly proved. Note that

∂tkPf(i0, · · · , in, j0, · · · , jm) = ∂tk

⎛
⎝∑

il∈I
(−1)l−1pf(i0, il)Pf(i1, · · · , îl, · · · , in, j0, · · · , jm)

+
∑

jl∈J
(−1)n+lpf(i0, jl)Pf(i1, · · · , in, j0, · · · , ĵl, · · · , jm)

⎞
⎠

where the first part is equal to∑
il∈I

(−1)l−1pf(i0 + k, il)Pf(i1, · · · , îl, · · · , in, j0, · · · , jm) (B.2a)

+
∑
il∈I

(−1)l−1pf(i0, il + k)Pf(i1, · · · , îl, · · · , in, j0, · · · , jm) (B.2b)

+
∑
il∈I

(−1)l−1pf(i0, il)
∑
α�=l

Pf(i1, · · · , iα + k, · · · , îl, · · · , in, j0, · · · , jm),

(B.2c)

while the derivative of the second part is equal to∑
jl∈J

(−1)n+lpf(i0 + k, jl)Pf(i1, · · · , in, j0, · · · , ĵl, · · · , jm) (B.3a)

+
∑
jl∈J

(−1)n+lpf(i0, jl)
n∑

α=1

Pf(i1, · · · , iα + k, · · · , in, j0, · · · , ĵl, · · · , jm).

(B.3b)

Therefore, by summing (B.2a) and (B.3a) up, one obtains

Pf(i0 + k, i1, · · · , in, j0, · · · , jm).

The summation of rest three equations is equal to
n∑

α=1

Pf(i0, · · · , iα + k, · · · , in, j0, · · · , jm),

and our proof is complete. �
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