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The Wasserstein Distance of Order 1 for
Quantum Spin Systems on Infinite Lattices
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Abstract. We propose a generalization of the Wasserstein distance of or-
der 1 to quantum spin systems on the lattice Z

d, which we call specific
quantum W1 distance. The proposal is based on the W1 distance for qu-
dits of De Palma et al. (IEEE Trans Inf Theory 67(10):6627–6643, 2021)
and recovers Ornstein’s d̄-distance for the quantum states whose marginal
states on any finite number of spins are diagonal in the canonical basis.
We also propose a generalization of the Lipschitz constant to quantum in-
teractions on Z

d and prove that such quantum Lipschitz constant and the
specific quantum W1 distance are mutually dual. We prove a new continu-
ity bound for the von Neumann entropy for a finite set of quantum spins
in terms of the quantum W1 distance, and we apply it to prove a continu-
ity bound for the specific von Neumann entropy in terms of the specific
quantum W1 distance for quantum spin systems on Z

d. Finally, we prove
that local quantum commuting interactions above a critical temperature
satisfy a transportation-cost inequality, which implies the uniqueness of
their Gibbs states.

1. Introduction

Let X be a finite set endowed with the distance D and let μ and ν be probability
distributions on X . A coupling between μ and ν is a probability distribution
on two copies of X with marginal distributions equal to μ and ν, respectively.
The theory of optimal mass transport considers μ and ν as distributions of a
unit amount of mass, and any coupling π prescribes a plan to transform the
distribution μ into the distribution ν, i.e., π(x, y) is the amount of mass that
is moved from x to y for any x, y ∈ X . Assuming that the cost of moving
a unit of mass from x to y is equal to D(x, y), the cost of the coupling π is
equal to E(X,Y )∼πD(X,Y ). The Monge–Kantorovich distance between μ and
ν is given by the minimum cost among all the couplings between μ and ν [1–
3]. Such distance is also called earth mover’s distance or Wasserstein distance
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of order 1, often shortened to W1 distance. The exploration of the theory of
optimal mass transport has led to the creation of an extremely fruitful field
in mathematical analysis, with applications ranging from differential geometry
and partial differential equations to machine learning [3–6].

The Hamming distance constitutes a natural choice for the distance D
when X is a set of finite strings over an alphabet. The W1 distance with re-
spect to the Hamming distance is called Ornstein’s d̄-distance and was first
considered in [7], together with its extension to stationary stochastic processes.
Originally introduced as a tool for the classification of stationary processes in
ergodic theory, since then it has found further applications in probability the-
ory, such as the statistical estimation of processes [8–12], information theory,
such as coding theorems for a large class of discrete noisy channels with mem-
ory and rate distortion theory [13,14] and recently also machine learning, as a
peculiar case of Wasserstein auto-encoders [15,16].

Ref. [17] proposed a generalization of the W1 distance to the space of the
quantum states of a finite set of qudits or spins, called quantum W1 distance.
The generalization is based on the notion of neighboring quantum states. Two
quantum states of a finite set of qudits are neighboring if they coincide after
discarding one qudit. The quantum W1 distance proposed in Ref. [17] is the
distance induced by the maximum norm that assigns distance at most 1 to any
couple of neighboring states. Such quantum W1 distance recovers Ornstein’s
d̄-distance in the case of quantum states diagonal in the canonical basis and
inherits most of its properties. The quantum W1 distance has found several ap-
plications in quantum information theory. In the context of statistical mechan-
ics of quantum spin systems, a connection with quantum speed limits [18] has
been found. Furthermore, transportation-cost inequalities have been proved,
which upper bound the square of the quantum W1 distance between a generic
quantum state and the Gibbs state of a local quantum commuting Hamilton-
ian with the relative entropy between the same states [19]. Such inequalities
have been applied to prove the equivalence between the microcanonical and
the canonical ensembles of quantum statistical mechanics [19] and to prove
limitations of variational quantum algorithms [20,21]. Moreover, the quantum
W1 distance has been applied to quantify the complexity of quantum circuits
[22]. In the context of quantum state tomography, the quantum W1 distance
has been employed as quantifier of the quality of the learned quantum state,
and the transportation-cost inequalities have led to an efficient algorithm to
learn Gibbs states of local quantum commuting Hamiltonians [23,24]. In the
context of quantum machine learning, the quantum W1 distance has been
employed as cost function of the quantum version of generative adversarial
networks [25–28]. Furthermore, the quantum W1 distance has been applied in
the context of differential privacy of a quantum computation [29,30]. Finally,
the quantum W1 distance has been extended to general composite systems
[31], which include the case of a finite tensor product of C∗ algebras, but also
provides a way to define a quantum W1 distance between quantum channels.
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1.1. Our Contribution

In this paper, we propose a generalization of the W1 distance to quantum spin
systems on the lattice Z

d [32–35] based on the quantum W1 distance of Ref.
[17]. Quantum spin systems on infinite lattices play a key role in quantum
statistical mechanics since they provide a model to study the thermodynamic
limit of infinite size of the system. Such limit is necessary to define phase
transitions and to identify the properties of the system that are independent
on boundary effects and boundary conditions, and more generally to make a
clear distinction between the local and the global properties of the system.

We define the specific quantum W1 distance between two translation-
invariant states as the limit of the distance between their marginal states on
an hypercube divided by the volume of the hypercube for the volume of the
hypercube tending to infinity (Definition 4.1). Contrarily to the trace distance,
the specific quantum W1 distance has an intensive nature that makes it suit-
able to capture the closeness of states that are locally similar but become
perfectly distinguishable globally, such as Gibbs states at close but different
temperatures. We provide in Definition 4.2 an equivalent definition of the
specific quantum W1 distance that does not require the limit. We propose a
generalization of the Lipschitz constant to quantum interactions on Z

d (Defini-
tion 5.2), and we prove in Theorem 6.1 that the specific quantum W1 distance
and the Lipschitz constant are mutually dual.

We prove in Proposition 7.1 that the specific quantum W1 distance recov-
ers Ornstein’s d̄-distance in the case of quantum states whose marginal states
on a finite number of spins are all diagonal in the canonical basis. We prove
in Proposition 8.1 a Poincaré inequality stating that for any product state,
the variance of the local Hamiltonians associated with an interaction grows
linearly with the volume. In Theorem 8.1, we prove a Gaussian concentration
inequality for the maximally mixed state of a finite set of spins, and we apply
it in Corollary 8.1 to prove an upper bound to the pressure of a quantum
interaction on Z

d in terms of its Lipschitz constant.
In Theorem 9.1, we prove a continuity bound for the von Neumann en-

tropy in terms of the W1 distance. The bound applies to quantum systems
made by a finite number of spins or qudits and states that the difference be-
tween the von Neumann entropy of any two quantum states divided by the
number of spins is upper bounded by a universal function of the ratio between
the W1 distance and the number of spins. The bound of Theorem 9.1 contains
only intensive quantities, and thanks to this property we apply it to prove a
continuity bound for the specific von Neumann entropy in terms of the specific
quantum W1 distance (Theorem 10.1). Theorem 9.1 improves [17, Theorem 1],
which is a weaker continuity bound for the von Neumann entropy in terms of
the W1 distance. Contrarily to the bound of Theorem 9.1, the bound of [17,
Theorem 1] cannot be expressed in terms of only intensive quantities, and
therefore such bound would not be sufficient to prove a continuity bound for
the specific von Neumann entropy. Besides the applications to quantum spin
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systems, Theorem 9.1 can be useful in quantum Shannon theory in the con-
text of rate-distortion theory, which addresses the problem of determining the
maximum compression rate of a quantum state if a certain level of distortion
in the recovered state is allowed [36–43].

In the remainder of the paper, we apply our W1 distance to study the
statistical mechanics of quantum spin systems on infinite lattices. We propose
a definition of w1-Gibbs state as a translation-invariant state such that the
W1 distance between its marginal state on a hypercube and the Gibbs state
of the local Hamiltonian on the same hypercube scales sublinearly with the
volume of the hypercube (Definition 11.1). If an interaction admits a w1-Gibbs
state, then such state is unique (Proposition 11.1) and is an equilibrium state
of the interaction (Proposition 11.2) in the sense of Kubo–Martin–Schwinger
[33]. In Sect. 12, we consider transportation-cost inequalities for interactions
on the quantum spin lattice Z

d. Such inequalities imply the uniqueness of
the Gibbs state of the interaction (Theorem 12.1) and a continuity bound
for the specific entropy in terms of the specific relative entropy with respect
to the Gibbs state (Proposition 12.2). Finally, we prove that transportation-
cost inequalities are satisfied by interactions that contain only terms acting on
single spins (Corollary 12.1) and geometrically local commuting interactions
above a critical temperature (Theorem 12.2 and Theorem 12.3).

The paper is structured as follows. In Sect. 2, we introduce quantum spin
systems on the lattice Z

d and in Sect. 3 we present the quantum W1 distance
and the quantum Lipschitz constant of Ref. [17]. In Sect. 4 and Sect. 5, we
generalize the quantum W1 distance and the quantum Lipschitz constant, re-
spectively, to quantum spin systems on the lattice Z

d. In Sect. 6, we prove the
duality between the specific quantum W1 distance and the Lipschitz constant
and in Sect. 7 we prove that the specific quantum W1 distance that we propose
recovers Ornstein’s d̄-distance. In Sect. 8, we prove the quantum Poincaré and
Gaussian concentration inequalities for product states. In Sect. 9, we prove
the continuity bound for the von Neumann entropy in terms of the W1 dis-
tance, and in Sect. 10, we prove the continuity bound for the specific entropy in
terms of the specific quantum W1 distance. In Sect. 11, we introduce the notion
of w1-Gibbs state. In Sect. 12, we present and prove the transportation-cost
inequalities for Gibbs states. We conclude in Sect. 13 presenting some perspec-
tive applications of this work. “Appendix A” recalls some relevant properties
of the quantum W1 distance. “Appendix B” contains some auxiliary proofs,
and “Appendix C” contains the proof of the auxiliary lemmas.

1.2. Related Approaches

Several quantum generalizations of optimal transport distances have been pro-
posed. One line of research by Carlen, Maas, Datta and Rouzé [44–50] defines
a quantum Wasserstein distance of order 2 from a Riemannian metric on the
space of quantum states based on a quantum analog of a differential structure.
Exploiting their quantum differential structure, Refs. [46,47,51] also define a
quantum generalization of the Lipschitz constant and of the Wasserstein dis-
tance of order 1. Alternative definitions of quantum Wasserstein distances of
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order 1 based on a quantum differential structure are proposed in Refs. [52–
55]. Refs. [56–58] propose quantum Wasserstein distances of order 1 based on
a distance between the vectors of the canonical basis.

Another line of research by Golse, Mouhot, Paul and Caglioti [59–69]
arose in the context of the study of the semiclassical limit of quantum me-
chanics and defines a family of quantum Wasserstein distances of order 2 built
on a quantum generalization of couplings. Such distances have been generalized
to von Neumann algebras [70–72].

Ref. [73] proposes another quantum Wasserstein distance of order 2 based
on couplings, with the property that each quantum coupling is associated to
a quantum channel. The relation between quantum couplings and quantum
channels in the framework of von Neumann algebras has been explored in [74].
The problem of defining a quantum Wasserstein distance of order 1 through
quantum couplings has been explored in Ref. [75].

The quantum Wasserstein distance between two quantum states can be
defined as the classical Wasserstein distance between the probability distribu-
tions of the outcomes of an informationally complete measurement performed
on the states, which is a measurement whose probability distribution com-
pletely determines the state. This definition has been explored for Gaussian
quantum systems with the heterodyne measurement in Refs. [76–78].

2. Quantum Spin Systems on Infinite Lattices

In this section, we introduce the setting of quantum spin systems on infinite
lattices and fix the notation for the paper. For more details, the reader is
encouraged to consult the books [32–35].

2.1. Algebra and States

We associate to each x ∈ Z
d the single-spin Hilbert space Hx = C

q. Let FZd

be the collection of all the finite subsets of Zd. We associate to each Λ ∈ FZd

the Hilbert space

HΛ =
⊗

x∈Λ

Hx. (2.1)

For each Λ ∈ FZd , we denote with UΛ the algebra of the linear operators acting
on HΛ equipped with the operator norm, which we denote with ‖ · ‖∞. For
any Λ′ ⊆ Λ, UΛ′ can be canonically identified with a subalgebra of UΛ. This
identification will always be implicit.

We denote with OΛ ⊂ UΛ the set of the self-adjoint linear operators
acting on HΛ, and with OT

Λ ⊂ OΛ the set of the traceless self-adjoint linear
operators acting on HΛ. We denote with SΛ ⊂ OΛ the set of the quantum
states acting on HΛ, i.e., the positive semidefinite linear operators with unit
trace, and with TrΛ the partial trace over HΛ. We say that ρ ∈ SΛ is a product
state if there exists a collection of states {ρx ∈ Sx}x∈Λ such that

ρ =
⊗

x∈Λ

ρx. (2.2)
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Some results of this paper do not require the lattice structure of Zd and apply
to generic finite spin systems. If Λ is a generic finite set, we still define HΛ,
TrΛ, UΛ, OΛ, OT

Λ and SΛ as above.
The strictly local algebra of the spin lattice Z

d is

Uloc
Zd =

⋃

Λ∈F
Zd

UΛ, (2.3)

and is equipped with the norm inherited from the operator norm of each UΛ.
The quasi-local algebra UZd is the completion of Uloc

Zd with respect to such norm,
which we still denote with ‖ · ‖∞. For any (not necessarily finite) Γ ⊆ Z

d, we
define

UΓ =
⋃

X∈F
Zd , X⊆Γ

UX ⊆ UZd , (2.4)

where the closure is with respect to the ‖ · ‖∞ norm in UZd . When Γ is finite
or Γ = Z

d, (2.4) is consistent with the previous definitions. We denote with
OΓ the set of the self-adjoint elements of UΓ.

A quantum state ρ of the spin lattice Z
d is a positive linear functional on

UZd with ρ(I) = 1. We denote the set of the quantum states of Zd with SZd .
Analogously, for any (not necessarily finite) Γ ⊆ Z

d, a quantum state ρ of Γ
is a positive linear functional on UΓ with ρ(I) = 1. We denote with SΓ the set
of the quantum states of Γ. If Γ is finite, this definition is consistent with the
previous one by setting for any A ∈ UΓ

ρ(A) = TrΓ [ρA] . (2.5)

Let Γ′ ⊆ Γ ⊆ Z
d and let ρ ∈ SΓ. The marginal state ρΓ′ of ρ on Γ′ is the

restriction of ρ on UΓ′ . If Γ is finite, we have

ρΓ′ = TrΓ\Γ′ρ. (2.6)

Since Uloc
Zd is dense in UZd by construction, any ρ ∈ SZd is completely deter-

mined by the collection of its marginal states (ρΛ)Λ∈F
Zd

. We say that ρ ∈ SZd

is a product state if for any Λ ∈ FZd the marginal state ρΛ is a product state.
We associate to each x ∈ Z

d the translation operator τx, which is the
automorphism of UZd that sends UΓ to UΓ+x for any Γ ⊆ Z

d. With some abuse
of notation, we denote with τx also the automorphism of SZd such that for any
ρ ∈ SZd and any A ∈ UZd we have

(τxρ)(τxA) = ρ(A). (2.7)

With some further abuse of notation, for any Γ ⊆ Z
d we denote with τx also

the isomorphism between SΓ and SΓ+x such that (2.7) holds for any ρ ∈ SΓ

and any A ∈ UΓ. We say that ρ ∈ SZd is translation invariant if τxρ = ρ for
any x ∈ Z

d. We denote with SI
Zd ⊂ SZd the set of the translation-invariant

quantum states of Zd.
For each a ∈ N

d
+, we denote with Λa the box

Λa =
{
x ∈ Z

d : −a ≤ x < a
}

, |Λa| =
d∏

i=1

2ai, (2.8)
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where inequalities between vectors hold for each component. Given a sequence(
a(n)

)
n∈N

⊂ N
d
+, we say that a(n) → ∞ if a

(n)
i → ∞ for any i = 1, . . . , d.

Definition 2.1 (Trace distance). The trace distance on SZd is the distance in-
duced by the norm on UZd : For any ρ, σ ∈ SZd ,

T (ρ, σ) =
1
2

sup {|ρ(A) − σ(A)| : A ∈ UZd , ‖A‖∞ ≤ 1} . (2.9)

Proposition 2.1. The trace distance on SZd is the supremum of the trace dis-
tances between the marginal states: For any ρ, σ ∈ SZd ,

T (ρ, σ) =
1
2

sup
Λ∈F

Zd

‖ρΛ − σΛ‖1 , (2.10)

where ‖ · ‖1 denotes the trace norm on UΛ given by

‖A‖1 = TrΛ
√

A†A, A ∈ UΛ. (2.11)

Proof. See Sect. B.1. �

Definition 2.2 (Specific entropy [33, Proposition 6.2.38]). The von Neumann
entropy of a quantum state ρ acting on a finite-dimensional Hilbert space is
[79–81]

S(ρ) = −Tr [ρ ln ρ] . (2.12)

The specific entropy of ρ ∈ SI
Zd is the entropy per site in the limit of infinite

volume:

s(ρ) = lim
a→∞

S(ρΛa
)

|Λa| = inf
a∈N

d
+

S(ρΛa
)

|Λa| . (2.13)

Definition 2.3 (Specific relative entropy [82]). The relative entropy [79–81] be-
tween the quantum states ρ and σ acting on a finite-dimensional Hilbert space
is

S(ρ‖σ) = −Tr [ρ (ln ρ − ln σ)] . (2.14)

The specific relative entropy between the states ρ, σ ∈ SI
Zd is the relative

entropy per site in the limit of infinite volume:

s(ρ‖σ) = lim
a→∞

S(ρΛa
‖σΛa

)
|Λa| , (2.15)

whenever the limit exists.

Remark 2.1. s(ρ‖σ) = 0 does not imply ρ = σ. Indeed, let ρΛ = |0〉〈0|⊗Λ and
σΛ = 1

2

(|0〉〈0|⊗Λ + |1〉〈1|⊗Λ
)

for any Λ ∈ FZd . Then, S(ρΛ‖σΛ) = ln 2 and
s(ρ‖σ) = 0.
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2.2. Interactions

An interaction Φ is a collection of observables (Φ(Λ))Λ∈F
Zd

, where Φ(Λ) ∈ OΛ

for any Λ ∈ FZd . We can associate to Φ the formal Hamiltonian

HΦ
Zd =

∑

Λ∈F
Zd

Φ(Λ). (2.16)

In general, the series (2.16) does not converge not even weakly, and HΦ
Zd cannot

be defined as an element of UZd .
We can define for any Λ ∈ FZd the local Hamiltonian on Λ with open

boundary conditions

HΦ
Λ =

∑

X⊆Λ

Φ(X) ∈ OΛ. (2.17)

An interaction Φ is translation invariant if Φ(Λ + x) = τx(Φ(Λ)) for any Λ ∈
FZd and any x ∈ Z

d. For r > 0, we denote with Br
Zd the set of translation-

invariant interactions satisfying

‖Φ‖r =
∑

0∈Λ∈F
Zd

er(|Λ|−1) ‖Φ(Λ)‖∞ < ∞. (2.18)

The specific energy observable of Φ ∈ Br
Zd is

EΦ =
∑

0∈Λ∈F
Zd

Φ(Λ)
|Λ| ∈ OZd (2.19)

and satisfies [33, Proposition 6.2.39]

lim
a→∞

1
|Λa|

∥∥∥∥∥HΦ
Λa

−
∑

x∈Λa

τxEΦ

∥∥∥∥∥
∞

= 0. (2.20)

Therefore, for any ρ ∈ SI
Zd we have that ρ(EΦ) is equal to the average energy

per site of ρ in the limit of infinite volume:

lim
a→∞

ρ
(
HΦ

Λa

)

|Λa| = ρ (EΦ) . (2.21)

2.3. Gibbs States

Let Φ ∈ Br
Zd . For any Λ ∈ FZd , the local Gibbs state of Φ on Λ with open

boundary conditions is the Gibbs state of HΦ
Λ :

ωΦ
Λ =

e−HΦ
Λ

TrΛe−HΦ
Λ

∈ SΛ. (2.22)

Since the temperature can always be reabsorbed in the interaction, in the
whole paper we set it to one.

Remark 2.2. The states
(
ωΦ

Λ

)
Λ∈F

Zd
defined in (2.22) are not necessarily the

marginal states of a single global state ω ∈ SZd .
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The pressure of Φ ∈ Br
Zd is [33, Theorem 6.2.40]

P (Φ) = lim
a→∞

ln TrΛa
e−HΦ

Λa

|Λa| = sup
ρ∈SI

Zd

(s(ρ) − ρ(EΦ)) . (2.23)

The states ρ ∈ SI
Zd that achieve the supremum in (2.23) are called equilibrium

states of Φ and satisfy the Kubo–Martin–Schwinger condition [33]. We denote
with Seq(Φ) the set of such states. For any Φ ∈ Br

Zd , Seq(Φ) is nonempty,
convex and compact with respect to the trace distance.

3. The Quantum W1 Distance

Ref. [17] introduced the following generalization of the Wasserstein distance
of order 1 and of the Lipschitz constant to quantum systems made by a finite
number of spins. Since Ref. [17] does not require the lattice structure of Zd, here
Λ denotes a fixed generic finite set. The quantum W1 distance is based on the
notion of neighboring quantum states. The states ρ, σ ∈ SΛ are neighboring
if there exists x ∈ Λ such that Trxρ = Trxσ. The quantum W1 norm is the
maximum norm that assigns distance at most 1 to each couple of neighboring
states:

Definition 3.1 (W1 norm). Let Λ be a finite set. We define for any Δ ∈ OT
Λ

‖Δ‖W1
=

1
2

min

{
∑

x∈Λ

∥∥∥Δ(x)
∥∥∥

1
: Δ(x) ∈ OT

Λ , TrxΔ(x) = 0,
∑

x∈Λ

Δ(x) = Δ

}
.

(3.1)

The quantum W1 distance on SΛ is the distance induced by the quantum
W1 norm: For any ρ, σ ∈ SΛ,

W1(ρ, σ) = ‖ρ − σ‖W1
. (3.2)

Definition 3.2 (Lipschitz constant). Let Λ be a finite set. We define the depen-
dence of H ∈ OΛ on the site x ∈ Λ as

∂xH = 2 min
HΛ\x∈OΛ\x

∥∥H − HΛ\x

∥∥
∞ . (3.3)

The quantum Lipschitz constant of H ∈ OΛ is

‖H‖L = max
x∈Λ

∂xH. (3.4)

Proposition 3.1 ([17, Proposition 8]). The quantum W1 norm and the quantum
Lipschitz constant are mutually dual, i.e., for any Δ ∈ OT

Λ we have

‖Δ‖W1
= max {TrΛ [ΔH] : H ∈ OΛ, ‖H‖L ≤ 1} . (3.5)
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4. The Quantum W1 Distance for Infinite Lattices

In this section, we extend the quantum Wasserstein distance of order 1 of Ref.
[17] to the quantum states of the spin lattice Z

d. As for the entropy and the
relative entropy, we define a specific quantum W1 distance, which we denote
with w1, as the W1 distance per site in the limit of infinite volume:

Definition 4.1 (Specific quantum W1 distance). For any ρ, σ ∈ SI
Zd we define

w1(ρ, σ) = lim
a→∞

‖ρΛa
− σΛa

‖W1

|Λa| . (4.1)

Remark 4.1. We define the specific quantum W1 distance only for translation-
invariant states since the limit (4.1) may not exist for generic states in SZd .

Proposition 4.1. The limit in (4.1) exists for any ρ, σ ∈ SI
Zd and is equal to

w1(ρ, σ) = sup
a∈N

d
+

‖ρΛa
− σΛa

‖W1

|Λa| . (4.2)

Moreover, w1 is a distance on SI
Zd .

Proof. For any a ∈ N
d
+, let

f(a) = ‖ρΛa
− σΛa

‖W1
. (4.3)

Given a ∈ N
d
+, k ∈ N and i ∈ {1, . . . , d}, let

b = (a1, . . . , ai + k, . . . , ad) , c = (a1, . . . , k, . . . , ad) . (4.4)

We have

Λb = (Λa − k ei) ∪ (Λc + ai ei) , (4.5)

where ei is the i-th vector of the canonical basis of R
d. Then, we get from

Proposition A.3 and from the translation invariance of ρ and σ

f(b) ≥ ‖ρΛa−kei
− σΛa−kei

‖W1
+ ‖ρΛc+aiei

− σΛc+aiei
‖W1

= f(a) + f(c).

(4.6)

Then, f is superadditive in each variable, and we have from the multidimen-
sional Fekete’s lemma Lemma C.1

w1(ρ, σ) = lim
a→∞

f(a)
|Λa| = sup

a∈N
d
+

f(a)
|Λa| . (4.7)

The nonnegativity and the triangle inequality for w1 follow from the
nonnegativity and the triangle inequality for W1, respectively. Let w1(ρ, σ) =
0. Then, (4.2) implies

‖ρΛa
− σΛa

‖W1
= 0 ∀ a ∈ N

d
+, (4.8)

i.e., ρΛa
= σΛa

for any a ∈ N
d
+. Let Λ ∈ FZd , and let us choose a ∈ N

d
+ such

that Λ ⊆ Λa. Then,

ρΛ = TrΛa\ΛρΛa
= TrΛa\ΛσΛa

= σΛ, (4.9)

hence ρ = σ. �
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The specific quantum W1 distance is always upper bounded by the trace
distance:

Proposition 4.2. For any ρ, σ ∈ SI
Zd , we have

w1(ρ, σ) ≤ T (ρ, σ). (4.10)

Moreover, for any a ∈ N
d
+ we have

‖ρΛa
− σΛa

‖1 ≤ 2 |Λa| w1(ρ, σ). (4.11)

Proof. We have

w1(ρ, σ) = sup
a∈N

d
+

‖ρΛa
− σΛa

‖W1

|Λa|
(a)

≤ sup
a∈N

d
+

‖ρΛa
− σΛa

‖1

2

(b)

≤ T (ρ, σ), (4.12)

where (a) follows from Proposition A.1 and (b) follows from Proposition 2.1.
From Proposition A.1, we have for any a ∈ N

d
+

w1(ρ, σ) ≥ ‖ρΛa
− σΛa

‖W1

|Λa| ≥ ‖ρΛa
− σΛa

‖1

2 |Λa| . (4.13)

The claim follows. �

The specific quantum W1 distance admits an equivalent definition, which
directly generalizes Definition 3.1 to infinite lattices and does not require the
limit over hypercubes.

Definition 4.2. We define for any σ, ρ ∈ SI
Zd ,

‖ρ − σ‖w1
= inf

{
c ≥ 0 : ∃ ρ′, σ′ ∈ SZd : ρ′

Zd\0 = σ′
Zd\0 ,

ρΛ − σΛ = c
∑

x∈Λ

(τxρ′)Λ − (τxσ′)Λ ∀Λ ∈ FZd

}
. (4.14)

Let us collect some basic properties of the quantity defined above.

Proposition 4.3. The infimum in (4.14) is attained for some c ≥ 0, ρ′, σ′ ∈
SZd . Moreover, given sequences (ρn)n∈N, (σn)n∈N ⊆ SI

Zd weakly converging,
respectively, toward ρ and σ, then

‖ρ − σ‖w1 ≤ lim inf
n→∞ ‖ρn − σn‖w1 . (4.15)

Proof. Both statements follow from the weak sequential compactness of SZd ,
together with the fact that for every Λ ∈ FZd , the restriction map on states
ρ �→ ρΛ is weakly continuous. Considering a sequence (cn, ρ′

n, σ′
n)n∈N such

that limn cn = ‖ρ − σ‖w1 and, using compactness to extract converging sub-
sequences, assume that limn ρ′

n = ρ′, limn σ′
n = σ′. By continuity, we deduce

that c, ρ′, σ′ satisfy the conditions in (4.14), hence they are minimizers. A
similar argument gives (4.15). �

The rest of this section is devoted to showing the equivalence between
Definition 4.1 and Definition 4.2.
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Theorem 4.1. For σ, ρ ∈ SI
Zd , we have

w1(ρ, σ) = ‖ρ − σ‖w1 . (4.16)

We split the proof into several intermediate results. We begin with the
following upper bound.

Lemma 4.1 (Upper bound). For σ, ρ ∈ SI
Zd , we have

w1(ρ, σ) ≤ ‖ρ − σ‖w1 . (4.17)

Proof. Given c ≥ 0, ρ′, σ′ ∈ SZd as in the right-hand side of (4.14), for any
a ∈ N

d
+, we write the identity

ρΛa
− σΛa

=
∑

x∈Λa

c
(
ρ
(x)
Λa

− σ
(x)
Λa

)
, (4.18)

where we define, for x ∈ Λa, the states ρ
(x)
Λa

= (τxρ′)Λa
and σ

(x)
Λa

= (τxσ′)Λa
.

Using (2.6), it follows that

Trxρ
(x)
Λa

= Trx [(τxρ′)Λa
] = (τxρ′)Λa\x = τxρ′

(Λa−x)\0 , (4.19)

and similarly with σ
(x)
Λa

, so that Trxρ
(x)
Λa

= Trxσ
(x)
Λa

for every x ∈ Λa. Therefore,
by definition of W1 on SΛa

, we have the inequality

‖ρΛa
− σΛa

‖W1 ≤ c|Λa| . (4.20)

Dividing both sides by |Λa| and letting a → ∞, we deduce w1(ρ, σ) ≤ c, hence
(4.17). �

To establish the lower bound, we consider a periodic approximation of
the marginal states over a box Λa. We write, for any a ∈ N

d
+ and k ∈ Z

d,

2ak = (2aiki)d
i=1 . (4.21)

Proposition 4.4 (Periodic approximation). For σ, ρ ∈ SI
Zd , and a ∈ N

d
+, define

ρ̃a, σ̃a ∈ SI
Zd as follows:

ρ̃a =
1

|Λa|
∑

x∈Λa

τx

⊗

k∈Zd

τ2akρΛa
, σ̃a =

1
|Λa|

∑

x∈Λa

τx

⊗

k∈Zd

τ2akσΛa
.

(4.22)

Then, we have

‖ρ̃a − σ̃a‖w1 ≤ ‖ρΛa
− σΛa

‖W1

|Λa| . (4.23)

Proof. We introduce first some notation. For disjoint sets R,S ⊆ Z
d, write

αR,S =

(
⊗

k∈R

τ2akρΛa

)
⊗

(
⊗

k∈S

τ2akσΛa

)
, (4.24)

which we further simplify to αR = αR,S whenever S = Z
d\R. With the above

notation, we have

ρ̃a =
1

|Λa|
∑

x∈Λa

τxαZd , σ̃a =
1

|Λa|
∑

x∈Λa

τxα∅ . (4.25)
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For x ∈ Λa, let cx ≥ 0 and ρ
(x)
Λa

, σ
(x)
Λa

∈ SΛa
be such that

Trxρ
(x)
Λa

= Trxσ
(x)
Λa

, ρΛa
− σΛa

=
∑

x∈Λa

cx

(
ρ
(x)
Λa

− σ
(x)
Λa

)
, (4.26)

and introduce the states

ρ̃(x) = αRd,Sd
⊗ ρ

(x)
Λa

, σ̃(x) = αRd,Sd
⊗ σ

(x)
Λa

, (4.27)

where Rd, Sd are disjoint sets with Rd ∪ Sd = Z
d\0, to be specified in (4.41)

below (their precise definition will be relevant only later). Notice that

Trxρ̃(x) = αRd,Sd
⊗ Trxρ

(x)
Λa

= αRd,Sd
⊗ Trxσ

(x)
Λa

= Trxσ̃(x) , (4.28)

hence, for every z ∈ Z
d, Λ ∈ FZd with x + z /∈ Λ,

(
τz ρ̃

(x)
)

Λ
=

(
τzσ̃

(x)
)

Λ
, (4.29)

Moreover,
∑

x∈Λa

cx

(
ρ̃(x) − σ̃(x)

)
= αRd,Sd

⊗
∑

x∈Λa

cx

(
ρ
(x)
Λa

− σ
(x)
Λa

)
= αRd,Sd

⊗ (ρΛa
− σΛa

)

= αRd∪0 − αRd
. (4.30)

We assume that c =
∑

x∈Λa
cx > 0, otherwise (4.26) yields ρΛa

= σΛa

hence ρ̃a = σ̃a and (4.23) holds since ‖ρ̃a − σ̃a‖w1 = 0, by choosing c = 0 and
any ρ′ = σ′ ∈ SZd . Therefore, letting px = cx/c, we define the states

ρ′ =
∑

x∈Λ

pxτ−xρ̃(x) , σ′ =
∑

x∈Λ

pxτ−xσ̃(x) . (4.31)

By (4.28), we have the identity

Tr0ρ′ =
∑

x∈Λ

pxTr0τ−xρ̃(x) =
∑

x∈Λ

pxτ−xTrxρ̃(x) =
∑

x∈Λ

pxτ−xTrxσ̃(x) = Tr0σ′ .

(4.32)

If we prove that, for every Λ ∈ FZd ,

ρ̃a
Λ − σ̃a

Λ = c
∑

y∈Λ

((τyρ′)Λ − (τyσ′)Λ) , (4.33)

then

‖ρ̃a − σ̃a‖w1 ≤ c , (4.34)

and (4.23) follows. To show (4.33), we write explicitly

c
∑

y∈Λ

((τyρ′)Λ − (τyσ′)Λ) =
∑

y∈Λ

∑

x∈Λa

cx

(
(τy−xρ̃(x))Λ − (τy−xσ̃(x))Λ

)

=
∑

x∈Λa

cx

∑

y∈Λ

(τy−xρ̃(x))Λ − (τy−xσ̃(x))Λ

=
∑

x∈Λa

cx

∑

z∈Λ−x

(τz ρ̃
(x))Λ − (τzσ̃

(x))Λ . (4.35)
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Figure 1. Representation of R2 ⊆ Z
2 (left) and its trans-

lated R2 + e1 = R2 ∪ 0 (right)

where the last line follows letting z = y − x. Using (4.29), we extend the
summation over z ∈ Λ′, for any Λ′ ∈ FZd such that

Λ′ ⊇
⋃

x∈Λa

(Λ − x) . (4.36)

Then, exchanging again the order of summation and using (4.30),
∑

x∈Λa

cx

∑

z∈Λ′
(τz ρ̃

(x))Λ − (τzσ̃
(x))Λ =

∑

z∈Λ′

∑

x∈Λa

cx

(
(τz ρ̃

(x))Λ − (τzσ̃
(x))Λ)

)

(4.37)

=
∑

z∈Λ′
(τzαRd∪0)Λ − (τzαRd

)Λ (4.38)

We now specify the sets Λ′ and Rd in such a way that the above summation
is telescopic and yields (4.33). First, we let

Λ′ =
⋃

k∈Λb

(Λa + 2ak) , (4.39)

with b ∈ N
d
+ sufficiently large so that (4.36) holds. Then, recalling (4.25), to

obtain (4.33) it is sufficient to prove that
∑

k∈Λb

(τ2akαRd∪0)Λ − (τ2akαRd
)Λ = (αZd)Λ − (α∅)Λ . (4.40)

The following recursive definition for the subsets Rd ⊆ Z
d \ 0 serves exactly

this purpose. We let

R1 = Z− , Rd =
(
Z

d−1 × Z−
) ∪ (Rd−1 × 0) , (4.41)

so that

Rd ∪ {0} = Rd + e1 , (4.42)

where we write ei ∈ Z
d for the natural basis vectors, for i = 1, . . . , d (see

Fig. 1).
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Λb Λb

Figure 2. The rectangle Λb with b = (2, 2) is highlighted,
providing an example of the general identity (4.44): in this
case, (R2 +2e1)∩Λb (left) equals (R2 −2e1 + e2)∩Λb (right)

We decompose the right-hand side in (4.40) as a double summation, over
k1 and k\1 = (−b1, k2, . . . , kd), so that, for fixed k\1, we find a telescopic sum

∑

0≤k1<2b1

τ2ak\1αRd+e1 − τ2ak\1αRd =
∑

0≤k1<2b1

τ2ak\1αRd+(k1+1)e1 − τ2ak\1αRd+k1e1

= τ2ak\1αRd+2b1e1 − τ2ak\1αRd . (4.43)

Since Λ ⊆ Λ′, and

(Rd + 2b1e1 + k\1) ∩ Λb = (Rd + e2 + k\1) ∩ Λb , (4.44)

(see Fig. 2), it follows that

(τ2ak\1αRd+2b1e1)Λ − (τ2ak\1αRd
)Λ = (τ2ak\1αRd+e2)Λ − (τ2ak\1αRd

)Λ .

(4.45)

We further proceed decomposing the summation upon k2 and

k\1,2 = (−b1,−b2, k3, . . . , kd), (4.46)

so that we obtain a similar telescopic sum. By iterating the same argument up
to summation over kd, we eventually conclude that

∑

k∈Λb

(τ2akαRd∪0)Λ − (τ2akαRd
)Λ = (τ−2abαRd+2bded

)Λ − (τ−2abαRd
)Λ ,

(4.47)

which gives (4.40) since

(Rd + 2bded − 2ab) ∩ Λb = Λb , (Rd − 2ab) ∩ Λb = ∅ , (4.48)

thus the proof is completed. �

Using the above construction, we establish the following lower bound,
hence completing the proof of Theorem 4.1.

Lemma 4.2 (Lower bound). For σ, ρ ∈ SI
Zd , we have

w1(ρ, σ) ≥ ‖ρ − σ‖w1 . (4.49)
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Proof. With the notation of Proposition 4.4, we argue that the states ρ̃a weakly
converge to ρ. For any fixed b ∈ N

d
+, if x ∈ Λa is such that Λb ⊆ Λa + x, then

⎛

⎝τx

⊗

k∈Zd

τ2akρΛa

⎞

⎠

Λb

= ρΛb
. (4.50)

Therefore, denoting by Ga ⊆ Λa the set of such x’s, we write

ρ̃a
Λb

=
|Ga|
|Λa| ρΛb

+
∑

x∈Λa\Ga

⎛

⎝τx

⊗

k∈Zd

τ2akρΛa

⎞

⎠

Λb

(4.51)

Since |Ga| = |Λa|− |Λb|, it follows that, as a → ∞, ρ̃a
Λb

converge in SΛb
toward

ρΛb
. This holds for any b ∈ N

d
+, hence we obtain the desired weak convergence

in SZd of ρ̃a toward ρ. By (4.15), Proposition 4.4 and Proposition 4.1 we have
the inequalities

‖ρ − σ‖w1 ≤ lim inf
a→∞ ‖ρ̃a − σ̃a‖w1

≤ lim sup
a→∞

‖ρ̃a − σ̃a‖w1 ≤ sup
a∈N

d
+

‖ρΛa
− σΛa

‖W1

|Λa| = w1(ρ, σ) , (4.52)

and the proof of (4.49) is completed. �

As a consequence of the above argument, we also obtain that the peri-
odic approximations always converge with respect to the specific quantum W1

distance.

Corollary 4.1. With the notation of Proposition 4.4, we have

lim
a→∞ w1(ρ̃a, σ̃a) = w1(ρ, σ) . (4.53)

Proof. In (4.52), all inequalities must be equalities, hence the limit. �

5. The Quantum Lipschitz Constant for Infinite Lattices

In this section, we extend the definition of quantum Lipschitz constant of Ref.
[17] to interactions on the quantum spin lattice Z

d.
The first step toward defining a Lipschitz constant for interactions is to

extend to OZd the definition of dependence on a site:

Definition 5.1. For any H ∈ OZd and any x ∈ Z
d, we define

∂xH = 2 inf
A∈O

Zd\x

‖H − A‖∞ . (5.1)

Proposition 5.1. For any Λ ∈ FZd , any H ∈ OΛ and any x ∈ Λ, (3.3) and
(5.1) are equivalent.

Proof. See Sect. B.2. �

We can now define the Lipschitz constant for interactions:
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Definition 5.2 (Lipschitz constant). We define the Lipschitz constant of Φ ∈
Br
Zd as the dependence of the formal Hamiltonian HΦ

Zd on the site 0:

‖Φ‖L = ∂0

∑

0∈Λ∈F
Zd

Φ(Λ), (5.2)

where the series converges absolutely in the ‖ · ‖∞ norm.

The Lipschitz constant of Φ is also equal to the dependence on a fixed
site of the local Hamiltonian on a region in the limit of infinite volume:

Proposition 5.2. For any Φ ∈ Br
Zd and any x ∈ Z

d, we have

lim
a→∞ ∂xHΦ

Λa
= ‖Φ‖L . (5.3)

Proof. We have

∣∣‖Φ‖L − ∂xHΦ
Λa

∣∣ (a)
=

∣∣‖Φ‖L − ∂0H
Φ
Λa−x

∣∣ =

∣∣∣∣∣∣
‖Φ‖L − ∂0

∑

0∈Λ⊆Λa−x

Φ(Λ)

∣∣∣∣∣∣
(b)

≤ ∂0

∑

0∈Λ∈F
Zd :Λ �⊆Λa−x

Φ(Λ) ≤ 2
∑

0∈Λ∈F
Zd :Λ �⊆Λa−x

‖Φ(Λ)‖∞ ,

(5.4)

where (a) follows from the translation invariance of Φ and (b) follows since ∂0

is a seminorm. Since ∑

0∈Λ∈F
Zd

‖Φ(Λ)‖∞ ≤ ‖Φ‖r < ∞, (5.5)

we have

lim
a→∞

∣∣‖Φ‖L − ∂xHΦ
Λa

∣∣ ≤ 2 lim
a→∞

∑

0∈Λ∈F
Zd :Λ �⊆Λa−x

‖Φ(Λ)‖∞ = 0. (5.6)

The claim follows. �

5.1. Physical Equivalence

Different interactions may give rise to the same formal Hamiltonian. Such in-
teractions are called physically equivalent. The concept of physical equivalence
between interactions was formally introduced in [83–85]. We adopt the defini-
tion of [86, Section 4.7] and [82,87]. The reader can find more details in [88,
Section 2.4.6].

Definition 5.3. The interaction Φ, Ψ ∈ Br
Zd are physically equivalent if any of

the following equivalent conditions holds:
1. The local Hamiltonians of Φ and Ψ normalized by the number of sites

differ only by a constant in the limit of infinite volume:

lim
a→∞

∥∥∥∥
HΦ

Λ − HΨ
Λ

|Λa| − ω(EΦ−Ψ) I
∥∥∥∥

∞
= 0, (5.7)

where ω ∈ SI
Zd is the uniform distribution, i.e., ωΛ = IΛ

q|Λ| for any Λ ∈ FZd .
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2. Φ and Ψ generate the same time evolution: For any A ∈ UZd and any
t ∈ R, we have

lim
a→∞

∥∥∥eiHΦ
Λa

t Ae−iHΦ
Λa

t − eiHΨ
Λa

t Ae−iHΨ
Λa

t
∥∥∥

∞
= 0. (5.8)

3. For any A ∈ Uloc
Zd , we have

∑

Λ∈F
Zd

[Φ(Λ) − Ψ(Λ), A] = 0. (5.9)

Proposition 5.3. The interaction Φ ∈ Br
Zd is physically equivalent to the null

interaction iff ‖Φ‖L = 0.

Proof. • Let Φ be physically equivalent to the null interaction. Let

K =
∑

0∈Λ∈F
Zd

Φ(Λ), (5.10)

where the series converges absolutely in the ‖ ·‖∞ norm. We have for any
A ∈ U0

0 =
∑

Λ∈F
Zd

[Φ(Λ), A] =
∑

0∈Λ∈F
Zd

[Φ(Λ), A] = [K, A] , (5.11)

therefore K ∈ OZd \ 0 and ‖Φ‖L = ∂0K = 0.
• Let ‖Φ‖L = 0. Let K be as in (5.10). We have

2 inf
H∈O

Zd\0

‖K − H‖∞ = ∂0K = ‖Φ‖L = 0, (5.12)

therefore there exists a sequence
(
K(n)

)
n∈N

⊂ OZd\0 such that

lim
n→∞

∥∥∥K − K(n)
∥∥∥

∞
= 0. (5.13)

Then, K ∈ OZd\0, and for any A0 ∈ U0 we have
∑

Λ∈F
Zd

[Φ(Λ), A0] = [K, A0] = 0. (5.14)

Let us prove that for any Λ ∈ FZd and any AΛ ∈ UΛ we have
∑

X∈F
Zd

[Φ(X), AΛ] = 0 (5.15)

by induction on the size of Λ. We have already proved the claim for |Λ| =
1. Let us fix x ∈ Λ. By linearity, we can assume that AΛ = Ax ⊗ AΛ\x

with AΛ\x ∈ UΛ\x. We have from the inductive hypothesis
∑

X∈F
Zd

[
Φ(X), Ax ⊗ AΛ\x

]
=

∑

X∈F
Zd

(
[Φ(X), Ax] AΛ\x

+Ax

[
Φ(X), AΛ\x

])
= 0.

(5.16)

The claim follows.
�
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6. Duality for the w1 Distance

Using Theorem 4.1, we prove the following dual formulation for the specific
quantum W1 distance.

Theorem 6.1 (Duality). For ρ, σ ∈ SI
Zd , we have

w1(ρ, σ) = sup {ρ(EΦ) − σ(EΦ) : Φ ∈ Br
Zd , ‖Φ‖L ≤ 1} . (6.1)

The result extends Proposition 3.1 to infinite spin systems, but unlike
the finite dimensional case, in general there is no reason for the supremum in
(6.1) to be attained in Br

Zd .

Proof. Let Φ ∈ Br
Zd with ‖Φ‖L ≤ 1, and let c ≥ 0, ρ′, σ′ ∈ SZd be as in (4.14).

For a ∈ N
d
+ and Λ ⊆ Λa ∈ FZd , we have

ρ(Φ(Λ)) − σ(Φ(Λ)) = c
∑

x∈Λa

τxρ′(Φ(Λ)) − τxρ′(Φ(Λ))

= c
∑

x∈Λa

ρ′(Φ(Λ − x)) − σ′(Φ(Λ − x)) . (6.2)

If x /∈ Λ, then 0 /∈ Λ − x, hence ρ′(Φ(Λ − x)) = σ′(Φ(Λ − x)) because ρ′
Λ−x =

σ′
Λ−x. Therefore, the sum above can be restricted upon x ∈ Λ, i.e., 0 ∈ Λ − x.

We then sum upon Λ ∈ FZd and make a change of variable Λ′ = Λ − x,
obtaining

∑

0∈Λ⊆Λa

ρ(Φ(Λ)) − σ(Φ(Λ))
|Λ| = c

∑

0∈Λ⊆Λa

∑

x∈Λ

ρ′(Φ(Λ − x)) − σ′(Φ(Λ − x))
|Λ|

= c
∑

0∈Λ′∈F
Zd

(ρ′(Φ(Λ′)) − σ′(Φ(Λ′)))
ga(Λ′)
|Λ′| ,

(6.3)

where ga(Λ′) denotes the number of pairs (x,Λ) with x ∈ Λ ⊆ Λa, 0 ∈ Λ, such
that Λ′ = Λ − x. Notice that the above is a finite sum, since we may restrict
upon Λ′ ⊆ Λ2a, otherwise ga(Λ′) = 0. Moreover, for every such pair (x,Λ), it
must be x ∈ −Λ′, since 0 ∈ Λ. Therefore, for every Λ′ ∈ FZd with 0 ∈ Λ′,

0 ≤ ga(Λ′)
|Λ′| ≤ 1 , and lim

a→∞
ga(Λ′)
|Λ′| = 1 , (6.4)

since every pair (x,Λ) with x ∈ −Λ′ and Λ = x+Λ′ satisfies x ∈ Λ ⊆ Λa if a is
sufficiently large. Therefore, by the dominated convergence theorem for series,
we deduce that

lim
a→∞

∑

0∈Λ′∈F
Zd

ρ′(Φ(Λ′))
ga(Λ′)
|Λ′| =

∑

0∈Λ′∈F
Zd

ρ′(Φ(Λ′)) , (6.5)

and similarly for σ′. The left-hand side in (6.3) converges to ρ(EΦ) − σ(EΦ)
as a → ∞, hence we obtain the identity

ρ(EΦ) − σ(EΦ) = c
∑

0∈Λ∈F
Zd

ρ′(Φ(Λ)) −
∑

0∈Λ∈F
Zd

σ′(Φ(Λ)). (6.6)
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Given A ∈ OZd\0, since ρ′
Zd\0 = σ′

Zd\0, we have ρ′(A) = σ′(A), thus

∑

0∈Λ∈F
Zd

ρ′(Φ(Λ)) −
∑

0∈Λ∈F
Zd

σ′(Φ(Λ)) = ρ′

⎛

⎝
∑

0∈Λ∈F
Zd

Φ(Λ) − A

⎞

⎠

− σ′

⎛

⎝
∑

0∈Λ∈F
Zd

Φ(Λ) − A

⎞

⎠ (6.7)

≤ 2

∥∥∥∥∥∥

∑

0∈Λ∈F
Zd

Φ(Λ) − A

∥∥∥∥∥∥
∞

. (6.8)

Being A ∈ OZd\0 arbitrary, we deduce the inequality
∑

0∈Λ∈F
Zd

ρ′(Φ(Λ)) −
∑

0∈Λ∈F
Zd

σ′(Φ(Λ)) ≤ ‖Φ‖L ≤ 1 , (6.9)

which from (6.6) gives

sup {ρ(EΦ) − σ(EΦ) : Φ ∈ Br
Zd , ‖Φ‖L ≤ 1} ≤ c . (6.10)

Recalling that c and ρ′, σ′ are chosen as in (4.14), we deduce

sup {ρ(EΦ) − σ(EΦ) : Φ ∈ Br
Zd , ‖Φ‖L ≤ 1} ≤ ‖ρ − σ‖w1 , (6.11)

i.e., inequality ≥ holds in (6.1).
For the converse inequality, given any H ∈ OΛa

with ‖H‖L ≤ 1, we define
the translation-invariant interaction

ΦH(Λ) =
τxH

|Λa| (6.12)

if Λ = Λa + x for some x ∈ Z
d, ΦH(Λ) = 0 otherwise. Notice that ΦH ∈ Br

Zd

and

‖ΦH‖L ≤
∑

x∈Λa

∂0τ−xH

|Λa| ≤
∑

x∈Λa

∂xH

|Λa| ≤ ‖H‖L ≤ 1 . (6.13)

Since ρ, σ ∈ SI
Zd , we have ρ(τxH) = ρ(H), σ(τxH) = σ(H), hence

ρ(EΦH ) − σ(EΦH ) =
∑

x∈Λa

ρ(τ−xH) − σ(τ−xH)
|Λa|2 =

ρ(H) − σ(H)
|Λa| . (6.14)

The duality for the quantum W1 distance on the finite lattice Λa yields

‖ρΛa
− σΛa

‖W1

|Λa| = sup {ρ(EΦH ) − σ(EΦH ) : H ∈ OΛa
, ‖H‖L ≤ 1}

≤ sup {ρ(EΦ) − σ(EΦ) : Φ ∈ Br
Zd , ‖Φ‖L ≤ 1} . (6.15)

Letting a → ∞, we obtain inequality ≤ in (6.1), hence the thesis. �



Vol. 24 (2023) The Wasserstein distance of order 1 for quantum 4257

7. Recovery of Ornstein’s d̄-Distance

As in the finite dimensional case, the specific quantum W1 distance between
states recovers Ornstein’s d̄-distance, when restricted to diagonal states in the
canonical basis, i.e., ρ ∈ SZd such that, for every Λ ∈ FZd , ρΛ is diagonal in
the basis (|x〉〈x|)x∈[q]Λ .

There is indeed a correspondence between probability measures μ on [q]Z

and such states, defined by mapping μ to the diagonal state ρ ∈ SZd such that,
for every Λ ∈ FZd ,

ρΛ =
∑

x∈[q]Λ

μΛ(x) |x〉〈x| , (7.1)

where μΛ denotes the marginal of μ on Λ. Since states are determined by their
collection of marginals, (7.1) completely determines ρ.

The correspondence is clearly invertible, arguing similarly on the space of
probability measures [q]Z . With a slight abuse of notation, we write |x〉〈x| ∈
SZd for the diagonal state corresponding to the Dirac probability measure
concentrated at x ∈ [q]Z

d

, so that one can also write

ρ =
∫

[q]Zd
|x〉〈x|dμ(x) , (7.2)

where integration is in the sense of Pettis (also called weak integral).
Given two shift-invariant (i.e., stationary) probability measures μ, ν on

the infinite product space [q]Z
d

, Ornstein’s d̄-distance [7,13] is defined as

d̄(μ, ν) = sup
a∈N

d
+

W1 (μΛa
, νΛa

)
|Λa| , (7.3)

where, for Λ ∈ FZd , W1 denotes the classical optimal transport distance with
Hamming cost on [q]Λ, i.e.,

W1 (μΛ, νΛ) = min
π∈C(μΛ,νΛ)

∑

x,y∈[q]Λ

h(x, y)π(x, y), (7.4)

with C(μΛ, νΛ) being the set of couplings between the probability distributions
μΛ, νΛ, and

h(x, y) = |{i ∈ Λ : xi �= yi}| . (7.5)

This distance is usually defined only in the case d = 1, but the extension
to d ≥ 1 is straightforward and informally discussed already in [7, Appendix
4].

Proposition 7.1. Given stationary probability measures μ, ν on [q]Z
d

, let ρ,
σ ∈ SI

Zd denote the associated diagonal states,

ρ =
∫

[q]Zd
|x〉〈x|dμ(x), σ =

∫

[q]Zd
|x〉〈x|dν(x) . (7.6)

Then, we have

w1(ρ, σ) = d̄(μ, ν) . (7.7)
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Proof. For every Λ ∈ FZd , we have, by [17, Proposition 5],

‖ρΛ − σΛ‖W1
= W1 (μΛ, νΛ) . (7.8)

Choosing Λ = Λa, for a ∈ N
d
+, dividing by |Λa| and letting a → ∞ yields the

thesis. �

Ornstein’s d̄-distance (7.3) can be equivalently defined [13, Theorem 1]
as

d̄ (μ, ν) = min
π∈CI(μ,ν)

∑

x,y∈[q]

h(x, y)π0(x, y) , (7.9)

where CI(μ, ν) denotes the set of stationary couplings between the probability
distributions μ, ν, and π0 is the marginal density of π at 0. Definition 4.2 to-
gether with Theorem 4.1 provides a similar characterization for quantum spin
systems, where stationary couplings are replaced in (4.14) by representations
of the difference the states as series of translates. In fact, if the states ρ, σ are
diagonal, we can also restrict minimization in (4.14) to diagonal states ρ′, σ′,
corresponding to probability measures μ′, ν′, obtaining the following further
equivalent representation of Ornstein’s distance.

Corollary 7.1. Given stationary probability measures μ, ν on [q]Z
d

, we have

d̄(μ, ν) = min

{
c ≥ 0 : ∃μ′, ν′ probability measures on [q]Z

d

: μ′
Zd\0 = ν′

Zd\0 ,

μΛ − νΛ = c
∑

x∈Λ

(τxμ′)Λ − (τxν′)Λ ∀Λ ∈ FZd

}
. (7.10)

To our knowledge, duality for Orstein’s d̄-distance is not explicitly dis-
cussed in the literature. A result can be obtained directly from Theorem 6.1
for diagonal states, simply noticing that the supremum may run among in-
teractions Φ such that each Φ(Λ) is also diagonal, i.e., corresponding to a
function

f(Λ) : [q]Z
d → R , (7.11)

depending only on the coordinates in Λ. Let us denote by Br,diag
Zd the set of

translation invariant diagonal interactions satisfying (2.18). The Lipschitz con-
stant of f ∈ Br,diag

Zd coincides with the oscillation of the function on [q]Z
d

,

x �→
∑

0∈Λ∈F
Zd

f(Λ)(x) (7.12)

with respect to the 0-th coordinate, i.e.,

‖f‖L = sup

⎧
⎨

⎩
∑

0∈Λ∈F
Zd

(f(Λ)(x) − f(Λ)(y)) : x, y ∈ [q]Z
d

, xk = yk for every k ∈ Z
d \ 0

⎫
⎬

⎭ .

(7.13)
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The specific energy of f is identified with the function on [q]Z
d

,

x �→ ef (x) =
∑

0∈Λ∈F
Zd

f(Λ)(x)
|Λ| . (7.14)

With this notation, Theorem 6.1 yields the following result.

Corollary 7.2. Given stationary probability measures μ, ν on [q]Z , we have

d̄(μ, ν) = sup

{∫

[q]Zd
ef (x)dμ(x) −

∫

[q]Zd
ef (x)dν(x) : f ∈ Br,diag

Zd , ‖f‖L ≤ 1

}
.

(7.15)

8. Quantum Concentration Inequalities

8.1. Poincaré Inequality

In this section, we prove the following quantum Poincaré inequality stating
that for any interaction Φ, the variance of the local Hamiltonian on Λa on
a product state scales at most linearly with the volume of Λa in the limit
a → ∞, and the proportionality constant is upper bounded by the square of
the Lipschitz constant of Φ:

Proposition 8.1 (Poincaré inequality). Let ω ∈ SZd be a product state. Then,
for any interaction Φ ∈ Br

Zd we have

lim sup
a→∞

VarωΛa
HΦ

Λa

|Λa| ≤ ‖Φ‖2
L . (8.1)

8.1.1. Proof of Proposition 8.1. The proof of Proposition 8.1 is based on its
counterpart for quantum spin systems on finite lattices:

Proposition 8.2 (Quantum Poincaré inequality [20, Lemma F.1]). Let Λ be a
finite set, and let ω ∈ SΛ be a product state. Then, for any H ∈ OΛ we have

VarωH = Tr
[
ω (H − Tr [ω H] I)2

]
≤

∑

x∈Λ

(∂xH)2 . (8.2)

The key step in the proof of Proposition 8.1 is the following proposition,
which states that the Lipschitz constant of Φ is equal to the quadratic average
of the dependence of the local Hamiltonians of Φ on the sites in the limit of
infinite volume:

Proposition 8.3. Let Φ ∈ Br
Zd . Then,

lim
a→∞

1
|Λa|

∑

x∈Λa

(
∂xHΦ

Λa

)2
= ‖Φ‖2

L . (8.3)

Proof. We fix ε > 0. Let N ∈ N and 0 ∈ Λ1 ∈ FZd , . . . , 0 ∈ ΛN ∈ FZd such
that ∑

0∈Λ∈F
Zd , Λ �=Λ1, ..., ΛN

‖Φ(Λ)‖∞ < ε. (8.4)
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Let a ∈ N
d
+ such that Λ1 ∪ . . . ∪ ΛN ⊆ Λa and

∣∣∂0H
Φ
Λa

− ‖Φ‖L

∣∣ < 2 ε. (8.5)

We have
∑

0∈Λ∈F
Zd , Λ �⊆Λa

‖Φ(Λ)‖∞ < ε. (8.6)

Let us fix x ∈ Z
d. For any b ∈ N

d
+ with b ≥ a ± x, we have Λa ⊆ Λb − x and

∣∣∣∂xHΦ
Λb

− ∂0HΦ
Λa

∣∣∣
(a)
=

∣∣∣∂0HΦ
Λb−x − ∂0HΦ

Λa

∣∣∣
(b)

≤ ∂0

(
HΦ

Λb−x − HΦ
Λa

)
= ∂0

∑

Λ⊆Λb−x,Λ �⊆Λa

Φ(Λ)

= ∂0

∑

0∈Λ⊆Λb−x,Λ �⊆Λa

Φ(Λ) ≤ 2
∑

0∈Λ⊆Λb−x,Λ �⊆Λa

‖Φ(Λ)‖∞ < 2 ε ,

(8.7)

where (a) follows from the translation invariance of Φ and (b) follows since ∂0

is a seminorm. We then have
∣∣∂xHΦ

Λb
− ‖Φ‖L

∣∣ < 4 ε. (8.8)

Let b > a, such that any x ∈ Λb−a satisfies b ≥ a±x. We have from Lemma C.4
∑

x∈Λb

(
∂xHΦ

Λb

)2
=

∑

x∈Λb−a

(
∂xHΦ

Λb

)2
+

∑

x∈Λb\Λb−a

(
∂xHΦ

Λb

)2

≤ |Λb−a| (‖Φ‖L + 4 ε)2 + 4 (|Λb| − |Λb−a|) ‖Φ‖2
r , (8.9)

therefore

lim sup
b→∞

1

|Λb|
∑

x∈Λb

(
∂xHΦ

Λb

)2 ≤ lim sup
b→∞

( |Λb−a|
|Λb|

(‖Φ‖L + 4 ε
)2

+ 4

(
1 − |Λb−a|

|Λb|
)

‖Φ‖2
r

)

=
(‖Φ‖L + 4 ε

)2
. (8.10)

Since ε is arbitrary, we get

lim sup
b→∞

1
|Λb|

∑

x∈Λb

(
∂xHΦ

Λb

)2 ≤ ‖Φ‖2
L . (8.11)

If ‖Φ‖L = 0, the claim follows from (8.11). If ‖Φ‖L > 0, we can choose ε <
‖Φ‖L /4. We then have

∑

x∈Λb

(
∂xHΦ

Λb

)2 ≥
∑

x∈Λb−a

(
∂xHΦ

Λb

)2 ≥ |Λb−a| (‖Φ‖L − 4 ε)2 , (8.12)

and

lim inf
b→∞

1
|Λb|

∑

x∈Λb

(
∂xHΦ

Λb

)2 ≥ lim inf
b→∞

|Λb−a|
|Λb| (‖Φ‖L − 4 ε)2 = (‖Φ‖L − 4 ε)2 .

(8.13)

Since ε is arbitrary, we get

lim inf
b→∞

1
|Λb|

∑

x∈Λb

(
∂xHΦ

Λb

)2 ≥ ‖Φ‖2
L . (8.14)
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The claim follows. �

We can now conclude the proof of Proposition 8.1. We have from Propo-
sition 8.2 and Proposition 8.3

lim sup
a→∞

VarωΛa
HΦ

Λa

|Λa| ≤ lim sup
a→∞

1
|Λa|

∑

x∈Λa

(
∂xHΦ

Λa

)2
= ‖Φ‖2

L . (8.15)

The claim follows.

8.2. Gaussian Concentration Inequality

In this section, we prove the following Gaussian concentration inequality (The-
orem 8.1) for quantum spin systems on finite lattices and apply it to prove an
upper bound to the pressure of an interaction in terms of its Lipschitz constant
(Corollary 8.1).

Theorem 8.1 (Gaussian concentration inequality). Let Λ be a finite set and let
ω ∈ SΛ be a product state with full support. Then, for any H ∈ OΛ we have

ln TrΛeH+ln ω ≤ TrΛ [ω H] +
1
2

∑

x∈Λ

(∂xH)2 . (8.16)

Remark 8.1. Ref. [17] proved the following Gaussian concentration inequality:

Theorem 8.2 ([17, Theorem 3]). Let Λ be a finite set and let ω = IΛ
q|Λ| ∈ SΛ be

the uniform distribution. Then, for any H ∈ OΛ we have

ln TrΛeH+ln ω ≤ TrΛ [ω H] +
|Λ|
8

‖H‖2
L . (8.17)

Upon replacing the constant 1
8 by 1

2 , the inequality (8.17) is implied by
(8.16).

Proof. We will prove the claim by induction on the size of Λ. For Λ = ∅
equality holds in (8.16). Let us fix x ∈ Λ, and let Λ0 = Λ \ x. Let HΛ0 ∈ OΛ0

such that

∂xH = 2 ‖H − HΛ0‖∞ . (8.18)

We have

‖H − Trx [ωx H]‖∞ = ‖H − HΛ0 − Trx [ωx (H − HΛ0)]‖∞
≤ 2 ‖H − HΛ0‖∞ = ∂xH. (8.19)

Using the inequality

et ≤ sinh a

a
t + e

a2
2 , |t| ≤ a, (8.20)

we get

eH−Trx[ωxH] ≤ sinh ∂xH

∂xH
(H − Trx [ωx H]) + e

(∂xH)2

2 , (8.21)

therefore

Trx

[
ωx eH−Trx[ωxH]

]
≤ e

(∂xH)2

2 . (8.22)
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For any y ∈ Λ0, let HΛ\y ∈ OΛ\y such that

∂yH = 2
∥∥H − HΛ\y

∥∥
∞ . (8.23)

We have

∂yTrx [ωxH] ≤ 2
∥∥Trx [ωxH] − Trx

[
ωxHΛ\y

]∥∥
∞ ≤ 2

∥∥H − HΛ\y

∥∥
∞ = ∂yH.

(8.24)

We then have

lnTrΛeH+ln ω = lnTrΛ exp (H − Trx [ωxH] + ln ωx + Trx [ωxH] + ln ωΛ0)

(a)
≤ ln

∫ ∞

0
TrΛ

[
eTrx[ωxH]+ln ωΛ0

(
ω−1

x + t
)−1

eH−Trx[ωxH] (ω−1
x + t

)−1
]
dt

= lnTrΛ0

[
eTrx[ωxH]+ln ωΛ0 Trx

[
eH−Trx[ωxH]

∫ ∞

0

(
ω−1

x + t
)−2

dt

]]

= lnTrΛ0

[
eTrx[ωxH]+ln ωΛ0 Trx

[
ωx eH−Trx[ωxH]

]]

(b)
≤ (∂xH)2

2
+ lnTrΛ0e

Trx[ωxH]+ln ωΛ0

(c)
≤ (∂xH)2

2
+ TrΛ [ω H] +

1

2

∑

y∈Λ0

(∂yTrx [ωxH])2

(d)
≤ TrΛ [ω H] +

1

2

∑

y∈Λ

(∂yH)2 , (8.25)

where (a) follows from the Golden–Thompson inequality with three matrices
[89], (b) from (8.22), (c) from the inductive hypothesis and (d) from (8.24).
The claim follows. �

Corollary 8.1. Let Φ ∈ Br
Zd and let ω ∈ SI

Zd be the uniform distribution, i.e.,
ωΛ = IΛ

q|Λ| for any Λ ∈ FZd . Then,

P (Φ) ≤ ln q +
‖Φ‖2

L

2
− ω(EΦ). (8.26)

Proof. We have

P (Φ) = lim
a→∞

ln TrΛa
e−HΦ

Λa

|Λa|
(a)

≤ ln q + lim
a→∞

(
1

2 |Λa|
∑

x∈Λa

(
∂xHΦ

Λa

)2 − ω
(
HΦ

Λa

)

|Λa|

)

(b)
= ln q +

‖Φ‖2
L

2
− ω(EΦ) , (8.27)

where (a) follows from Theorem 8.1 and (b) from Proposition 8.3 and (2.21).
The claim follows. �

9. W1 Continuity of the von Neumann Entropy

In this section, we prove the following continuity bound of the von Neumann
entropy with respect to the quantum W1 distance:
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Theorem 9.1 (W1 continuity of the von Neumann entropy). Let Λ be a finite
set. For any ρ, σ ∈ SΛ, we have

|S(ρ) − S(σ)|
|Λ| ≤ h2

(‖ρ − σ‖W1

|Λ|
)

+
‖ρ − σ‖W1

|Λ| ln
(
q2 − 1

)
. (9.1)

Theorem 9.1 generalizes to the quantum setting the following continuity
bound of the Shannon entropy with respect to the classical W1 distance:

Theorem 9.2 (W1 continuity of the Shannon entropy [90, Proposition 8]). Let
Λ be a finite set. For any two probability distributions μ, ν on [q]Λ, we have

|S(μ) − S(ν)| ≤ |Λ| h2

(
W1(μ, ν)

|Λ|
)

+ W1(μ, ν) ln (q − 1) . (9.2)

The quantum continuity bound (9.1) is identical to the classical bound
(9.2) upon replacing q by q2. Such replacement is necessary, since the von
Neumann entropy does not always satisfy the classical bound (9.2) [17].

Remark 9.1. Ref. [17] proved the following weaker continuity bound for the
von Neumann entropy in terms of the W1 distance:

Theorem 9.3 ([17, Theorem 1]). Let Λ be a finite set. For any ρ, σ ∈ SΛ,

|S(ρ) − S(σ)| ≤ g
(‖ρ − σ‖W1

)
+ ‖ρ − σ‖W1

ln
(
q2 |Λ|) , (9.3)

where for any t ≥ 0

g(t) = (t + 1) ln (t + 1) − t ln t. (9.4)

Due to the term ln |Λ|, the bound (9.3) does not have the right scaling
with respect to |Λ| to prove a continuity bound for the specific entropy in
terms of the specific quantum W1 distance. On the contrary, Theorem 9.1 will
be crucial in the proof of such a bound, which will be the subject of Sect. 10.

9.1. Proof of Theorem 9.1

The proof of Theorem 9.1 is based on the following notion of distance operator:

Definition 9.1 (Distance operator [91, Section 2], [92, Definition 15]). Let V
be a subspace of HΛ. For any k = 0, . . . , |Λ|, we define the fattening Vk of V
of radius k as the span of the linear operators acting on at most k sites applied
to a vector in V:

Vk = span {O|ψ〉 : |ψ〉 ∈ V, O ∈ UX : X ⊆ Λ, |X| ≤ k} , (9.5)

such that

V = V0 ⊆ . . . ⊆ V|Λ| = HΛ. (9.6)

We define the distance operator of V as the linear operator HV ∈ OΛ that has
eigenvalue k on Vk ∩ V⊥

k−1 for each k = 0, . . . , |Λ|.
The following Proposition 9.1 provides the link between the distance op-

erator and the W1 distance:
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Proposition 9.1. Let V be a subspace of HΛ, and let ρ, σ ∈ SΛ such that the
support of σ is contained in V. Then,

‖ρ − σ‖W1
≥ TrΛ [ρHV ] . (9.7)

Proof. Since TrΛ [σ HV ] = 0, it is sufficient to prove that ‖HV‖L ≤ 1. For any
k = 0, . . . , |Λ|, let Πk be the orthogonal projector onto Vk, such that

HV =
|Λ|∑

k=0

(I − Πk) . (9.8)

For any x ∈ Λ, let

Vk,x = span {O|ψ〉 : |ψ〉 ∈ V, O ∈ UX : X ⊆ Λ, |X| ≤ k, x ∈ X} , (9.9)

and let Πk,x be the orthogonal projector onto Vk,x. We have Vk−1 ⊆ Vk,x ⊆ Vk,
therefore

0 ≤ Πk − Πk,x ≤ Πk − Πk−1. (9.10)

The subspace Vk,x is invariant with respect to the action of any unitary opera-
tor U ∈ Ux. Then, Πk,x commutes with any such U , and therefore Πk,x ∈ OΛ\x.
Then,

∂xHV = ∂x

|Λ|∑

k=0

(I − Πk) = ∂x

|Λ|∑

k=0

Πk = ∂x

|Λ|∑

k=0

(Πk − Πk,x)

(a)

≤
∥∥∥∥∥∥

|Λ|∑

k=0

(Πk − Πk,x)

∥∥∥∥∥∥
∞

∥∥∥∥∥∥

|Λ|∑

k=0

(Πk − Πk−1)

∥∥∥∥∥∥
∞

(b)
= 1 , (9.11)

where (a) follows from Lemma C.2 and (b) follows observing that Πk − Πk−1

is the orthogonal projector onto Vk ∩ V⊥
k−1. The claim follows. �

We first prove Theorem 9.1 when σ is proportional to an orthogonal
projector:

Proposition 9.2. Let V be a subspace of HΛ, let Π be the associated orthogonal
projector and let

σ =
Π

dim V . (9.12)

Then, for any ρ ∈ SΛ we have

S(ρ) − ln dimV ≤ |Λ| h2

(‖ρ − σ‖W1

|Λ|
)

+ ‖ρ − σ‖W1
ln

(
q2 − 1

)
. (9.13)

Proof. For any 0 ≤ t ≤ 1, let

φ(t) = h2(t) + t ln
(
q2 − 1

)
, (9.14)

and let

‖ρ − σ‖W1
= |Λ| w. (9.15)

The claim becomes

S(ρ) ≤ ln dim V + |Λ|φ(w). (9.16)
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φ is increasing in
[
0, 1 − 1

q2

]
and decreasing in

[
1 − 1

q2 , 1
]

with

φ(0) = 0, φ
(
1 − 1

q2

)
= ln q2, φ(1) = ln

(
q2 − 1

)
. (9.17)

Let 0 < w∗ < 1 − 1
q2 satisfy

φ(w∗) = ln q. (9.18)

If w ≥ w∗, the claim is trivial. Indeed, if w∗ ≤ w ≤ 1 − 1
q2 we have

φ(w) ≥ φ(w∗) = ln q, (9.19)

while if 1 − 1
q2 < w ≤ 1 we have

φ(w) ≥ φ(1) = ln
(
q2 − 1

) ≥ ln q. (9.20)

We can then assume w < w∗.
Let HV be the distance operator of V. For any k = 0, . . . , |Λ|, let Wk

be the eigenspace of HV with eigenvalue k, let Pk be the orthogonal projector
onto Wk, and let pk = TrΛ [ρPk] be the probability that a measurement of HV
on ρ has outcome k. Let

ρ̃ =
|Λ|∑

k=0

pk
Pk

dim Wk
. (9.21)

We have

0 ≤ S(ρ‖ρ̃) = S(ρ̃) − S(ρ). (9.22)

For any x ∈ {
0, . . . , q2 − 1

}Λ, let H(x) be the number of components of x that
are different from 0, and for any k = 0, . . . , |Λ|, let

Dk =
∣∣H−1(k)

∣∣ =
∣∣∣
{

x ∈ {
0, . . . , q2 − 1

}Λ
: H(x) = k

}∣∣∣ . (9.23)

Let X be a random variable with values in
{
0, . . . , q2 − 1

}Λ distributed as fol-
lows. Let the probability distribution of H(X) be p, and for any k = 0, . . . , |Λ|,
let the probability distribution of X conditioned on H(X) = k be uniform,
such that the probability of x ∈ {

0, . . . , q2 − 1
}Λ is

P(X = x) =
pH(x)

DH(x)
. (9.24)

Since H(X) has the same probability distribution as HV measured on ρ, we
have

EH(X) = TrΛ [ρHV ] =: |Λ|u. (9.25)

By the maximum entropy principle, the Shannon entropy of X is upper bounded
by the Shannon entropy of the Gibbs distribution of H with average energy
|Λ|u:

S(X) ≤ |Λ| φ(u). (9.26)
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We then have

S(ρ)
(a)

≤ S(ρ̃) =
|Λ|∑

k=0

pk ln
dim Wk

pk

(b)

≤
|Λ|∑

k=0

pk ln
Dk dim V

pk
= ln dimV + S(X)

(c)

≤ ln dim V + |Λ|φ(u) , (9.27)

where (a) follows from (9.22), (b) from Lemma C.3 and (c) from (9.26). We
have from Proposition 9.1

w ≥ TrΛ [ρHV ]
|Λ| = u, (9.28)

hence

φ(u) ≤ φ(w). (9.29)

The claim follows. �

Without loss of generality, we can assume S(ρ) ≥ S(σ). For any k ∈ N

and any δ > 0, let Pk,δ be the δ-typical projector of σ⊗k, i.e., the orthogonal
projector on the sum of the eigenspaces of σ⊗k with eigenvalues contained in[
e−k(S(σ)+δ), e−k(S(σ)−δ)

]
. Pk,δ satisfies [79–81, Section 5.5]

σ⊗k ≥ e−k(S(σ)+δ) Pk,δ, (9.30a)

lim inf
k→∞

ln TrΛPk,δ

k
≥ S(σ) − δ. (9.30b)

The property (9.30a) implies

ln TrΛPk,δ

k
≤ S(σ) + δ, (9.31a)

1
k

S

(
Pk,δ

TrΛPk,δ

∥∥∥∥σ⊗k

)
≤ S(σ) + δ − ln TrΛPk,δ

k
. (9.31b)

We have from (9.31a) and Proposition 9.2

S(ρ) − S(σ) ≤ S
(
ρ⊗k

) − ln TrΛPk,δ

k
+ δ ≤ |Λ| φ

⎛

⎜⎝

∥∥∥ρ⊗k − Pk,δ

TrΛPk,δ

∥∥∥
W1

k |Λ|

⎞

⎟⎠ + δ.

(9.32)

We have∥∥∥ρ⊗k − Pk,δ

TrΛPk,δ

∥∥∥
W1

k |Λ| ≤
∥∥ρ⊗k − σ⊗k

∥∥
W1

k |Λ| +

∥∥∥σ⊗k − Pk,δ

TrΛPk,δ

∥∥∥
W1

k |Λ|
(a)

≤ w +

√
2
k

S

(
Pk,δ

TrΛPk,δ

∥∥∥∥σ⊗k

)

(b)

≤ w +

√

2
(

S(σ) + δ − ln TrΛPk,δ

k

)
, (9.33)
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where (a) follows from Proposition A.3 and Proposition C.1, and (b) follows
from (9.31b). We get from (9.30b)

lim sup
k→∞

∥∥∥ρ⊗k − Pk,δ

TrΛPk,δ

∥∥∥
W1

k |Λ| ≤ w + 2
√

δ. (9.34)

We then get from (9.32)

S(ρ) − S(σ) ≤ |Λ|φ
(
w + 2

√
δ
)

+ δ, (9.35)

and the claim follows taking the limit δ → 0.

10. w1 Continuity of the Specific Entropy

A fundamental consequence of Theorem 9.1 is the following continuity bound
for the specific entropy in terms of the specific quantum W1 distance:

Corollary 10.1 (w1 continuity of the specific entropy). The specific entropy
satisfies the following continuity bound with respect to the specific quantum
W1 distance: For any ρ, σ ∈ SI

Zd , we have

|s(ρ) − s(σ)| ≤ h2 (w1(ρ, σ)) + w1(ρ, σ) ln
(
q2 − 1

)
, (10.1)

where

h2(t) = −t ln t − (1 − t) ln (1 − t) , 0 ≤ t ≤ 1 (10.2)

is the binary entropy function.

Proof. The claim follows from Theorem 9.1: We have

|s(ρ) − s(σ)| = lim
a→∞

|S (ρΛa
) − S (σΛa

)|
|Λa|

≤ lim
a→∞

(
h2

(‖ρΛa
− σΛa

‖W1

|Λa|
)

+
‖ρΛa

− σΛa
‖W1

|Λa| ln
(
q2 − 1

))

= h2 (w1(ρ, σ)) + w1(ρ, σ) ln
(
q2 − 1

)
. (10.3)

�

11. w1-Gibbs States

We define the w1-Gibbs states of the interaction Φ as the translation-invariant
states whose marginal states have a W1 distance from the local Gibbs states
of Φ that scales sublinearly with the volume:

Definition 11.1 (w1-Gibbs state). Let Φ ∈ Br
Zd . We define for any ρ ∈ SI

Zd the
specific quantum W1 distance between ρ and Φ as the limit of the W1 distance
per site between the marginals of ρ and the local Gibbs states of Φ:

w1(ρ,Φ) = lim sup
a→∞

∥∥ρΛa
− ωΦ

Λa

∥∥
W1

|Λa| . (11.1)

We say that the state ω ∈ SI
Zd is a w1-Gibbs state of Φ if w1(ω,Φ) = 0.
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We also define for any Φ ∈ Br
Zd and any ρ ∈ SI

Zd the specific relative
entropy between ρ and Φ as the limit of the relative entropy per site between
the marginals of ρ and the local Gibbs states of Φ:

s(ρ‖Φ) = lim
a→∞

S
(
ρΛa

∥∥ωΦ
Λa

)

|Λa| = P (Φ) − s(ρ) + ρ(EΦ). (11.2)

We have s(ρ‖Φ) ≥ 0, with equality iff ρ ∈ Seq(Φ).
An interaction can have at most one w1-Gibbs state:

Proposition 11.1 (Uniqueness of the w1-Gibbs state). Let Φ ∈ Br
Zd have a

w1-Gibbs state ω ∈ SI
Zd . Then, for any ρ ∈ SI

Zd we have

w1(ρ,Φ) = w1(ρ, ω). (11.3)

In particular, Φ can have at most one w1-Gibbs state.

Proof. We have

|w1(ρ,Φ) − w1(ρ, ω)| =

∣∣∣∣∣lim sup
a→∞

∥∥ρΛa
− ωΦ

Λa

∥∥
W1

− ‖ρΛa
− ωΛa

‖W1

|Λa|

∣∣∣∣∣

≤ lim sup
a→∞

∥∥ωΛa
− ωΦ

Λa

∥∥
W1

|Λa| = w1(ω,Φ) = 0 . (11.4)

If also ρ is a w1-Gibbs state of Φ, we have

w1(ρ, ω) = w1(ρ,Φ) = 0, (11.5)

hence ρ = ω. The claim follows. �

If an interaction admits a w1-Gibbs state, then such state is also an
equilibrium state:

Proposition 11.2. We have for any Φ ∈ Br
Zd and any ρ ∈ SI

Zd

s(ρ‖Φ) ≤ h2(w1(ρ,Φ)) + w1(ρ,Φ)
(
ln

(
q2 − 1

)
+ 2 ‖Φ‖r

)
. (11.6)

In particular, if Φ has a w1-Gibbs state ω ∈ SI
Zd , then ω ∈ Seq(Φ).

Proof. We have

s(ρ‖Φ) = lim
a→∞

S
(
ρΛa

∥∥ωΦ
Λa

)

|Λa| = lim
a→∞

S
(
ωΦ

Λa

) − S(ρΛa) + TrΛa

[(
ρΛa − ωΦ

Λa

)
HΦ

Λa

]

|Λa|
(a)

≤ lim
a→∞

(
h2

(∥∥ρΛa − ωΦ
Λa

∥∥
W1

|Λa|

)
+

∥∥ρΛa − ωΦ
Λa

∥∥
W1

|Λa|
(
ln

(
q2 − 1

)
+ 2 ‖Φ‖r

)
)

= h2(w1(ρ, Φ)) + w1(ρ, Φ)
(
ln

(
q2 − 1

)
+ 2 ‖Φ‖r

)
, (11.7)

where (a) follows from Theorem 9.1 and (C.16). The claim follows. �
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12. Quantum Transportation-Cost Inequalities

Definition 12.1 (TCI). The interaction Φ ∈ Br
Zd satisfies a Transportation-Cost

Inequality (TCI) with constant c > 0 if the square of the specific quantum W1

distance with respect to Φ is upper bounded by c
2 times the specific relative

entropy with respect to Φ, i.e., if for any ρ ∈ SI
Zd we have

w1(ρ,Φ)2 ≤ c

2
s(ρ‖Φ) . (TCI)

A fundamental consequence of (TCI) is the uniqueness of the equilibrium
state of Φ:

Proposition 12.1 (Uniqueness of the equilibrium state). Let Φ ∈ Br
Zd satisfy

(TCI). Then, Φ has a unique equilibrium state, which is a w1-Gibbs state.

Proof. Let ω ∈ Seq(Φ). From (TCI), we have

w1(ω,Φ)2 ≤ c

2
s(ω‖Φ) = 0, (12.1)

therefore ω is a w1-Gibbs state of Φ. Since the w1-Gibbs state is unique, the
equilibrium state is unique, too. �

Another property of the interactions satisfying (TCI) is the following
upper bound to the variation of the specific entropy in terms of the specific
relative entropy:

Proposition 12.2. Let Φ ∈ Br
Zd satisfy (TCI) and let ω ∈ SI

Zd be its unique
equilibrium state. Let w∗ be as in (9.18). Then, for any ρ ∈ SI

Zd such that

s(ρ‖Φ) ≤ 2w∗2

c
(12.2)

we have

|s(ρ) − s(ω)| ≤ h2

(√
c

2
s(ρ‖Φ)

)
+

√
c

2
s(ρ‖Φ) ln

(
q2 − 1

)
. (12.3)

Proof. From Theorem 12.1, we have that ω is a w1-Gibbs state of Φ. We then
have

|s(ρ) − s(ω)|
(a)

≤ h2(w1(ρ, ω)) + w1(ρ, ω) ln
(
q2 − 1

)

(b)

≤ h2

(√
c s(ρ‖Φ)

2

)
+

√
c s(ρ‖Φ)

2
ln

(
q2 − 1

)
, (12.4)

where (a) follows from Theorem 10.1 and (b) from Proposition 11.1 and (TCI).
The claim follows. �

In the following, we will prove that (TCI) is satisfied by interactions
containing only single-site terms (Sect. 12.1) and local commuting interactions
at high temperature (Sect. 12.2).
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12.1. Product States

The simplest setting where (TCI) holds is when the interaction contains only
terms acting on single spins and the associated Gibbs state is a product state.
Ref. [17] proved the following TCI for product states on finite lattices:

Theorem 12.1 (Quantum Marton’s Transportation Inequality [17, Theorem
2]). Let Λ be a finite set and let σ ∈ SΛ be a product state. Then, for any
ρ ∈ SΛ we have

‖ρ − σ‖2
W1

≤ |Λ|
2

S(ρ‖σ). (12.5)

Theorem 12.1 implies the following TCI for product states on Z
d:

Corollary 12.1 (TCI for product states). Let ω ∈ SI
Zd be a product state. Then,

for any ρ ∈ SI
Zd we have

w1(ρ, ω)2 ≤ 1
2

s(ρ‖ω). (12.6)

Therefore, any Φ ∈ Br
Zd that contains only terms acting on single spins (i.e.,

such that Φ(Λ) = 0 for any Λ ∈ FZd with |Λ| ≥ 2) satisfies (TCI) with c = 1.

Proof. The claim (12.6) follows from Theorem 12.1: We have

w1(ρ, ω)2 = lim
a→∞

‖ρΛa
− ωΛa

‖2
W1

|Λa|2 ≤ lim
a→∞

S(ρΛa
‖ωΛa

)
2 |Λa| =

s(ρ‖ω)
2

. (12.7)

Let Φ ∈ Br
Zd contain only terms acting on single sites. We have for any

Λ ∈ FZd

ωΦ
Λ =

⊗

x∈Λ

e−Φ(x)

Trxe−Φ(x)
=

⊗

x∈Λ

ωΦ
x , (12.8)

therefore there exists a product state ω ∈ SI
Zd such that ωΛ = ωΦ

Λ for any
Λ ∈ FZd . We have w1(ρ, ω) = w1(ρ,Φ) and s(ρ‖ω) = s(ρ‖Φ), therefore (12.6)
implies (TCI) with c = 1. The claim follows. �

12.2. Local Commuting Interactions at High Temperature

A more general setting where (TCI) can be proved is the case of geometrically
local commuting interactions, where each spin interacts with a finite number
of spins and all the terms of the interaction mutually commute.

Ref. [19] proved the following TCI for Gibbs states of local commuting
interactions on a finite lattice employing a quantum generalization of Ollivier’s
coarse Ricci curvature [93,94]:

Theorem 12.2 (High-temperature TCI for local commuting interactions [19,
Theorem 4 and Proposition 9]). Let Φ ∈ Br

Zd be geometrically local and com-
muting, i.e., each spin interacts with at most N spins where

N =

∣∣∣∣∣∣

⋃

0∈X∈F
Zd : Φ(X) �=0

X

∣∣∣∣∣∣
< ∞, (12.9)
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and [Φ(X), Φ(Y )] = 0 for any X, Y ∈ FZd . Let

M = inf
t≥0

((
e‖Φ‖r + 1

)√
1 + t2 ‖Φ‖r q

3+
√

1+t2
2 e

‖Φ‖r

(
2+

√
1+t2
2

)

+2 ‖Φ‖r e2‖Φ‖r + 4 e−πt
)

, (12.10)

and let us assume that

κ = 1 − (2N − 1) (N − 1) M > 0. (12.11)

Then, for any Λ ∈ FZd and any ρ ∈ SΛ we have
∥∥ρ − ωΦ

Λ

∥∥2

W1
≤ 2N2 |Λ|

(1 − e−κ)2
S
(
ρ
∥∥ωΦ

Λ

)
. (12.12)

In particular, Φ satisfies (TCI) with

c =
4N2

(1 − e−κ)2
. (12.13)

Remark 12.1. Choosing in (12.10)

t =
ln 1

‖Φ‖r

π + ln q
2

, (12.14)

we get M ≤ O (‖Φ‖r) for ‖Φ‖r → 0.

Another strategy to prove TCIs for quantum spin systems on a finite
lattice is to prove that suitable local quantum Markov semigroups that have
the Gibbs state as unique fixed point satisfy a modified logarithmic Sobolev
inequality [19,95–97], which states that the semigroup contracts exponentially
the relative entropy with respect to the Gibbs state. Ref. [97] proved that
above a critical temperature, the Gibbs states of commuting nearest-neighbor
interactions satisfy a modified logarithmic Sobolev inequality. Exploiting this
result, Ref. [19] proved the following TCI for such Gibbs states:

Theorem 12.3 (High-temperature TCI for nearest-neighbor interactions [19,
Theorem 5]). Let Φ ∈ Br

Zd be a nearest-neighbor interaction, i.e., Φ(Λ) = 0 for
any Λ ∈ FZd that contains at least two sites that are not neighboring. Then,
there exists a critical inverse temperature βc > 0 such that for any 0 ≤ β < βc

there exists cβ > 0 such that for any a ∈ N
d
+ we have

∥∥∥ρΛa
− ωβΦ

Λa

∥∥∥
2

W1

≤ cβ |Λa|
2

S
(
ρΛa

∥∥∥ωβΦ
Λa

)
. (12.15)

In particular, β Φ satisfies (TCI) with c = cβ.

Corollary 12.2. All the interactions satisfying the hypotheses either of Theo-
rem 12.2 or of Theorem 12.3 have a unique equilibrium state.

Remark 12.2. The uniqueness of the equilibrium states for all the interactions
Φ ∈ Br

Zd such that r > log q and ‖Φ‖r < 1
2q has been proved in [98].
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13. Perspectives

In this paper, we have proposed a specific Wasserstein distance of order 1 for
quantum spin systems on infinite lattices. We expect the proposed distance to
be a powerful tool in the study of the statistical mechanics of quantum spin
systems, quantum dynamical systems, and tomography of quantum states:

1. The specific quantum W1 distance can be employed to study the diameter
of the set of the equilibrium states of an interaction close to a thermal
phase transition. Above the critical temperature, the equilibrium state is
unique and the diameter is zero, while below the critical temperature the
diameter is strictly positive. The limit of the diameter of the set of the
equilibrium states as the temperature tends from below to the critical
value, and in particular whether such limit is zero or strictly positive,
can be employed to characterize the phase transition.

2. In [7], Ornstein proposed the d̄-distance as a natural metric for the classi-
fication of stochastic processes and singled out a large class (the so-called
B-processes), containing, e.g., all mixing Markov processes, such that a
fundamental isomorphism theorem holds: two processes are isomorphic if
and only if their entropies coincide. The isomorphism here is in the sense
of dynamical systems, i.e., a measurable and invertible transformation
mapping one probability measure to the other. The specific quantum W1

distance could provide a useful analytical tool toward establishing anal-
ogous results in the setting of quantum dynamical systems [99].

3. The statistical problem of estimating a stationary ergodic process, in
a given family, from the observation of a single sample path of length
n can be quantitatively addressed using Ornstein’s d̄-distance. In [8], it
is proved that an empirical block scheme, i.e., the product probability
naturally obtained from the observed frequencies on sliding window of
length k, converges in the d̄-distance, as n grows, toward the target pro-
cess, provided that it is a B-process and k grows at least logarithmically
with respect to n. Exploring the quantum analogue of this and related
results, e.g., for discrimination between two sampled processes [9], may
extend the scope of the recent works [23,24] on tomography of a quantum
state and stimulate novel approaches, particularly when the number of
accessible independent copies is extremely constrained.
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A. Properties of the Quantum W1 Distance

Proposition A.1 ([17, Proposition 2]). For any finite set Λ and any Δ ∈ OT
Λ ,

we have

1
2

‖Δ‖1 ≤ ‖Δ‖W1
≤ |Λ|

2
‖Δ‖1 . (A.1)

Proposition A.2 ([17, Proposition 5]). Let Λ′ ⊆ Λ be finite sets. Then, for any
Δ ∈ OT

Λ such that TrΛ′Δ = 0 we have

‖Δ‖W1
≤ q2 − 1

q2
|Λ′| ‖Δ‖1 . (A.2)

Proposition A.3 (Superadditivity [17, Proposition 4]). The quantum W1 dis-
tance is superadditive in general and additive for product states, i.e., for any
two disjoint finite sets Λ, Λ′ and any ρ, σ ∈ SΛΛ′ we have

‖ρ − σ‖W1
≥ ‖ρΛ − σΛ‖W1

+ ‖ρΛ′ − σΛ′‖W1
, (A.3)

and for any ρΛ, σΛ ∈ SΛ and any ρΛ′ , σΛ′ ∈ SΛ′ we have

‖ρΛ ⊗ ρΛ′ − σΛ ⊗ σΛ′‖W1
= ‖ρΛ − σΛ‖W1

+ ‖ρΛ′ − σΛ′‖W1
. (A.4)

B. Auxiliary Proofs

B.1. Proof of Proposition 2.1

Proposition. (2.1) The trace distance on SZd is the supremum of the trace
distances between the marginal states: For any ρ, σ ∈ SZd ,

T (ρ, σ) =
1
2

sup
Λ∈F

Zd

‖ρΛ − σΛ‖1 , (B.1)

where ‖ · ‖1 denotes the trace norm on UΛ given by

‖A‖1 = TrΛ
√

A†A, A ∈ UΛ. (B.2)
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Proof. Since Uloc
Zd is dense in UZd , we have

2T (ρ, σ) = sup
A∈Uloc

Zd :‖A‖∞≤1

|ρ(A) − σ(A)| = sup
Λ∈F

Zd

sup
A∈UΛ:‖A‖∞≤1

|ρ(A) − σ(A)|

= sup
Λ∈F

Zd

sup
A∈UΛ:‖A‖∞≤1

|TrΛ [(ρΛ − σΛ) A]| = sup
Λ∈F

Zd

‖ρΛ − σΛ‖1 .

(B.3)

The claim follows. �

B.2. Proof of Proposition 5.1

Proposition. (5.1) For any Λ ∈ FZd , any H ∈ OΛ and any x ∈ Λ, (3.3) and
(5.1) are equivalent.

Proof. Let

∂xH = 2 min
A∈OΛ\x

‖H − A‖∞ , ∂̃xH = 2 inf
A∈O

Zd\x

‖H − A‖∞ . (B.4)

We clearly have ∂̃xH ≤ ∂xH. Let ωZd\Λ ∈ SZd\Λ be the uniform distribution
on Z

d \Λ, and let ΨΛ : UZd → UΛ be the completely positive unital linear map
such that for any A ∈ UZd and any ρΛ ∈ SΛ

TrΛ [ρΛ ΨΛ(A)] = (ωZd\Λ ⊗ ρΛ)(A). (B.5)

Let A ∈ OZd\x. We have for any ρΛ ∈ SΛ and any unitary operator Ux ∈ Ux

TrΛ
[
ρΛ U†

x ΨΛ(A)Ux

]
= TrΛ

[
Ux ρΛ U†

x ΨΛ(A)
]

=
(
ωZd\Λ ⊗ Ux ρΛ U†

x

)
(A)

= (ωZd\Λ ⊗ ρΛ)
(
U†

x AUx

)
= (ωZd\Λ ⊗ ρΛ)(A)

= TrΛ [ρΛ ΨΛ(A)] , (B.6)

therefore U†
x ΨΛ(A)Ux = ΨΛ(A), hence ΨΛ(A) ∈ OΛ\x. We then have

∂xH ≤ 2 ‖H − ΨΛ(A)‖∞ = 2 ‖ΨΛ(H − A)‖∞ ≤ 2 ‖H − A‖∞ , (B.7)

where the last inequality follows since ΨΛ is completely positive and unital.
We then have ∂xH ≤ ∂̃xH. The claim follows. �

C. Auxiliary Lemmas

Lemma C.1 (Multidimensional Fekete’s lemma [100]). Let f : N
d
+ → R be

superadditive with respect to each variable, i.e.,

f(x1, . . . , xi + t, . . . , xd) ≥ f(x1, . . . , xi, . . . , xd) + f(x1, . . . , t, . . . , xd)
(C.1)

for any x1, . . . , xd, t ∈ N and any i = 1, . . . , d. Then,

lim
x→∞

f(x)
x1 . . . xd

= sup
x∈N

d
+

f(x)
x1 . . . xd

. (C.2)

Lemma C.2. Let H ∈ OΛ be positive semi-definite. Then, for any x ∈ Λ,

∂xH ≤ ‖H‖∞ . (C.3)
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Proof. We have

− ‖H‖∞
2

I ≤ H − ‖H‖∞
2

I ≤ ‖H‖∞
2

I, (C.4)

therefore

∂xH ≤ 2
∥∥∥∥H − ‖H‖∞

2
I

∥∥∥∥
∞

≤ ‖H‖∞ . (C.5)

The claim follows. �

Proposition C.1. Let Λ1, . . . , Λk be k copies of the finite set Λ. Then, for any
ρ ∈ SΛ1...Λk

and any σ ∈ SΛ we have
∥∥ρ − σ⊗k

∥∥2

W1
≤ 2k |Λ|2 S

(
ρ
∥∥σ⊗k

)
. (C.6)

Proof. The proof follows the same lines as the proof of [17, Theorem 2]. We
have

∥∥ρ − σ⊗k
∥∥
W1

≤
k∑

i=1

∥∥∥σ⊗(i−1) ⊗ ρΛi...Λk
− σ⊗i ⊗ ρΛi+1...Λk

∥∥∥
W1

(a)

≤ |Λ|
k∑

i=1

∥∥ρΛi...Λk
− σ ⊗ ρΛi+1...Λk

∥∥
1

(b)

≤ |Λ|
k∑

i=1

√
2 S

(
ρΛi...Λk

∥∥σ ⊗ ρΛi+1...Λk

)

= |Λ|
k∑

i=1

√
2
(
S(ρΛi

) + S(ρΛi+1...Λk
) − S(ρΛi...Λk

) + S(ρΛi
‖σ)

)

(c)

≤ |Λ|
√√√√2k

k∑

i=1

(
S(ρΛi

) + S(ρΛi+1...Λk
) − S(ρΛi...Λk

) + S(ρΛi
‖σ)

)

= |Λ|
√

2k

√√√√
k∑

i=1

(S(ρΛi
) + S(ρΛi

‖σ)) − S(ρ) = |Λ|
√

2k S (ρ ‖σ⊗k ) .

(C.7)

(a) follows from Proposition A.2 observing that

TrΛi

[
σ⊗(i−1) ⊗ ρΛi...Λk

− σ⊗i ⊗ ρΛi+1...Λk

]
= 0; (C.8)

(b) follows from Pinsker’s inequality; (c) follows from the concavity of the
square root. The claim follows. �

Lemma C.3. We have

dim Wk ≤ Dk dim V. (C.9)

Proof. Let A0, . . . , Aq2−1 be a basis of C
q×q with A0 = I. For any x ∈{

0, . . . , q2 − 1
}Λ, let

Ax =
⊗

i∈Λ

Axi
, (C.10)
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where each Axi
acts on the site i. We have

Wk ⊆ span {Ax|ψ〉 : |ψ〉 ∈ V, H(x) ≤ k} . (C.11)

We also have

Wk−1 ⊆ span {Ax|ψ〉 : |ψ〉 ∈ V, H(x) ≤ k − 1} , (C.12)

and since Wk ⊥ Wk−1, we have

Wk ⊆ span {Ax|ψ〉 : |ψ〉 ∈ V, H(x) = k} . (C.13)

Therefore,

dim Wk ≤ ∣∣H−1(k)
∣∣ dim V. (C.14)

The claim follows. �

Lemma C.4. Let Φ ∈ Br
Zd . Then, for any Λ ∈ FZd and any x ∈ Λ we have

∂xHΦ
Λ ≤ 2 ‖Φ‖r , (C.15)

and
∥∥HΦ

Λ

∥∥
L

≤ 2 ‖Φ‖r . (C.16)

Proof. We have

∂xHΦ
Λ ≤ 2

∑

x∈X⊆Λ

‖Φ(X)‖∞
(a)
= 2

∑

0∈X⊆Λ−x

‖Φ(X)‖∞

≤ 2
∑

0∈X∈F
Zd

‖Φ(X)‖∞ ≤ 2 ‖Φ‖r , (C.17)

where (a) follows from the translation invariance of Φ. The claim follows. �
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[97] Capel, Á., Rouzé, C., França, D.S.: The modified logarithmic Sobolev inequality
for quantum spin systems: classical and commuting nearest neighbour interac-
tions (2020). arXiv:2009.11817
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