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Edge Behavior of Higher
Complex-Dimensional Determinantal Point
Processes

L. D. Molag

Abstract. As recently proved in generality by Hedenmalm and Wenn-
man, it is a universal behavior of complex random normal matrix models
that one finds a complementary error function behavior at the bound-
ary (also called edge) of the droplet as the matrix size increases. Such
behavior is seen both in the density of the eigenvalues and the corre-
lation kernel, where the Faddeeva plasma kernel emerges. These results
are neatly expressed with the help of the outward unit normal vector on
the edge. We prove that such universal behaviors transcend this class of
random normal matrices, being also valid in a specific “elliptic” class of
determinantal point processes defined on C

d, which are higher dimen-
sional generalizations of the determinantal point processes describing the
eigenvalues of the complex Ginibre ensemble and the complex elliptic
Ginibre ensemble. These models describe a system of particles in C

d with
mutual repulsion, that are confined to the origin by an external field
V (z) = |z|2 − τ Re(z2

1 + . . .+ z2
d), where 0 ≤ τ < 1. Their average density

of particles converges to a uniform law on a 2d-dimensional ellipsoidal
region. It is on the hyperellipsoid bounding this region that we find a
complementary error function behavior and the Faddeeva plasma kernel.
To the best of our knowledge, this is the first instance of the Faddeeva
plasma kernel emerging in a higher dimensional model. The results pro-
vide evidence for a possible edge universality theorem for determinantal
point processes on C

d.

1. Introduction

In this paper, we consider a specific “elliptic” subclass of determinantal
point processes (DPP) on C

d, with correlation kernel given by
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Kn(z, w) =
√
W (z)W (w)

∑

j∈Jn

Pj(z)Pj(w), z, w ∈ C
d, (1)

where W : C
d → [0,∞) is a weight function, Pj(z) = Pj(z1, . . . , zd) are

multivariate orthogonal polynomials, satisfying
∫

Cd

Pi(z)Pj(z)W (z) d2dz = δij , i, j ∈ Jn,

and they are indexed by some set Jn such that {Pj(z1, . . . , zd) : j ∈ Jn} forms
a basis of the space of all polynomials with complex coefficients of total degree
smaller than n. Of course, it is assumed here that W (z) vanishes sufficiently
fast as |z| → ∞, such that the above inner products are well-defined. The
number of points of the DPP is given by

∫

Cd

Kn(z, z)d2dz = |Jn| =
(

n + d − 1
d

)
,

where the last step follows by a straightforward combinatorial argument. The
positivity requirement for the expressions

det (Kn(zi, zj))1≤i,j≤k , k = 1, 2, . . .

follows from the Cauchy–Binet formula for the determinant of a product of
rectangular matrices. The subclass that we shall investigate, is called elliptic
due to its relation to the complex elliptic Ginibre ensemble [19] and corresponds
to the choice

W (z) = e−V (z), V (z) = |z|2 − τ Re
(
z21 + . . . + z2d

)
, 0 ≤ τ < 1. (2)

Kernels in higher dimensions of the type (1) have been studied by Berman
[6], who considered the case of exponentially varying weights W (z) = e−nV (z),
for a large class of external fields V : Cd → R satisfying certain growth and
regularity conditions. The kernel in (1), excluding the factor

√
W (z)W (w), is

called the Bergman kernel of the Hilbert space of all polynomials P(z1, . . . , zd)
of total degree < n with weighted norm

‖P‖2 =
∫

Cd

|P(z1, . . . , zd)|2W (z) d2dz.

Under the growth and regularity conditions assumed in [6], Berman was able
to determine that the average density of points converges to the so-called
Monge–Ampère measure (see [21] for its definition in the language of complex
manifolds), which has a compact support depending on V . For d = 1, this
compact support is called the droplet. We shall adopt this terminology for the
d > 1 case. In the current paper, we will be interested in the behavior of
the correlation kernel on the boundary, or edge, of the droplet. The particular
choice of weight (2) corresponds to the special case where the weight factorizes
in identical planar weights,

W (z) =
d∏

k=1

ω(zk), (3)
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where ω : C → [0,∞) is a planar weight, which in our specific case is given by
ω(z) = e−|z|2+τ Re(z2). Note that, for general factorized weight as in (3), the
multivariate orthogonal polynomials are given simply by

Pj(z) =
d∏

k=1

Pjk
(zk), j ∈ {0, 1, . . .}d, |j| = j1 + . . . + jd < n,

where the Pj have degree j and satisfy the planar orthogonality conditions
∫

C

Pi(z)Pj(z)ω(z) d2z = δij , i, j = 0, 1, . . . , n − 1.

To motivate our choice of planar weights ω, let us first consider the case of
d = 1 in (1). In this case, the kernel is a sum over a product of two planar
orthogonal polynomials. It is well known that the corresponding DPP describes
the eigenvalues of so-called random normal matrices for a general class of
exponentially varying weights ω. These models consist of n×n complex normal
matrices, distributed by

1
ZV

n

e−nTrV (M)dM, dM =
n∏

i,j=1

d Re Mij d Im Mij ,

where ZV
n is the normalization constant and V is a function, the external

field, satisfying certain growth and regularity conditions. The corresponding
eigenvalues are then distributed by

1
cV
n

∏

1≤i<j≤n

|zi − zj |2
n∏

j=1

ω(zj)d2zj , z1, . . . , zn ∈ C,

where cV
n is the normalization constant, and we have the planar weight ω(z) =

e−nV (z). The corresponding eigenvalues form a DPP, described by a correla-
tion kernel of the form (1) for d = 1 with W (z) = ω(z) = e−nV (z). One major
difference with, e.g., the Hermitian ensembles with general external fields and
unitary symmetry, is that the eigenvalues of random normal matrices are not
necessarily real. Since, with probability 1, the matrices sampled from the en-
semble are not Hermitian, they are called non-Hermitian random matrices. We
shall focus on two such random normal matrix models, the (complex) Ginibre
ensemble and the elliptic Ginibre ensemble. The normality condition is not
essential for these models, and since they are defined by homogeneous exter-
nal fields V , the n in the exponent of the weights ω(z) = e−nV (z) is also not
essential. The Ginibre ensemble is then defined as the n × n complex matrices
M with elements distributed as i.i.d. complex Gaussian random variables of
mean zero and unit variance. Explicitly, these n × n complex matrices M are
distributed by

1
Zn

e−Tr(M∗M)dM.

It was introduced by Ginibre in 1965 [18], along with a real and quaternion
version. It is easy to check that we have W (z) = ω(z) = e−|z|2 (the external



4408 L.D.Molag Ann. Henri Poincaré

field is thus V (z) = |z|2) and Pj(z) = Pj(z) = 1√
j!π

zj−1 in the notation of
(1), and the eigenvalues of the Ginibre ensemble thus form a DPP on C, with
correlation kernel

Kn(z, w) =
1
π

e− |z|2+|w|2
2

n−1∑

j=0

(zw)j

j!
. (4)

Ginibre proved that the average density of particles ρ
(1)
n (z) = 1

nKn(z, z)
converges to a uniform distribution on the unit disc under a proper scaling
[18]. Namely, we have

lim
n→∞ nρ(1)n (

√
n z) =

⎧
⎪⎨

⎪⎩

1
π , |z| < 1,
1
2π , |z| = 1,

0, |z| > 1.

(5)

(The case |z| = 1 was not treated in [18] though.) The region |z| ≤ 1 is the
droplet, the interior |z| < 1 is often called the bulk. Indeed, the boundary
|z| = 1 is the edge. The pointwise limit for |z| = 1 in (5) is actually a direct
consequence of a more general result concerning edge scaling limits. For any z
in the unit circle, and any u, v ∈ C, we have

lim
n→∞Kn

(√
n z + u,

√
n z + v

)
=

1
2π

euv− |u|2+|v|2
2 erfc

(
vz + uz√

2

)
, (6)

where erfc is the complementary error function, given by

erfc(z) = 1 − 2√
π

∫ z

0

e−t2dt.

Alternatively, we may write (6) as

lim
n→∞Kn

(
(
√

n + u)z, (
√

n + v)z
)

=
1
2π

euv− |u|2+|v|2
2 erfc

(
u + v√

2

)
. (7)

The limiting kernel on the RHS in (7) is known as the Faddeeva plasma kernel
[20] (note that Hedenmalm and Wenmann use a different definition for the
error function), and seems to have been first derived as a scaling limit in [14].
As explained in [20], the name derives from the plasma dispersion function,
which was first tabulated by Faddeeva and Terent′ev [13]. This edge behavior
is known to be universal, i.e., it arises as a scaling limit in a large class of other
models. For example, Tao and Vu proved that it holds in the vague topology
for random normal matrix models (real or complex), that match up to four
moments with the Ginibre ensemble [26]. It was recently proved by Cipolloni,
Erdős and Schröder that this four moment condition can be removed when the
moments are finite and some growth condition is satisfied by the probability
density of the matrix entries [11]. Ameur, Kang, and Makarov proved that
it holds for random normal matrix models with radially symmetric external
field [5]. Very recently, it was proved by Hedenmalm and Wennman that the
behavior is universal in random normal matrix models, under weak assump-
tions on the external field [20] (being “1-admissible”), essentially bringing the
questions about edge universality of these models to their logical conclusion.
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Let us now turn our attention to the elliptic Ginibre ensemble of n × n
complex matrices with parameter τ [19]. These are distributed according to

1
Zn

e
− 1

1−τ2 Tr(M∗M− τ
2 (M

2+(M∗)2)).

The model describes random matrices of the form M =
√

1 + τG1+i
√

1 − τG2,
where G1, G2 are n×n complex Hermitian matrices picked from the GUE. As
such, the elliptic Ginibre ensemble interpolates between the Ginibre ensemble
(τ = 0) and the GUE (τ = 1). For esthetic reasons, we apply a scaling M →
(1 − τ2)− 1

2 M , and the model is then described by the external field V (z) =
|z|2−τ Re(z2). Consequently, we have W (z) = ω(z) = e−|z|2+τ Re(z2), and then

Pj(z) = Pj(z) =
√

1 − τ2

π

(
τ
2

) j
2

√
j!

Hj

(√
1 − τ2

2τ
z

)

,

where Hj(z) = (−1)jez2 dj

dzj e−z2
is the Hermite polynomial of degree j. The

corresponding eigenvalues form a DPP, where now the correlation kernel is
given by

Kn(z, w)=
√

1 −τ2

π

√
ω(z)ω(w)

n−1∑

j=0

1
j!

(τ

2

)j

Hj

(√
1 − τ2

2τ
z

)

Hj

(√
1 −τ2

2τ
w

)

.

(8)

The average density of particles also converges to a uniform distribution, where
now the bulk is not given by the unit disc, but by the elliptic domain

Eτ =
{

z ∈ C :
1 − τ

1 + τ
Re(z)2 +

1 + τ

1 − τ
Im(z)2 < 1

}
.

Lee and Riser were able to obtain fine asymptotics for the density ρ
(1)
n of the

Ginibre ensemble and the elliptic Ginibre ensemble [23]. Picking z ∈ ∂Eτ , and
letting n denote the outward normal vector on ∂Eτ at z, they showed that

nρ
(1)
n (

√
n z + λn) =

1

2π
erfc(

√
2λ) +

κ√
n

1

3
√
2π3

(λ
2 − 1)e

−2λ2

+
1

n

e−2λ2

√
2π3

(

κ
2 2λ5 − 8λ3 + 3λ

18
+

(
(∂sκ)2

9κ2
− ∂2

sκ

12κ

)

λ

)

+ O(n
− 3

2
+9ν

),

(9)

where κ is the curvature of the ellipse ∂Eτ in z, and we have any fixed 0 < ν < 1
6

(∂s denotes the derivative with respect to the arclength parameter, see [23] for
details). The error bound is uniform for λ ∈ R with λ = O(nν) and z ∈ ∂Eτ .
The first treatment of the off-diagonal case for the elliptic Ginibre ensemble
can be found in Riser’s thesis [24], and its error bounds were recently refined
by Byun and Ebke in a paper about the quaternion elliptic Ginibre ensemble
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[10]. Namely, for some explicit unimodular factors cn : ∂Eτ × C → T (where
T = {z ∈ C : |z| = 1}), and any ε > 0, we have

cn(z, u)cn(z, v)Kn(
√

n z + u n,
√

n z + v n)

=
1

2π
exp

(
uv − |u|2 + |v|2

2

)
erfc

(
u + v√

2

)

+
1√
n

exp

(
−|u|2 + u2 + |v|2 + v2

2

)
κ

u2 + v2 − uv − 1

3
√

2π3
+ O(n−1+ε),

(10)

as n → ∞, uniformly for z ∈ ∂Eτ , and u, v ∈ C bounded (in fact, when
0 < ε < 1

2 , the condition u, v = O(nε/3) is sufficient for the error bound to
be uniform). Here κ is the curvature of ∂Eτ at z. Note that these unimodular
factors drop out when calculating determinants, and are thus irrelevant for the
k-point correlation functions.

Returning now to the general case d ≥ 1, our goal is to show that edge
scaling limits such as (9) and (10) also hold for higher dimensional DPPs with
correlation kernel of the form (1), where W factorizes as in (3) with the planar
weights ω(z) = e−|z|2+τ Re(z2) from either the Ginibre (τ = 0) or the elliptic
Ginibre ensemble (0 < τ < 1). Explicitly, for τ = 0, this means that we
consider

Kn(z, w) =
1
πd

e− |z|2+|w|2
2

∑

|j|<n

d∏

k=1

(zkwk)jk

jk!
, z, w ∈ C

d, (11)

while for 0 < τ < 1, we take

Kn(z, w) =

(√
1 − τ2

π

)d

∑

|j|<n

(
τ
2

)|j|

j1! · · · jd!

d∏

k=1

√
ω(zk)ω(wk)

Hjk

(√
1 − τ2

2τ
zk

)

Hjk

(√
1 − τ2

2τ
wk

)

, z, w ∈ C
d.

(12)

Here, the summation is over multi-indices j = (j1, . . . , jd) ∈ {0, 1, . . .}d such
that |j| = j1 + . . . + jd < n. The models describe a system of particles in
C

d that repel each other (due to the determinantal structure), which are con-
fined to the origin due to the external field V (z) = |z|2 − τ Re(z21 + . . . + z2d).
One motivation for studying such higher dimensional processes comes from
[2]. There, the DPP on C

d with correlation kernel (12) was considered. In the
limit τ → 1, this model corresponds to spinless free fermions in R

d in a har-
monic potential [12]. One major reason to investigate the model for d > 1 was
that it allowed to probe a weak non-Hermiticity regime [15–17]. For d = 1,
it is known that interpolating kernels are found in the bulk and on the edge
in the weak non-Hermiticity regime [1,3,8]. Recently, an interpolating kernel
was also found for the rightmost eigenvalue of the elliptic Ginibre ensemble
in the weak non-Hermiticity regime [9]. Higher-dimensional versions of such
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interpolating kernels for the bulk and edge were indeed found for d > 1 in
[2]. For d = 1, the limit τ → 0 corresponds to spinless free Fermions in two
dimensions in a rotating trap [22], with angular speed near some critical value,
but it is not clear if such a physical interpretation exists for d > 1 for (11).
The corresponding DPP can be interpreted as a higher dimensional version of
the complex Ginibre ensemble. At least formally, the approach in [22] can be
extended to 2d dimensions, by generalizing the Hamiltonian in a straightfor-
ward way, the model defined via (11) then describing spinless free Fermions
in a rotating 2d-dimensional space (with angular speed close to some critical
value).

Contrary to the d = 1 case, it is considerably more complicated to write
down the JPDF associated to DPPs with kernel (1) for d > 1. For example,
in what is probably the simplest case, i.e., the kernel (11), writing down the
JPDF merely for n = 2 gives

ρ
(d+1)
2 (z(1), . . . , z(d+1)) =

e− ∑d+1
j=1 |z(j)|2

πd(d+1)
det

(
1 + z(i) · z(j)

)
1≤i,j≤d+1

,

z(1), . . . , z(d+1) ∈ C
d.

A Vandermonde type expression, with factors expressing the mutual distances
between the points, is therefore not going to work, because the total degree
of such a factor would be d(d + 1) rather than 2d + 2, and we have little
hope that a closed form expression can be derived for general n. Consequently,
it is not easy to find an explicit equilibrium problem for measures on C

d

corresponding to the DPP. An associated equilibrium problem for measures
on C

d can be found in [6], although its characterization is somewhat abstract.
For the particular cases of (11) and (12), it is implied by [6, Theorem 3.4]
that we should find a uniform law, given by the Monge-Ampère measure [21],
although it is not a priori clear what the support is. Nevertheless, it is possible
to determine the support [2]. Under a scaling (z, w) 	→ √

n(z, w), the average
density of particles for both (11) and (12) converges to a uniform law on a
2d-dimensional ellipsoidal region, given by

E d
τ =

{
z ∈ C

d :
1 − τ

1 + τ
|Re z|2 +

1 + τ

1 − τ
| Im z|2 < 1

}
(13)

(for τ = 0, we prove this in Corollary 2.4). The droplet is thus given by
E d

τ ∪ ∂E d
τ . In the 2d-dimensional bulk, defined via (13), there is a local scaling

limit in the form of a factorization in Ginibre kernels [2]. That is, there exist
unimodular functions cn : E d

τ × C
d → T such that

lim
n→∞ cn(z, u)cn(z, v)Kn

(√
n z + u,

√
n z + v

)
=

1
πd

exp
(

u · v − |u|2 + |v|2
2

)
,

uniformly on compact sets of z ∈ E d
τ and u, v ∈ C (for τ = 0, see Corollary

4.4). Here z ·w = z1w1 + . . .+zdwd denotes the dot product. This bulk scaling
limit is well-known to be universal for random normal matrices under certain
conditions (d = 1) [4]. For d > 1, the bulk scaling limit is also universal,
as was shown by Berman [7]. A scaling limit at the edge was not obtained



4412 L.D.Molag Ann. Henri Poincaré

in [2] (not for fixed τ). The aim of this paper is to prove that we find edge
scaling limits, similar to (9) and (10), for the DPPs with kernel (11) or (12)
on the hyperellipsoid ∂E d

τ . Indeed, we find higher dimensional generalizations.
We start with a result for the average density of points ρ

(1)
n (z) (for (11) when

τ = 0, and (12) when 0 < τ < 1).

Theorem 1.1. Let d be a positive integer, let 0 ≤ τ < 1, and let 0 < ν < 1
6 . Let

z ∈ ∂E d
τ , and denote by n the outward unit normal vector on ∂E d

τ at z. Then,
we have as n → ∞ that

nd ρ(1)n

(√
n z + λn

)
=

d!
2πd

erfc
(√

2 λ
)

+
κ√
n

d!
3πd

√
2π

(
λ2 − 1 + 1τ �=0

d − 1
(2κ2)

1
3

+ O(n− 1
2+3ν)

)
e−2λ2

,
(14)

uniformly for z ∈ ∂E d
τ , and λ ∈ R such that λ = O(nν), where κ = κ(z) is

defined by

κ(z) =
1

(
(|Re z|2 − | Im z|2 − 4τ

1−τ2 )2 + 4|Re z|2| Im z|2
) 3

4
. (15)

This result should be seen as an extension of (9) to higher dimensions
(although we give fewer terms in the expansion). This is not entirely surpris-
ing. The asymptotic behavior in terms of the complementary error function
was also found near the edge in higher dimensional models investigated by
Ross-Singer [25] and Zelditch-Zhou [27]. Both references investigate Bergman
kernels, or rather their associated densities, in the geometric setting of com-
plex manifolds with holomorphic line bundles, Kähler manifolds in particular.
In [25], the tail of the Bergman kernel is considered, this situation is different
from ours but nevertheless yields the complementary error function behavior.
We suspect that (14) can be derived to leading order from [27] after making
the relevant identifications. It is an interesting question whether the univer-
sality class contains other models of the form (1). At the moment, it is not
known whether, analogous to the d = 1 case, the expression κ in (15) has a
geometric interpretation pertaining to ∂E d

τ (although obviously, it yields the
curvature of ∂Eτ in |Re z| + i| Im z|).

We also derive a scaling limit, essentially a higher dimensional analogue
of the Faddeeva plasma kernel, for the kernel with general arguments (i.e., not
necessarily diagonal or in the direction of the outward normal vector) near the
edge.

Theorem 1.2. Let d be a positive integer, let 0 ≤ τ < 1, and let 0 < ν < 1
6 . Let

z ∈ ∂E d
τ , and denote by n the outward unit normal vector on ∂E d

τ at z. Then,
there exist continuous unimodular functions cn : ∂E d

τ × C
d → T such that

cn(z, u)cn(z, v)πd exp

( |u|2 + |v|2
2

− u · v

)
Kn(

√
n z + u,

√
n z + v)

=
1

2
erfc

(
u · n + n · v√

2

)
+ exp

(
− (u · n + n · v)2

2

) O (
1 + |u|2 + |v|2)

√
n

,
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as n → ∞, uniformly for z ∈ ∂E d
τ , and u, v ∈ C

d such that |u|, |v| = O(nν).

For d = 1, we can be more explicit about the error, and indeed, we
manage to rederive a slightly stronger version of (10) (see Proposition 5.1).
We consider our derivation of this result of independent interest. For general
d ≥ 1, the scaling limit is expressed in terms of the geometry of the droplet,
i.e., in terms of the unit normal vector. We can directly extract a weaker
result where this is not the case, where the scaling limit becomes the Faddeeva
plasma kernel.

Corollary 1.3. Under the conditions of Theorem 1.2, there exist continuous
unimodular functions cn : ∂E d

τ × C
d → T such that

lim
n→∞ cn(z, un)cn(z, v n)Kn(

√
n z + un,

√
n z + v n)

=
1

2πd
exp

( |u|2 + |v|2
2

− uv

)
erfc

(
u + v√

2

)
,

uniformly for z ∈ ∂E d
τ , and u, v ∈ C such that u, v = O(nν).

Indeed, this result shows that the universality of (7) is not limited to the
eigenvalues of random normal matrices and other non-Hermitian random ma-
trices, but its universality class includes higher dimensional models as well. To
the best of our knowledge, a scaling limit of this form (excluding the diagonal
case) has not yet appeared in the literature for higher dimensional models.
While we cannot claim that the elliptic class is general enough to imply a
universality theorem for generic weights W , our results do provide a target
for such a result. One possible direction to pursue is as follows. It is known
that a version of the Mehler kernel exists for generalized Laguerre polyno-
mials, expressed via the so-called Hardy–Hille formula, and an adaptation of
the approach of the current paper and [2] will likely work here. Our approach
likely also works for distinct eccentricity parameters, i.e., we may consider
W (z) = ω1(z1) · · · ωd(zd) with ωk(z) = e−|z|2+τk Re(z2) and τ1, . . . , τd ∈ (0, 1).
This case can be treated with a single integral representation as well, and likely
leads to a similar situation where a saddle point and pole coalesce in the limit
n → ∞, which, as we shall see, produces the complementary error function. In
the end, a universality theorem that we wish to prove in a future work, is that
some version of Corollary 1.3 holds for a general class of multivariate weights
W (z) = e−nV (z) on C

d, much larger than our restricted class of factorized
weights with external field V (z) = |z|2 − τ Re(z21 + . . . + z2d) (in that case, we
should change

√
nz +u and

√
nz +v to z + u√

n
and z + v√

n
due to the different

scaling).
The paper is built up as follows. In Sect. 2, we recap some results from

[2], that were used for a steepest descent analysis to derive the asymptotic
behavior of (12). The reason that the edge limit was not treated in [2] is that
it corresponds to a more complicated situation where a saddle point and pole
coalesce in the limit n → ∞. In Sect. 3, we clarify how this situation can
be treated. Some preparatory relevant identities and estimates are derived in
Sect. 4, and finally, in Sect. 5 we prove the main theorems.
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2. Approach and set up

A Single integral representation

Our primary tool to prove the main results will be a steepest descent analysis.
In [2], it was shown, using a formula for the Mehler kernel, that (12) (with a
different scaling) admits a single integral representation of the form

Kn(
√

n z,
√

n w) =

(√
1 − τ2

π

)d √
ω

(√
n z+

)
ω

(√
n z−

)
Id
n,τ (z±), (16)

valid for any z, w ∈ C
d, where

z± =
√

sinh 2ξτ

2

⎛

⎝

√√√
√

d∑

j=1

(zj + wj)2 ±
√√√
√

d∑

j=1

(zj − wj)2

⎞

⎠ , (17)

and, with γ0 a small positively oriented loop around s = 0, the integral Id
n,τ (z±)

is given by

Id
n,τ (z±) = − 1

2πi

∮

γ0

enF (s)

s − τ

ds

(1 − s2)
d
2

(18)

and F (s) = Fτ (z±; s) is given by

F (s) =
s

1 + s

(z+ + z−)2

2
− s

1 − s

(z+ − z−)2

2
− log s + log τ. (19)

We do not have to be explicit about the choice of branch of the square roots
in (17), because the choice is irrelevant for (19), and thus for Kn(

√
n z,

√
n w).

The same holds for the branch of the logarithm in (19). Nevertheless, let us
use the convention that logarithms and power functions will be defined as
log z = log |z|+ i arg z and zα = |z|αeiα arg z, where arg z ∈ (−π, π]. The saddle
points of F (s) have a surprisingly simple form in elliptic coordinates. We write

z± =
√

2 cosh(ξ± + iη±),

where ξ± ≥ 0 and η± ∈ (−π, π] when ξ± > 0, while η± ∈ [0, π] when ξ± =
0. Note that any constant value of ξ± corresponds to an ellipse with vertex√

2 cosh ξ± and co-vertex
√

2 sinh ξ±. The edge, i.e., the ellipse forming the
boundary of the droplet, is described by the particular choice ξ± = ξτ , where
ξτ = 1

2 log 1
τ . We define

a = eξ++ξ−+i(η++η−), and b = eξ+−ξ−+i(η+−η−). (20)

With these notations, the following result was derived in [2].

Proposition 2.1. (0 < τ < 1)
If z+, z− ∈ C \ {−√

2,
√

2}, then the saddle points of s 	→ Fτ (z±; s) are
simple, and we have the following:
(i) When z+ �= ±z−, there are exactly four saddle points given by a, a−1, b

and b−1.
(ii) When z+ = ±z− and z+ �= 0, there are exactly two saddle points, which

are given by a and a−1.
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If z+ ∈ {−√
2,

√
2} or z− ∈ {−√

2,
√

2}, then all saddle points have order two
and we have the following:
(iii) When z± ∈ {−√

2,
√

2} and z∓ �∈ {−√
2,

√
2}, then we have two saddle

points a = b∓1 and a−1 = b±1.
(iv) When z+ = ±z− ∈ {−√

2,
√

2}, then we have one saddle point a−1 =
a = b = b−1 = ±1.

Finally, when z+ = z− = 0 there are no saddle points.

Furthermore, in order to understand what deformations of γ0 were al-
lowed, the following theorem was proved. Notice in particular that one can
deform γ0 to the circle |s| = |a|−1 when ξ+, ξ− > 0.

Theorem 2.2. (0 < τ < 1) With the notations as above, we have the inequality

Re F (s) ≤ Re F (a−1), |s| = |a|−1. (21)

(i) When ξ+ > 0 and ξ− > 0, we have equality if and only if s = a−1.
(ii) When ξ+ > 0 and ξ− = 0, we have equality if and only if s = a−1 or

s = b−1.
(iii) When ξ+ = 0 and ξ− > 0, we have equality if and only if s = a−1 or

s = b.
(iv) When ξ+ = 0 and ξ− = 0, we have equality for all s.

So far, these results describe Kn for 0 < τ < 1 (as defined in (12)). For
τ = 0, we can significantly simplify Kn (as defined in (11)).

Proposition 2.3. (τ = 0) Let z, w ∈ C
d. Then, we may write

Kn(
√

n z,
√

n w) =
1
πd

e−n |z|2+|w|2
2

n−1∑

j=0

(n z · w)j

j!
. (22)

Proof. We start by noticing that

e(z·w)s =
d∏

k=1

e(zkwk)s =
d∏

k=1

∞∑

jk=0

(zkwks)jk

jk!
=

∞∑

m=0

∑

|j|=m

sm
d∏

k=1

(zkwk)jk

jk!
.

Then, by applying the residue theorem in two directions, we have

∑

|j|<n

d∏

k=1

(zkwk)jk

jk!
=

1
2πi

∮

γ0

e(z·w)s

(
1 +

1
s

+ . . . +
1

sn−1

)
ds

s
=

n−1∑

j=0

(z · w)j

j!
.

(23)

Now substituting (z, w) 	→ √
n(z, w), and multiplying with the remaining fac-

tors in (11), we arrive at (22). �

Comparing with (4), we infer that Kn for d ≥ 1 and τ = 0 is closely
related to the Ginibre ensemble (d = 1). In particular, some properties are
immediately inherited from the Ginibre ensemble. For instance, the model has
a bulk, which is given by the 2d-dimensional unit ball in C

d.
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Corollary 2.4. (τ = 0) The average density of particles converges to a uniform
law on the unit ball in C

d.
More precisely, we have

lim
n→∞ nd ρ(1)n (

√
n z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d!
πd

, |z| < 1,

d!
2πd

, |z| = 1,

0, |z| > 1.

(24)

The convergence is uniform on compact subsets such that |z| �= 1.

Proof. By some straightforward combinatorial arguments, the number of points
of the DPP defined via (11) is given by the binomial coefficient

(
n+d−1

d

)
, which

behaves as nd

d! (1 + O(1/n)) for large n. For the average density of particles,
one takes z = w. Then, (22) turns into

Kn(
√

n z,
√

n z) =
1
πd

e−n|z|2
n−1∑

j=0

(n|z|2)j

j!
.

This, apart from a factor πd rather than π, is simply the (rescaled) average
density of points of the Ginibre ensemble (d = 1) in |z| (or any rotation in the
plane thereof), and we obtain the result directly from (5). �

Though Proposition 2.3 gives an immediate relation between the d > 1
and d = 1 model for τ = 0, it will turn out to be both instructive and beneficial
to find a single integral representation for this model as well. We have the
following result.

Proposition 2.5. (τ = 0) Let z, w ∈ C
d. We may write

Kn(
√

n z,
√

n w) =
1
πd

e−n |z|2+|w|2
2 Id

n,0(z · w), (25)

where, for ζ ∈ C, we have

Id
n,0(ζ) = − 1

2πi

∮

γ0

enF (s)

s − 1
ds, (26)

with γ0 a small positively oriented loop around 0, and F (s) = F (ζ; s) is defined
by

F (s) = ζs − log s. (27)

Proof. Since s = 1 is not enclosed by γ0 (which is assumed to be small), the
residue theorem implies that (23) can alternatively be written as

∑

|j|<n

d∏

k=1

(zkwk)jk

jk!
=

1
2πi

∮

γ0

e(z·w)s 1 − s−n

1 − s−1

ds

s
= − 1

2πi

∮

γ0

e(z·w)ss−n ds

s − 1
.

(28)

Now substituting (z, w) 	→ √
n(z, w), writing s−n = e−n log s, and multiplying

with the remaining factors in (11), we arrive at (25), with Id
n,0 and F as defined

in (26) and (27), respectively. �
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We state the following proposition. The proof is trivial, and is therefore
omitted.

Proposition 2.6. (τ = 0) Let ζ ∈ C, and let F (s) = F (ζ; s) be as in Proposi-
tion 2.5, i.e., F (s) = ζs − log s.
(i) When ζ �= 0, there is only one saddle point s0 = ζ−1, which is simple. In

this case F (s0) = 1 + log ζ and F ′′(s0) = ζ2.
(ii) When ζ = 0, there are no saddle points.

2.1. Set up

We shall need the results of the previous subsection, tailored to a specific situa-
tion. In our present case, we investigate the asymptotic behavior of
Kn(

√
n z + u,

√
n z + v), where z ∈ ∂E d

τ , and u, v ∈ C
d satisfy u, v = O(nν)

as n → ∞, for some fixed 0 < ν < 1
6 . First, we focus on the case 0 < τ < 1.

Using the definition in (17), we have that

z±√
sinh 2ξτ

=

√

|Rez|2 +
u + v√

n
· (Rez) +

(u + v)2

4n

± i

√

|Imz|2 +
u − v√

n
· (iImz) − (u − v)2

4n
,

(29)

where we use a short-hand notation ζ2 = ζ21 + . . . + ζ2d for any ζ ∈ C
d. In

particular, z± depend piecewise continuously on z and u√
n
, v√

n
, and we have

uniformly for z ∈ ∂E d
τ and u, v = O(nν) that

lim
n→∞

z±√
sinh 2ξτ

=
ẑ±√

sinh 2ξτ

:= |Re z| ± i| Im z| ∈ ∂Eτ .

In particular, there is an η ∈ [0, π
2 ] such that

ẑ± =
√

2 cosh(ξτ ± iη).

When d = 1, we simply have z+ =
√

sinh 2ξτ (z+u) and z− =
√

sinh 2ξτ (z + v).
When d > 1, there is an essential difference though, and this is caused by the
branch-cut of the square roots in (29). In the end, these branch-cuts will some-
how drop out (at least to the dominant order), since Id

n,τ (z±) depends only
on (z+ ± z−)2, which have no branch-cut. However, in our derivation we shall
have to take the presence of these branch-cuts into account. When z is in a
subset of ∂E d

τ such that Re z, Im z �= 0, we have
z±√

sinh 2ξτ

=
ẑ±√

sinh 2ξτ

+
u + v√

n
· Rez
|Rez| ± u − v√

n
· Imz

|Imz|
+ O

(
n−1+2ν

|Rez| +
n−1+2ν

|Imz|
) (30)

uniformly for u, v = O(nν) as n → ∞. On the other hand, when Re z = 0, we
have

z±√
sinh 2ξτ

=
ẑ±√

sinh 2ξτ
+

√
(u + v)2√

n
± u − v√

n
· Im z

| Im z| + O (
n−1+2ν

)
, (31)
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while the case Im z = 0 yields

z±√
sinh 2ξτ

=
ẑ±√

sinh 2ξτ
+

u + v√
n

· Re z

|Re z| ±
√

(u − v)2√
n

+ O (
n−1+2ν

)
, (32)

uniformly for u, v = O(nν) as n → ∞. Although we have z± = ẑ± +O(n− 1
2+ν)

in all cases, it is not a priori clear that the constant implied by this O term
can be taken uniformly for z ∈ ∂E d

τ . Nevertheless, this does indeed hold.

Lemma 2.7. (0 < τ < 1) We have z± − ẑ± = O(n− 1
2+ν) as n → ∞, uniformly

for z ∈ ∂E d
τ and u, v = O(nν).

Proof. One simply has to divide into the case |Re z|, | Im z| > n− 1
2+ν , the case

|Re z| ≤ n− 1
2+ν , and the case | Im z| ≤ n− 1

2+ν . In the first case, we have

∣
∣∣
∣∣

√

|Rez|2 +
u + v√

n
· (Rez) +

(u + v)2

4n
− |Rez|

∣
∣∣
∣∣
=

∣∣
∣∣
∣
∣

u+v√
n

· Rez
|Rez| + (u+v)2

4|Rez|n

1 +
√

1 + u+v√
n

· Rez
|Rez| + (u+v)2

4|Rez|n

∣∣
∣∣
∣
∣

≤ |u + v|√
n

+
|u + v|2
4n

1
2
+ν

,

∣
∣∣
∣∣

√

|Imz|2 +
u − v√

n
· (iImz) − (u − v)2

4n
− |Imz|

∣
∣∣
∣∣
=

∣∣
∣∣
∣
∣

u−v√
n

· iImz
|Imz| − (u−v)2

4|Imz|n

1 +
√

1 + u+v√
n

· Rez
|Rez| + (u+v)2

4|Rez|n

∣∣
∣∣
∣
∣

≤ |u − v|√
n

+
|u − v|2
4n

1
2
+ν

.

(33)

We used here that for any ζ ∈ C we have Re
√

ζ ≥ 0, and thus for all ζ ∈
C ∪ {∞} one has

∣∣∣∣
1

1 +
√

ζ

∣∣∣∣ ≤ 1.

When we are in the second case, we have
∣∣∣∣∣

√

|Re z|2 +
u + v√

n
· (Re z) +

(u + v)2

4n
− |Re z|

∣∣∣∣∣

≤
√

n−1+2ν + |u + v|n−1+ν +
|u + v|2

4n
+ n− 1

2+ν = n− 1
2+ν

(
2 +

|u + v|
2nν

)
,

while we still have the same estimate (33). The third case is analogous. Ob-
viously, we can find a constant C > 0 such that |z± − ẑ±| ≤ Cn− 1

2+ν for the
three cases simultaneously. �

It will turn out to be convenient to introduce

Δ± =
z± − ẑ±√

ẑ2± − 2
=

cosh(ξ± + iη±) − cosh(ξτ ± iη)
sinh(ξτ ± iη)

, (34)

where, as before, z± =
√

2 cosh(ξ± + iη±) and ẑ± =
√

2 cosh(ξτ ± iη). Rather

than working with u, v = O(nν) we shall simply consider z± = ẑ±+
√

ẑ2± − 2 Δ±,
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and demand that Δ± = O(n− 1
2+ν) as n → ∞. An incidental advantage of

this perspective, is that we only need to consider limits that are uniform in
ẑ± ∈ √

sinh 2ξτ ∂Eτ = {sinh(2ξτ )w : w ∈ ∂Eτ}. For notational convenience,
we introduce

ẑ =
z+√

sinh 2ξτ
.

Summarizing, our aim is to understand the asymptotic behavior of Id
n,τ (z±),

where

z± = ẑ± +
√

ẑ2± − 2 Δ±,

uniformly for ẑ ∈ ∂Eτ , under the assumption that Δ± = O(n− 1
2+ν) as n → ∞.

Lemma 2.8. (0 < τ < 1) Let a and b be defined as in (20). Then, we have

a±1 = τ∓1 ± τ∓1(Δ+ + Δ−) + O(n−1+2ν). (35)

b±1 = e±2iη ± e±2iη(Δ+ − Δ−) + O(n−1+2ν). (36)

as n → ∞, uniformly for ẑ ∈ ∂Eτ . Furthermore, we have

τa − 1 = Δ+ + Δ− +
(Δ+ + Δ−)2

2

− coth(ξτ + iη)
Δ2

+

2
− coth(ξτ − iη)

Δ2
−
2

+ O(n− 3
2+3ν)

(37)

as n → ∞, uniformly for ẑ ∈ ∂Eτ .

Proof. As shown in [2], we can alternatively write the saddle points as

a±1 =
1
2

(
z+ ±

√
z2+ − 2

) (
z− ±

√
z2− − 2

)
(38)

b±1 =
1
2

(
z+ ±

√
z2+ − 2

) (
z− ∓

√
z2− − 2

)
. (39)

We observe by Taylor series expansion that
√

z2± − 2 =
√

ẑ2± − 2 +
ẑ±√

ẑ2± − 2
(z± − ẑ±) − 1

(ẑ2± − 2)
3
2
(z± − ẑ±)2 + O(Δ3

±)

=
√

ẑ2± − 2 + ẑ±Δ± − Δ2
±√

ẑ2± − 2
+ O(Δ3

±).

Henceforth,

z± +
√

z2± − 2
√

2
= eξτ ±iη + eξτ ±iηΔ± − 1

sinh(ξτ ± iη)
Δ2

±
2

+ O(Δ3
±). (40)

Plugging these in (38), we obtain

a±1 = τ∓1 ± τ∓1(Δ+ + Δ−) + O(n−1+2ν). (41)

Analogously, we find

b±1 = e±2iη ± e±2iη(Δ+ − Δ−) + O(n−1+2ν). (42)
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Using (40) to one order higher, we find that

τa − 1 =Δ+ + Δ− + Δ+Δ− − e−ξτ −iη

sinh(ξτ + iη)

Δ2
+

2
− e−ξτ+iη

sinh(ξτ − iη)

Δ2
−
2

+ O(n− 3
2
+3ν).

�

Lemma 2.8 shows in particular that a, b and b−1 lie outside the circle
|s| = |a|−1 for n big enough. Following Lemma 2.2, we intend to deform the
integration contour γ0 to the circle |s| = |a|−1, and we should only take the
saddle point s = a−1 into account. What makes this situation complicated,
is that the saddle point a−1 and the pole at τ of the integrand of Id

n,τ (ẑ± +√
ẑ2± − 2 Δ±) coalesce in the limit n → ∞.

Since a−1 is the only saddle point that will give a contribution, we shall
need to know the values of F and F ′′ only in a−1. By [2], these are given by

F (a−1) = 1 + log τ + ξ+ + ξ− + i(η+ + η−) +
1
2
e−2(ξ++iη+) +

1
2
e−2(ξ−+iη−),

F ′′(a−1) = 2a2 sinh(ξ+ + iη+) sinh(ξ− + iη−)
sinh(ξ+ + iη+ + ξ− + iη−)

. (43)

We would rather express F ′′(a−1) in terms of Δ± however, hence the following
lemma. As it turns out, we need not be precise about the behavior of F (a−1).

Lemma 2.9. (0 < τ < 1) Uniformly for ẑ ∈ ∂Eτ , we have as n → ∞ that

1
2
a−2F ′′(a−1) =

| sinh(ξτ + iη)|2
sinh(2ξτ )

(1 + coth(ξτ + iη)Δ+ + coth(ξτ − iη)Δ− − coth(2ξτ )(Δ+ + Δ−)) + O(n−1+2ν)
(44)

Proof. As observed in [2], we can write F ′′(a−1) entirely in terms of the saddle
points. Namely

F ′′(a−1) =
(a − b)(a − b−1)

1 − a−2
.

Plugging in (41) and (42), we find that

a − b±1 = (τ−1 − e±2iη) (1 + Δ± + coth(ξτ ∓ iη)Δ∓) + O(n−1+2ν),

a2 − 1 = (τ−2 − 1)
(

1 + 2
Δ+ + Δ−

1 − τ2

)
+ O(n−1+2ν).

We thus have

a−2F ′′(a−1) =
|τ−1 − e2iη|2

τ−2 − 1
(1 + coth(ξτ + iη)Δ+

+ coth(ξτ − iη)Δ− − coth(2ξτ )(Δ+ + Δ−)) + O(n−1+2ν).

�
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So far, we set up everything for the case 0 < τ < 1. The case τ = 0 is
considerably easier, and there is not much to set up. Substituting

√
n(z, w) 	→

(
√

n z+u,
√

n z+v) in Proposition 2.6, we find that there is exactly one saddle
point (for n large enough), which is simple, and given by

s0 =
1

(
z + u√

n

)
·
(
z + v√

n

) =
(

1 +
u · z + z · v√

n
+

u · v

n

)−1

= 1 − u · z + z · v√
n

+
(u · z + z · v)2 − u · v

n
+ O(n− 3

2+3ν) (45)

as n → ∞, uniformly for |z| = 1 and u, v ∈ C
d with u, v = O(nν). Note that,

in this case, just as in the case 0 < τ < 1, the saddle point (s = s0) coalesces
with the pole (s = 1) in the limit n → ∞. We also find that

F (s0) = 1 − log s0 = 1 + log
(

1 +
u · z + z · v√

n
+

u · v

n

)

= 1 +
u · z + z · v√

n
− (u · z + z · u)2 − u · v

n
+ O(n− 3

2+3ν),

F ′′(s0) =
1
s20

=
(

1 +
u · z + z · v√

n
+

u · v

n

)2

,

(46)

as n → ∞, uniformly for |z| = 1 and u, v ∈ C
d with u, v = O(nν). As before,

rather than using u, v, we shall consider the asymptotic behavior of Id
n,0(1+Δ),

where we assume that Δ = O(n− 1
2+ν) as n → ∞. In the end, we then have to

substitute

Δ =
u · z + z · v√

n
+

u · v

n
. (47)

Having prepared all the ingredients necessary for the steepest descent
analysis, we shall explicitly derive the asymptotic behavior of Id

n,τ in the next
section.

3. Steepest descent analysis

For 0 < τ < 1, our goal is to derive the asymptotic behavior of
Id
n,τ (ẑ±+

√
ẑ2± − 2 Δ±) with a steepest descent analysis, under the assumption

that Δ± = O(n− 1
2+ν) as n → ∞. We deform the integration contour γ0 to

the circle |s| = |a|−1 = e−ξ+−ξ− . We need to understand the behavior of F (s)
around the saddle point s = a−1 and the pole (of the integrand) s = τ .

When τ = 0, the situation is comparable. Here, we attempt to find the
large n behavior of Id

n,0(1 + Δ), under the condition that Δ = O(n− 1
2+ν) as

n → ∞. The saddle point will coalesce with the pole s = 1 in the limit n → ∞.
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3.1. A saddle point coalescing with a pole

Under proper conditions, it is possible to perform a steepest descent analysis
where a saddle point and a pole coalesce. Although our arguments can be
extended to more general situations, we consider only the quadratic case on
the real line. After the right preparations, Proposition 3.1 turns out to be
enough for our purposes.

Proposition 3.1. Let �1 < 0 < �2. Uniformly for p ∈ C in compact sets with
�1 < Re p < �2, we have that

∫ �2

�1

e−nt2 dt

t − p
= −πie−np2

erfc(i
√

np) + O
(

e−n�21 + e−n�22

n

)

,

as n → ∞, where the path from �1 to �2 is such that p is to the right of the
path.

Proof. The conditions imply that �1 + δ < Re p < �2 − δ for some constant
δ > 0. Without loss of generality, we assume that Im p < 0 and that the curve
from �1 to �2 is a line segment. First, we note that

∣∣∣∣∣

∫ �1

−∞
e−nt2 dt

t − p
+

∫ ∞

�2

e−nt2 dt

t − p

∣∣∣∣∣
≤ 1

Rep − �1

√
π

n
erfc

(√
n�1

)

+
1

�2 − Rep

√
π

n
erfc

(√
n�2

)

≤ 1
δ

e−n�21

πn�1
+

1
δ

e−n�22

πn�2
,

as n → ∞. Hence, we may just as well replace �1 by −T and �2 by T for some
large T > 0, and integrate over the line segment [−T, T ] in what follows. We
create a closed integration contour by adding the line segments [Im p−T, p−ε],
[p + ε, Im p + T ] and ±T + i[Im p, 0], and the upper semicircle from p + ε to
p − ε for some small ε > 0 (see Fig. 1). Performing the corresponding contour
integration, and letting T → ∞ and ε → 0, we infer that

∫ ∞

−∞
e−nt2 dt

t − p
= πie−np2 − p. v.

∫ ∞

−∞
e−n(t+p)2 dt

t
.

We can rewrite the principle value integral as

p. v.

∫ ∞

−∞
e−n(t+p)2 dt

t
= e−np2

∫ ∞

−∞
e−nt2

∞∑

k=0

(−2npt)2k+1

(2k + 1)!
dt

t

=
e−np2

√
n

∞∑

k=1

(−2
√

np)2k+1

(2k + 1)!
Γ (k + 1/2)

= 2e−np2√
π

∞∑

k=0

(−√
np)2k+1

k!(2k + 1)
= −πie−np2

erf(i
√

np)
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Figure 1. The integration contour used in the proof of
Proposition 3.1

where we used the Legendre duplication formula Γ(s)Γ(s+1/2) = 21−2s
√

π Γ(2s)
for s = k + 1/2, and the Taylor series expansion for the error function. To-
gether with the half residue from before, this yields the complementary error
function. �
3.2. Conformal map

Let us consider τ = 0. By (46) we know that F ′′(s0) is approximately equal
to 1. Hence, the steepest descent path going through s0 is almost a vertical
line segment in a neighborhood of s = s0 (and s = 1). There is a conformal
map transforming this steepest descent path to a real line segment, and this,
after some rewriting, will allow the application of Proposition 3.1. Then, by a
simple Taylor series expansion of F (s) = (1 + Δ)s − log s, we have

F (s) = F (s0) +
∞∑

k=2

(−1)k

k

(
s − s0

s0

)k

.

The convergence radius of this series is given by |s0| = 1 + O(n− 1
2+ν). For n

large enough, we may assume that the convergence radius ρ is at least, say, 1
2 .

Clearly then, we can find a conformal map φ : D(s0; ρ) → C such that

F (s) − F (s0) = −φ(s)2.

Here, D(s0; ρ) denotes the disc with radius ρ, centered at s0. There are two
such maps, but let us take the one with expansion

φ(s) = − i√
2

s − s0
s0

+
i

3
√

2

(
s − s0

s0

)2

+ O((s − s0)3). (48)

Since the saddle point converges to 1, we want to find out how φ behaves there.
To this end, we have the following lemma.

Lemma 3.2. (τ = 0) Let φ be as defined above. Then we have as n → ∞ that

iφ(1) =
Δ√
2

− Δ2

3
√

2
+ O(n− 3

2+3ν). (49)
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Proof. From (50) and (45), we have

iφ(1) =
1√
2
(s−1

0 − 1) − 1
3
√

2
(s−1

0 − 1)2 + O((s−1
0 − 1)3)

=
Δ√
2

− Δ2

3
√

2
+ O(n− 3

2+3ν),

as n → ∞, where we used that s−1
0 = 1 + Δ. �

Let us move to the case 0 < τ < 1, and derive an analogous result. As n
becomes large, by (44), we have that

F ′′(a−1) = 2τ−2 | sinh(ξτ + iη)|2
sinh(2ξτ )

+ O(n− 1
2+ν)

as n → ∞. This is close to being a positive real number, hence the steepest
descent direction is almost a vertical line in a neighborhood of s = a−1 (and
s = τ). Again, there is a conformal map transforming this steepest descent
path to a real line segment. Explicitly, we can write

F (s) − F (a−1)

=

∞∑

k=2

(
(z+ + z−)2

2

(−1)k

(1 + a−1)k+1
− (z+ − z−)2

2

1

(1 − a−1)k+1
+

(−a)k

k

)
(s − a−1)k.

The convergence radius of this series is given by min(τ, 1 − τ) + O(n− 1
2+ν). In

particular, for n large enough, we may assume that it has convergence radius
at least ρ := 1

2 min(τ, 1 − τ), uniformly for ẑ ∈ ∂Eτ . Thus, for n large enough,
we have

F (s) − F (a−1) = −φ(s)2,

for some conformal map φ : D(a−1, ρ) → C, that depends on n. There are two
such conformal maps, but we choose the one with expansion

φ(s) = −i

√
1

2
F ′′(a−1)(s − a−1) − i

6
√

2

F ′′′(a−1)
√

F ′′(a−1)
(s − a−1)2 + O((s − a−1)3). (50)

By possibly taking ρ smaller, the reader may convince oneself that the length
of the real line segment, corresponding to the inverse image of the steepest
descent contour, can be arranged to be bounded, both from below and from
above, by a positive constant, uniformly for n and ẑ ∈ ∂Eτ . In particular, we
will consider a single line segment [−r, r], with r > 0, for all ẑ ∈ ∂Eτ and
all n, for which φ−1([−r, r]) ⊂ D(a−1, ρ) lies on the steepest descent contour
through s = a−1.

Lemma 3.3. (0 < τ < 1) We have

i φ(τ) =
| sinh(ξτ + iη)|√

sinh 2ξτ

(Δ+ + Δ−)

−
√

sinh 2ξτ

| sinh(ξτ + iη)|
Δ2

+ − Δ+Δ− + Δ2
−

6
+ O(n− 3

2+3ν), (51)

as n → ∞, uniformly for ẑ ∈ ∂Eτ .
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Proof. Using (44) and (37), we infer that
√

sinh 2ξτ

| sinh(ξτ + iη)|

√
1
2
F ′′(a−1)(τ − a−1)

= Δ+ + Δ− +
(Δ+ + Δ−)2

2
− coth(ξτ + iη)

Δ2
+

2
− coth(ξτ − iη)

Δ2
−
2

+
1
2
(Δ+ + Δ−) (coth(ξτ + iη)Δ+ + coth(ξτ + iη)Δ−

− coth(2ξτ )(Δ+ + Δ−)) + O(n− 3
2+3ν)

= Δ+ + Δ− − τ2

1 − τ2
(Δ+ + Δ−)2 +

sinh(2ξτ )
| sinh(ξτ + iη)|2

Δ+Δ−
2

+ O(n− 3
2+3ν).

(52)

To arrive at the last line, we used the identities

coth(2ξτ ) − 1 =
2τ2

1 − τ2
,

coth(ξτ + iη) + coth(ξτ − iη) =
sinh(2ξτ )

| sinh(ξτ + iη)|2 .

Also, we have

i

6
√

2
F ′′′(a−1)

√
F ′′(a−1)

(τ − a−1)2

= iτ

√
sinh 2ξτ

| sinh(ξτ + iη)|
(

(Reẑ+)2

(1 + τ)4
+

(Imẑ+)2

(1 − τ)4
− 1

6τ3

)

τ2(Δ+ + Δ−)2 + O(n− 3
2+3ν).

(53)

This we can simplify by noticing that

(Reẑ+)2

(1 + τ)4
+

(Imẑ+)2

(1 − τ)4
=

cos2 η

2τ(1 + τ)2
+

sin2 η

2τ(1 − τ)2

=
1 + τ2 − 2τ cos 2η

2τ(1 − τ2)2
=

| sinh(ξτ + iη)|2
τ sinh(2ξτ )(1 − τ2)

.

(54)

Combining (52) with (53) and (54), and the defining relation (50) for φ, we
conclude that

iφ(τ) =
| sinh(ξτ + iη)|√

sinh 2ξτ
(Δ+ + Δ−) +

1

2

√
sinh 2ξτ

| sinh(ξτ + iη)|Δ+Δ−

+

(
−| sinh(ξτ + iη)|√

sinh 2ξτ

τ2

1 − τ2
+

√
sinh 2ξτ

| sinh(ξτ + iη)|
(

τ2| sinh(ξτ + iη)|2
sinh(2ξτ )(1 − τ2)

− 1

6

))
(Δ+ + Δ−)2

+ O(n− 3
2+3ν)

=
| sinh(ξτ + iη)|√

sinh 2ξτ
(Δ+ + Δ−) +

1

2

√
sinh 2ξτ

| sinh(ξτ + iη)|Δ+Δ−

− 1

6

√
sinh 2ξτ

| sinh(ξτ + iη)| (Δ
2
+ + 2Δ+Δ− + Δ2

−) + O(n− 3
2+3ν),

as n → ∞, uniformly for ẑ ∈ ∂Eτ , and this yields the result. �
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3.3. Asymptotic behavior of Id
n,τ

In this section, we perform a steepest descent analysis to obtain the asymptotic
behavior of Id

n,τ , both for 0 < τ < 1 and τ = 0. Let us start with the latter,
τ = 0. Here, we simply deform γ0 to the steepest descent path through s = s0.
This is allowed because the steepest descent path ends in −∞ as n → ∞,
from both directions (to see this, one should solve the contour lines Im(s−1

0 s−
log s) = arg s0). We may then write

Id
n,0(z · w) = − 1

2πi

∮

γ0

enF (s) 1
s − 1

(
1 − φ′(s)(s − 1)

φ(s) − φ(1)

)
ds

− enF (s0)

2πi

∮

γ0

e−nφ(s)2

s − 1
φ′(s)(s − 1)
φ(s) − φ(1)

ds

= − 1
2πi

∮

γ0

enF (s) 1
s − 1

(
1 − φ′(s)(s − 1)

φ(s) − φ(1)

)
ds

− 1
2πi

enF (s0)

∫ ∞

−∞

e−ns2

s − φ(1)
ds.

The first integral can be done with a standard steepest descent procedure,
where we rescale variables locally around s = s0 (with a factor n− 1

2+ν). The
reader may verify that the assumption that 0 < ν < 1

6 is necessary for this
procedure to work (the cubic term has to be small). We see that

1
s − 1

(
1 − φ′(s)(s − 1)

φ(s) − φ(1)

)
=

φ(s) − φ(1) + φ′(s)(1 − s)
(s − 1)(φ(s) − φ(1))

= −1
2

φ′′(1)
φ′(1)

+ O(s − 1) =
1
3

+ O(Δ) + O(s − 1).

Performing the steepest descent analysis and invoking Proposition 3.1, we get

Id
n,0(z · w) =

1
2
enF (1) erfc(i

√
nφ(1)) +

(
−1

3
+ O(n−1+2ν)

)
enF (s0)

√
2πF ′′(s0)n

.

(55)

We thus get the following proposition.

Proposition 3.4. (τ = 0) We have as n → ∞ that

e−nF (1)Id
n,0(1 + Δ) =

1
2
erfc

(√
n

Δ√
2

)
+

1√
2πn

exp
(

−n
Δ2

2

)(
nΔ2 − 1

3
+ O(n− 1

2+3ν)
)

.

(56)

Proof. By the preceding, we have

e−nF (1)Id
n,0(1 + Δ) =

1
2

erfc(i
√

nφ(1)) +
(

−1
3

+ O(n−1+2ν)
)

e−nφ(1)2

√
2πF ′′(s0)n

.

(57)
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By Taylor expanding and Proposition 3.2, we have

e−nF (1)Id
n,0(1 + Δ) =

1
2
erfc(i

√
nφ(1)) +

(
−1

3
+ O(n−1+2ν)

)
e−nφ(1)2

√
2πF ′′(s0)n

.

(58)

and similarly

e−nφ(1)2 = exp
(

−n
Δ2

2

)
(1 + O(n− 1

2+3ν)). (59)

Plugging (58) and (59) in (57), and using that F ′′(s0) = s20 and s−1
0 = 1 + Δ,

we arrive at the result. �

Now we turn to our integral (18) for the case 0 < τ < 1, where we deform
γ0 to the circle |s| = |a|−1. As the reader may verify, similar to what we did
for τ = 0, we can rewrite our integral as

Id
n,τ (z±) = − 1

2πi

∮

γ0

enF (s)

s − τ

(
1

(1 − s2)
d
2

− 1

(1 − τ2)
d
2

)

ds

− 1
2πi

1

(1 − τ2)
d
2

∫ φ(r)

φ(−r)

enF (s)

s − τ

(
1 − φ′(s)(s − τ)

φ(s) − φ(τ)

)
ds

− 1
2πi

enF (a−1)

(1 − τ2)
d
2

∫ r

−r

e−ns2

s − φ(τ)
ds + O(enF (a−1)e−cn)

(60)

uniformly for ẑ ∈ ∂Eτ as n → ∞, for some constant c > 0. The first two
integrals on the RHS of (60) can be asymptotically solved with a standard
steepest descent procedure, where we rescale variables locally around s = a−1

(with a factor n− 1
2+ν). Again, the reader may verify that the assumption that

0 < ν < 1
6 is necessary for this procedure to work. We note that

1

s − τ

(
1 − φ′(s)(s − τ)

φ(s) − φ(τ)

)
=

φ(s) − φ(τ) + φ′(s)(τ − s)

(s − τ)(φ(s) − φ(τ))
= −1

2

φ′′(τ)

φ′(τ)
+ O(s − τ).

Hence, executing the steepest descent method for the first two integrals, and
applying Proposition 3.1, we get

Id
n,τ (z±) =

1
2

enF (τ)

(1 − τ2)
d
2

erfc(i
√

nφ(τ))

− 1√
πn

τ
√

sinh 2ξτ

| sinh(ξτ + iη)|
enF (a−1)

(1 − τ2)
d
2

(
dτ

1 − τ2
− 1

2
φ′′(τ)
φ′(τ)

+ O(n− 1
2+3ν)

)
.

We used here that it did not matter whether φ(τ) was to the right or the left
of the contour, by application of the residue theorem, since we started with a
closed contour. In particular, we have

(1 − τ2)
d
2 e−nF (τ)Id

n,τ (z±) =
1
2

erfc(i
√

nφ(τ))

− 1√
πn

τ
√

sinh 2ξτ

| sinh(ξτ + iη)|e
nφ(τ)2

(
dτ

1 − τ2
− 1

2
φ′′(τ)
φ′(τ)

+ O(n− 1
2+3ν)

)
.
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as n → ∞, uniformly for ẑ ∈ ∂Eτ .
Summarizing, we have the following theorem.

Proposition 3.5. (0 < τ < 1) Let ẑ ∈ ∂Eτ . Let p be as in Lemma 3.3. Then,
we have

(1 − τ2)
d
2 e−nF (τ)Id

n,τ (z±) =
1
2

erfc
( | sinh(ξτ + iη)|√

sinh 2ξτ

√
n(Δ+ + Δ−)

)

+
1√
πn

√
sinh 2ξτ

| sinh(ξτ + iη)| exp
(

−| sinh(ξτ + iη)|2
sinh 2ξτ

n(Δ+ + Δ−)2
)

×
(

n
Δ2

+ − Δ+Δ− + Δ2
−

3
− 1

6
sinh 2ξτ

| sinh(ξτ + iη)|2 − τ2 d − 1
1 − τ2

+ O(n− 1
2+3ν)

)
,

(61)

as n → ∞, uniformly for ẑ ∈ ∂Eτ .

Proof. This follows from the formulae above, and

erfc(i
√

nφ(τ)) = erfc
( | sinh(ξτ + iη)|√

sinh 2ξτ

√
n(Δ+ + Δ−)

)

− 2√
π

exp
(

−| sinh(ξτ + iη)|2
sinh 2ξτ

n(Δ+ + Δ−)2
)

(
−

√
sinh 2ξτ

| sinh(ξτ + iη)|
√

n
Δ2

+ − Δ+Δ− + Δ2
−

6
+ O(n−1+3ν)

)
,

enφ(τ)2 = exp
(

−| sinh(ξτ + iη)|2
sinh 2ξτ

n(Δ+ + Δ−)2
)(

1 + O(n− 1
2+3ν)

)
,

which are obtained by taking a Taylor series and using Lemma 3.3. Finally,
with arguments similar to those in the proof of Lemma 3.3, we have

dτ

1 − τ2
− 1

2
φ′′(τ)
φ′(τ)

=
(d − 1)τ
1 − τ2

+
1
6τ

sinh 2ξτ

| sinh(ξτ + iη)|2 + O(n− 1
2+ν).

�

4. Explicit form of relevant expressions

To prove the main theorems, we need to start plugging u, v and z into our
formulae. Doing so, we can state Lemma 3.2 and Lemma 3.3 differently.

Lemma 4.1. (τ = 0) Fix 0 < ν < 1
6 . For z ∈ C

d with |z| = 1, denote by n the
outward unit normal vector on the 2d-dimensional unit sphere ∂Ed

0 in z. We
have

i
√

nφ(1) =
u · n + n · v√

2
+

3u · v − (u · n + n · v)2

3
√

2n
+ O(n−1+3ν), (62)

as n → ∞, uniformly for |z| = 1 and u, v ∈ C
d with u, v = O(nν). Further-

more, if u = v = λn with λ ∈ R, then we have

i
√

nφ(1) =
√

2λ − λ2

3
√

2n
+ O(n−1+3ν),
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as n → ∞, uniformly for |z| = 1 and λ = O(nν).

Proof. It is well known that the unit normal vector on the boundary of the
2d-dimensional unit ball in z is given simply by z. Substituting (47) in (49),
we find that

√
2niφ(1) = u · z + z · v +

u · v√
n

− (u · z + z · v)2

3
+ O(n−1+3ν).

Identifying n = z in this equation yields the first part of the lemma. The
second part follows trivially from the first part. �

With a little more effort, we find an analogous statement for the case
0 < τ < 1.

Lemma 4.2. (0 < τ < 1) Fix 0 < ν < 1
6 . For z ∈ ∂E d

τ , denote by n the
outward unit normal vector on ∂E d

τ in z. We have

i
√

nφ(τ) =
u · n + n · v√

2
+

O(|u|2 + |v|2)√
n

+ O(n−1+3ν), (63)

as n → ∞, uniformly for z ∈ ∂Eτ and u, v ∈ C
d with u, v = O(nν). Further-

more, if u = v = λn with λ ∈ R, then we have

i
√

nφ(τ) =
√

2λ +
1
6

( √
sinh 2ξτ

| sinh(ξτ + iη)|
)3

λ2

√
n

+ O(n−1+3ν),

as n → ∞, uniformly for z ∈ ∂E d
τ and λ = O(nν).

Proof. First, we need to describe the outward unit normal vector n. The hyper-
ellipsoid ∂E d

τ can be written as a (2d − 1)-dimensional hypersurface f(z) = 0,
where

f(z) =
1 − τ

1 + τ
|Re z|2 +

1 + τ

1 − τ
| Im z|2 − 1.

A normal vector is then given by the gradient of f , which, when normalized,
gives

n =
(1 − τ)2 Re z + i(1 + τ)2 Im z

√
(1 − τ)4|Re z|2 + (1 + τ)4| Im z|2 . (64)

This is the outward normal vector on ∂E d
τ . Now let us investigate Δ+ + Δ−,

as defined via (34). We notice that
1

sinh(ξτ + iη)
+

1
sinh(ξτ − iη)

=
sinh(ξτ ) cos η

| sinh(ξτ + iη|2 =
1

| sinh(ξτ + iη)|
(1 − τ)2|Rez|

√
(1 − τ)4|Rez|2 + (1 + τ)4|Imz|2 ,

1
sinh(ξτ + iη)

− 1
sinh(ξτ − iη)

= i
cosh(ξτ ) sin η

| sinh(ξτ + iη|2 =
1

| sinh(ξτ + iη)|
(1 + τ)2i|Imz|

√
(1 − τ)4|Rez|2 + (1 + τ)4|Imz|2 .
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Hence, we have

√
2
√

(1 − τ)4|Rez|2 + (1 + τ)4|Imz|2 | sinh(ξτ + iη)|√
sinh 2ξτ

(Δ+ + Δ−)

= (1 − τ)2|Rez|
(√

|Rez|2 +
u + v√

n
· (Rez) +

(u + v)2

4n
− |Re(z)|

)

+(1 + τ)2|Imz|
(√

|Imz|2 +
u − v√

n
· (iImz) − (u − v)2

4n
− |Imz|

)

.

(65)

This, for |Re z|, | Im z| > |u|+|v|√
n

, we can rewrite as

(1 − τ)2

2

u + v√
n

· (Re z) +
(1 + τ)2

2

u − v√
n

· (i Im z)

+
(u + v)2 − ((u + v) · Re z

| Re z| )
2

4n

|Re z| + 1
2

u+v√
n

· (Re z)

|Re z| + 1
2

u+v√
n

· (Re z) +

√

|Re z|2 + u+v√
n

· (Re z) + (u+v)2
4n

− (u − v)2 − ((u − v) · Im z)2

4n

| Im z| + 1
2

u−v√
n

· (i Im z)

| Im z| + 1
2

u−v√
n

· (i Im z) +

√

| Im z|2 + u−v√
n

· (i Im z) − (u−v)2
4n

.

Since Re
√

ζ ≥ 0 for all ζ ∈ C, we have for all ζ ∈ C ∪ {∞} that
∣∣∣∣

1
1 +

√
ζ

∣∣∣∣ ≤ 1.

We conclude that when |Re z|, | Im z| > |u|+|v|√
n

, we have

∣
∣∣∣
√

2
| sinh(ξτ + iη)|√

sinh 2ξτ
(Δ+ + Δ−) − u · n + n · v

2
√

n

∣
∣∣∣

≤ 1
2n

|u + v|2 + |u − v|2
√

(1 − τ)4|Re z|2 + (1 + τ)4| Im z|2 .

The reader may check by explicit calculation that this estimate is still valid for
|Re z| ≤ |u|+|v|√

n
or | Im z| ≤ |u|+|v|√

n
. Plugging our estimate into (51), we arrive

at the first statement of the lemma.
When u = v = λn, Eq. (65) simplifies considerably. We have

(u + v) · (Rez) = 2λ(Re n) · (Rez)

=
2λ(1 − τ)2

√
(1 − τ)4|Rez|2 + (1 + τ)4|Imz|2 |Rez|2,

(u − v) · (iImz) = 2λ(Im n) · (Imz)

=
2λ(1 + τ)2

√
(1 − τ)4|Rez|2 + (1 + τ)4|Imz|2 |Imz|2,



Vol. 24 (2023) Edge Behavior of Higher Complex-Dimensional DPPs 4431

and

(u + v)2

4
= λ2|Re n|2 = λ2 (1 − τ)4

(1 − τ)4|Rez|2 + (1 + τ)4|Imz|2 |Rez|2,

− (u − v)2

4
= λ2|Im n|2 = λ2 (1 + τ)4

(1 − τ)4|Rez|2 + (1 + τ)4|Imz|2 |Imz|2.

Hence, we find that
√

2
| sinh(ξτ + iη)|√

sinh 2ξτ

(Δ+ + Δ−)

=
(1 − τ)2|Re z|

√
(1 − τ)4|Re z|2 + (1 + τ)4| Im z|2

(

|Re z|
(

1 +
λ(1 − τ)2√

n
√

(1 − τ)4|Re z|2 + (1 + τ)4| Im z|2

)

− |Re(z)|
)

+
(1 + τ)2| Im z|

√
(1 − τ)4|Re z|2 + (1 + τ)4| Im z|2

(

| Im z|
(

1 +
λ(1 + τ)2√

n
√

(1 − τ)4|Re z|2 + (1 + τ)4| Im z|2

)

− | Im z|
)

=
λ√
n

.

In particular, we have

i
√

nφ(τ) =
√

2 λ −
√

sinh 2ξτ

| sinh(ξτ + iη)|
Δ2

+ − Δ+Δ− + Δ2
−

6
√

n
+ O(n−1+3ν). (66)

Similar to before, we can show that

√
nΔ± =

√
sinh 2ξτ

sinh(ξτ ± iη)
(1 − τ)2|Re z| ± i(1 + τ)2| Im z|

√
(1 − τ)4|Re z|2 + (1 + τ)4| Im z|2λ

=
√

sinh 2ξτ

| sinh(ξτ + iη)|λ.

Plugging these into (66) finishes the proof. �

Lemma 4.3. Let τ = 0. Then we have

exp
(

−|√n z + u|2 + |√n z + v|2
2

)
enF (1) = exp

(
u · v − |u|2 + |v|2

2

)
. (67)

Now let 0 < τ < 1. There exist unimodular functions cn : ∂E d
τ × C → T such

that

cn(z, u)cn(z, v)
√

ω(
√

n z+)ω(
√

n z−)enF (τ) = exp
(

u · v − |u|2 + |v|2
2

)
.

(68)

Proof. Let us start with the case τ = 0. We see that

|√n z + u|2 + |√n z + v|2 = 2n + |u|2 + |v|2 + 2
√

n (u + v) · z.
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It readily follows from the definition of F for τ = 0 that

F (1) =
(

z +
u√
n

)
·
(

z +
v√
n

)
= 1 +

u · v

n
+

(u + v) · z√
n

.

Combining these two identities, we obtain (67). Let move on to the case 0 <
τ < 1. We know that

√
ω(

√
n z+)ω(

√
n z−)) =

d∏

j=1

√
ω(

√
n zj + uj)ω(

√
n zj + vj)

= exp

⎛

⎝−1
2

d∑

j=1

(|√n zj + uj |2 − τ

2
((

√
n zj + uj)2 + (

√
n zj + uj)

2
)

+|√n zj + vj |2 − τ

2
((

√
n zj + vj)2 + (

√
n zj + vj)

2
))

)
.

(69)

We notice that
d∑

j=1

(|√n zj + uj |2 − τ

2
((

√
n zj + uj)2 + (

√
n zj + uj)

2
)

= n(|z|2 − τ Re(z2)) + |u|2 − τ Re(u2) +
√

n(u · (z − τz) + (z − τz) · u),
(70)

and, similarly with u replaced by v. On the other hand, we have

F (τ) =
τ(z+ + z−)2

2(1 + τ)
− τ(z+ − z−)2

2(1 − τ)

=
1 − τ

4

d∑

j=1

(
2Re zj +

uj + vj√
n

)2

− 1 + τ

4

d∑

j=1

(
2i Im zj +

uj − vj√
n

)2

= |z|2 − τ Re(z2) +
u · v − τ

2 (u2 + v2)
n

+
u · (z − τz) + (z − τz) · v√

n
.

(71)

Plugging the identities (70) (also for u replaced by v) and (71) into (69), we
find that

√
ω(

√
n z+)ω(

√
n z−)enF (τ) = exp

(
u · v − |u|2 + |v|2

2

)

exp
(−iτ Im(u2 − v2)

)
exp

(
iτ

√
n Im((z − τz) · (u − v))

)
.

Clearly then, to get (68), we should define the unimodular functions by

cn(z, u) = exp
(
iτ Im(u2)

)
exp

(−iτ
√

n Im((z − τz) · u)
)
.

�

The following is more or less a direct consequence of Proposition 2.3
and Lemma 4.3, we omit a proof. The result means that we find the higher
dimensional analogue of the Ginibre kernel, i.e., a factorization in d Ginibre
kernels, as a scaling limit in the bulk. In [2], this was proved for 0 < τ < 1.
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Corollary 4.4. (τ = 0) Take |z| < 1 and u, v ∈ C
d. Then, we have

lim
n→∞Kn

(√
n z + u,

√
n z + v

)
=

1
πd

exp
(

u · v − |u|2 + |v|2
2

)
.

The convergence is uniform on compact sets of |z| < 1 and u, v.

5. Proof of the main theorems

We now have all the ingredients necessary to prove the main results.

Proof of Theorem 1.2. We first treat the case τ = 0. Substituting (62) in (55),
and using Taylor expansions in the same way as in the proof of Proposition
3.4, we find that

e−nF (1)Id
n,0

((
z +

u√
n

)
·
(

z +
v√
n

))
=

1
2

erfc
(

u · n+n · v√
2

)

+
1√
2πn

exp
(

(u · n+n · v)2

2

)(
(u · n+n · v)2 − 3u · v − 1

3
+ O(n− 1

2+3ν)
)

,

(72)

as n → ∞, uniformly for |z| = 1 and u, v ∈ C
d such that u, v = O(nν).

Multiplying by the remaining factors in (11), and using Lemma 4.3, we obtain
the statement of Theorem 1.2 for τ = 0. Next, we treat the case 0 < τ < 1.
Starting from the formula (16), we simply combine Lemma 4.2 and Lemma
4.3 with Proposition 3.5 (which is valid with Δ2

+ − Δ+Δ− + Δ2
− replaced by

O(|u|2 + |v|2)). �

As the proof shows, we can be more precise about the error when τ = 0.
In the case of the elliptic Ginibre ensemble, i.e., the case d = 1 and 0 < τ < 1,
we can also be more precise about the error. The following result (but slightly
weaker) was proved by Byun and Ebke in [10]. We consider our novel derivation
of this result of independent interest.

Proposition 5.1. Pick 0 < ν < 1
6 . Let Kn be the kernel of the eigenvalues of

the elliptic Ginibre ensemble with parameter 0 < τ < 1, as defined in (8).
Let z ∈ ∂Eτ , and denote by n and κ, respectively, the outward unit normal
vector and the curvature, of ∂Eτ in z. Then, there exist continuous unimodular
functions cn : ∂Eτ × C → T such that

cn(z, u)cn(z, v)Kn(
√

n z + un,
√

n z + v n)

=
1
2π

exp
(

uv − |u|2 + |v|2
2

)
erfc

(
u + v√

2

)

+
κ√
n

exp
(

−|u|2 + u2 + |v|2 + v2

2

)(
u2 + v2 − uv − 1

3
√

2π3
+ O(n− 1

2+3ν)
)

,

(73)

as n → ∞, uniformly for z ∈ ∂Eτ , and u, v ∈ C such that u, v = O(nν).
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Proof. In this case, we have z+ =
√

sinh(2ξτ )(z + u√
n
n) and z− =

√
sinh(2ξτ ) (z + v√

n
n). The outward unit normal vector is now given simply

by

n =
sinh(ξτ + iη)

| sinh(ξτ + iη)| .

Hence, we have

Δ+ =
1√
n

√
sinh 2ξτ

| sinh(ξτ + iη)|
u√
2
, and Δ− =

1√
n

√
sinh 2ξτ

| sinh(ξτ + iη)|
v√
2
.

Plugging these in (61) yields

(1 − τ2)
d
2 e−nF (τ)Id

n,τ (z±) = 1
2 erfc

(
u+v√

2

)

+ 1
6
√

πn

( √
sinh 2ξτ

| sinh(ξτ+iη)|
)3

exp
(
− (u+v)2

2

)(
u2 − uv + v2 − 1 + O(n− 1

2+3ν)
)

,

(74)

as n → ∞, uniformly for z ∈ ∂Eτ and u, v = O(nν). As shown in [23], the
factor in the second line of (74) can be identified with the curvature κ of ∂Eτ

in z (up to an explicit constant factor). In particular, according to [23, C13]
we have

κ =
(1 − τ2)

3
2

(1 + τ2 − 2τ cos 2η)
3
2

=
(

2τ sinh 2ξτ

4τ | sinh(ξτ + iη)|2
) 3

2

=
1

2
√

2

( √
sinh 2ξτ

| sinh(ξτ + iη)|
)3

. (75)

Finally, reinstating the weight factors as in (16) and applying Lemma 4.3, we
obtain the result. �

Proof of Theorem 1.1. As the reader may verify with some straightforward
combinatorial arguments, the number of points of the DPP defined via (12) is
given by the binomial coefficient

(
n+d−1

d

)
, which behaves as nd

d! (1 + O(1/n))
for large n. For τ = 0, the result is more or less a direct consequence of
Theorem 1.2, where, according to (72), we are allowed to replace O(1 + |u|2 +
|v|2) by

(u · n + n · v)2 − 3u · v − 1
3

+ O(n− 1
2+3ν).

Taking u = v = λn, we find the result (note that κ reduces to the value 1
here). Let us move to the case 0 < τ < 1. Note that the unimodular factors
from Lemma 4.3 cancel each other when u = v. We can rewrite (75) as

κ =

(√
sinh 2ξτ

|z2+ − 2| 1
2

)3

=
1

|(|Re z| + i| Im z|)2 − 4τ
1−τ2 | 3

2

=
1

(
(|Re z|2 − | Im z|2 − 4τ

1−τ2 )2 + 4|Re z|2| Im z|2
) 3

4
.
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The statement is now a direct consequence of Proposition 3.5, and (the second
part of) Lemma 4.2. �
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