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Phase Transition in the Peierls Model for
Polyacetylene

David Gontier, Adéchola E. K. Kouande and Éric Séré

Abstract. We consider the Peierls model for closed polyactetylene chains
with an even number of carbon atoms as well as infinite chains, in the
presence of temperature. We prove the existence of a critical temperature
below which the chain is dimerized and above which it is 1-periodic.
The chain behaves like an insulator below the critical temperature and
like a metal above it. We characterize the critical temperature in the
thermodynamic limit model and prove that it is exponentially small in
the rigidity of the chain. We study the phase transition around this critical
temperature.
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1. Introduction

It is a well-known fact that in closed polyacetylene molecular chains having
an even number of carbon atoms (e.g. benzene), the valence electrons arrange
themselves one link in two. This phenomenon is well understood in the Peierls
model, introduced in 1930 (see [10, p.108] and [2]), which is a simple nonlinear
functional describing, in particular, polyacetylene chains. This model is invari-
ant under 1-translations, but there is a symmetry breaking: the minimizers
are dimerized, in the sense that they are 2-periodic, but not 1-periodic. This
is known as Peierls instability or Peierls distortion and is responsible for the
high diamagnetism and low conductivity of certain materials such as bismuth
[4].

In this paper, we study the Peierls model with temperature, and describe
the corresponding phase diagram. We prove the existence of a critical tem-
perature below which the chain is dimerized and above which the chain is
1-periodic. We characterize this critical temperature and study the transition
around it. In order to state our main results, let us first recall what is known
for the Peierls model without temperature.

1.1. The Peierls Model at Null Temperature

We focus on the case of even chains: We consider a periodic linear chain with
L = 2N classical atoms (for an integer N ≥ 2), together with quantum non-
interacting electrons. We denote by ti the distance between the i-th and (i +
1)-th atoms and set {t} := {t1, . . . , tL}. By periodicity, we mean that the
atoms indices are taken modulo L. The electrons are represented by a one-
body density matrix γ, which is a self-adjoint operator on �2(CL), satisfying
the Pauli principle 0 ≤ γ ≤ 1. In this simple model, the electrons can hop
between nearest neighbor atoms and feel a Hamiltonian of the form

T = T ({t}) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 t1 0 0 · · · tL
t1 0 t2 · · · 0 0
0 t2 0 t3 · · · 0
...

...
...

. . .
...

...
0 0 · · · tL−2 0 tL−1

tL 0 · · · 0 tL−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

The Peierls energy of such a system reads [5,8–10,12]

Ẽ(L)
full ({t̃}, γ) :=

1
2
g

L∑
i=1

(t̃i − b)2 + 2Tr (Tγ).

The first term is the distortion energy of the atoms. Here, b > 0 is the equi-
librium distance between two atoms and g > 0 is the rigidity of the chain.
The second term models the electronic energy of the valence electrons (the 2
factor stands for the spin). By scaling, setting t̃i = bti and μ = gb, we have
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Ẽ(L)
full ({t̃}, γ) = bE(L)

full ({t}, γ), with the energy

E(L)
full ({t}, γ) :=

μ

2

L∑
i=1

(ti − 1)2 + 2Tr (Tγ). (2)

There is only one parameter in the model, which is the strength μ > 0. In
the so-called half-filled model, this energy is minimized over all ti > 0 and all
one-body density matrices (there is no constraint on the number of electrons):

E(L) := min
{

E(L)
full ({t}, γ), t ∈ R

L
+, 0 ≤ γ = γ∗ ≤ 1

}
.

One can perform the minimization in γ first. We get

min
0≤γ=γ∗≤1

2Tr (Tγ) = 2Tr (T1(T < 0)) = −Tr (|T |) = −Tr
(√

T 2
)

, (3)

where we used here that T is unitarily equivalent to −T , so that its spectrum is
symmetric with respect to the origin. The optimal density matrix in this case
is γ∗ = 1(T < 0), which has Tr (γ∗) = N electrons (hence the denomination
half-filled). The energy simplifies into

E(L) = min
{

E(L)({t}), t ∈ R
L
+

}
, with E(L)({t}) :=

μ

2

L∑
i=1

(ti − 1)2 − Tr (
√

T 2).

The energy E(L) only depends on {t}, and is translationally invariant, in the
sense that E(L)({t}) = E(L)({τkt}) where {τkt} := {tk+1, . . . , tk+L}. However,
the minimizers of this energy are usually 2-periodic, as proved by Kennedy
and Lieb [5] and Lieb and Nachtergaele [7]. More specifically, they proved the
following:

Case L ≡ 0 mod 4. There are two minimizing configurations for E(2N),
of the form

ti = W + (−1)iδ or ti = W − (−1)iδ, with δ > 0. (4)

These two configurations are called dimerized configurations [6]: they are
2-periodic but not 1-periodic. In other words, it is energetically favorable for
the chain to break the 1-periodicity of the model. We prove in Appendix A
that the corresponding gain of energy is actually exponentially small in the
limit μ → ∞.

Case L ≡ 2 mod 4. This case is similar, but we may have δ = 0 for
small values of L, or large values of μ (see also [6]). There is 0 < μc(L) < ∞
so that, for 0 < μ < μc(L), there are still two dimerized minimizers, as in (4),
while for μ > μc(L), there is only one minimizer, which is 1-periodic, that is
δ = 0.

In all cases (with L even), one can restrict the minimization problem to
configurations {t} of the form ti = W ± (−1)iδ and obtain a minimization
problem with only two parameters.

Although L is always even in the present paper, let us mention that
molecules with L odd and very large have been studied at zero temperature
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by Garcia Arroyo and Séré [3]. In that case one gets “kink solutions” in the
limit L → ∞.

1.2. The Peierls Model with Temperature, Main Results

In the present article, we extend the results in the positive temperature case
by modifying the Peierls model in order to take the entropy of the electrons
into account. We denote by θ the temperature (the letter T is reserved for the
matrix in (1)). Following the general scheme described in [1, Section 4], the
free energy is now given by (compare with (2))

F (L)
full,θ({t}, γ) :=

μ

2

L∑
i=1

(ti − 1)2 + 2 {Tr (Tγ) + θTr (S(γ))} , (5)

with S(x) := x log(x) + (1 − x) log(1 − x) the usual entropy function. We
consider again the minimization over all one-body density matrices and study
the minimization problem

F
(L)
θ := min

{
F (L)

full,θ({t}, γ), t ∈ R
L
+, 0 ≤ γ = γ∗ ≤ 1

}
.

There are now two parameters in the model, namely μ and θ. The main goal
of the paper is to study the phase diagram in the (μ, θ) plane.

As in (3), one can perform the minimization in γ first (see Sect. 2.1 for
the proof).

Lemma 1.1. We have

min
0≤γ≤1

2 {Tr (Tγ) + θTr (S(γ))} = −Tr
(
hθ(T 2)

)
, (6)

with the function

hθ(x) := 2θ log
(

2 cosh
(√

x

2θ

))
.

The minimization problem in the l.h.s of (6) has the unique minimizer γ∗ =
(1 + eT/θ)−1.

The properties of the function hθ are given in Proposition 2.1. The free
Peierls energy therefore simplifies into a minimization problem in {t} only:

F
(L)
θ = inf

{
F(L)

θ ({t}), t ∈ R
L
+

}
, with F(L)

θ ({t}) :=
μ

2

L∑
i=1

(ti − 1)2 − Tr
(
hθ(T 2)

)
.

(7)

Our first theorem states that minimizers are always 2-periodic, and that
they become 1-periodic when the temperature is large enough (phase transi-
tion).

Theorem 1.2. For any L = 2N , with N an integer and N ≥ 2, there exists a
critical temperature θ

(L)
c := θ

(L)
c (μ) ≥ 0 such that:

• for θ ≥ θ
(L)
c , the minimizer of F (L)

θ is unique and 1-periodic;
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• for θ ∈ (0, θ
(L)
c ) (this set is empty if θ

(L)
c = 0), there are exactly two

minimizers, which are dimerized, of the form (4).
In addition,

(i) If L ≡ 0 mod 4, this critical temperature is positive (θ(L)
c (μ) > 0 for all

μ > 0).
(ii) If L ≡ 2 mod 4, there is μc := μc(L) > 0 such that for μ ≤ μc, θ

(L)
c is

positive (θ(L)
c > 0), whereas for μ > μc, θ

(L)
c = 0. Moreover, as a function

of L we have μc(L) ∼ 2
π ln(L) at +∞.

This theorem only deals with an even number L of atoms. One expects a
similar behavior for L odd and large, but the arguments in the proof are not
sufficient to guarantee this: they only imply that the minimizer is one-periodic
when the temperature is large enough (see Remark 2.4). We do not know what
exactly happens for a small positive temperature and an odd number L.

We postpone the proof of Theorem 1.2 until Sect. 2. The first part uses
the concavity of the function hθ on R+, while those of i) and ii) are based on
the Euler–Lagrange equations.

As in the null temperature case, minimizers are always 2-periodic; hence,
the minimization problem is a minimization over the two variables W and δ.
Actually, we have

F
(2N)
θ = (2N)min

{
g
(2N)
θ (W, δ), W ≥ 0, δ ≥ 0

}
,

with the energy per unit atom (the following expression is justified in Eq. (13))

g
(2N)
θ (W, δ) =

μ

2

[
(W − 1)2 + δ2

]− 1

2N

2N∑
k=1

hθ

(
4W 2 cos2

(
2kπ

2N

)
+ 4δ2 sin2

(
2kπ

2N

))
.

(8)

We recognize a Riemann sum in the last expression. This suggests that we
can take the thermodynamic limit L → ∞. This limit is quite standard in the
physics literature on long polymers: many theoretical papers present models
of polymers at null temperature that are directly written for infinite chains
(see e.g [12]).

We define the thermodynamic limit free energy (per unit atom) as

fθ := lim inf
N→+∞

1
2N

F
(2N)
θ . (9)

As expected, we have the following (see Sect. 3.1 for the proof).

Lemma 1.3. We have fθ = min {gθ(W, δ), W ≥ 0, δ ≥ 0} with

gθ(W, δ) :=
μ

2
[
(W − 1)2 + δ2

]− 1
2π

ˆ 2π

0

hθ

(
4W 2 cos2(s) + 4δ2 sin2(s)

)
ds.

The next theorem is similar to Theorem 1.2 and shows the existence of
a critical temperature for the thermodynamic model. Its proof is postponed
until Sect. 3.2 and is based on the study of the Euler–Lagrange equations.
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Theorem 1.4. There is a critical (thermodynamic) temperature θc = θc(μ) >
0, which is always positive, and so that for all θ ≥ θc, the minimizer of gθ

satisfies δ = 0, whereas for all θ < θc, it satisfies δ > 0.
In the large μ limit, we have

θc(μ) ∼ C exp
(
−π

4
μ
)

, with C ≈ 0.61385.

This reflects the fact that for an infinite chain, there is a transition be-
tween the dimerized states (δ > 0), which are insulating (actually, one can
show that the gap of the T matrix is of order δ), and the 1-periodic state
(with δ = 0), which is metallic, as the temperature increases. This can be in-
terpreted as an insulating/metallic transition for polyacetylene. Such a phase
transition has been observed experimentally in the blue bronze in [11]. We
display in Fig. 1 (left) the map μ �→ θc(μ) in the (μ, θ) plane.

In (9), we only consider the limit L = 2N → ∞ to define the thermody-
namic critical temperature θc. Note that the cases L ≡ 0 mod 4 and L ≡ 2
mod 4 merge when L tends to infinity: this is consistent with the fact that the
critical stiffness μc(L) tends to infinity as L → ∞ in Theorem 1.2. We also
expect odd chains to behave like even chains, but the study of the odd case
is more delicate since we do not have an analogue of (8) and we leave it for
future work.

Finally, we study the nature of the transition. It is not difficult to see
that δ → 0 as θ → θc. Actually, there is a bifurcation around this critical
temperature, see also Fig. 1 (right).

Theorem 1.5. There is C >0, such that δ(θ)=C
√

(θc − θ)++o
(√

(θc − θ)+
)

.

We postpone the proof of Theorem 1.5 until Sect. 3.3. It mainly uses the
implicit function theorem. The value of C is explicit and is given in the proof.

2. Proofs in the Finite Chain Peierls Model with Temperature

We now provide the proofs of our results. We gather in this section the proofs
of the finite L = 2N model and postpone the ones of the thermodynamic
model to the next section.

2.1. Proof of Lemma 1.1 and Properties of the h Functional

First, we justify the functional F (L)
θ appearing in (7) and provide the proof of

Lemma 1.1.

Proof. We study the minimization problem

min
0≤γ≤1

2 {Tr (Tγ) + θTr (S(γ))} .

Any critical point γ∗ of the functional satisfies the Euler–Lagrange equation

T + θS′(γ∗) = 0, that is T + θ ln
(

γ∗
1 − γ∗

)
= 0. (10)
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Figure 1. Numerical simulations. (Left) the critical temper-
ature μ �→ θc(μ) and its asymptotic Ce− π

4 μ. (Right) The bi-
furcation of δ in the thermodynamic model. We took μ = 2,
and the critical temperature is found to be θc = 0.2112

There is therefore only one such critical point, given by

γ∗ =
1

1 + eT/θ
=

e−T/(2θ)

2 cosh(T/(2θ))
, hence 1 − γ∗ =

1

1 + e−T/θ
=

eT/(2θ)

2 cosh(T/(2θ))
.

By convexity of the functional, this critical point is the minimizer. For this
one-body density matrix, we obtain using (10)

2 {Tr (Tγ∗) + θTr (S(γ∗))} = 2Tr

(
γ∗
[
T + θ ln

(
γ∗

1 − γ∗

)]
+ θ ln(1 − γ∗)

)

= 2θTr (ln(1 − γ∗)) = 2θTr (T/2θ) − 2θTr (ln [2 cosh(T/2θ)]) .

Finally, since T is unitary equivalent to −T , we have Tr (T ) = 0. This gives as
wanted

min
0≤γ≤1

2 {Tr (Tγ) + θTr (S(γ))} = −Tr
(
hθ(T 2)

)
, with hθ(x) := 2θ ln

(
2 cosh

(√
x

2θ

))
.

�

Let us gather here some properties of the function hθ that we will use
throughout the article.

Proposition 2.1. We have hθ(x) = θh
(

x
4θ2

)
and h′

θ(x) = 1
4θ h′ ( x

4θ2

)
, with

h(y) = 2 log(2 cosh(
√

y)), and h′(y) =
tanh(

√
y)√

y
.

In particular, h (hence hθ) is positive, increasing and concave. We have
limy→0 h′(y) = 1, and the inequality hθ(x) ≥ √

x, valid for all θ > 0 and
all x ≥ 0. In addition, we have the pointwise convergence hθ(x) → √

x as
θ → 0.
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The last part shows that we recover the model at zero temperature. The
concavity of h comes from the fact that h′ is positive and decreasing. Another
way to see concavity is that hθ(t) = min0≤g≤1 2{tg + θS(g)} is the minimum
of linear functions (in t), hence concave. The inequality hθ(x) ≥ √

x comes
from 2 cosh(x) ≥ ex.

2.2. Proof of Theorem 1.2: Existence of a Critical Temperature

We now study the minimizers of F (L)
θ ({t}) in (7), which we recall is given by

F (L)
θ ({t}) :=

μ

2

L∑
i=1

(ti − 1)2 − Tr
(
hθ(T 2)

)
.

First, we prove that the minimizers are always 2-periodic. We then study the
existence of a critical temperature. For the first part, our strategy follows
closely the argument of Kennedy and Lieb in [5] and relies on the concavity of
hθ.

All minimizers are 2 − periodic. Recall that if x �→ ϕ(x) is concave over
R+; then, A �→ Tr (ϕ(A)) is concave over the set of positive matrices. Applying
this property to hθ which is concave on R+, we have

Tr (hθ(T 2)) ≤ Tr (hθ(〈T 2〉)),
where 〈T 2〉 is defined as in [5] as the average of T 2 over all translations:

〈T 2〉 =
1
L

L∑
k=1

ΘkT 2Θ−1
k , with Θk = Θk

1 and Θ1 :=

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

.

This implies the lower bound

F
(L)
θ ≥ G

(L)
θ (11)

where

G
(L)
θ := inf

{
G(L)

θ ({t}), t ∈ R
L
+

}
, with

G(L)
θ ({t}) =

μ

2

L∑
i=1

(ti − 1)2 − Tr
(
hθ(〈T 2〉)) . (12)

In addition, we have equality in (11) iff the optimal {t} for G
(L)
θ satisfies

T ({t})2 = 〈T ({t})2〉. Note that

T 2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

t2L + t21 0 t1t2 0 · · · 0
0 t21 + t22 0 t2t3 · · · tLt1

t1t2 0 t22 + t23 0 · · · 0
...

...
...

. . .
...

...
tL−1tL 0 · · · 0 t2L−2 + t2L−1 0

0 tLt1 · · · tL−1tL 0 t2L + t21

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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So we have T ({t})2 = 〈T ({t})2〉 iff t2i + t2i+1 and titi+1 are independent of i.
This happens only if T is 2-periodic.

Introducing the variables (our notation slightly differ from the ones in
[5]: we put z2 instead of z, so that all quantities (x, y, z) are homogeneous)

x :=
1
L

L∑
i=1

ti, y2 :=
1
L

L∑
i=1

t2i , z2 =
1
L

L∑
i=1

titi+1,

we obtain 〈T 2〉 = 2y2
IL + z2ΩL with ΩL := Θ2 + Θ∗

2, and

G(L)
θ ({t}) = G̃(L)

θ (x, y, z) :=
μL

2
(y2 − 2x + 1) − Tr

(
hθ(2y2

IL + z2ΩL)
)
.

The function G̃(L)
θ is much easier to study, as it only depends on the three

variables (x, y, z). Let us identify the triplets (x, y, z) coming from a 2-periodic
or 1-periodic state.

Lemma 2.2.

• For all t ∈ R
L
+, the corresponding triplet (x, y, z) belongs to

X :=
{
(x, y, z) ∈ R

3
+, y2 ≥ x2, z2 ≥ max{0, 2x2 − y2}} .

• If L = 2N is even, the configuration t is 2-periodic of the form (4) iff the
triple (x, y, z) belongs to

X2 :=
{
(x, y, z) ∈ R

3
+ of the form x = W, y2 = W 2 + δ2, z2 = W 2 − δ2

}
.

This happens iff z2 = 2x2 − y2.
• The configuration t is 1-periodic, of the form t = (W, . . . ,W ) iff (x, y, z)

belongs to

X1 :=
{
(x, y, z) ∈ R

3
+ of the form x = y = z = W

}
.

This happens iff z2 = 2x2 − y2 and x = y.

Proof. By Cauchy–Schwarz, we have

x2 =
1
L2

(
L∑

i=1

ti

)2

≤ 1
L

L∑
i=1

t2i = y2,

which is the first equality. Next, we have

z2 =
1

2L

L∑
i=1

[
(ti + ti+1)2 − t2i − t2i+1

]
=

1
2L

L∑
i=1

(ti + ti+1)2 − y2.

On the other hand, we have by Cauchy–Schwarz,

x2 =

(
1

2L

L∑
i=1

(ti + ti+1)

)2

≤ 1
4L

L∑
i=1

(ti + ti+1)2.

This proves that z2 ≥ 2x2 − y2. The other parts of the lemma can be easily
checked. �

Lemma 2.3. For any integer L > 2 and all θ ≥ 0, the minimizers of G̃(L)
θ over

X belong to X2.
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Proof. Let us fix x and y, and look at the minimization over the variable z
only. Setting Z := z2, we see that

ϕ : Z �→ Tr
(
hθ(2y2

IL + ZΩL)
)

is concave. In addition, the derivative of ϕ at Z = 0 equals

ϕ′(Z) = Tr
(
h′

θ(2y2)ΩL

)
= h′

θ(2y2)Tr (ΩL) = 0,

where we used that ΩL only has null elements on its diagonal. We deduce that
ϕ is decreasing on R+. So the minimizer of G̃(L)

θ must saturate the lower bound
constraint z2 = max{0, 2x2 − y2}.

We now claim that the optimal triplet (x, y, z) satisfies 2x2 − y2 ≥ 0.
Assume otherwise that 2x2 − y2 < 0, hence z2 = 0. We have

G̃(L)
θ (x, y, 0) =

μL

2
(y2 − 2x + 1) − Tr

(
hθ(2y2)

)

= L
(μ

2
(y2 − 2x + 1) − hθ(2y2)

)
.

This function is decreasing in x, so the optimal x saturates the constraint
x2 = y2. But in this case, we have 2x2 − y2 = y2 ≥ 0, a contradiction. This
proves that, for the optimizer, we have 2x2−y2 ≥ 0, and z2 = 2x2−y2. Finally,
(x, y, z) belongs in X2. �

Let (x∗, y∗, z∗) ∈ X2 be the minimizer of G̃(L)
θ , and let W ≥ 0 and δ ≥ 0

be so that x∗ = W , y2
∗ = W 2 + δ2, and z∗ = W 2 − δ2. Let t∗ be one of the two

2-periodic states W ± (−1)iδ. We have T ({t∗})2 = 〈T ({t∗})2〉, which leads to
the chain of inequalities

F
(L)
θ ≥ G

(L)
θ ≥ min

(x,y,z)
G̃(L)

θ = G̃(L)
θ (x∗, y∗, z∗) = G

(L)
θ ({t∗}) = Fθ({t∗}) ≥ F

(L)
θ .

We therefore have equalities everywhere. Since only the 2-periodic states W ±
(−1)iδ give the optimal triplet (x∗, y∗, z∗), they are the only minimizers. This
proves that all minimizer of F (L)

θ are 2-periodic. They are two dimerized min-
imizers if δ > 0, and a unique 1-periodic minimizer if δ = 0.

Remark 2.4. In the case of odd chains, we still have the equation F
(L)
θ ≥ G

(L)
θ

in (11). However, the optimal triplet (x∗, y∗, z∗) does not usually come from
a state {t∗}: an odd chain cannot be dimerized. It can, however, come from
such a state if δ = 0, that is, if t∗ is actually one-periodic. One can therefore
prove that also for odd chains, minimizers become 1-periodic for large enough
temperature.

Existence of the critical temperature. Since all minimizers are 2-periodic, we

can parametrize G(L)
θ as a function of (W, δ) instead of {t}. So we write (in

what follows, we normalize by L to get the energy per atom)

g
(L)
θ (W, δ) =

μ

2
[
(W − 1)2 + δ2

]− 1
L

Tr
(
hθ(2(W 2 + δ2)IL + (W 2 − δ2)ΩL)

)
.
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To compute the last trace, we compute the spectrum of ΩL. We have, for all
1 ≤ k ≤ L,

ΩLek =2 cos
(

4kπ

L

)
ek, where ek =(1, e2iπk/L, e2·2iπk/L, . . . , e(L−1)·2iπk/L)T .

So

σ (ΩL) :=
{

2 cos
(

4kπ

L

)
, 1 ≤ k ≤ L

}
.

This shows that

g
(L)
θ (W, δ) =

μ

2

[
(W − 1)2 + δ2

]− 1

L

L∑
k=1

hθ

(
2(W 2 + δ2) + 2(W 2 − δ2) cos

(
4kπ

L

))

=
μ

2

[
(W − 1)2 + δ2

]− 1

L

L∑
k=1

hθ

(
4W 2 cos2

(
2kπ

L

)
+ 4δ2 sin2

(
2kπ

L

))
,

(13)

which is the expression given in (8). The function gθ appearing in Lemma 1.3
has a similar expression, but we replace the last Riemann sum by the corre-
sponding integral.

First, we prove that for θ large enough, the minimizer is 1-periodic (cor-
responding to δ = 0).

Lemma 2.5. For all θ ≥ 1
μ , the minimizer of G(L)

θ satisfies δ = 0. The same
holds for the function gθ (thermodynamic limit case).

Proof. We prove the result in the thermodynamic limit, but the proof works
similarly at fixed L. Let (W1, 0) denote the minimizer of gθ among 1-periodic
configurations (that is with the extra constraint that δ = 0). Writing that
∂W gθ(W1, 0) = 0, we obtain that

μ(W1 − 1) =
W1

πθ

ˆ 2π

0

h′
(

W 2
1 cos2(s)

θ2

)
cos2(s)ds. (14)

For any other configurations (W, δ), we write W = W1 + ε and obtain that

gθ(W1 + ε, δ) − gθ(W1, 0) =
μ

2
[
2(W1 − 1)ε + ε2 + δ2

]

− θ

2π

ˆ 2π

0

[
h

(
(W1 + ε)2 cos2(s) + δ2 sin2(s)

θ2

)

−h

(
W 2

1 cos2(s)
θ2

)]
ds.

Using that h is concave, we have h(a + b) − h(a) ≤ h′(a)b, so, with
a = W 2

1 cos2(s)/θ2 and b =
[
δ2 sin2(s) + (2W1ε + ε2) cos2(s)

]
/θ2, we get

gθ(W1 + ε, δ) − gθ(W1, 0)

≥ μ(W1 − 1)ε +
μ

2
ε2 +

μ

2
δ2

− 1
2πθ

ˆ 2π

0

h′
(

W 2
1 cos2(s)

θ2

)
· [δ2 sin2(s) + (2W1ε + ε2) cos2(s)

]
ds.
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Using (14), the term linear in ε vanishes. In addition, since h′′ < 0 on R+, we
have h′(x) ≤ h′(0) = 1. This gives

gθ(W1 + ε, δ) − gθ(W1, 0) ≥
(

μ

2
− 1

2θ

)
ε2 +

(
μ

2
− 1

2θ

)
δ2.

The right-hand side is positive whenever θ > 1
μ , which proves the result. �

In what follows, we define the critical temperature θc = θc(μ) by

θc := inf{θ ∈ R+, the minimizer of gθ′ has δ = 0 for all θ′ ≥ θ}.

We define similarly θ
(L)
c = θ

(L)
c (μ) for the case of finite chains.

Study of the critical temperature in the case L ∈ 2N. We now study θ
(L)
c

with L = 2N , N ≥ 2, and prove that it is strictly positive if L ≡ 0 mod 4, and
that, if L ≡ 2 mod 4, there is μc = μc(L) so that θ

(L)
c (μ) > 0 iff μ < μc(L).

For fixed θ, any minimizing configuration (W, δ) satisfies the Euler–
Lagrange equations

(∂W g
(L)
θ , ∂δg

(L)
θ )(W, δ) = (0, 0).

This gives the set of equations
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ(W − 1) =
2W

θ

1
L

L∑
k=1

h′
(

W 2

θ2
cos2( 2kπ

L ) +
δ2

θ2
sin2( 2kπ

L )
)

. cos2( 2kπ
L )

μδ =
2δ

θ

1
L

L∑
k=1

h′
(

W 2

θ2
cos2( 2kπ

L ) +
δ2

θ2
sin2( 2kπ

L )
)

. sin2( 2kπ
L ).

(15)

Note that the second equation always admits the trivial solution δ = 0. This
corresponds to the critical point among 1-periodic configurations. It is the
unique solution if θ ≥ θ

(L)
c , but for θ ∈ (0, θ

(L)
c ), there are other critical

points, corresponding to the dimerized configurations. Actually, as θ varies,
we expect two branches of solutions: the branch of 1-periodic configuration
and the branch of dimerized configurations. These two branches cross only at
θ = θc (see Fig. 1 (right)).

In order to focus on the branch of dimerized configurations, we factor
out the δ factor in the second equation. Now, δ = 0 is no longer a solution,
unless we are exactly at the critical temperature θ

(L)
c . So, in order to find this

critical temperature, we seek the solution, in (W, θ), of (we multiply the second
equation by W for clarity)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ(W − 1) =
2W

θ

1
L

L∑
k=1

h′
(

W 2

θ2
cos2( 2kπ

L )
)

. cos2( 2kπ
L )

μW =
2W

θ

1
L

L∑
k=1

h′
(

W 2

θ2
cos2( 2kπ

L )
)

. sin2( 2kπ
L ).

(16)
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Lemma 2.6. For all μ > 0, there is a unique solution (W, θ) of (16) in the case
L = 0 mod 4, whereas if L = 2 mod 4, there is some value μc := μc(L)
such that for all μ > μc, (16) has no solution and has a unique one if μ ≤ μc.
Moreover, in the last case μc(L) ∼ 2

π ln(L) at +∞.

Proof. We write L = 2N and note that the terms k and k + N gives the same
contribution. Taking the difference of the second and first equations of (16),
we obtain

μ = −2W

θ

1
N

N∑
k=1

h′
(

W 2

θ2
cos2(kπ

N )
)

. cos( 2kπ
N ).

Recall that h′(t) = tanh(
√

t)√
t

for t �= 0 and h′(0) = 1. The point t = 0 therefore
plays a special role. The argument of h′ equals 0 for k = N

2 , which happens only
if N ≡ 0 mod 2 (that is L ≡ 0 mod 4). In this case, the equation becomes,
with x := W

θ (we write L = 2N = 4n)

μ = − 1
n

2n∑
k = 1
k �= n

tanh
(
x cos(kπ

2n )
)

cos(kπ
2n )

. cos(kπ
n ) +

x

n
=: J2n(x). (17)

The function J2n is smooth. The first sum is uniformly bounded for x ∈ R+

while the second diverges, so J2n = 0 and J2n(+∞) = +∞. We claim that
J2n is increasing. The intermediate value theorem then gives the existence and
uniqueness of the solution of J2n(x) = μ on R+. This gives W

θ = J −1
2n (μ). We

then deduce, respectively, θ and W from the first and second equations of (16).
This proves that (16) has a unique solution. The corresponding temperature
is the critical temperature θ

(L)
c .

It remains to prove that J2n is increasing. Splitting the sum in (17) into
2 sums of size (n − 1), we get

J2n(x) =
1

n
(x − tanh(x)) +

1

n

n−1∑
k=1

⎛
⎝ tanh

(
x sin

(
kπ
2n

))

sin
(

kπ
2n

) −
tanh

(
x cos

(
kπ
2n

))

cos
(

kπ
2n

)
⎞
⎠ . cos

(
kπ
n

)
.

Its derivative is given by

J ′
2n(x) =

1

n

(
1 − 1

cosh2(x)

)

+
1

n

n−1∑
k=1

⎛
⎝ 1

cosh2
(
x sin

(
kπ
2n

)) − 1

cosh2
(
x cos

(
kπ
2n

))
⎞
⎠ . cos( kπ

n
).

For all s ∈ [0, 1], the function
[
cosh−2

(
x sin

(
π
2 s
))− cosh−2

(
x cos

(
π
2 s
))]

. cos(πs)

is positive (both terms are positive if s ∈ [0, 1/2], and both are negative if
s ∈ [1/2, 1]). This shows that J2n is increasing as wanted.
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In the case N ≡ 1 mod 4 (that is L = 2 mod 4), the argument of h′ is
never null, and we simply have (we write L = 2N = 4n + 2)

μ = − 1
2n + 1

2n+1∑
k=1

tanh
(
x cos( kπ

2n+1 )
)

cos( kπ
2n+1 )

. cos( 2kπ
2n+1 ) =: J2n+1(x).

We claim again that J2n+1 is increasing (see below). However, we now have

lim
x→∞ J2n+1(x) = − 1

2n + 1

2n+1∑
k=1

cos( 2kπ
2n+1 )∣∣∣cos( kπ
2n+1 )

∣∣∣
=: μc(L). (18)

If μ ∈ (0, μc(L)), we can apply again the intermediate value theorem and
deduce that the equation J2N (x) = μ has the unique solution x = J −1

2n+1(μ).
We deduce as before that there is unique solution of system (16) in this case.
If instead μ > μc(L), then the system (16) has no solution.

Let us prove that J2n+1 is increasing (this will eventually prove that
μc(L) > 0. Its derivative is given by

(2n + 1)J ′
2n+1(x) = −

2n+1∑
k=1

cos
(

2kπ
2n+1

)

cosh2
(
x cos

(
kπ

2n+1

))

= − 1
cosh2(x)

− 2
n∑

k=1

cos
(

2kπ
2n+1

)

cosh2
(
x cos

(
kπ

2n+1

)) .

In the last equality, we isolated the k = 2n + 1 term, and use the change of
variable k′ = 2n + 1 − k for n + 1 ≤ k ≤ 2n. When 1 ≤ k ≤ n/2, we have
cos
(

2kπ
2n+1

)
≥ 0, while 1√

2
≤ cos( kπ

2n+1 ) ≤ 1. On the other hand, if n/2 ≤ k ≤ n,

we have cos
(

2kπ
2n+1

)
≤ 0, and 0 ≤ cos( kπ

2n+1 ) ≤ 1√
2
. In both cases, we deduce

that

∀k ∈ {1, . . . , n}, −
cos
(

2kπ
2n+1

)

cosh2
(
x cos

(
kπ

2n+1

)) ≥ −
cos
(

2kπ
2n+1

)

cosh2( x√
2
)

.

Summing over k, and using that

2
n∑

k=1

cos
(

2kπ

2n + 1

)
=

2n∑
k=1

cos
(

2kπ

2n + 1

)
=

2n+1∑
k=1

cos
(

2kπ

2n + 1

)
− 1 = −1,

we obtain the lower bound

(2n + 1)J ′
2n+1(x) ≥ − 1

cosh2(x)
+

1
cosh2( x√

2
)

≥ 0,

which proves that J2n+1 is increasing.
Finally, we estimate μc(L), defined in (18). We rewrite μc(L) as

μc(L) =
1

2n + 1

2n+1∑
k=1

f
(

k
2n+1

)
+

1

2n + 1

2n+1∑
k=1

1

π| k
2n+1

− 1
2
| ,
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with f(s) :=
cos(2πs)

| cos(πs)| − 1

π|s − 1
2
| .

We recognize a Riemann sum in the first term. Since the function f is integrable
on [0, 1] (there is no singularity at s = 1

2 ), this term converges to the integral
of f . For the second term, we recognize a harmonic sum. More specifically, we
have

1

2n + 1

2n+1∑
k=1

1

π| k
2n+1

− 1
2
| =

1

π

2n+1∑
k=1

1

|k − n − 1
2
| ∼ 2

π

n∑
k′=1

1

(k′ − 1
2
)

∼ 2

π
log(n) ∼ 2

π
log(L).

This proves that μc(L) ∼ 2
π log(L) at +∞ and completes the proof. �

3. Proofs in the Thermodynamic Model

We now focus on the thermodynamic model.

3.1. Proof of Lemma 1.3: Justification of the Thermodynamic Model

First, we show that this model is indeed the limit of the finite chain model as
L → ∞. We denote by f

(2N)
θ the minimum of g

(2N)
θ (so f

(2N)
θ = 1

2N F
(2N)
θ ) and

by f̃θ the minimum of gθ. Our goal is to prove that f̃θ = fθ, where we recall
that fθ := lim infN f

(2N)
θ .

We denote by (W2N , δ2N ) the optimizer of g
(2N)
θ , and by (W∗, δ∗) the

one of gθ. First, from the pointwise convergence g
(2N)
θ (W, δ) → gθ(W, δ), we

obtain

f̃θ = gθ(W∗, δ∗) = lim
N→∞

g
(2N)
θ (W∗, δ∗) ≥ lim

N→∞
f

(2N)
θ = fθ

For the other in equality, we use that so hθ(x) +2θ ln(2), ≤ √
x

g
(2N)
θ (W, δ) ≥ μ

2
[
(W − 1)2 + δ2

]−
√

W 2 + δ2 − 2θ ln(2).

In particular, g
(2N)
θ is lower bounded and coercive, uniformly in N . So if

(W2N , δ2N ) denotes the optimizer of g
(2N)
θ , the sequence (W2N , δ2N ) is bounded

in R
2
+. Up to a not displayed subsequence, we may assume that

fθ = lim
N→∞

f
(2N)
θ = lim

N→∞
g
(2N)
θ (W2N , δ2N ), and lim

N→∞
(W2N , δ2N ) =: (W∞, δ∞).

We then have

fθ = lim
N→∞

g
(2N)
θ (W2N , δ2N ) = lim

N→∞
gθ(W2N , δ2N ) + lim

N→∞

[
g
(2N)
θ − gθ

]
(W2N , δ2N ).

The first limit converges to gθ(W∞, δ∞), by continuity of the gθ functional. For
the second limit, we use that g

(2N)
θ −gθ is the difference between an integral and

a corresponding Riemann sum. If IN (s) denotes the integrand, this difference
is controlled by c

2N sups ‖I ′
N (s)‖. In our case, IN (s) = hθ(4W 2

2N cos2(πs) +
4δ2

2N sin2(πs)), whose derivative is uniformly bounded in N , since (W2N , δ2N )
is bounded. This proves that the last limit goes to zero, hence

fθ = gθ(W∞, δ∞) ≥ f̃θ.
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We conclude that fθ = f̃θ. In particular, by uniqueness of the minimizer of
gθ, we must have (W∞, δ∞) = (W∗, δ∗), and the whole sequence (W2N , δ2N )
converges to (W∗, δ∗).

3.2. Proof of Theorem 1.4: Estimation of the Critical Temperature

We now study the properties of θc, the critical temperature in the thermody-
namic limit. Reasoning as in the finite L case, the critical temperature θc can
be found by solving the equations in (W, θ) (compare with (16))

⎧⎪⎪⎨
⎪⎪⎩

μ(W − 1) =
W

πθ

ˆ 2π

0

h′
(

W 2 cos2(s)
θ2

)
· cos2(s)ds

μW =
W

πθ

ˆ 2π

0

h′
(

W 2 cos2(s)
θ2

)
· sin2(s)ds.

Using again the expression h′(t) := tanh(
√

t)√
t

, and splitting the integrals between
(0, 2π) into four of size π/2, this is also

⎧⎪⎪⎨
⎪⎪⎩

μ(W − 1) =
4
π

ˆ π/2

0

tanh
(

W cos(s)
θ

)
· cos(s)ds

μW =
4
π

ˆ π/2

0

tanh
(

W cos(s)
θ

)
sin2(s)
cos(s)

ds.

(19)

Let us prove that this system always admits a unique solution. The proof
is similar to the previous L ≡ 0 mod 4 case. Taking the difference of the two
equations gives, with x := W

θ ,

μ = − 4
π

ˆ π/2

0

tanh (x cos(s)) .
cos(2s)
cos(s)

ds =: J (x) , (20)

The function J is derivable on R+ with derivative given by

J ′(x) =
4
π

ˆ π/4

0

(
1

cosh2(x sin(s))
− 1

cosh2(x cos(s))

)
. cos(2s)ds.

The integrand is positive for all s ∈ [0, s/4], so J is a strictly increasing
function on R+, and since J ([0,+∞)) = [0,+∞), we get x = W

θ = J −1(μ).
The first equation of (19) gives

μ(xθ − 1) =
4
π

ˆ π/2

0

tanh (x cos(s)) . cos(s)ds.

This proves that θc is well defined and depends only on μ.
We now estimate this critical temperature. We are interested in the large

μ limit. First, since R � u �→ tanh(u) is a bounded function, the first equation
shows that μ(W −1) is uniformly bounded in μ, so W = 1+O(μ−1) as μ → ∞.
Then, we must have θ → 0 as μ → ∞ in order to satisfy the second equation.
Using the dominated convergence in the first integral gives

4
π

ˆ π/2

0

tanh
(

W

θ
cos(s)

)
· cos(s)ds −−−→

θ→0

4
π

ˆ π/2

0

cos(s)ds =
4
π

,
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so the first equation gives

W = 1 +
4

πμ
+ o

(
1
μ

)
.

We now evaluate the integral of the right-hand side in the second equa-
tion, in the limit θ → 0. It is convenient to make the change of variable
s �→ π/2 − s, so we compute

I(θ) :=
ˆ π/2

0

tanh
(

W

θ
sin(s)

)
cos2(s)
sin(s)

ds.

In order to evaluate I(θ) as θ → 0, we write I = I1 + I2 with

I1 :=
ˆ π/2

0

tanh
(

W

θ
sin(s)

)
cos(s)
sin(s)

ds and

I2 :=
ˆ π/2

0

tanh
(

W

θ
sin(s)

)
cos(s)(cos(s) − 1)

sin(s)
ds.

For the first integral, we make the change of variable u = W
θ sin(s) and

get

I1 =
ˆ W

θ

0

tanh (u)
u

du = ln
(

W

θ

)
+ c1 + o(1), with

c1 :=
ˆ 1

0

tanh(u)
u

+
ˆ ∞

1

(tanh(u) − 1)
u

du.

The value of c1 is computed numerically to be c1 ≈ 0.8188. For the second
integral I2, we remark that the integrand is uniformly bounded in θ and s,
so I2 = O(1). Actually, since θ → 0, we have by the dominated convergence
theorem that

I2 =
ˆ π/2

0

cos(s)(cos(s) − 1)
sin(s)

ds + o(1) = ln(2) − 1 + o(1).

Altogether, we obtain that

I(θ) = ln
(

W

θ

)
+ c2 + o(1), with c2 = c1 + ln(2) − 1 ≈ 0.512.

Together with the second equation of (19), we obtain

μ =
4

πW

(
ln
(

W

θ

)
+ c2 + o(1)

)

which gives, as wanted, in the limit μ → ∞

θc(μ) ∼ C exp
(
−π

4
μ
)

with C ≈ 0.61385.
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3.3. Proof of Theorem 1.5: Study of the Phase Transition

In the previous section, we found the critical temperature. We now study the
bifurcation of δ around this temperature. The critical points of gθ are given
by the Euler–Lagrange equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ (W − 1) =
W

πθ

ˆ 2π

0

h′
(

W 2 cos2(s) + δ2 sin2(s)
θ2

)
· cos2(s)ds

μW =
W

πθ

ˆ 2π

0

h′
(

W 2 cos2(s) + δ sin2(s)
θ2

)
· sin2(s)ds.

Recall that one can remove the 1-periodic minimizers by factoring out δ in the
second equation. This gives a set of equation involving δ through the variable
Δ := δ2 only. In what follows, we fix μ, and set (we multiply the equations by
θ/W in order to have simpler computations afterward)

F (θ; (W, Δ)) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μθ

(
1 − 1

W

)
− 1

π

ˆ 2π

0
h′
(

W 2 cos2(s) + Δ sin2(s)

θ2

)
· cos2(s)ds

μθ − 1

π

ˆ 2π

0
h′
(

W 2 cos2(s) + Δ sin2(s)

θ2

)
· sin2(s)ds.

Recall that F (θc; (W∗, 0)) = (0, 0), where W∗ is the optimal W at the
critical temperature. If F (θ; (W,Δ)) = (0, 0) with Δ > 0, the configurations
(W,±√

Δ) are minimizers of gθ. If F (θ; (W,Δ)) = (0, 0) with Δ < 0, it does
not correspond to a physical solution.

We want to apply the implicit function theorem for F at the point
(θc; (W∗, 0)). In order to do so, we first record all derivatives. We denote by
F = (F1,F2) the components of F . The derivatives of F , evaluated at Δ = 0,
θ = θc and W = W∗ are given by

⎧⎪⎨
⎪⎩

∂W F1 =
μθc

W 2∗
− 2W∗

θ2
c

A

∂W F2 = −2W∗
θ2

c

B
,

⎧⎪⎨
⎪⎩

∂ΔF1 = − 1
θ2

c

B

∂ΔF2 = − 1
θ2

c

C
,

and

⎧⎪⎨
⎪⎩

∂θF1 = μ
(
1 − 1

W∗

)
+ 2

W 2
∗

θ3
A

∂θF2 = μ + 2
W 2

∗
θ3

c

B
.

where we set (we split the integral in four parts of size π/2)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A :=
4
π

ˆ π/2

0

h′′
(

W 2
∗ cos2(s)

θ2
c

)
· cos4(s)ds

B :=
4
π

ˆ π/2

0

h′′
(

W 2
∗ cos2(s)

θ2
c

)
· sin2(s) cos2(s)ds

C :=
4
π

ˆ π/2

0

h′′
(

W 2
∗ cos2(s)

θ2
c

)
· sin4(s)ds.
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Since h is concave, A,B and C are negative. In addition, by Cauchy–Schwarz,
we have

B2 ≤ AC. (21)

The Jacobian J :=
(
∂(W,Δ)F

)
(θc; (W∗, 0)) is of the form

J =

(
μθc

W 2∗
− 2W∗

θ2
c

A − 1
θ2

c
B

− 2W∗
θ2

c
B − 1

θ2
c
C

)
, and detJ = − μ

W 2∗ θc
C +

2W∗
θ4

c

(AC − B2).

Since C < 0 and B2 − AC < 0, we have det J > 0, so J is invertible. We can
therefore apply the implicit function theorem for F at (θc, (W∗, 0)). There is
a function θ �→ (W (θ),Δ(θ)) so that, locally around (θc, (W∗, 0)), we have

F(θ, (W,Δ)) = 0, iff (W,Δ) = (W (θ),Δ(θ)).

The derivatives (W ′(θ),Δ′(θ)) are given by
(

W ′(θc)
Δ′(θc)

)
= −J−1

(
∂θF1

∂θF2

)
=

−1

det J

(− 1
θ2

c
C 1

θ2
c
B

2W∗
θ2

c
B μθc

W2∗
− 2W∗

θ2
c

A

)⎛
⎝μ
(
1 − 1

W∗

)
+ 2

W2
∗

θ3
c

A

μ + 2
W2

∗
θ3

c
B

⎞
⎠ .

This gives

Δ′(θc) =
−1

det J

(
2W∗μ

θ2
c

)(
(B − A) +

μθ3
c

2W 3∗

)
. (22)

We claim that B ≥ A (for the proof see below). This shows that Δ′(θc) < 0.
So, restoring the variable δ2, we have

δ2(θ) ≈ −Δ′(θc)(θc − θ)+, and finally, δ(θ) =
√

−Δ′(θc) ·
√

(θc − θ)+(1 + o(1)).

It remains to prove that B ≥ A. This comes from the fact that h′′ is
increasing negative. First, we notice that |A| and |C| are of the form

|A| =
4
π

ˆ π/2

0

f(s)g(s)ds, |C| =
4
π

ˆ π/2

0

f(s)g(π/2 − s),

with f(s) :=
∣∣h′′(W 2

∗ cos2(s)/θ2
c )
∣∣ and g(s) := cos4(s). The functions f and g

are both decreasing on [0, π
2 ]. By re-arrangement, we deduce that |A| > |C|.

Actually, we have

|A| − |C| =
4
π

ˆ π/4

0

(
f(s) − f

(π

2
− s
))(

g(s) − g
(π

2
− s
))

> 0.

Together with Cauchy–Schwarz in (21), this gives |B|2 ≤ |A| · |C| < |A|2, since
A and B are negative, we get B > A, as wanted. This concludes the proof of
Theorem 1.5.
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Appendix A: Gain of Energy in the Thermodynamic Limit

In this section, we prove that the gain of energy due to Peierls dimerization is
exponentially small in μ. We focus on the thermodynamic limit case (although
the proof is similar in the L ∈ 2N case). We also focus only on the null
temperature case θ = 0. In this case, the thermodynamic energy reads

g0(W, δ) =
μ

2
((W − 1)2 + δ2) − 4

π

ˆ π/2

0

√
W 2 sin2 (s) + δ2 cos2 (s)ds. (23)

We introduce

f0 := min {g0(W, δ), W ≥ 0, δ ≥ 0} , and f0,per := min {g0(W, 0), W ≥ 0} .

In other words, f0 is the minimum of g0 over 2–periodic (and all) configura-
tions, and f0,per is the minimum over 1-periodic configurations. We prove the
following

Theorem A.1. There is C > 0 such that, for all μ large enough,

0 < f0,per − f0 ≤ Ce− π
2 μ.

In other words, the energy gained by the Peierls distorsion is exponen-
tially small in the μ parameter. The first inequality states that in the ther-
modynamic limit at null temperature, the minimizers are always dimerized, as
first proved by Kennedy and Lieb [5].

Proof. Let us first compute W1, the optimizer of g0(W, 0). This is simply the
minimum of

g0(W, 0) =
μ

2
(W − 1)2 − 4

π

ˆ π/2

0

√
W 2 sin2(s)ds =

μ

2
μ(W − 1)2 − 4

π
W.

The minimizer satisfies μ(W1 − 1) = 4
π , hence W1 = 1 + 4

πμ . In particular,

f0,per = − 4
π

− 8
π2μ

.

We now compute the energy gain from the breaking of periodicity. For (W, δ)
a trial pair, we write W = W1 + ε. We assume that g0(W, δ) < g0(W1, 0).Then

g0(W, δ) − g0(W1, 0)

=
μ

2
(ε2 + δ2) − 4W1

π

ˆ π/2

0

[√
(W1 + ε)2

W 2
1

+
δ2

W 2
1

cot2(s) − 1 − ε

W1

]
sin(s)ds

≥ μ

2
(ε2 + δ2) − 4δ

π
, so δ <

8
πμ

and |ε| <
4

πμ
.
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To compute the integral, we make the change of variable u = cos(s), and get
that the integral equals

W1 + ε

W1

(ˆ 1

0

√
1 +

au2

1 − u2
du − 1

)
, with a :=

(
δ

W1 + ε

)2

.

Using that
ˆ 1

0

√
1 +

au2

1 − u2
du = E(1 − a) = 1 +

(− ln(a)
4

− 1
4

+ ln(2)
)

a + O(a2),

where E is a complete elliptic integral of the second kind, we get

g0(W, δ) − g0(W1, 0) =
μ

2
(ε2 + δ2) − 4δ2

π(W1 + ε)

[
−1

2
ln

(
δ

W1 + ε

)
− 1

4
+ ln(2) + O(a)

]

=
1

2
μ(ε2 + δ2) − 2

πW1
δ2 ln(δ−1)(1 + o(1)).

We now minimize the right-hand side. For large μ, we have W1 ≈ 1 and
the minimization in ε gives ε = 0. So

g0(W, δ) − g0(W1, 0) ≥ δ2

(
μ

2
− 2 ln(δ−1)

π
(1 + o(1))

)
.

We optimize the right-hand side by taking δ = e−( π
4 μ+ 1

2 ), and this completes
the proof. �
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