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Abstract. By means of a q-boson–q-Toda correspondence pointed out by
Duval and Pasquier, the n-particle hamiltonian of the periodic quantum
relativistic Toda chain on Zm+1 is mapped to the hamiltonian of a pre-
viously studied lattice discretization of the Lieb–Liniger model (which
encodes the dynamics of m + 1 q-bosons on Zn+1 in the center-of-mass
frame). The map in question makes it possible to retrieve quantum inte-
grals and an orthogonal eigenbasis of Bethe Ansatz wave functions given
by Hall–Littlewood polynomials for the pertinent periodic q-difference
Toda chain from the corresponding quantum integrals and eigenbasis for
the lattice Lieb–Liniger model. This approach entails the spectrum of the
periodic q-difference Toda chain in terms of the critical points of associ-
ated Yang–Yang type Morse functions and links the diagonalization via
the algebraic Bethe Ansatz performed by Duval and Pasquier directly to
the spectral analysis of the lattice Lieb–Liniger model.
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1. Introduction

In seminal work, Ruijsenaars introduced an integrable one-parameter defor-
mation of the n-particle Toda chain as a relativistic generalization [17]. At the
level of classical mechanics, the corresponding n-particle dynamics was first
integrated in the case of an open chain [17] and henceforth by Bruschi and
Ragnisco in the situation of a closed (periodic) chain [4,16]. At the level of
quantum mechanics, the hamiltonian of the relativistic Toda chain turns out to
be given by a (q-)difference operator, for which explicit quantum integrals were
presented in [17] in the form of n independent commuting difference operators.
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Influential studies into the integration of this particle model within the con-
text of the (quantum) Yang–Baxter equation were performed by Suris [18] (at
the classical level) and by Kuznetsov and Tsyganov [14] (both at the classical
and quantum level). Moreover, it was pointed out by Etingof [7] that quantum
groups provide a natural representation-theoretical framework for the diag-
onalization of Ruijsenaars’ q-difference Toda chain in terms of q-Whittaker
functions. Important progress regarding the study of the eigenfunctions in
question can be found in [1,10–12] and further references therein.

In [9], it was shown that—upon restricting the motion of the q-difference
Toda particles to the integer lattice Z—the model can be diagonalized by an
eigenbasis given by q-Whittaker functions that arise as a (t-)parameter de-
generation of the Macdonald polynomials. The pertinent discrete q-difference
Toda dynamics turns out to be of interest in the theory of integrable proba-
bility through its connection with the q-Whittaker process [3]. Combinatorial
constructions involving quantum groups for the q-Whittaker functions on Z

can be found in [5,8], whereas in [21] it was observed that—in the presence
of integrable boundary interactions—the dynamics of the q-difference Toda
chain can be restricted to the nonnegative integer semi-lattice Z+; the corre-
sponding q-difference Toda chain with boundary interactions is diagonalizable
in turn by q-Whittaker functions involving a (t-)parameter degeneration of the
Macdonald–Koornwinder polynomials.

The present note addresses the spectral problem for the n-particle q-
difference Toda chain on the periodic integer lattice Zm+1. The main idea is
to map the corresponding eigenvalue problem to that of an integrable lattice
discretization of the Lieb–Liniger particle model introduced in [20]. Indeed, it
can be gleaned from work of Korff [13] (cf. also [23]) that this lattice Lieb–
Liniger model can be interpreted as describing the dynamics of m+1 q-bosons
on Zn+1 [2,19] projected onto the center-of-mass frame. By virtue of a q-boson–
q-Toda correspondence pointed out by Duval and Pasquier [6], the pertinent
q-boson dynamics can be mapped to that of the n-particle q-difference Toda
chain on the periodic integer lattice Zm+1. This state of affairs brings us in
the position to retrieve both quantum integrals and an orthogonal eigenbasis
of Bethe Ansatz wave functions given by Hall–Littlewood polynomials for the
q-difference Toda chain on Zm+1 from the quantum integrals and the corre-
sponding eigenbasis constructed in [20] for the diagonalization of the lattice
Lieb–Liniger model. In this approach, the spectrum of the periodic q-difference
Toda chain is obtained via the critical points of strictly convex Yang–Yang-
type Morse functions stemming from the lattice Lieb–Liniger model. As a
result, a direct link is established between the spectral analysis of the lattice
Lieb–Liniger model in [20] and the diagonalization of the periodic q-difference
Toda chain via the algebraic Bethe Ansatz in [6].

The material is organized as follows. Section 2 recalls the periodic q-
difference Toda hamiltonian and verifies its self-adjointness with respect to
a q-multinomial weight function on bounded partitions. Section 3 derives the
Bethe Ansatz wave function for the periodic q-difference Toda hamiltonian
in terms of Hall–Littlewood polynomials together with the pertinent system
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of Bethe Ansatz equations. Via the critical points of the associated family
of strictly convex Yang–Yang-type Morse functions, an orthogonal eigenbasis
of Bethe Ansatz wave functions is constructed in Sect. 4. A complete system
of commuting quantum integrals for the periodic q-difference Toda chain is
retrieved in Sect. 5 from the corresponding quantum integrals for the lattice
Lieb–Liniger model. Remarkably, the q-difference Toda quantum integrals ob-
tained this way differ from the well-known quantum integrals originating from
the work of Ruijsenaars [17]. Section 6 closes the presentation by detailing
the relation between Ruijsenaars’ quantum integrals and those obtained from
the lattice Lieb–Liniger model more precisely. It turns out that in both cases
the eigenvalue equations for the quantum integrals of the periodic q-difference
Toda chain correspond to affine Pieri rules for periodic Hall–Littlewood func-
tions, cf. [22]. From this perspective, the quantum integrals retrieved from the
lattice Lieb–Liniger model correspond to Pieri rules that add a column to the
partition of the Hall–Littlewood polynomial (cf. Appendix A) whereas Rui-
jsenaars’ quantum integrals for the q-difference Toda chain correspond to the
Pieri rules that add a row to the partition.

2. Periodic q-Difference Toda Hamiltonian

Upon fixing m,n ∈ N, we consider a system of n quantum particles hopping
over the periodic integer lattice

Zm+1 = Z/(m + 1)Z ∼= {0, 1, 2, . . . ,m}. (2.1)

The positions of these particles are represented by a partition μ = (μ1, μ2, . . . ,
μn) in the configuration space

Λ(n,m) = {μ ∈ Z
n | m ≥ μ1 ≥ μ2 ≥ · · · ≥ μn ≥ 0}. (2.2)

For q ∈ (−1, 1), the q-difference Toda dynamics on Zm+1 is generated by
the quantum hamiltonian:

H = D + D∗, (2.3a)

with

D =
∑

1≤i≤n

(1 − qμi−1−μi)Ti and D∗ =
∑

1≤i≤n

(1 − qμi−μi+1)T−1
i ,

(2.3b)

subject to the periodicity convention

μ0 ≡ μn + m + 1 and μn+1 ≡ μ1 − m − 1. (2.3c)

The hopping operators Ti and T−1
i act on n-particle wave functions ψ(μ1, . . . ,

μn) via unit translations of the ith particle

(T ε
i ψ)(μ1, . . . , μn) = ψ(μ1, . . . , μi−1, μi + ε, μi+1, . . . , μn) (ε ∈ {1, −1}), (2.4)
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where the periodicity of the integer lattice Zm+1 gives rise to the following
boundary conditions for μ ∈ Λ(n,m):

ψ(m + 1, μ2, μ3, . . . , μn) ≡ ψ(μ2, μ3, . . . , μn, 0) (2.5a)

and

ψ(μ1, μ2, . . . , μn−1,−1) ≡ ψ(m,μ1, μ2, . . . , μn−1). (2.5b)

The boundary conditions in Eqs. (2.5a), (2.5b) render a well-defined action of
H (2.3a)–(2.3c) on wave functions ψ : Λ(n,m) → C of the form

(Hψ)(μ) =
∑

1≤i≤n

(
(1 − qμi−1−μi )ψ(μ + ei) + (1 − qμi−μi+1 )ψ(μ − ei)

)
, (2.6)

where the vectors e1, . . . , en represent the standard unit basis for Z
n. Notice

in this connection that for 1 < i ≤ n the coefficient of ψ(μ + ei) vanishes for
μ ∈ Λ(n,m) such that μ + ei �∈ Λ(n,m), while for 1 ≤ i < n the coefficient of
ψ(μ − ei) vanishes for μ ∈ Λ(n,m) such that μ − ei �∈ Λ(n,m).

Let �2
(
Λ(n,m),Δ

)
denote the

(
n+m

n

)
-dimensional Hilbert space of complex

functions ψ : Λ(n,m) → C equipped with an inner product

〈ψ, φ〉Δ =
∑

μ∈Λ(n,m)

ψ(μ)φ(μ)Δμ

(
ψ, φ ∈ �2

(
Λ(n,m),Δ

))
(2.7a)

governed by q-multinomials on Λ(n,m):

Δμ =
(q; q)m+1∏

1≤i≤n(q; q)μi−μi+1

(2.7b)

(μ ∈ Λ(n,m)), where

(a; q)l =

{
1 if l = 0
(1 − a)(1 − aq) · · · (1 − aql−1) if l = 1, 2, 3, . . .

Proposition 1. (Self-adjointness) For q ∈ (−1, 1), the periodic q-difference
Toda hamiltonian H (2.3a)–(2.3c) is self-adjoint in �2

(
Λ(n,m),Δ

)
, because

∀ψ, φ ∈ �2
(
Λ(n,m),Δ

)
: 〈Dψ, φ〉Δ = 〈ψ,D∗φ〉Δ.

Proof. Elementary manipulations reveal that ∀ψ, φ ∈ �2
(
Λ(n,m),Δ

)
:

〈Dψ, φ〉Δ =
∑

1≤i≤n

∑

μ∈Λ(n,m)

(1 − qμi−1−μi)ψ(μ + ei)φ(μ)Δμ

=
∑

1≤i≤n

∑

μ̃∈Λ(n,m)

(1 − qμ̃i−μ̃i+1)ψ(μ̃)φ(μ̃ − ei)Δμ̃ = 〈ψ,D∗φ〉Δ.

Indeed, for all 1 ≤ i ≤ n and μ ∈ Λ(n,m) one has that:

ψ(μ + ei)φ(μ) = ψ(μ̃)φ(μ̃ − ei) and (1 − qμi−1−μi)Δμ = (1 − qμ̃i−μ̃i+1)Δμ̃

if μ̃ = μ + ei ∈ Λ(n,m), whereas by virtue of the convention in Eq. (2.3c) and
the periodic boundary conditions in Eqs. (2.5a), (2.5b):

ψ(μ + e1)φ(μ) = ψ(μ̃)φ(μ̃ − en) and (1 − qμ0−μ1)Δμ = (1 − qμ̃n−μ̃n+1)Δμ̃
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if μ = (m,μ2, . . . , μn) and μ̃ = (μ2, . . . , μn, 0). �

Remark. The asymmetric q-difference operators D and D∗ (2.3b) commute
and thus constitute normal operators in �2

(
Λ(n,m),Δ

)
by virtue of Proposition

1. While in the literature, the term q-difference Toda hamiltonian often refers
to either D or D∗, here the symmetric q-difference operator H (2.3a) is singled
out as the quantum hamiltonian so as to guarantee that our q-difference Toda
dynamics is generated by a self-adjoint operator in the Hilbert space. It is
instructive to rewrite the periodic q-difference Toda operators in the form

D =
∑

1≤i≤n

(1 − q(m+1)δi−1qμ[i−1]−μi)Ti (2.8a)

and

D∗ =
∑

1≤i≤n

(1 − q(m+1)δn−iqμi−μ[i+1])T−1
i , (2.8b)

where for l ∈ Z and 0 ≤ i ≤ n + 1:

δl =

{
1 if l = 0,

0 otherwise
and [i] =

⎧
⎪⎨

⎪⎩

n if i = 0,

i if 1 ≤ i ≤ n,

1 if i = n + 1
(2.8c)

(so [i] = i mod Zn
∼= {1, 2, . . . , n}). From these formulas, it is immediate that

formally the corresponding operators for the open n-particle q-difference Toda
chain on Z are recovered in the limit m → +∞.

3. Bethe Ansatz Wave Function

For λ ∈ Z
m+1 such that λ1 ≥ λ2 ≥ · · · ≥ λm+1 ≥ λ1−n and ξ = (ξ1, . . . , ξm+1)

in

R
m+1
0,reg = {ξ ∈ R

m+1
0 | ξj − ξk �∈ 2πZ, ∀1 ≤ j < k ≤ m + 1}, (3.1)

where R
m+1
0 ≡ {ξ ∈ R

m+1 | ξ1 + · · · + ξm+1 = 0}, let

Rλ(ξ1, . . . , ξm+1) =
∑

σ∈Sm+1

C(ξσ(1), . . . , ξσ(m+1)) exp(iξσ(1)λ1 + · · · + iξσ(m+1)λm+1)

(3.2)

with

C(ξ1, . . . , ξm+1) =
∏

1≤j<k≤m+1

1 − qe−i(ξj−ξk)

1 − e−i(ξj−ξk)
.

Here the summation runs over all permutations σ =
( 1 2 ··· m+1

σ(1) σ(2) ··· σ(m+1)

)
of

the symmetric group Sm+1.
On R

m+1
0,reg the function Rλ(ξ) (3.2) coincides with a Hall–Littlewood poly-

nomial in the variables eiξ1 , . . . , eiξm+1 [15, Chapter III.1] and thus extends
smoothly from ξ ∈ R

m+1
0,reg to ξ ∈ R

m+1
0 . The restriction of the Hall–Littlewood
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polynomials to the hyperplane R
m+1
0 ensures the following translational in-

variance

∀ξ ∈ R
m+1
0 : R(λ1+1,...,λm+1+1)(ξ) = R(λ1,...,λm+1)(ξ), (3.3)

which in turn prompts a restriction of λ to the fundamental alcove

Λ(m+1,n)
0 = {λ ∈ Z

m+1 | n ≥ λ1 ≥ · · · ≥ λm ≥ λm+1 = 0}. (3.4)

Notice that |Λ(n,m)| = |Λ(m+1,n)
0 | = (n+m)!

n! m! . By mapping μ ∈ Λ(n,m) to its
conjugate partition (‘with the columns and rows interchanged’):

μ′ =
(
0m+1−μ11μ1−μ22μ2−μ3 · · · (n − 1)μn−1−μnnμn

) ∈ Λ(m+1,n)
0 (3.5)

one establishes an explicit bijection from Λ(n,m) onto Λ(m+1,n)
0 . More specifi-

cally, μ′ = (μ′
1, μ

′
2, . . . , μ

′
m+1) denotes the (unique) partition in Λ(m+1,n)

0 such
that

mi(μ′) =

⎧
⎪⎨

⎪⎩

m + 1 − μ1 if i = 0,

μi − μi+1 if 0 < i < n,

μn if i = n,

(3.6)

where for any λ ∈ Λ(m+1,n)
0 and 0 ≤ i ≤ n

mi(λ) = |{1 ≤ j ≤ m + 1 | λj = i}| (3.7)

counts the multiplicity of i in λ. Reversely, for λ ∈ Λ(m+1,n)
0 we will write λ′

for its conjugate in Λ(n,m) (given by the unique μ ∈ Λ(n,m) such that μ′ = λ).

Proposition 2 (Bethe Ansatz wave function). For q ∈ (−1, 1) and ξ = (ξ1, . . .
, ξm+1) ∈ R

m+1
0,reg (3.1), let ψξ ∈ �2

(
Λ(n,m),Δ

)
be given by

ψξ(μ) = Rμ′(ξ1, . . . , ξm+1) (μ ∈ Λ(n,m)). (3.8a)

The Bethe Ansatz wave function ψξ (3.8a) solves the following eigenvalue equa-
tion for the periodic q-difference Toda hamiltonian H (2.3a)–(2.3c)

Hψξ = (1 − q)E(ξ)ψξ with E(ξ) = 2
∑

1≤j≤m

cos(ξj), (3.8b)

provided the spectral parameter ξ ∈ R
m+1
0,reg obeys an algebraic system of Bethe

Ansatz equations of the form

einξj = ε
∏

1≤k≤m+1
k �=j

1 − qei(ξj−ξk)

ei(ξj−ξk) − q
for j = 1, . . . , m + 1, (3.8c)

with εm+1 = 1.

Proof. The proof hinges on the affine Pieri rules for the Hall–Littlewood poly-
nomials in Eqs. (A.2a), (A.2b) of Appendix A, which are valid when ξ ∈ R

m+1
0,reg

obeys the Bethe Ansatz equations (3.8c) (cf. the remark at the end of the ap-
pendix). By canceling common factors from the numerators and denominators
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of the expansion coefficients on the RHS, the Pieri rules in question can be
rewritten as

(eiξ1 + · · · + eiξm+1)Rλ(ξ)

= (1 − q)−1
∑

1≤j≤m+1

λ+ej∈Λ
(m+1,n)
0

Rλ+ej
(ξ)

(
1 − qmλj

(λ)+mn(λ)δλj
)

(3.9a)

with λ + ej = λ + ej − δm+1−j(e1 + · · · + em+1), and

(e−iξ1 + · · · + e−iξm+1)Rλ(ξ)

= (1 − q)−1
∑

1≤j≤m+1

λ−ej∈Λ
(m+1,n)
0

Rλ−ej
(ξ)

(
1 − qmλj

(λ)+m0(λ)δn−λj
)

(3.9b)

with λ − ej = λ − ej + δm+1−j(e1 + · · · + em+1). (Here δl is defined as in Eq.
(2.8c).)

Upon substituting λ = μ′ (3.5) with μ ∈ Λ(n,m), the affine Pieri rules
(3.9a),(3.9b) take the form

(eiξ1 + · · · + eiξm+1 )ψξ(μ) = (1 − q)−1
∑

1≤i≤n

ψξ(μ + ei)
(
1 − qμi−1−μi

)

(3.10a)

and

(e−iξ1 + · · · + e−iξm+1)ψξ(μ) = (1 − q)−1
∑

1≤i≤n

ψξ(μ − ei)
(
1 − qμi−μi+1

)
,

(3.10b)

respectively. Here we use that for any μ ∈ Λ(n,m) and j ∈ {1, . . . , m + 1} one
has at λ = μ′:

λ + ej ∈ Λ(m+1,n)
0 ⇐⇒∀ψ ∈ �2(Λ(n,m),Δ) :

ψ
(
(λ + ej)′) = ψ(μ + ei) with i = λj + 1 ∈ {1, . . . , n}

and

λ − ej ∈ Λ
(m+1,n)
0 ⇐⇒ ∀ψ ∈ �2(Λ(n,m), Δ) :

ψ
(
(λ − ej)

′) = ψ(μ − ei) with i = λj + nδm+1−j ∈ {1, . . . , n},

by virtue of the boundary conditions in Eqs. (2.5a), (2.5b) (cf. Figs. 1, 2, 3 and
4). After summing Eqs. (3.10a) and (3.10b) the asserted eigenvalue equation
for the periodic q-difference Toda hamiltonian follows. �

Proposition 2 agrees with an alternative construction of the Hall–Littlewood-
type wave functions for the periodic q-difference chain by means of the alge-
braic Bethe Ansatz in [6, Sections 5, 6].
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μ1 μi μn

λ1

λj

λm

λm+1

λ + ej ↔ μ + ei

Figure 1. Adding a box to the partition

μ1 μi μn

λ1

λj •

λm

λm+1

λ − ej ↔ μ − ei

Figure 2. Deleting a box from the partition

μ1 μi μn

λ1

λj

λm

λm+1

=⇒

μ1 μi μn

λ1

λj

λm

λm+1

λ + em+1 ↔ μ + e1 with μ1 = m

R(λ1,...,λm,1)(ξ) ⇒ R(λ1−1,...,λm−1,0)(ξ)

ψξ(m + 1, μ2, . . . , μn) ⇒ ψξ(μ2, . . . , μn, 0)

Figure 3. λ-Translational invariance vs μ-periodicity: col-
umn/row deletion

4. Spectrum and Orthogonal Eigenbasis

In [20, Section 4], the Bethe Ansatz equations of the previous section were
recasted in a logarithmic form that describe the critical points of a Yang–
Yang-type family of strictly convex Morse functions. Specifically, for any κ ∈
Λ(m+1,n)

0 the following system of transcendental equations

nξj +
∑

1≤k≤m+1
k �=j

vq(ξj − ξk) = 2π

(
m

2
+ 1 − j + κj − |κ|

m + 1

)
(4.1a)
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μ0 μ1 μi μn

λ0 •
λ1

λj

λm

λm+1 •

=⇒

μ1 μ2 μi μn

λ1

λj

λm

λm+1

λ − em+1 ↔ μ − en with μn = 0 and λ0 ≡ λm+1 + n, μ0 ≡ μn + m + 1

R(λ1,...,λm,−1)(ξ) ⇒ R(λ1+1,...,λm+1,0)(ξ)

ψξ(μ1, . . . μn−1, −1) ⇒ ψξ(m, μ1, . . . , μn−1)

Figure 4. λ-Translational invariance vs μ-periodicity: col-
umn/row addition

j = 1, . . . , m + 1 with

vq(ϑ) =
∫ ϑ

0

(1 − q2) dθ

1 − 2q cos(θ) + q2
= i log

(
1 − qeiϑ

eiϑ − q

)
(−1 < q < 1)

(4.1b)

provides a logarithmic form of the Bethe Ansatz equations (3.8c), with the
value of the (m + 1)th root of unity ε being equal to (−1)me− 2πi|κ|

m+1 , where

|κ| = κ1 + κ2 + · · · + κm+1.

Indeed, upon multiplying Eq. (4.1a) by i =
√−1 and taking the exponential

of both sides it is seen that any solution of Eq. (4.1a) gives rise to a solution
of Eq. (3.8c) for the pertinent choice of ε. Solutions of Eq. (4.1a) are critical
points of a smooth Morse function Vκ : Rm+1 → R of the form

Vκ(ξ1, . . . , ξm+1) =
∑

1≤j<k≤m+1

∫ ξj−ξk

0

vq(ϑ)dϑ

+
∑

1≤j≤m+1

(
n

2
ξ2
j − 2π

(
m

2
+ 1 − j + κj − |κ|

m + 1

)
ξj

)
.

(4.2)

Since the Morse function in question is radially unbounded (i.e., Vκ(ξ) → +∞
if ξ2

1 + · · · + ξ2
m+1 → +∞) and moreover strictly convex, given κ ∈ Λ(m+1,n)

0

there exists only a single critical point corresponding to the global minimum
of Vκ(ξ1, . . . , ξm+1).

For q ∈ (−1, 1) and any κ ∈ Λ(m+1,n)
0 , let ξκ ∈ R

m+1 denote the unique
global minimum of Vκ(ξ1, . . . ξm+1) (4.2). It is immediate from the analysis
in [20, Section 4] that the solutions ξκ, κ ∈ Λ(m+1,n)

0 for the Bethe Ansatz
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equations (3.8c) are all distinct and located within the open alcove
A

m+1
0 = {(ξ1, . . . , ξm+1) ∈ R

m+1
0 | ξ1 > ξ2 > · · · > ξm+1 > ξ1 − 2π} (4.3a)

(⊂ R
m+1
0,reg) subject to the following constraints at ξ = ξκ:

2π(k − j + κj − κk)

n + (m + 1)k+
≤ ξj − ξk ≤ 2π(k − j + κj − κk)

n + (m + 1)k−
(4.3b)

for 1 ≤ j < k ≤ m + 1, where k± =
(

1+|q|
1−|q|

)±1

. In particular, for q → 0 the
position of the minimum ξκ tends to

ξκ|q=0 =
2π

n + m + 1

(
κ1 − |κ|

m + 1
+

m

2
, . . .

. . . , κj − |κ|
m + 1

+
m

2
+ 1 − j, . . . , κm+1 − |κ|

m + 1
− m

2

)

(where κm+1 = 0).

Theorem 3 (Diagonalization). For q ∈ (−1, 1) the Bethe Ansatz wave func-
tions ψξκ

, κ ∈ Λ(m+1,n)
0 constitute an orthogonal eigenbasis for the periodic q-

difference Toda hamiltonian H (2.3a)–(2.3c) in the Hilbert space �(Λ(n,m),Δ):

∀κ ∈ Λ(m+1,n)
0 : Hψξκ

= (1 − q)E(ξκ)ψξκ
(4.4a)

and

∀κ, ν ∈ Λ(m+1,n)
0 : 〈ψξκ

, ψξν
〉Δ = 0 if κ �= ν. (4.4b)

In particular, the spectrum of H thus consists of the eigenvalues (1 − q)E(ξκ),
κ ∈ Λ(m,n)

0 (with E(ξ) taken from Eq. (3.8b)).

Proof. Since ξκ solves the Bethe Ansatz equations and ψξ(0n) = R(0m+1)(ξ) =
(q;q)m+1
(1−q)m+1 �= 0 (cf. Equation (1.4) in [15, Chapter III.1]), it is clear from Propo-
sition 2 that ψξκ

provides a nontrivial solution of the eigenvalue equation
(4.4a). Rewriting the inner product in Eq. (4.4b) in terms of Hall–Littlewood
polynomials entails that:

〈ψξκ , ψξν 〉Δ =
∑

μ∈Λ(n,m)

ψξκ (μ)ψξν (μ)Δμ =
∑

λ∈Λ
(m+1,n)
0

Rλ(ξκ)Rλ(ξν)Δ′
λ, (4.5a)

where the weights Δ′
λ are such that Δ′

μ′ = Δμ, i.e., (cf. Eqs. (2.3c), (2.7b) and
(3.6)):

Δ′
λ =

(q; q)m+1

(q; q)m0(λ)+mn(λ))

∏
0<i<n(q; q)mi(λ)

=
(q; q)m+1

(1 − q)m+1

∏

1≤j<k≤m+1
λj=λk

1 − qk−j

1 − q1+k−j

∏

1≤j<k≤m+1
λj=λk+n

1 − qm+1−k+j

1 − qm+2−k+j
. (4.5b)

(Indeed, by canceling common factors in the numerator and the denominator
of the expression for Δ′

λ on the second line one readily recovers the expression
on the first line.) By comparing the formulas, Eqs. (4.5a) and (4.5b) reveal
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that the asserted orthogonality in Eq. (4.4b) amounts to an affine orthogonal-
ity relation for the Hall–Littlewood polynomials established in [20, Theorem
5.2]. �

5. Commuting Quantum Integrals

In the proof of Proposition 2, the periodic q-difference Toda hamiltonian H
(2.3a)–(2.3c) was retrieved from the corresponding lattice Lieb–Liniger Hamil-
tonian in [20, Section 5] as a pullback with respect to the mapping μ → μ′

from Λ(n,m) onto Λ(m+1,n)
0 . By pulling back the higher quantum integrals from

[20, Theorem 5.1] in a similar fashion, one arrives in turn at closed formulas for
the corresponding quantum integrals of the periodic q-difference Toda hamil-
tonian in �2(Λ(n,m)). To this end, it is convenient to employ horizontal strips
(cf. e.g., [15, Chapter I.1]) by defining for any ν ∈ Λ(n+1,m+1) and μ ∈ Λ(n,m):

ν � μ ⇐⇒m + 1 ≥ ν1 ≥ μ1 ≥ ν2 ≥ μ2 ≥ · · · ≥ νn ≥ μn ≥ νn+1 ≥ 0

with m0(ν) + mm+1(ν) > 0 (5.1)

(so ν � μ iff ν −μ is a horizontal strip with ν′
1 − ν′

m+1 ≤ n). We will also need
q-binomials:

[
k

l

]

q

=
(q; q)k

(q; q)l(q; q)k−l
(for l = 0, 1, . . . , k).

Armed with these notational conventions, we are in the position to define—
for any 1 ≤ r ≤ m—the following operator Dr : �2(Λ(n,m),Δ) → �2(Λ(n,m),Δ)
via its action on ψ ∈ �2(Λ(n,m),Δ) evaluated at μ ∈ Λ(n,m):

(Drψ)(μ) =
∑

ν∈Λ(n+1,m+1)

ν�μ, |ν|=|μ|+r

[ μn − μn+1

ν1 + νn+1 − μ1

]

q

∏

1≤i<n

[ μi − μi+1

νi+1 − μi+1

]

q

ψ(ν), (5.2a)

where

ψ(ν) ≡
{

ψ(ν1, ν2, . . . , νn) if ν1 ≤ m,

ψ(ν2, . . . , νn, νn+1) if ν1 = m + 1.
(5.2b)

Up to normalization, one recovers for r = 1 and r = m the difference operators
D and D∗ building H (2.3a)–(2.3c):

D = (1 − q)D1 and D∗ = (1 − q)Dm. (5.3)

Theorem 4 (Quantum integrability). Let q ∈ (−1, 1) and 1 ≤ r ≤ m.
(i) The operators D1, . . . , Dm (5.2a)–(5.2b) commute in �2

(
Λ(n,m),Δ

)
and

are simultaneously diagonalized by the orthogonal basis of Bethe Ansatz
wave functions ψξκ

, κ ∈ Λ(m+1,n)
0 :

Drψξκ
= Er(ξκ)ψξκ

(5.4a)

with

Er(ξ) =
∑

1≤j1<j2<···<jr≤m+1

exp
(
iξj1 + iξj2 + · · · + iξjr

)
. (5.4b)
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(ii) The quantum integrals Dr and Dm+1−r are each others adjoints in
�2

(
Λ(n,m),Δ

)
, i.e.,

∀ψ, φ ∈ �2
(
Λ(n,m),Δ

)
: 〈Drψ, φ〉Δ = 〈ψ,Dm+1−rφ〉Δ. (5.5)

(iii) The quantum integrals D1, . . . , Dm are complete in the sense that the full
algebra of commuting quantum integrals for the periodic q-difference Toda
chain

I ≡ {I : �2
(
Λ(n,m), Δ

) → �2
(
Λ(n,m), Δ

) | IDr = DrI for r = 1, . . . , m} (5.6a)

is generated by the operators in question:

I = C[D1, . . . , Dm]. (5.6b)

Proof. (i) It suffices to verify the eigenvalue equations (5.4a), (5.4b), be-
cause the commutativity then automatically follows from the fact that
the Bethe Ansatz wave functions constitute a basis for �2

(
Λ(n,m),Δ

)
by

virtue of Theorem 3. To infer the eigenvalue equations, we employ the
affine Pieri rules in Eq. (A.2a) for Rλ(ξ) at ξ = ξκ (with λ, κ ∈ Λ(m+1,n)

0 ):

Er(ξ)Rλ(ξ) =
∑

J⊂{1,...,m+1},|J|=r

λ+eJ∈Λ
(m+1,n)
0

Rλ+eJ
(ξ)VJ (λ),

where VJ(λ) is taken from Eq. (A.2b). For λ and λ + eJ in Λ(m+1,n)
0 , let

Δ′
λ,J ≡ (q; q)|J|

(1 − q)|J|
∏

1≤j<k≤m+1
j,k∈J
λj=λk

1 − qk−j

1 − q1+k−j

∏

1≤j<k≤m+1
j,k∈J

λj=λk+n

1 − qm+1−k+j

1 − qm+2−k+j

=
(q; q)|J|

(q; q)m0,J (λ)+mn,J (λ))

∏
0<i<n(q; q)mi,J (λ)

(cf. Equation (4.5b)), where mi,J(λ) ≡ |{j ∈ J | λj = i}| =
∑

0≤l≤i ml(λ)−
ml(λ+eJ ). With the aid of Δ′

λ,J , the coefficients VJ(λ) (A.2b) are readily
rewritten in terms of q-binomials as follows:

VJ(λ) =
[
m + 1

|J |
]

q

Δ′
λ,JΔ′

λ,Jc

Δ′
λ

=
[

m0(λ) + mn(λ)
m0,J (λ) + mn,J(λ)

]

q

∏

0<i<n

[
mi(λ)

mi,J (λ)

]

q

.

Upon writing λ = μ′ (∈ Λ(m+1,n)
0 ) with μ ∈ Λ(n,m), and λ + eJ =

ν′ (∈ Λ(m+1,n+1)) with ν ∈ Λ(n+1,m+1), we have—assuming λ + eJ ∈
Λ(m+1,n)

0 —that ν � μ, Rλ+eJ
(ξ) = ψξ(ν) (cf. Figs. 5, 6), and

VJ(λ) =
[

μn − μn+1

ν1 + νn+1 − μ1

]

q

∏

1≤i<n

[
μi − μi+1

νi+1 − μi+1

]

q

.

Hence, the affine Pieri rule passes over into the asserted eigenvalue equa-
tion (5.4a), (5.4b).
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μ1 μi μl μn

λ1

λj

λm

λm+1

ν′ = (λ1 + 1, λ2, . . . , λj−1, λj + 1, λj+1 + 1, λj+2, . . . , λm−1, λm + 1, 0)

�
ν = (μ1 + 1, μ2, . . . , μi−1, μi + 2, μi+1, . . . , μl−1, μl + 1, μl+1, . . . , μn, 0)

Figure 5. Adding a strip to the partition

(ii) Upon exploiting once more that the Bethe Ansatz wave functions ψξκ
,

κ ∈ Λ(m+1,n)
0 constitute an orthogonal basis for �2

(
Λ(n,m),Δ

)
, the as-

serted adjointness D∗
r = Dm+1−r in Eq. (5.5) is immediate from the

diagonalization in the previous part (i) together with the elementary
observation that

Er(ξ) = Em+1−r(ξ) for ξ ∈ R
m+1
0 .

(iii) The elementary symmetric polynomials E1(ξ), . . . , Em(ξ) (5.4b) separate
the points of the fundamental alcove A

m+1
0 (4.3a) and hence the points

of the spectral variety X
(m+1,n)
0 ≡ {ξκ | κ ∈ Λ(m+1,n)

0 } ⊂ A
m+1
0 . Any

operator I : �2
(
Λ(n,m),Δ

) → �2
(
Λ(n,m),Δ

)
commuting with D1, . . . , Dm

is therefore diagonalized by our basis of Bethe Ansatz wave functions,
i.e.,

∀κ ∈ Λ(m+1,n)
0 : Iψξκ

= EI(ξκ)ψξκ

for a certain function EI : X
(m+1,n)
0 → C collecting the correspond-

ing eigenvalues. It is clear that the Hall–Littlewood polynomials Rλ(ξ), λ ∈
Λ(m+1,n)

0 restrict on X
(m+1,n)
0 to a basis for the

(
n+m

m

)
-dimensional space

of complex functions on the spectral variety X
(m+1,n)
0 (again because ψξκ

,
κ ∈ Λ(m+1,n)

0 is a basis for �2
(
Λ(n,m),Δ

)
, so the matrix [Rλ(ξκ)]

λ,κ∈Λ
(m+1,n)
0

is of full rank
(
n+m

m

)
). In other words, EI : X

(m+1,n)
0 → C can be written as

a linear combination of Hall–Littlewood polynomials restricted to X
(m+1,n)
0 .

Since the elementary symmetric polynomials E1(ξ), . . . , Em(ξ) generate the
space of symmetric polynomials in eiξ1 , . . . , eiξm+1 on the hyperplane R

m+1
0 , it

follows that I ∈ C[D1, . . . , Dm]. �

Theorem 4 links the spectral analysis of the lattice Lieb–Liniger model in
[20] to an alternative construction of the commuting quantum integrals and the
Hall–Littlewood eigenbasis for the periodic q-difference Toda chain by means
of the algebraic Bethe Ansatz in [6, Sections 5,6].
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μ1 μi μn

λ1

λj

λm−1

λm

λm+1

=⇒

μ1 μi−1 μn

λ1

•
λj

•
λm−1

λm

λm+1

ν′ = (λ1 + 1, λ2 + 1, λ3, . . . , λj−1, λj + 1, λj+1, . . . , λm−2, λm−1 + 1, λm + 1, 1)

Rν′ (ξ) ⇒ R(λ1,λ2,λ3−1,...,λj−1−1,λj,λj+1−1,...,λm−2−1,λm−1,λm,0)(ξ)

ν = (m + 1, μ2, . . . , μi−1, μi + 1, μi+1, . . . , μn, 2)

ψ(ν) ⇒ ψ(μ2, . . . , μi−2, μi−1 + 1, μi, . . . , μn, 2)

Figure 6. Adding a strip to the partition: column/row deletion

6. Epilogue

The operators Dr (5.2a), (5.2b) differ from Ruijsenaars’ commuting quantum
integrals for the q-difference Toda chain, cf. [17, Equation (2.13)]. Specifically,
the restriction of Ruijsenaars’ operators to lattice functions on Λ(n,m) gives
rise to the following generalization of the q-difference Toda operator D (2.3b)
(= D1):

Dl =
∑

I⊂{1,...,n}
|I|=l

⎛

⎜⎜⎝
∏

i∈I
[i−1] �∈I

(1 − qμi−1−μi)

⎞

⎟⎟⎠
∏

i∈I

Ti (6.1)

for l = 1, . . . , n (where the periodicity conventions in Eqs. (2.3c) and (2.8c) are
assumed). Here the Ruijsenaars operators have been gauged (cf. e.g., Equations
(2.73)–(2.76) in [10]) such that the adjoint of Dl in �2

(
Λ(n,m),Δ

)
is given by

D∗
l =

∑

I⊂{1,...,n}
|I|=l

⎛

⎜⎜⎝
∏

i∈I
[i+1] �∈I

(1 − qμi−μi+1)

⎞

⎟⎟⎠
∏

i∈I

T−1
i , (6.2)

where the following iterated generalization of the periodic boundary conditions
in Eqs. (2.5a), (2.5b) is employed:

ψ(m + 1, · · · ,m + 1, μi+1, μi+2, . . . , μn) ≡ ψ(μi+1, μi+2, . . . , μn, 0, . . . , 0)
(6.3a)
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and

ψ(μ1, μ2, . . . , μi−1,−1, · · · ,−1) ≡ ψ(m, . . . , m, μ1, μ2, . . . , μi−1) (6.3b)

(for all μ ∈ Λ(n,m) and 1 ≤ i ≤ n). The commutativity of Ruijsenaars’ oper-
ators is manifestly inherited by their lattice discretizations D1, . . . ,Dn (6.1)
and these discrete q-difference operators are moreover normal in �2

(
Λ(n,m),Δ

)

since D∗
l = Dn−lD−1

n (with the convention that D0 equals the identity opera-
tor). Hence, if for a given κ ∈ Λ(m+1,n)

0 the eigenvalue E1(ξκ) (5.4b) of D = D1

is simple, then the corresponding Bethe wave function ψξκ
(3.8a) provides a

joint eigenfunction for D1, . . . ,Dn:

Dlψξκ
= El(ξκ)ψξκ

. (6.4a)

To compute the pertinent eigenvalue, it suffices to evaluate both sides at μ =
(0n):

El(ξκ) =
(Dlψξκ

)(0n)
ψξκ

(0n)
=

(1 − qm+1)1−δn−lψξκ
(0n−l1l)

ψξκ
(0n)

=
Q(0ml)(ξκ)

(1 − qm+1)δn−l

(6.4b)

(cf. Eq. (3.5)), with

Q(0ml)(ξ) =
(1 − qm+1)R(0ml)(ξ)

R(0m+1)(ξ)
=

(1 − q)m+1

(q; q)m
R(0ml)(ξ)

= (1 − q)
∑

1≤j≤m+1

eilξj

∏

1≤k≤m+1
k �=j

1 − qe−i(ξj−ξk)

1 − e−i(ξj−ξk)
(6.4c)

(cf. e.g., Equation (2.9) in [15, Chapter III.2]).
Rewritten in terms of Hall–Littlewood polynomials the eigenvalue equa-

tion (6.4a) becomes ∀λ ∈ Λ(m+1,n)
0 :

Q(0ml)(ξκ)Rλ(ξκ)

= (1 − qm+1)δn−l

∑

ν

Rν(ξκ)
∏

0 ≤ i < n
mi(ν) + δimn(ν) =

mi(λ) + δimn(λ) − 1

(1 − qmi(λ)+δimn(λ)),

(6.5)

where

ν = (ν1 − νm+1, ν2 − νm+1, . . . , νm − νm+1, 0).

In Eq. (6.5), the sum is over all ν ∈ Λ(m+1,n) such that ν − λ is a horizontal
l-strip, i.e., |ν| = |λ| + l and

n ≥ ν1 ≥ λ1 ≥ ν2 ≥ λ2 ≥ · · · ≥ λm ≥ νm+1 ≥ λm+1 = 0.

To establish the identity in equation (6.5) for any κ ∈ Λ(m+1,n)
0 as an

affine Pieri relation (therewith including possible cases in which the eigenval-
ues E1(ξκ) (5.4b) have a multiplicity > 1) requires checking that Dl ∈ I (5.6a)
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(as expected). For l > 1 this is, unfortunately, beyond the scope of the present
note (but cf. [13, Corollary 7.4]). In the absence of this check, however, one
can in principle still rely on the spectral theorem for commuting normal oper-
ators so as to construct a joint orthogonal eigenbasis diagonalizing D1, . . . ,Dn

in �2
(
Λ(n,m),Δ

)
from the Bethe-Ansatz basis ψξκ

, κ ∈ Λ(m+1,n)
0 by means of

suitable orthogonal linear combinations of Bethe Ansatz wave functions per-
taining to the same eigenvalue of D1.
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Appendix A: Affine Pieri Rules for Periodic Hall–Littlewood
Functions

This appendix recalls affine Pieri rules for periodic Hall–Littlewood functions
[22, Section 1] that originate from the diagonalization of the lattice Lieb–
Liniger model in [20] (cf. also [13, Corollary 7.4]). The affine Pieri rules in
question are on-shell in the sense that the relations hold provided the polyno-
mial variable satisfies the Bethe Ansatz equations. This is in contrast with the
conventional Pieri rules for the Hall–Littlewood functions [15, Chapter III.3]
which hold as identities between symmetric functions (and are therefore also
valid off-shell).

Let us first recall that Er(ξ) denotes the rth elementary symmetric poly-
nomial in the variables eiξ1 , . . . , eiξm+1 (cf. Equation (5.4b)). By [20, Theorem
5.1], the Hall–Littlewood polynomials Rλ(ξ), λ ∈ Λ(m+1,n)

0 satisfy the following
affine Pieri rule at ξ = ξκ, κ ∈ Λ(m+1,n)

0 for r = 1, . . . , m:

Er(ξ)Rλ(ξ) =
∑

J⊂{1,...,m+1},|J|=r

λ+eJ∈Λ
(m+1,n)
0

Rλ+eJ
(ξ)VJ (λ), (A.1a)
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with

VJ(λ) =
∏

1≤j<k≤m+1
j∈J, k∈Jc

λj=λk

1 − q1+k−j

1 − qk−j

∏

1≤j<k≤m+1
j∈Jc, k∈J
λj=λk+n

1 − qm+2−k+j

1 − qm+1−k+j
(A.1b)

(cf. [22, Eq. (1.2)]). Here |J | denotes the cardinality of J ⊂ {1, . . . , m + 1},
eJ =

∑
j∈J ej , Jc = {1, . . . , m + 1}\J , and

λ + eJ ≡
{

λ + eJ if m + 1 ∈ Jc,

λ − eJc if m + 1 ∈ J.

For r = 1 and r = m, the affine Pieri rule reads, respectively (cf. [20,
Equations (5.5a)–(5.8d)]):

(eiξ1 + · · · + eiξm+1)Rλ(ξ)

=
∑

1≤j≤m+1

λ+ej∈Λ
(m+1,n)
0

Rλ+ej
(ξ)

∏

j<k≤m+1
λk=λj

1 − q1+k−j

1 − qk−j

∏

1≤k<j
λk=λj+n

1 − qm+2−j+k

1 − qm+1−j+k

(A.2a)

and (upon recalling that Em(ξ) = E1(−ξ) for ξ ∈ R
m+1
0 )

(e−iξ1 + · · · + e−iξm+1)Rλ(ξ)

=
∑

1≤j≤m+1

λ−ej∈Λ
(m+1,n)
0

Rλ−ej
(ξ)

∏

1≤k<j
λk=λj

1 − q1+j−k

1 − qj−k

∏

j<k≤m+1
λk=λj−n

1 − qm+2−k+j

1 − qm+1−k+j
,

(A.2b)

with

λ + ej =

{
(λ1, . . . , λj−1, λj + 1, λj+1, . . . , λm, 0) if 1 ≤ j ≤ m,

(λ1 − 1, . . . , λm − 1, 0) if j = m + 1,

and

λ − ej =

{
(λ1, . . . , λj−1, λj − 1, λj+1, . . . , λm, 0) if 1 ≤ j ≤ m,

(λ1 + 1, . . . , λm + 1, 0) if j = m + 1.

Remark. While the affine Pieri rules at ξ = ξκ, κ ∈ Λ(m+1,n)
0 simply reproduce

the eigenvalue equations in [20, Theorem 5.1], it is readily seen from the proof
in [20] for the theorem in question that these affine Pieri rules actually hold
more generally for any ξ ∈ R

m+1
0,reg obeying Bethe Ansatz equations of the form

ein(ξj−ξk) =
∏

1 ≤ � ≤ m + 1
� �= j

1 − qei(ξj−ξ�)

ei(ξj−ξ�) − q

∏

1 ≤ � ≤ m + 1
� �= k

1 − qei(ξ�−ξk)

ei(ξ�−ξk) − q

(A.3)
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( ∀1 ≤ j �= k ≤ m+1). In particular, since any solution ξ ∈ R
m+1
0,reg of the Bethe

Ansatz equations (3.8c) automatically satisfies Eq. (A.3), the affine Pieri rules
stated above are valid when ξ is restricted to such solutions.
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