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Abstract. The foundations of classical algebraic geometry and real alge-
braic geometry are the Nullstellensatz and Positivstellensatz. Over the
last two decades, the basic analogous theorems for matrix and operator
theory (noncommutative variables) have emerged. This paper concerns
commuting operator strategies for nonlocal games, recalls NC Nullstel-
lensatz which are helpful, extends these, and applies them to a very broad
collection of games. In the process, it brings together results spread over
different literature studies, hence rather than being terse, our style is fairly
expository. The main results of this paper are two characterizations, based
on Nullstellensatz, which apply to games with perfect commuting opera-
tor strategies. The first applies to all games and reduces the question of
whether or not a game has a perfect commuting operator strategy to a
question involving left ideals and sums of squares. Previously, Paulsen and
others translated the study of perfect synchronous games to problems en-
tirely involving a ∗-algebra. The characterization we present is analogous,
but works for all games. The second characterization is based on a new
Nullstellensatz we derive in this paper. It applies to a class of games we
call torically determined games, special cases of which are XOR and linear
system games. For these games, we show the question of whether or not
a game has a perfect commuting operator strategy reduces to instances
of the subgroup membership problem and, for linear systems games, we
further show this subgroup membership characterization is equivalent to
the standard characterization of perfect commuting operator strategies in
terms of solution groups. Both the general and torically determined games
characterizations are amenable to computer algebra techniques, which we
also develop. For context, we mention that Positivstellensätze are behind
the standard NPA upper bound on the score players can achieve for a
game using a commuting operator strategy. This paper develops analo-
gous NC real algebraic geometry which bears on perfect games.
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Table of Notation

C〈x〉 Free algebra on x + variants
I Capital Gothic letters for two-sided ideals AND
I(generators)algebra To be explicit in terms of generators/algebra
L, R Capital Gothic letters for left/right ideals AND
L(generators)algebra To be explicit in terms of generators/algebra
E(α) The set of projectors used by player α in a nonlocal

game
E(α)i

a The projector in a nonlocal game strategy corresponding
to player α giving a response a to question i

e(α)i
a Formal variables satisfying the same relations as E(α)i

a

X(α)i
a The signature matrix 2E(α)i

a − 1
x(α)i

a The formal variable in U corresponding to X(α)i
a

U The universal game algebra formed by the e(α)i
a

I Universal game ideal
A, etc. C∗-algebras
E Conditional expectation
Alg(blah) (Sub)algebra generated by blah
Alg∗(blah) ∗-Subalgebra generated by blah
A−1 Invertible elements in an algebra A
Y(�i) Set of answers corresponding to “valid responses” to

question �i
N (�i) Set of answers corresponding to “invalid responses” to

question �i
Y Set of elements e(α)i

a corresponding to “valid responses
−1”

N Set of elements e(α)i
a corresponding to “invalid responses”

1. Introduction

A nonlocal game is a test performed between a verifier and k players, in which
the verifier tests the players’ ability to produce correlations without communi-
cating. In a round of the game, the verifier sends questions to the players and
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the players return responses to the verifier. The list of questions and responses
is then scored according to a function known by both the verifier and the
players before the game began. By convention, the score achieved lies in the
interval [0, 1]. The players cooperate to try and achieve the highest possible
score, with the challenge that the players can’t communicate while the game
is in progress and so don’t know the questions sent to other players.

The optimal score the players can achieve on a nonlocal game G de-
pends on the resources the players share. If the players share only classical
randomness the optimal score they can achieve in expectation is called the
classical value of the game, denoted ω(G). If players share an arbitrary state in
a (possibly infinite-dimensional) Hilbert space and can make commuting mea-
surements on it the optimal score they can achieve is called the commuting
operator value of the game, denoted ω∗

co(G). The supremum value achievable by
players who make commuting measurements on a state in a finite-dimensional
entangled space is called the quantum value, denoted ω∗

q(G). These three val-
ues can all differ, though the inequalities ω(G) ≤ ω∗

q(G) ≤ ω∗
co(G) are always

satisfied.
Starting roughly in this century the classical subject of real algebraic

geometry has been extended to matrix and operator (noncommutative) vari-
ables. Here, inequalities and equalities are explained by being equivalent to
algebraic formulas, often involving sums of squares (SOS). These go under the
names of Positivstellensatz for inequalities and Nullstellensatz for equations.
Of course, finding quantum strategies for games leads to many such noncom-
mutative (NC) inequalities and equalities.

In this paper, we describe how the well developed NC real algebraic
geometry theory applies and integrates with nonlocal games and commuting
operator strategies for them. We show a connection between NC Nullstellensatz
and whether or not a nonlocal game has a perfect commuting operator solution
(i.e., ω∗

co(G) = 1). This connection gives a new algebraic characterization which
applies to all nonlocal games with commuting operator value exactly equal
to one. This characterization provides a unified algebraic framework through
which several previous results concerning the commuting operator value of
nonlocal games can be understood. For a large class of games it also reduces the
question of whether or not a game has perfect commuting operator value to an
instance of the subgroup membership problem, providing a potential starting
point for the investigation of several yet-to-be studied families of games.

For context, Positivstellensätze have long played a major role in the study
of nonlocal games in that they are behind the standard [11,25] upper bound
on the commuting operator value of a game. Underlying this bound is one
of the earliest NC Positivstellensätze, [15]. This paper turns its attention to
developing the analogous NC real algebraic geometry which bears on perfect
games.

In the remainder of this introduction, we introduce some new terminol-
ogy, review some previous results concerning the commuting operator value of
nonlocal games, and then give formal statements of some of our main results.
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Algebraic Description of the Commuting Operator Value A commuting op-
erator strategy for a nonlocal game is a description of how players can use
commuting operator measurements to map questions sent by the verifier to
responses. Formally, a (commuting operator) strategy can be specified by a
Hilbert space H, a state ψ ∈ H which is shared by the players and projec-
tors {E(α)i

a} acting on H, where α ranges over all players, i ranges over all
questions, and a ranges over all responses. The projector E(α)i

a can be read
as “the projector corresponding to player α giving response a to question i.”

Because the Hilbert space H on which they act is arbitrary, it is difficult
to reason about the E(α)i

a directly. Instead, we introduce the universal game
algebra U , a ∗-algebra generated by variables e(α)i

a which satisfy the same
relations as the projectors E(α)i

a, for example, that e(α)i
a and e(β)j

b commute
for any α �= β.1,2 Commuting operator strategies can then be specified by
tuples (π, ψ), consisting of a ∗-representation π mapping U to bounded oper-
ators on a Hilbert space H, along with a state ψ ∈ H. When specified in this
way, it is understood that projectors E(α)i

a are given by π(e(α)i
a) and that ψ

gives the state shared by the players.

Other Characterizations of Perfect Commuting Operator Strategies Several
other papers have considered the problem of deciding whether or not a game
has a perfect commuting operator strategy and given criteria which determine
the existence of perfect commuting operator strategies for specific families of
nonlocal games. We review some of those families of games and the associated
characterizations below.

• Linear systems games are two-player games based around systems of m
linear equations on n variables. In [9] it was shown that deciding existence
of a perfect commuting operator strategy for a binary linear systems game
was equivalent to solving an instance of the word problem on a group
called the solution group of the game.

• XOR games are k player games which, similarly to linear system games,
test satisfiability of a system of m binary equations on kn variables.
In [2] it was shown that deciding the existence of a perfect commuting
operator strategy for an XOR game was equivalent to solving an instance
of the subgroup membership problem on a group called the game group.

• Synchronous games are two-player nonlocal games which include “con-
sistency checks,” where Alice and Bob are sent the same question and
win iff they send the same response. Other than these consistency checks,
the questions and winning responses involved in a synchronous game are
arbitrary. In [27] it was shown that there was a perfect commuting oper-
ator strategy for a coloring game iff a ∗-algebra associated with a single
player’s operators could be represented into a C∗-algebra with a faithful
trace. In [16] and [20] this was generalized to synchronous games.

1The ∗-algebra U is isomorphic to a group algebra and has appeared before in other contexts.
For example, in [22] an algebra closely related to U was denoted A(X, A).
2A full set of relations for U is listed in Sect. 3.3.1.
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Our Results The main results of this paper are two theorems giving algebraic
characterizations of games with perfect commuting operator strategies.

A key concept introduced on the way to proving these theorems is the
notion of a game being determined by a set of elements F ⊆ U . Formally
we say a game G is determined by a set of elements F if, for any commuting
operator strategy (π, ψ), we have that (π, ψ) is a perfect commuting operator
strategy for G iff π(f)ψ = 0 for all f ∈ F . We also note that any game G is
naturally determined by two sets of elements. The first, N , consists of elements
corresponding to projectors onto responses which obtain a score less than 1 on
questions asked by the verifier, while the second, Y, consists of elements y − 1
with each element y corresponding to projectors onto responses which obtain
a score of exactly 1. Details of this construction are given in Sect. 3.4.1.

Our first major theorem follows from combining the notion of sets of
elements which determine a game with a result in noncommutative algebraic
geometry known as a Nullstellensatz. To state the result formally, let L (X )
denote the left ideal of U generated by X for any set of elements X ⊆ U and
SOSU denote sums of squares in the algebra U . Then, the following result
holds:

Theorem 1.1. For a nonlocal game G determined by a set F ⊆ U , the following
are equivalent:

(i) G has a perfect commuting operator strategy;
(ii) −1 /∈ L (F) + L (F)∗ + SOSU .

Theorem 1.1, combined with the natural determining sets N and Y, gives
a fully algebraic characterization of nonlocal games with perfect commuting
operator strategies. This characterization is analogous to the characterization
of synchronous games given in [16], but works for all games. For the special
case of synchronous games, we show in Sect. 8 that the characterizations of
Theorem 1.1 and [16] are equivalent.

The second major theorem focuses on a general class of games on which
Theorem 1.1 can be simplified further. A game G is called a torically deter-
mined game if there exists a group G with U ∼= C[G] and G is determined by
a set of elements

F = {βigi − 1} (1.1)

with each βi ∈ C and gi ∈ G. We call the elements βigi clauses of F , and let
H = {βigi} be the set of all the clauses of F . We give the following char-
acterization of torically determined games with perfect commuting operator
strategies:

Theorem 1.2. Let G be a game torically determined by a set of elements F
with clauses H . Then, G has a perfect commuting operator strategy iff the
following equivalent criteria are satisfied:

(i) −1 /∈ L (F) + L (F)∗;
(ii) The subgroup H of U generated by H ∪ H ∗ meets C only at 1.
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Condition (i) makes it clear Theorem 1.2 can be viewed as a version of
Theorem 1.1 for torically determined games which holds without the SOS term.
Additionally, condition (ii) reduces the characterization of perfect commuting
operator strategies in terms of ∗-algebras given in Theorem 1.1 to one entirely
in terms of groups. In this paper, we show that both linear systems games and
XOR games are torically determined games, and that Theorem 1.2 recovers
the algebraic characterizations of these games given in [2,9], respectively. We
also show that Theorem 1.2 lets us extend the algebraic characterization of
both XOR and binary linear systems games to more general games based on
linear equations Mod r for any integer r.3

Both Theorems 1.1 and 1.2 allow new algorithms for identifying nonlocal
games with perfect commuting operator strategies. In this paper, we discuss
one such algorithm, based on Gröbner bases, and give some sample applica-
tions. We note that, unlike the upper bounds coming from the ncSoS hierarchy,
these Gröbner bases algorithms can both prove a game has commuting opera-
tor value strictly less than 1 and identify some games with commuting operator
value exactly equal to 1.4

Recent Related Work In [22], the characterization of perfect commuting opera-
tor strategies for synchronous games in terms of representations of a ∗-algebra
into a C∗-algebra with a faithful trace was generalized to a class of games
known as imitation games, and a purely algebraic characterization of perfect
commuting operator strategies was given for a subclass of imitation games
known as mirror games. In this paper, we do not try and reconcile these char-
acterizations with Theorems 1.1 and 1.2, but we do note it as an interesting
problem worth future study. In [13] the solution group characterization of
perfect commuting operator strategies for linear systems game given in [9]
was related to the C∗-algebra characterization of perfect commuting operator
strategies for a synchronous variant of linear systems games presented in [20].
The relationship between these algebraic objects is similar to the relationships
presented in Sects. 8 and 7 of this paper.

Paper Outline In Sect. 2, we review some general mathematical definitions
necessary to understand the main results of the paper. In Sect. 3, we intro-
duce terminology related to nonlocal games and define key algebraic objects.
In Sect. 4, we introduce Nullstellensätze and prove Theorem 1.1. In Sect. 5,
we simplify the Nullstellensätze from the previous section and prove Theorem
1.2, then apply it to XOR and Mod r games. Section 7 shows that Theorem
1.2 is equivalent to the characterization of linear systems games given in [9].
Section 8 shows that, in the special case of synchronous games, Theorem 1.1

3In [9] it was already observed that the characterization of binary linear systems games
presented could be generalized to any system of equations mod p for any prime p. This
generalization is given explicitly in [13].
4The question of whether a game has perfect commuting operator value is undecidable [29],
meaning these algorithms (or any algorithms!) cannot always identify games with commuting
operator value one, but there are many examples where they do.
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is equivalent to the characterization of synchronous games given in [16]. Sec-
tion 6 introduces Gröbner basis algorithms for identifying games with perfect
commuting operator value based on Theorems 1.1 and 1.2, and Sect. 8.3 gives
an example application of our Nullstellensätze to quantum graph coloring.

There is a table of contents, an index and a list of notation at the end of
the paper.

2. Math Background

Representations Given an algebra A, a representation of A is a unital homo-
morphism π : A → B(H) for some Hilbert space H. When A is endowed with
an involution ∗, then π is called a ∗-representation if π(a∗) = π(a)∗ for all
a ∈ A.

Free Algebras Let x = (x1, . . . , xd) denote a tuple of noncommuting letters.
Words in x form the free monoid 〈x〉, including the empty word denoted 1. A
noncommutative (nc) polynomial is a linear combination of words; the algebra
of nc polynomials is the free algebra C〈x〉. We endow it with the involution ∗
fixing R ∪ {x}.

Example 2.1. Any representation π of C〈x〉 is described by a tuple of operators
X ∈ B(H)d through π(xj) = Xj . Then, π is a ∗-representation if and only if
the Xj are self-adjoint.

Group Algebras Given an abstract group G, the group algebra C[G] has G as
a vector space basis, and the multiplication is extended from the one in G by
linearity/distributivity. Thus, elements p ∈ C[G] are finite linear combinations

p =
∑

j

sjgj , (2.1)

where sj ∈ C and gj ∈ G. The involution on C[G] is complex conjugation
on C and g �→ g−1 for g ∈ G. Hence, a ∗-representation of a group algebra
π : C[G] → B(H) is a ring homomorphism such that π(g) is a unitary operator
for all g ∈ G.

Example 2.2. Each group algebra admits a left regular ∗-representation. Namely,
let �2(G) be the Hilbert space with Hilbert space basis G. Then, the left regular
representation λ defined as

λ(g)

⎛

⎝
∑

j

ajgj

⎞

⎠ =
∑

j

ajg
−1gj for

∑

j

ajgj ∈ �2(G).

Thus, each g ∈ G induces a unitary operator λ(g) ∈ B(�2(G)), and thus by
linearity λ : C[G] → B(�2(G)) is a ∗-representation.
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3. Nonlocal Game Definitions

This section gives an overview of all the terminology used to discuss nonlocal
games in this paper. Section 3.1 gives a semi-formal introduction to the lan-
guage used to describe nonlocal games. Section 3.2 gives technical definitions
which are key to this paper. In Sect. 3.3, we introduce an algebraic framework
which we will use to describe nonlocal games and their commuting operator
strategies. In Sect. 3.4, we describe the condition that a nonlocal game has
perfect commuting operator strategy in terms of some of the notations intro-
duced in previous sections. Finally, in Sect. 3.5 we describe some well-known
families of games using the language introduced in previous sections.

A reader already familiar with nonlocal games can skip Sect. 3.1 but
should not skip Sect. 3.2 (or later sections) as conventions are set in those
sections which will remain important throughout the paper.

3.1. General Notation

Nonlocal games describe experiments which test the correlations that can be
produced by measurements of quantum systems. A nonlocal game involves a
referee (also called the verifier) and k players (also called provers). In a round
of the game, the verifier selects a vector of questions �i = (i(1), i(2), . . . , i(k))
randomly from a set Q of possible question vectors, then sends player α
question i(α). Each player responds with an answer a(α). The players can-
not communicate with each other when choosing their answers. After receiv-
ing an answer from each player, the verifier computes a score V (�a |�i) =
V (a(1), a(2), . . . , a(k)|i(1), i(2), . . . , i(k)) which depends on the questions se-
lected and answers received. The players know the set of possible questions S
and the scoring function V . Their goal is to chose a strategy for responding
to each possible question which maximizes their score in expectation. The dif-
ficulty for the players lies in the fact that in a given round each player only
has partial information about the questions sent to other players. The set of
all questions possible is finite; cardinality is denoted n.

For a given game G, the maximum expected score achievable by players
is called the value of the game. The value depends on the resources available
to the players. If players are restricted to classical strategies, the value is called
the classical value and denoted ω(G). If players can make measurements on
a shared quantum state (but still can’t communicate) the value can be larger
and is called the entangled value. More specifically, if the players shared state
lives in a Hilbert space H = H1 ⊗ H2 ⊗ · · · ⊗ Hk and the i-th player makes a
measurement on the i-th Hilbert space (i.e., all measurement operators used
by the i-th player take the form I1 ⊗ · · · ⊗ Ii−1 ⊗ Xi ⊗ Ii+1 ⊗ · · · ⊗ Ik with
Xi acting on Hi) the supremum score the players can obtain is called the
quantum value, denoted ω∗

q. In [31], it was shown that this value is equal to
the supremum score the players can achieve making measurements on finite-
dimensional Hilbert spaces.
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If the players state and Hilbert space are arbitrary and the only restriction
placed on their measurements is all measurement operators for different play-
ers commute (enforcing no-communication), the maximum achievable score is
called the commuting operator value, denoted ω∗

co. When the state shared by
the players is finite-dimensional the tensor product and commuting operator
values of a game coincide. In the infinite-dimensional case ω∗

tp ≤ ω∗
co, and there

exist games for which the inequality is strict [12,17,18].
A notation summary is:

k := #players, n := #questions m := #responses per question. (3.1)

3.2. Basic Definitions

3.2.1. Commuting Operator Strategies. We start with a definition of a com-
muting operator strategy for nonlocal games. The setting is a separable Hilbert
space H, possibly infinite-dimensional; measurements, described by bounded
operators in B(H) and states, positive semidefinite ρ ∈ B(H) with trace 1.
Such operators ρ are often called density operators or (normalized) trace class
operators. Of course, �ρ(W ) = tr(Wρ) defines a positive linear functional
�ρ : B(H) → C with �(I) = 1. A pure state corresponds to rank one ρ, that is
ρ = ψ∗ψ with ψ a unit vector in H. In this case, �ρ is of the form W �→ ψ∗Wψ.

Definition 3.1. A commuting operator strategy S for a k-player, n-question,
m-response nonlocal game is defined by (H, ρ, E(1), E(2), . . . , E(k)) where H
is a Hilbert space, ρ a state, and each E(α) for α ∈ [k] is a set of projectors
acting on H,

E(α) = {E(α)i
a | i ∈ [n], a ∈ [m]} (3.2)

which satisfy

[E(α)i
a, E(β)k

b ] = 0 ∀ α �= β, (3.3a)
∑

a∈[m]

E(α)i
a = 1 ∀ α ∈ [k], i ∈ [n]. (3.3b)

Note here we use the shorthand [n] := {1, 2, . . . , n}.

Note that as a consequence of Eq. (3.3b) we have E(α)i
aE(α)i

b = 0 and
hence [E(α)i

a, E(α)i
b] = 0 for any α, i and a �= b.

Conventions:

α, β variables label players, i, j variables label questions, and
a, b variables label responses.

3.2.2. Games and their Commuting Operator Value. A k-player, n-question,
m-response nonlocal game G = (V, μ) is specified by a scoring function

V : [n]k × [m]k → [0, 1] (3.4)
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and a probability distribution μ on [n]k. The score a strategy S obtains on a
game G = (V, μ) is given by

V (G, S) =
∑

�i∈[n]k

∑

�a∈[m]k

μ
(�i
)

V
(�i, �a

)
Tr[

∏

α∈[k]

E(α)i(α)
a(α)ρ] (3.5)

The commuting operator value ω∗
co(G) of a game is defined to be the supremum

value achieved over commuting operator strategies, so

ω∗
co(G) = sup

S∈Sco

V (G, S). (3.6)

where we have defined Sco(k, n,m) to be the set of all k-player, n-question,
m-response commuting operator strategies. Often k, n, m are implied from
context, and we just write Sco.

3.3. The Algebraic Picture

In this paper, we think of strategies S ∈ Sco as arising from representations of
an algebra we call the universal game algebra. We define that algebra next.

3.3.1. Universal Game Algebra. Here, we define the Universal Game Alge-
bra U in terms of various generators and relations. These relations define a
two-sided ideal I which lives inside the ∗-algebra of all noncommutative poly-
nomials in the generators. We call I the Universal Game Ideal. These relations
reflect the algebraic properties of projectors or related algebraic objects.

Projection Generators Define U to be the ∗-algebra with generators e(α)i
a

which satisfy relations

[e(α)i
a, e(β)j

b] = 0 ∀ i, j, a, b, α �= β, (3.7a)
(
e(α)i

a

)2
=
(
e(α)i

a

)∗
= e(α)i

a, (3.7b)

e(α)i
ae(α)i

b = 0 ∀ i, a �= b, (3.7c)
∑

a

e(α)i
a = 1 ∀ α, i, (3.7d)

with i, j ∈ [n]; a, b ∈ [m], and α ∈ [k]. (Technically, we should define a different
universal algebra for every different value n,m and k, so U = U (n,m, k). We
frequently omit this detail when n,m and k are clear from context.)

Remark. The third relation in Equation (3.7) holds automatically for subal-
gebras of bounded operators on a Hilbert space H, but is not redundant in
general. To explain this, we shall employ noncommutative Gröbner bases; see
Sect. 6.1 later for a brief introduction.

There exists a ∗-algebra with four self-adjoint idempotents that sum to 1
but are not pairwise orthogonal. Indeed, consider the free algebra C〈a, b, c, d〉
generated by four self-adjoint elements a, b, c, d, and the two-sided ∗-ideal I in
C〈a, b, c, d〉 generated by

a2 − a, b2 − b, c2 − c, d2 − d, a + b + c + d − 1.
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Its reduced Gröbner basis with respect to the graded lex order is given by

−1+a+b+c+d, −a+a2, −b + b2, −c + c2, ab+ac + ba + bc + ca + cb,

−ab − 2ac − 2ba − 2bc − ca − aba − abc − aca − bac − bca + cab.

We can use this to check that the element ab + I is not zero in the quotient
algebra A := C〈a, b, c, d〉/I. This example incidentally gives a negative answer
to Problem 5.2 in [16].

For three self-adjoint idempotents a, b, c that add to 1 the corresponding
ideal has the reduced Gröbner basis

−1 + a + b + c, −a + a2, −b + b2, ab, ba

whence the product of any two of the idempotents a, b, c is indeed zero.

Alternately, we can describe U as a quotient of the free ∗-algebra. Namely,
let e denote the tuple

e = (e(α)i
a))i,a,α,

and define the universal game ideal I to be the two-sided ideal in the free
algebra C〈e〉, defined by the polynomials

{
[e(α)i

a, e(β)j
b],

(
e(α)i

a

)2 − e(α)i
a, e(α)i

a′e(α)i
b′ ,

∑

a

e(α)i
a − 1

}
(3.8)

where the indices run through all i, j, a, b, a′ �= b′, α �= β. Then, U = C〈e〉/I ;
note that U comes equipped with an involution induced by

(
e(α)i

a

)∗ = e(α)i
a.

There are two common changes of variables we will use when describing
the algebra U .

Signature Matrix Generators The first change of variables is to generators
satisfying the algebraic properties of signature matrices, defined by

x(α)i
a := 2e(α)i

a − 1. (3.9)

These variables satisfy relations

x(α)i
ax(β)j

b = x(β)j
bx(α)i

a ∀ i, j, a, b, α �= β, (3.10a)

(x(α)i
a + 1)(x(α)i

b + 1) = 0 ∀ i, a �= b, α and (3.10b)
∑

a

x(α)i
a = −(m − 2), (3.10c)

(
x(α)i

a

)∗
= x(α)i

a, (3.10d)
(
x(α)i

a

)2
= 1 ∀ i, a, α. (3.10e)

It is straightforward to check that the set of relations above gives a defining
set of relations for the algebra U written in terms of the x(α)i

a.
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Cyclic Unitary Generators The second change of variables is to cyclic unitary
generators, defined by

c(α)j :=
∑

a

exp
(

2πai

m

)
e(α)j

a. (3.11)

(In this subsection, i refers to the imaginary unit and j is used to index ques-
tions.) These elements satisfy relations

c(α)jc(β)j′ = c(β)j′c(α)j ∀ j, j′, α �= β, (3.12a)

(c(α)j)
∗ = (c(α)j)

−1
, (3.12b)

(c(α)j)
m = 1. (3.12c)

Routine calculation using the inverse transformation

e(α)j
a =

1
m

∑

b

(
exp

(−2πai

m

)
c(α)j

)b

(3.13)

shows that Equations (3.12a) to (3.12c) also form a defining set of relations
for U .

We can also define a group G generated by elements c(α)j which satisfy
the relations defined in Equations (3.12a) to (3.12c). Then, we can write that
U = C[G], making it clear that U is a group algebra.

Two Answer Games A notable special case occurs when the answer set of
the game contains only 2 responses. In this case, the cyclic observable and
signature matrix change of variables are the same, since

c(α)i = e(α)i
0 − e(α)i

1 = 2e(α)i
0 − 1 = x(α)i

0, (3.14a)

x(α)i
0 = −x(α)i

1. (3.14b)

In this case, we use the simplified notation x
(α)
i = c(α)i = x(α)i

0.

3.3.2. Strategies as Representations of the Universal Game Algebra. Recall
from Sect. 2 that a ∗-representation π : U → B(H) is an algebraic structure
preserving map, so images of generators of U consist of operators on H which
respect the algebraic structure of U , for example

π
(
(e(α)i

a)2
)

= π(e(α)i
a)2.

Then, we note that any ∗-representation π : U → B(H) and state ψ ∈ H
can be used to define a commuting operator strategy S ∈ Sco, simply by setting

E(α)i
a = π(e(α)i

a) (3.15)

for all i, a, α and taking the Hilbert space H to be the target Hilbert space
of the ∗-representation π. Similarly, any commuting operator strategy defined
by a Hilbert space H, state ψ, and projectors E(α)i

a can be used to define a
∗-representation π : U → B(H) by setting

π(e(α)i
a) = E(α)i

a (3.16)
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for all i, a, α. For this reason, we view commuting operator strategies inter-
changeably with pairs (π, ψ) consisting of ∗-representations π : U → B(H)
and states ψ ∈ H.

3.3.3. An Algebraic Definition of the Commuting Operator Value of a Game.
For any game G define the game polynomial ΦG ∈ U by

ΦG =
∑

�i∈[n]k

∑

�a∈[m]k

μ
(�i
)

V
(�i, �a

) ∏

α∈[k]

e(α)i(α)
a(α) (3.17)

Then, recalling the view of strategies as representations introduced in Sect.
3.3.2,

ω∗
co(G) = sup

π,ρ
tr[π(ΦG)ρ] (3.18)

where the supremum is taken over all ∗-representations π of U into bounded
operators on a Hilbert space H, and density operators ρ ∈ B(H).

A slightly different representation of ω∗
co which is useful is given in the

next lemma.

Lemma 3.2. The sup in Eq. (3.18) is attained for some pair representation
density operator (π̂, ρ̂). Moreover, one can take ρ̂ to be a pure state ρ̂ = ψ̂∗ψ̂,
so

ω∗
co(G) = max

π,ψ
ψ∗π(ΦG)ψ. (3.19)

Here, ψ ∈ H is a unit vector, and H is the Hilbert space into which π repre-
sents.

Proof. Firstly, it is well known that the extreme points of the convex set of
density operators ρ ∈ B(H) are exactly rank ones. This shows one can replace
ρ by ψ∗ψ for unit vectors ψ in Eq. (3.18).

Given π, ψ as above, the map

� : U → C, a �→ ψ∗π(a)ψ (3.20)

is a positive linear functional with �(1) = 1. Conversely, a normalized positive
linear functional � : U → C yields through the Gelfand–Naimark–Segal (GNS)
construction a representation π and unit vector ψ such that Eq. (3.20) holds.
Thus, Eq. (3.18) can be rewritten as

ω∗
co(G) = sup

�
�(ΦG). (3.21)

The set of the normalized positive linear functionals on U is weak-∗ compact
by the Banach–Alaoglu theorem. Thus, by continuity, the supremum in Eq.
(3.21) is attained. Hence, the GNS construction as explained above yields Eq.
(3.19). Observe that since U is countably dimensional, the constructed Hilbert
space H will be separable. �
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3.3.4. Valid and Invalid Response Sets. Now, we introduce a few more objects
which are useful for describing nonlocal games.

First, for any game G, let the set Q ⊆ [n]k contain all question vectors
which can be sent to the players with nonzero probability. Formally,

Q = {�i ∈ [n]k : μ(�i) > 0}. (3.22)

Then, for each question vector �i ∈ Q, let Y(�i) list the corresponding response
vectors which achieve a score of exactly 1, so

Y(�i) = {�a : V (�i, �a) = 1}. (3.23)

We say the set Y(�i) contains all the valid or “winning” responses to the ques-
tion vector �i. We also define the set of invalid responses or “losing” responses
N (�i) to be the complement of the set Y(�i).

In this paper, we assume that all games have a scoring function V whose
image is either 0 or 1 and a distribution μ which is uniform over a set of
allowed questions. For these games, specifying a question set Q and sets Y(�i)
(or N (�i)) for all �i ∈ Q completely specifies the game, since we can write

ΦG =
1

|Q|
∑

�i∈Q

∑

�a∈Y(�i)

∏

α∈[k]

e(α)i(α)
a(α). (3.24)

The results in this paper can be easily generalized to games with non-uniform
question distributions μ̃ or more complicated scoring functions Ṽ since a (clas-
sical or commuting operator) strategy for such a game is perfect if it is perfect
for the game with “flattened” scoring function V = �Ṽ � and question distri-
bution μ which is uniform over the set of support of μ̃.5

3.4. Determining Perfect Commuting Operator Strategies for Games

A commuting operator strategy S = (π, ψ) is called a perfect strategy for
a game G if V (G, S) = 1. In this section, we develop some terminology for
describing perfect commuting operator strategies for nonlocal games.

We first introduce a general definition which will be used frequently in
later sections.

Definition 3.3. A game G is said to be determined by a set of elements F ⊆ U
(or, equivalently, F is said to be a determining set of G) if it is true that any
strategy S = (π, ψ) satisfies V (G, S) = 1 iff π(f)ψ = 0 for all f ∈ F .

3.4.1. Determining Sets of a Game. We next show that any game G has two
natural determining sets, based on the valid and invalid response sets intro-
duced in Sect. 3.3.4. We first define these sets, then show they are both deter-
mining sets for the game G.

5To see why, note a strategy is perfect iff players following it always provide winning re-
sponses to every possible question, so changing the probability of questions being asked or
the score associated with non-winning responses does not affect perfectness of a strategy.
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Definition 3.4. For any game G with question set Q and valid responses Y(�i),
we introduce a companion set of valid elements of U ,

Y :=

⎧
⎨

⎩

⎛

⎝
∑

�a∈Y(�i)

∏

α

e(α)i(α)
a(α)

⎞

⎠− 1

⎫
⎬

⎭
�i∈Q

, (3.25)

Similarly, define the invalid elements N by

N :=

{
∏

α

e(α)i(α)
a(α)

}

(�i,�a)∈Q×N (�i)
. (3.26)

Theorem 3.5. Let G be a game and Y, N be as in Definition 3.4. Then, G is
determined by both Y and N .

Proof. By definition, a strategy (π, ψ) for a nonlocal game is perfect iff

ψ∗π(ΦG)ψ = 1, (3.27)

i.e.,

ψ∗ 1
|Q|

∑

�i∈Q

∑

�a∈Y(�i)

∏

α∈[k]

π
(
e(α)i(α)

a(α)

)
ψ = 1. (3.28)

This equation has the form: the average of a function equals its maximum, so
each term equals the maximum. We now exploit this: for all �i ∈ Q, we have

π

⎛

⎝
∑

�a∈Y(�i)

∏

α∈[k]

e(α)i(α)
a(α)

⎞

⎠ ≤ π

⎛

⎝
∑

�a∈[m]

∏

α∈[k]

e(α)i(α)
a(α)

⎞

⎠ = I (3.29)

and hence

ψ∗π

⎛

⎝
∑

�a∈Y(�i)

∏

α∈[k]

e(α)i(α)
a(α)

⎞

⎠ψ ≤ ψ∗ψ = 1 (3.30)

and a game is perfect iff we have for all �i ∈ Q:

ψ∗π

⎛

⎝
∑

�a∈Y(�i)

∏

α∈[k]

e(α)i(α)
a(α)

⎞

⎠ψ = 1, (3.31)

equivalently,

ψ∗π

⎛

⎝

⎛

⎝
∑

�a∈Y(�i)

∏

α∈[k]

e(α)i(α)
a(α)

⎞

⎠− 1

⎞

⎠ψ = 0. (3.32)

Again using Eq. (3.29), we see

π

⎛

⎝
∑

�a∈Y(�i)

∏

α∈[k]

e(α)i(α)
a(α)

⎞

⎠− I (3.33)
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is negative semidefinite; hence, Eq. (3.32) implies

π

⎛

⎝

⎛

⎝
∑

�a∈Y(�i)

∏

α∈[k]

e(α)i(α)
a(α)

⎞

⎠− I

⎞

⎠ψ = 0 (3.34)

which finishes the first part of the proof.
To convert this condition from terms of Y to terms of N fix �i ∈ Q and

use

∑

�a∈Y(�i)∪N (�i)
ψ∗π

⎛

⎝
∏

α∈[k]

e(α)i(α)
a(α)

⎞

⎠ψ = ψ∗ψ = 1. (3.35)

In words, we are summing over all responses valid or invalid to question �i.
Subtract Eq. (3.31) from this to get

∑
�a∈N (�i) = 0. This is a sum of nonnegative

terms, so each is 0:

ψ∗π

⎛

⎝
∏

α∈[k]

e(α)i(α)
a(α)

⎞

⎠ψ = 0 ∀ �a ∈ N (�i) (3.36)

Since operators π
(
e(α)i

a

)
are positive semidefinite we get

π

⎛

⎝
∏

α∈[k]

e(α)i(α)
a(α)

⎞

⎠ψ = 0 ∀ �a ∈ N (�i),

thus finishing the proof. �

3.4.2. Torically Determined Games. While any game G is determined by the
sets Y and N , there are, in general, many other sets of elements in U that
determine a game G. An important class of games in this paper are torically
determined games, which we define as games determined by a particularly nice
set of binomial elements.

Definition 3.6. A game G is called a torically determined game if there exists
a group G with U ∼= C[G] and G is determined by a set of elements

F = {βigi − 1} (3.37)

with each βi ∈ C and gi ∈ G. In this case, we say G is torically determined by
the set F and call the elements βigi clauses of F .

Traditionally, the term toric ideal refers to ideals generated by binomials,
these being the difference of two monomials. The next lemma shows that our
use of the term toric is consistent with this.

Lemma 3.7. A game G which is determined by a set of elements of the form

F ′ = {βigi − β′
ig

′
i}i (3.38)

with all βi, β
′
i ∈ C, and gi, g

′
i ∈ G for some group G with U ∼= C[G] is also

torically determined.
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Proof. For all (π, ψ) we have

π(βigi − β′
ig

′
i)ψ = 0 ⇔ ( π(βi(β′

i)
−1gi(g′

i)
−1 − 1)ψ = 0 (3.39)

so G is also (torically) determined by the set

F = {βi(β′
i)

−1gi(g′
i)

−1 − 1}i. �

To provide some further intuition about the definition of torically deter-
mined games, we introduce the concept of a relaxed game polynomial. Given a
game G with game polynomial ΦG , we define a relaxed game polynomial for the
game to be any element Φ̃G ∈ U with the property that for any representation
π and state ψ such that

π(ΦG)ψ = ψ (3.40)

we have

π(Φ̃G)ψ = ψ, (3.41a)
∣∣∣φ∗π(Φ̃G)φ

∣∣∣ ≤ 1 for all ‖φ‖ ≤ 1. (3.41b)

Informally, scoring a strategy using a relaxed game polynomial produces
the correct score if a strategy is perfect for the associated game, but may give
the wrong score otherwise. In particular, a relaxed game polynomial need not
be self-adjoint, and the “score” coming from the relaxed game polynomial may
not even be real when a strategy is not perfect.

Then, we note that a game G which is torically determined by a set of
elements F with clauses H has a relaxed game polynomial of the form

Φ̃G =
1

|H |
∑

h∈H

h. (3.42)

Similarly, any game G with a relaxed game polynomial

Φ̃G =
1

|H |
∑

h∈H

h (3.43)

where each h ∈ H is of the form βigi with βi ∈ C, |βi| = 1, and gi ∈ G for
some group G with U ∼= C[G] is torically determined by the set of elements
F = H −1. Since Φ̃G is an average, the proof of both these statements follows
from an argument very similar to the proof of Theorem 3.5.

3.5. XOR and Mod r Games

Now, we practice using some of the machinery introduced in the previous
section to describe XOR games, and a natural generalization which we call
Mod r games. In this section, we often describe games in a variety of ways (for
example using game polynomials, valid or invalid response sets, and relaxed
game polynomials) without proving that these definitions are equivalent. In
all cases the proof of equivalence amounts to a routine calculation using the
definitions given in Sect. 3.3.
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3.5.1. XOR Games. XOR games are games with m = 2 responses which we
interpret as a 0 or a 1. We can think of an XOR game with T possible questions,
labeled �it = (it(1), it(2), ..., it(k)) for t ∈ [T ] as testing the satisfiability of a
system of T equations, where each equation takes the form

∑

α∈[k]

y(α)

it(α)
= st (mod 2), (3.44)

the y(α)

it(α)
are free variables taking values in {0, 1}, and each st ∈ {0, 1} specifies

the winning parity associated with each question vector �it.
The game polynomial of an XOR game takes the form

ΦG =
1
2

+
1

2T

T∑

t=1

(−1)st

∏

α∈[k]

x(α)

it(α)
(3.45)

with T > 0 some integer, the vector �it ∈ [n]k and the integer st ∈ {0, 1} are
arbitrary and the notation it(α) refers to the α-th entry of the vector �it. In
anticipation of a connection to torically determined games, we refer to each
monomial

(−1)st

∏

α∈[k]

x(α)

it(α)
(3.46)

as a clause, so the game polynomial above corresponds to a T -clause XOR
game.

When working with XOR games it is convenient to remove the constant
factor in the game polynomial and rescale the remaining terms, producing a
relaxed game polynomial

Φ̃G =
1
T

T∑

t=1

(−1)st

∏

α∈[k]

x(α)

it(α)
. (3.47)

This relaxed game polynomial computes a quantity known as the bias (meaning
tr[π(Φ̃G)ρ] gives the bias achieved by the strategy defined by π, ρ). For this
reason, we also call the relaxed game polynomial for XOR games defined in
this way the bias polynomial of an XOR game. Note that an XOR game can be
completely specified by describing its bias polynomial. We also note that the
bias polynomial formulation of XOR games makes it immediately clear that
XOR games are torically determined games, by the discussion in Sect. 3.4.2
and the observation that elements x(α)

it(α)
are also cyclic unitary generators as

defined in Sect. 3.3.

3.5.2. Mod r Games. Mod r games are a natural generalization of XOR games
where the players have m responses and the valid responses to any question
vector �jt are responses which satisfy some linear equation mod r. Formally, we
specify a T question Mod r game by a system of equations

⎧
⎨

⎩
∑

α∈[k]

dt(α)y(α)

jt(α)
= st (mod r)

⎫
⎬

⎭
t∈[T ]

. (3.48)
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The dt(α) and st are integers in [r], while the y(α)

jt(α)
are free variables. Players’

responses a(1), a(2), . . . , a(k) to question vector �jt are winning if setting y(α)

jt(α)
=

a(α) satisfies the t-th equation in the system of equations. We show in Theorem
3.8 that Mod r games are torically determined by a set of elements of the form

F =

⎧
⎨

⎩(exp(−2πi/r))st

∏

α∈[k]

(
c(α)jt(α)

)dt(α) − 1

⎫
⎬

⎭
t∈[T ]

(3.49)

and hence admit a relaxed game polynomial of the form

Φ̃G =
1
T

T∑

t=1

(exp(−2πi/r))st

∏

α∈[k]

(
c(α)jt(α)

)dt(α)
, (3.50)

with the c(α)jt(α) cyclic unitaries of order m, as described in Sect. 3.3.1. We
also note that a very similar result (Theorem 7.2) is proven for linear systems
in Sect. 7.

Theorem 3.8. A Mod r game specified by a system of equations
⎧
⎨

⎩
∑

α∈[k]

dt(α)y(α)

jt(α)
= st (mod r)

⎫
⎬

⎭
t∈[T ]

(3.51)

is torically determined by a set of elements of the form

F =

⎧
⎨

⎩(exp(−2πi/r))st

∏

α∈[k]

(
c(α)jt(α)

)dt(α) − 1

⎫
⎬

⎭
t∈[T ]

(3.52)

Proof. First we write cyclic unitary generators in terms of projectors e(α)i
a

and expand out the resulting product to note

∏

α∈[k]

(
c(α)jt(α)

)dt(α) =
∑

�a∈[r]k

⎛

⎝exp(
2πi

r

∑

α∈[k]

dt(α)a(α))
∏

α

e(α)jt(α)
a(α)

⎞

⎠ .

(3.53)

Then, we define

A(t) =

⎧
⎨

⎩�a :
∑

α∈[k]

a(α)dt(α) = st

⎫
⎬

⎭ (3.54)

to be the collection of response vectors which win on the question correspond-
ing to clause t ∈ [T ] of the mod r game. Then, Eq. (3.53) gives that, for any
commuting operator strategy (π, ψ) the condition

π

⎛

⎝
∏

α∈[k]

(
c(α)jt(α)

)dt(α)

⎞

⎠ψ = exp(
2πist

r
)ψ (3.55)
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is equivalent to the condition

π

⎛

⎝
∑

�a∈[r]k

∏

α

e(α)jt(α)
a(α)

⎞

⎠ψ = π

⎛

⎝
∑

�a∈A(t)

∏

α

e(α)jt(α)
a(α)

⎞

⎠ψ = ψ (3.56)

and thus the condition

π

⎛

⎝exp(−2πi/r))st

∏

α∈[k]

(
c(α)jt(α)

)dt(α)

⎞

⎠ψ = ψ (3.57)

ensures the players’ response is always winning for question t ∈ [T ]. The result
follows. �

3.5.3. Example. To provide a concrete example of the various ways of charac-
terizing perfect games we discuss the GHZ game. This is a three-player XOR
game with bias polynomial

ΦGHZ =
1
4

(
x

(1)
0 x

(2)
0 x

(3)
0 − x

(1)
1 x

(2)
1 x

(3)
0 − x

(1)
1 x

(2)
0 x

(3)
1 − x

(1)
0 x

(2)
1 x

(3)
1

)
(3.58)

Then, equivalently, the GHZ game is determined by the set of elements

{x
(1)
0 x

(2)
0 x

(3)
0 − 1,−x

(1)
1 x

(2)
1 x

(3)
0 − 1,−x

(1)
1 x

(2)
0 x

(3)
1 − 1,−x

(1)
0 x

(2)
1 x

(3)
1 − 1}

(3.59)

and has a perfect commuting operator strategy iff there exists a Hilbert space
H, state ψ ∈ H, and a ∗-representation π : U → B(H) satisfying

π
(
x

(1)
0 x

(2)
0 x

(3)
0

)
ψ = ψ, (3.60a)

π
(
x

(1)
0 x

(2)
1 x

(3)
1

)
ψ = π

(
x

(1)
1 x

(2)
0 x

(3)
1

)
ψ = π

(
x

(1)
1 x

(2)
1 x

(3)
0

)
ψ = −ψ. (3.60b)

Such a representation can be found by taking H to be an eight-dimensional
Hilbert space, ψ a 3 qubit GHZ state, and letting π map elements x

(α)
i to the

standard measurement operators for the GHZ game or, explicitly

π
(
x

(1)
0

)
= σX ⊗ I ⊗ I π

(
x

(1)
1

)
= σY ⊗ I ⊗ I (3.61a)

π
(
x

(2)
0

)
= I ⊗ σX ⊗ I π

(
x

(2)
1

)
= I ⊗ σY ⊗ I (3.61b)

π
(
x

(3)
0

)
= I ⊗ I ⊗ σX π

(
x

(3)
1

)
= I ⊗ I ⊗ σY (3.61c)

where σX and σY are the Pauli X and Y operators, respectively, and I denotes
a dimension 2 identity matrix.

While it is certainly easiest to describe the GHZ game using the game
polynomial formulation, we can also describe perfect strategies for the game
using the language of valid and invalid response sets. Using this language the
question set of the GHZ game is given by QGHZ = {(0, 0, 0), (0, 1, 1), (1, 0, 1),
(1, 1, 0)} with valid response sets

YGHZ(0, 0, 0) = {EVEN}, (3.62a)

YGHZ(0, 1, 1) = YGHZ(1, 0, 1) = YGHZ(1, 1, 0) = {ODD}, (3.62b)
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where {EVEN} and {ODD} denote the set of all 3 bit response strings con-
taining an even and odd number of ones, respectively. The invalid response
sets are described similarly, but with {EVEN} and {ODD} swapped.

We can obtain projectors corresponding to a perfect strategy for the GHZ
game using the same representation as above, with

E(1)00 = π
(
e(1)00

)
= π

(
1
2

(
1 + x

(1)
0

))
, (3.63a)

E(1)01 = π
(
e(1)01

)
= π

(
1
2

(
1 − x

(1)
0

))
, (3.63b)

and so on. We leave it as an exercise for the reader to check that the projec-
tors defined in this way satisfy the valid and invalid response perfect game
characterization conditions laid out in Theorem 3.5.

4. Nullstellensätze for Perfect Nonlocal Games

Nullstellensätze are algebraic certificates for polynomial equations to be solv-
able or, even stronger, for one set of polynomial equations to have solutions
contained in the set of solutions to another. Solutions to a polynomial equation
such as X2 = I are often called zeros of the polynomial p(x) := x2 − 1.

4.1. Three Types of Zeros

For nc polynomials, there are three natural types of zero: hard zeros, directional
zeros and determinantal zeros. These have been studied in the mathematics
community for several decades.

Let us illustrate directional zeros since that is what we work with most
in this paper. Given f ∈ C〈x〉 define the directional zero set

Zdir(f) := {(X,ψ) | Xj ∈ B(H), 0 �= ψ ∈ H, f(X)ψ = 0 over all H}. (4.1)

In the language of representations we have

Zdir(f) := {(π, ψ) | π(f)ψ = 0, π : C〈x〉 → B(H) representation, 0 �= ψ ∈ H}.

(4.2)

Quantum strategies need refinements of this set up; for one, we have not cap-
tured crucial algebraic relationships such as our whole world lives inside an
algebra. Thus, for an arbitrary algebra A and f ∈ A we define

ZA
dir(f) = {(π, ψ) | π(f)ψ = 0, π : A → B(H) representation, 0 �= ψ ∈ H}.

(4.3)

Essential to strategies is the intersection of this with ∗-representations in the
context of ∗-algebras A:

Zre,A
dir (f) = ZA

dir(f) ∩ {(π, ψ) | π ∗ -representation}. (4.4)
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So far, we have motivated and given the definition of the set of directional
zeros. With motivation in the same spirit, we define hard and determinantal
real zeros by

ZA
hard(f) = {π | π(f) = 0, π : A → B(H) representation}
ZA

det(f) = {π | det[π(f)] = 0, π : A → B(H) representation with dim H < ∞}.

Directional and hard zeros (cf. Sect. 8) are central to quantum games. The
definition of determinantal zeros is included here for perspective only.

Of course, one also has the ∗-representation version of these:

Zre,A
hard and Zre,A

det

Also for a subset F ⊆ C〈x〉 we define

Z(F ) =
⋂

f∈F

Z(f).

4.1.1. Example. In Sect. 3.4, we described perfect commuting operator strate-
gies for nonlocal games as ∗-representations of an algebra U which satisfied
certain desiderata which we now redescribe using the language of nc polyno-
mial zeros introduced in the above section. For concreteness, we consider the
GHZ game introduced in Sect. 3.5.3.

As discussed in Sect. 3.5.3, the GHZ game is determined by a set of
polynomials

F = {x
(1)
0 x

(2)
0 x

(3)
0 − 1, x

(1)
0 x

(2)
1 x

(3)
1 + 1, x

(1)
1 x

(2)
0 x

(3)
1 + 1, x

(1)
1 x

(2)
1 x

(3)
0 + 1}.

(4.5)

Equivalently, in the language of directional zeros we see that the GHZ game
has a perfect commuting operator strategy iff the directional zero set Zre,U

dir (F)
is nonempty. Furthermore, entries in this set correspond to representations and
states (π, ψ) defining perfect commuting operator strategies.

For an example using hard zeros see Sect. 8.3.

4.2. A General Noncommutative Nullstellensatz

Let A be a ∗-algebra. We equip A with a certain topology called the finest
locally convex topology6. For our purposes, one does not need to worry about
it since we will soon move to a much less general “weak” Nullstellensatz. For
a subset C ⊆ A let cl(C) denote the closure of C in the finest locally convex
topology. We use SOSC to denote all sums of u∗u with u ∈ C.

Results of Sect. 5 of [6], see also [5], adapted to our use case are as follows.

Theorem 4.1. Suppose that L is the left ideal of A generated by F ⊆ A. Then,
for a ∈ A the following are equivalent:

6This is the finest vector space topology for which every neighborhood of zero contains
a convex balanced absorbing set. Equivalently, it is the coarsest topology for which every
seminorm on A is continuous. In this case, every linear functional f on A is continuous since
|f | is a seminorm. Hence, for a convex subset C ⊆ A we have

cl(C) = {c ∈ A | ∀ linear � : A → C with �(C) ⊆ R≥0 we have �(c) ≥ 0}
by the Hahn–Banach separation theorem.
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(i) π(a)ψ = 0 for every ∗-representation π : A → B(H) for some (possi-
bly infinite-dimensional) Hilbert space H and vector ψ ∈ H such that
π(f)ψ = 0 for all f ∈ F ;

(i’) Zre,A
dir (F ) ⊆ Zre,A

dir (a);
(ii) −a∗a ∈ cl[SOSA −SOSL];
(iii) −a∗a ∈ cl(SOSA − cone(S)), where S = {f∗f | f ∈ F};
(iv) −a∗a ∈ cl[SOSA +L + L∗].

When A = C〈x〉 is the free algebra and L is finitely generated, ∗-
representations π into finite-dimensional Hilbert spaces suffice in Item (i).

Corollary 4.2. Suppose I ⊆ A is a ∗-closed two sided ideal. Then, the following
are equivalent for a ∈ A:

(i) π(a) = 0 for every ∗-representation π such that π(f) = 0 for all f ∈ I;
(i’) Zre,A

hard(I) ⊆ Zre,A
hard(a);

(ii) −a∗a ∈ cl[SOSA +I].

Proof. Items (i) and (i)’ are equivalent by the definition on Zre,A
hard .

In the context of Theorem 4.1, L := I = L∗ is a left (and right) ideal, so
the algebraic certificate in Item (ii) is

− a∗a ∈ cl[SOSA +I] = cl[SOSA +L + L∗]. (4.6)

Thus, if Item (ii) fails to hold, then by Theorem 4.1 there is a ∗-representation
π : A → B(H) and 0 �= ψ ∈ H with π(I)ψ = {0}, and π(a)ψ �= 0.

Now consider the Hilbert space Ȟ := [π(A)ψ] ⊆ H. By definition, π(A)Ȟ ⊆
Ȟ, so π induces a ∗-representation π̌ : A → B(Ȟ). By construction, π̌(I) = {0}
(this uses that I is a right ideal, too), but π̌(a)ψ �= 0, so π̌(a) �= 0. �

Proof of Theorem 4.1. Here, we give a proof which ties the parts of the theo-
rem to corresponding theorems in [6]. This is unintuitive so in Sect. 4.2.1 we
sketch the idea of the proof.

Item (i) and Item (i)’ are equivalent by the definition on Zre,A
dir . The

equivalence between Item (i) and Item (ii) is [6, Theorem 5.1]. The equiva-
lence (i) ⇔ (iv) is [6, Corollary 5.3]. Finally, (iii) ⇔ (ii) now follows from [6,
Proposition 5.2].

The finite-dimensional assertion is proved constructively and this is the
major part of [6]; see [6, Proposition 6.8 and Theorem 2.1]. �

Remark. In general, closures in Theorem 4.1 and Corollary 4.2 are needed as
can be shown by employing the Weyl algebra.

4.2.1. Intuition Behind the Proof of Theorem 4.1. Here is a special case of
Theorem 4.1, included here since a sketch of its proof supplies the readers in-
tuition. Also this lesser level of generality is all that is needed here for quantum
games, so this theorem is what gets referenced later.
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Theorem 4.3. Suppose
(1) A is a ∗-algebra, where SOSA is Archimedean in the sense that for every

a ∈ A there is η ∈ N with η − a∗a ∈ SOSA;7

(2) L ⊆ A is a left ideal.
Then, the following are equivalent:

(i) there exist a ∗-representation π : A → B(H) and 0 �= ψ ∈ H satisfying

π(f)ψ = 0 (4.7)

for all f ∈ L;
(i)’ Zre,A

dir (L) �= ∅;
(ii) −1 �∈ SOSA +L + L∗.

Proof. As before, Items (i) and (i)’ are equivalent by the definition on Zre,A
dir .

We thus establish (i) ⇔ (ii).
Easy side: suppose −1 ∈ SOSA +L+L∗. If π, ψ as in Eq. (4.7) exist, then

−ψ∗ψ ≥ ψ∗ SOSA ψ ≥ 0; contradiction.
Harder side: suppose −1 �∈ SOSA +L + L∗. By the Hahn–Banach theo-

rem (version due to Eidelheit–Kakutani [1, Theorem III.1.7]), there is a linear
functional L : A → C satisfying

L(1) = 1, L(SOSA +L + L∗) ⊆ R≥0. (4.8)

We remark that the strict separation is automatic since by Archimedeanity
L(1) �= 0.

Since L is a subspace, the second property of Eq. (4.8) implies L(L) =
{0}. Likewise, L(f) ≥ 0 for any f ∈ SOSA. We remark that L(f)∗ = L(f∗) for
all f ∈ A. Indeed, because A is Archimedean, every self-adjoint g = g∗ ∈ A is
bounded above: there is η ∈ N with η − g ∈ SOSA. Thus, L(g) ∈ R. Then, we
write h ∈ A as a linear combination of self adjoints,

h =
h + h∗

2
+ i

h − h∗

2i
,

to get L(h∗) = L(h)∗.
Now perform the GNS construction. Define the bilinear form

〈a | b〉 := L(b∗a) (4.9)

on A. Set N := {a ∈ A | L(a∗a)} = 0. By the Cauchy–Schwarz inequality for
semi-scalar products,

0 ≤ L(a∗r∗ra)2 ≤ L(a∗a)L(a∗r∗rr∗ra) = 0,

so N is a left ideal. Since 1 �∈ N, N �= A. Form the quotient space Ȟ = A/N .
Then, Eq. (4.9) induces a scalar product on Ȟ. We complete it to the Hilbert
space H. Let φ : A → H,

φ(a) := a + N

be the quotient map and let ψ := φ(1).

7This notion of Archimedean should not be confused with the algebra A being Archimedean
closed, meaning that for any a ∈ A with a + ε ∈ SOSA for each ε ∈ R>0 we also have
a ∈ SOSA.
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Define a ∗-representation π of A on H by

π(a)(p + N) := ap + N.

Since N is a left ideal, this is well defined. It is clear that π is a representation.
It also intertwines the involution:

〈π(a∗)(p + N) | q + N〉 = 〈a∗p + N | q + N〉 = L(q∗a∗p),

〈p + N | π(a)(q + N)〉 = 〈p + N | aq + N〉 = L(q∗a∗p).

Finally, π maps into B(H). Assume p ∈ A is such that 〈p + N | p + N〉 =
L(p∗p) = 1, and let a ∈ A. By Archimedeanity, there is η ∈ N with η − a∗a ∈
SOSA. Then, we have

0 ≤ 〈π(a)(p + N) | π(a)(p + N)〉
= 〈ap + N | ap + N〉 = L(p∗a∗ap) ≤ ηL(p∗p) = η,

whence ‖π(a)‖ ≤ √
η. Thus, π : A → B(H) is a ∗-representation.

It remains to verify Eq. (4.7). For f ∈ L we have

π(f)ψ = π(f)(1 + N) = f + N.

Since L(L) = {0} and L∗L ⊆ L, we have L ⊆ N . Thus, π(f)ψ = f + N = 0,
as desired. �

Example 4.4. An appealing class of algebras for which this theorem applies
are group algebras C[G]. Indeed, for every group element g ∈ C[G] we have
1 − g∗g = 0 ∈ SOS. Since the set of bounded elements

H = {f ∈ C[G] | ∃η ∈ N : η − f∗f ∈ SOS}
is a ∗-subalgebra [32] containing G, we must have H = C[G] and thus SOS is
Archimedean in C[G].

Corollary 4.5. Suppose A is a ∗-algebra, where SOSA is Archimedean, and let
I ⊆ A be a ∗-closed two-sided ideal. Then, the following are equivalent:

(i) there is a ∗-representation π such that π(I) = {0};
(i)’ Zre,A

hard(I) �= ∅;
(ii) −1 �∈ SOSA +I.

Proof. The proof is the same as that of Corollary 4.2, just that we use Theorem
4.3 instead of Theorem 4.1. �

4.3. Nullstellensätze and Perfect Games

Combining the Nullstellensatz of Sect. 4.2 with determining sets defined in
Sect. 3.4 immediately gives a characterization of games with perfect commuting
operator strategies in terms of left ideals and sums of squares of the universal
game algebra U .

Theorem 4.6. For a nonlocal game G determined by a set F ⊆ U the following
are equivalent:

(i) G has a perfect commuting operator strategy;
(ii) −1 /∈ L (F) + L (F)∗ + SOSU .



Vol. 24 (2023) Noncommutative Nullstellensätze 2209

Proof. Immediate from Theorem 3.5 and Definition 3.3. �

An immediate corollary of Theorem 4.6 comes from recalling the notions
of determining sets Y,N defined in Sect. 3.4.1.

Corollary 4.7. Let G be a nonlocal game, and Y,N be the determining sets
associated with the game. Then, the following are equivalent:

(i) ω∗
co(G) = 1;

(ii) −1 /∈ L (Y) + L (Y)∗ + SOSU ;
(iii) −1 /∈ L (N ) + L (N )∗ + SOSU .

Proof. Immediate from Theorems 3.5 and 4.6. �

This corollary applies to all games (according to the definitions here) and
characterizes which games do vs. do not have a quantum strategy. Unfortu-
nately, the freedom given by the SOS terms in this algebraic certificate can
make this theorem hard to use. Hence, we turn next to situations with no SOS
term.

5. Nullstellensatz Without SOS and Subgroup Membership

It is helpful to divide the perfect game condition into two sub-questions. The
first is checking whether −1 ∈ L + L∗ that is, whether

1 ∈ L + L∗.

Intuitively, this question feels “algebraic,” and we will show in Sect. 5.2 that
in special cases it reduces to a subgroup membership problem.

The second problem is checking whether

−1 ∈ L + L∗ + SOSU (5.1)

given that

1 /∈ L + L∗. (5.2)

This question is more analytic and adds substantial complexity to applications.
In special cases, we have that

1 /∈ L + L∗ =⇒ −1 /∈ L + L∗ + SOSU (5.3)

and hence the second problem is trivial. This seems closely related to the
existence of projections which are conditional expectations and respect SOS.
The next section investigates this link further.

5.1. Conditional Expectations and SOS Projections

We prepare to produce simpler a Nullstellensatz with no SOS terms. This uses
existence of SOS projections and conditional expectations, notions we now
study.
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5.1.1. Definitions. Let A be ∗-algebra, and let C ⊆ A. Recall SOSC denotes
all sums of squares of members of C, i.e.,

SOSC =

{
∑

i

c∗
i ci | ci ∈ C

}
.

If C is a ∗-subalgebra, then SOSC ⊆ C. A subtlety which is very important to
us is: while f ∈ SOSA is in C, f may not be in SOSC . Similarly for F ⊆ C we
let LC(F ) ⊆ C denote the left ideal generated by F in the algebra C. When
there is no confusion we may omit C or F .

Definition 5.1. Given a unital ∗-algebra A, a (not necessarily unital) ∗-subalgebra
C and a projection E : A → C (i.e., E

2 = E) onto C satisfying E(a)∗ = E(a∗)
for all a ∈ A. Then, E is called a
(1) SOS Projection if E(SOSA) ⊆ SOSC .
(2) Conditional Expectation provided C is unital and E satisfies

(a) E(b1ab2) = b1E(a)b2 for all a ∈ A, b1, b2 ∈ C;
(b) E(1A) = E(1B);
(c) E(SOSA) ⊆ SOSA ∩ C.

(3) SOS Conditional Expectation if E is a conditional expectation that also
satisfies the SOS projection property E(SOSA) ⊆ SOSC .

Conditional expectations will typically be denoted E.

Remark. The bimodule property (a) in the definition of a conditional expec-
tation can be replaced by the seemingly weaker one-sided version
(a’) E(ba) = bE(a) for all a ∈ A, b ∈ C.
Indeed, given a ∈ A and c ∈ C we have

E(ac) = E
(
(c∗a∗)∗) = E

(
(c∗a∗)

)∗ =
(
c∗

E(a∗)
)∗ = E(a∗)∗c = E(a)c,

as desired.

We now show existence of these mappings can simplify the nonlocal games
Nullstellensatz.

5.1.2. Nullstellensatz. The next simple lemma explains the main use of SOS
and conditional expectation property.

Lemma 5.2. Given a unital ∗-algebra A, a unital ∗-subalgebra C and L a left
ideal in A. If an SOS conditional expectation E : A → C exists, then
(1) L := E(L) is a left ideal in C;
(2) −1 /∈ L + L∗ + SOSA iff −1 /∈ L + L∗ + SOSC.

Proof. Suppose b ∈ L and c ∈ C. Then, there is b̂ ∈ L satisfying E(b̂) = b.
These satisfy

cb = cE(b̂) = E(cb̂) ∈ E(L) = L

establishing Item (1).
To prove the next item assume that −1 ∈ L + L∗ + SOSA. Then,

−1 = E(−1) ∈ E(L + L∗ + SOSA) = L + L∗ + SOSC . (5.4)
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The converse is obvious. �

Corollary 5.3. Let A be a ∗-algebra, C be a ∗-subalgebra of A and F ⊆ C.
Then, if a SOS conditional expectation E : A → C exists, then

−1 /∈ L(F )A + L(F )∗
A + SOSA iff − 1 /∈ L(F )C + L(F )∗

C + SOSC (5.5)

Proof. We show that E(L(F )A ) = L(F )C . Then, the result is immediate from
Lemma 5.2.

First, E is the identity map on C, whence L(F )C ⊆ L(F )A implies
L(F )C ⊆ E(L(F )A ). To show the other inclusion note any element p ∈ L(F )A
can be written as p =

∑
f aff, with all f ∈ F and af ∈ A . Then, (using the

bimodule property of E in the second equality) we see

E(p) =
∑

f

E(aff) = E(af )f ∈ L(F )C , (5.6)

and hence E(L(F )A ) ⊆ L(F )C . Then, E(L(F )A ) = L(F )C and the proof is
complete. �

Now, we prepare for finding a subalgebra C that makes Lemma 5.2 valu-
able.

Lemma 5.4. Let A be a unital ∗-algebra and F be a set of elements in A .
Also let C denote the ∗-subalgebra of A generated by {F, 1} and LC be the left
ideal in C generated by F . Finally, let C′ be the subalgebra of A generated by
F . Then, the following hold.
(1) If F = F ∗, then C′ = LC .
(2) If 1 is not in the (non-unital) ∗-subalgebra C′ generated by F , then

−1 /∈ LC + L∗
C + SOSC . (5.7)

Proof. (1) By definition, LC ⊇ F and LC is closed under addition and mul-
tiplication. Since F = F ∗, LC is also closed under the involution. It is
thus contained in the ∗-algebra C′. Conversely, since F = F ∗, C′ is the
algebra generated by F and thus by definition contained in LC .

(2) First note that any polynomial p ∈ C can be written as

p = p′ + α (5.8)

where α ∈ C and p′ ∈ C′. It follows that any polynomial q ∈ LC can be
written as a sum of terms of the form

q = (p′ + α) f (5.9)

with f ∈ F . A similar description holds for any polynomial in L∗
C . Addi-

tionally, any polynomial p′′ ∈ SOSC can be written as

p′′ =
∑

i

(pi + αi)∗(pi + αi) (5.10a)

=
∑

i

(p∗
i pi + α∗

i pi + αip
∗
i ) +

∑

i

|αi|2 (5.10b)

= p̃ + α′′ (5.10c)
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with each pi ∈ C′; hence, p̃ ∈ C′ and α′′ ∈ R≥0.
Now assume for contradiction that −1 ∈ LC+L∗

C+SOSC . Then, combining
the above observations we can write

−1 = p′ + p̃ + α′′ (5.11)

with p′, p̃ ∈ C′ and α ∈ R≥0. Rearranging Eq. (5.11) gives

−(1 + α′′) = p′ + p̃ ∈ C′, (5.12)

implying that 1 ∈ C′ since 1 + α′′ ∈ R>0.
�

Combining Lemmas 5.2 and 5.4 results in the following “SOS free” Null-
stellensatz.

Theorem 5.5. Let A be a unital ∗-algebra with Archimedean SOSA , and let
F = F ∗ ⊆ A . Also let C be the ∗-subalgebra of A generated by {F, 1}. If
there exists an SOS conditional expectation A → C, then the following are
equivalent:

(i) There exists a ∗-representation π : A → B(H) and vector ψ ∈ H with
π(f)ψ = 0 for all f ∈ F ;

(i)’ Zre,A
dir (F ) �= ∅;

(ii) −1 /∈ L(F )A + L(F )∗
A + SOSA ;

(iii) −1 /∈ L(F )C + L(F )∗
C + SOSC;

(iv) 1 /∈ L(F )A + L(F )∗
A ;

(v) 1 /∈ L(F )C + L(F )∗
C;

(vi) 1 is not in the (non-unital) ∗-subalgebra C′ generated by F ;
(vii) 1 /∈ L(F )A ;
(viii) 1 /∈ L(F )C.

Proof. Items (i), (i)’ are equivalent by definition. We have (i) ⇔ (ii) by the
real Nullstellensatz Theorem 4.3, (ii) ⇒ (iii) by set inclusion and (iii) ⇒ (ii)
by Corollary 5.3.

Next, (ii) ⇒ (iv) ⇒ (v) again by set inclusion. The equivalence (vi) ⇔
(viii) follows from C′ = L(F )C , the implications (iv) ⇒ (vii) ⇒ (viii) are
obvious, and (vi) ⇒ (iii) by Lemma 5.4. �

5.2. The Group Algebra Simplification

Obtaining SOS projections or conditional expectations is challenging. We now
give a class of tractable situations and a Nullstellensatz appropriate for many
games. The setting is a group algebra C[G] and F ⊆ A , later to be chosen a
set of binomials. Here, G is a discrete group.

To an element p ∈ C[G],

p =
γ∑

j

sjgj

one associates the set supp(p) = {g1, . . . , gj} of all group elements appearing
in p, called the support of p. Similarly, Mon(p) = {s1g1, . . . , sγgγ} is the set
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of monomials appearing in p. These notions are naturally extended to subsets
F ⊆ C[G], e.g., supp(F ) =

⋃
p∈F supp(p).

We need the next theorem and string of lemmas to obtain our Nullstel-
lensatz aimed at a large class of games. Our first observation is that there is a
natural SOS conditional expectation mapping from C[G] onto a type of enve-
lope of a given set F . In what follows, for any group G and subset of elements
F ⊆ G we let Grp(F ) denote the subgroup of G generated by the set F .

Theorem 5.6. Consider a group algebra C[G] and let F ⊆ C[G]. Then, there
is an SOS conditional expectation E : C[G] → C[Grp(supp(F ))].

Proof. Since Grp(supp(F )) is by definition a subgroup of G, this follows from
[30]. For context, the map P is defined by

∑

g∈G

agg �→
∑

g∈Grp(supp(F ))

agg.

It is an SOS conditional expectation by routine calculation; see [30, Example
5, Proposition 4] for details. �

5.2.1. Relating the Subalgebra and Subgroup Membership Problems. In this
section, we restrict to sets F of binomials in a group algebra C[G] of the form
f = r − 1 where each r is a monomial, r = βg for some g ∈ G and β ∈ C.
Our starting point is the following lemma, which gives a standard form for
elements in the subalgebra Alg(F ) of C[G] generated by F .

Lemma 5.7. Consider a group algebra C[G] and let F be a set of elements in
C[G] with each f ∈ F of the form f = r − 1 with r a monomial and let H
denote the subgroup of the invertible elements C[G]−1 in C[G] generated by
Mon(F ). Then, any p ∈ Alg(F ) can be written in the form

p =
∑

u,v∈H

βu,v(u − v) (5.13)

with βu,v ∈ C.

Proof. We induct on the length of products needed to express p ∈ Alg(F ).
If p is a linear combination of elements of F , say p =

∑
j βj(rj − 1), this is

immediate since rj , 1 ∈ H.
As the set of expressions of the form given in Eq. (5.13) is closed under

linear combinations, for the induction step it suffices to consider the product
of u − v, u′ − v′ for u, u′, v, v′ ∈ H. But the product

(u − v)(u′ − v′) = (uu′ − uv′) + (vv′ − vu′)

is clearly of the form Eq. (5.13) since uu′, uv′, vv′, vu′ ∈ H, thus finishing the
proof. �

Lemma 5.8. Consider a group algebra C[G] and let F be a set of elements in
C[G] with each f ∈ F of the form f = r − 1 with r a monomial and let Δ
denote the subgroup of C[G]−1 generated by Mon(F ) ∪ Mon(F ∗). Then, any
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element p in the ∗-subalgebra generated by F , p ∈ Alg∗
C[G](F ), can be written

in the form

p =
∑

u,v∈Δ

βu,v(u − v) (5.14)

with βu,v ∈ C.

Proof. Immediate from Lemma 5.7. �

Lemma 5.9. Assume the hypotheses of Lemma 5.8 are in force. Then,

1 ∈ Alg∗
C[G](F ) ⇔ Δ ∩ C � {1}. (5.15)

Proof. First we note that the result is trivial if there exists an element f =
r − 1 ∈ F with r∗r �= 1. That is, r = βg with |β| �= 1. Namely,

(r − 1)∗(r − 1) + (r − 1) + (r − 1)∗ = r∗r − 1 = β∗β − 1 ∈ Alg∗
C[G](F )

(5.16)

and since β∗β − 1 �= 0 we can conclude 1 ∈ Alg∗
C[G](F ). At the same time

rr∗ = ββ∗ ∈ Δ ∩ C and ββ∗ �= 1. This proves the result in this special case.
In what follows, we can assume rr∗ = 1 for all r − 1 ∈ F .

(⇐) First note that for all monomials r and r′ we have

(r − 1)(r′ − 1) + (r − 1) + (r′ − 1) = rr′ − 1. (5.17)

Similarly,

(r − 1)∗ = r∗ − 1 = r−1 − 1.

It follows that for any r ∈ Δ we have r−1 ∈ Alg∗
C[G](F ). Then, if 1 �= β ∈ Δ∩C,

we have β − 1 ∈ Alg∗
C[G](F ), whence 1 ∈ Alg∗

C[G](F ).
(⇒) To prove the result in the other direction, we assume for contradic-

tion that β /∈ Δ for all β ∈ C \ {1} and that 1 ∈ Alg∗
C[G](F ). Then, using

Lemma 5.8, we can write

1 =
∑

u,v∈Δ

βu,v(u − v) =
∑

u,v

βu,vu −
∑

u,v

βu,vv =
∑

u,v

βu,vu −
∑

u,v

βv,uu

(5.18a)

=
∑

u,v

u (βu,v − βv,u) =
∑

u

u
∑

v

(βu,v − βv,u) (5.18b)

where we relabeled u and v in the last term in the sum on the first line. By
assumption, β /∈ Δ for all β ∈ C \ {1}. Thus, the terms u

∑
v (βu,v − βv,u) in

the last equality of Eq. (5.18b) are linearly independent since the underlying
group elements of distinct u ∈ Δ are distinct. We conclude

∑

v

(β1,v − βv,1) = 1, (5.19a)

∑

v

(βu,v − βv,u) = 0 (5.19b)
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for all u �= 1. But this is a contradiction, since
∑

v

(β1,v − βv,1) +
∑

u�=1

∑

v

(βu,v − βv,u) =
∑

u,v

(βu,v − βv,u) = 0. �

5.2.2. NC Left Nullstellensatz Without SOS Terms. Now, we combine the
results in Sects. 5.1 and 5.2.1 to obtain the following specialized Nullstellensatz.

Theorem 5.10. Consider a group algebra C[G] and let F be a set of elements
in C[G] with each f ∈ F of the form f = r − 1 with r a monomial and let Δ
denote the subgroup of C[G]−1 generated by Mon(F ∪ F ∗).

Then, the following are equivalent:

(i) There exists a ∗-representation π : C[G] → B(H) and vector ψ ∈ H with
π(f)ψ = 0 for all f ∈ F ;

(i)’ Zre,C[G]
dir (F ) �= ∅;

(ii) −1 /∈ L(F )C[G] + L(F )∗
C[G] + SOSC[G];

(iii) 1 /∈ L(F )C[G] + L(F )∗
C[G];

(iv) 1 /∈ L(F )Alg∗
C[G](F ) + L(F )∗

Alg∗
C[G](F );

(v) 1 /∈ Alg∗
C[G](F );

(vi) Δ ∩ C = {1}.
Moreover, if each f ∈ F is of the form f = βw − 1 with w ∈ G and β ∈ C

with |β| = 1, then these statements are also equivalent to

(vii) 1 /∈ L(F )C[G];
(viii) 1 �∈ L(F )Alg∗

C[G](F ).

Proof. We have (i) ⇔ (i)’ by definition, (i) ⇔ (ii) by the real Nullstellensatz
Theorem 4.3, and (ii) ⇒ (iii) ⇒ (iv) by set inclusion.

To show (iv) ⇒ (v), assume 1 ∈ Alg∗
C[G](F ), i.e.,

1 = p1f1 + p2f
∗
2 (5.20)

for some fj ∈ F and pi ∈ Alg∗
C[G](F ∪ {1}). Write f2 = β2w2 − 1 for β2 ∈ C

and w2 ∈ G. Then, f∗
2 = β∗

2w∗
2 − 1, and

f∗
2 f2 + f2 + f∗

2 = |β2|2 − 1. (5.21)

If |β2|2 �= 1, then Eq. (5.21) immediately implies

1 ∈ L(F )Alg∗
C[G](F ) + L(F )∗

Alg∗
C[G](F ).

If |β2|2 = 1, then from Eq. (5.21) we deduce

f∗
2 = −f∗

2 f2 − f2 ∈ L(F )Alg∗
C[G](F ), (5.22)

whence Eq. (5.20) yields

1 = p1f1 − p2f
∗
2 f2 − p2f2 ∈ L(F )Alg∗

C[G](F ) ⊆ L(F )Alg∗
C[G](F ) + L(F )∗

Alg∗
C[G](F ),

as desired.
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Next, items (v) and (vi) are equivalent by Lemma 5.9, and (v) ⇒ (ii) by
Lemma 5.4 and Corollary 5.3. Here, we use that an SOS conditional expecta-
tion mapping C[G] → Alg∗

C[G](F ∪{1}) = C[Grp(supp(F ))] exists by Theorem
5.6.

Finally, we tackle the moreover statement. Implications (iii) ⇒ (vii) ⇒
(viii) are obvious. To conclude we prove (viii) ⇒ (iv). Thus, assume 1 ∈
L(F )Alg∗

C[G](F ) + L(F )∗
Alg∗

C[G](F ), i.e.,

1 =
∑

pifi +
∑

g∗
j qj (5.23)

for some pi, qj ∈ Alg∗
C[G](F ∪ {1}) and fi, gj ∈ F . Write qj = qj1fj1 + qj2g

∗
j2

for some qji ∈ Alg∗
C[G](F ∪ {1}) and fj1, gj2 ∈ F . As in Eq. (5.22) we write

g∗
j2 = −g∗

j2gj2 − gj2 ∈ L(F )Alg∗
C[G](F ). (5.24)

Using Eq. (5.24) in Eq. (5.23) leads to

1 =
∑

pifi +
∑

g∗
j qj =

∑
pifi +

∑
g∗

j (qj1fj1 + qj2g
∗
j2)

=
∑

pifi +
∑

g∗
j qj1fj1 −

∑
g∗

j qj2g
∗
j2gj2 −

∑
g∗

j qj2gj2

∈ L(F )Alg∗
C[G](F ),

as desired. �

5.3. Nullstellensätze for Perfect Torically Determined Games

We now apply the simplified Nullstellensatz of this section to nonlocal games.
We first recall the definition of torically determined games introduced in Sect.
3.4.2.

Definition 5.11. (repeated) A game G is called a torically determined game if
there exists a group G with U ∼= C[G] and G is determined by a set of elements

F = {βigi − 1} (5.25)

with each βi ∈ C and gi ∈ G. In this case, we say G is torically determined by
the set F and call the elements βigi clauses of F .

We let the set H denote all the clauses of F . Now, the following char-
acterization of torically determined games with perfect commuting operator
strategies is a quick consequence of our Nullstellensatz Theorem 5.10.

Theorem 5.12. Let G be a game which is torically determined by a set F =
H −1, and let H be the group of elements in U generated by H ∪H ∗. Then,
G has a perfect commuting operator strategy iff the following equivalent criteria
are satisfied:

(i) 1 /∈ L (F) + L (F)∗;
(ii) H ∩ C = {1}.

Moreover, if |β| = 1 for each h = βg ∈ H then these statements are also
equivalent to
(iii) 1 /∈ L (F).
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Proof. By definition, G has a perfect commuting operator strategy iff there
exists a ∗-representation π mapping U into bounded operators on a Hilbert
space H and a state ψ in H with π(h − 1)ψ = 0 for all clauses h ∈ H . But
this is equivalent to the statement Zre,C[G]

dir (F) �= ∅. Then, the result follows
directly from Theorem 5.10. �

5.3.1. Torically Determined Games and the Subgroup Membership Problem.
Condition (ii) of Theorem 5.12 relates existence of perfect commuting operator
strategies to a question of membership of certain elements in a group. We now
translate this question to a standard instance of the subgroup membership
problem.

First, observe that if any clause βigi ∈ H has |βi| �= 1, then the game G
trivially cannot have a perfect commuting operator strategy, since

H � βg (βg)∗ = |β|2 �= 1. (5.26)

Then, we restrict our attention to the case where |βi| = 1 for all βigi ∈ H .
Let B be the group generated by all the βi under multiplication, and note B is
an abelian group consisting of a subset of the unit circle. Then, the statement
H ∩C = {1} is equivalent to H ∩B = {1}, i.e., β �∈ H for any 1 �= β ∈ B. This
is exactly equivalent to one (or several) instances of the subgroup membership
problem.

For many games, the group B is very simple, containing just a few el-
ements. In this case, alternate notation can be used for elements β ∈ B (for
example, the J element used in [9] or the σ element in [2]). We see an example
of this next.

5.3.2. Mod r Games. We now apply the machinery described previously in
this section to Mod r Games. From Sect. 3.5.2, we have that Mod r games are
torically determined by a set of elements

⎧
⎨

⎩(exp(−2πi/r))st

∏

α∈[k]

(
c(α)jt(α)

)dt(α) − 1

⎫
⎬

⎭
t∈[T ]

(5.27)

with the c(α)jt(α) cyclic unitaries.
Following the notation introduced in Sect. 5.3.1, we define B to be the

group generated by the set of elements {(exp(−2πi/r))st}t∈[T ]. We note that B
is isomorphic to a subgroup of Zr and for notational convenience introduce the
element ζ as shorthand for exp(−2πi/r). Then, we can write clauses ht ∈ H
as

ht = ζst

∏

α∈[k]

c(α)jt(α). (5.28)

It follows that a Mod m game has a perfect commuting operator strategy iff
ζs /∈ H for all s ∈ {1, 2, . . . , r − 1}.

We note that if r is prime there is an immediate simplification of this
characterization, since ζs ∈ H ⇔ ζrs+1 = ζ ∈ H and hence a game has a
perfect commuting operator strategy iff ζ /∈ H. We also note that the Mod 2
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game (i.e., XOR game) version of this condition is equivalent to Theorem 2.1
in [2].

6. Gröbner Basis Algorithm Tailored to Games

What arises in this paper are sums of left and two-sided ideals. We present
here a kludge for using a conventional two-sided ideal nc Gröbner Basis (GB)
algorithm to solve these mixed ideal problems. While a special purpose algo-
rithm could be more efficient, the procedure here can be very convenient in
practice. It has certainly been valuable to the authors. We also alert the reader
to Sect. 8.3 which applies Gröbner bases plus a Nullstellensatz to synchronous
games.

At the core of our algorithm is the following observation:

Proposition 6.1. Consider an ideal I and left ideal L in a free algebra C〈x〉.
For f ∈ C〈x〉, we have

f ∈ I + L ⇐⇒ fξ ∈ (I + Lξ)C〈x,ξ〉,

where (I+Lξ)C〈x,ξ〉 denotes the two-sided ideal of C〈x, ξ〉 generated by I+Lξ.
In particular,

1 ∈ I + L ⇐⇒ ξ ∈ (I + Lξ)C〈x,ξ〉.

Proof. The forward implication is obvious, so assume fξ ∈ (I+Lξ)C〈x,ξ〉, i.e.,

fξ =
∑

j

fjajgj +
∑

i

pisiξqi (6.1)

for some fj , gj , pi, qi ∈ C〈x, ξ〉, aj ∈ I and si ∈ L.
Each element r in C〈x, ξ〉 can be written uniquely as r = r0 + r1, where

r0 ∈ C〈x〉 and r1 ∈ (ξ)C〈x,ξ〉. We keep only terms of degree ≥ 1 in ξ in Eq.
(6.1) to obtain

fξ =
∑

j

fj0ajgj1 +
∑

j

fj1ajgj0 +
∑

i

pi0siξqi0. (6.2)

Now extract all terms that end in ξ to get

fξ =
∑

j

fj0aj g̃j1ξ +
∑

i

pi0q̂i0siξ (6.3)

for some g̃j1 ∈ C〈x〉 and q̂i0 ∈ �. Canceling ξ on the right in Eq. (6.3) leads
to f ∈ I + L. �

6.1. Gröbner Basis Algorithm

Algorithm Suppose a1, . . . , am, b1, . . . , bn ∈ C〈x〉 are given, and let I =
(a1, . . . , am), L = C〈x〉b1 + · · · + C〈x〉bn be a two-sided and left ideal in C〈x〉,
respectively. Add a new variable ξ, to form the two-sided ideal (a1, . . . , am, b1

ξ, . . . , bnξ)C〈x,ξ〉 and compute its Gröbner basis B, with respect to any admis-
sible monomial order. Then,

1 ∈ I + L iff 1 ∈ B or ξ ∈ B.
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Here 1 ∈ B iff 1 ∈ I. �
Basics of NC GB We assume the reader has a familiarity with Gröbner Bases;
a standard reference in the commutative setting is [8], while [14,23] describe
the appropriate nc analogs. NC GBs have properties very similar to those of
for traditional commutative GB with the dramatic exception that an NC GB
might not be finite.

Fixing a monomial order, a subset B of an ideal I ⊆ C〈x〉 is a GB if the
set of leading terms LT(B) of elements of B generates the same ideal LT(I)
as all leading terms of I. Roughly speaking, the nc Bucherger criterion [23,
Theorem 5.1] states that B is a GB iff each S-polynomial built off B can be
expressed in terms of the elements of B with lower degrees. Thus, algorithms
for building NC GBs work by producing S-polynomials for pairs ai, aj of (not
necessarily distinct) polynomials which are generators of I. S-polynomials are
ones of the form

Si,j(wi, w
′
i, wj , w

′
j) =

1
LC(ai)

wiaiw
′
i − 1

LC(aj)
wjajw

′
j (6.4)

for words wi, w
′
i, wj , w

′
j in x satisfying

wi LT(ai)w′
i = wj LT(aj)w′

j . (6.5)

Here LC(a) denotes the coefficient of the leading term of a.
At each step in construction of a GB, one considers a collection of polyno-

mials B̂. If the “remainder” of an S-polynomial after division by B̂ is nonzero,
one adds it to B̂ and repeats the process. Ultimately (maybe in an infinite
number of steps) B̂ grows to a GB B.

Left ideals have what we call left GB. Algorithms for producing left GBs
are very similar to algorithms for producing GBs for two-sided ideals. Now
common multiples must be made by multiplying on the left (not the right),
and the key matches are

wi LT(ai) = wj LT(aj) (6.6)

for words wi, wj in x.
We refer the reader to [24,33] for excellent references on this.

Justification Now behold a few properties of our GB.
(1) The set of polynomials in B which do not contain ξ is itself a Gröbner

basis for I.
(2) The set of polynomials in B which do contain ξ, after ξ is removed, is

itself a Left Gröbner basis for L. Moreover, the left S-polynomials which
occur in the left GB algorithm for L are the “same” as those which occur
in the standard two sided ideal GB algorithm for Lξ; thus, their run times
are similar.

(3) The “natural generators” x2
i −1, xiyj −yjxi, etc., are themselves a GB for

the universal game ideal, I . This is easily checked, say with a computer,
by focusing on the subset of all polynomials involving only two variables
xi, yj .
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6.2. Examples of GBs

In the forthcoming examples, we use the natural graded lexicographic order
defined by

xi < yj < zk < ξ and x0 < x1 < · · · , etc.

Example 6.2. Consider the CHSH game. It has a perfect commuting operator
strategy iff there exist signature matrices X0,X1, Y0, Y1 with Xs commuting
with Y s so that for some state ψ we have

X0Y0ψ = ψ

X0Y1ψ = ψ

X1Y0ψ = ψ

X1Y1ψ = −ψ.

(6.7)

The universal game ideal I for a 2-player, 2-question game, such as
CHSH, with answers denoted x0, x1, y0, y1 lies in the free algebra �〈x0, x1, y0, y1〉
and is generated by the 4 signature properties x2

i − 1, y2
j − 1 and 4 commuting

relations xiyj − yjxi. The GB for I is itself, by item (3).
So take I = I and take L generated by x0y0 − 1, x0y1 − 1, x1y0 −

1, x1y1 + 1. This encodes the CHSH game. The Gröbner basis B for (I +
Lξ)�〈x0,x1,y0,y1,ξ〉 is given by the defining relations for I and ξ. Since ξ ∈ B,
by Proposition 6.1 we have 1 ∈ I + L, whence Eq. (6.7) does not have a
solution.

6.3. Construction of Solutions to the Game Equations

Next, we show how to attempt finding solutions to the game equations once
we have a GB. We do this with an example.

Example 6.3 (GHZ three-player game).
We seek symmetries xi, yi, zi, 0 ≤ i ≤ 1, with x’s commuting with y’s

and z’s, and y’s commuting with z’s, so that the four operators

−1 − x0y0z1, −1 − x0y1z0, −1 − x1y0z0, 1 − x1y1z1 (6.8)

have a common nonzero kernel vector.
In the free algebra C〈x, y, z〉 consider its ideal I encoding the signature

relations x2
i = xi, y

2
j = yj , z

2
j = zj and commuting relations xiyj = yjxi, xizj =

zjxi, ziyj = yjzi, and its left ideal L generated by the polynomials in Eq. (6.8).
The Gröbner basis B for (I + Lξ)C〈x,y,z,ξ〉 is given by:

the signature relations, commuting relations, and the following 18 poly-
nomials (all of whom are divisible by ξ on the right)

y0ξ + x0z1ξ, z1ξ + x0y0ξ, x0ξ + y0z1ξ, y1ξ + x0z0ξ, z0ξ + x0y1ξ,

x0ξ + y1z0ξ, y0ξ + x1z0ξ, z0ξ + x1y0ξ, x1ξ + y0z0ξ, −y1ξ + x1z1ξ,

− z1ξ + x1y1ξ, −x1ξ + y1z1ξ, x0x1ξ + y1y0ξ, −x0x1ξ + z0z1ξ,

− x1x0ξ + z1z0ξ, −x0x1ξ + y0y1ξ, x0x1ξ + x1x0ξ, −y1z0ξ + x1x0x1ξ.

(6.9)
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We shall use B to construct a solution to our system. Let

V0 = C〈x, y, z, ξ〉/(I + Lξ),

and let f �→ f denote the quotient map C〈x, y, z, ξ〉 → V0. The subspace

V := C〈x, y, z〉ξ ⊆ V0

is eight-dimensional, spanned by B = {ξ, x0ξ, x1ξ, y0ξ, y1ξ, z0ξ, z1ξ, x0x1ξ}.
Each of the nc variables xi, yi, zi acts on V from the left, and with respect

to the basis B we obtain matrix representations as follows:

x̂0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 0 0
0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, x̂1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 −1 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

ŷ0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 −1 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ŷ1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

ẑ0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0
0 0 −1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ẑ1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is easy to verify that these solve the system Eq. (6.8) with common kernel
vector e1.

Remark. For a 3-XOR game, if the restricted GNS construction (as in Example
6.3) gives a finite-dimensional space of dim > 8, then the solution to the game
may not be unique. Indeed, MERP is one solution; it has dim 8. Other solutions
may show up in the GNS construction via it block diagonalizing and the other
solutions being blocks. These blocks might all be unitarily equivalent to the
MERP solution; otherwise, the game has multiple solutions.

The problem of establishing uniqueness of solution to the game has been
studied and there is a standard technique available. cf [10]. It can be tried on
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a game for which the bias and optimal value satisfy

ω∗ − ΦG = SOS

exactly (as opposed to approximately as in [11,15,25]). Optimality implies
there exists a state ψ making

0 = (ω∗ − ΦG)ψ = SOSψ.

Thus, we get algebraic equations sjψ = 0 corresponding to SOS =
∑

j s∗
jsj .

For some games, it is possible to show from these equations have only one
solution (that is, a unique ∗-representation) and from this show that the game
has a unique optimal strategy.

7. Linear Systems Games

Linear systems games are some of the first games to have their perfect com-
muting operator strategies characterized algebraically. This characterization,
given in [9], shows that perfect commuting operator strategies for linear sys-
tems games arise from representations of a group called the solution group
of the game. As a result of this characterization, deciding existence of per-
fect commuting operator strategies for linear systems games was shown to be
equivalent to solving an instance of the word problem.

In this section, we reconcile this characterization of linear systems games
with the Nullstellensatz framework described in this paper. In particular, we
derive the linear systems game characterization given in [9] using Theorem
5.12 as a starting point.

To begin, we recap the definition of linear systems games.

Definition 7.1. A linear systems game G is a two-player game based on a sys-
tem of m linear equations in n variables computed mod r. A question to Alice
is an integer i ∈ [m] selecting an equation in the linear system equation. A
question to Bob selects a variable j ∈ [n]. Alice’s response consists of a vector
�ai = (ai1 , ai2 , . . . , aik) ∈ [r]k giving values for all the variables contained in
the i-th equation: here �i = (i1, . . . , ik) indexes these variables. Bob’s response
is an integer bj ∈ [r] assigning a value to the single variable indexed by j.
The players win each round provided the variable assignments specified by
(ai1 , ai2 , . . . , aik) satisfy the i-th equation and ait = bj whenever it = j.

Following the notation laid out in Sect. 3.2 note the game algebra U
is generated by elements e(1)i

�ai
and e(2)j

bj
with �aj ranging over all possible

vectors of responses to question i and bj ranging over all possible values Bob
can give for variable bj .

Next, we identify elements of U which correspond to the value Alice
gives to a single variable in the system of equations. For any i ∈ [m] let
T (i) = {t1, t2, . . . , tk} list all the variables contained in the i-th equation in
the system of equations associated with the game. Then, for any t ∈ T (i) and
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r′ ∈ [r] define

e(1)i
at=r′ =

∑

�ai:at=r′
e(1)i

�ai
. (7.1)

It is easy to check that the elements e(1)i
at=r′ also satisfy the relations of

projectors,
(
e(1)i

at=r′
)2

=
(
e(1)i

at=r′
)∗

= e(1)i
at=r′ , (7.2a)

∑

r′∈[r]

e(1)i
at=r′ = 1. (7.2b)

Additionally, orthogonality of the e(1)i
�ai

elements gives that for any i ∈ [m],
t1, t2 ∈ T (i), and r1, r2 ∈ [r] we have

e(1)i
at1=r1

e(1)i
at2=r2

= e(1)i
at2=r2

e(1)i
at1=r1

=
∑

�ai:at1=r1
and at2=r2

e(1)i
�ai

(7.3)

Finally we note that, also by orthogonality of the e(1)i
�ai

elements we have for
any i with T (i) = {t1, . . . , tk} and �ai = (rt1 , rt2 , . . . , rtk) that

∏

t∈T (i)

e(1)i
at=rt

= e(1)i
�ai

. (7.4)

From here, we can define cyclic unitary generators analogously to in Sect.
3.3, with

c(1)(j)t :=
r∑

r′=1

exp
(

2πr′i
r

)
e(1)j

at=r′ , (7.5a)

c(2)j :=
r∑

a=1

exp
(

2πai

r

)
e(2)j

a. (7.5b)
These unitary generators satisfy the same relations as the generators

defined in Sect. 3.3, namely,
(
c(1)(i)t

)r

= (c(2)j)
r = 1, (7.6a)

(
c(1)(i)t

)∗
c(1)(i)t = (c(2)j)

∗
c(2)j = 1, (7.6b)

c(1)(i)t c(2)j = c(2)jc(1)(i)t ∀ i ∈ [m], j, t ∈ [n]. (7.6c)

In addition, Eq. (7.4) gives that

c(1)(i)t1 c(1)(i)t2 = c(1)(i)t2 c(1)(i)t1 ∀ i ∈ [m], t1, t2 ∈ T (i). (7.6d)

We can then define Gls to be the group generated by the c(1)(i)t and c(2)j .
Now, we show that linear systems games are torically determined games.

Theorem 7.2. Let Gls be a linear systems game based on a system of m equa-
tions. For any j ∈ [m] write the j-th equation of the system as

∑

t∈T (j)

d
(j)
t yt = sj (mod r) (7.7)
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where T (j) indexes all the variables yt contained in the j-th equation of the
system and d

(j)
t , sj ∈ [r]. Then, Gls is a torically determined game, determined

by the elements

F =

⎧
⎨

⎩exp(−2πsji

r
)
∏

t∈T (j)

(
c(1)

(j)
t

)d
(j)
t − 1

⎫
⎬

⎭
j∈[m]

⋃ {
c(1)

(j)
t (c(2)t)

∗ − 1
}

t∈[n],j∈[m]
.

(7.8)

Proof. First we note that expanding out the product and applying Eq. (7.4)
gives

∏

t∈T (j)

(
c(1)(j)t

)d
(j)
t

=
∏

t∈T (j)

(
r∑

r′=1

exp

(
2πd

(j)
t r′i
r

)
e(1)j

at=r′

)
(7.9)

=
∑

�aj

exp(
2πi

r

∑

t∈T (j)

d
(j)
t a

(j)
t )e(1)j

�aj
(7.10)

where we wrote �aj = (a(j)
t1 , a

(j)
t2 , . . . , a

(j)
tk

) for {t1, t2, . . . , tk} ∈ T (j). Then,
define

A(j) =

⎧
⎨

⎩�aj :
∑

t∈T (j)

d
(j)
t a

(j)
t = sj (mod r)

⎫
⎬

⎭ (7.11)

to be the collection of winning responses Alice can send to question j. Then,
as a consequence of Eq. (7.10), we have for any commuting operator strategy
(π, ψ) that the condition

π

⎛

⎝
∏

t∈T (j)

(
c(1)(j)t

)d
(j)
t

⎞

⎠ψ = exp
(

2πisj

r

)
ψ (7.12a)

is equivalent to

π

⎛

⎝
∑

�aj∈A(j)

π(e(1)j
�aj

)

⎞

⎠ψ = ψ. (7.12b)

Hence, the condition

π

⎛

⎝exp(−2πsji

r
)
∏

t∈T (j)

(
c(1)(j)t

)d
(j)
t − 1

⎞

⎠ψ = 0 (7.13)

for all j ∈ [m] ensures that Alice’s responses in the game Gls are always
winning. Similarly, the condition

π
(
c(1)(j)t (c(2)t)

∗
)

ψ = ψ (7.14)

ensures that
∑

r′∈[r]

π
(
e(1)j

at=r′e(2)t
r′

)
ψ = ψ (7.15)
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and thus Bob’s responses are also always winning. Thus, it is clear that Gls is
determined by F .

It remains to show that all the elements of F are of the correct form. But
we have that the elements c(1)(j)t and c(t)2 generate the elements e(1)j

at=r′

and e(2)j
a through the same inverse transformation as given for the cyclic

unitary generators in Sect. 3.3.1. And we also know that the elements e(1)j
at=r′

generate the elements e(1)j
�ai

by Eq. (7.4). Then, U = C[Gls] and the result is
clear. �

Theorem 7.2 reduces the question of whether or not a game has a per-
fect commuting operator strategy to an instance of the subgroup membership
problem. The next theorem lets us reduce further to the standard formulation
in terms of the word problem. We prepare with a few definitions, following
wherever possible the conventions laid out in Sect. 5.3.1.

Definition 7.3. Let Gls be a linear systems game based on a system of m equa-
tions defined as in Theorem 7.2 and introduce to shorthand ζ = exp(− 2πi

r ) to
simplify notation. Then, define the following groups:

(1) Gaug
ls to be the subgroup of C[Gls] generated by the elements Gls ∪ {ζ};

(2) Hls < Gaug
ls to be the subgroup of Gaug

ls generated by the set of elements
⎧
⎨

⎩ζsi

∏

t∈T (i)

(
c(1)(i)t

)d
(i)
t

⎫
⎬

⎭
i∈[m]

⋃ {
c(2)t

(
c(1)(i)t

)−1
}

i∈[m],t∈[r]

; (7.16)

(3) Gaug
ls (2) to be the subgroup of Gaug

ls generated by the elements

{c(2)t}t∈[r] ∪ {ζ}; (7.17)

(4) Nls(2) to be the normal subgroup of Gaug
ls (2) generated by the elements

⎧
⎨

⎩ζsi

∏

t∈T (i)

(c(2)t)
d
(i)
t

⎫
⎬

⎭
i∈[m]

⋃ {
c(2)tc(2)t′c(2)−1

t c(2)−1
t′
}

t,t′∈T (i),i∈[m]
.

(7.18)

Theorem 7.4. A linear system game Gls, defined as in Theorem 7.2, has a
perfect commuting operator strategy iff any of the equivalent conditions are
satisfied:

(i) ζs /∈ Hls for all s ∈ [r − 1];
(ii) ζs /∈ Nls(2) for all s ∈ [r − 1];
(iii) Letting [ζs] denote the image of ζs ∈ Gaug

ls (2) in the group Gaug
ls (2)/Nls(2),

then [ζs] �= 1 for all s ∈ [r − 1].

Proof. We first note that condition (i) is equivalent to the existence of a perfect
commuting operator strategy by Theorems 7.2 and 5.12.
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To show (i) ⇒ (ii) we show Nls(2) is contained in Hls. First note that for
any i ∈ [m] we have
⎛

⎝ζsi
∏

t∈T (i)

(
c(1)

(i)
t

)d
(i)
t

⎞

⎠
∏

t∈T (i)

((
c(1)

(i)
t

)−1
c(2)t

)d
(i)
t

= ζsi
∏

t∈T (i)

(c(2)t)
d
(i)
t ∈ Hls

(7.19)

and, for any i ∈ [m] and t1, t2 ∈ T (i) we can multiply together generators of
the group Hls to find

(
c(2)t1

(
c(1)(i)t1

)−1
)(

c(2)t2

(
c(1)(i)t2

)−1
)

(
c(2)t1

(
c(1)(i)t1

)−1
)−1(

c(2)t2

(
c(1)(i)t

)−1
)−1

=
(
c(2)t1c(2)t2c(2)−1

t1 c(2)−1
t2

)((
c(1)(i)t1

)−1 (
c(1)(i)t2

)−1

c(1)(i)t1 c(1)(i)t2

)
.

(7.20a)

Now, we cancel the c(1)(i)t1 terms using Eq. (7.6d) to get

c(2)t1c(2)t2c(2)−1
t1 c(2)−1

t2 ∈ Hls. (7.20b)

Finally, we note that for any elements w(2) ∈ Hls∩Gaug
ls (2) and c(2)t generating

Gaug
ls (2) we have
(

c(2)t

(
c(1)(i)t

)−1
)

w(2)
(

c(2)t

(
c(1)(i)t

)−1
)−1

= c(2)tw(2)c(2)−1
t ∈ Hls

(7.21)

and thus, the normal closure in Gaug
ls (2) of any element in Hls ∩ Gaug

ls (2) is
also contained in Hls (recall that the element ζ is central). We conclude that
Nls(2) ⊆ Hls, as desired.

To show that (ii) ⇒ (i) we assume ζs ∈ Hls for some s ∈ [r − 1]. Then,
there exist elements w(1)1, . . . , w(1)L and v(1, 2)1, . . . , v(1, 2)L+1 with each
w(1)� equal to a product of elements or inverses of elements in the set

⎧
⎨

⎩ζsi

∏

t∈T (i)

(
c(1)(i)t

)d
(i)
t

⎫
⎬

⎭
i∈[m]

(7.22)

each v(1, 2)�′ equal to a product of elements or inverses of elements in the set
{

c(2)t

(
c(1)(i)t

)−1
}

i∈[m],t∈[r]

(7.23)

and

ζs = v(1, 2)1w(1)1v(1, 2)2w(1)2 · · · v(1, 2)Lw(1)Lv(1, 2)L+1. (7.24)
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Then, let the elements w(2)� for � ∈ {1, 2, ..., L} be obtained by choosing some
product of elements drawn from the set defined in Eq. (7.22) and equal to
w(1)�, then making the replacement

ζsi

∏

t∈T (i)

(
c(1)(i)t

)d
(i)
t → ζsi

∏

t∈T (i)

(c(2)t)
d
(i)
t (7.25)

to each element in the product.8 Similarly let elements v(1)1, . . . , v(1)L+1 be
obtained from v(1, 2)� by the replacement

c(2)t

(
c(1)(i)t

)−1

→
(
c(1)(i)t

)−1

(7.26)

and elements v(2)1, . . . , v(2)L+1 be obtained via the replacement

c(2)t

(
c(1)(i)t

)−1

→ c(2)t (7.27)

applied to some fixed products of elements from Eq. (7.23) equal to v(1, 2)�.
Then, commuting c(1)t and c(2)t elements gives

ζs = v(1, 2)1w(1)1v(1, 2)2w(1)2 · · · v(1, 2)Lw(1)Lv(1, 2)L+1

= v(1)1w(1)1v(1)2w(1)2 · · · v(1)Lw(1)Lv(1)L+1v(2)1v(2)2 · · · v(2)L+1.
(7.28)

From this, we conclude

v(2)1v(2)2 · · · v(2)L+1 = 1 (7.29)

since the word v(2)1v(2)2 · · · v(2)L+1 contains only c(2)t elements (and no
product of c(2)t elements and their inverses can be to equal ζ or to any product
of c(1)t elements) and hence

v(1)1w(1)1v(1)2w(1)2 · · · v(1)Lw(1)Lv(1)L+1 = ζs. (7.30)

But then we also have

v(2)1w(2)1v(2)2w(2)2 · · · v(2)Lw(2)Lv(2)L+1 = ζs (7.31)

since the relations between c(2)t elements are the same as those between the
c(1)(i)t elements. Then, the calculation

ζs =

⎛

⎝
∏

�∈[L]

v(2)�w(2)�

⎞

⎠ v(2)L+1 (7.32a)

=

⎛

⎝
∏

�∈[L]

(
∏

�′<�

v(2)�′

)
w(2)�

(
∏

�′<�

v(2)�′

)−1
⎞

⎠ v(2)1v(2)2 · · · v(2)L+1

(7.32b)

=

⎛

⎝
∏

�∈[L]

(
∏

�′<�

v(2)�′

)
w(2)�

(
∏

�′<�

v(2)�′

)−1
⎞

⎠ ∈ Nls(2) (7.32c)

8Note we have not shown this definition of w(2)� is unique, i.e., we have not shown that this
replacement defines a homomorphism, but we will not need to for the current proof.
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shows ζs ∈ Nls(2), as desired.
Finally we note (ii) ⇔ (iii) by the definition of a quotient group. �

8. Nullstellensatz Applied to Synchronous Games

As discussed in the Introduction, a two-player game is called synchronous if it
includes “consistency checks” where Alice and Bob are sent the same question
and win iff they send the same response. Below we give a formal definition
of synchronous games using the scoring function and probability distribution
description of games introduced in Sect. 3.2.2.

Definition 8.1. A two-player, n-question, m-response game G defined by scor-
ing function V and question distribution μ is called a synchronous game iff,
for all i ∈ [n] we have

μ(i, i) > 0 (8.1)

and

V (a, b|i, i) = δa,b (8.2)

where δa,b denotes the Kronecker delta function.

An immediate consequence of Definition 8.1 in terms of the notion of
invalid determining set introduced in Sect. 3.4.1 is the following claim.9

Claim 8.2. Let G be a synchronous game and N be the invalid elements of G.
Then, we have

e(1)i
ae(2)i

b ∈ L(N ) (8.3)

for all i ∈ [n] and a, b ∈ [m] with a �= b.

Proof. Immediate since for all i ∈ [n] and a, b ∈ [m] with a �= b we have
V (a, b|i, i) = 0 and μ(i, i) > 0 by definition of a synchronous game, hence
e(1)i

ae(2)i
b ∈ N by the definition of N . �

Synchronous games can be studied using the standard techniques of this
paper, where we consider representations of the algebra U which satisfy di-
rectional zero constraints. However, Paulsen with various collaborators [27]
[16, Theorem 3.2] found an equivalent simpler formulation using a “smaller”
algebra which we denote U (1), and using hard zeros arising from an ideal
I(synch B(1)) of U (1). Also the papers [20,27] show that the synchronous
value of a game is given by the trace of a bilinear function on U (1). The first
goal in this section is to show how this reconciles with our Nullstellensätze.
This is the substance of Theorem 8.3 in Sect. 8.1.

Next, in Sect. 8.2 we turn to the tracial Nullstellensatz and recall that
the theory of Null- and Positivstellensätze appropriate to tracial situations go

9We note this claim can hold true for a larger class of games than synchronous ones. In
most of this section the only property of synchronous games which will be used is that they
satisfy Eq. (8.3). Thus, most of the techniques of this section apply to a slightly larger class
of games than synchronous ones.
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back to [21] and is well developed in subsequent papers which are summarized
in [4, Chapter 5]; see also [19].

Finally, in Sect. 8.3 we demonstrate (on a graph coloring problem) a
computer algorithm based on Gröbner Bases plus Nullstellensatz.

8.1. Synchronous Two-Player Games in Terms of an Algebra

In what follows let:
(1) U be the universal game algebra;
(2) L(N ) be the left ideal of U generated by the set

{∏
α e(α)i(α)

a(α):(�i, �a) ∈ N
}

;
(3) L(synch B) be the left ideal of U generated by the set

{
∏

α

e(1)i(α)
a(α) : (�i, �a) ∈ N

}
∪
{
∏

α

e(2)i(α)
a(α) : (�i, �a) ∈ N

}

∪{e(1)i
a − e(2)i

a : i ∈ [n], a ∈ [m]
}

;

(4) U (1) be the subalgebra of U generated by e(1)i
a only;

(5) I(synch B(1)) be the two-sided ideal of U (1) generated by
{∏

α e(1)i(α)
a(α) :

(�i, �a) ∈ N
}

.

Now, we state the objective of this section.

Theorem 8.3. A synchronous game characterized by a set N of invalid re-
sponses has a perfect commuting operator strategy iff any of the equivalent
conditions are satisfied:

(i) There exists a ∗-representation π : U → B(H) and a state ψ ∈ H satis-
fying

π(L(N ))ψ = {0}; (8.4)

(i’) Zre,U
dir (N ) �= ∅;

(ii) There exists a ∗-representation π : U → B(H) and a state ψ ∈ H satis-
fying

π(L(synch B))ψ = {0}; (8.5)

(ii’) Zre,U
dir (synch B) �= ∅;

(iii) There exists a ∗-representation π′ : U (1) → B(H) and a tracial state
ψ ∈ H satisfying

π′(I(synch B(1))ψ = {0}; (8.6)

(iv) There exists a ∗-representation π′ of U (1) mapping into a tracial von
Neumann algebra W ⊆ B(H) satisfying

π′(I(synch B(1))) = {0}; (8.7)

The proof of (i), (ii), (iii) is based on several lemmas which we now give.
The core of the proofs of the lemmas come from [27] but we include a self
contained account for clarity’s sake.
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Lemma 8.4. If the set of invalid responses N comes from a synchronous game,
we have L(N ) = L(synch B).

Proof. We first show that e(1)i
a − e(2)i

a ∈ L(N ). Because N corresponds to a
synchronous game, we have

e(1)i
ae(2)i

b ∈ N ⊆ L(N ) (8.8)

for all b �= a. Then, we also have

L(N ) �
∑

b�=a

e(1)i
ae(2)i

b = e(1)i
a

∑

b�=a

e(2)i
b = e(1)i

a(1 − e(2)i
a) (8.9a)

= e(1)i
a − e(1)i

ae(2)i
a. (8.9b)

Similarly, summing over the e(1) terms (and recalling that e(1) and e(2) com-
mute) gives:

∑

b�=a

e(1)i
be(2)i

a = e(2)i
a(1 − e(1)i

a) = e(2)i
a − e(1)i

ae(2)i
a ∈ L(N ). (8.10)

Subtracting Eq. (8.10) from Eq. (8.9b) gives

e(1)i
a − e(2)i

a ∈ L(N ). (8.11)

Next note that for any e(1)i
ae(2)j

b ∈ N we have

e(1)i
ae(1)j

b = e(1)i
a

(
e(1)j

b − e(2)j
b

)
+ e(1)i

ae(2)j
b ∈ L(N ). (8.12)

A similar argument shows e(2)i
ae(2)j

b ∈ L(N ). Then, all the generators of
L(synch B) are contained in L(N ) and we conclude L(synch B) ⊆ L(N ).

To prove the converse, we observe that for any e(1)i
ae(2)j

b ∈ N we have

e(1)i
ae(2)j

b = e(1)i
ae(1)j

b − e(1)i
a

(
e(1)j

b − e(2)j
b

) ∈ L(synch B), (8.13)

which gives L(N ) ⊆ L(synch B) and completes the proof. �

Lemma 8.5. I(synch B(1)) ⊆ L(synch B).

Proof. First consider a monomial m(1) = e(1)i1
a1

· · · e(1)it
at

∈ U (1) and note

e(1)i1
a1 · · · e(1)it

at
= e(1)i1

a1 · · · e(1)
it−1
at−1(e(1)it

at
− e(2)it

at
) + e(1)i1

a1 · · · e(1)
it−1
at−1e(2)it

at

(8.14a)

= e(1)i1
a1 · · · e(1)

it−1
at−1(e(1)it

at
− e(2)it

at
) + e(2)it

at
e(1)i1

a1 · · · e(1)
it−1
at−1 ,

(8.14b)

whence

e(1)i1
a1

· · · e(1)it
at

− e(2)it
at

e(1)i1
a1

· · · e(1)it−1
at−1

∈ L(synch B).

Applying this inductively we see

e(1)i1
a1

· · · e(1)it
at

− e(2)it
at

e(1)i1
a1

· · · e(1)it−1
at−1

(8.15a)

+ e(2)it
at

(
e(1)i1

a1
· · · e(1)it−1

at−1
− e(2)it−1

at−1
e(1)i1

a1
· · · e(1)it−2

at−2

)
(8.15b)

+ e(2)it
at

e(2)it−1
at−1

(
e(1)i1

a1
· · · e(1)it−1

at−1
− e(1)it−2

at−2
e(1)i1

a1
· · · e(1)it−3

at−3

)

(8.15c)
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+ · · · (8.15d)

= e(1)i1
a1

· · · e(1)it
at

− e(2)it
at

e(2)it−1
at−1

· · · e(2)i1
t1 ∈ L(synch B). (8.15e)

We can write this last expression compactly as m(1) − m(2)∗ ∈ L(synch B),
where we understand m(2) to be the polynomial m(1) with all e(1) replaced by
e(2). By linearity, this observation immediately extends to general polynomials,
so we have p(1) − p(2)∗ ∈ L(synch B) for any polynomial p(1) formed entirely
from e(1).

For any polynomial p ∈ I(synch B(1)), we can write p = s(1)t(1) where
s(1) ∈ L(synch B) and t(1) ∈ U (1) is an arbitrary polynomial consisting only
of e(1) generators. Then, we observe:

p = s(1)t(1) = s(1)(t(1) − t(2)∗) + t(2)∗s(1) ∈ L(synch B) (8.16)

and we are done. �

Also important in this section are tracial linear mappings on an algebra,
defined to be linear mappings τ : A → C satisfying

τ(ab) = τ(ba) (8.17)

for all a, b ∈ A . A state ψ is called a tracial state (for some operator algebra
A) if the linear mapping it induces is tracial, so

ψ∗abψ = ψ∗baψ (8.18)

for all operators a, b ∈ A . We show, using an argument very similar to the
one given in the proof of Lemma 8.5, that any linear mapping vanishing on
L(synch B) and R(synch B) must be tracial on U (1).

Lemma 8.6. Given a linear mapping τ : U → C on U satisfying

τ(L(synch B)) = 0 = τ(R(synch B)), (8.19)

then τ is tracial on U (1); i.e., for any a, b ∈ U (1),

τ(ab) = τ(ba). (8.20)

Note: If τ is symmetric, then since synch B is a ∗-closed set, we have

τ(L(synch B)) = 0 =⇒ τ(R(synch B)) = 0.

Proof. Consider monomials w, w̃ ∈ U (1). Since w is generated by e(1)i
a, we

can write w = w′e(1)i
a and then observe

w̃w′ (e(1)i
a − e(2)i

a

) ∈ L(synch B), (8.21a)
(
e(1)i

a − e(2)i
a

)
w̃w′ ∈ R(synchB). (8.21b)

Then,

τ(w̃w′e(1)i
a) = τ(w̃w′e(2)i

a) = τ(e(2)i
aw̃w′) = τ(e(1)i

aw̃w′) (8.22)

where we use Eq. (8.21a) for the first equality, that elements of U (1) and U (2)
commute for the second equality, and Eq. (8.21b) for the equality. Repeating
this argument shows that for any elements w, w̃ ∈ synch B(1) we have

τ(ww̃) = τ(w̃w) (8.23)
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and the proof is complete. �

Now comes the proof of the main theorem of this section.

Proof of Theorem 8.3. Item (i) is equivalent to existence of a perfect commut-
ing operator strategy by definition (see Sect. 3.4).

Item (ii) is equivalent to Item (i) by Lemma 8.4.
To prove Item (ii) ⇒ Item (iii), we let π be any representation satisfying

Item (ii), and define π′ to be the restriction of π to U (1). Clearly π′ : U (1) →
B(H) and

π′(I(synch B(1)))ψ = π(I(synch B(1)))ψ ⊆ π(L(synch B))ψ = {0}, (8.24)

where the inclusion follows from Lemma 8.5. To show the state ψ is tracial on
π′(U (1)) note the linear mapping defined by

τ(w) = ψ∗π(w)ψ (8.25)

vanishes on L(synch B) (and hence R(synch B)) by Item (ii) and so τ is tracial
on U (1) by Lemma 8.6.

We prove Item (iii) ⇒ Item (i). Using π′, ψ we define the positive linear
functional

�′ : U (1) → C, f �→ ψ∗π′(f)ψ.

Next extend �′ to a linear functional � on U by mapping a monomial

w(e(1))u(e(2)) �→ �
(
w(e(1))u(e(1))∗).

It is obvious that � is symmetric in the sense that �(f∗) = �(f)∗ for all
f ∈ U (1). To check that � is positive, let f =

∑
i,j βijwi(e(1))uj(e(2)) ∈ U .

Then,

f∗f =
∑

i,j

∑

k,l

β∗
ijβklwi(e(1))∗wk(e(1))uj(e(2))∗ul(e(2)),

whence

�(f∗f) =
∑

i,j

∑

k,l

β∗
ijβkl�

′(wi(e(1))∗wk(e(1))ul(e(1))∗uj(e(1))). (8.26)

Set

f̌ =
∑

i,j

βijwi(e(1))uj(e(1))∗ ∈ U (1).

Then,

f̌∗f̌ =
∑

i,j

∑

k,l

β∗
ijβkluj(e(1))wi(e(1))∗wk(e(1))ul(e(1))∗,

and

�′(f̌∗f̌) =
∑

i,j

∑

k,l

β∗
ijβkl�

′(uj(e(1))wi(e(1))∗wk(e(1))ul(e(1))∗). (8.27)

Since �′ is tracial,

�′(uj(e(1))wi(e(1))∗wk(e(1))ul(e(1))∗) = �′(wi(e(1))∗wk(e(1))ul(e(1))∗uj(e(1))).



Vol. 24 (2023) Noncommutative Nullstellensätze 2233

This implies the values in Eqs. (8.26) and (8.27) are the same, so

�(f∗f) = �′(f̌∗f̌) ≥ 0.

It remains to show that �(L(N )) = {0}. Elements in L(N ) are linear
combinations of monomials of the form

w(e(1))u(e(2))e(1)i
ae(2)j

b = w(e(1))e(1)i
au(e(2))e(2)j

b (8.28)

with ((i, j), (a, b)) ∈ N . Applying � to Eq. (8.28) gives

�(w(e(1))e(1)i
au(e(2))e(2)j

b) = �′(w(e(1))e(1)i
ae(1)j

bu(e(1))∗)

But e(1)i
ae(1)j

b ∈ N , whence w(e(1))e(1)i
ae(1)j

bu(e(1))∗ ∈ I(synchB(1)), so

�′(w(e(1))e(1)i
ae(1)j

bu(e(1))∗) = 0,

as desired. We have proved that �(−1) = −1 and �(SOSU +L(N ) +L(N )∗) ⊆
R≥0, whence −1 /∈ SOSU +L(N ) + L(N )∗. Then, Theorem 4.3 implies Item
(i).

We next show Item (iii) ⇒ Item (iv). Define the Hilbert space Ȟ :=
[π′(U (1))ψ] ⊆ H. By definition, π′(U (1))Ȟ ⊆ Ȟ, so π′ induces a ∗-
representation π̌′ : U (1) → B(Ȟ). By construction, π̌′(I(synch B(1)) = {0},
as desired in Item (iv).

Finally, to go from Item (iv) to Item (iii), start with the tracial von Neu-
mann algebra W with trace τ as in Item (iv) and perform a GNS construc-
tion. There is a Hilbert space K, unit vector ξ ∈ K, and a ∗-representation
π′′ : W → B(K) so that

τ(a) = 〈π′′(a)ξ, ξ〉, a ∈ W.

Since τ is a trace, ξ is a tracial state for π′′(W). Then, the ∗-representation
π′′ ◦ π′ : U (1) → B(K) together with ξ ∈ K satisfies Item (iii). �

8.2. Tracial Nullstellensatz

As given in Theorem 8.3, the articles [27] and [20] associate perfect commuting
operators strategies for any 2-player synchronous game with representations
into a tracial von Neumann algebra. Now, we discuss a Nullstellensatz which
characterizes the algebraic structures with representation into a tracial von
Neumann algebra. Combining this Nullstellensatz with Theorem 8.3 gives an
additional algebraic characterization of synchronous games with perfect com-
muting operator strategies.

The earliest tracial Positivstellensatz is in [21], done in the context of the
Connes’ embedding conjecture. An exposition of this and the (dual) tracial
moment problem is the book [4, Chapter 5] with more extensive results along
the lines of the theorem below, for example in [19, Proposition 4.2 and later]
and more moment theory in [3]. Moments with informative quantum games
situations are also in the recent paper [28].

Suppose A is a ∗-algebra. The commutator of a, b ∈ A is

[a, b] := ab − ba,
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and we call a, b cyclically equivalent, a
cyc
∼ b, if a − b is a sum of commutators.

Define

S̃OS := {a ∈ A | ∃b ∈ SOS : a
cyc
∼ b}.

Elements of S̃OS are trace-positive under all ∗-representations of A in tracial
von Neumann algebra.

Theorem 8.7. Suppose

(1) A is a ∗-algebra, where S̃OS is Archimedean in the sense that for every
a ∈ A there is η ∈ N with η − a∗a ∈ S̃OS;

(2) L ⊆ A is a left ideal.

Then, the following are equivalent:

(i) there exist a ∗-representation π : A → B(H) and tracial state 0 �= ψ ∈ H
satisfying

π(f)ψ = 0 (8.29)

for all f ∈ L;
(ii) there exists a ∗-representation π : A → F into a tracial von Neumann

algebra (F , τ) satisfying

τ(π(f)) = 0 (8.30)

for all f ∈ L;
(iii) −1 �∈ S̃OS + L + L∗.

Proof. The equivalence of Items (i) and (ii) is established via the GNS repre-
sentation as in the proof of Theorem 8.3. The implication (ii) ⇒ (iii) is easy.
Namely, if −1 ∈ S̃OS + L + L∗, and (F , τ) as in (ii) exist, then

−1 = τ(−1) ∈ τ(S̃OS + L + L∗) = τ(S̃OS) + τ(L) + τ(L)∗ = τ(S̃OS) ⊆ R≥0,

a contradiction.
For the harder side (iii) ⇒ (ii) we only give a sketch since it is very

similar to that in the proof of Theorem 4.3. Suppose −1 �∈ S̃OS + L + L∗.
By the Hahn–Banach theorem (version due to Eidelheit–Kakutani), there is a
linear functional L : A → C satisfying

L(1) = 1, L(S̃OS + L + L∗) ⊆ R≥0. (8.31)

Since L is a subspace, the second property of Eq. (8.31) implies L(L) = {0}.
Likewise, S̃OS contains all commutators and L(S̃OS) ⊆ R≥0, whence L(f) ≥ 0
for any f ∈ SOSA and L is tracial. Further, L(f)∗ = L(f∗) for all f ∈ A.
Then, the GNS construction yields the desired conclusion. �
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8.3. Quantum Graph Coloring

As an example of how one can use Theorem 8.3, we look at quantum coloring of
graphs. It is often formulated as a synchronous game. We start by recalling the
coloring setup and then we illustrate a general approach through an example.

Given a graph G = (V,E), where V is the set of vertices and E ⊆ V × V
its edges, we say G admits a quantum c-coloring [27], if to each vertex i ∈ V
one can assign projections ei

a, a ∈ {1, . . . , c} so that
∑

a

ei
a = 1, (8.32)

and for each edge (i, j) ∈ E, we have

ei
aej

a = 0, ∀ a. (8.33)

In algebraic terms, G admits a quantum c-coloring if the universal game
algebra U (1) generated by e(1)i

a := ei
a, where i indexes the vertices and a ∈

{1, . . . , c} admits a ∗-representation π that vanishes on the polynomials ei
aej

a

from Eq. (8.33).

8.3.1. Quantum Graph Coloring as a Synchronous Game. We shall be brief
here and refer to [27, Sect. 2] for a thorough discussion of graph coloring and
the connection to synchronous games.

A game is specified by a graph G. The verifier’s questions amount to
giving vertex i to Alice and vertex j to Bob; a perfect strategy consists of
a vector ψ and k projectors e(1)i

a for Alice and e(2)i
b for Bob meeting the

(universal game) constraints of Equation (3.7) and e(1)i
ae(2)j

a = 0 if vertices
i and j are joined by an edge. These give the probability of Alice and Bob
answering question (i, j) with colors a, b ∈ 1, . . . , c via the formula

p(a, b|i, j) := ψ∗e(1)i
ae(2)j

bψ.

A synchronous strategy means for i any vertex, p(a, b|i, i) = 0 if a �= b. This
is equivalent to e(1)i

aψ = e(2)i
aψ for a = 1, . . . , c. Equation 8.3 now converts

solving this system of equations to finding tracial representations of U (1)
vanishing on synchB(1). In our forthcoming example, we show there are no
representations much less tracial ones, so no 4-coloring exists.

8.3.2. Example. Consider the graph G = (V,E) given in Fig. 1. It is obtained
from a five cycle by adding two apexes (denoted 6 and 7 in the figure), i.e.,
two vertices connected to all the other vertices.

Observe that the chromatic number of G is five, so G does admit a quan-
tum five coloring. We claim that G does not admit a quantum four coloring.
For this, we apply our Nullstellensatz Theorem 4.3 to the quantum 4-coloring
Eqs. (8.32) and (8.33).

Generate the ideal

I1 = (ei
aej

a | (i, j) ∈ E, a ∈ {1, . . . , 4}) ⊆ U (1). (8.34)

By Corollary 4.5, the graph G admits a quantum 4-coloring iff

− 1 �∈ SOSU (1) +I1. (8.35)
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Figure 1. Pentagonal bipyramid

We show there are quadratic elements sj in U (1) so that

1 +
∑

s∗
jsj ∈ I1. (8.36)

To search for these elements sj , we employ NC Gröbner basis combined with
semidefinite programming.

Firstly, we lift our problem into the free algebra C〈e〉, where e denotes
the tuple e = (ei

a). For this, let Π : C〈e〉 → U (1) denote the canonical epi-
morphism, and let I = Π−1(I1). Next one computes a GB for I; with respect
to a lex order it has 350 elements of degree ≤ 3.

To search for nc polynomials sj of degree d so that

1 +
∑

s∗
jsj ∈ I, (8.37)

one employs the Gram matrix method and semidefinite programming [4]. That
is, letting Wd be the set of all monomials of degree ≤ d in C〈e〉 (listed w.r.t.
some ordering), Eq. (8.37) is equivalent to the existence of a positive semidef-
inite matrix M so that

1 + W ∗
d MWd ∈ I. (8.38)

Since ideal membership can be described using linear equations in terms of
the entries of M (given a Gröbner basis), Eq. (8.38) immediately transforms
into a semidefinite program (SDP).

In our example, Eq. (8.38) is infeasible for d = 1 and does have a solution
for d = 2. Reducing Wd modulo the GB (which one can do without loss of
generality to help reduce the size of the SDP) yields an SDP of size 272 ×
272. Observing that W ∗

d MWd = tr(MWdW
∗
d ) and reducing entries of WdW

∗
d
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modulo the GB, Eq. (8.38) converts into a set of linear equations on the entries
of M which are sparse and can thus be efficiently solved. We are then left with
an SDP of manageable size. Solving the SDP using a standard solver with
trivial objective function yielded a floating point positive definite solution M
with minimal eigenvalue of ≈ 10−2. By choosing a fine enough rationalization
[7,26], we thus obtain a symbolic (i.e., in exact arithmetic) positive definite
solution M of Eq. (8.38), establishing that G does not admit a quantum 4-
coloring.
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