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Abstract. It is a fundamental problem in mathematical physics to derive
macroscopic transport equations from microscopic models. In this paper,
we derive the linear Boltzmann equation in the low-density limit of a
damped quantum Lorentz gas for a large class of deterministic and ran-
dom scatterer configurations. Previously this result was known only for
the single-scatterer problem on the flat torus, and for uniformly random
scatterer configurations where no damping is required. The damping is
critical in establishing convergence—in the absence of damping the lim-
iting behaviour depends on the exact configuration under consideration,
and indeed, the linear Boltzmann equation is not expected to appear for
periodic and other highly ordered configurations.

1. Introduction

The quantum Lorentz gas is a model of conductivity in which a single quan-
tum particle (electron) evolves in the presence of a potential given by an in-
finite collection of compactly supported profiles placed on a discrete point set
P C R%. These profiles, called scatterers from here on, represent the relatively
heavy molecules of the background material. The point set one should choose,
and the limiting behaviour one should expect, is thus dependent on the micro-
scopic structure of the material in question. A fundamental question is whether
one can, for a given P, derive a macroscopic transport equation, e.g. the linear
Boltzmann equation, from this microscopic model.
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Some reasonable choices for P are (i) a realisation of a (Poisson) point
process to model disordered materials or an environment with random impu-
rities, (ii) a lattice, union of lattices, or other periodic set to model metals and
heavily ordered materials, (iii) aperiodic point sets to model quasicrystals. In
the classical (non-quantum) setting, the pioneering papers [1,8,20] established
convergence of the Liouville equation to the linear Boltzmann equation in the
low-density (Boltzmann—Grad) limit, provided the scatterer configuration P
is random, e.g. given by a homogeneous Poisson point process. More recent
work has shown that in the case of crystals [2,15] or other point sets with long-
range correlations (e.g. quasicrystals) [16], different transport equations will
emerge in the Boltzmann-Grad limit due to correlations that arise between
consecutive collisions. These findings are somewhat mirrored in the quantum
setting: on the one hand, Eng and Erdos [5] proved convergence to the linear
Boltzmann equation for random potentials in the low-density limit, following
analogous results in the weak-coupling limit by Spohn [19] and Erdés and Yau
[6]; on the other hand, recent evidence suggests that a different transport law
emerges in the same scaling limit when the potential is periodic [9,10].

The motivation for the work of the present paper is Castella’s striking
observation [3,4] that the space-homogeneous linear Boltzmann equation can
be obtained as the limit of the von Neumann equation on the flat torus with
a small scatterer if some damping is introduced. In particular, the evolution
for ‘diagonal’ terms is undamped (where incoming and outgoing momenta are
equal), and the evolution for ‘nondiagonal’ terms is exponentially damped in
time (where incoming and outgoing momenta differ). This exponential damp-
ing of nondiagonal terms models phenomenologically the interaction of the
system with, for example, a bath of photons or phonons, see [3] and references
therein, in particular [21, Chapter 7-3]. (Also [11,14]). In a rough sense, inter-
actions with a ‘noisy’ external environment can lead to ‘random’ perturbations
of the momenta. When the incoming and outgoing momenta are equal, these
random perturbations tend to cancel one another out, but when the incoming
and outgoing momenta are distinct, these random perturbations persist and
lead to exponential decay. Here, we will show, using such a damping mech-
anism, that the full (position dependent) linear Boltzmann equation can be
obtained as a limit of the quantum Lorentz gas in R? for a general class of
scatterer configurations which includes both periodic and disordered examples.

The proof differs from that of the main Theorem in [3,4] in a number
of ways. If the problem is restricted to the torus one has discrete momenta,
and this allows Castella to (i) introduce a damping which is constant on all
nondiagonal terms, but zero for diagonal terms, and then (ii) derive a transport
equation for the diagonal part of the density matrix before taking any scaling
limit to eliminate the nondiagonal terms— the convergence is then established
on the level of this transport equation. If one instead considers the problem in
R? the momenta are continuous and this approach no longer works. Instead,
we (i) introduce a smooth damping function which is zero for diagonal terms
and approaches some constant value smoothly as one moves away from the
diagonal, and (ii) compute the limit of the full Duhamel expansion, separating
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damped and undamped regions using a combinatorial argument, and then
show that the resulting expression satisfies the linear Boltzmann equation. The
damping function in particular must be carefully chosen to scale in the correct
way in the small scatterer limit in order to obtain this limiting behaviour,
and one must be careful in dealing with the intermediate regime between the
undamped and fully damped terms.

We assume in the following that d > 3. The time evolution of the quantum
Lorentz gas is described by the Schrodinger equation

ih
;—ﬂatwa, ) = Hy \ip(t, ), (1.1)
where
h2
Hur =gt q;)w—lq) Wz = q). (1.2)

The single-site potential W is assumed to be in the Schwartz class S(R?),
r > 0 is the effective radius of each scatterer, and the A is a cut-off function
which we assume to be smooth with compact support contained within the
unit ball. The classical mean free path length is O(r'=%), so A has the effect of
truncating the potential on the macroscopic scale. The assumption that A is
compactly supported is a technical one to avoid infinite summation and it is
possible that it can be weakened significantly. (For example, one may ideally
wish to take A\(g) constant.)

We assume that P C R? is a uniformly discrete point set with asymptotic
density one. This technical requirement is introduced so that P provides a
suitable set over which a d-dimensional Riemann sum can be computed, and
that this Riemann sum converges with an explicit error term. In particular, we
require that there exists bp,cp > 0 such that ||g — ¢'|| > bp for all ¢, q’ € P
with g # q’ and for every g € C2°(R?), 0 < e < 1 we have

S gleq) = / g(@)dz + O™ | Vgl)). (1.3)

d
qeP R

Deterministic examples of P that satisfy these assumptions are lattices
(e.g. P = Z%) and large classes of quasicrystals (e.g. the vertices of a Penrose
tiling). For random examples, one can take the so-called Matérn processes [17]
in which a realisation of a homogeneous Poisson point process is then thinned
to remove clusters, or a random displacement model, in which each point in a
deterministic set (e.g. a lattice) is randomly perturbed by a small amount. (As
long as the random perturbation is small enough the resulting point set will
be uniformly discrete provided the initial point set is uniformly discrete). The
restriction to uniform discreteness likely can be weakened. For example, one
may wish to take bp to depend on ||g|| and ||q’||, or insist that ||g — ¢’|| > bp
holds only for almost all pairs of points in P. In both cases, we expect the
same results to hold.

To study the quantum transport and the Boltzmann—Grad limit, it is con-
venient to move to the equivalent Heisenberg picture and study the quantum
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Liouville equation (or von Neumann equation/backward Heisenberg equation)

27

5 s ot (1.4)

Orpr =
for a density operator p;. We introduce damping to the system by considering
the a-damped von Neumann equation (in momentum representation):

oy 2w ol =d(y 0\ 5 (. o
atpt(yay):_7[Hh,)\apt](yay)_7(I_F(ah (y_y)))pt(y7y)7

h
(1.5)

where a > 0 is the strength of the damping and I' € C2°(R?) with values in
[0,1] so that T'(y) = 1 in some neighbourhood of the origin and I'(y) = 0
for ||y|| > 1. Equation (1.5) describes the averaged quantum dynamics of a
particle subject to white noise in momentum where I'(y) is the covariance
function of the corresponding Gaussian random field. We refer the reader to
[7] for detailed rigorous treatment of white noise perturbations in phase space,
and to [12,13,18] for the more standard setting in position space.

In order to establish the convergence of the damped von Neumann equa-
tion (1.5) to the linear Boltzmann equation, we need to carefully prepare the
initial condition of p; relative to a classical phase space density a. Following
the approach in [9], we achieve this by the rescaled Weyl quantisation Op,. ;,(a)
of a classical phase-space symbol a:

Op,.p(a)f(z) = rAd=D/2pd/2 /

(3w ey el — o) ) sl an'ay,

(1.6)

with the shorthand e(z) := e?™%. This means we measure momenta on the
semi-classical scale, and position on the scale of the classical mean free path.
Although other scalings are possible, we will here focus on the case when r = h.
This will ensure that scattering remains truly quantum in the limit » — 0, and
that we see the full quantum T-operator in the limit. For the single scatterer
Hamiltonian

1
Hy = -5+ puW(x), (L.7)

we define the T-operator at energy F to be the operator satisfying

T,(8) = wOp () (14 =g TulE)) (19

and write T, (y, y’) for its integral kernel in momentum representation at en-
ergy E = 1|ly||%2. We have the explicit expansion (understood in terms of

distributions)
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Tu(y,y") = uW(y —y')

+Z 27””“/ W(y—y,) Wy, —y) w9

H / e((Iyl1? ~ 19,2 u)duldy, --- dy,
where

W(y) := y W(z)e(—z - y)de. (1.10)

Theorem 1. Let a,b be in the Schwartz class S(RY x R?). If p; is a solution
of the a-damped von Neumann equation (1.5) subject to the initial condition
po = Op,.;,(a), then fort >0

lim lim Tr(p,1-a; Op,. 4 ( )):/ f(t, z, y)b(x, y)dady (1.11)
R2d

a—0r=h—0

where f(t, x,y) solves the linear Boltzmann equation

{(8t +y- vz)f(tz z, y) = /Rd [E)\(w)(y7 yl)f(tv z, y/) - E)\(z)(ylv y)f(tv z, y)} dy/
f(0,2,y) = a(z, y)
(1.12)

with the collision kernel

Su(y o) = 87| Tu(y, )2 o(lyll® = 1/11°). (1.13)

Note that the limits & — 0 and » — 0 do not commute. Indeed if one
first takes the limit @ — 0 followed by r — 0 one is back in the situation
of [5,9,10] where the limit depends on the precise nature of P. The striking
feature of Theorem 1 is that the limit is the same for all admissible scatterer
configurations P, from periodic to highly disordered.

In Sect. 2, we perform the Duhamel expansion of the solution to the
damped Heisenberg equation, this allows us to obtain an explicit formal ex-
pansion for the solution as a power series in A(z). In Sect. 3, we perform a
carefully chosen partition of unity which allows us to isolate the damped and
undamped regions. In Sect. 4, we perform the low-density followed by the zero
damping limit on this reorganised series. This section constitutes the bulk of
the paper: we first show that the sum of all nondiagonal terms converges, and
then vanishes in the limit; then, we show that the sum of all diagonal terms
converges, and hence that the entire series converges to some f(¢,x,y) given
explicitly as an expansion in A. In Sect. 5, we prove that our limiting expression
coincides with a solution of the linear Boltzmann equation using [4].
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2. Deriving a Formal Expansion

In the momentum representation, the kernel of the Hamiltonian (1.7) reads

Fa(y,y) = "5 Iyl 6y — )+ Op(V)(3. 9 (21)
where
Op(V)(y,9") =S A" qle(q- (3 — y))W(r(y —¥).  (22)
qgeP

Inserting these into (1.5) yields, after a suitable variable substitution,

N ) ad _ N
Oer(y,y) = — (mh(llyllz —Iy1%) + 21— Pant =y - y’)))) Py, )
_2m a

Tt S M) [ dzet—g- )W) By -2y (23)

4€P
— ey, 9"+ 2)].
Following Castella [3], it will be convenient to write
ply—2z9)—p(y.y +2)=— > (—)h(y—rz9 +72) (24)
v€{0,1}
with 4 := 1 — . The Duhamel principle for (2.3) yields

N ahl—d
pt(y,y’)=e(—b(lly\|2—lly’ll2)t) AT ) Gy )

27” dz / dze(—q'z)W(rz) Z (=1)7

= €O (@25
¢ _ﬁ _ 1—dg, 7 _ e
/ e(=B(|ly]2 = 4|2 (t - 8)) e~ F A-T@r =00 (t-9)

X ps(y — vz, 9y +7z)ds.
Iterating this expression and making the substitutions vy =t — s, and u; =
55 — 8j41 for j > 1, we obtain the formal expansion

~ _a% ahl—d _
Pe(ry') = e(— B (ly]2 — ||y [[2) t) e % AT W = 50 gy
+ 3 @ikl ST AT ) AT )
m=1 41, 4, €EP
X dzl---dzme(fql-z17---fqm-zm)W(rzﬂ---W(rzm)
Rm,d

% Z (_1)%+~~+wm / dug - - - dum,
Y1, Ym €{0,1} S Bm (1)

7 7
c (—; (|y— S ezl + z%zﬂ) )
i=1 =1
ad 1—T(ahl=d(y’ J m m
% e*T( —I'(« (Y —y+20_2:))) uy ﬁO y*Z'Yizi,yl‘i’Z:Yizi
=0 i=1 i=1

(2.6)
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where A, (t) € R™*! is the set
Am(t) = {(U07...,Um) GRT+1 \uo—i-—f-um :t}

= ’I\r(ﬁrlfdt(/).ir,r(b)x where Pt

We now wish to compute Tr(p,1-a; Op,..(b))
solves the damped von Neumann equation (1.5) with initial condition pg
Op,.,.(a). The kernel of Op,. ,(a) as defined in (1.6) reads in momentum rep-

resentation

Op, (a)(y,y') = r= 4= D2pd2G (12 d(y gy By 4 y')) (2.7)

—z - £)dz. Inserting these in (2.6) yields the

where a(€,y) = [zaal
expansion
Tr(p,1-4,0p,,. (b)) = > _ (2m)™ A% (¢) (2.8)
m=0
where

Im112) t)efadr*d(lfﬂar“d(n —y))Nt

AGT () = 7472 [, dydn e(— 52~ 4(||lyl|? -
(2.9)

xa(rt=4y —m), L(y+m))b(ri=4(n —y), Z(n + v)),

and for m > 1

A () = plmmd@=DFd N AT gy) - A (T g,,)
G anEP

X -1 71+~-+’ym/ dyd / dz1---dzm
Z (=1) Jzoa yﬂ.Rmd z1 z

Y1, Ym €10,1}

x He( q;- Z)Wrzl)/ dug - - - dum,
AN, (ri-dt)
e—,,(l—l"(a?"ll(ﬂ—y+2112,)))uy]

, J j 2

By 77+Z%'Zi - y_Z'Yizi w;
0 =1 i=1
< —Zzz->,§(y+n—2(% ¥i) z))

i=1

xb(r' =4 m —y), 5(n +y)).

cr=nk;

<.
I
<}

2

zsl

L7

/\

(2.10)



850 J. Griffin Ann. Henri Poincaré

We first make the substitution n — y + 7971n. Then, make the substitution
y — r~ 'y and for all j, make the substitutions Uj — TUf, Zj — r’lzj. This
yields the expression

AXT®) = Y ATy AT g,,) 3 (—1)ntetm

4y, 4, €EP Y1, Ym €{0,1}

></ dydn/ dzq---dzm, He(fr_lqi-zi)W(zi)
R2d Rmd =1

m
X/ duo -+ dum | [] el&; us) e~ A-T(@+r " Si =) u,
A (ridt)

j=0

x&( n—r dez,y—Z%zerlrdnJr Zm)lz(n y+ 5rin)

i=1 i=1 i=1

(2.11)
where ¢; is given by
2 j 2
51“%( y+ Y wizi+rin >— =Y iz )
S | = , (212)
J J J
i=1 i=1 i=1
The limit of the first term can be computed immediately.
Proposition 1.
lim hm A" () = daxdya(z — ty, y) b(x, y). (2.13)

a—0r—0 R2d

Proof. We have that
A" (t) =/R2 dydne(y - nt +r|n|*t)

“dad(1-T'(an))t a(-n,y+3 1, r[) b(n7y+%rdn). (2.14)

The functions @ and b are rapidly decaying so this is uniformly bounded as
r — 0. By dominated convergence, we thus obtain

liﬂg)AS"T(t)=/ dydne(y - nt)i(—n,y) b(n, y) 1[T(an) = 1]. (2.15)
r— R2d

Again, by the rapid decay of @ and b this converges in the limit o — 0 and we
obtain

a—0r—0

lm Tim A3 (1) = /R dydne(y -nt)a(-m,y) b, y)

= /R?d dedya(x — ty, y) b(x, y). (2.16)
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3. Manipulating the Expansion

For the higher order terms, we perform a partitioning of the z; integration
region. To see why, note that (2.11) has a product of factors of the form

e (I-T(am+r T, z)) u; (3.1)

If the argument a(n + r—¢ 5:1 z;) is large, then this entire factor becomes

e’ “7, and hence the u; integral is exponentially damped. Our partition will
be precisely into these damped and undamped regions. Let S = {s1,--- ,5,} C
{0,---,m} with s; = 0 and s, = m and write II,, for the set of all such S.
Define x° : R¥Um=1) _ R by

Xs(zlv"wzm*l) = HX(ZSj> H(I_X)(zj) (32)

igs
where y € C2°(R? — R) is decreasing in ||z|| such that y(z) = 1 for all ||z|| < 1
and x(z) = 0 for all ||z|| > 2. This implies the bound

][z < vol(Bz) (3.3)

where B, is the d-ball of radius 7. Note that x© forms a partition of unity:
> Se,, x° = 1; and also that by assumption on the support of I’

(1 — x(az))e @ A-T@DE = (1 _y(az))e "™, (3.4)
We put v = (71, ...,7m) and rewrite (2.11) as
Anr(ty = Y (St N AT() (3.5)

~v€{0,1}™ Sell,,
where
ATEO= X ACTra) A e, [ dydndeseds,
ay, 7qm€7j R(m,+2)d
X W(zl) .- ~W(zm)e(—r_1q1 cz1— =TT g, Zm)
</ duo -~ dup | [ e(€sus)e" O -T(@tmr= S =0,
N, (r=dt) =0

x x5 (am +r7%1), . am+rT Nz 4+ 2me1)

X d(—n —r Yz y— ) iz +§<Tdn + ZZ)) b(n,y + 3r'n).
i=1 i=1 i=1
(3.6)
Note that all elements in the complement of & occur in |S| -1 = p—1
contiguous blocks (possibly of size zero). Write k; = ;41 — $; — 1 > 0 for the

number of elements in the i*" block. To simplify notation, we will use double
subscripts to refer to the jth element of the ith block, e.g. z;; := z,,4; where
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0 < j < k;. When j =0 we will write z5, or z;0 interchangeably. We then put
1 =mn,; and for i = 2,- -, p we make the change of coordinates for z(; ;1) by

N1 = ’r—d <z(i+1)0 + Z zij) .
j=1

This gives a factor of r@* (=1 In these new coordinates, we have that

p—1
q)-z1+ -+ Q- Z2m = Z (7" qeir1)0 " Miy1 + Z <q” (i+1)0> : zij>'

i=1 j=1
(3.7)
The product of potentials can be written
p—1
W(z1) - W(zpm) = HW(rdnHl ZZU) HW Zij). (3.8)
i=1 7j=1
By convention, let us assume that 75, =9 =0. Fori =1,--- ,p, we have that
&, = ri¢; where
i—1 K
<y Z Vet = V(k+1)0 Zk€> : (an>
k=1 =1

(g

Fori=1,...,p—1and j=1,...,k;, we have that

&ij = (

). (3.9)

Y+ Zk 120k (e = F(ket1)0) Z Rt + Zf_;:l Fiezie + ¢ 22:1 Ye0N &

Y — st i (Yot — Y4 1)) Z ke — 2gy Yeezie — 10 Dy Yeom,

(3.10)

The functions @ and x° become

&<_U_T_dzziay—z:%zri-%(Tdn—i—Zzi))
=1 k; P
:&< Zn“y DD (i = Vo) zi — 31> (o — Fio)m )

=1 j=1 =1

(3.11)
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and

X(am+rz1),. . am+r Nz + o+ Zm)
(Hx(aznk» Hr‘[um(a(znwwzzie))
i=2 k=1 i=1j=1 k=1 =1

(3.12)
We write H = (n,---,m,) and

xS(a(m+r=4z1),..,a(n +r % (z1 + -+ 2m-1)))

|:HZ 2 X( 22:1 "k>:| |:Hf—_11 H;;1(I -X) (04(22_1 ny + 74 Zi:l Zié)):| .

for the collection of remaining z; variables. Make the substitution u,, = r~%y;,
then Eq. (3.6) can now be written

AZS(t) = pdld=D(p-1) Z Ard=tg) - A% 1g,,) dydHdZ s
v R(m+2)d
41, 4, €P
p—1 K; i j
X I s(Zs,H,y) H H(I—X)<a< Z Ny +T_dzzie>>
i=1j=1 k=1 =1
-Pfl K
x € _Td_lq(iJrl)O Mgy —r Z(qij —q(it1)0) " i
=1 j=1
[p—1 i
X x(aan)} / S+ vp+rt D U — 1)
LiZ2 k=1 R i¢s
[ P
X H e(Givg) e @ =T Xm0 rtviqy, {H e(Eiug)e™ " d“’}
Li=1 igS
(3.13)

where F s is defined by

p—1

11 <VAV(Tdm+1 - Zzw) H W(zij) >} My, y+ 3r7ny)

F,;"S(ZS,H,:U) = [

i=1
p p—1 K,; d p
x a( = > ey = > (i = Yarno)zii — 570 Y (vio — 7"0)’71)'
i=1

i=1j=1 i=1

(3.14)
4. Computing the Limit » — 0
We first separate diagonal and nondiagonal terms by writing
Ts(t) = AGn s(t) + ALY s(t) (4.1)
where A}7 (t) is defined by restricting (3.13) to the diagonal g,; = q(;41)0
foralli=1,...,p—1and 5 =1,...,k;. The nondiagonal term contains the

remainder of the summation.
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4.1. Nondiagonal Terms

Proposition 2. (Upper bound on nondiagonal terms) For a,t > 0, there exists
a constant C > 0 depending on o, t, W, a and b such that

A2, 5] < O™ 7 Toga(1+ 71051 N (42)
where N[00 = max{ A, A2~

The idea of the proof is simple: we note that (3.13) has the form of
a Fourier transform in the z;; variables; if we can show that this function,
as well as the partial derivative [[7_} | I, 0.,,, of this function, is in
LY(R¥m+1=P)) " then the Fourier transform is bounded and decays at least
linearly in each coordinate direction. This will allow us to sum over the non-
diagonal terms and obtain the logarithmic bound needed. The only issue is in
taking this partial derivative. Note that (3.13) contains factors of the form

Ki

[I-x (a <Z me+r Y Zie>> : (4.3)
k=1 /=1

J=1

Taking the partial derivative H;:1 szl 9., of this factor alone yields (r;!)
terms by the product rule. Recall that x; may be as large as m — 1, so this
would preclude us from obtaining an upper bound of the form C™ as is needed.
The solution to this is to first perform a carefully chosen variable substitution.
Write B; :={1,...,k;} and define

J
Tij = E Yik
k=1

J
pij = ki +1— Zﬁm
k=1
We also write 7; = 74, and p; = i, — observe that p; =7 + 1.

Lemma 1. Let M : R — R™1=P) pe defined component-wise for i =
1,....p—1landj=1,...,Kk; by
M(qlf"'aqm)ij

_ ) TG+ — i T Qet1)1 — Q1) (ki +1) j=oi, it=1,...,p— 2(4'5)
ii+1) — Gy otherwise

Then, we have that
AR s (1)
=pd@=DE=D N AT ) AT g,,)

qgeP™ (4.6)
M(q) #0
j’r (M(T71QI5"'77‘71q7n))

Dy Up=1)pp 1

where the hat denotes the usual Fourier transform and
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1y 444q(p71)“'p71 (ys)

= Jrwina dde&( = Xiin, Yp—1)o,_, ETd b1 (vio — ’7710)771') b(n,y, y+ Lrin))

X [Hf: <[H;;1 W(yi(j—l) - yij):| V/l7(yiﬂ = Y, T TN 40) {H]:M W (yi; — ¥igj41) ﬂ
|:1_.[7,:1 I, —x) <a<22:1 Nk +r‘d(yw” = Yir, >>] |:Hz 2 X( Yot 77k>}
[H1 1 e( "'dilqiul . 17i+1)} fRn+1 5(V1

ottt T ui - )
d i
X[ P1e(Civi B

e(c v )efa (A=T(x X}y M) r*‘“’zdyi] {ngs e(é‘;ui)e*adu d’Uz7,1|

(4.7)
Proof. Permute the indices in each block, so that all those indices s; 4+ j with
Yij = ) 1 '

= 1 come first, in their original order, and all those indices with v;; = 0
come last, in reverse order. Equation (3.13) can be written
Aa,r

d(d—1)(p—1 d—1
SO D D
4158, €P

R(m+2)d
p—1 K; i Tij
X F] s(Zs, H,y) [ [ [T =x)|e

K
( (Z’?k+r_dzzie+7’_d > Zu))
i=1j=1 k=1 =1
- .
d—1 _
X e (—T qii+1)0 " Mit+1

AT, dydHdZs

b
-

=

L=pu;j

i

1

Z(Qij - ‘I(i+1)o) ' Zij)}
i=1
X 1 (aan)]/” 6(v1 + -~+Vp+rdZui—t)

i¢S
(Cwi)e*a"ufr(azzzlnk))wdu,dyl} [
1

H e(fzui)efo‘d“" dul]

,':hl I ’:]

igs

where ¢; and F7 s are defined as before, and

i—1 K 2
§ij = ( y+ZZ Ve = V(k+1)0)Z ke + Z Zig T Z%o'ﬂk
k=1¢=1 t=pi; k=1
1—1 Kp

Tij
=D (e = Ykr1y0)Zhe — sz - Z%O"k
k=1/¢=1

We now perform the substitutions

). (4.9)
2 = {yi(jl) —Y; J<T

) (4.10)
Yi; — Yii+1) J = i

with the convention Y,y = ¥i(.,11) = Y(i-1)o,_, and 05 = 75 + Y(i+1)0- Note
that

Ki

> (V10 = Yid)Zii = Yioy = Y(i-1)0s 1 (4.11)
j=1
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We thus have

ATT(E) = PAETDEED S T ) - AT g,) /( oy AydHAY s
1 4m €P SR ;

p—1 K; i
X G s(Ys, H,y) [H 1 - x)(a(;nk + Y, — ym,)>>}

i=1 j=1

p—1
d—1 1
x [H e (*"‘ qiityo " Mit1 7 duino - Wip, — yn—,))]
1

X
—
Bl
[l I

e (*”‘71(‘1;1 ‘Yo + (22 — 1) Y+ + ('Iw, - ‘11(7,—1)) CYi(ri—1) T Qir, yw‘))}

i=1
p—1
X [H e (—"‘_1(111,4, i, Wiy = Gip) Vi T+ (Gin, = Gie,—1)) * Yin, — Din, ?11(m+1)>)]
i=1
p—1 i
X X(QZTM)}/ 5(V1+"'+Vp+7”dzui*t)
i=2 k=1 IR ¢S
P
X [H e((;ul) eiad(lir(az‘*:*"‘))Tﬂt“'dyi H e(&:u,)eiadu‘ du;
=1 igs
(4.12)
where
i i 2 i 2
I 1,.d —
Ci - y(i—l)ai,l ! M + a7 Vs Mk - e )
k=1 k=1 k=1
i 2 i 2
/1 d = d
& =3\ || Yip, 7 E VoM Yiry, =T E YeoMk|| |
k=1 k=1
(4.13)

and

p—1 P Ky
Gl s(Ys,H,y) = { d I Wi - yu')}w(yw, — Y, + 7 i+1)|: Il W, - yi(j+1)):|>:|
: =1 J=h

P p
~ d — 7 d
x a( =D M Yo, — 37D (Vo — %o)m) b(n Lyt ir m)
i i=1

(4.14)
Finally, we relabel the g; indices according to the map
sit+J 1<j<n
sitj—=sitij+1l p <j<ki. (4.15)

5i + [ J=ri+1
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We thus obtain

ATG(t) = p1TDET T AT T ) AT )

dydHAY s
G g P R(m+2)d
p—1 K, i
x G s(Ys, Hyy) | [T TTZ =) <a< S+ i, — y)))
i=1 j=1 k=1
[p—1 K
X e *Td_lqm, M1 — 7"_1(1111 - Qim) “Yi-1)o,, — rt Z(Qi(y+1) - qi]’) “Yij
Li=1 J=1
rp—1 i
X X(aan>:|/ ‘6(u1+---+up+rd2ui—t)
LiZ2 k=1 R i¢s
[P
x H e(C;w) e*@d(l*[‘(ry ZL,W&))TJ”'dyi] [H e(g:ui)eiad"‘ du1:| .
Li=1 igs

(4.16)
The result then follows.
Lemma 2. There exists a constant C; > 0 such that
. @O 1
Jqlul"'q(pfl)up_1 (517 ce 7£m+17p) < CJ (p . 1)' ad(m,1+p)
m+1—p d
m —2 * . _
W5 I ez ol ] ] min{l ;' (417)
i=1 j=1
where
Wy =sup  sup 272102 W||Ls,
P21 B (LB IISN
1/2
o= sw [ ([ whopamba) an
18111:1182lI<N JRE \JR4
(4.18)

and B, By are multi-indices.

Proof. We first prove that .J is in L'(R¥™+1=P)) and hence that the Fourier
transform is well defined. Taking absolute values inside the integral yields

< / dydHdY s
R(m+2)d

P P
~ da - 7 d
a(— E NisYp—1)op_y — 3T (’wo—%o)m)b<m,y+%r 771)
=1

=1

p—1 Ti i
H ({ H W('.‘ijl - y;)} W(yi‘rl —Yip, T "‘dni+1){ W(yij - yi(j+1)):|)
i=1 j=1 =g

X

j=

p—1 i
X {H x<a2nk>}/ 16(V1 + vy —t)dyy - duy, {H e "Miduy | .
i=2 k=1 RyF i¢s

(4.19)
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Integrating over v and w yields
T
HJ‘IlM il p—np_a HLI

Pt 1 ' 7 1.4
< 6Ty aa /wwddedY‘s 51w+ 37|

a(any(p—1>op1 *%rdZ(%o Yio)n ) {H < anﬂ (4.20)
" 1:[ <[ H Wi, - yj)} W (Wir, = Vi, +7"004) { H (yij — yi(j+1)):|>‘-

i=1 j=1

The ith block of W factors has the form
WWi-1)or s — Y)W (Wi — Yi2) - W Yir, — Yip, + rimg)

W(yi(ni_lq) - ym)W(?Jm - y(ifl)cri_l)' (4.21)
By a series of substitutions, this can be written
W(yi1) - W(yim)w(rdniﬂ Y- - yucl) (4.22)
Hence, after applying Cauchy-Schwarz to the Y(p—1)o,_, and 7, integrals we
obtain
” 111,11'“4(;;_1),4,1),1 HLl
o 1 VI L W02 x> el
= (p o 1)' ) L L X L
(4.23)

where

ot = [ ([ atmwran)an (4:24)

Next we prove that differentiating once with respect to each component of each
y,;; variable yields a function which is also in L', and hence we can conclude
that not only does the Fourier transform exist, it decays at least linearly in
each coordinate direction.

The first step is to bound the number of terms we obtain when apply-
ing this partial derivative. The function a depends only on Y(p— which

appears once. The product of W depends on all y,; variables, with each one
appearing either twice, if j # o;, or four times if j = ¢;. The number of terms
this generates is thus bounded above by 4("+1=P)4 The product of (I — X)
factors is more subtle. Each factor has the form

( Z n; +r yzu,” yiTij ))) ’ (425)

ie. it is a function of two y,; variables. In passing from one factor to the
next, when ~;; = 1 we increase the index of the second variable by one, and
when v;; = 0 we decrease the index of the first variable by one. If the block
consists of alternating sequences of ones and zeroes of lengths ¢4, ..., £, with

1)0’;‘,71
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ly +---+ ¥, = Kk and n < k; then we have n — 1 variables which appear
ly+1,...,0,+ 1 times, respectively, and the remaining variables appear only
once. For n > 2, this yields ((f + 1)--- (£, + 1))¢ terms which is bounded
above by (1 + %)"4. This is increasing, and hence the maximum number of
terms from each block is bounded above by 2%:¢, and from the entire product
is 2(m+1-p)d_ The product of e(fgjuij) is similar. Finally, each (; depends only
on Y(;_1)o, ,- In total then, there exists a constant C such that the number
of terms is bounded above by C7*. Each time a derivative is applied to the
factor e(¢/v;) we obtain a multiplying factor of v;(}",_, ;). By the compact
support of x (and the rapid decay of a, 5) this is essentially bounded above
by ta~'. Each time a derivative is applied to the factor e(&};u;;) we obtain
a multiplying factor of f£wu;;. There are at most 2d derlvatlves which act on
each of these factors so these factors can be uniformly bounded above by, e.g.
I ¢ s{ui)??. Proceeding as before, there thus exists a uniform constant Cy > 1
such that

p—1 Ky
IT11 H L1y

i=1j=1k= 1
< >(d+1)p71 1 . ., i
G adm i) W lza X7 Tallz ol

Ll

<0y

(4.26)
The result then follows. O

We can now prove Proposition 2.

Proof. (Proof of Proposition 2) By Lemmas 1 and 2, we have that

<t>(d+1>p71

o, —2 *
A5 0] < O S aaer W X e 1

1

— Ky d
) p Mm@ N AT g ) AT ) H H H min{1, M(r~'Q);;;}.
QePm i=1j=1k=1
(4.27)
We are summing over the nondiagonal terms, so there exists an ¢ and j such

that g;; # q,,,- In particular this implies that at least one of the M(r=1Q)ijk
is nonzero. By the compact support of A,

¥ g ep AT ) Iy min{l, (g —q)) '}
a#4q
< H)\HL‘” Z = Zgo \ {0} qup
4]l < logy(1+ 7'~ %5")
[T, T2 1< 2 <ot 1] min{1, (g — )7}, (428)
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The number of points in a region of volume V' is bounded above by Vb;d SO
we conclude

gep A ) [T, min{1,r(g; —¢}) "'}
q#q

d d i T
<2 Ao~ 30 iezd,\ {0} -, 2 mm{l, 2@71}. (4.29)
llilly < logy(1+r'~9b5")

In fact this can be written more simply: for r < 2,

) r 1 =0
21 min ]., —_— = i 430
syt {r;_l il > 0 (£90)

We partition the sum into 2% regions according to whether i; is zero or nonzero.
The region which gives the largest contribution to the sum as » — 0 is the one
where all but one ¢; are zero. Using this upper bound, we obtain

d
ST A g) [ min{L,r(g; — )7 < 227 Al rlogy (1 + 11751,
qEP j=1

a#d
(4.31)
Hence, we may write
A 5(0)] < 2rlogy (147 ~b5") — L W I a3 11
nd,¥,S = 2 P qd(m—1+p) 2d Lt d L
mt1—p d(d—1)(p—1) (B TIPTY
X (AN gy TR AT @D 4.32
| (p—1)! ( )
X Z )‘(Td_lqml) co A(Td_lq(p_:l)prl)
Qi p—1)y, 4 €
and the result follows from our assumption (1.3). O

Theorem 2. (Sum of nondiagonal terms vanishes) There exists a constant
Ao > 0 depending on a,t,W,a and b such that for all X with ||A]|1,00 < Ao

oo

(2ri)" DT (FTE S A (1) = O (o (14 ).

m=1 Fe{0,1}m S€lly,
(4.33)

Proof. Begin from the result of Proposition 2. Using the fact that |II,,| =
2m=1 we see that the left hand side of (4.33) is bounded above by

rlogy(1+ 7' "%%5") (87C|All1.00)™ (4.34)

m=0

which converges for | Al|1,00 < (87C) 1. O
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4.2. Diagonal Terms

Proposition 3. (Convergence of diagonal terms)
lim ASE (1)

= [ RS R () R () P sz )
R(m+2)d

{H/ e(£%) QUdu} .du5(1/1+---+yp—t)

XLﬁ@((%Ziw ) (o)) o) =

(4.35)
where )\ = JaalA( —

p—1 Ki
F%S(Zs,H) = H W( Zz”> H Z”
i=1 i=1
( Zm,y ZZ Yij = V(i+1)0 z”> b(n1, ),

=1 j5=1
(4.36)
and fori=1,....p—1andj=1,...,K;
i—1 K;
( y+ZZ Ve = V(k+1)0 zk@+Z'71€Zz£
k=1 (=1

ZZ Vke = V(k+1)0)Zke — Z’mzze
k=1 ¢= =1

) . (437)

Proof. From (3.13) and the definition of the diagonal terms, we have

d(d—1 1 d—1
AGT s(t) = 2T DEED N N g, )
Qoyr 245, €P

I fjr- (o o))

A(rThg, ) / dydHdZs
R(m+2)d

i

F;ﬂ,s(Z‘S‘,Hay) |:

rp—1

X € (—Td_I‘J(q;Jrl)o . ’77:+1)
( an>:|/ <V1+...+Vp+rd2ui—t>
IR igs

e(CiVSi)efad(l—F(a Z;Zlnk))'r*dumdl/i:| |:H e(giui)efaduz dul:|
i¢s

(4.38)

s
[
e

,’:lvl IH{:] ;T

T
<
Il

—~ L

By assumption (1.3), we have that

Td(dfl) Z[)\(?”dilq)]ﬁe (77”d71q . ,’7)

qeP

As(m) + O 0w n])). (4.39)
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We thus obtain the upper bound

Pt 1
437 s(0)] < T /R(m”)dddedZS | 5(Zs, H, y)|

% [H ()\M (m,) +O(r(d 1)c7>||n b ) <aznk>] .

1=2

(4.40)

Since x is compactly supported, this integral converges and we can apply
dominated convergence. The result then follows by taking the pointwise limit
r — 0, using the fact that for all ¢ > 0

lim e~ ¢0-TEN™ — 1[P(2) = 1] (4.41)

r—0

and that for all z # 0 we have

. —d .
}»li% X (a <k§_:1 n,+r z>> =0. (4.42)

O

Theorem 3. (Sum of diagonal terms converges) For «,t > 0 fized, there exists
a constant Ao > 0 such that for all X with |A||l1,00 < Ao, the series

do@r)m 0 (mym e YA (1) (4.43)
m=1 ye{o,1}m Sell,y,
s absolutely convergent, uniformly as r — 0.

Proof. Proceeding as in the Proof of Proposition 3, we may write

tP—1 1
’Ad'y S )‘ § (p— 1)' Ozd(m""l—;l’) /R(m+2)d ddedZS | S ZS’H y)|

" [Tp[(im( ) +OC I ) x <aznk>].

=2

(4.44)

Since y is compactly supported and @ and 13 are rapidly decaying, the integral
over H converges. By the definition of F7 g, there exists a constant C' > 0

such that ‘Ai_f;,s( )‘ < C™*+1 Equation (4.43) can thus be bounded above by

> SN C) (4.45)
m=0

which converges for | A]|1,00 < (87C)~ 1. O
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4.3. The Zero-Damping Limit

Proposition 4. (Convergence of diagonal terms)

lim lim A7 s(t) = / dady f,,s(t, 2, y) b(z, y) (4.46)
a—Ur— R2d
where

Iy st y) = /D;( e 3Zs R dvd(vi + - +vp —t)

b6 Eg )]

« [_W<‘JZZ>,H L,)} {H H/ e<5”uu)duu}

i=1j=1

b~

-

i—1

P K
T—ty+ > Y > (Yhe — V(k41)0)Zke Vir Y — Z Z("/zg 'Y(i+1)0)zij>~
i=1k=1i=1

i=1j5=1

X a

/N

Proof. We begin from the statement of Proposition 3, and claim that the w
integral converges uniformly for o > 0. Using the same substitutions as in the
proof of Proposition 2, we can write

lim ATE (0 = [ dpdHdzs R, (1) R, (1,) o (9. H)

R(m+2)d

K 7adu .
[ H/ (Ui, 1~ N9ir, Pw)e du} dvd(us 44 vy —1)

RE

[ (500 o) ]

(4.47)
where
—1rt1 »
Gy.s(Ys,H,y) = [H ];[ W(y;;-1) —yij)] 51(—;77,-,1/(,,_1)51]1) b(ny,y)
(4.48)

and we have the convention Y,y = Y;(x,41) = Y(i—1)o,_, - Considering only the
y,; integration, this has the form

p—1 K
—atu
Lo lllll / (319, IF = 1ir, P))e du]dYs
m —p

1=17=1
(4.49)

where ¢ is Schwartz class uniformly in «. Consider just the first block {71, ...,
Vs b, and suppose that it consists of sub-blocks of ¢; ones, followed by ¢
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zeroes, followed by ¢3 ones, and so on. If there are 2k of these sub-blocks in
total then

_Ad
[Tt fi, e, 12 = 190r, 1" du
L —au,
= Jus dur - dus, (T (Bl = [yl 2ue™"™)

— d .
X (T2, p1mey G U2 = e, [Pui)e ")

1t +z —au;
o (T e U1 P~ Il Ppu)e)
el —adu;
y (n;;mil_[sz:ezk eIl = 1Yty optny, [P)us)e ™) . (4.50)

Let go € S(R?) be Schwartz class, then by stationary phase one obtains

[ syl sy < ()7 (4.51)

where A < B means there exists a constant ¢ such that A < ¢B. Most of the
y,; appear in only one factor, as e(+%||y,||*u;), which after integrating over y;
against the Schwartz function g gives a factor (u;)~42. If i = £; +--- + U1
or k1 — ly — -+ — {y; for some j then it appears with a more complicated
coefficient. For example, y, appears as the exponential factor

6(7%”3161”2(”@1 +uf€1+1—€2 + +ul€z)) (452)
After integrating over y,_, this yields a factor of (ug, +y, 41—, -+ +ttg, ) =Y,
/2

but since all the u; are non-negative, this can be bounded above by (ug, )~
In other words, we have that

p—1 K
_d
[ [HH/ (3154, 17 = [0, e " du dY s
m+1—p

i=1 j=1

p—1 Ky

< /an ) TT T ¢wis) %% dus; (4.53)

=1 j5=1
uniformly for all & > 0. These integrals converge for all d > 3, and the result

then follows by integrating over H and setting o = 0 in (4.35). O

Theorem 4. (Convergence of the full series) There exists a constant \g > 0
depending on o, t,W,a and b such that for all X with |[|A||1,00 < Ao

iy i Te(os o0 Op () = [ dodyf(toy)blmy) (450
R2d

a—0r—0
where

ft,z,y) =alx—ty,y +Z 27i)™ Z (—1)7trm Z f7.s(t, x ).
m=1

Fe{o,1}m Sell,,
(4.55)
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Proof. We begin from the definition
Tr(py1-4,0p,. 1, (b Z (2mi)™ AT (1). (4.56)
m=0

The m = 0 term converges by Proposition 1. Separating the remaining terms
into diagonal and nondiagonal parts gives

Z’le(%i)m Afn’r(t) — E;o;:l(Qﬂ_i)m Zﬁe{o,l}m(_l)m-‘r”'_‘_%l ZS&H a; (t)
+Z::1(2ﬂ.i)7n Z’?E{O,l}’n(_1)’Yl+”'+ﬂym ZSEHm Agéf»v,s(t) (

7)

Applying Theorems 2 and 3 tells us that for A small enough, the first term on
the right hand side converges, and that the second vanishes in the limit » — 0.
Following the proof of Proposition 4, there exists a constant C' > 0 such that

hm Ady s <com (4.58)

uniformly for all & > 0. The series thus converges uniformly for |[All1,00 <
(87C)~! and the result follows from Proposition 4. O

5. Extracting the Linear Boltzmann Equation

We are now ready to prove Theorem 1, namely that the weak limit, f(¢, z,y),
in Theorem 4 coincides with a solution of the linear Boltzmann equation. We
first show that it satisfies an auxiliary transport equation.

Proposition 5. The expression f(t,z,y) in (4.55) satisfies

(O +y-Va)f(t,z,y)

:2%{%(72ﬂi>\(m))" S (mymtte

n=2 Fe{0,1}»-!

></< )d21"'dzn71 V/&(—Zl)""//‘\/(—znfﬂﬁ\/(zl+"'+Zn71)
Rl 1

n—1 i 2 i 2 n—1
X{H/ e<%<y—2w% v+ > 3z >u>du}f<t,w,y—2*ﬁzi>}
i=1 /Ry j=1 j=1 i=1

(5.1)
Proof. Note that every S € II,,, can be ‘decomposed’ into two pieces: if § =
{0,n,...,m} we decompose it into the pieces {0,n} and {n,...,m}. Through
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this decomposition, the function f(¢,x,y) can be written recursively as

f(ta Z, y) = G(QZ —ty, y)

+§(2m)" > (=t /tdu {A(x—(t—u)yﬂn

ye{0,1}" 0
X / dz; - -dzn,1W(z1) e W(zn,l)W(—zl — e —2Zp)
R(n—1)d
n—1 i 2 i 2
X{H/ e(é( Y+ Y % =3 vz )u)du]
i=1 YR+ j=1 j=1
X f(V> T — (t - V)y7 Yy - (’71 - 'Yn)zl - (’Ynfl - 'Yn)znfl)~
(5.2)

The n = 1 term vanishes—y; = 1 and v; = 0 yield the same expression with
opposite signs. Applying the operator (0, + y - V) to both sides yields

(O +y-Va)f(t,z,y)

2271'1)\(1:))" S (=t

v €{0,1}n
/ e dza Wz W)Wz == 20m1) (5.3)
LA o

xft,z,y— (1 —m)z1— = (-1 = n)Zn-1)
By summing over +,, we obtain

(Or+y-Va)f(t,z,y)

i 271—1)\ Z (_1)71+'--+’Yn—1

y€{0,1}n~1

/( )d --~dzn_1I7V\(Z1) . ..ﬁ/\(zn_l)f/v\(_zl e — 2 )
i i 2
{H/ (é( v+ Bzl —lly = iz >“>du}
R+ j=1 j=1

n—1 n—1
X (f(t,may—Z%‘Zi) _f<ta$ay+z’7221>>
i=1 i=1

For the second term, we replace ; by %; and make the variable substitutions
z; — —z;. This allows us to combine the two terms and the result follows.
O

(5.4)
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Proof of Theorem 1. Define the distribution
(oo}
A7) = [ el = [71P) s} ds. (55)

and put V(y) = 72W(fy). Then, (5.1) can be written

:27T§R{i)\(w)” PG

ye{o,1}n 1

x / dzy - dzp_1 [i(V(21)] - [V (2a)][iV(=21 — - — 2Zn_1)]
Rd(n—1)

n—1 i i n—1
[Talv=> vz v+D 7z ]f(taw,y—Z%Zz) }
i=1 i=1 i=1 =1

(5.6)

ie.
O +y- Vo) f(t,2,y) —wZA ) Qu(gx)(t, y)

with Q; as in [4, Eq (2.7)] and ¢, : (t,y) — f(¢t, z,y). In view of [4, Lemma
3 & Theorem 2] (Recall that W and the initial data a are both Schwartz, so
certainly satisfy the weaker regularity assumptions made in [4]) we obtain

(at +y- vw)f(tv T, y)

5.7
[ B wa)ste ) -2 ey O
where
=y, ') = 206(lly 1> — 1y )T (y" y)P? (5.8)
and (see [4, (2.5)])
Sy, y") =206 (lly )1 = Iy IHIT (v, »)I?
(5.9)
Hence, 7(y',y) = —2T(y,y’) and
w2y, ') = 8723(|ly 1> — |y'II*) | Ta) (9, y') (5.10)
with T}, as in (1.9). O

Remark. The relation 7 (y’,y) = —2T(y, y’) is due to a number of minor dif-
ferences between the present set-up and Castella’s work [3,4]: (i) the Fourier
transforms are normalised differently, (ii) the Schrédinger operator is nor-
malised differently, and (iii) the initial von Neumann equation (1.4) has y
and y’ interchanged.
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