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Abstract. We prove that the quasi-periodic Schrödinger operator with a
finitely differentiable potential has purely absolutely continuous spectrum
for all phases if the frequency is Diophantine and the potential is suffi-
ciently small in the corresponding Ck topology. This extends the work
of Eliasson [19] and Avila–Jitomirskaya [5] from the analytic topology to
the finitely differentiable one which is much broader, revealing the inter-
esting phenomenon that small oscillation of the potential leads to both
zero Lyapunov exponent in the whole spectrum and purely absolutely
continuous spectrum. Our result is based on a refined quantitative Ck,k0

almost reducibility theorem which only requires a quite low initial regular-
ity “k > 14τ +2” and much of the regularity “k0 ≤ k−2τ −2” is conserved
in the end, where τ is the Diophantine constant of the frequency.

1. Introduction

In this paper, we shall consider the one-dimensional lattice quasi-periodic
Schrödinger operator HV,α,θ with a finitely differentiable potential:

(HV,α,θx)n = xn+1 + xn−1 + V (θ + nα)xn, n ∈ Z, (1.1)

where θ ∈ T
d = R

d/(2πZ)d (or Rd/Zd if preferable) is called the phase, α ∈ R
d

is called the frequency satisfying 〈m,α〉 /∈ 2πZ for any m ∈ Z
d different from

zero, and V ∈ Ck(Td,R) is called the potential, k, d ∈ N
+. A typical example

is the almost Mathieu operator H2λ cos,α,θ:

(H2λ cos,α,θx)n = xn+1 + xn−1 + 2λ cos(θ + nα)xn, n ∈ Z,

where λ is called the coupling constant. There is a unified dynamical way to
define the Schrödinger operator [16]. In our case, the base dynamics is simply
given by an ergodic torus translation.
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Schrödinger operators come from solid-state physics, showing the influ-
ence of an external magnetic field on the electrons of a crystal [26]. They arise
naturally from the study of quasi-crystals such as graphene. Imagine that we
have a one-dimensional discrete lattice with positive centers located at each in-
teger point. We are mostly concerned about the fate of the electrons under the
interaction with the lattice, i.e., whether they are localized (confined in some
finite interval) or diffusing (escaping from any finite interval). As is very well
known, the absolutely continuous spectrum corresponds to diffusion because
the probability that we find the electron in any fixed interval is zero by the
famous RAGE theorem [16]. In other words, the absolutely continuous spec-
trum of a Schrödinger operator is the set of energies at which the described
physical system exhibits transport (like a conductor). Moreover, the abso-
lutely continuous spectrum is the part of spectrum that has the best stability
properties under small perturbation and its existence has strong implications,
including an Oracle Theorem that predicts the potential, as shown by Remling
[27]. It is thus an important and natural question to ask whether and when
the Schrödinger operator has (even purely) absolutely continuous spectrum.
In this paper, we give a positive answer to this question for weak-coupled
finitely differentiable quasi-periodic Schrödinger operators with Diophantine
base frequencies.

Recall that α ∈ R
d is called Diophantine if there are κ > 0 and τ > d

such that α ∈ DC(κ, τ), where

DC(κ, τ) :=
{

α ∈ R
d : inf

j∈Z

|〈n, α〉 − 2πj| >
κ

|n|τ , ∀n ∈ Z
d\{0}

}
. (1.2)

Here we denote

|n| = |n1| + |n2| + · · · + |nd|,
and

〈n, α〉 = n1α1 + n2α2 + · · · + ndαd.

Denote DC =
⋃

κ,τ DC(κ, τ), which is of full Lebesgue measure.
Our main result is the following:

Theorem 1.1. Assume α ∈ DC(κ, τ), V ∈ Ck(Td,R) with k > 35τ + 2. If λ is
sufficiently small, then HλV,α,θ has purely absolutely continuous spectrum for
all θ ∈ T

d.

Remark 1.1. It suffices to prove that the universal spectral measure μuniv =
μδ0 +μδ1 is absolutely continuous w.r.t. Lebesgue simply because any spectral
measure is absolutely continuous to μuniv. We do not claim the optimality
of the lower bound of “k” but we point out that some kind of regularity is
essential for the existence of (purely) absolutely continuous spectrum, as will
be stated later. For some technical reason, we require “k” to be larger than
35τ + 2 instead of 14τ + 2.
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It appears that the existence of (purely) absolutely continuous spectrum
depends sensitively on the arithmetic properties of the frequency. Recently,
Avila and Jitomirskaya [6] have constructed super-Liouvillean α ∈ T

2 such that
for typical analytic potential, the corresponding quasi-periodic Schrödinger
operator has no absolutely continuous spectrum. Relatively, Hou–Wang–Zhou
[21] showed that there exists super-Liouvillean α ∈ T

2 such that for small
analytic potential, the corresponding quasi-periodic Schrödinger operator has
absolutely continuous spectrum. Moreover, they proved that if α ∈ T

d with
α being weak-Liouvillean and the potential is small enough, the absolutely
continuous spectrum exists.

When d = 1, things can be characterized much more explicitly thanks to
Avila’s fantastic global theory of analytic Schrödinger operators [2]. He showed
that typical one-frequency operators have only point spectrum in the super-
critical region and absolutely continuous spectrum in the subcritical region. It
seems that the effect of α’s arithmetic properties is weaker in one-frequency
case, but we point out that the proofs of absolutely continuous spectrum are
quite different according to the arithmetic assumptions on α. Focusing on the
almost Mathieu operator H2λ cos,α,θ, there is a famous conjecture: Simon [29]
(Problem 6) asked whether AMO has purely absolutely continuous spectrum
for all 0 < |λ| < 1, all phases and all frequencies. This conjecture was first
proved for Diophantine α and almost every θ by Jitomirskaya [23], whose ap-
proach follows Aubry duality and localization theory. About ten years later,
two key advances were achieved. On the one hand, Avila and Jitomirskaya [5]
established so-called quantitative duality to prove Simon’s conjecture for Dio-
phantine α and all θ. On the other hand, Avila and Damanik [4] used periodic
approximation and Kotani theory to prove the conjecture for Liouvillean α
and almost every θ. The complete solution to Simon’s problem was given by
Avila [1]. He distinguished the whole proof into two parts: When β = 0 (the
subexponential regime, see [1]), the proof relied on almost reducibility results
developed in [5]; and when β > 0 (the exponential regime), he improved the
periodic approximation method developed in [4]. Recall that β is defined as
follows:

β = β(α) = lim sup
n→∞

log qn+1

qn
,

where {qn}n∈N are the denominators of the continued fraction approximants
{pn/qn}n∈N to α.

Another very important factor which influences the existence of abso-
lutely continuous spectrum is the regularity of the potential. In the analytic
topology, Dinaburg and Sinai [18] proved that HV,α,θ has absolutely con-
tinuous spectrum component for all θ in the perturbative regime (V being
analytically small and the smallness depends on α) by reducibility theory.
Later, Eliasson [19] improved the KAM scheme and showed that HV,α,θ has
purely absolutely continuous spectrum for all θ in the same setting. By “non-
perturbative reduction to perturbative regime,” Eliasson’s result was extended



4198 A. Cai Ann. Henri Poincaré

to the non-perturbative regime by Avila–Jitomirskaya [5] and Hou–You [22]
for one-dimensional torus, d = 1.

However, when it comes to the finitely differentiable topology, there are
few results in this direction. In this sense, our theorem is constructive and it
mainly generalizes the result of Eliasson [19] and Avila–Jitomirskaya [5] to the
finitely differentiable case. We emphasize that assuming enough regularity of
the potential is necessary, not only for “purely” absolutely continuous spec-
trum, but also for the existence of an absolutely continuous spectrum compo-
nent. In C0 topology, Avila and Damanik [3] proved that for one-dimensional
Schrödinger operators with ergodic continuous potentials, there exists a generic
set of such potentials such that the corresponding operators have no abso-
lutely continuous spectrum. Moreover, by Gordon’s Lemma, Boshernitzan and
Damanik [12] proved that for generic ergodic continuous potentials, the corre-
sponding operators have purely singular continuous spectrum.

Now, let us show the main strategy of our paper. The Schrödinger oper-
ator HV,α,θ is closely related to a Schrödinger cocycle (α,A) where

A(θ) = SV
E (θ) =

(
E − V (θ) −1

1 0

)
,

since any formal solution (not necessarily 	2) of HV,α,θx = Ex satisfies

A(θ + nα)
(

xn

xn−1

)
=

(
xn+1

xn

)
.

Therefore, we can use reducibility method to analyze the dynamics of Ck quasi-
periodic linear cocycle (α,A) ∈ T

d × Ck(Td, SL(2,R)) and then study the
spectral properties of the corresponding operator. This approach, which was
first developed in [19], has been proved to be very fruitful [1,5,7,8,25]. Readers
are invited to consult You’s 2018 ICM survey [32] for more related achieve-
ments. In this paper, we acquire a finer quantitative Ck almost reducibility
theorem by distinguishing resonances from non-resonances more precisely. For
simplicity, let us introduce its qualitative version on the Schrödinger cocycle
(for the quantitative one which works for general Ck SL(2,R)-valued cocycles,
see Theorem 3.2).

Theorem 1.2. Let α ∈ DC(κ, τ), V ∈ Ck(Td,R) with k > 14τ + 2. If λ is
sufficiently small, then for any E ∈ R, (α, SλV

E ) is Ck,k0 almost reducible with
k0 ≤ k − 2τ − 2.

Remark 1.2. In particular, the Lyapunov exponent is constant zero among the
spectrum. If we change the assumption into k > 17τ + 2, we can further prove
the 1

2 -Hölder continuity of the Lyapunov exponent and the integrated density
of states (see Theorem 3.3 and Theorem 3.4), which greatly reduces the initial
regularity requirement of k � 550τ in [13]. Moreover, compared with [13], we
obtain a much better upper bound of the remainder k0 ≤ k −2τ −2 where the
loss of regularity 2τ + 2 is independent of k!

To finish the introduction, we point out that our main idea of proving
the purely absolutely continuous spectrum follows that of Avila [1] in the
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subexponential regime. There are two important aspects. One is that we need
to obtain a modified quantitative Ck almost reducibility theorem which was
originally established by Cai–Chavaudret–You–Zhou [13]. It will provide us
with finer estimates on the conjugation map, the constant matrix and the
perturbation in each KAM step. The other is, we need to stratify the spectrum
of HV,α,θ by the rotation number of (α,A). Once they are done, we will be able
to have a good control of the growth of the transfer matrix on each hierarchical
part of the spectrum. These steps will be conducted in Sect. 3. The proofs left
are standard by the theorems of Gilbert–Pearson [20] and Avila [1] in Sect. 4.
As usual, we will introduce useful notions and definitions in Sect. 2.

2. Preliminaries

As an emphasis in the very beginning, it does not matter whether we define
T

d = R
d/2πZd or T

d = R
d/Zd. Everything follows exactly in the same way.

We choose T
d = R

d/2πZd just by preference.
For a bounded analytic (possibly matrix-valued) function F (θ) defined

on Sh := {θ = (θ1, . . . , θd) ∈ C
d | ∀1 � i � d, |�θi| < h}, let |F |h =

supθ∈Sh
‖F (θ)‖ and denote by Cω

h (Td, ∗) the set of all these ∗-valued func-
tions (∗ will usually denote R, sl(2,R), SL(2,R)). We denote Cω(Td, ∗) =
∪h>0C

ω
h (Td, ∗) and set Ck(Td, ∗) to be the space of k times differentiable with

continuous kth derivatives functions. The norm is defined as

‖F‖k = sup
|k′ |�k,θ∈T

d

‖∂k
′
F (θ)‖.

2.1. Conjugation and Reducibility

Given two cocycles (α,A1), (α,A2) ∈ T
d×C∗(Td, SL(2,R)), “∗” stands for “ω”

or “k,” one says that they are C∗ conjugated if there exists Z ∈ C∗(2Td, SL(2,R)),
such that

Z(θ + α)A1(θ)Z−1(θ) = A2(θ).

Note that we need to define Z on the 2Td = R
d/(4πZ)d in order to make it

still real-valued.
An analytic cocycle (α,A) ∈ T

d × Cω
h (Td, SL(2,R)) is said to be almost

reducible if there exist a sequence of conjugations Zj ∈ Cω
hj

(2Td, SL(2,R)), a
sequence of constant matrices Aj ∈ SL(2,R) and a sequence of small pertur-
bation fj ∈ Cω

hj
(Td, sl(2,R)) such that

Zj(θ + α)A(θ)Zj(θ)−1 = Aje
fj(θ)

with

|fj(θ)|hj
→ 0, j → ∞.

Furthermore, we call it weak (Cω) almost reducible if hj → 0 and we call it
strong (Cω

hj ,h′) almost reducible if hj → h′ > 0. We say (α,A) is Cω
h,h′ reducible
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if there exist a conjugation map Z̃ ∈ Cω
h′(2Td, SL(2,R)) and a constant matrix

Ã ∈ SL(2,R) such that

Z̃(θ + α)A(θ)Z̃(θ)−1 = Ã(θ).

In order to avoid repetition, we give an equivalent definition of Ck (al-
most) reducibility in the following.

A finitely differentiable cocycle (α,A) is said to be Ck,k1 almost reducible,
if A ∈ Ck(Td, SL(2,R)) and the Ck1-closure of its Ck1 conjugacies contains a
constant. Moreover, we say (α,A) is Ck,k1 reducible, if A ∈ Ck(Td, SL(2,R))
and its Ck1 conjugacies contain a constant.

2.2. Rotation Number and Degree

Assume that A ∈ C0(Td, SL(2,R)) is homotopic to identity. It introduces the
projective skew-product FA : Td × S

1 → T
d × S

1 with

FA(x, ω) :=
(

x + α,
A(x) · ω

|A(x) · ω|

)
,

which is also homotopic to identity. Thus, we can lift FA to a map F̃A :
T

d × R → T
d × R of the form F̃A(x, y) = (x + α, y + ψ(x, y)), where for every

x ∈ T
d, ψ(x, y) is 2πZ-periodic in y. The map ψ : Td ×R → R is called a lift of

A. Let μ be any probability measure on T
d × R which is invariant by F̃A and

whose projection on the first coordinate is given by Lebesgue measure. The
number

ρ(α,A) :=
1

(2π)d

∫
Td×R

ψ(x, y)dμ(x, y)mod 2πZ (2.1)

does not depend on the choices of the lift ψ or the measure μ. It is called the
fibered rotation number of cocycle (α,A) (readers can consult [24] for more
details).

Let

Rφ :=
(

cos φ − sin φ
sin φ cos φ

)
,

if A ∈ C0(Td, SL(2,R)) is homotopic to θ → R〈n,θ〉 for some n ∈ Z
d, then we

call n the degree of A and denote it by degA. Moreover,

deg(AB) = deg A + deg B. (2.2)

Note that the fibered rotation number is invariant under real conjugacies
which are homotopic to identity. More generally, if the cocycle (α,A1) is conju-
gated to (α,A2) by B ∈ C0(2Td, SL(2,R)), i.e., B(· + α)A1(·)B−1(·) = A2(·),
then

ρ(α,A2) = ρ(α,A1) +
〈deg B,α〉

2
. (2.3)
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2.3. Integrated Density of States and Spectral Measure

Consider Schrödinger operators HV,α,θ, an important concept is the integrated
density of states (IDS), which is the function NV,α : R → [0, 1] defined by

NV,α(E) =
∫
Td

μV,α,θ(−∞, E]dθ,

where μV,α,θ = μδ0
V,α,θ + μδ1

V,α,θ is the universal spectral measure of HV,α,θ and
{δi}i∈Z is the cannonical basis of 	2(Z). Here {δ0, δ1} are called the pair of
cyclic vectors of HV,α,θ.

There are other ways of defining IDS by counting eigenvalues of the trun-
cated Schrödinger operator. For more details, readers can refer to [9]. Moreover,
ρ(α, SV

E ) relates to the IDS as follows:

NV,α(E) = 1 − 2ρ(α, SV
E )modZ. (2.4)

For basic definitions of different types of spectral measures, one is invited
to [16].

2.4. Analytic Approximation

Assume f ∈ Ck(Td, sl(2,R)). By Zehnder [33], there exists a sequence {fj}j�1,
fj ∈ Cω

1
j

(Td, sl(2,R)) and a universal constant C
′
, such that

‖fj − f‖k → 0, j → +∞,

|fj | 1
j

� C
′‖f‖k,

|fj+1 − fj | 1
j+1

� C
′
(

1
j

)k

‖f‖k. (2.5)

Moreover, if k � k̃ and f ∈ C k̃, then properties (2.5) hold with k̃ instead of k.
That means this sequence is obtained from f regardless of its regularity (since
fj is the convolution of f with a map which does not depend on k).

3. Dynamical Estimates: Almost Reducibility

In this section, we will establish the modified quantitative Ck,k0 almost re-
ducibility for finitely differentiable quasi-periodic SL(2,R) cocycles.

Set A ∈ SL(2,R), f ∈ Ck(Td, sl(2,R)), d ∈ N
+ and α ∈ DC(κ, τ). Our

strategy is to analyze the approximating analytic cocycles {(α,Aefj(θ))}j�1

first and then transfer the estimates to the targeted Ck cocycle (α,Aef(θ)) by
analytic approximation.

3.1. Preparations

In the following subsections, parameters ρ, ε,N, σ will be fixed; one will refer
to the situation where there exists n∗ with 0 < |n∗| � N such that

inf
j∈Z

|2ρ − 〈n∗, α〉 − 2πj| < εσ,
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as the “resonant case” (for simplicity, we just write “|2ρ−〈n∗, α〉|” to represent
the left side, same for |〈n∗, α〉|). The integer vector n∗ will be referred to as
a “resonant site”. This kind of small devisor problem naturally arises when
we want to solve the cohomogical equation in each KAM step. Resonances
are linked to a useful decomposition of the space Br := Cω

r (Td, su(1, 1)), see
Appendix the definition of su(1, 1) and SU(1, 1).

Assume that for given η > 0, α ∈ R
d and A ∈ SU(1, 1), we have a

decomposition Br = Bnre
r (η)

⊕
Bre

r (η) satisfying that for any Y ∈ Bnre
r (η),

A−1Y (θ + α)A ∈ Bnre
r (η), |A−1Y (θ + α)A − Y (θ)|r � η|Y (θ)|r. (3.1)

And let Pnre, Pre denote the standard projections from Br onto Bnre
r (η) and

Bre
r (η), respectively.

Then we have the following crucial lemma which helps us remove all the
non-resonant terms:

Lemma 3.1 [13,22]. Assume that A ∈ SU(1, 1), ε � (4‖A‖)−4 and η � 13‖A‖2ε
1
2 .

For any g ∈ Br with |g|r � ε, there exist Y ∈ Br and gre ∈ Bre
r (η) such that

eY (θ+α)(Aeg(θ))e−Y (θ) = Aegre(θ),

with |Y |r � ε
1
2 and |gre|r � 2ε.

Remark 3.1. In the inequality “η � 13‖A‖2ε
1
2 ,” “1

2” is sharp due to the quan-
titative implicit function theorem [11,17]. The proof only relies on the fact
that Br is a Banach space; thus, it also applies to Ck and C0 topology. One
can refer to the appendix of [13] for details.

3.2. Analytic KAM Theorem

According to the plan, we first establish KAM for the analytic quasi-periodic
SL(2,R) cocycle:

(α,Aef(θ)) : Td × R
2 → T

d × R
2; (θ, v) 
→ (θ + α,Aef(θ) · v),

where A ∈ SL(2,R), f ∈ Cω
r (Td, sl(2,R)) with r > 0, d ∈ Z

+, and α ∈
DC(κ, τ). Note that A has eigenvalues {eiρ, e−iρ} with ρ ∈ R∪iR. We formulate
our quantitative analytic KAM theorem as follows.

Theorem 3.1 [13]. Let α ∈ DC(κ, τ), κ, r > 0, τ > d, σ < 1
6 . Suppose that

A ∈ SL(2,R), f ∈ Cω
r (Td, sl(2,R)). Then for any r′ ∈ (0, r), there exist

constants c = c(κ, τ, d), D > 2
σ and D̃ = D̃(σ) such that if

|f |r � ε � c

‖A‖D̃
(r − r′)Dτ , (3.2)

then there exist B ∈ Cω
r′(2Td, SL(2,R)), A+ ∈ SL(2,R) and f+ ∈ Cω

r′(Td,
sl(2,R)) such that

B(θ + α)(Aef(θ))B−1(θ) = A+ef+(θ).

More precisely, let N = 2
r−r′ |ln ε|, then we can distinguish two cases:
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• (Non-resonant case) if for any n ∈ Z
d with 0 < |n| � N , we have

|2ρ − 〈n, α〉| � εσ,

then

|B − Id|r′ � ε
1
2 , |f+|r′ � ε3−σ.

and

‖A+ − A‖ � 2‖A‖ε.

• (Resonant case) if there exists n∗ with 0 < |n∗| � N such that

|2ρ − 〈n∗, α〉| < εσ,

then

|B|r′ � 8
(

‖A‖
κ

) 1
2

(
2

r − r′ |ln ε|
) τ

2

× ε
−r′

r−r′ ,

‖B‖0 � 8
(

‖A‖
κ

) 1
2

(
2

r − r′ |ln ε|
) τ

2

,

|f+|r′ � 25+τ‖A‖|ln ε|τ
κ(r − r′)τ

εe−N ′(r−r′)(N ′)deNr′ � ε100, N ′ > 2N2.

Moreover, A+ = eA′′
with ‖A′′‖ � 2εσ, A′′ ∈ sl(2,R). More accurately,

we have

MA′′M−1 =
(

it v
v̄ −it

)

with |t| � εσ and

|v| � 24+τ‖A‖|ln ε|τ
κ(r − r′)τ

εe−|n∗|r.

Roughly speaking, if the KAM step is non-resonant, we have little cost
and we can push the magnitude of the perturbation to better than its square.
In the resonant case, we have relatively big cost but we can even push the
magnitude of the perturbation to much smaller than its 100th power (it is
straightforward to check that compared with the cost, the profit we have is still
very much worthy: just compute the product of the norm of the conjugation
map and the perturbation).

Since this theorem is not new, we put its proof in the Appendix just for
self-containedness. Nevertheless, the novelty of this version is that it provides
all possible choices of all parameters. For example, we may choose σ = 1

10
and fix other parameters by concrete real numbers to make it simpler to read.
However, this will lead to a larger initial regularity k in the end. In order
to optimize our result in the widest possible topology, we must and have to
reserve all the parameters as symbols instead of concrete real numbers. We
apologize for this technicality.
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Remark 3.2. The special structure of A+ can give us a precise estimate of the
upper triangular element of the parabolic constant matrix when the rotation
number of the initial system is rational with respect to α, see [25]. However, it
does not work for general case. Instead, A+ = eA′′

with ‖A′′‖ � 2εσ will work.

Remark 3.3. The limitation σ < 1
6 is essential to making Lemma 3.1 applica-

ble. The choice of D being larger than 2
σ is necessary for us to guarantee the

arbitrariness of r′ ∈ (0, r) and the separation of resonant steps (see Claim 1).

3.3. Ck Almost Reducibility

As planned, we are going to establish the quantitative Ck almost reducibility
via Theorem 3.1 and analytic approximation [33].

The crucial improvement here compared with [13] lies at the point where
we are able to separate the resonant steps. In fact, Theorem 3.1 tells us that
whenever we have a resonance, the norm of the conjugation map will be very
large compared with the non-resonant case. If the resonant steps are far away
from each other, we immediately have a much better control of the conjugation
maps when we want to do the inductive argument. This, in return, will give
us the best possible initial regularity k according to the technique.

Let (fj)j�1, fj ∈ Cω
1
j

(Td, sl(2,R)) be the analytic sequence approximating

f ∈ Ck(Td, sl(2,R)) which satisfies (2.5).
For 0 < r′ < r, denote

ε
′
0(r, r

′) =
c

(2‖A‖)D̃
(r − r′)Dτ , (3.3)

where c,D, D̃, τ are defined in Theorem 3.1.
For m ∈ Z

+, we define

εm =
c

(2‖A‖)D̃mDτ+ 1
2
. (3.4)

Then for any 0 < s � 1
6Dτ+3 fixed, there exists m0 such that for any

m � m0 we have both

εm � ε
′
0

(
1
m

,
1

m1+s

)
, (3.5)

and
1

ms − 1
� s

4
.

We will start from M > max{ (2‖A‖)D̃

c ,m0}, M ∈ N
+. Denote lj = M (1+s)j−1

,
j ∈ N

+. In case that lj is not an integer, we just pick [lj ] + 1 instead of lj .
Now, denote by Ω = {ln1 , ln2 , ln3 , · · · } the sequence of all resonant steps.

That is, the lnj
th step is obtained by resonant case. Using analytic approxi-

mation (2.5) and Theorem 3.1 in every iteration step, we obtain the following
almost reducibility result concerning each (α,Aeflj

(θ)) by induction.
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Proposition 3.1. Let α ∈ DC(κ, τ), σ < 1
6 . Assume that A ∈ SL(2,R), f ∈

Ck(Td, sl(2,R)) with k > (D + 2)τ + 2 and {fj}j�1 are defined above. There
exists ε0 = ε0(κ, τ, d, k, ‖A‖, σ) such that if ‖f‖k � ε0, then there exist Blj ∈
Cω

1
lj+1

(2Td, SL(2,R)), Alj ∈ SL(2,R) and f
′
lj

∈ Cω
1

lj+1

(Td, sl(2,R)) such that

Blj (θ + α)(Aeflj
(θ))B−1

lj
(θ) = Alj e

f
′
lj

(θ)
,

with estimates

|Blj (θ)| 1
lj+1

� 64
(

‖A‖
κ

)(
2

1
lj

− 1
lj+1

|ln εlj |
)τ

× εlj

−
2

lj+1
1
lj

− 1
lj+1 � ε

− σ
2 −s

lj
, (3.6)

‖Blj (θ)‖0 � 64
(

‖A‖
κ

)(
2

1
lj

− 1
lj+1

|ln εlj |
)τ

� ε
− σ

2
lj

, (3.7)

|f ′
lj (θ)| 1

lj+1
� ε3−σ

lj
, ‖Alj ‖ � 2‖A‖. (3.8)

Moreover, there exists unitary matrices Uj ∈ SL(2,C) such that

UjAlj U
−1
j =

(
eγj cj

0 e−γj

)

and

‖Blj (θ)‖2
0|cj | � 8‖A‖, (3.9)

with γj ∈ iR ∪ R and cj ∈ C.

Proof. First step: Assume that

C ′‖f(θ)‖k � c

(2‖A‖)D̃
l
Dτ+ 1

2
1

,

then by (2.5) and (3.5) we have

|fl1(θ)| 1
l1

� εl1 � ε
′
0

(
1
l1

,
1
l2

)
.

Apply Theorem 3.1, we can find Bl1 ∈ Cω
1
l2

(2Td, SL(2,R)), Al1 ∈ SL(2,R) and

f
′
l1

∈ Cω
1
l2

(Td, sl(2,R)) such that

Bl1(θ + α)(Aefl1 (θ))B−1
l1

(θ) = Al1e
f

′
l1

(θ).

More precisely, we have two different cases:

• (Non-resonant case)

|Bl1 | 1
l2

� 1 + ε
1
2
l1

, |f ′
l1 | 1

l2
� ε3−σ

l1
,

and

‖Al1 − A‖ � 2‖A‖εl1 .
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• (Resonant case)

|Bl1 | 1
l2

� 8
(

‖A‖
κ

) 1
2

(
2

1
l1

− 1
l2

|ln εl1 |
) τ

2

× εl1

−
1
l2

1
l1

− 1
l2 ,

|Bl1 |0 � 8
(

‖A‖
κ

) 1
2

(
2

1
l1

− 1
l2

|ln εl1 |
) τ

2

, |f ′
l1 | 1

l2
� ε100l1 .

Moreover, Al1 = eA′′
l1 with ‖A′′

l1
‖ � 2εσ

l1
.

In both cases, it is clear that (3.6), (3.7), (3.8) and (3.9) are fulfilled.
Note that the first step is a little special as it does not involve the com-

position of conjugation maps. Therefore, in order to provide a more explicit
iteration process, let us show one more step before induction.

Second step We have

Bl1(θ + α)(Aefl2 )B−1
l1

(θ) = Al1e
f

′
l1 + Bl1(θ + α)(Aefl2 − Aefl1 )B−1

l1
(θ).

We can rewrite that

Al1e
f

′
l1

(θ) + Bl1(θ + α)(Aefl2 (θ) − Aefl1 (θ))B−1
l1

(θ) = Al1e
f̃l1 (θ).

We pick k > (D + 2)τ + 2 � (1 + 3s)(Dτ + 1
2 ) + 2τ + 1.

If the previous step is non-resonant,

|f̃l1(θ)| 1
l2

� |f ′
l1(θ)| 1

l2
+ ‖A−1

l1
‖|Bl1(θ + α)(Aefl2 (θ) − Aefl1 (θ))B−1

l1
(θ)| 1

l2

� 4ε3−σ
l1

+ 2‖A‖2 × 2 × c

(2‖A‖)D̃
l
Dτ+ 1

2
1 lk−1

1

� εl2

� ε
′
0

(
1
l2

,
1
l3

)
.

Here the second inequality follows from the non-resonant estimates of the first
step. The third inequality is due to the precise choice of our k and the definition
of εm and lj .

If the previous step is resonant,

|f̃l1(θ)| 1
l2

� |f ′
l1(θ)| 1

l2
+ ‖A−1

l1
‖|Bl1(θ + α)(Aefl2 (θ) − Aefl1 (θ))B−1

l1
(θ)| 1

l2

� ε100l1 + 128
(

‖A‖3

κ

)(
2

1
l1

− 1
l2

|ln εl1 |
)τ

εl1

−
2
l2

1
l1

− 1
l2

c

(2‖A‖)D̃l
Dτ+ 1

2
1 lk−1

1

� εl2

� ε
′
0

(
1
l2

,
1
l3

)
.

Here the second inequality follows from the resonant estimates of the first
step. The third inequality is again due to the precise choice of our k and the
definition of εm and lj .
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Now for (α,Al1e
f̃l1 (θ)), we can apply Theorem 3.1 again to get B̃l1 ∈

Cω
1
l3

(2Td, SL(2,R)), Al2 ∈ SL(2,R) and f
′
l2

∈ Cω
1
l3

(Td, sl(2,R)) such that

B̃l1(θ + α)(Al1e
f̃l1 (θ))B̃−1

l1
(θ) = Al2e

f
′
l2

(θ), (3.10)

which gives

Bl2(θ + α)(Aefl2 (θ))B−1
l2

(θ) = Al2e
f

′
l2

(θ). (3.11)

Here Bl2(θ) = B̃l1(θ) ◦ Bl1(θ). �

Before giving the precise estimates of each term, let us first introduce a
Claim showing that all the resonant steps are separated.

Claim 1. We have εlnj+1
< ε2lnj

,∀j ∈ Z
+.

Proof. It is enough to prove for j = 1. By definition, we have ln1th step is
obtained by resonant case. Thus, Theorem 3.1 implies ρ(Aln1

) � 2εσ
ln1

and
ρ(Aln2−1) � 4εσ

ln1
since every step between ln1 and ln2 is non-resonant.

By the resonant condition of ln2th step, there exists a unique n with
0 < |n| � Nln2

such that

|2ρ(Aln2−1) − 〈n, α〉| � εσ
ln2

. (3.12)

However, by the Diophantine condition of α and condition (3.2), we have

|〈n, α〉| � κ

|Nln2
|τ � 10ε

σ
2
ln2

.

If εln2
� ε2ln1

, then (3.12) yields contradiction. �

Now by Claim 1, we have (in the worst case scenario)

|Bl2(θ)| 1
l3

� 64
(

‖A‖
κ

) (
2

1
l2

− 1
l3

|ln εl2 |
)τ

× εl2

−
2
l3

1
l2

− 1
l3 � ε

− σ
2 −s

l2
,

‖Bl2(θ)‖0 � 64
(

‖A‖
κ

) (
2

1
l2

− 1
l3

|ln εl2 |
)τ

� ε
− σ

2
l2

,

|f ′
l2(θ)| 1

l3
� ε3−σ

l2
, ‖Alj ‖ � 2‖A‖.

Thus, (3.6), (3.7) and (3.8) are fulfilled again. For (3.9), all three cases (1. there
is no resonance, 2. the first step is resonant, 3. the second step is resonant)
satisfy it. The discussion is similar to that in the induction step below, so we
omit it here for simplicity.
Induction step Assume that for ln, n � ñ, we already have (3.9) and

Bln(θ + α)(Aefln (θ))B−1
ln

(θ) = Alnef
′
ln

(θ), (3.13)
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with

|Bln(θ)| 1
ln+1

� 64
(

‖A‖
κ

)(
2

1
ln

− 1
ln+1

|ln εln |
)τ

εln

−
2

ln+1
1

ln
− 1

ln+1 � ζ2
n � ε

− σ
2 −s

ln
,

(3.14)

‖Bln(θ)‖0 � 64
(

‖A‖
κ

)(
2

1
ln

− 1
ln+1

|ln εln |
)τ

� ε
− σ

2
ln

, |f ′
ln(θ)| 1

ln+1
� ε3−σ

ln
,

(3.15)

and

‖Aln‖ � 2‖A‖. (3.16)

Moreover, if the nth step is obtained by the resonant case, we have

Aln = eA′′
ln , ‖A′′

ln‖ < 2εσ
ln . (3.17)

Note that this is an inductive step that follows from Theorem 3.1.
If the nth step is obtained by the non-resonant case, we have

‖Aln − Aln−1‖ � 2‖Aln−1‖εln (3.18)

and

‖Bln‖ 1
ln+1

� (1 + ε
1
2
ln

)‖Bln−1‖ 1
ln

, ‖Bln‖0 � (1 + ε
1
2
ln

)‖Bln−1‖0. (3.19)

Now by (3.13), for ln+1, n = ñ, we have

Bln(θ + α)(Aefln+1 )B−1
ln

(θ) = Alnef
′
ln + Bln(θ + α)(Aefln+1 − Aefln )B−1

ln
(θ).

In the last part of (2.5), taking a telescoping sum for j from ln to ln+1 − 1, we
have

|fln+1(θ) − fln(θ)| 1
ln+1

� c

(2‖A‖)D̃l
Dτ+ 1

2
1 lk−1

n

. (3.20)

Moreover, (2.5) also gives us

|fln+1(θ)| 1
ln+1

+ |fln(θ)| 1
ln+1

� 2c

(2‖A‖)D̃MDτ+ 1
2
. (3.21)

Thus, if we rewrite that

Alnef
′
ln

(θ) + Bln(θ + α)(Aefln+1 (θ) − Aefln (θ))B−1
ln

(θ) = Alnef̃ln (θ),

by (3.14), (3.15), (3.16), (3.20) and (3.21) we obtain

|f̃ln
(θ)| 1

ln+1
� |f ′

ln
(θ)| 1

ln+1
+ ‖A−1

ln
‖|Bln

(θ + α)(Aefln+1 (θ) − Aefln (θ))B−1
ln

(θ)| 1
ln+1

� ε3−σ
ln

+

(‖A‖4
κ2

) (
2

1
ln

− 1
ln+1

|ln εln
|
)2τ

εln

−
4

ln+1
1

ln
− 1

ln+1
2 × 64 × 64c

(2‖A‖)D̃l
Dτ+ 1

2
1 lk−1

n

� εln+1

� ε
′
0

(
1

ln+1
,

1

ln+2

)
.
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Here the second inequality follows from the estimates of the nth step by as-
sumption and also from the telescoping sum estimates of the analytic approx-
imants. The third inequality follows from the precise choice of our k and the
definition of εm and lj .

Now for (α,Alnef̃ln (θ)), we can apply Theorem 3.1 again to get B̃ln ∈
Cω

1
ln+2

(2Td, SL(2,R)), Aln+1 ∈ SL(2,R) and f
′
ln+1

∈ Cω
1

ln+2

(Td, sl(2,R)) such

that

B̃ln(θ + α)(Alnef̃ln (θ))B̃−1
ln

(θ) = Aln+1e
f

′
ln+1

(θ)
,

with

|f ′
ln+1

(θ)| 1
ln+2

� ε3−σ
ln+1

.

Denote Bln+1 := B̃lnBln ∈ Cω
1

ln+2

(2Td, SL(2,R)). By Claim 1, using the

notation ζn from (3.14) we have (in the worst situation)

|Bln+1(θ)| 1
ln+2

� ζ
1+ 1

2+( 1
2 )2+( 1

2 )3+···+( 1
2 )n+···

n+1

� ζ2
n+1

= 64
(

‖A‖
κ

)(
2

1
ln+1

− 1
ln+2

|ln εln+1 |
)τ

× εln+1

−
2

ln+2
1

ln+1
− 1

ln+2

� ε
− σ

2 −s

ln+1

and

‖Bln+1(θ)‖0 � 64
(

‖A‖
κ

) (
2

1
ln+1

− 1
ln+2

|ln εln+1 |
)τ

� ε
− σ

2
ln+1

,

where this estimate follows from the C0 norm estimates in Theorem 3.1.
For the remaining estimates, we distinguish two cases.
If the (n + 1)th step is in the resonant case, we have

Aln+1 = e
A′′

ln+1 , ‖A′′
ln+1

‖ < 2εσ
ln+1

, ‖Aln+1‖ � 1 + 2εσ
ln+1

� 2‖A‖.

Then there exists unitary U ∈ SL(2,C) such that

UAln+1U
−1 =

(
eγn+1 cn+1

0 e−γn+1

)
, (3.22)

with |cn+1| � 2‖A′′
ln+1

‖ � 4εσ
ln+1

. Thus, (3.9) is fulfilled because

‖Bln+1(θ)‖2
0|cn+1| � 4. (3.23)

If it is in the non-resonant case, one traces back to the resonant step j
which is closest to n + 1.

If j exists, by (3.14) and (3.17) we have

|Blj (θ)| 1
lj+1

� ε
− σ

2 −s

lj
, ‖Blj (θ)‖0 � ε

− σ
2

lj
,

Alj = e
A′′

lj , ‖A′′
lj ‖ < 2εσ

lj , ‖Alj ‖ � 1 + 2εσ
lj .
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By our choice of j, from j to n+1, every step is non-resonant. Thus, by (3.18)
we obtain

‖Aln+1 − Alj ‖ � 2ε
1
2
lj

, (3.24)

so

‖Aln+1‖ � 1 + 2εσ
lj + 2ε

1
2
lj

� 2‖A‖.

Estimate (3.24) implies that if we rewrite Aln+1 = e
A′′

ln+1 , then

‖A′′
ln+1

‖ � 4εσ
lj .

Moreover, by (3.19), we have

‖Bln+1(θ)‖0 �
√

2|Blj (θ)|0 �
√

2ε
− σ

2
lj

.

Similarly to the process of (3.22), (3.9) is fulfilled because

‖Bln+1(θ)‖2
0|cn+1| � 8. (3.25)

If j does not exist, it immediately implies that from 1 to n + 1, each
step is non-resonant. In this case, ‖Aln+1‖ � 2‖A‖ and the estimate (3.9) is
naturally satisfied as

‖Bln+1(θ)‖ 1
ln+1

� 2.

With Proposition 3.1 in hand, we are ready to transfer all the estimates
from (α,Aeflj

(θ)) to (α,Aef(θ)) by analytic approximation. We establish our
quantitative Ck almost reducibility theorem as follows.

Theorem 3.2. Let α ∈ DC(κ, τ), σ < 1
6 , A ∈ SL(2,R), f ∈ Ck(Td, sl(2,R))

with k > (D+2)τ +2, there exists ε1 = ε1(κ, τ, d, k, ‖A‖, σ) such that if ‖f‖k �
ε1 then (α,Aef(θ)) is Ck,k0 almost reducible with k0 ∈ N, k0 � k−2τ−1.5

1+s . More-
over, if we further assume (α,Aef(θ)) is not uniformly hyperbolic, then there
exists Blj ∈ Cω

1
lj+1

(2Td, SL(2,C)), Alj ∈ SL(2,C), F̃
′
lj

∈ Ck(Td, gl(2,C)),

such that

Blj (θ + α)(Aef(θ))B−1
lj

(θ) = Alj + F̃
′
lj (θ)

with

‖Blj (θ)‖0 � ε
− σ

2
lj

, ‖F̃
′
lj (θ)‖0 � ε

1
4
lj

and Alj =
(

eγj cj

0 e−γj

)
with estimate

‖Blj (θ)‖2
0|cj | � 8‖A‖, (3.26)

where γj ∈ iR and cj ∈ C.

Proof. We first deal with the C0 estimate. By Proposition 3.1, we have for any
lj , j ∈ N

+:

Blj (θ + α)(Aeflj
(θ))B−1

lj
(θ) = Alj e

f
′
lj

(θ);
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thus,

Blj (θ + α)(Aef(θ))B−1
lj

(θ) = Alj e
f

′
lj

(θ) + Blj (θ + α)(Aef(θ) − Aeflj
(θ))B−1

lj
(θ).

Denote

Alj + F̃lj (θ) = Alj e
f

′
lj

(θ) + Blj (θ + α)(Aef(θ) − Aeflj
(θ))B−1

lj
(θ). (3.27)

In the last part of (2.5), taking a telescoping sum from lj to +∞, we get

‖f(θ) − flj (θ)‖0 � c

(2‖A‖)D̃l
Dτ+ 1

2
1 lk−1

j

, (3.28)

and

‖f(θ)‖0 + ‖flj (θ)‖0 � c

(2‖A‖)D̃MDτ+ 1
2

+
c

(2‖A‖)D̃C ′MDτ+ 1
2
. (3.29)

Proposition 3.1 also gives the estimates

‖Blj (θ)‖0 � 64
(

‖A‖
κ

)(
2

1
lj

− 1
lj+1

|ln εlj |
)τ

� ε
− σ

2
lj

, (3.30)

|f ′
lj (θ)| 1

lj+1
� ε3−σ

lj
, (3.31)

and

‖Alj ‖ � 2‖A‖. (3.32)

Thus, by (3.27)–(3.31), we have

‖F̃lj (θ)‖0 � ‖Alj f
′
lj (θ)‖0 + ‖Blj (θ + α)(Aef(θ) − Aeflj

(θ))B−1
lj

(θ)‖0

� ‖A‖ε3−σ
lj

+
(

‖A‖3

κ2

)(
2

1
lj

− 1
lj+1

|ln εlj |
)2τ

× 64 × 64c

(2‖A‖)D̃
l
Dτ+ 1

2
1 lk−1

j

� ε1+s
lj

. (3.33)

Now let us prove estimate (3.26). Note that Proposition 3.1 implies that
we only need to rule out the possibility that γj ∈ R\{0}.

Assume that spec(Alj ) = {eλj , e−λj }, λj ∈ R\{0}, then there exists P ∈
SO(2,R) such that

PAlj P
−1 =

(
eλj cj

0 e−λj

)
,

with |cj | � ‖Alj ‖ � 2‖A‖.

If |λj | > ε
1
4
lj

, set B = diag{‖4A‖−3ε
1
4
lj

, ‖4A‖3ε
− 1

4
lj

}, then

BP (Alj + F̃lj (θ))P
−1B−1 =

(
eλj 0
0 e−λj

)
+ F (θ), (3.34)

where ‖F (θ)‖0 �
ε
1
2
lj

C‖A‖5 . We rewrite(
eλj 0
0 e−λj

)
+ F (θ) =

(
eλj 0
0 e−λj

)
ef̃(θ)
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with ‖f̃(θ)‖0 �
ε
1
2
lj

C‖A‖4 . Then by Remark 3.1 and Corollary 3.1 of [22], one can
conjugate (3.34) to

(
eλj 0
0 e−λj

)(
ef̃re(θ) 0

0 e−f̃re(θ)

)
=

(
eλj ef̃re(θ) 0

0 e−λj e−f̃re(θ)

)
(3.35)

with ‖f̃re(θ)‖0 �
ε
1
2
lj

C‖A‖2 . Therefore, (α,Aef(θ)) is uniformly hyperbolic, which

contradicts our assumption. Now we only need to consider |λj | � ε
1
4
lj

. In this
case, we put λj into the perturbation so that the new perturbation satisfies

‖F̃
′
lj

‖0 � ε
1
4
lj

and

Alj =
(

1 cj

0 1

)
.

Now let us deal with the differentiable almost reducibility. By Cauchy
integral formula, for k0 ∈ N with k0 � k and n ∈ N with n � j, we have

‖Blj (θ + α)(Aefln+1 (θ) − Aefln (θ))B−1
lj

(θ)‖k0

� sup
|l|�k0,θ∈T

d

‖(∂l1
θ1

· · · ∂ld
θd

)(Blj (θ + α)(Aefln+1 (θ) − Aefln (θ))B−1
lj

(θ))‖

� (k0)!(ln+1)k0 |Blj (θ + α)(Aefln+1 (θ) − Aefln (θ))B−1
lj

(θ)| 1
ln+1

� (k0)!(ln)(1+s)k0

(
‖A‖3

κ2

)(
2

1
ln

− 1
ln+1

|ln εln |
)2τ

εln

−
4

ln+1
1

ln
− 1

ln+1

64 × 64c

(2‖A‖)D̃l
Dτ+ 1

2
1 lk−1

n

� C1

l
k−(1+s)k0−2τ−2s(Dτ+ 1

2 )−1
n

where C1 is independent of j.
Taking a telescoping sum from lj to +∞, we get

‖Blj (θ + α)(Aef(θ) − Aeflj
(θ))B−1

lj
(θ)‖k0 � 2C1

l
k−(1+s)k0−2τ−2s(Dτ+ 1

2 )−1
j

.

Similarly by Cauchy integral formula, we have

‖f
′
lj (θ)‖k0 � (k0)!(lj+1)k0 |f ′

lj (θ)| 1
lj+1

� (k0)!(lj)(1+s)k0 × ε3−σ
lj

� (k0)!(lj)(1+s)k0 ×
(

c

(2‖A‖)D̃
lj

Dτ+ 1
2

)3−σ

� C2

l
(Dτ+ 1

2 )(3−σ)−(1+s)k0

j

where C2 is independent of j.
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Thus, we have

‖F̃lj (θ)‖k0 � ‖Alj f
′
lj (θ)‖k0 + ‖Blj (θ + α)(Aef(θ) − Aeflj

(θ))B−1
lj

(θ)‖k0

� C3

l
(Dτ+ 1

2 )(3−σ)−(1+s)k0

j

+
2C1

l
k−(1+s)k0−2τ−2s(Dτ+ 1

2 )−1
j

. (3.36)

Note that although we write k > (D + 2)τ + 2 in the assumption, we simply
choose k = [(D + 2)τ + 2] + 1 in the actual operation process. So the quantity
of k is fully determined by D. Here “[x]” stands for the integer part of x.

So if k0 � k−2τ− 3
2

1+s , then

‖F̃lj (θ)‖k0 � C4

l
1
6
j

,

which immediately shows that

lim
j→+∞

‖F̃lj (θ)‖k0 = 0.

It means precisely that (α,Aef(θ)) is Ck,k0 almost reducible. This finishes the
proof of Theorem 3.2. �

Remark 3.4. In view of Corollary 3.1 in [13], we have L(α,Aef(θ)) = 0. More-
over, estimate (3.26) is essential to proving 1/2 Hölder continuity of the IDS,
which is furthermore essential to proving purely absolutely continuous spec-
trum, see Remark 4.1.

Remark 3.5. One novelty of our quantitative Ck almost reducibility in this
version is that the norm of the conjugation map Blj can be adjusted easily
by the variation of the parameters. More precisely, if we assume D > t

σ with
t � 2, then by the proof of Claim 1 we have εlnj+1

< εt
lnj

,∀j ∈ Z
+ and

‖Blj (θ)‖0 � ε
− σ

2t

∑∞
j=0

1
tj

lj
.

This is quite useful for spectral applications. In certain cases, we need to reduce
the norm of Blj at the cost of enlarging D, i.e., the initial regularity k increases.

In order to obtain the 1
2 -Hölder continuity of the Lyapunov exponent, we

have to assume D > 5
2σ so that ‖Blj (θ)‖0 � ε

− σ
3

lj
. Recall that the restriction

on σ is “σ < 1
6 .” In order to make the initial regularity k small, we need to fix

σ sufficiently close to 1
6 in the beginning.

By Theorem 3.2 and Theorem 1.1 in [13], we have

Theorem 3.3. Let α ∈ DC(κ, τ), if (α,A) is Ck
′
,k almost reducible with k

′
>

k > 17τ + 2, then for any continuous map B : Td → SL(2,C), we have

|L(α,A) − L(α,B)| � C‖B − A‖
1
2
0 , (3.37)

where C is a constant depending on d, κ, τ, A, k.
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Proof. The proof is almost the same as that in [13], with the only difference

that the covering interval Ij becomes: Cε
1
4
lj

� ε � cε
2
9
lj

. Here C, c are two
constants depending on d, κ, τ, A. It is clear that all the small ε tending to zero
can be covered by the interval {Ij}j�1 since lj+1 = l1+s

j , 0 < s � 1
6Dτ+3 . �

Similarly, by Theorem 3.2 and the Proof of Theorem 1.2 in [13], we have

Theorem 3.4. Let α ∈ DC(κ, τ), V ∈ Ck(Td,R) with k > 17τ + 2, then there
exists λ0 depending on V, d, κ, τ, k such that if λ < λ0, then we have the fol-
lowing:
(1) For any E ∈ R, (α, SλV

E ) is Ck,k0 almost reducible with k0 ≤ k − 2τ − 2.
(2) NλV,α is 1/2-Hölder continuous:

N(E + ε) − N(E − ε) � C0ε
1
2 , ∀ ε > 0, ∀E ∈ R,

where C0 depends only on d, κ, τ, k.

Remark 3.6. In fact for (1), by Theorem 3.2 we only require k to be larger than
14τ + 2 since D > 2

σ is enough for almost reducibility, which gives Theorem
1.2.

3.4. Stratification via rotation number

For our purpose, we will apply our Ck almost reducibility theorem on a special
type of Ck quasi-periodic SL(2,R) cocycles: Schrödinger cocycle (α, SλV

E ),
where

SλV
E (θ) =

(
E − λV (θ) −1

1 0

)
. (3.38)

For the sake of unification, let us rewrite SλV
E (θ) = Aef(θ) where

A =
(

E −1
1 0

)
.

In the following, the assumptions of Theorem 3.2 are always fulfilled by
assuming the small condition on λ in Theorem 1.1. It gives that (α, SλV

E ) is
Ck,k0 almost reducible for all E ∈ R, particularly for E ∈ Σ where Σ is the
spectrum of the corresponding Schrödinger operator. Now let us divide Σ into
countable sets of energy E in the following way. For m ∈ Z

+, define

Km = {E ∈ Σ | (α, SλV
E ) has a resonance at m-th step}. (3.39)

Moreover, define

K0 = {E ∈ Σ | (α, SλV
E ) is reducible},

then we have

Σ =
∞⋃

m=1

Km.

When the resonance occurs, we can depict each Km more precisely by
the rotation number of (α, SλV

E ) and we denoted it by ρ(E) for convenience.
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Lemma 3.2. Assume E ∈ Km, m � 1, there exists n ∈ Z
d with 0 < |n| � Nm

such that

|2ρ(E) − 〈n, α〉|T � 5εσ
lm

where Nm = 5lm ln 1
εlm

.

Proof. If E ∈ Km, by the resonant case of Theorem 3.1 and Theorem 3.2, we
have

|2ρ(α,Alm−1) − 〈n′, α〉|T � εσ
lm , (3.40)

for some n′ ∈ Z
d satisfying 0 < |n′| � N = 2

1
lm

− 1
lm+1

|ln εlm | (note that Al0 =

A). In addition, after doing this resonant step, by (5.28) we have

|ρ(α,Alm)| � ‖A
′′
lm‖ � 2εσ

lm . (3.41)

Moreover, formula (2.3) gives

ρ(E) +
〈deg Blm , α〉

2
= ρ(α,Alm + F̃lm(θ)). (3.42)

By the properties of rotation number and (3.33), there exists a numerical
constant c such that

|ρ(α,Alm + F̃lm(θ)) − ρ(α,Alm)| � c‖F̃lm(θ)‖
1
2
0 � cε

1+s
2

lm
. (3.43)

Denote ρ(E)+ 〈deg Blm ,α〉
2 −ρ(α,Alm) = ∗, then by (3.40)-(3.43), we have

|ρ(E) +
〈deg Blm , α〉

2
|T

= |ρ(E) +
〈deg Blm , α〉

2
− ρ(α,Alm) + ρ(α,Alm)|T

= |∗ + ρ(α,Alm)|T

� cε
1+s
2

lm
+ 2εσ

lm

� 5
2
εσ
lm .

By Claim 1 and Remark 3.5, for t � 2, we have

|deg Blm | � N ×
∞∑

j=0

1
tj

� 5lm ln
1

εlm

,

if we denote Nm = 5lm ln 1
εlm

, the result follows immediately. �

In order to make more preparations, we denote the transfer matrices by

An(E, θ) =
0∏

j=n−1

SλV
E (θ + jα). (3.44)

We will show that nice quantitative almost reducibility indicates nice control
on the growth of An on each Km, m � 1 (as will be shown in Section 4, we do
not need to estimate things on K0 since it is transcendentally excluded in the
proof of purely absolutely continuous spectrum).
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Lemma 3.3. Assume k > 35τ + 2, then for every E ∈ Km,m � 1, we have
sup

0�s�cε
−1+ σ

2
lm

‖As‖0 � ε
− 2σ

9
lm

, where c is a universal constant.

Proof. For E ∈ Km,m � 1, (α, SλV
E ) has a resonance at mth step. By the

resonant estimates (5.13)-(5.26) of Theorem 3.1, Theorem 3.2 and Remark
3.5, if D > 11

2σ (thus, we assume k > 35τ + 2), then there exist Blm ∈
Cω

1
lm+1

(2Td, SL(2,C)), Alm ∈ SL(2,C) and F̃
′
lm

∈ Ck0(Td, gl(2,C)) such that

Blm(θ + α)(Aef(θ))B−1
lm

(θ) = Alm + F̃
′
lm(θ),

with

‖Blm(θ)‖0 � ε
− σ

9
lm

, Alm =
(

eγm 0
0 e−γm

)
, ‖F̃

′
lm(θ)‖0 � ε

1− σ
2

lm
+ ε1+s

lm
,

where “ε
1− σ

2
lm

” is the upper bound of the off-diagonal’s norm, see (5.23). And
“ε1+s

lm
” corresponds to the quantity of the perturbation, see (3.33). Moreover,

we have γm ∈ iR.
Then we easily conclude

sup
0�s�cε

−1+ σ
2

lm

‖As‖0 � ‖Blm(θ)‖2
0 � ε

− 2σ
9

lm
.

�

4. Spectral application: absolutely continuous spectrum

With the dynamical estimates in hand, we can prove our main theorem easily.
Let us cite the well known result shown by Gilbert–Pearson [20].

Theorem 4.1 [20]. Let B be the set of E ∈ R such that the cocycle (α, SV
E ) is

bounded (i.e., the norm of its transfer matrix is uniformly bounded in n ∈ N

and θ ∈ T
d). Then μuniv,(V,α,θ)|B is absolutely continuous for all θ ∈ T

d where
μuniv = μδ0 + μδ1 .

Besides, let us recall two convenient results proved by Avila [1] (in the
following, μ stands for μuniv,(λV,α,θ)).

Theorem 4.2 [1]. We have μ(E − ε, E + ε) � Cε sup0�s�Cε−1‖As‖2
0, where

C > 0 is a universal constant.

Theorem 4.3 [1]. If E ∈ Σ then for 0 < ε < 1, N(E + ε) − N(E − ε) � cε
3
2 ,

where c > 0 is a universal constant.

Remark 4.1. The proof of Theorem 4.3 requires the 1
2 -Hölder continuity of the

integrated density of states in our case, which is ensured by Theorem 3.4.
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4.1. Proof of Theorem 1.1

Proof. Denote B the set of E ∈ Σ such that (α, SλV
E ) is bounded. Denote R

be the set of E ∈ Σ such that (α, SλV
E ) is reducible. Then Theorem 4.1 ensure

that we only need to prove μ(Σ\B) = 0.
Note that R\B has only E such that (α, SλV

E ) is reducible to parabolic.
By the Gap Labeling Theorem [10,24], for any E ∈ R\B, there exists a unique
m ∈ Z

d such that 2ρ(α, SλV
E ) ≡ 〈m,α〉 mod 2πZ, which shows R\B is count-

able. Moreover, if E ∈ R, then any nonzero solution HλV,α,θu = Eu satisfies
infn∈Z[|un|2 + |un+1|2] > 0. So there are no eigenvalues in R and μ(R\B) = 0.
Therefore, it is enough to prove μ(Σ\R) = 0.

Define Km,m ∈ Z
+ as in (3.39). By the definition of Km, we have Σ\R ⊂

lim supKm.
For every E ∈ Km, let Jm(E) be an open εm = Cε

2σ
3

lm
neighborhood of

E. By Lemma 3.3,

sup
0�s�Cε−1

m

‖As‖2
0 � ε

− 4σ
9

lm
.

Moreover, by Theorem 4.2

μ(Jm(E)) � Cε
− 4σ

9
lm

|Jm(E)|,
where “|·|” stands for the Lebesgue measure. By compactness we can take a
finite subcover Km ⊂

⋃r0
j=0 Jm(Ej). By refining this subcover, we can assume

that any x ∈ R is contained in at most 2 different Jm(Ej) (the number of
subcovers may grow due to refinement, but it is finite because of compactness
and we denote it by r). By the Borel–Cantelli lemma, it is sufficient for us to
prove the measure of

⋃r
j=0 Jm(Ej) has some good decay with respect to m so

that
∑

m μ(Km) < ∞.
By Theorem 4.3, we have

|N(Jm(E))| � c|Jm(E)| 3
2 .

By Lemma 3.2, if E ∈ Km, then

|2πN(E) − 〈n, α〉|T � 5εσ
lm

for some |n| � 5lm ln 1
εlm

. This shows that N(Km) can be covered by (10lm ln 1
εlm

+
1)d intervals Is of length 5εσ

lm
. Since |Is| � C|N(Jm(E))| for any s and

E ∈ Km, there are at most 2C + 4 intervals Jm(Ej) such that N(Jm(Ej))
intersects Is. We conclude that there are at most C(10lm ln 1

εlm
+1)d intervals

of Jm(Ej). Then

μ(Km) �
r∑

j=0

μ(Jm(Ej)) � C

(
10lm ln

1
εlm

+ 1
)d

× Cε
− 4σ

9
lm

× Cε
2σ
3

lm
� l

− τ
5

m ,

which gives ∑
m

μ(Km) � C.
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This finishes the proof. �

4.2. Further comments

The technical requirement of “k > 35τ + 2” is really due to the necessity of
ensuring the slower growth of the conjugation maps (less cost) as well as the
faster decay of the perturbations (more profit). For “k > 14τ + 2,” although
we have the almost reducibility, there is not enough quantitative control of
the conjugacy and the perturbation. Indeed, understanding the competition
between these two terms is our core of using dynamical estimates to derive
spectral results.

There is something also interesting to mention. Of course, the smallness
of the coupling constant λ ensures the zero Lyapunov exponent and purely ab-
solutely continuous spectrum in our context. But perhaps it would be more ac-
curate to say that it is the smallness of the oscillation of the potential that does
the job. In fact, Wang and You [30,31] created examples of smooth Schrödinger
operators with large coupling constant which have zero Lyapunov exponent for
some energy in the spectrum. The tricky part is that the potential has some
flat region which corresponds to small oscillation.

Finally, in an ongoing project named “Mixed Random-quasiperiodic Co-
cycles” [14,15] with Pedro Duarte and Silvius Klein, our purely ac spectrum
result will serve as a fundamental example to show the metal–insulator tran-
sition between quasi-periodicity and randomness.

Acknowledgements

The author is deeply grateful to the referees for their careful review of this
paper so that its readability is greatly improved in various perspectives. The
author would like to thank Jiangong You and Qi Zhou for useful discussions
at Chern Institute of Mathematics, and is grateful to Pedro Duarte for his
persistent support at University of Lisbon as well as to Silvius Klein for
his consistent support from PUC-Rio. This work is supported by FAPERJ
Programa Pós-Doutorado Nota 10-2021, PTDC/MAT-PUR/29126/2017 and
NSFC grant (11671192).

Declarations

Conflicts of interest There is no conflict of interest

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

5. Appendix

Proof of Theorem 3.1. For readers who are quite familiar with the analytic
KAM scheme, this proof can be skipped since the structure is similar to that
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in [13]. But the estimates here are sharp compared with those in [13] (see
Remark 3.3), so we prefer to provide the detailed proof for self-containedness.

Recall that sl(2,R) is isomorphic to su(1, 1), which consists of matrices
of the form (

it v
v̄ −it

)

with t ∈ R, v ∈ C. The isomorphism between them is given by A → MAM−1,
where

M =
1

1 + i

(
1 −i
1 i

)

and a simple calculation yields

M

(
x y + z

y − z −x

)
M−1 =

(
iz x − iy

x + iy −iz

)
,

where x, y, z ∈ R. SU(1, 1) is the corresponding Lie group of su(1, 1). We will
prove this theorem in SU(1, 1), which is isomorphic to SL(2,R). �

We distinguish two cases:
Non-resonant case For 0 < |n| � N = 2

r−r′ |ln ε|, we have

|2ρ − 〈n, α〉| � εσ; (5.1)

by (3.2) with D > 2
σ , we have

|〈n, α〉| � κ

|n|τ � κ

|N |τ � ε
σ
2 � εσ. (5.2)

It is well known that (5.1) and (5.2) are the conditions which are used to
overcome the small denominator problem in KAM theory.

Define

ΛN =

⎧⎨
⎩f ∈ Cω

r (Td, su(1, 1)) | f(θ) =
∑

k∈Zd,0<|k|<N

f̂(k)ei〈k,θ〉

⎫⎬
⎭ . (5.3)

Our goal is to solve the cohomological equation

Y (θ + α)A − AY (θ) = A(−TNf(θ) + f̂(0)),

i.e.,

A−1Y (θ + α)A − Y (θ) = −TNf(θ) + f̂(0). (5.4)

Here TN is the truncation operator such that

(TNf)(θ) =
∑

k∈Zd,|k|<N

f̂(k)ei〈k,θ〉.

Take the Fourier transform for (5.4) and compare the corresponding
Fourier coefficients of the two sides. By (5.1) (apply it twice to solve the
off-diagonal) along with (5.2) (apply it once to solve the diagonal), we obtain
that if Y ∈ ΛN , then

|Y (θ)|r � ε−3σ|TNf(θ) − f̂(0)|r,
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which gives

|A−1Y (θ + α)A − Y (θ)|r � ε3σ|Y (θ)|r. (5.5)

Moreover, we have A−1Y (θ + α)A ∈ ΛN by (5.3). For η = ε3σ, we define
Bnre

r (ε3σ) by (3.1), then we have ΛN ⊂ Bnre
r (ε3σ).

Since ε3σ � 13‖A‖2ε
1
2 (it holds by σ being smaller than 1

6 and D̃ depend-
ing on σ), by Lemma 3.1 we have Y ∈ Br and fre ∈ Bre

r (ε3σ) such that

eY (θ+α)(Aef(θ))e−Y (θ) = Aefre(θ),

with |Y |r � ε
1
2 and

|fre|r � 2ε. (5.6)

By (5.3)

(TNfre)(θ) = f̂re(0), ‖f̂re(0)‖ � 2ε,

and

|(RNfre)(θ)|r′ = |
∑

|n|>N

f̂re(n)ei〈n,θ〉|r′

� 2εe−N(r−r′)(N)d

� 2ε · ε2 · 1
4
ε−σ

=
1
2
ε3−σ. (5.7)

Moreover, we can compute that

ef̂re(0)+RN fre(θ) = ef̂re(0)(Id + e−f̂re(0)O(RNfre)) = ef̂re(0)ef+(θ),

by (5.7), we have

|f+(θ)|r′ � 2|RNfre(θ)|r′ � ε3−σ.

Finally, if we denote

A+ = Aef̂re(0),

then we have

‖A+ − A‖ � ‖A‖‖Id − ef̂re(0)‖ � 2‖A‖ε.

Resonant case In fact, we only need to consider the case in which A is
elliptic with eigenvalues {eiρ, e−iρ} for ρ ∈ R\{0} since if ρ ∈ iR, then the
non-resonant condition is always satisfied due to the Diophantine condition on
α and then it actually belongs to the non-resonant case.

Claim 2. n∗ is the unique resonant site with

0 < |n∗| � N =
2

r − r′ |ln ε|.
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Proof. Indeed, if there exists n
′
∗ �= n∗ satisfying |2ρ − 〈n′

∗, α〉| < εσ, then by
the Diophantine condition of α, we have

κ

|n′
∗ − n∗|τ

� |〈n′
∗ − n∗, α〉| < 2εσ,

which implies that |n′
∗| > 2− 1

τ κ
1
τ ε− σ

τ − N > 2N2. �

Since we have

|2ρ − 〈n∗, α〉| < εσ, (5.8)

the smallness condition on ε implies that

|ln ε|τ εσ � κ(r − r′)τ

2τ+1
.

Thus,
κ

|n∗|τ
� |〈n∗, α〉|� εσ + 2|ρ|� κ

2|n∗|τ
+ 2|ρ|,

which implies that

|ρ| � κ

4|n∗|τ
.

Then by Lemma 8.1 of Hou–You [22], one can find P ∈ SU(1, 1) with

‖P‖ � 2
(

‖A‖
|ρ|

) 1
2

� 4
(

‖A‖
κ

) 1
2

|n∗|
τ
2 ,

such that

PAP−1 =
(

eiρ 0
0 e−iρ

)
= A′.

Denote g = PfP−1, by (3.2) we have:

‖P‖ � 4
(

‖A‖
κ

) 1
2

|N | τ
2 � 4

(
‖A‖
κ

) 1
2

(
2

r − r′ |ln ε|
) τ

2

, (5.9)

|g|r � ‖P‖2|f |r � 24+τ‖A‖|ln ε|τ
κ(r − r′)τ

× ε := ε′. (5.10)

Now we define

Λ1(εσ) = {n ∈ Z
d : |〈n, α〉| � εσ},

Λ2(εσ) = {n ∈ Z
d : |2ρ − 〈n, α〉| � εσ}.

For η = εσ, we define the decomposition Br = Bnre
r (εσ)

⊕
Bre

r (εσ) as in (3.1)
with A substituted by A′. Recall that su(1, 1) consists of matrices of the form(

it v
v̄ −it

)
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with t ∈ R, v ∈ C. Direct computation shows that any Y ∈ Bnre
r (εσ) takes the

precise form:

Y (θ) =
∑

n∈Λ1(εσ)

(
it̂(n) 0

0 −it̂(n)

)
ei〈n,θ〉

+
∑

n∈Λ2(εσ)

(
0 v̂(n)ei〈n,θ〉

v̂(n)e−i〈n,θ〉 0

)
.

(5.11)

Since εσ � 13‖A′‖2(ε′)
1
2 , we can apply Lemma 3.1 to remove all the non-

resonant terms of g, which means there exist Y ∈ Br and gre ∈ Bre
r (η) such

that

eY (θ+α)(A′eg(θ))e−Y (θ) = A′egre(θ),

with |Y |r � (ε′)
1
2 and |gre|r � 2ε′.

Combining with the Diophantine condition on the frequency α and the
Claim 2, we have:

{Zd\Λ1(εσ)} ∩ {n ∈ Z
d : |n| � κ

1
τ ε− σ

τ } = {0},

{Zd\Λ2(εσ)} ∩ {n ∈ Z
d : |n| � 2− 1

τ κ
1
τ ε− σ

τ − N} = {n∗}.

Let N ′ := 2− 1
τ κ

1
τ ε− σ

τ − N , then we can rewrite gre(θ) as

gre(θ) = gre
0 + gre

1 (θ) + gre
2 (θ)

=
(

it̂(0) 0
0 −it̂(0)

)
+

(
0 v̂(n∗)ei〈n∗,θ〉

v̂(n∗)e−i〈n∗,θ〉 0

)

+
∑

|n|>N ′
ĝre(n)ei〈n,θ〉.

Define the 4πZd-periodic rotation Q(θ) as below:

Q(θ) =

(
e− 〈n∗,θ〉

2 i 0
0 e

〈n∗,θ〉
2 i

)
.

So we have

|Q(θ)|r′ � e
1
2Nr′ � ε

−r′
r−r′ . (5.12)

One can also show that

Q(θ + α)(A′egre(θ))Q−1(θ) = Ãeg̃(θ),

where

Ã = Q(θ + α)A′Q−1(θ) =

(
ei(ρ− 〈n∗,α〉

2 ) 0
0 e−i(ρ− 〈n∗,α〉

2 )

)
(5.13)

and

g̃(θ) = Qgre(θ)Q−1 = Qgre
0 Q−1 + Qgre

1 (θ)Q−1 + Qgre
2 (θ)Q−1.
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Moreover,

Qgre
0 Q−1 = gre

0 =
(

it̂(0) 0
0 −it̂(0)

)
∈ su(1, 1), (5.14)

Qgre
1 (θ)Q−1 =

(
0 v̂(n∗)

v̂(n∗) 0

)
∈ su(1, 1). (5.15)

Now we return back from su(1, 1) to sl(2,R). Denote

L = M−1(Qgre
0 Q−1 + Qgre

1 (θ)Q−1)M, (5.16)

F = M−1Qgre
2 (θ)Q−1M, (5.17)

B = M−1(Q ◦ eY ◦ P )M, (5.18)

Ã
′
= M−1ÃM, (5.19)

then we have:

B(θ + α)(Aef(θ))B−1(θ) = Ã
′
eL+F (θ). (5.20)

By (5.9) and (5.12), we have the following estimates:

‖B‖0 � |eY |r‖P‖ � 8
(

‖A‖
κ

) 1
2

(
2

r − r′ |ln ε|
) τ

2

, (5.21)

|B|r′ � 8
(

‖A‖
κ

) 1
2

(
2

r − r′ |ln ε|
) τ

2

× ε
−r′

r−r′ , (5.22)

‖L‖ � ‖Qgre
0 Q−1‖ + ‖Qgre

1 (θ)Q−1‖ � ε′ + ε′e−|n∗|r, (5.23)

|F |r′ � |Qgre
2 (θ)Q−1|r′ � 24+τ‖A‖|ln ε|τ

κ(r − r′)τ
εe−N ′(r−r′)(N ′)deNr′

. (5.24)

By (5.23) and (5.24), direct computation shows that

eL+F (θ) = eL + O(F (θ)) = eL(Id + e−LO(F (θ))) = eLef+(θ). (5.25)

It immediately implies that

|f+(θ)|r′ � 2|F (θ)|r′ � 25+τ‖A‖|ln ε|τ
κ(r − r′)τ

εe−N ′(r−r′)(N ′)deNr′ � ε100.

Thus, we can rewrite (5.20) as

B(θ + α)(Aef(θ))B−1(θ) = A+ef+(θ),

with

A+ = Ã
′
eL = eA′′

, A′′ ∈ sl(2,R). (5.26)

Now recall that Baker–Campbell–Hausdorff formula [28] says that

ln(eXeY ) = X + Y +
1
2
[X,Y ] +

1
12

([X, [X,Y ] + [Y, [Y,X]]) + · · · ,

(5.27)
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where [X,Y ] = XY − Y X denotes the Lie Bracket and · · · denotes the sum
of higher order terms. Using this formula and by a simple calculation, (5.26)
gives

MA′′M−1 =
(

it v
v̄ −it

)

where

t = ρ − 〈n∗, α〉
2

+ t̂(0) + higher order terms

and

v = v̂(n∗) + higher order terms.

By (5.8) and (5.23), we obtain |t| � εσ and

|v| � 24+τ‖A‖|ln ε|τ
κ(r − r′)τ

εe−|n∗|r.

Finally, the following estimate is straightforward:

‖A′′‖ � 2(|ρ − 〈n∗, α〉
2

| + ‖Qgre
0 Q−1‖ + ‖Qgre

1 (θ)Q−1‖) � 2εσ. (5.28)

This finishes the proof of Theorem 3.1. �
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