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Edge Distribution of Thinned Real
Eigenvalues in the Real Ginibre Ensemble

Jinho Baik and Thomas Bothner

Abstract. This paper is concerned with the explicit computation of the
limiting distribution function of the largest real eigenvalue in the real
Ginibre ensemble when each real eigenvalue has been removed indepen-
dently with constant likelihood. We show that the recently discovered
integrable structures in [2] generalize from the real Ginibre ensemble to
its thinned equivalent. Concretely, we express the aforementioned limiting
distribution function as a convex combination of two simple Fredholm de-
terminants and connect the same function to the inverse scattering theory
of the Zakharov–Shabat system. As corollaries, we provide a Zakharov–
Shabat evaluation of the ensemble’s real eigenvalue generating function
and obtain precise control over the limiting distribution function’s tails.
The latter part includes the explicit computation of the usually difficult
constant factors.

Mathematics Subject Classification. Primary 60B20; Secondary 45M05,
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1. Introduction and Statement of Results

Let X ∈ R
n×n, n ∈ Z≥2 be a matrix whose entries are independent, identically

distributed standard normal random variables with mean 0 and variance 1. In
other words, X is a matrix drawn from the real Ginibre ensemble (GinOE)
[42]. This ensemble of random matrices appeared first in the 1965 paper [42]
by Ginibre, the same paper which brought forth a threefold family of Gauss-
ian random matrices (complex, real or real quaternion entries) and thereby
initiated the study of eigenvalue statistics in the complex plane. At first, [42]
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served as a mathematical extension of Hermitian random matrix theory only
but it proved to be valuable for the modeling of a wide range of physical
phenomena later on: For instance, Ginibre matrices appear in the study of
the fractional quantum Hall effect [29], in the stability analysis of complex
biological systems [53] and neural networks [58], in quantum chaotic systems
[32] and in financial market models [50]; see [48] for further applications and
references. From the viewpoint of applicability and computability of the sta-
tistical properties of a given Ginibre random matrix, one commonly focuses
on its extreme eigenvalues as they model extreme events in the corresponding
physical system. Consequently, extreme eigenvalues correspond to events that
are in general quite rare, but when they occur, then with serious consequences
which makes their analysis valuable. It is precisely within the context of ex-
treme values that the GinOE attains a special mathematical role due to its real
peculiarities: the expected number of real eigenvalues of any X ∈ GinOE is
equivalent to

√
2n/π as n → ∞ [30] and the likelihood that all its eigenvalues

are real is exactly 2−n(n−1)/4 [31]. Both features are nowadays cornerstones
of the edge behavior of real eigenvalues in the real Ginibre ensemble. In this
paper, we contribute to the same field by providing original results for the
limiting distribution function of the largest real eigenvalue in a thinned real
Ginibre ensemble.

In order to be concrete, we first recall, cf. [10,41,59], that the eigenvalues
{zj(X)}n

j=1 of any X ∈ GinOE form a Pfaffian point process, a fact which
allows one to compute gap probabilities in the GinOE as Fredholm determi-
nants. Of particular interest for us is the following result about the absence of
real eigenvalues in (t,∞) ⊂ R, equivalently about the distribution function of
the largest real eigenvalue in the finite n GinOE.

Proposition 1.1. ([56, Proposition 2.2]) For every n ∈ Z≥2,

P

⎛

⎝ max
j=1,...,n

zj∈R

zj(X) ≤ t

⎞

⎠ =
√

det
2

(
1 − χtKnχt�L2(R)⊕L2(R)

)
, t ∈ R, (1.1)

where χt is the operator of multiplication by the characteristic function χ[t,∞)

of the interval [t,∞) ⊂ R and Kn the following Hilbert–Schmidt integral oper-
ator on L2(R) ⊕ L2(R),

Kn =
[

ρ−1Snρ ρ−1(DS∗
n)ρ−1

−ρ(ISn)ρ + ρερ ρS∗
nρ−1

]
. (1.2)

Here, ρ multiplies by any differentiable, square-integrable weight function
ρ(x) > 0 on R such that ρ−1(x) ≡ 1/ρ(x) is polynomially bounded. Moreover
Sn and ε are the integral operators on L2(R) with kernels
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Sn(x, y) :=
1√
2π

e− 1
2 (x2+y2)en−2(xy) +

xn−1e− 1
2 x2

√
2π(n − 2)!

∫ y

0

un−2e− 1
2 u2

du,

ε(x, y) :=
1
2
sgn(y − x),

where en(z) :=
∑n

k=0
1
k!z

k is the exponential partial sum, S∗
n the real adjoint of

Sn, D acts by differentiation on the independent variable and ISn has kernel
(
ISn

)
(x, y) :=

(
εSn

)
(x, y), n ∈ Z≥2 even,

and
(
ISn

)
(x, y) :=

(
εSn

)
(x, y) +

1
2n/2Γ(n/2)

∫ y

0

un−1e− 1
2 u2

du, n ∈ Z≥3 odd.

Remark 1.2. The ordinary Fredholm determinant of Kn is ill-defined since not
all its entries vanish at ±∞ and since ε is not trace-class on L2(R). This is
a standard issue in random matrix theory, compare [62, Section VIII], [63,
page 2199] or [27, page 79-84], and it is commonly bypassed either through
the use of regularized determinants or weighted Hilbert spaces. In (1.1), we
use the following regularized 2-determinant for block operators �L =

[
L11 L12
L21 L22

]

with trace class diagonal L11, L22 and Hilbert–Schmidt off-diagonal L12, L21,
cf. [27, page 82],

det
2

(1 + �L) := det
(
(1 + �L)e−�L)etr(L11+L22), (1.3)

where det is the ordinary Fredholm determinant (which is well defined as
(1 + �L)e−�L = 1 + trace class on L2(R) ⊕ L2(R) for the given �L, cf. [57, (3.5)]),
the block operators act on L2(R) ⊕ L2(R) and the trace in the exponent is
taken in L2(R). Note that (1.3) is slightly different from the Hilbert–Carleman
determinant [57, Chapter 9] in that for trace class �L we have det2(1 + �L) =
det(1 + �L) and for any two of the above block operators

det
2

(1 + �L + M + �LM) = det
2

(1 + �L) det
2

(1 + M). (1.4)

Moreover, as soon as �LM and M�L fit into the aforementioned class of block
operators,

det
2

(1 + �LM) = det
2

(1 + M�L), (1.5)

and det2(1 + �L) 
= 0 if and only if 1 + �L is invertible.

The finite n GinOE result (1.1) can be used to derive a limit theorem for
the largest real eigenvalue of a real Ginibre matrix which in turn quantifies
the well-known saturn effect. Indeed, in order to state the corresponding limit
theorem for the largest real eigenvalue we first consider the following Riemann–
Hilbert problem (RHP).

Riemann-Hilbert Problem 1.3. ([2, RHP 1.5]) Given x, γ ∈ R × [0, 1], deter-
mine Y(z) = Y(z;x, γ) ∈ C

2×2 such that
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(1) Y(z) is analytic for z ∈ C \ R and continuous on the closed upper and
lower half-planes.

(2) The boundary values Y±(z) := limε↓0 Y(z ± iε), z ∈ R satisfy

Y+(z) = Y−(z)
[
1 − |r(z)|2 −r̄(z)e−2ixz

r(z)e2ixz 1

]
,

z ∈ R; r(z) = r(z; γ) := −i
√

γe− 1
4 z2

.

(3) As z → ∞,

Y(z) = I + Y1(x, γ)z−1 + O(z−2
)
; Y1(x, γ) =

[
Y jk

1 (x, γ)
]2
j,k=1

. (1.6)

This problem is uniquely solvable for all (x, γ) ∈ R×[0, 1], cf. [2, Theorem
3.9], and its solution enables us to state the limit theorem for the largest real
eigenvalue as follows. Eigenvalues off the real axis are much simpler to deal
with, see [56, Theorem 1.2].

Theorem 1.4. ([56, Theorem 1.3], [55, Theorem 1.1], [2, Theorem 1.6]) Let
X ∈ R

n×n be a matrix drawn from the GinOE with eigenvalues {zj(X)}n
j=1 ⊂

C. Then for every t ∈ R,

lim
n→∞P

⎛

⎜⎜⎜
⎝

max
j = 1, . . . , n

zj ∈ R

zj(X) ≤ √
n + t

⎞

⎟⎟⎟
⎠

=
√

det(1 − χtTχt�L2(R))Γt (1.7)

= exp
[
−1

8

∫ ∞

t

(x − t)
∣∣∣y
(x

2
; 1
)∣∣∣

2

dx +
i
4

∫ ∞

t

y
(x

2
; 1
)
dx

]
,

where T : L2(R) → L2(R) is trace class with kernel

T (x, y) :=
1
π

∫ ∞

0

e−(x+u)2e−(y+u)2du, (1.8)

and

Γt := 1 −
∫ ∞

t

G(x)
(
(1 − Tχt�L2(R))

−1g
)
(x)dx;

g(x) :=
1√
π

e−x2
, G(x) :=

∫ x

−∞
g(y)dy. (1.9)

The function y = y(x; 1) : R × [0, 1] → iR equals y(x; 1) := 2iY 12
1 (x, 1), which

is expressed in terms of the matrix coefficient Y1(x, 1) that appeared in (1.6).

Remark 1.5. The first equality in (1.7) is due to Rider and Sinclair [56, Theo-
rem 1.2] with a subsequent algebraic correction of the factor Γt by Poplavskyi,
Tribe and Zaboronski [55, Theorem 1.1]. The second equality was derived by
the authors [2, Theorem 1.6] and should be viewed as the GinOE analogue of
the famous Tracy–Widom law for the largest eigenvalue in the Gaussian or-
thogonal ensemble (GOE), compare [62, (53)]. Indeed, as far as the largest real
eigenvalue is concerned, the overall difference between GinOE and GOE stems
from the appearance of the function y, i.e., the solution of a distinguished
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inverse scattering problem for the Zakharov–Shabat system [2, Section 1.2],
rather than the more familiar Painlevé-II Hastings-McLeod transcendent.

Remark 1.6. We emphasize that the limit law (1.7) is not a feature of the
GinOE alone. In fact, Cipolloni, Erdős and Schröder recently proved in [21,
Theorem 2.3] that the edge eigenvalue statistics of a large class of real non-
Hermitian random matrices with i.i.d. centered entries match those of the
GinOE. Thus, in complete analogy with the Tracy–Widom law for real Wigner
matrices [60], the law (1.7) is a universal limit law. The same holds true for the
upcoming limit law (1.14) for thinned real non-Hermitian random matrices at
their spectral edge.

1.1. Fredholm Determinant Formula

In this paper, we are concerned with the limiting (n → ∞) distribution of the
largest real eigenvalue in the following thinned real GinOE process: consider
the Pfaffian point process formed by the mn ≤ n real eigenvalues of some
X ∈ GinOE. Fix γ ∈ [0, 1] and now discard each eigenvalue R � zj(X), j =
1, . . . ,mn independently with likelihood 1 − γ. The resulting particle system

{
zγ
j (X)

}mγ,n

j=1
with mγ,n ≤ mn ≤ n,

forms also a random point process, see [44, Chapter 6.2.1], and most impor-
tantly for us, this process is Pfaffian as stated in our first result below.

Lemma 1.7. The above-defined thinned real GinOE process is a Pfaffian ran-
dom point process with

P

(
max

j=1,...,mγ,n

zγ
j (X) ≤ t

)
=
√

det
2

(
1 − γχtKnχt�L2(R)⊕L2(R)

)
, (t, γ) ∈ R× [0, 1],

(1.10)
where the operator Kn appeared in (1.2).

Identities similar to (1.10) have been derived in [13, Proposition 1.1] for
the limiting GOE and the limiting Gaussian symplectic ensemble (GSE) based
on Painlevé representations for the underlying eigenvalue generating functions,
cf. [25, Theorem 2.1]. Our proof of Lemma 1.7 will rely on the observation that
thinned Pfaffian point processes are Pfaffian with an appropriately γ-modified
kernel, see Sect. 2, which is similar to the proof for determinantal point pro-
cesses given in [51, Appendix A]. The fact that a thinned process built from
a determinantal point process is also determinantal was first observed in [8].
In fact, it is the last paper [8] which re-ignited the interest in incomplete
point processes in random matrix theory, simply because the incomplete or
thinned matrix models allow one to transition between qualitatively different
extreme behaviors. Such transitions have been studied foremost in Hermit-
ian ensembles; compare Remarks 1.12 and 1.15 for some references; here, we
are interested in the simplest thinned non-Hermitian matrix model with real
entries.

Once (1.10) is established, we will then use this finite n result to derive
the following limit theorem for the thinned real GinOE process, our second
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result. Set
γ̄ := γ(2 − γ) (1.11)

and note that γ̄ ∈ [0, 1] for γ ∈ [0, 1]. The limit is a convex combination of two
simple Fredholm determinants.

Theorem 1.8. For any (t, γ) ∈ R × [0, 1], the limit

P (t; γ) := lim
n→∞P

(
max

j=1,...,mγ,n

zγ
j (X) ≤ √

n + t

)
, γ ∈ [0, 1] (1.12)

exists and equals

P (t; γ) =

√
1 − √

γ̄

2(2 − γ)
det
(
1 +

√
γ̄χtSχt �L2(R)

)

+

√
1 +

√
γ̄

2(2 − γ)
det
(
1 − √

γ̄χtSχt �L2(R)

)
, (1.13)

with γ̄ defined in (1.11). Here, S : L2(R) → L2(R) is the trace class integral
operator with kernel

S(x, y) =
1

2
√

π
e− 1

4 (x+y)2 .

The special value γ = 1 reduces (1.13) to

P (t; 1) = det
(
1 − χtSχt�L2(R)

)
,

which was first proven by the authors in [2, Theorem 1.11]. Note that the for-
mula for P (t; 1) is the analogue of the Ferrari–Spohn formula [35] in the GOE,
generalized to the thinned GOE by Forrester in [39, Corollary 1]. Comparing
(1.13) to the last reference (modulo the typo correction ξ �→ ξ̄ in the deter-
minants in the first line of [39, (1.22)] and after completing squares), we spot
a striking resemblance between the thinned GOE and the thinned GinOE: up
to the kernel replacement

S(x, y) �→ Ai(x + y),

with the Airy function w = Ai(z), see [54, 9.2.2], the formulæare exactly the
same.

1.2. Integrability of the Thinned Real GinOE Process

In our third result, we express the limiting distribution function P (t; γ) in
(1.12) in terms of the solution of RHP 1.3 and thus in terms of the solution to
an inverse scattering problem for the Zakharov–Shabat system. Here are the
details:

Theorem 1.9. For any (t, γ) ∈ R × [0, 1],

P (t; γ) = exp
[
−1

8

∫ ∞

t

(x − t)
∣∣∣y
(x

2
; γ̄
)∣∣∣

2

dx

]

(√
1 − √

γ̄

2(2 − γ)
e

1
2 μ(t;γ̄) +

√
1 +

√
γ̄

2(2 − γ)
e− 1

2 μ(t;γ̄)

)

(1.14)
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where the function y = y(x; γ) : R × [0, 1] → iR is given by y(x; γ) :=
2iY 12

1 (x, γ) in terms of (1.6) and

μ(t; γ) := − i
2

∫ ∞

t

y
(x

2
; γ
)
dx. (1.15)

Remark 1.10. Note that for every (t, γ) ∈ R × [0, 1],
√

1 − √
γ̄

2(2 − γ)
e

1
2 μ(t;γ̄)+

√
1 +

√
γ̄

2(2 − γ)
e− 1

2 μ(t;γ̄) =

√
γ − 1 − cosh μ(t; γ̄) +

√
γ̄ sinh μ(t; γ̄)

γ − 2
.

(1.16)

We emphasize that the structure in the right-hand side of (1.14), (1.16)
is completely similar to the one in the limiting distribution function for the
largest eigenvalue in the thinned GOE ensemble, cf. [13, (1.6)]. It is only the
appearance of the solution to the Zakharov–Shabat inverse scattering problem
which sets the thinned GinOE apart from the thinned GOE—at least as far
as the largest real eigenvalue is concerned; compare Remark 1.5 for the special
case γ = 1. We further emphasize this point with our fourth result, a simple
corollary to Theorem 1.13: let E(m, (t,∞)) denote the limiting (as n → ∞)
probability that there are m ∈ Z≥0 edge scaled real eigenvalues μj(X) :=
zj(X) − √

n ∈ R of a matrix X ∈ GinOE in the interval (t,∞) ⊂ R. Now
define the associated generating function

E
(
(t,∞);λ

)
:=

∞∑

m=0

E
(
m, (t,∞)

)
(1 − λ)m, (1.17)

which, as a consequence of Theorem 1.8 can also be evaluated in terms of the
solution of RHP 1.3:

Corollary 1.11. For every (t, λ) ∈ R × [0, 1],

E
(
(t,∞);λ

)
= exp

[
−1

8

∫ ∞

t

(x − t)
∣∣∣y
(x

2
; λ̄
)∣∣∣

2

dx

]

√
λ − 1 − cosh μ(t; λ̄) +

√
λ̄ sinhμ(t; λ̄)

λ − 2
, (1.18)

with λ̄ := 2λ − λ2, the above function y(x;λ) = 2iY 12
1 (x, λ) and the antideriv-

ative (1.15).

Formula (1.18) is a simple consequence of the inclusion–exclusion princi-
ple; see Sect. 6. The generating function is of interest from the random matrix
theory viewpoint as it allows one to compute the limiting distribution function
Fm(t) of the mth largest edge scaled real eigenvalue (m = 1 is the largest) in
the GinOE in recursive form,

Fm+1(t) − Fm(t) =
(−1)m

m!
dm

dλm
E
(
(t,∞);λ

)
∣∣∣
∣
λ=1

, m ∈ Z≥0 : F0(t) ≡ 0,

see [5, Section 6.3.2] for the standard probabilistic argument used in the deriva-
tion of such recursions in random matrix theory.
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Remark 1.12. The analogue of (1.18) for the GOE was first derived in [25,
Theorem 2.1] and then used for the computation of the limiting distribution
function of the largest eigenvalue in the thinned GOE; see for example [13,
Proposition 1.1]. For the GinOE, we will proceed in the reverse direction and
first prove (1.14).

1.3. Tail Expansions

One major advantage of the explicit formula (1.14)—besides the fact that it
places the thinned GinOE on firm integrable systems ground—originates from
its usefulness in the derivation of tail expansions. Indeed, once the Riemann–
Hilbert problem connection is in place, it is somewhat straightforward to obtain
asymptotic information for the distribution function P (t; γ) in (1.12) as t →
±∞. We summarize the relevant estimates in our fifth result below.

Theorem 1.13. Let γ ∈ [0, 1]. We have, as t → +∞,

P (t; γ) = 1 − γ

4
erfc(t) + O(t−1e−2t2

)
, (1.19)

with the complementary error function w = erfc(z) := 2√
π

∫∞
z

e−t2dt, see [54,
7.2.2]. On the other hand, as t → −∞,

P (t; γ) = ec1(γ)t+c0(γ)
(
1 + o(1)

)
, (1.20)

with

c1(γ) =
1

2
√

2π
Li 3

2
(γ̄), c0(γ) =

1

2
ln

(
2

2 − γ

)
+

1

4π

∫ γ̄

0

(
(
Li 1

2
(x)
)2 − xπ

1 − x

)
dx

x
,

(1.21)
in terms of the polylogarithm w = Lis(z) :=

∑∞
n=1 zn/ns, see [54, 25.12.10].

Expansion (1.19) was first derived in [41] for γ = 1. The leading order
exponential decay of the left tail (1.20) appeared in [55, (1.11)] for γ = 1 and
for γ ∈ [0, 1] in [38, (2.30)], albeit in somewhat implicit form. The notoriously
difficult constant factor c0(γ) in (1.20), difficult because it cannot be obtained
via trace norm estimates (compare our discussion in (1.23)), was recently com-
puted in [36, (3)] for γ = 1 using probabilistic arguments. In this paper, we
derive (1.20) for all γ ∈ [0, 1) by nonlinear steepest descent techniques. The
evaluation of c0(1) would require further analysis and we choose not to red-
erive c0(1) in this paper. Nonetheless, we note that our result (1.20), (1.21)
matches formally onto [55, (1.11)], [36, (3)], i.e., onto the t → −∞ expansion

P (t; 1) = exp

[
t

2
√

2π
ζ

(
3
2

)
+

1
2

ln 2 +
1
4π

∞∑

n=1

1
n

(

−π +
n−1∑

m=1

1
√

m(n − m)

)]

× (1 + o(1)
)
, (1.22)

since c1(1) = 1
2
√

2π
ζ
(

3
2

)
and since c0(γ) in (1.21) satisfies the following prop-

erty
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Table 1. Some moments of the thinned real GinOE process

γ mean variance skewness kurtosis

1 −1.30319 3.97536 −1.76969 5.14560
0.8 −1.94070 6.87453 −1.86716 5.57883

0.6 −2.99680 13.49947 −2.02286 8.06831
0.4 −5.12526 36.37796 −3.02040 22.14125

Lemma 1.14. The function c0(γ) is continuous in γ ∈ [0, 1] and equals

c0(γ) =
1
2

ln
(

2
2 − γ

)
+

1
4π

∞∑

n=1

1
n

(

−π +
n−1∑

m=1

1
√

m(n − m)

)

γ̄n. (1.23)

As it is standard (for instance in invariant random matrix theory ensem-
bles), the right tail (1.19) of the extreme value distribution P (t; γ) follows from
elementary considerations and does not need RHP 1.3. The left tail, however,
is much more subtle since

tr
L2(R)

(χtTχt) =
∫ ∞

t

T (x, x)dx =
1
2π

√
π

2

∫ ∞

t

erfc(
√

2x)dx

= − t

π

√
π

2
+ O(1), t → −∞,

becomes unbounded, yet the distribution function P (t; γ) converges to zero. It
is this well-known issue which requires the full use of RHP 1.3 and associated
nonlinear steepest descent techniques for its asymptotic analysis; see Sect. 7.

Remark 1.15. The explicit computation of constant factors such as c0(γ) in
(1.21) is a well-known challenge in the asymptotic analysis of correlation and
distribution functions in nonlinear mathematical physics. Without aiming for
completeness, we mention the following contributions to the field: In the theory
of exactly solvable lattice models, the works [6,7,11,12,61]. In classical invari-
ant random matrix theory, the works [3,23,24,33,34,49], and most recently on
τ -function connection problems for Painlevé transcendents the works [46,47].
Finally, related to thinned ensembles in random matrix theory, the works [13–
19,22].

1.4. Numerics

The Fredholm determinant formula (1.13) provides us with an efficient way
to evaluate P (t; γ) numerically, cf. [9]. Indeed, in order to showcase the ap-
plicability of (1.13) we now provide the following numerical evaluations for
the limiting distribution of maxj zγ

j (X): First, Table 1 shows a few centralized
moments for varying γ.

Second, probability density and distribution function plots for varying
γ ∈ [0, 1] are shown in Fig. 1.

Third, we compare our asymptotic expansions (1.19) and (1.20) to the
numerical results obtained from (1.13) in Figs. 2 and 3.
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Figure 1. The distribution functions P (t; γ) of the largest
real eigenvalue in the thinned real GinOE process for varying
values of γ. The plots were generated in MATLAB with m =
50 quadrature points using the Nyström method with Gauss–
Legendre quadrature. On the left cdfs, on the right pdfs

Figure 2. The distribution functions P (t; γ) in red for γ = 1
(left) and γ = 0.75 (right). We compare the numerical com-
puted values from (1.13) to the right tail expansion (1.19).
Again we used the Nyström method with Gauss–Legendre
quadrature and m = 50 quadrature points

1.5. Methodology and Outline of Paper

The remainder of the paper is organized as follows. We prove Lemma 1.7 in
Sect. 2 using a simple probabilistic argument. Afterward, we use (1.10) and
carefully simplify the regularized Fredholm determinant in order to arrive at a
finite n formula which is amenable to asymptotics. Our approach is somewhat
similar to the ones carried out in [25,56]; however, two issues arise along the
way: One, the absence of Christoffel–Darboux structures throughout forces us
to rely on the Fourier tricks used in [2, Section 2 and 3] in the derivation of
(1.14). The other, unlike in the invariant ensembles, our computations depend
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Figure 3. The distribution functions P (t; γ) in red for γ = 1
(left) and γ = 0.75 (right). We compare the numerical com-
puted values from (1.13) to the left tail expansion (1.20) in
a semilogarithmic plot. Again we used the Nyström method
with Gauss–Legendre quadrature and m = 50 quadrature
points

heavily on the parity of n. We first work out the necessary details for even
n in Sect. 3 and afterward develop a comparison argument to treat all odd
n, see Sect. 3.3. The content of Subsect. 3.3 seemingly marks the first time
that the extreme value statistics in the GinOE for odd n have been computed
rigorously. Even for γ = 1, typos in [56, Section 4.2] have been pointed out
in [55, Appendix B], but these had not been fixed until now. After several
initial steps in Sect. 3 we complete the proof of Theorem 1.8 in Sect. 4. Once
Theorem 1.8 has been derived, our proof of Theorem 1.9 in Sect. 5 is rather
short, making essential use of the inverse scattering theory connection worked
out in our previous paper [2]. This is followed by our short proof of (1.11) for
the eigenvalue generating function in Sect. 6. Afterward, we prove Theorem
1.13 in Sect. 7. In fact, the asymptotic analysis is split into two parts, one
part which deals with a total integral of y = y(x; γ) and a second part which
computes the constant factor in the asymptotic expansion of the determinant

det(1 − γχtTχt �L2(R)).

Unlike for invariant matrix ensembles (compare the discussion in [16, page
492,493]), we are here able to efficiently employ the γ-derivative method in
the computation of the constant factor without having a differential equation
in the spectral variable. Indeed, since our nonlinear steepest descent analy-
sis in Appendix 7.3 does not use any local model functions, the cumbersome
double integration in the γ-derivative method becomes manageable. This fea-
ture is comparable with Deift’s proof of the strong Szegő limit theorem in [26,
Example 3] and the details of our analysis can be found in Sect. 7. The final
two sections of the paper in Appendices 7.3 and 7.3 prove two curious integral
identities used in the proof of Theorem 1.8 and present a streamlined version
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of the nonlinear steepest descent analysis of [2, Section 5] which is crucial in
our proof of Theorem 1.13.

Remark 1.16. Our final remark in this Section concerns two possible routes
for future investigations of the thinned real GinOE process. On the one hand,
the large t asymptotic behavior of the cumulants of the counting function
N(t, γ) := #{k ∈ N : zγ

k (X) ≤ t} is seemingly within reach by (1.18) and
(1.20) and can afterward be contrasted to recent results for the sine, Airy,
Bessel or Pearcey processes, cf. [17,18,22]. On the other hand, with access to
the eigenvalue generating function through (1.14) and (1.20), one can wonder
whether the refined rigidity analysis of the determinantal Airy process in [20]
can be extended to the Pfaffian point process formed by the real eigenvalues
zj(X) of some X ∈ GinOE.

2. Proof of Lemma 1.7

It is known from [52] that the eigenvalues {zj(X)}n
j=1 ⊂ C of X ∈ R

n×n drawn
from the GinOE are distributed according to a random point process whose
correlation functions are computable as Pfaffians, cf. [10,41,59]. In particular,
the real eigenvalues form a Pfaffian process whose correlations are given by

ρ�(w1, . . . , w�) = Pf
[
KR,R

n (wj , wk)
]�
j,k=1

, 1 ≤ � ≤ mn ≤ n, (2.1)

with the skew-symmetric 2 × 2-matrix kernel

KR,R
n (x, y) :=

[
ε(x, y) − (ISn)(x, y) Sn(y, x)

−Sn(x, y) −(DS∗
n)(x, y)

]
.

Note that for any distinct points wj ∈ R,

ρ�(w1, . . . , w�)

= lim
Δwi→0

P(one real GinOE eigenvalue in each(wi, wi + Δwi))
Δw1 · . . . · Δw�

.

Thus, if ργ
� denotes the �-th correlation function in the thinned real GinOE

process, we find with 1 ≤ � ≤ mγ,n,

ργ
� (w1, . . . , w�)

= lim
Δwi→0

P(one thinned real GinOE eigenvalue in each(wi, wi + Δwi))

Δw1 · . . . · Δw�

= lim
Δwi→0

P(one real GinOE eigenvalue in each(wi, wi + Δwi)

and they are not discarded)

Δw1 · . . . · Δw�

= lim
Δwi→0

P(one real GinOE eigenvalue in each(wi, wi + Δwi))

Δw1 · . . . · Δw�

(
(1 − (1 − γ)

)�
,

since each eigenvalue is removed independently with likelihood 1−γ. In short,
ργ

� = γ�ρ� which shows that the thinned Pfaffian point process is also a Pfaffian
process and its kernel is simply given by γKR,R

n (x, y). Equipped with this
insight, one now repeats the computations in [56, page 1630] and arrives at
(1.10).



Vol. 23 (2022) Edge Distribution of Thinned Real Eigenvalues 4015

3. Proof of Theorem 1.8—first steps

Abbreviate

Fn ≡ Fn(t, γ) := det
2

(
1 − γχtKnχt�L2(R)⊕L2(R)

)
, n ∈ Z≥2.

We will first simplify Fn for n even and afterward take the limit as n → ∞
with n even. Once done, we then compare the odd n case with the even n case
and prove existence of the limit (1.12) all together.

3.1. Finite Even n Calculations

We consider F2n. Our overall approach follows closely [56, page 1640], keep-
ing throughout track of the γ-modifications due to (1.10). First, the kernel
χtK2nχt can be factorized as

[
ρ−1χtDρ 0

0 ρχtρ
−1

] [ −ρ−1εS2nχtρ ρ−1S∗
2nχtρ

−1

−ρ(εS2n − ε)χtρ ρS∗
2nχtρ

−1

]
, (3.1)

and by using (1.5) we can move the factor on the left in (3.1) to the right, so
F2n(t, γ) equals the regularized 2-determinant of the operator with kernel

γ

[ −ρ−1εS2nχtDρ ρ−1S∗
2nχtρ

−1

−ρ(εS2n − ε)χtDρ ρS∗
2nχtρ

−1

]
.

Next, we observe that the traces of the last operator’s powers of 2, 3, . . . match
the corresponding traces of the operator with kernel

γ

[−ρ−1(εS2nχtD − S∗
2nχt)ρ ρ−1S∗

2nχtρ
−1

ρεχtDρ 0

]
.

Hence, by the Plemelj–Smithies formula for det2, see [57, Theorem 9.3],

F2n(t, γ) = det
2

[
1 + γρ−1(εS2nχtD − S∗

2nχt)ρ −γρ−1S∗
2nχtρ

−1

−γρεχtDρ 1

]
.

Factorizing the underlying kernel, we then obtain

F2n = det
2

([
1 −γρ−1S∗

2nχtρ
−1

0 1

]

[
1 + γρ−1(εS2nχtD − S∗

2nχt − γS∗
2nχtεχtD)ρ 0

0 1

] [
1 0

−γρεχtDρ 1

])
,

and since both triangular factors are of the form identity plus block oper-
ator as in Remark 1.2, we are allowed to use (1.4). In fact the regularized
2-determinant of those triangular factors equals one, so we have just shown
that the original determinant in (1.1) for even n simplifies to

F2n(t, γ) = det
2

(
1 +

[
γρ−1(εS2nχtD − S∗

2nχt − γS∗
2nχtεχtD)ρ 0

0 0

]
�L2(R)⊕L2(R)

)
.

(3.2)
Clearly, the determinant in (3.2) on L2(R) ⊕ L2(R) is really a determinant on
L2(R) alone,

F2n(t, γ) = det
2

(
1 + γρ−1(εS2nχtD − S∗

2nχt − γS∗
2nχtεχtD)ρ�L2(R)

)
, (3.3)
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and as our upcoming computations will show (see in particular (3.8)) the
operator εS2nχtD − S∗

2nχt − γS∗
2nχtεχtD is of finite rank, i.e., the regularized

2-determinant in (3.3) is an ordinary Fredholm determinant by Remark 1.2 and
the conjugation with ρ now redundant. We have thus arrived at the following
replacement of the equation right above [56, (4.6)],

F2n(t, γ) = det
(
1 − γS∗

2nχt + γεS2nχtD − γ2S∗
2nχtεχtD�L2(R)

)
. (3.4)

In order to simplify (3.4) further, we now record

Lemma 3.1. ([56, page 1640]) For any n ∈ Z≥1,

εS2n = S∗
2nε. (3.5)

Proof. The stated identity follows easily by induction on n ∈ Z≥1 using only
that

Sn(x, y) =
1√
2π

e− 1
2 (x2+y2)en−2(xy) +

xn−1e− 1
2 x2

√
2π(n − 2)!

∫ y

0

un−2e− 1
2 u2

du, n ∈ Z≥2.

�

Inserting (3.5) into (3.4), we find

F2n(t, γ) = det
(
1 − γS∗

2nχt + γS∗
2n(1 − γχt)εχtD �L2(R)

)
. (3.6)

We write α ⊗ β for a general rank one integral operator on L2(R) with kernel
(α ⊗ β)(x, y) = α(x)β(y). Noting εDχt = −χt and applying the commutator
identity, cf. [62, (16)],

ε
[
χt,D

]
= −εt ⊗ δt + ε∞ ⊗ δ∞ with

∫ ∞

−∞
f(x)δa(x)dx := f(a),

{
εt(x) := 1

2 sgn(t − x), t ∈ R

ε∞(x) := 1
2

,

one part in (3.6) simplifies to

(1 − γχt)εχtD = (1 − γχt)(−εt ⊗ δt + ε∞ ⊗ δ∞) − (1 − γ)χt,

which (since εt = 1
2 − χ[t,∞), ε∞ = 1

2 ) yields

(1−γχt)εχtD = −((1−γχt)ε∞
)⊗ (δt − δ∞)+(1−γ)

(
χ[t,∞) ⊗ δt

)− (1−γ)χt.
(3.7)

Substituting (3.7) back into (3.6), we have thus (recall γ̄ = 2γ − γ2)

F2n(t, γ) = det
(
1 − γ̄S∗

2nχt − γS∗
2n

((
(1 − γχt)ε∞

)⊗ (δt − δ∞)
)

+γ(1 − γ)S∗
2n(χ[t,∞) ⊗ δt) �L2(R)

)
. (3.8)

Next, from the definition of Sn in Proposition 1.1, we may write, see [56, (4.7)],

S∗
n(x, y) =

1√
2π

e− 1
2 (x2+y2)en−2(xy) +

yn−1e− 1
2 y2

√
2π(n − 2)!

∫ x

0

un−2e− 1
2 u2

du

=: Tn(x, y) +
(
φn ⊗ ψn

)
(x, y),
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where Tn(x, y) is a symmetric kernel and

φn(x) :=

√ √
n√

2π(n − 2)!

∫ x

0

un−2e− 1
2 u2

du, ψn(y) :=

√
1√

2πn(n − 2)!
yn−1e− 1

2 y2

.

(3.9)

Lemma 3.2. Given t ≥ 0 and n ∈ Z≥2, the trace class operator Tn : L2(t,∞) →
L2(t,∞) with kernel Tn(x, y) satisfies 0 ≤ Tn ≤ 1 and 1 − γTn is invertible on
L2(t,∞) for all γ ∈ [0, 1].

Proof. For every f ∈ L2(t,∞),

〈f, Tnf〉L2(t,∞) =
1√
2π

n−2∑

k=0

1
k!

∣∣∣∣

∫ ∞

t

f(x)e− 1
2 x2

xkdx

∣∣∣∣

2

,

which implies nonnegativity of Tn. For the upper bound, we apply Schur’s test,

‖Tn‖ ≤ sup
y>t

∫ ∞

t

∣∣Tn(x, y)
∣∣dx ≤ sup

y>t

1√
2π

∫ ∞

t

e− 1
2 (|x|−|y|)2dx

≤ 1√
π

∫ ∞

−∞
e−v2

dv = 1 ∀t ≥ 0,

and conclude by self-adjointness of Tn that

sup
‖f‖L2(t,∞)=1

∣∣〈f, Tnf〉L2(t,∞)

∣∣ = ‖Tn‖ ≤ 1,

i.e., Tn ≤ 1 for any n ∈ Z≥2. Next, using that ‖Tn‖ ≤ 1, the invertibility
of 1 − γTn on L2(t,∞) follows readily from the underlying Neumann series
provided γ ∈ [0, 1). The case γ = 1 has been addressed in [56, Lemma 4.2].
This concludes our proof. �

In the following we will use the result of Lemma 3.2 for the operator
γ̄χtT2nχt which acts on L2(R). Inserting the operator decomposition S∗

n =
Tn + φn ⊗ ψn into (3.8) and using the general identities (α ⊗ β)(γ ⊗ δ) =
〈β, γ〉(α ⊗ δ) and A(β ⊗ γ)D = (Aβ) ⊗ (D∗γ) (for arbitrary operators A,D),

F2n(t, γ) = det
(
1 − γ̄T2nχt − γ̄φ2n ⊗ (χtψ2n) − γ

(〈ψ2n, (1 − γχt)ε∞〉φ2n

+ T2n(1 − γχt)ε∞
)⊗ (δt − δ∞)

+ γ(1 − γ)
(〈ψ2n, χ[t,∞)〉φ2n + T2nχ[t,∞)

)⊗ δt �L2(R)

)
. (3.10)

Here, 〈·, ·〉 is the standard L2(R) inner product. Since χ2
t = χt, χ

∗
t = χt and

α ⊗ (δt − δ∞) = α ⊗ (χt(δt − δ∞)
)
, α ⊗ δt = α ⊗ (χtδt),

we can then rewrite (3.10) by Sylvester’s identity [43, Chapter IV, (5.9)] as

F2n(t, γ) = det
(
1 − γ̄χtT2nχt − γ̄(χtφ2n) ⊗ (χtψ2n) − γ

(〈ψ2n, (1 − γχt)ε∞〉χtφ2n

+ χtT2n(1 − γχt)ε∞
)⊗ (δt − δ∞) + γ(1 − γ)

(〈ψ2n, χ[t,∞)〉χtφ2n

+ χtT2nχ[t,∞)

)⊗ δt �L2(R)

)
. (3.11)
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Next, using that 1 − γ̄χtTnχt is invertible on L2(R) for t ≥ 0 by Lemma 3.2,
we factorize F2n(t, γ) as follows:

F2n(t, γ) = det
(
1 − γ̄χtT2nχt �L2(R)

)
det

(

1 −
3∑

k=1

αk ⊗ βk �L2(R)

)

. (3.12)

Here, αj , βk denote the six functions

α1 :=γ̄(1 − γ̄χtT2nχt)−1χtφ2n, β1 := χtψ2n, β2 := δt − δ∞, β3 := δt,

α2 :=γ〈ψ2n, (1 − γχt)ε∞〉(1 − γ̄χtT2nχt)−1χtφ2n

+ γ(1 − γ̄χtT2nχt)−1χtT2n(1 − γχt)ε∞,

α3 := − γ
〈
ψ2n, (1 − γχt)χ[t,∞)

〉
(1 − γ̄χtT2nχt)−1χtφ2n

− γ(1 − γ̄χtT2nχt)−1χtT2n(1 − γχt)χ[t,∞).

By general theory, cf. [43, Chapter I, (3.3)]

det

(

1 −
3∑

k=1

αk ⊗ βk �L2(R)

)

= det
[
δjk −〈αj , βk〉]3

j,k=1
, δjk :=

{
1, j = k

0, j 
= k

(3.13)
with the L2(R) inner product 〈·, ·〉. We conclude our finite n calculation for
even n with the following further algebraic simplifications.

Lemma 3.3. We have

〈α1, β1〉 =
〈
χtφ2n, γ̄(1 − γ̄χtT2nχt)−1χtψ2n

〉
, 〈α1, β2〉

= γ̄
(
(1 − γ̄χtT2nχt)−1χtφ2n

)
(t) − γ̄φ2n(∞),

followed by

〈α1, β3〉 = γ̄
(
(1 − γ̄χtT2nχt)−1χtφ2n

)
(t).

Next, with Rn := γ̄Tnχt(1 − γ̄χtTnχt)−1, n ∈ Z≥1 which is well defined as
operator on L2(R) by Lemma 3.2 for any t ≥ 0,

〈α2, β1〉 =
γ

2γ̄

[
c2n〈α1, β1〉 − c2n +

∫ ∞

−∞

(
1 − γχ[t,∞)(x)

)(
(1 + R2n)ψ2n

)
(x)dx

]
,

〈α2, β2〉 =
γ

2γ̄

[
c2n〈α1, β2〉 +

∫ ∞

−∞

(
1 − γχ[t,∞)(x)

)
R2n(x, t)dx

]
,

〈α2, β3〉 =
γ

2γ̄

[
c2n〈α1, β3〉 +

∫ ∞

−∞

(
1 − γχ[t,∞)(x)

)
R2n(x, t)dx

]
,
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where cn := 〈ψn, 1 − γχ[t,∞)〉. Moreover

〈α3, β1〉 = − γ

γ̄
[d2n〈α1, β1〉 − d2n

+
∫ ∞

−∞

(
1 − γχ[t,∞)(x)

)
χ[t,∞)(x)

(
(1 + R2n)ψ2n

)
(x)dx

]
,

〈α3, β2〉 = − γ

γ̄

[
d2n〈α1, β2〉 +

∫ ∞

−∞

(
1 − γχ[t,∞)(x)

)
χ[t,∞)(x)R2n(x, t)dx

]
,

〈α3, β3〉 = − γ

γ̄

[
d2n〈α1, β3〉 +

∫ ∞

−∞

(
1 − γχ[t,∞)(x)

)
χ[t,∞)(x)R2n(x, t)dx

]
,

with dn := 〈ψn, (1 − γχt)χ[t,∞)〉.

Proof. We use self-adjointness of the operator Tn and write Rn(x, t) for (cf.
[62, page 732])

lim
y→t
y>t

Rn(x, y).

�

With Lemma 3.3 in place, we finally evaluate the Fredholm determinant
in (3.13). Noting that the terms cn, dn cancel out due to multilinearity of the
finite-dimensional determinant, we obtain

det

(

1 −
3∑

k=1

αk ⊗ βk �L2(R)

)

= det

⎡

⎣
1 − 〈α1, β1〉 −〈α1, β2〉 −〈α1, β3〉

− γ
2γ̄ I3 1 − γ

2γ̄ I1 − γ
2γ̄ I1

γ
γ̄ I4

γ
γ̄ I2 1 + γ

γ̄ I2

⎤

⎦ ,

(3.14)
in terms of the three inner products 〈α1, βk〉, k = 1, 2, 3 and the four integrals
Ij = Ij(t, γ, 2n) with

I1 :=
∫ ∞

−∞

(
1 − γχ[t,∞)(x)

)
R2n(x, t)dx,

I2 :=
∫ ∞

−∞

(
1 − γχ[t,∞)(x)

)
χ[t,∞)(x)R2n(x, t)dx,

I3 :=
∫ ∞

−∞

(
1 − γχ[t,∞)(x)

)(
(1 + R2n)ψ2n

)
(x)dx,

I4 :=
∫ ∞

−∞

(
1 − γχ[t,∞)(x)

)
χ[t,∞)(x)

(
(1 + R2n)ψ2n

)
(x)dx. (3.15)

Identities (3.12) and (3.14) conclude our calculations for finite n, provided n
is even.

Remark 3.4. The 3 × 3 determinant (3.14) is the analogue of the GOE com-
putation [25, (3.63)].
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3.2. The Limit n → ∞, n Even

In order to pass to the large n limit, we first shift the independent variable
t according to t �→ t +

√
2n; compare the left-hand side of (1.7). Under this

scaling, we have

det(1 − γ̄χt+
√

2nT2nχt+
√

2n �L2(R)) = det
(
1 − γ̄χtT̃2nχt �L2(R)

)
,

where T̃n : L2(R) → L2(R) has kernel

T̃n(x, y) := Tn(x +
√

n, y +
√

n). (3.16)

Moreover, the entries in the 3 × 3 determinant (3.14) transform in a similar
fashion, for instance

〈α1, β1〉 �→ 〈α̃1, β̃1〉 = 〈χtφ̃2n, γ̄(1 − γ̄χtT̃2nχt)−1χtψ̃2n〉,
and likewise

〈α1, β2〉 �→ 〈α̃1, β̃2〉 =γ̄
(
(1 − γ̄χtT̃2nχt)−1χtφ̃2n

)
(t) − γ̄φ̃2n(∞),

〈α1, β3〉 �→ 〈α̃1, β̃3〉 =γ̄
(
(1 − γ̄χtT̃2nχt)−1χtφ̃2n

)
(t),

which involve φ̃n(x) := φn(x +
√

n) and ψ̃n(x) := ψn(x +
√

n). The remaining
four integrals Ik, see (3.15), are treated the same way and every occurrence of
Rn in them gets replaced by R̃n with

R̃n = γ̄T̃nχt(1 − γ̄χtT̃nχt)−1

defined in terms of T̃n : L2(R) → L2(R) with kernel (3.16). At this point, we
collect a sequence of technical limits.

Lemma 3.5. Uniformly in x ∈ R chosen from compact subsets,

lim
n→∞ φ̃n(x) =

1√
2π

∫ x

−∞
e−y2

dy
(1.9)
=

1√
2
G(x),

lim
n→∞ ψ̃n(x) =

1√
2π

e−x2 (1.9)
=

1√
2
g(x); (3.17)

and for any fixed s ∈ R with p ∈ {1, 2},

lim
n→∞

∥∥∥∥ψ̃n − g√
2

∥∥∥∥
Lp(s,∞)

= 0, lim
n→∞

∥∥∥∥φ̃n − φ̃n(∞) +
1

2
√

2
erfc
∥∥∥∥

Lp(s,∞)

= 0.

(3.18)
Here, w = erfc(z) denotes the complementary error function, cf. [54, 7.2.2].

Proof. The limits (3.17), (3.18) are mentioned en route in [56, page 1640] and
we thus only give a few details: as n → ∞, uniformly in x ∈ R,

ψ̃n(x) =
1√
2π

(
1 +

x√
n

)n−1

e−x
√

n− 1
2 x2
(
1 + O(n−1

))
.

But on compact subsets of R � x,
(

1 +
x√
n

)n−1

e−x
√

n n→∞−→ e− 1
2 x2

,
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which yields the second limit in (3.17). Since also for any x > 0 and n ∈ Z≥2,
(

1 +
x√
n

)n−1

e−x
√

n ≤ e−x/
√

n ≤ 1,

the dominated convergence theorem yields the first Lp(s,∞) convergence in
(3.18). For the limits involving φ̃n, we note that as n → ∞, uniformly in x ∈ R,

φ̃n(x) =
1√
2
P

(
1
2
(n − 1),

1
2
(
x +

√
n
)2
)(

1 + O(n−1
))

,

with the normalized incomplete gamma function w = P (z), cf. [54, 8.2.4]. But
on compact subsets of R � x, see [54, 8.11.10],

P

(
1
2
(n − 1),

1
2
(
x +

√
n
)2
)

n→∞−→ 1
2
erfc(−x) =

1√
π

∫ x

−∞
e−y2

dy

which yields the first limit in (3.17). For the outstanding limit in (3.18), we
use that as n → ∞, uniformly in x ∈ R,

φ̃n(x) = φ̃n(∞) − 1√
2

Γ( 1
2 (n − 1), 1

2 (x +
√

n)2)
Γ( 1

2 (n − 1))

(
1 + O(n−1

))
(3.19)

with w = Γ(a, z) the incomplete Gamma function, see [54, 8.2.2]. But since
for x > 0 and a ≥ 1 such that x + 1 − a > 0,

Γ(a, x) = xae−x

∫ ∞

0

(1+y)a−1e−yxdy ≤ xae−x

∫ ∞

0

ey(a−1)e−yxdy =
xae−x

x + 1 − a
,

we find for any x > 0 and n ∈ Z≥2,

Γ( 1
2 (n − 1), 1

2 (x +
√

n)2)
Γ( 1

2 (n − 1))
≤ ce− 1

2 x2
, c > 0. (3.20)

Using also that on compact subsets of R � x,

Γ( 1
2 (n − 1), 1

2 (x +
√

n)2)
Γ( 1

2 (n − 1))
= 1 − P

(
1
2
(n − 1),

1
2
(
x +

√
n
)2
)

n→∞−→ 1 − 1
2
erfc(−x)

=
1
2
erfc(x), (3.21)

the second limit in (3.18) follows from (3.19), (3.20), (3.21) and the dominated
convergence theorem. This completes our proof. �

The next limits concern the large n-behavior of the kernel function T̃n(x, y)
and its total integrals. Recall the kernel T (x, y) defined in (1.8).

Lemma 3.6. ([56, page 1642-644]) Uniformly in x, y ∈ R chosen from compact
subsets,

lim
n→∞ T̃n(x, y) = T (x, y)

(1.8)
=

1
π

∫ ∞

0

e−(x+u)2e−(y+u)2du, lim
n→∞

∫ ∞

−∞
T̃n(x, y)dy

=
∫ ∞

−∞
T (x, y)dy. (3.22)
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Moreover, for any fixed s, t ∈ R and with p ∈ {1, 2},
lim

n→∞

∥∥∥T̃n(·, t) − T (·, t)
∥∥∥

Lp(s,∞)
= 0,

lim
n→∞

∥∥∥
∫ ∞

−∞
T̃n(·, y)dy −

∫ ∞

−∞
T (·, y)dy

∥∥∥
Lp(s,∞)

= 0. (3.23)

Proof. The limits (3.22) and (3.23) follow from the detailed discussion on page
1642 and 1643 in [56], see also [56, (4.16)]. We omit details. �

Finally we state the central convergence result for the operator χtT̃nχt

on L2(R).

Lemma 3.7. ([56, Lemma 4.2]) Given t ∈ R, the operator χtT̃nχt converges in
trace norm on L2(R) and in Lp(R) operator norm with p ∈ {1, 2,∞} to the
operator χtTχt. Additionally, for any γ ∈ [0, 1],

(1 − γ̄χtT̃nχt)−1 n→∞−→ (1 − γ̄χtTχt)−1 (3.24)

in Lp(R) operator norm with p ∈ {1, 2,∞}.
Proof. The convergences have been proven for γ = 1 in [56, Lemma 4.2].
The extension to γ ∈ [0, 1) follows from the Neumann series expansion of the
resolvents in (3.24); compare Lemma 3.2 and [2, Lemma 2.1]. �

We now apply Lemmas 3.5, 3.6 and Lemma 3.7 in the large n analysis
of the Fredholm determinants back in (3.12), after the rescaling t �→ t +

√
2n.

First the leading factor:

Lemma 3.8. For any γ ∈ [0, 1] and t ∈ R,

lim
n→∞ det

(
1 − γ̄χtT̃2nχt�L2(R)

)
= det

(
1 − γ̄χtTχt�L2(R)

)
.

Proof. We know from Lemma 3.2 that T̃n is trace class on L2(t,∞) and the
same applies to T (since it is a product of Hilbert–Schmidt operators). Thus,
with [43, Chapter IV, (5.14)],

∣∣∣ det
(
1 − γ̄χtT̃2nχt�L2(R)

)− det
(
1 − γ̄χtTχt�L2(R)

)∣∣∣

≤ γ̄‖χtT̃2nχt − χtTχt‖1 exp
(
1 + γ̄‖χtT̃2nχt‖1 + γ̄‖χtTχt‖1

)
.

But the operator difference in trace norm converges to zero by Lemma 3.7
and ‖χtT̃2nχt‖1 remains bounded by the same result. This completes our
proof. �

Next, we move on to the L2(R) inner products which appear in (3.14).

Lemma 3.9. For any γ ∈ [0, 1] and t ∈ R,

lim
n→∞〈α̃1, β̃1〉 =

γ̄

2

∫ ∞

t

G(x)
(
(1 − γ̄Tχt�L2(R))

−1g
)
(x)dx,

lim
n→∞〈α̃1, β̃2〉 =

γ̄√
2

(
(1 − γ̄Tχt�L2(R))

−1G
)
(t) − γ̄√

2
,

lim
n→∞〈α̃1, β̃3〉 =

γ̄√
2

(
(1 − γ̄Tχt�L2(R))

−1G
)
(t).
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Proof. In the first inner product, we write

〈α̃1, β̃1〉 =
〈

χt

(
φ̃2n(∞) − 1

2
√

2
erfc
)
, γ̄(1 − γ̄χtT̃2nχt)−1χtψ̃2n

〉

+
〈

χt

(
φ̃2n − φ̃2n(∞) +

1
2
√

2
erfc
)
, γ̄(1 − γ̄χtT̃2nχt)−1χtψ̃2n

〉

(3.25)

and now use that, uniformly in x ∈ R,

lim
n→∞

(
φ̃2n(∞) − 1

2
√

2
erfc(x)

)
=

1√
2

− 1
2
√

2
erfc(x)

(1.9)
=

1√
2
G(x).

But from Lemma 3.5 and Lemma 3.7, we also know that for p ∈ {1, 2},

lim
n→∞

∥∥∥∥(1 − γ̄χtT̃2nχt)−1χtψ̃2n − 1√
2
(1 − γ̄χtTχt)−1χtg

∥∥∥∥
Lp(R)

= 0,

so with (3.18) and Hölder’s inequality therefore back in (3.25)

lim
n→∞〈α̃1, β̃1〉 =

〈
χt

1√
2
G, γ̄(1 − γ̄χtTχt)−1 1√

2
g

〉

=
γ̄

2

∫ ∞

t

G(x)
(
(1 − γ̄Tχt �L2(R))−1g

)
(x)dx,

as claimed. For the second inner product, we write instead (with χ[t,∞)(t) = 1)

〈α̃1, β̃2〉 =γ̄
(
φ̃2n(t) − φ̃2n(∞)

)
+ γ̄2

(
T̃2nχt(1 − γ̄χtT̃2nχt)−1χtφ̃2n

)
(t)

=γ̄
(
φ̃2n(t)−φ̃2n(∞)

)
+γ̄2

∫ ∞

t

T̃2n(t, x)
(
(1 − γ̄χtT̃2nχt)−1χtφ̃2n

)
(x)dx

and recall the previous decomposition of φ̃n used in (3.25). Hence, with Lemma
3.7 and (3.17), (3.23) we find from Hölder’s inequality,

lim
n→∞〈α̃1, β̃2〉 =

γ̄√
2
G(t) − γ̄√

2
+

γ̄2

√
2

∫ ∞

t

T (t, x)
(
(1 − γ̄χtTχt)−1χtG

)
(x)dx

=
γ̄√
2
G(t) − γ̄√

2
+

γ̄√
2

(
γ̄χtTχt(1 − γ̄χtTχt)−1χtG

)
(t)

=
γ̄√
2

(
(1 − γ̄Tχt�L2(R))

−1G
)
(t) − γ̄√

2
.

The derivation of the third inner product is completely analogous. �

At this point, we are left with the computation of the large n limits
of the rescaled integrals Ik. Let R(x, y) denote the kernel of the resolvent
R = γ̄Tχt(1 − γ̄χtTχt)−1 on L2(R).
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Lemma 3.10. For every γ ∈ [0, 1] and t ∈ R,

lim
n→∞ I1(t +

√
2n, γ, 2n) =

∫ ∞

−∞

(
1 − γχ[t,∞)(x)

)
R(x, t)dx,

lim
n→∞ I2(t +

√
2n, γ, 2n) =

∫ ∞

−∞

(
1 − γχ[t,∞)(x)

)
χ[t,∞)(x)R(x, t)dx,

lim
n→∞ I3(t +

√
2n, γ, 2n) =

1√
2

∫ ∞

−∞

(
1 − γχ[t,∞)(x)

)(
(1 − γ̄Tχt�L2(R))

−1g
)
(x)dx − 1√

2
,

lim
n→∞ I4(t +

√
2n, γ, 2n) =

1√
2

∫ ∞

−∞

(
1 − γχ[t,∞)(x)

)
χ[t,∞)(x)

(
(1 − γ̄Tχt�L2(R))

−1g
)
(x)dx.

Proof. We begin with the kernel function identity (cf. [62, page 748]),

R̃n(x, t) =γ̄
(
T̃nχt(1 − γ̄χtT̃nχt)−1

)
(x, t) =

(
(1 − γ̄T̃nχt)−1γ̄T̃nχt

)
(x, t)

=γ̄T̃n(x, t) + γ̄
(
T̃nχt(1 − γ̄χtT̃nχt)−1γ̄T̃n

)
(x, t), x ∈ R,

which, upon insertion into the integrand of I1(t +
√

2n, γ, 2n), leads to four
integrals,
∫ ∞

t

T̃2n(x, t)dx,

∫ t

−∞
T̃2n(x, t)dx,

∫ ∞

t

(
T̃2nχt(1−γ̄χtT̃2nχt)−1T̃2n

)
(x, t)dx,

(3.26)
and ∫ t

−∞

(
T̃2nχt(1 − γ̄χtT̃2nχt)−1T̃2n

)
(x, t)dx.

Apply Lemma 3.6 and conclude for the first two integrals

lim
n→∞

∫ ∞

t

T̃2n(x, t)dx
(3.23)
=
∫ ∞

t

T (x, t)dx,

lim
n→∞

∫ t

−∞
T̃2n(x, t)dx = lim

n→∞

[∫ ∞

−∞
T̃2n(x, t)dx −

∫ ∞

t

T̃2n(x, t)dx

]

(3.22)
=

(3.23)

∫ t

−∞
T (x, t)dx.

For the third integral in (3.26), we write
∫ ∞

t

(
T̃2nχt(1 − γ̄χtT̃2nχt)−1T̃2n

)
(x, t)dx

=
〈

χ[t,∞)

∫ ∞

t

T̃2n(x, ·)dx,
(
(1 − γ̄χtT̃2nχt)−1χtT̃2n

)
(·, t)
〉

,

and note that each entry of the last L2(R) inner product converges to its formal
limits in L2(R) sense, cf. Lemma 3.7, equation (3.23) and the workings in [56,
page 1643]. The outstanding fourth integral is treated similarly, the difference
being that the first entry in the corresponding L2(R) inner product equals

χ[t,∞)

∫ t

−∞
T̃2n(x, ·)dx = χ[t,∞)

∫ ∞

−∞
T̃2n(x, ·)dx − χ[t,∞)

∫ ∞

t

T̃2n(x, ·)dx.
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Since both terms converge to their formal limits in L2(R) sense (compare our
reasoning above and (3.23)), we find all together,

lim
n→∞ I1(t+

√
2n, γ, 2n) =

∫ ∞

−∞

(
1− γχ[t,∞)(x)

)(
γ̄Tχt(1− γ̄χtTχt)−1

)
(x, t)dx,

which is the desired formula for I1, given that R = γ̄Tχt(1 − γ̄χtTχt)−1.
The derivation of the limit for I2 is completely analogous and in fact simpler
since no integrals over (−∞, t) occur. Moving ahead, the limit evaluation of
I3(t +

√
2n, γ, 2n) also requires four integrals,

∫ ∞

t

ψ̃2n(x)dx,

∫ t

−∞
ψ̃2n(x)dx,

∫ ∞

t

(
T̃2nχt(1 − γ̄χtT̃2nχt)−1ψ̃2n

)
(x)dx,

(3.27)

∫ t

−∞

(
T̃2nχt(1 − γ̄χtT̃2nχt)−1ψ̃2n

)
(x)dx.

Note that

lim
n→∞

∫ ∞

t

ψ̃2n(x)dx
(3.18)
=

1√
2

∫ ∞

t

g(x)dx,

lim
n→∞

∫ t

−∞
ψ̃2n(x)dx = lim

n→∞

[∫ ∞

−∞
ψ̃2n(x)dx −

∫ ∞

t

ψ̃2n(x)dx

]

= − lim
n→∞

∫ ∞

t

ψ̃2n(x)dx,

since ψ2n is an odd function. Also
∫ ∞

t

(
T̃2nχt(1 − γ̄χtT̃2nχt)−1ψ̃2n

)
(x)dx

=
〈

χ[t,∞)

∫ ∞

t

T̃2n(x, ·)dx,
(
(1 − γ̄χtT̃2nχt)−1χtψ̃2n

)
(·)
〉

,

which converges to its formal limit as n → ∞; compare our reasoning for I1

and (3.18). The same is true for the remaining fourth integral and we obtain
all together, as n → ∞,

I3(t +
√

2n, γ, 2n) → (1 − γ)
1√
2

∫ ∞

t

(
(1 + R)g

)
(x)dx

+
1√
2

∫ t

−∞

(
(1 + R)g

)
(x)dx − 1√

2

∫ ∞

−∞
g(x)dx,

which is the claimed identity. The derivation for I4 is again similar and does
not use any integrals along (−∞, t). This completes our proof. �

With Lemma 3.8, 3.9 and 3.10 in place, we now obtain the following
result.
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Proposition 3.11. As n → ∞, uniformly for t ∈ R chosen from compact subsets
and any γ ∈ [0, 1],

F2n(t +
√

2n, γ) → det
(
1 − γ̄χtTχt�L2(R)

)

det

⎡

⎢
⎣

1 − u −v + γ̄√
2

−v

− γ
2γ̄ (p + q − 1√

2
) 1 − γ

2γ̄ (r + w) − γ
2γ̄ (r + w)

γ
γ̄ p γ

γ̄ r 1 + γ
γ̄ r

⎤

⎥
⎦ , (3.28)

where u, v, p, q, r, w are the following six functions of (t, γ) ∈ R × [0, 1],

u :=
γ̄

2

∫ ∞

t

G(x)
(
(1 − γ̄Tχt�L2(R))

−1g
)
(x)dx,

v :=
γ̄√
2

(
(1 − γ̄Tχt�L2(R))

−1G
)
(t), (3.29)

p :=
1 − γ√

2

∫ ∞

t

(
(1 − γ̄Tχt�L2(R))

−1g
)
(x)dx,

q :=
1√
2

∫ t

−∞

(
(1 − γ̄Tχt�L2(R))

−1g
)
(x)dx,

r :=(1 − γ)
∫ ∞

t

R(x, t)dx, w :=
∫ t

−∞
R(x, t)dx.

3.3. The Limit (1.12) for Odd n

In this subsection, we will compute the limit F2n+1(t +
√

2n + 1, γ) using a
comparison argument. Precisely, we show how the computations in Subsect.
3.1 have to be modified in order to account for odd n ∈ Z≥3. These additional
manipulations are necessary given the different structure of the operator ISn

in Proposition 1.1 for odd n. The details are as follows. We first relate K2n+1

to K2n:

Proposition 3.12. For any n ∈ Z≥3,

Sn = Sn−1+ψn⊗φn−fnψn−1⊗φn+1, f2
n :=

n − 1
n − 2

√
n − 1
n + 1

n→∞−→ 1, fn > 0,

(3.30)
and thus in turn,

IS2n+1 = εS2n + εψ2n+1 ⊗ φ2n+1 − φ2n+1 ⊗ εψ2n+1, n ∈ Z≥1. (3.31)

Proof. Identity (3.30) follows from the equality

Sn(x, y) = Sn−1(x, y)+
1√

2π(n − 2)!

∫ y

0

(x−u)(xu)n−2e− 1
2 (x2+u2)du, n ∈ Z≥3,

(3.32)
which appears in [56, page 1628] and which can be proven by induction on
n ∈ Z≥3 using the original definition of Sn(x, y) given in Proposition 1.1.
Once (3.32) is known we find immediately (3.30) by comparison with (3.9).
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On the other hand,

(εS2n+1)(x, y) = (εS2n)(x, y) − 1√
2π(2n − 1)!

∫ x

0

z2ne− 1
2 z2

dz

∫ y

0

u2n−1e− 1
2 u2

du

− 1√
2π(2n − 1)!

∫ ∞

x

z2n−1e− 1
2 z2

dz

∫ y

0

u2ne− 1
2 u2

du

= (εS2n)(x, y) + (εψ2n+1)(x)φ2n+1(y)

− φ2n+1(x)(εψ2n+1)(y) − 2n−1

√
2π

Γ(n)

Γ(2n)

∫ y

0

u2ne− 1
2 u2

du, n ∈ Z≥1,

(3.33)

which used (3.9) and

(εψ2n+1)(x) = −
∫ x

0

ψ2n+1(y)dy,

in the last equality. However, by the Legendre duplication formula [54, 5.5.5],
for any n ∈ Z≥1,

2n−1

√
2π

Γ(n)
Γ(2n)

=
1

2n+ 1
2 Γ(n + 1

2 )
,

so (3.33) yields

(εS2n+1)(x, y) +
1

2n+ 1
2 Γ(n + 1

2 )

∫ y

0

u2ne− 1
2 u2

du

=
(
εS2n + εψ2n+1 ⊗ φ2n+1 − φ2n+1 ⊗ εψ2n+1

)
(x, y),

and this is (3.31) after comparison with the kernel of IS2n+1 written in Propo-
sition 1.1. �

Inserting (3.30) and (3.31) into formula (1.2) for K2n+1, we find that
K2n+1 = K2n + E2n where the operator En has kernel

En :=

[
ρ−1(ψn+1 ⊗ φn+1 − fn+1ψn ⊗ φn+2)ρ ρ−1(Dφn+1 ⊗ ψn+1 − fn+1Dφn+2 ⊗ ψn)ρ−1

ρ(εψn+1 ⊗ φn+1 − φn+1 ⊗ εψn+1)ρ ρ(φn+1 ⊗ ψn+1 − fn+1φn+2ψn)ρ−1

]
.

Note that χtEnχt is finite rank on L2(R)⊕L2(R), so in particular trace class.
Also, since for any x ∈ R,

(εψn+1)(x) = −
√

n
√

(n + 1)(n + 2)
︸ ︷︷ ︸

→1, n→∞

φn+2(x),

(Dφn+1)(x) =

√√
n(n + 1)
n − 1

︸ ︷︷ ︸
→1 n→∞

ψn(x), n ∈ Z≥2,

Lemma 3.5 and triangle inequality yield that, in trace norm,

‖χt+
√

nEnχt+
√

n‖1 → 0 as n → ∞. (3.34)
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But 1−γχt+
√

2nK2nχt+
√

2n is invertible for sufficiently large n and any (t, γ) ∈
R × [0, 1] by the working of Sect. 3 and Remark 1.2. Hence, we use (1.4) and
obtain for n ≥ n0,

F2n+1(t +
√

2n, γ)

= det
2

(1 − γχt+
√

2nK2nχt+
√

2n − γχt+
√

2nE2nχt+
√

2n�L2(R)⊕L2(R))

= F2n(t +
√

2n, γ) det
(
1 − γ(1 − γχt+

√
2nK2nχt+

√
2n)−1

χt+
√

2nE2nχt+
√

2n�L2(R)⊕L2(R)

)
,

where the second (finite rank) determinant converges to one as n → ∞ because
of (3.34). This shows that

lim
n→∞ F2n+1(t +

√
2n, γ) = lim

n→∞ F2n(t +
√

2n, γ) (3.35)

for any (t, γ) ∈ R× [0, 1]. In fact, the above convergence is uniform in (t, γ) ∈
R× [0, 1] chosen from compact subsets and since F2n+1(t +

√
2n, γ) is at least

differentiable in t ∈ R (this can be seen directly from (1.1) by scaling t into
the kernel and then using the logic behind [1, Lemma 2.20]), we find

F2n+1(t +
√

2n, γ) = F2n+1(t +
√

2n + 1, γ) + o(1), n → ∞ (3.36)

on compact subsets of (t, γ) ∈ R × [0, 1]. Hence, combining (3.35) with (3.36)
we arrive at the analogue of (3.28) for odd n, i.e.,

Proposition 3.13. Proposition 3.11 holds with F2n(t+
√

2n, γ) in the left-hand
side of (3.28) replaced by F2n+1(t +

√
2n + 1, γ).

Finally, merging Propositions 3.11 and 3.13 we have now established the
existence of the limit (1.12). This completes the current section.

4. Proof of Theorem 1.8—final steps

In order to prove the outstanding representation (1.13) we now find a new
representation for the 3 × 3 determinant in (3.28). To begin with, we list four
algebraic relations between the functions u, v, p, q, r and w in Corollary 4.3.
These follow from the next lemma. Recall R = (1 − γ̄Tχt �L2(R))−1 − 1 and
the definitions of g and G in (1.9).

Lemma 4.1. For every (t, γ) ∈ R × [0, 1],
(
(1 − γ̄Tχt�L2(R))

−1G
)
(t) =

∫ t

−∞

(
(1 − γ̄Tχt�L2(R))

−1g
)
(x)dx,

∫ ∞

t

R(x, t)dx =γ̄

∫ ∞

t

(
1 − G(x)

)(
(1 − γ̄Tχt�L2(R))

−1g
)
(x)dx,

∫ t

−∞
R(x, t)dx =γ̄

∫ ∞

t

G(x)
(
(1 − γ̄Tχt�L2(R))

−1g
)
(x)dx,

1 +
∫ ∞

t

R(x, t)dx =
∫ ∞

−∞

(
(1 − γ̄Tχt �L2(R))−1g

)
(x)dx.



Vol. 23 (2022) Edge Distribution of Thinned Real Eigenvalues 4029

Proof. The first equality follows from [2, (4.9)] with the formal replacements
γ �→ γ̄, Gγ �→ G and gγ �→ g, see [2, (4.3)]. The second and third are a
consequence of (A.3). Indeed, we have

∫ ∞

t

R(x, t)dx =
∫ ∞

0

R(x + t, t)dx

=
∫ ∞

0

(
γ̄Tχt(1 − γ̄χtTχt�L2(R))

−1
)
(x + t, t)dx

=
∞∑

k=1

γ̄k

∫ ∞

0

(Tχt�L2(R))
k(x + t, t)dx,

and, similarly,
∫ t

−∞
R(x, t)dx =

∫ 0

−∞
R(x + t, t)dx

=
∫ 0

−∞

(
γ̄Tχt(1 − γ̄χtTχt�L2(R))

−1
)
(x + t, t)dx

=
∞∑

k=1

γ̄k

∫ 0

−∞
(Tχt�L2(R))

k(x + t, t)dx.

Now choose K = T (which is self-adjoint since φ(x) = ψ(x) = g(x) in (A.1))
and I = (0,∞) in (A.3), so that

∫ ∞

t

R(x, t)dx =
∞∑

k=1

γ̄k

∫ ∞

t

[∫ ∞

x

g(v)dv

] (
(Tχt�L2(R))

k−1g
)
(x)dx

=γ̄

∫ ∞

t

(
1 − G(x)

)(
(1 − γ̄Tχt�L2(R))

−1g
)
(x)dx,

which is the second integral identity. For the third, we simply choose I =
(−∞, 0) in (A.3), and for the fourth we use (A.5), self-adjointness of T and∫∞

−∞ g(x)dx = 1 to find that
∫ ∞

t

R(x, t)dx =
∫ ∞

t

R(t, x)dx =
∫ ∞

0

R(t, x + t)dx

=
∞∑

k=1

γ̄k

∫ ∞

0

(Tχt �L2(R))k(t, x + t)dx

(A.5)
=

∞∑

k=1

γ̄k

∫ ∞

−∞

(
(Tχt �L2(R))kg

)
(u)du

= −1 +
∫ ∞

−∞

(
(1 − γ̄Tχt �L2(R))−1g

)
(x)dx.

This completes our proof. �

Remark 4.2. The first and third integral identities in Lemma 4.1 are the γ̄-
generalizations of the equalities [55, (2.6),(2.8),(2.10)] and [55, (2.3),(2.9)]. The
second and fourth identities are seemingly new.
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Corollary 4.3. For any (t, γ) ∈ R × [0, 1],

v = γ̄q, r = −2(1−γ)u+γ̄
√

2p, w = 2u, 2u+
√

2q+
√

2
(

1 − γ̄

1 − γ

)
p = 1.

(4.1)

Proof. These follow from inserting the integral identities of Lemma 4.1 into
the definitions of u, v, p, q, r and w. �

Once we substitute (4.1) into the 3 × 3 determinant (3.28) we are left
with two unknown, p and q, say, and the determinant simplifies to

det

⎡

⎢
⎣

1 − u −v + γ̄√
2

−v

− γ
2γ̄ (p + q − 1√

2
) 1 − γ

2γ̄ (r + w) − γ
2γ̄ (r + w)

γ
γ̄ p γ

γ̄ r 1 + γ
γ̄ r

⎤

⎥
⎦

=
1

2(2 − γ)

[

(2 − γ)
(

p + q +
1√
2

)2

− γ

(
p − q +

1√
2

)2
]

. (4.2)

Next, we define the two functions

τk = τk(t, γ̄) :=
∫ ∞

−∞

(
(1 − γ̄Tχt �L2(R))−1g

)
(x)dx + (−1)k−1√γ̄

∫ ∞

t

(
(1 − γ̄Tχt �L2(R))−1g

)
(x)dx

for (t, γ) ∈ R × [0, 1], k = 1, 2 and note that by (3.29)

p =
1 − γ

2
√

2γ̄

(
τ1 − τ2

)
, q =

1
2
√

2γ̄

[√
γ̄
(
τ1 + τ2

)− (τ1 − τ2

)]
. (4.3)

Inserting (4.3) in (4.2), we find in turn

RHS in (4.2) =
(1 − γ)(1 + τ1τ2) + τ1 + τ2 − √

γ̄(τ1 − τ2)
2(2 − γ)

, (4.4)

and now set out to simplify τk. First, by the second and fourth identity in
Lemma 4.1,

τk = 1 + (−1)k−1√γ̄

∫ ∞

t

[
1 + (−1)k−1√γ̄

∫ ∞

x

g(y)dy

]

(
(1 − γ̄Tχt �L2(R))−1g

)
(x)dx. (4.5)

Second, making essential use of the regularization scheme for Fredholm de-
terminant and inner product manipulations in [62, Section VIII], we have the
following two analogues of [37, (4.18),(4.21)] which we will use with a = ±√

γ̄.

Lemma 4.4. For any (t, a) ∈ R × [−1, 1],

1 − a

∫ ∞

t

[
1 − a

∫ ∞

x

g(y)dy

] (
(1 − a2Tχt �L2(R))−1g

)
(x)dx

= 〈χ0, (1 + aSt �L2(0,∞))−1δ0〉L2(0,∞),
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where, for any test function f ,
∫ ∞

0

f(x)δ0(x)dx := f(0), χ0(x) :=

{
1, x ≥ 0
0, x < 0

,

and St : L2(0,∞) → L2(0,∞) denotes the trace class integral operator on
L2(0,∞) with kernel

St(x, y) :=
1√
π

e−(x+y+t)2 , x, y ≥ 0.

Proof. Note that

1 − a

∫ ∞

x+t

g(y)dy = 1 − a

∫ ∞

0

St(x, y)dy =
(
(1 − aSt �L2(0,∞))χ0

)
(x).

On the other hand, if Tt : L2(0,∞) → L2(0,∞) has kernel Tt(x, y) := T (x +
t, y + t), then

(
(1 − a2Tχt �L2(R))−1g

)
(x + t) =

(
(1 − a2Tt �L2(0,∞))−1Stδ0

)
(x)

and we have Tt = StSt. Thus, without explicitly writing the underlying Hilbert
spaces,
∫ ∞

t

[
1 − a

∫ ∞

x

g(y)dy

]
(
(1 − a2Tχt �L2(R))−1g

)
(x)dx

=
〈
(1 − aSt)χ0, (1 − a2Tt)−1Stδ0,

〉
L2(0,∞)

=
〈
χ0, (1 + aSt)−1Stδ0

〉
L2(0,∞)

by self-adjointness of St and [2, Lemma 6.1]. Now using that (1 + aSt)−1 =
1−a(1+aSt)−1St, we obtain at once the claimed identity from 〈χ0, δ0〉L2(0,∞)

= 1. �

Lemma 4.5. For every (t, a) ∈ R × [−1, 1],

det(1−aSt �L2(0,∞)) = det(1+aSt �L2(0,∞))
〈
χ0, (1+aSt �L2(0,∞))−1δ0

〉
L2(0,∞)

.

(4.6)

Proof. As outlined in [2, (6.9)], identity (4.6) is equivalent to

tr
L2(0,∞)

(
(1 − a2S2

t )−1a
dSt

dt

)
= −1

2
d
dt

ln
〈
δ0, (1 + aSt)−1χ0

〉
L2(0,∞)

,

and thus to
〈
δ0, (1 − a2S2

t )−1aStδ0〉L2(0,∞) =
d
dt

ln
〈
δ0, (1 + aSt)−1χ0

〉
L2(0,∞)

, (4.7)

where we do not indicate the underlying Hilbert spaces for compact notation.
In proving (4.7), we use the following straightforward a-generalization of [2,
(6.11)],

d
dt

(1 + aSt)−1 = (1 − a2S2
t )−1aStD + (1 − a2S2

t )−1aStΔ0(1 + aSt)−1,
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where Δ0 denotes multiplication by δ0(x) and D(= d
dx ) differentiation. We

have thus
d
dt

ln
〈
δ0,(1 + aSt)−1χ0

〉
L2(0,∞)

=
〈δ0,

d
dt (1 + aSt)−1χ0〉L2(0,∞)

〈δ0, (1 + aSt)−1χ0〉L2(0,∞)

Dχ0=0
=

〈δ0, (1 − a2S2
t )−1aStΔ0(1 + aSt)−1χ0〉

〈δ0, (1 + aSt)−1χ0〉
=

〈δ0, (1 − a2S2
t )−1aStδ0〉〈δ0, (1 + aSt)−1χ0〉

〈δ0, (1 + aSt)−1χ0〉
=
〈
δ0, (1 − a2S2

t )−1aStδ0

〉
L2(0,∞)

,

i.e., identity (4.7). This completes our proof. �

Hence, given that det(1∓√
γ̄St �L2(0,∞)) = det(1∓√

γ̄χtSχt �L2(R)) > 0
with S : L2(R) → L2(R) as in the formulation of Theorem 1.8, we obtain the
following result from Lemma 4.4 and (4.6) with a = ±√

γ̄.

Proposition 4.6. For any (t, γ) ∈ R × [0, 1],

τ1(t, γ̄) =
det(1 +

√
γ̄χtSχt �L2(R))

det(1 − √
γ̄χtSχt �L2(R))

, τ2(t, γ̄) =
1

τ1(t, γ̄)
(4.8)

We now return to (4.4) and first use that τ1τ2 = 1, so after simplification

√
RHS in (4.2) =

√
1 − √

γ̄

2(2 − γ)
√

τ1 +

√
1 +

√
γ̄

2(2 − γ)
√

τ2. (4.9)

But since

det
(
1−γ̄χtTχt �L2(R)

)
= det

(
1−√

γ̄χtSχt �L2(R)

)
det
(
1+

√
γ̄χtSχt �L2(R)

)
,

(4.10)
we then find (1.13) from (1.10), Propositions 3.11, 3.13 and equations (4.8),
(4.9), (4.10). This completes our proof of Theorem 1.8.

5. Proof of Theorem 1.9

Our proof begins with the following analogue of [37, (4.12)].

Lemma 5.1. For any (t, γ) ∈ R × [0, 1], we have with μ(t; γ) as in (1.15),

e−μ(t;γ̄) = τ2(t, γ̄), eμ(t;γ̄) = τ1(t, γ̄). (5.1)

Proof. By definition of p and u in Proposition 3.11,

τ2(t, γ̄) =1 − √
γ̄
(
1 − √

γ̄
) ∫ ∞

t

(
(1 − γ̄Tχt �L2(R))−1g

)
(x)dx

− γ̄

∫ ∞

t

G(x)
(
(1 − γ̄Tχt �L2(R))−1g

)
(x)dx

=1 −
√

2γ̄

(
1 − √

γ̄

1 − γ

)
p − 2u.
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But with the formal replacement γ �→ γ̄ in [2, Section 4], we have

u =
1
2
(
1 +

√
γ̄ sinh μ(t; γ̄) − cosh μ(t; γ̄)

)
, (t, γ) ∈ R × [0, 1], (5.2)

see [2, (4.19)], where (compare (1.15) and [2, Proposition 3.10]1)

μ(t; γ) =
∫ ∞

t

Y 12
1

(x

2
, γ
)

dx = − i
2

∫ ∞

t

y
(x

2
; γ
)

dx.

On the other hand, from [2, (4.11), (4.18)] after dividing out
√

2γ and replacing
γ �→ γ̄,

q =
1√
2

(
cosh μ(t; γ̄) − 1√

γ̄
sinhμ(t; γ̄)

)
, (t, γ) ∈ R × [0, 1], (5.3)

so that with (5.2) and (5.3) back in the fourth equation in (4.1),

p =
1 − γ√

2γ̄
sinhμ(t; γ̄), (t, γ) ∈ R × [0, 1]. (5.4)

Thus, all together,

τ2(t, γ̄) = 1 −
√

2γ̄

(
1 − √

γ̄

1 − γ

)
p − 2u

[(5.4)](5.2)
= e−μ(t;γ̄),

which is the analogue of [37, (4.12)]). The outstanding formula for τ1(t, γ̄)
follows from (4.8). �

In order to arrive at (1.14), we now apply (3.28), Proposition 3.13 and
(4.9),

P (t; γ) =
√

det
(
1 − γ̄χtTχt �L2(R)

)
(√

1 − √
γ̄

2(2 − γ)
√

τ1 +

√
1 +

√
γ̄

2(2 − γ)
√

τ2

)

,

(t, γ) ∈ R × [0, 1].

But for any a ∈ [0, 1], see [2, (3.33)],

det(1 − aχtTχt �L2(R)) = exp
[
−1

4

∫ ∞

t

(x − t)
∣∣∣y
(x

2
; a
)∣∣∣

2

dx

]
, (5.5)

so with (5.1),

P (t; γ) = exp
[
−1

8

∫ ∞

t

(x − t)
∣∣∣y
(x

2
; γ̄
) ∣∣∣

2

dx

]

(√
1 − √

γ̄

2(2 − γ)
e

1
2 μ(t;γ̄) +

√
1 +

√
γ̄

2(2 − γ)
e− 1

2 μ(t;γ̄)

)

.

This is exactly (1.14).

1[2, RHP 3.8] is a rescaled version of our RHP 1.3 , hence the independent variable x
2

occurs

in the integrand of μ.
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6. Proof of Corollary 1.11

Note that with the abbreviation (1.12), for any γ ∈ [0, 1],

P (t; γ) = lim
n→∞P

(
no edge scaled eigenvalues μγ

j (X) in (t,∞)
)

=
∞∑

m=0

E(m, (t,∞))(1 − γ)m, (6.1)

since each eigenvalue is removed independently with likelihood 1−γ. But com-
paring the latter with (1.17) we find immediately (1.18). Note also that since
μ(x; γ) is in fact real analytic in x ∈ R for any fixed γ ∈ [0, 1] (see [2, Corollary
3.6] for continuity in x, real analyticity follows by a similar argument using
the analytic Fredholm alternative in [64]) we obtain from Taylor’s theorem,
(6.1) and (1.17),

E
(
m, (t,∞)

)
=

(−1)m

m!
∂m

∂ξm
E
(
(t,∞); ξ

)
∣∣∣∣
ξ=1

, m ∈ Z≥0, t ∈ R.

This is the standard relation between the generating function and eigenvalue
occupation probability known for any continuous one-dimensional statistical
mechanical system, cf. [40, (8.1)].

7. Proof of Theorem 1.13 and Lemma 1.14

We prove (1.19), (1.20) and Lemma 1.14 in the upcoming three subsections.

7.1. Right Tail Asymptotics—Proof of (1.19)

From (5.5), i.e., [2, (3.33)],

exp
[
−1

8

∫ ∞

t

(x − t)
∣
∣∣y
(x

2
; γ̄
)∣∣∣

2

dx

]
=
√

det(1 − γ̄χtTχt�L2(R)), (7.1)

and thus from [2, Lemma 3.11], as t → +∞,

exp
[
−1

8

∫ ∞

t

(x − t)
∣∣∣y
(x

2
; γ̄
)∣∣∣

2

dx

]
= 1 − γ̄√

2π

erfc(
√

2t)
16t

(
1 + O(t−2)

)
, (7.2)

uniformly in γ ∈ [0, 1]. Moreover, from [2, (3.31), Proposition 3.10], as
x → +∞,

y
(x

2
; a
)

= 2i
√

a

π
e−x2
(
1 + O(e−x2))

, a ∈ [0, 1],

so that in (1.15), as t → +∞,

μ(t; γ̄) =
√

γ̄

2
erfc(t) + O(t−1e−2t2

)
, (7.3)

uniformly in γ ∈ [0, 1]. Inserting (7.3) into (1.16) and combining the so-
obtained result with (7.2) yields immediately (1.19).
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7.2. Left Tail Asymptotics—Proof of (1.20)

From [2, Proposition 5.7], as t → −∞ for any fixed a ∈ [0, 1),

− 1
8

∫ ∞

t

(x − t)
∣∣∣y
(x

2
; a
)∣∣∣

2

dx =
t

2
√

2π
Li 3

2
(a) + D1(a) + o(1), (7.4)

with the polylogarithm Lis(z), [54, 25.12.10] and an unknown, t-independent,
term D1(a). Moreover, from [2, page 492], as t → −∞ and fixed a ∈ [0, 1),

μ(t; a) = D2(a) + o(1), (7.5)

with another unknown, t-independent, term D2(a). Thus combining (7.4) and
(7.5) in the right-hand side of (1.14) we find that for γ ∈ [0, 1), as t → −∞,

ln P (t; γ) =
t

2
√

2π
Li 3

2
(γ̄) + η(γ) + o(1), γ ∈ [0, 1), (7.6)

where η(γ) is, as of now, unknown. Since η(γ) comes from D1(γ̄) and D2(γ̄),
we split its computation into two parts.

7.2.1. Total Integral Computation. We first address the computation of D2(γ̄).
Since

μ(t; γ) =
∫ ∞

t

Y 12
1

(x

2
, γ
)

dx
(7.5)
=
∫ ∞

−∞
Y 12

1

(x

2
, γ
)

dx + o(1),

t → −∞, γ ∈ [0, 1),

we need to evaluate a total integral. In order to achieve this, we follow the
approach developed in [4], our net result being an analogue of [4, (28)]. Recall
that Y(z) = Y(z;x, γ) solves RHP 1.3.

Lemma 7.1. The well-defined and invertible limit

V(x, γ) := lim
z→0�z<0

Y(z;x, γ), (x, γ) ∈ R × [0, 1],

satisfies

V(x, γ) =
[

cosh ν i sinh ν
−i sinh ν cosh ν

]
V(x0, γ), ν = ν(x, x0, γ) := 2

∫ x

x0

Y 12
1 (u, γ)du,

(7.7)
for arbitrary x, x0 ∈ R and γ ∈ [0, 1].

Proof. Define W(z;x, γ) := Y(z;x, γ)e−izxσ3 for z ∈ C \ R with (x, γ) ∈
R × [0, 1] and where σ3 :=

[
1 0
0 −1

]
. It is well-known, cf. [2, page 479], that

W = W(z;x, γ) solves the Zakharov–Shabat system

∂W
∂x

=
{

−izσ3 + 2i
[

0 Y 12
1

−Y 12
1 0

]}
W, Y 12

1 = Y 12
1 (x, γ).

Taking the limit z → 0 with �z < 0, we find that

∂V
∂x

= 2i
[

0 Y 12
1

−Y 12
1 0

]
V

with general solution (7.7). This completes our proof. �
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We now compute the limits of cosh ν and sinh ν as x → +∞ and x0 →
−∞. By (7.7) these limits follow from the x-asymptotic behavior of V(x, γ)
and thus from Y(z;x, γ). Some aspects of the asymptotic analysis of Y(z;x, γ)
were carried out in [2, Section 3.4], others can be found in Appendix 7.3.

Proposition 7.2. Let Y 12
1 (x, γ) denote the (12)-entry of the matrix coefficient

Y1(x, γ) in RHP 1.3, condition (3). Then for any fixed γ ∈ [0, 1),
∫ ∞

−∞
Y 12

1 (u, γ)du =
1
4

ln
(

1 +
√

γ

1 − √
γ

)
.

Proof. Since Y 12
1 (·, γ) ∈ L1(R) for any γ ∈ [0, 1], see [2, Corollary 3.6] and

[2, page 481,492], we will take x → +∞ and x0 → −∞ in (7.7) in order to
compute the desired total integral. First, consider the limit

lim
x→+∞V(x, γ), γ ∈ [0, 1].

By [2, (3.28)], for any x > 0 and γ ∈ [0, 1],

V(x, γ) = T(0; 2x, γ)
[
1 i

√
γ

0 1

]
,

in terms of the solution T(z;x, γ) of [2, RHP 3.12] evaluated at z = 0. But [2,
(3.29),(3.30)] imply that T(0; 2x, γ) → I as x → +∞, hence

lim
x→+∞V(x, γ) =

[
1 i

√
γ

0 1

]
, γ ∈ [0, 1]. (7.8)

Second, we compute
lim

x→−∞V(x, γ), γ ∈ [0, 1)

using the results of the nonlinear steepest descent analysis in Appendix 7.3.
From (B.3) and (B.5), for any x < 0 and γ ∈ [0, 1),

V(x, γ) = M(0; 2x, γ) exp
[
− σ3

2πi
pv
∫ ∞

−∞
h(s; 2x, γ)

ds

s

] [
1 0

i
√

γ 1

]
(1 − γ)− 1

2 σ3 ,

(7.9)
in terms of the solution M(z;x, γ) of RHP B.4 evaluated at z = 0, where

h(s; t, γ) = − ln
(
1 − γe− 1

2 t2s2)
, s, t ∈ R

But since the integrand in (7.9) is an odd function of s, the principal value
integral in (7.9) equals zero. Furthermore, (B.8) implies that M(0; 2x, γ) → I

as x → −∞. Thus,

lim
x→−∞V(x, γ) =

[
1 0

i
√

γ 1

]
(1 − γ)− 1

2 σ3 , γ ∈ [0, 1). (7.10)

Combining (7.8) and (7.10),

V(+∞, γ)
(
V(−∞, γ)

)−1 =
1√

1 − γ

[
1 i

√
γ

−i
√

γ 1

]
, γ ∈ [0, 1),

which inserted into (7.7) yields

cosh
(
ν(+∞,−∞, γ)

)
=

1√
1 − γ

, sinh
(
ν(+∞,−∞, γ)

)
=
√

γ

1 − γ
,
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and thus after simplification (with Y 12
1 ∈ R) the claimed integral identity. This

completes our proof. �
With Proposition 7.2 at hand, we obtain in turn

Corollary 7.3. For every fixed γ ∈ [0, 1), as t → −∞,

μ(t; γ) =
1
2

ln
(

1 +
√

γ

1 − √
γ

)
+ o(1),

and thus√
1 − √

γ̄

2(2 − γ)
e

1
2 μ(t;γ̄) +

√
1 +

√
γ̄

2(2 − γ)
e− 1

2 μ(t;γ̄) =
√

2
√

1 − γ

2 − γ
+ o(1). (7.11)

The last corollary concludes our computation of D2(γ) in (7.5).

7.2.2. Resolvent Integration. We now compute D1(γ̄) in (7.4) using a different
set of techniques. To be precise, we first recall from [2, Proposition 3.3],

det(1 − γχtTχt�L2(R)) = det(1 − γTχt�L2(R)) = det(1 − G�L2(Ω)), (7.12)

with the oriented contour (see Fig. 4 in Appendix 7.3)

Ω = R � (R + iω),

where ω > 0 will be determined in Lemma 7.5 and G : L2(Ω, |dλ|) → L2(Ω, |dλ|)
has kernel

G(λ, μ) =
fᵀ(λ)g(μ)

λ − μ
, f(λ) =

√
γ

2π
e− 1

8 λ2
[

χR(λ)
eitλχR+iω(λ)

]
, (7.13)

g(μ) =
1√
2π

e− 1
8 μ2
[

χR+iω(μ)
e−itμχR(μ)

]
.

The algebraic form (7.13) of its kernel identifies the operator G as an integrable
operator, cf. [45], whose resolvent R = −1 + (1 − G)−1 on L2(Ω), if existent,
has the form (B.1). Choosing right-sided limits for definiteness, we have from
(B.1) and (B.2), for λ, μ ∈ R,

F(λ) = S−(λ)f(λ), G(μ) =
(
Sᵀ

−(μ)
)−1

g(μ), (7.14)

and for λ, μ ∈ R + iω,

F(λ) = S(λ)
[

1 0
i
√

γe− 1
4 λ2+itλ 1

]
f(λ),

G(μ) =
(
Sᵀ(μ)

)−1
[
1 −i

√
γe− 1

4 μ2+itμ

0 1

]
g(μ), (7.15)

where S(z) connects to RHP 1.3 via S(z; t, γ) = Y(z; t
2 , γ), z ∈ C\R; compare

[2, (3.20)]. Next, we record the following standard differential identity.

Proposition 7.4. For any (t, γ) ∈ R × [0, 1],
∂

∂γ
ln det(1 − γχtTχt�L2(R)) = − 1

2γ

∫

Ω

R(λ, λ)dλ, (7.16)

with the kernel R(λ, μ) of the resolvent R = −1 + (1 − G)−1 on L2(Ω).
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Proof. We know from [2, page 475] that the resolvent operator exists for any
(t, γ) ∈ R× [0, 1], thus by straightforward differentiation of (7.12) and (7.13),

∂

∂γ
ln det(1 − γχtTχt�L2(R))

=
∂

∂γ
ln det(1 − G�L2(Ω)) = − tr

L2(Ω)

(
(1 − G)−1 ∂G

∂γ

)

(7.13)
= − 1

2γ
tr

L2(Ω)

(
(1 − G)−1G

)
= − 1

2γ

∫

Ω

R(λ, λ)dλ.

This concludes our proof. �

In order to apply (7.16), we use the explicit formula (B.1) for the kernel
of R(λ, μ) (see [45] for regularity properties of R(λ, μ)),

R(λ, λ) =
(
Fᵀ(λ)

)′
G(λ), (′) =

∂

∂λ
, λ ∈ Ω,

and combine it with the asymptotic results of Appendix 7.3, afterward we
integrate in (7.16). In more detail, once the t → −∞ asymptotic expansion of
the kernel R(λ, λ) is known uniformly with respect to fixed γ ∈ [0, 1) and any
λ ∈ Ω we simply integrate

ln det(1 − γχtTχt�L2(R)) =
∫ γ

0

∂

∂γ′ ln det(1 − γ′χtTχt�L2(R))dγ′

= −1
2

∫ γ

0

[∫

Ω

R(λ, λ)dλ

]
dγ′

γ′ (7.17)

and arrive at (1.20) and (1.21). The detailed steps of this approach are as
follows: From (B.3), (B.5) for any (t, γ) ∈ (−∞, 0)× [0, 1), provided we choose
ω > 0 so that ΣM ∩ (R + i ω

|t| ) = ∅, see Lemma 7.5,
⎧
⎪⎨

⎪⎩

F(λ) = M
(

λ
|t| ; t, γ

)[
A1(λ)χR(λ) + A2(λ)χR+iω(λ)

]
f(λ)

G(μ) =
(
Mᵀ( μ

|t| ; t, γ
))−1[(

Aᵀ
1(μ)
)−1

χR(μ) +
(
Aᵀ

2(μ)
)−1

χR+iω(μ)
]
g(μ)

,

(7.18)
for (λ, μ) ∈ Ω × Ω with the unimodular factors

A1(λ) := exp
[
− σ3

2πi
pv
∫ ∞

−∞

h(s; 1, γ)
s − λ

ds

] [
1 0

i
√

γe− 1
4 λ2+itλ 1

]

(
1 − γe− 1

2 λ2)− 1
2 σ3

, λ ∈ R,

and

A2(λ) := exp
[
− σ3

2πi

∫ ∞

−∞

h(s; 1, γ)
s − λ

ds

]

[
(1 − γe− 1

2 λ2
)−1 −i

√
γ(1 − γe− 1

2 λ2
)−1e− 1

4 λ2−itλ

i
√

γe− 1
4 λ2+itλ 1

]

, λ ∈ R + iω.
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Inserting (7.18) into the right-hand side of (7.16), we obtain after a short
computation
∫

Ω

R(λ, λ)dλ =
∫

Ω

(
fᵀ(λ)

)′
g(λ)dλ +

∫

R

fᵀ(λ)
(
Aᵀ

1(λ)
)′(

Aᵀ
1(λ)
)−1

g(λ)dλ

(7.19)

+
∫

R+iω

fᵀ(λ)
(
Aᵀ

2(λ)
)′(

Aᵀ
2(λ)
)−1

g(λ)dλ

+
∫

Ω

fᵀ(λ)E(λ)g(λ)dλ,

with

E(λ) :=
[
Aᵀ

1(λ)χR(λ)+Aᵀ
2(λ)χR+iω(λ)

] 1
|t|
(
Mᵀ)′ (λ/|t|) (Mᵀ(λ/|t|))−1

×
[(
Aᵀ

1(λ)
)−1

χR(λ) +
(
Aᵀ

2(λ)
)−1

χR+iω(λ)
]
, λ ∈ Ω.

Given the particular shape of f(λ) and g(λ) in (7.13), the first integral in (7.19)
evaluates to zero. For the fourth integral, we record the following estimate.

Lemma 7.5. There exists c > 0 such that for every fixed γ ∈ [0, 1) we can find
t0 = t0(γ) > 0 so that
∣∣∣∣−

1
2γ

∫

Ω

fᵀ(λ)E(λ)g(λ)dλ

∣∣∣∣ ≤ c

(
s(γ)√
γ| ln γ|

)
e

t
2

√− ln γ , s(γ) :=
γ

1
4

1 − √
γ

,

(7.20)
for all (−t) ≥ t0.

Proof. If γ = 0, then Ak(λ) ≡ I for k = 1, 2 and likewise M(z) ≡ I; compare
RHP B.4. Thus, the integral in question is identically zero and the claim
trivially true. If γ ∈ (0, 1) is fixed, pick ω := 1

4

√− ln γ > 0 so that 0 < ω
|t| < δtγ

for (−t) ≥ t0, and first note from (B.8),
∣∣∣
∣

∫

R

fᵀ(λ)E(λ)g(λ)dλ

∣∣∣
∣ ≤ c

√
γs(γ)

t−2et
√− ln γ

dist2(ΣM,R)
∀(−t) ≥ t0,

thus, since dist(ΣM,R) ≥ δtγ > 0, we indeed obtain the right-hand side in
(7.20) as upper bound. On the other hand, by explicit computation using
again (B.8),

∣∣∣
∣

∫

R+iω

fᵀ(λ)E(λ)g(λ)dλ

∣∣∣
∣ ≤ c

√
γs(γ)

t−2et
√− ln γ

dist2(ΣM,R + i ω
|t| )

e−2tω,

where dist(ΣM,R + i ω
|t| ) ≥ 3

4δtγ > 0 by choice of ω. We thus also obtain the
right-hand side of (7.20) as upper bound and have therefore completed our
proof. �

The remaining two integrals in (7.19) yield non-trivial contributions. We
first state a lemma which is used in their evaluation.
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Lemma 7.6. For any a, b, ω > 0,
∫

R+iω

∫

R

e− a
2 λ2− b

2 s2

(s − λ)2
dsdλ = −2π

√
ab

a + b
. (7.21)

Proof. Integration by parts in the variable s, as well as in the variable λ, yields

LHS in (7.21) = −b

∫

R+iω

∫

R

s

s − λ
e− a

2 λ2− b
2 s2

dsdλ

= a

∫

R+iω

∫

R

λ

s − λ
e− a

2 λ2− b
2 s2

dsdλ,

and therefore

−
(

1
a

+
1
b

)
× LHS in (7.21) =

∫

R+iω

∫

R

e− a
2 λ2− b

2 s2
dsdλ =

2π√
ab

,

since both remaining integrals are standard Gaussians. This proves (7.21). �

We now compute the two outstanding integrals in (7.19)

Lemma 7.7. For every γ ∈ [0, 1),

− 1
2γ

∫

R+iω

fᵀ(λ)
(
Aᵀ

2(λ)
)′(

Aᵀ
2(λ)
)−1

g(λ)dλ

=
∂

∂γ

[
t

2
√

2π
Li 3

2
(γ)
]

+
1

4πγ

(
Li 1

2
(γ)
)2

. (7.22)

Proof. Inserting the formulae for f(λ),g(λ) and A2(λ), we find

LHS in (7.22) = − 1
4π

√
γ

∫

R+iω

e− 1
4 λ2+itλ

[
0
1

]ᵀ (
Aᵀ

2(λ)
)′(

Aᵀ
2(λ)
)−1
[
1
0

]
dλ

=
i

4π

∫

R+iω

e− 1
4 λ2+itλ d

dλ

[
e− 1

4 λ2−itλ

1 − γe− 1
2 λ2

]

dλ

− 1
4π2

∫

R+iω

e− 1
2 λ2

1 − γe− 1
2 λ2

d
dλ

[∫ ∞

−∞

h(s; 1, γ)
s − λ

ds

]
dλ.

Integrating by parts, collapsing R + iω to R and using the oddness of a part
of the integrand, we see that the first remaining integral yields

i

4π

∫

R+iω
e− 1

4
λ2+itλ d

dλ

[
e− 1

4
λ2−itλ

1 − γe− 1
2

λ2

]

dλ =
t

4π

∫

R

e− 1
2

λ2

1 − γe− 1
2

λ2 dλ

=
t

4πγ

∫ ∞

−∞

( ∞∑

n=1

γne− n

2
λ2

)

dλ

=
t

2
√

2π

∞∑

n=1

γn−1

√
n

=
∂

∂γ

[
t

2
√

2π
Li 3

2
(γ)

]
.
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In the second (double) integral, we use geometric progression and the power
series expansion ln(1 − z) = −∑∞

n=1
1
nzn, |z| < 1 for h(s; 1, γ),

− 1
4π2

∫

R+iω

e− 1
2 λ2

1 − γe− 1
2 λ2

d
dλ

[∫ ∞

−∞

h(s; 1, γ)
s − λ

ds

]
dλ

= − 1
4π2γ

∞∑

n,m=1

γn+m

m

∫

R+iω

∫

R

e− n
2 λ2− m

2 s2

(s − λ)2
dsdλ

(7.21)
=

1
2πγ

∞∑

n,m=1

γn+m

n + m

√
n

m

=
1

2πγ

∫ γ

0

Li− 1
2
(x)Li 1

2
(x)

dx

x
=

1
4πγ

(
Li 1

2
(γ)
)2

,

since d
dxLi 1

2
(x) = 1

xLi− 1
2
(x) and Li− 1

2
(0) = Li 1

2
(0) = 0. This completes our

proof. �
Lemma 7.8. For every γ ∈ [0, 1),

− 1
2γ

∫

R

fᵀ(λ)
(
Aᵀ

1(λ)
)′(

Aᵀ
1(λ)
)−1

g(λ)dλ =
∂

∂γ

[
t

2
√

2π
Li 3

2
(γ)
]
+

1
4πγ

(
Li 1

2
(γ)
)2

.

(7.23)

Proof. Using the above formula for A1(λ) and (7.13) we find at once

− 1
2γ

∫

R

fᵀ(λ)
(
Aᵀ

1(λ)
)′(

Aᵀ
1(λ)
)−1

g(λ)dλ =
t

4π

∫ ∞

−∞

e− 1
2 λ2

dλ

1 − γe− 1
2 λ2

− 1
4π2

∫ ∞

−∞

e− 1
2 λ2

1 − γe− 1
2 λ2

d
dλ

[
pv
∫ ∞

−∞

h(s; 1, γ)
s − λ

ds

]
dλ.

Here, the first remaining integral was already computed in the proof of Lemma
7.7,

t

4π

∫ ∞

−∞

e− 1
2 λ2

dλ

1 − γe− 1
2 λ2 =

∂

∂γ

[
t

2
√

2π
Li 3

2
(γ)
]

, γ ∈ [0, 1).

For the second one, we use the Plemelj–Sokhotski formula,

lim
z→λ∈R

�z>0

∫ ∞

−∞

h(s; 1, γ)
s − z

ds = iπh(λ; 1, γ) + pv
∫ ∞

−∞

h(s; 1, γ)
s − λ

ds, (7.24)

and note that by oddness of the integrand,
∫ ∞

−∞
h(λ; 1, γ)

d
dλ

[
e− 1

2 λ2

1 − γe− 1
2 λ2

]

dλ = 0. (7.25)

Thus, integrating by parts and adding (7.25), we find

− 1
4π2

∫ ∞

−∞

e− 1
2 λ2

1 − γe− 1
2 λ2

d
dλ

[
pv
∫ ∞

−∞

h(s; 1, γ)
s − λ

ds

]
dλ

=
1

4π2

∫ ∞

−∞

(
d
dλ

[
e− 1

2 λ2

1 − γe− 1
2 λ2

])(
pv
∫ ∞

−∞

h(s; 1, γ)
s − λ

ds + iπh(λ; 1, γ)
)

dλ.
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Now change the contour R � λ to R+iω by Cauchy’s theorem while using the
analytic continuation (7.24) for the second round bracket. The result equals

− 1
4π2

∫ ∞

−∞

e− 1
2 λ2

1 − γe− 1
2 λ2

d
dλ

[
pv
∫ ∞

−∞

h(s; 1, γ)
s − λ

ds

]
dλ

=
1

4π2

∫

R+iω

(
d
dλ

[
e− 1

2 λ2

1 − γe− 1
2 λ2

])∫ ∞

−∞

h(s; 1, γ)
s − λ

dsdλ

= − 1
4π2

∫

R+iω

e− 1
2 λ2

1 − γe− 1
2 λ2

d
dλ

[∫ ∞

−∞

h(s; 1, γ)
s − λ

ds

]
dλ

after another integration by parts in the last equality. The obtained result is
identical to the second (double) integral in the proof of Lemma 7.7, and we
therefore find (7.23) all together. �

We now combine (7.20), (7.23), (7.22) and (7.17) to obtain the following
result.

Proposition 7.9. There exists c > 0 such that for every fixed γ ∈ [0, 1) we can
find t0 = t0(γ) > 0 so that

ln det(1−γχtTχt �L2(R)) =
t√
2π

Li 3
2
(γ)+

1
2π

∫ γ

0

(
Li 1

2
(x)
)2 dx

x
+r(t, γ) (7.26)

for (−t) ≥ t0 where the error term r(t, γ) is differentiable with respect to γ
and satisfies

∣∣r(t, γ)
∣∣ ≤ c

(
γ

3
4

(1 − √
γ)| ln γ|

)

e
t
2

√− ln γ ∀(−t) ≥ t0.

Proof. We have, as t → −∞,

− 1

2γ

∫

Ω

R(λ, λ)dλ =
∂

∂γ

[
t√
2π

Li 3
2
(γ)

]
+

1

2πγ

(
Li 1

2
(γ)
)2

+ O
(

s(γ)√
γ| ln γ|e

t
2

√− ln γ

)
,

uniformly in γ ∈ [0, 1). Integrating this expansion in (7.17) from 0 to γ < 1
yields immediately the two leading terms in (7.26), and for the error term we
estimate as follows:∣

∣∣∣∣

∫ γ

0

x− 1
4

(1 − √
x) ln x

e
t
2

√− ln xdx

∣
∣∣∣∣
≤ −e

t
2

√− ln γ

1 − √
γ

∫ γ

0

x− 1
4

ln x
dx

≤ c

(
γ

3
4

(1 − √
γ)| ln γ|

)

e
t
2

√− ln γ .

This completes our proof. �

.
Combining our results, we finally arrive at (1.20).

Corollary 7.10. As t → −∞, for any γ ∈ [0, 1),

P (t; γ) = exp

[
t

2
√

2π
Li 3

2
(γ̄) +

1

2
ln

(
2

2 − γ

)
+

1

4π

∫ γ̄

0

(
(
Li 1

2
(x)
)2 − πx

1 − x

)
dx

x

]
(
1+o(1)

)
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Proof. From (1.14), (7.1), (7.4), (7.11) and (7.26) (substituting γ �→ γ̄ in the
last equation),

P (t; γ) =
√

det(1 − γ̄χtTχt �L2(R))

(√
1 − √

γ̄

2(2 − γ)
e

1
2 μ(t;γ̄) +

√
1 +

√
γ̄

2(2 − γ)
e− 1

2 μ(t;γ̄)

)

=exp

[
t

2
√

2π
Li 3

2
(γ̄) +

1

4π

∫ γ̄

0

(
Li 1

2
(x)
)2 dx

x

]√
2

√
1 − γ

2 − γ

(
1 + o(1)

)
(7.27)

as t → −∞. The claim follows now after writing

ln(1 − γ) =
1
2

ln
(
1 − γ̄

)
= −1

2

∫ γ̄

0

dx

1 − x
.

�

7.3. Proof of Lemma 1.14

Since Li 1
2
(x) = x + O(x2) as x → 0 and, cf. [54, 25.12.12],

Li 1
2
(x) =

√
π

1 − x

(
1 + O(x − 1)

)
+ O(1), x ↑ 1,

we see that
∫ γ̄

0

((
Li 1

2
(x)
)2 − πx

1 − x

)
dx

x

converges as γ̄ ↑ 1, so c0(γ) is indeed continuous in γ ∈ [0, 1]. On the other
hand, from the power series representation of the polylogarithm,

(
Li 1

2
(x)
)2 − πx

1 − x
=

∞∑

n,m=1

xn+m

√
nm

− π

∞∑

n=1

xn =
∞∑

n=1

anxn, |x| < 1,

with

an := −π +
n−1∑

m=1

1
√

m(n − m)
, n ∈ Z≥1 and (7.28)

n−1∑

m=1

1
√

m(n − m)
= π − c√

n
+ O(n−1

)
, n → ∞,

for some c > 0. Thus, for any 0 ≤ t < 1,

∫ t

0

((
Li 1

2
(x)
)2 − πx

1 − x

)
dx

x
=

∞∑

n=1

1
n

(

−π +
n−1∑

m=1

1
√

m(n − m)

)

tn,

which verifies (1.23) for 0 ≤ γ < 1 through (1.21). But using again [54,
25.12.12], we also have that

∫ 1

t

((
Li 1

2
(x)
)2 − πx

1 − x

)
dx

x
= o(1), t ↑ 1,
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so by Abel’s convergence theorem,
∫ 1

0

((
Li 1

2
(x)
)2 − πx

1 − x

)
dx

x

= lim
t↑1

[∫ t

0

((
Li 1

2
(x)
)2 − πx

1 − x

)
dx

x
+
∫ 1

t

((
Li 1

2
(x)
)2 − πx

1 − x

)
dx

x

]

= lim
t↑1

[ ∞∑

n=1

1
n

antn + o(1)

]

=
∞∑

n=1

1
n

an,

since 1
nan is summable, see (7.28). The proof of Lemma 1.14 is now complete.
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Appendix 8. Integral Identities

Given two continuous functions φ, ψ : R → R which decay exponentially fast
at +∞, we define

K(x, y) :=
∫ ∞

0

φ(x + u)ψ(y + u)du, x, y ∈ R (A.1)

and the associated integral operator K on L2(R) with kernel K(x, y). We
denote by fy(x) := f(x + y) the horizontal shift of a function f by −y.

Lemma A.1. Let I ⊂ R be an interval and

Φ(x) :=
∫

I

φv(x)dv.

Then for any y, t ∈ R and k ∈ Z≥1,
∫

I

(Kχt �L2(R))
k(x + t, y)dx = χ[t,∞)(y)

∫ ∞

t

Φ(u)
(
(K∗χt �L2(R))

k−1ψu−t

)
(y)du,

(A.2)
where K∗ is the real adjoint of K.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Proof. We proceed by induction on k ∈ Z≥1. For k = 1, the left-hand side in
(A.2) equals
∫

I

K(x + t, y)χ[t,∞)(y)dx
(A.1)
= χ[t,∞)(y)

∫

I

∫ ∞

0

φx(t + u)ψ(y + u)dudx

and hence by Fubini’s theorem and the definition of Φ(x),
∫

I

K(x + t, y)χ[t,∞)(y)dx = χ[t,∞)(y)
∫ ∞

0

Φ(t + u)ψ(y + u)du

= χ[t,∞)(y)
∫ ∞

t

Φ(u)ψu−t(y)du,

which is the right-hand side in (A.2). Now assume (A.2) holds true for general
k, then

∫

I

(Kχt �L2(R))k+1(x + t, y)dx

=
∫

I

∫ ∞

t

(Kχt �L2(R))k(x + t, v)(Kχt �L2(R))(v, y)dvdx

= χ[t,∞)(y)
∫ ∞

t

[∫

I

(Kχt �L2(R))k(x + t, v)dx

]
K(v, y)dv

= χ[t,∞)(y)
∫ ∞

t

∫ ∞

t

Φ(u)
(
(K∗χt �L2(R))k−1ψu−t

)
(v)K(v, y)dudv,

where we used Fubini’s theorem in the second equality and the induction
hypothesis in the third. Continuing further with Fubini’s theorem and the fact
that K∗(x, y) = K(y, x), we have then
∫

I

(Kχt �L2(R))k+1(x+t, y)dx = χ[t,∞)(y)
∫ ∞

t

Φ(u)
(
(K∗χt �L2(R))kψu−t

)
(y)dy,

which is the right-hand side of (A.2) with k−1 �→ k, as desired. This concludes
our proof. �

Lemma A.1 implies the following integral identity.

Corollary A.2. For any t ∈ R and k ∈ Z≥1,
∫

I

(Kχt �L2(R))k(x + t, t)dx =
∫ ∞

t

Φ(u)
(
(K∗χt �L2(R))k−1ψ

)
(u)du. (A.3)

Proof. By (A.2) (with y = t) and χ[t,∞)(t) = 1,
∫

I

(Kχt �L2(R))k(x + t, t)dx =
∫ ∞

t

Φ(u)
(
(K∗χt �L2(R))k−1ψu−t

)
(t)du.

However, from [2, Proposition B.1] we have
(
(K∗χt �L2(R))kψu−t

)
(t) =

(
(K∗χt �L2(R))kψ0

)
u−t

(t),

since in the kernel of K∗ the functions φ and ψ are simply interchanged;
compare (A.1). But ψ0 ≡ ψ and for any function f we have fu−t(t) = f(u) by



4046 J. Baik, T. Bothner Ann. Henri Poincaré

definition of the shift. Thus all together,
∫

I

(Kχt �L2(R))k(x + t, t)dx =
∫ ∞

t

Φ(x)
(
(K∗χt �L2(R))k−1ψ

)
(u)du,

as claimed. �

Lemma A.3. Assume φ ∈ L1(R) in (A.1). Then, for any y, t ∈ R and k ∈ Z≥1,
∫ ∞

−∞

(
(Kχt �L2(R))kφy

)
(x)dx =

[∫ ∞

−∞
φ(x)dx

] ∫ ∞

0

(Kχt �L2(R))k(y+t, u+t)du.

(A.4)

Proof. We use once more induction on k ∈ Z≥1. For k = 1, the left-hand side
in (A.4) equals
∫ ∞

−∞

∫ ∞

t

K(x, s)φ(s+y)dsdx
(A.1)
=
∫ ∞

−∞

∫ ∞

t

∫ ∞

0

φ(x+u)ψ(s+u)φ(s+y)dudsdx,

so by Fubini’s theorem
∫ ∞

−∞

(
(Kχt �L2(R))φy

)
(x)dx

=
[∫ ∞

−∞
φ(x)dx

] ∫ ∞

t

∫ ∞

0

ψ(s + u)φ(s + y)duds

=
[∫ ∞

−∞
φ(x)dx

] ∫ ∞

0

∫ ∞

t

ψ(s + u)φ(s + y + t)duds

(A.1)
=
[∫ ∞

−∞
φ(x)dx

] ∫ ∞

0

(Kχt �L2(R))(y + t, u + t)du,

which is the right-hand side in (A.4) for k = 1. Assuming now that (7.2) holds
for general k, we compute

∫ ∞

−∞

(
(Kχt �L2(R))k+1φy

)
(x)dx

=
∫ ∞

−∞

∫ ∞

−∞
(Kχt �L2(R))k(x, u)(Kχt �L2(R) φy)(u)dudx.

Inserting (A.1) for K(u, v) and using Fubini’s theorem, we find that
∫ ∞

−∞

(
(Kχt �L2(R))k+1φy

)
(x)dx

=
∫ ∞

−∞

∫ ∞

t

∫ ∞

0

(
(Kχt �L2(R))kφs

)
(x)ψ(v + s)φ(v + y)dsdvdx

by Fubini’s theorem. Using Fubini’s theorem again and the induction hypoth-
esis, the above simplifies to
[∫ ∞

−∞
φ(x)dx

] ∫ ∞

t

∫ ∞

0

∫ ∞

0

(Kχt �L2(R))
k(s + t, u + t)ψ(v + s)φ(v + y)dudsdv

=

[∫ ∞

−∞
φ(x)dx

] ∫ ∞

0

∫ ∞

t

∫ ∞

0

(Kχt �L2(R))
k(s, u + t)ψ(v + s)φ(v + y + t)dudsdv,
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and from (A.1) we conclude that
∫ ∞

−∞

(
(Kχt �L2(R))k+1φy

)
(x)dx

=
[∫ ∞

−∞
φ(x)dx

] ∫ ∞

t

∫ ∞

0

(Kχt �L2(R))k(s, u + t)K(y + t, s)duds

=
[∫ ∞

−∞
φ(x)dx

] ∫ ∞

0

(
Kχt �L2(R)

)k+1(y + t, u + t)du,

which is the right-hand side of (A.4) with k �→ k+1, as needed. This completes
our proof. �

The special case y = 0 in (A.4) will be useful for us; we summarize it
below.

Corollary A.4. For any t ∈ R and k ∈ Z≥1,
∫ ∞

−∞

(
(Kχt �L2(R))kφ

)
(x)dx =

[∫ ∞

−∞
φ(x)dx

] ∫ ∞

0

(Kχt �L2(R))k(t, u + t)du,

(A.5)
provided φ ∈ L1(R) in (A.1).

Appendix 9. Streamlined Nonlinear Steepest Descent Analysis

The purpose of this section is to simplify and streamline [2, Section 5]. The
analysis presented in loc. cit. is sufficient for the t-derivative method of [2,
Proposition 3.7] but not ideal for our current needs, i.e., for Proposition 7.4.
Here are the necessary steps: From [2, Proposition 3.3],

det(1 − γχtTχt �L2(R)) = det(1 − G �L2(Ω)), (t, γ) ∈ R × [0, 1],

where the integrable operator G, see (7.13), is naturally associated with the
following RHP.

Riemann-Hilbert Problem B.1. ([2, RHP 3.4]) For (t, γ) ∈ R × [0, 1], deter-
mine N(z) = N(z; t, γ) ∈ C

2×2 such that
(1) N(z) is analytic for z ∈ C \ Ω where Ω = R ∪ (R + iω), oriented from

left to right as shown in Fig. 4. Moreover, N(z) extends continuously to
{z ∈ C : �z ≥ ω} ∪ {z ∈ C : 0 ≤ �z ≤ ω} ∪ {z ∈ C : �z ≤ 0}.

(2) The limiting values N±(z), z ∈ Ω from either side of C \ Ω satisfy

N+(z) = N−(z)
[
1 −i

√
γe− 1

4 z2−itz

0 1

]
, z ∈ R;

N+(z) = N−(z)
[

1 0
−i

√
γe− 1

4 z2+itz 1

]
, z ∈ R + iω.

(3) As z → ∞, we enforce the normalization

N(z) = I + O(z−1
)
.
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Figure 4. The oriented jump contour Ω = R � (R + iω) in
RHP B.1. Compared to [2, RHP 3.4] we have chosen Γ =
R + iω with ω > 0 for concreteness

It was shown in [2, Corollary 3.6] that the above RHP B.1 is uniquely
solvable for every (t, γ) ∈ R × [0, 1] and its solution allows us to compute the
resolvent R = 1 + (1 − G)−1 on L2(Ω) in the form

R(λ, μ) =
Fᵀ(λ)G(μ)

λ − μ
, F(λ) = N±(λ)f(λ),

G(μ) =
(
Nᵀ

±(μ)
)−1

g(μ), λ, μ ∈ Ω. (B.1)

In order to solve RHP B.1 asymptotically as t → −∞ with γ ∈ [0, 1) we first
collapse the two jump contours in Fig. 4 and thus define

S(z; t, γ) := N(z; t, γ)

⎧
⎪⎨

⎪⎩

[
1 0

−i
√

γe− 1
4 z2+itz 1

]

, �z ∈ (0, ω)

I, else

. (B.2)

This leads us to the problem summarized below.

Riemann-Hilbert Problem B.2. For any (t, γ) ∈ R×[0, 1], the function S(z) =
S(z; t, γ) ∈ C

2×2 defined in (B.2) satisfies

(1) S(z) is analytic for z ∈ C\R and extends continuously to the closed upper
and lower half-planes.

(2) With S±(z) = limε↓0 S(z ± iε), z ∈ R, we have

S+(z) = S−(z)

[
1 − γe− 1

2 z2 −i
√

γe− 1
4 z2−itz

−i
√

γe− 1
4 z2+itz 1

]

, z ∈ R.

(3) As z → ∞,
S(z) = I + O(z−1

)
.

Observe that (B.2) relates to the solution of RHP 1.3 via the simple
identity S(z; t, γ) = Y(z; t

2 , γ). Next, fix t < 0, and define

T(z; t, γ) := S(−zt; t, γ)eg(z;t,γ)σ3 , z ∈ C \ R, (B.3)
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with the g-function from [2, (5.4)], i.e.,

g(z) ≡ g(z; t, γ) :=
1

2πi

∫ ∞

−∞

h(s; t, γ)
s − z

ds, z ∈ C \ R,

where h(s; t, γ) := − ln(1 − γe− 1
2 t2s2

) is Hölder continuous in s ∈ R for every
γ ∈ [0, 1). Thus, by the standard Plemelj–Sokhotski formula, we arrive at the
following problem:

Riemann-Hilbert Problem B.3. For any (t, γ) ∈ (−∞, 0) × [0, 1), the function
T(z) = T(z; t, γ) ∈ C

2×2 defined in (B.3) satisfies
(1) T(z) is analytic for z ∈ C \ R and extends continuously to the closed

upper and lower half-planes.
(2) The boundary values T±(z) = limε↓0 T(z ± iε) are related by the jump

condition

T+(z) = T−(z)
[

1 −i
√

γf1(z; t, γ)e−2g+(z;t,γ)

−i
√

γf2(z; t, γ)e2g−(z;t,γ) 1 − γe− 1
2 t2z2

]
, z ∈ R,

with

fk(z) ≡ fk(z; t, γ) :=
e−t2( 1

4 z2+(−1)kiz)

1 − γe− 1
2 t2z2 , z ∈ R, k = 1, 2. (B.4)

(3) As z → ∞,
T(z) = I + O(z−1

)
.

Note that g±(z) admit analytic continuation to the full upper, respec-
tively lower half-planes, but fk(z; t, γ) does not; compare [2, Proposition 5.1]
and [2, Figure 11]. However, if we define the region

πtγ :=
{

z ∈ C : |�z| <

√−2 ln γ

|t|
}

∪
{

z ∈ C :
∣∣arg(z − 1)

∣∣ ≤ π

4

}

∪
{

z ∈ C :
3π

4
≤ arg(z + 1) ≤ 5π

4

}
,

then the denominators in (B.4) do not vanish for z ∈ πtγ and so fk(z) admits
analytic continuation to πtγ . Thus, using the matrix factorization

[
1 −i

√
γf1(z)e−2g+(z)

−i
√

γf2(z)e2g−(z) 1 − γe− 1
2 t2z2

]

=
[

1 0
−i

√
γf2(z)e2g−(z) 1

] [
1 −i

√
γf1(z)e−2g+(z)

0 1

]
, z ∈ R,

the following transformation is well defined:

M(z; t, γ) := T(z; t, γ)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
1 i

√
γf1(z)e−2g(z)

0 1

]

, z ∈ Ω1tγ

[
1 0

−i
√

γf2(z)e2g(z) 1

]

, z ∈ Ω2tγ

, (B.5)
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Figure 5. The oriented jump contour ΣM in RHP B.4 in
red. We fix z1 = −2 + i, z2 = −1 + iδtγ , z3 = 1 + iδtγ and z4 =
2 + i as location of the four vertices in the upper half-plane.
The ones in the lower half-plane are their complex conjugates
and we choose δtγ := min

{√− ln γ/|t|, 1
2

}
> 0. This way the

contour ΣM is fully contained in πtγ and thus fk(z) analytic
for z ∈ Ωktγ

where the domains Ωktγ are shown in Fig. 5. Subsequently we arrive at the
problem below.

Riemann-Hilbert Problem B.4. For every (t, γ) ∈ (−∞, 0) × [0, 1), the func-
tion M(z) = M(z; t, γ) ∈ C

2×2 defined in (B.5) has the following properties
(1) M(z) is analytic for z ∈ C\ΣM, see Fig. 5 for the oriented jump contour

ΣM.
(2) The boundary values M±(z), z ∈ ΣM satisfy

M+(z) = M−(z)
[
1 −i

√
γf1(z)e−2g(z)

0 1

]
, z ∈ ΣM ∩ {z ∈ C : �z > 0},

and

M+(z) = M−(z)
[

1 0
−i

√
γf2(z)e2g(z) 1

]
, z ∈ ΣM ∩ {z ∈ C : �z < 0}.

(3) As z → ∞,
M(z) = I + O(z−1

)
.

The important properties of RHP B.4 are summarized in the following
small norm estimates for its jump matrix GM(z; t, γ), see condition (2) in RHP
B.4 above.

Proposition B.5. There exist constants t0, c > 0 such that

‖GM(·; t, γ) − I‖L∞(ΣM,|dz|) ≤ c
√

γ
e

1
4 t2δ2

tγ−t2δtγ

|1 − γe
1
2 t2δ2

tγ | ,

‖GM(·; t, γ) − I‖L1(ΣM,|dz|) ≤ c

√
γ

|t|
e

1
4 t2δ2

tγ−t2δtγ

|1 − γe
1
2 t2δ2

tγ | ,

and

‖GM(·; t, γ) − I‖L2(ΣM,|dz|) ≤ c

√
γ

|t|
e

1
4 t2δ2

tγ−t2δtγ

|1 − γe
1
2 t2δ2

tγ | ,
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hold true for all (−t) ≥ t0 and any γ ∈ [0, 1).

Proof. For z on the components of ΣM which extend to infinity we have

‖GM(z; t, γ) − I‖ ≤ c
√

γe− 7
4 t2 , c > 0 universal,

and thus sub-leading corrections. The jumps on the two remaining horizontal
segments are estimated as in [2, Proposition 5.5] yielding upper bounds as
stated in the Proposition. Finally, for the four slanted segments we consider,
say, z = z(λ) = λ − 2 + i(1 − λ + λδtγ), λ ∈ [0, 1] and obtain

∣∣f1(z(λ))e−2g(z(λ))
∣∣ ≤ ce− 1

4 t2(1−δ2
tγ), c > 0 universal,

i.e., another sub-leading contribution. This concludes our proof. �

On compact subsets of [0, 1) � γ, and this is after all the situation we are
considering in Sect. 7, Proposition B.5 yields existence of t0 = t0(γ) > 0 and
a universal c > 0 such that for all (−t) ≥ t0,

‖GM(·; t, γ) − I‖L∞(ΣM,|dz|) ≤ cs(γ)et
√− ln γ , ‖GM(·; t, γ) − I‖L1(ΣM,|dz|)

≤ cs(γ)|t|−1et
√− ln γ , (B.6)

‖GM(·; t, γ) − I‖L2(ΣM,|dz|) ≤ cs(γ)|t|− 1
2 et

√− ln γ ; s(γ) :=
γ

1
4

1 − √
γ

. (B.7)

We thus obtain

Theorem B.6. There exists a constant c > 0 such that for every fixed γ ∈ [0, 1),
there exist t0 = t0(γ) > 0 so that RHP B.4 is uniquely solvable in L2(ΣM)
for all (−t) ≥ t0. The solution can be computed iteratively from the integral
equation

M(z) = I +
1

2πi

∫

ΣM

M−(λ)
(
GM(λ) − I

) dλ

λ − z
, z ∈ C \ ΣM,

using the estimate

‖M−(·; t, γ) − I‖L2(ΣM) ≤ cs(γ)|t|− 1
2 et

√− ln γ ln |t| ∀(−t) ≥ t0.

Proof. As in [2, Section 5], the general theory of [28] is not directly applicable
in the analysis of RHP B.4 since our contour ΣM varies with t. Still, using the
arguments outlined in [2, Appendix A] one directly proves from (B.6), (B.7)
that the Neumann series

ρ(z) = I +
∞∑

k=1

ρk(z); ρk(z) =
1

2πi

∫

ΣM

ρk−1(λ)
(
GM(λ) − I

) dλ

λ − z−
,

z ∈ ΣM, k ∈ Z≥1

with ρ0(z) = I converges in L2(ΣM, |dz|) for sufficiently large (−t) and any
fixed γ ∈ [0, 1). Furthermore, adapting the arguments of [2, page 497] to our
GM(z; t, γ) and ΣM in RHP B.4, we find from (B.6), (B.7) that there exists
c > 0 such that for every fixed γ ∈ [0, 1) there exists t0 = t0(γ) > 0 so that

‖ρk‖L2(ΣM,|dz|) ≤
(
cs(γ)et

√− ln γ ln |t|
)k

|t|− 1
2 , ∀(−t) ≥ t0, k ∈ Z≥1.
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Hence, I+
∑∞

k=1 ρk(z) converges in L2(ΣM, |dz|) for sufficiently large (−t) ≥ t0
and any fixed γ ∈ [0, 1). But its sum ρ(z) satisfies the singular integral equation

ρ(z) = I +
1

2πi

∫

ΣM

ρ(λ)
(
GM(λ) − I

) dλ

λ − z−
, z ∈ ΣM,

by construction and so

M(z) := I +
1

2πi

∫

ΣM

ρ(λ)
(
GM(λ) − I

) dλ

λ − z
, z ∈ C \ ΣM,

yields M−(z) = ρ(z) for z on any of the ten straight line segments which
comprise ΣM. This completes our proof. �

We conclude this section with the following Corollary to Theorem B.6.

Corollary B.7. For any fixed γ ∈ [0, 1), as t → −∞,

M(z) = I+O
(

s(γ)t−1et
√− ln γ

dist(ΣM, z)

)

, M′(z) = O
(

s(γ)t−1et
√− ln γ

dist2(ΣM, z)

)

. (B.8)
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