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Abstract. We make a spectral analysis of the massive Dirac operator in a
tubular neighbourhood of an unbounded planar curve, subject to infinite
mass boundary conditions. Under general assumptions on the curvature,
we locate the essential spectrum and derive an effective Hamiltonian on
the base curve which approximates the original operator in the thin-
strip limit. We also investigate the existence of bound states in the non-
relativistic limit and give a geometric quantitative condition for the bound
states to exist.
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1. Introduction

1.1. Motivations and State of the Art

Consider a massive particle in a guide modelled by a uniform tubular neigh-
bourhood of an infinite planar curve. A classical particle, moving according to
Newton’s laws of motion with regular reflections on the boundary, will even-
tually leave any bounded set in a finite time, except for initial conditions of
measure zero in the phase space corresponding to transverse oscillations. It
came as a surprise in 1989 that the situation changes drastically for quantum
particles modelled by the Schrödinger equation. In the pioneering paper [15]
and further improvements [13,16,19], it was demonstrated that the quantum
Hamiltonian identified with the Dirichlet Laplacian possesses discrete eigenval-
ues unless the base curve is a straight line. Roughly, and with a sharp contrast
with the classical setting, the particle gets trapped in any non-trivially curved
quantum waveguide. The existence and properties of the geometrically induced
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bound states have attracted a lot of attention in the last decades and the re-
search field is still very active. We refer to the monograph [14] and the latest
developments in [22] with further references.

The goal of the present paper is to consider relativistic counterparts of
the quantum waveguides. Here, we model the relativistic quantum Hamiltonian
by the Dirac operator in the same tubular neighbourhood as above, subject
to infinite mass boundary conditions. The latter is probably the reason why
the relativistic setting has escaped the attention of the community until now.
Indeed, the self-adjointness of the Dirac operators on domains and the right
replacement for the Dirichlet boundary conditions have been understood only
recently [1–3,24].

There are four motivations for the present study. First, we would like
to understand the influence of relativistic effects on spectral properties. Do
the geometrically induced bound states exist independently of the mass of the
particle? It is expected that they do exist for heavy particles because the Dirac
operator converges, in a suitable sense involving an energy renormalization, to
the Dirichlet Laplacian in the limit of large masses. For light particles, however,
the answer is far from being obvious because it is well known that relativis-
tic systems are less stable [25]. In this paper, we confirm the expectation by
justifying the non-relativistic limit and provide partial (both qualitative and
quantitative) answers for the whole ranges of masses.

Our second motivation is related to quantisation on submanifolds. It
is well-known (see [21] for an overview with many references) that the non-
relativistic quantum Hamiltonian converges to a one-dimensional Schrödinger
operator on the base curve. (The convergence involving an energy renormaliza-
tion can be understood either in a resolvent sense [12,20,21] or as an adiabatic
limit [17,23,33].) It is remarkable that this non-relativistic effective operator
is not the free quantum Hamiltonian on the submanifold but it contains an
extrinsic geometric potential depending on the curvature of the base curve. In
this paper, we find that the relativistic setting is very different, for the limiting
operator describing the effective dynamics on the submanifold is just the free
Dirac operator of the base curve.

Recently, the Dirac operator on metric graphs has been considered as a
model for the transport of relativistic quasi-particles in branched structures
[34], and the existence and transport of Dirac solitons in networks have been
studied in [30]. Previous studies deal with the quantisation of graphs and
spectral statistics for the Dirac operator [5], and self-adjoint extensions and
scattering properties for different graph topologies [9]. Rigorous mathematical
studies on linear and nonlinear Dirac equations on metric graphs recently
appeared [6–8]. The result of the present paper can be understood as the first
step towards a rigorous justification of the metric graph model as the limit of
shrinking branched waveguides.

The last but not least motivation of this paper is that the present model is
relevant for transport of quasi-particles in graphene nanostructures [27]. This
makes our results not only interesting in the mathematical context of spectral
geometry and in the physical concept of quantum relativity, but also directly
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accessible to laboratory experiments with the modern artificial materials. We
hope that the present results will stimulate an experimental verification of the
geometrically induced bound states in graphene waveguides.

1.2. Geometrical Setting and Standing Hypotheses

Before presenting our main results in more detail, let us specify the configura-
tion space of the quantum system we are interested in.

Let Γ ⊂ R
2 be a curve with an injective and C3 arc-length parametriza-

tion γ : R → R
2, i.e. γ(R) = Γ. We define ν(s) the normal of Γ at the point

γ(s) chosen such that for all s ∈ R the couple
(
γ′(s), ν(s)

)
is a positive or-

thonormal basis of R2. The curvature of Γ at the point γ(s), denoted κ(s) is
defined by the Frenet formula

γ′′(s) = κ(s)ν(s). (1)

All along this paper, we make the following assumptions on the curvature κ:
(A) lim

s→±∞ κ(s) = 0,

(B) κ′ ∈ L∞(R) .

Notice since we work with a C3 curve, κ′ is automatically continuous, so that
assumption (B) implies it is also bounded.

Now, for 0 < ε < (‖κ‖L∞(R))−1 (with the convention that the right-hand
side equals +∞ if κ = 0 identically), we define the tubular neighbourhood of
radius ε of Γ in R

2 as the domain

Ωε := {γ(s) + εtν(s) : s ∈ R, |t| < 1} , (2)

that is, Ωε is the planar strip of width 2ε along the curve Γ.
It is a well-known result of differential geometry that under these condi-

tions

Φε : (s, t) ∈ Str �→ γ(s) + εtν(s) ∈ R
2 (3)

is a local C2-diffeomorphism from the strip

Str := R × (−1, 1) (4)

to the set Ωε. In order to ensure that the map Φε becomes a global diffeomor-
phism, we additionally assume that
(C) 0 < ε < (2‖κ‖L∞(R))−1 and Φε is injective.

Remark that in assumption (C), one could take 0 < ε < ‖κ‖−1
L∞(R) to guarantee

that Φε is a global diffeomorphism. However, for technical reasons, we need a
more restrictive range of admissible width ε.

Remark 1. Despite being quite general, assumptions (A), (B) are probably
not optimal. In [21], the authors deal with three-dimensional non-relativistic
waveguides under minimal technical assumptions on the base curve (in partic-
ular, the curvature does not need to be differentiable), and then similar results
can be expected in the present case. However, for ease of presentation, we
prefer not to investigate this aspect here. The assumption on the size of ε in
(C) is purely technical and allows to apply Kato’s perturbation theory (see the
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proof of Theorem 2). We mention that another proof could be given adapting
the general techniques developed in [28] for three-dimensional problems to our
setting.

1.3. Main Results

We are interested in the relativistic quantum Hamiltonian of a (quasi-)particle
of (effective) mass m ≥ 0 described by the Dirac operator with infinite mass
boundary conditions posed in the domain Ωε. Namely, we define the operator
DΓ(ε,m) in the Hilbert space L2(Ωε,C

2) as

dom (DΓ(ε,m)) := {u ∈ H1(Ωε,C
2) : −iσ3σ · νεu = u on ∂Ωε},

DΓ(ε,m)u := −iσ · ∇u + mσ3u,
(5)

where νε is the outward pointing normal on ∂Ωε.
In (5), we use the notation σ · v := σ1v + σ2v, where v ∈ C

2, and σk are
the Pauli matrices

σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
. (6)

In particular, the action of the operator DΓ is given by

DΓ =
(

m −i(∂1 − i∂2)
−i(∂1 + i∂2) −m

)
.

As for the boundary conditions, their name is related to the folllowing fact,
first recognized in [4].

Consider the Dirac operator on L2(Ω,C2), acting as T := −iσ · ∇ and
endowed with boundary conditions as in (5). In a sense specified in [2, The-
orem 1.1], such operator is the (norm-resolvent) limit of Dirac operators on
L2(R2,C2), of the form TM := −iσ · ∇ + χR2\ΩMσ3, as M → +∞, with a
mass term supported outside Ω (here χ denotes the characteristic function of
a set). This justifies the name infinite mass boundary conditions.

In what follows, we denote by Sp the spectrum of an operator. Moreover,
we shall distinguish between the discrete spectrum Spdis, namely the set of
eigenvalues of finite multiplicity, and the essential spectrum Spess = Sp \Spdis.

Our first result is about the self-adjointness and the structure of the
spectrum of DΓ(ε,m).

Theorem 2. The operator DΓ(ε,m) defined in (5) is self-adjoint. Its spectrum
is symmetric with respect to the origin and there holds:

Spess(DΓ(ε,m)) =
(

− ∞,−
√

ε−2E1(mε) + m2
]
∪
[√

ε−2E1(mε) + m2,+∞
)
,

where E1(m) is the unique root of the equation

m sin(2
√

E) +
√

E cos(2
√

E) = 0 (7)

lying in the line segment [π2

16 , π2

4 ).

In order to prove Theorem 2, a first step is to study the operator DΓ(ε,m)
in the special case of Ωε being a straight strip. In this setting, a partial Fourier
transform gives a fiber decomposition of the operator DΓ(ε,m), and we are left
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with the investigation of one-dimensional operators which can be understood
explicitly.

The second step is to show that in the case of general waveguides Ωε,
DΓ(ε,m) can be seen as a perturbation of the operator in the straight strip.
To this aim, we will use the following proposition, which allows to work with
the ε-independent Hilbert space L2(Str,C2).

Proposition 3. The operator DΓ(ε,m) defined in (5) is unitarily equivalent to
the operator EΓ(ε,m) defined on L2(Str,C2) as:

EΓ(ε,m) :=
1

1 − εtκ
(−iσ1)∂s +

1
ε
(−iσ2)∂t +

εtκ′

2(1 − εtκ)2
(−iσ1) + mσ3 ,

dom (EΓ(ε,m)) := {u = (u1, u2)� ∈ H1(Str,C2) : u2(·,±1) = ∓u1(·,±1) }.

The main novelty here lies in a matrix-valued gauge transform involving
the geometry of the base curve Γ in order to deal with the infinite mass bound-
ary conditions. In particular, compared to similar strategies for non-relativistic
waveguides, it allows to gauge out one part of the geometric induced potential.

The next two main results of this paper concern the study of the operator
DΓ(ε,m) in the thin waveguide asymptotic regime ε → 0 and the large mass
regime m → +∞, respectively. It turns out that up to renormalization terms,
both regimes are driven by effective operators but of very distinct kind. In the
thin waveguide regime ε → 0, the effective operator is a one-dimensional Dirac
operator posed on the base curve Γ, while in the large mass regime m → +∞,
the operator behaves as the Dirichlet Laplacian in the domain Ωε. Remark
that in both regime Theorem 2 combined with the forthcoming Proposition
10 yields spectral gaps of orders ε−1 and m for the thin waveguide regime and
the large mass regime, respectively.

Note that an interesting challenge would be to consider combined regimes
in which ε → 0 and m → +∞ at the same time, and to understand if other
effective operators come into play. Finally, our last result is a quantitative
result on the existence of bound states involving only the geometry of the
domain Ωε.

1.3.1. Main Result in the Thin Waveguide Regime ε → 0. In this paragraph,
we fix m ≥ 0, and our result in the thin waveguide regime ε → 0 deals with the
existence at first order, up to a renormalization term, of an effective operator.
This effective operator is the one-dimensional Dirac operator

D1D(m)u := −iσ1∂su + mσ3u, u ∈ dom (D1D(m)) := H1(R,C2). (8)

It is well-known that D1D(m) is a self-adjoint operator with purely absolutely
continuous spectrum Sp(D1D) = (−∞,−m] ∪ [m,+∞), as can be seen per-
forming a Fourier transform (see [31, Thm. 1.1] for the analogue in dimension
three).

Since this operator acts in L2(R,C2), it is more convenient to work in
the ε-independent Hilbert space L2(Str,C2) and with the unitarily equivalent
operator EΓ(ε,m) introduced in Proposition 3.
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Theorem 4. (Thin width limit) There exists a closed subspace F ⊂ L2(Str,C2)
and a unitary map V such that V : L2(Str,C2) → L2(R,C2)⊕F and for ε → 0
there holds

V
(
EΓ(ε,m) − π

4ε
(P+ − P−) − i

)−1

V −1 = (D1D(me) − i)−1 ⊕ 0 + O(ε),

(9)

in the operator norm, where P± are explicit orthogonal projectors in L2(Str,C2)
and where the effective mass me is given by me := 2

π m.

The projectors P± in the renormalization term of Theorem 4 are projec-
tors on positive and negative spectral subspaces of a one-dimensional trans-
verse Dirac operator. It is remarkable that the geometry of the base curve
Γ only appears at higher-order terms. We do not know if for ε small enough
Spdis(DΓ(ε,m)) �= ∅. In particular, it would be interesting to investigate fur-
ther the remainder term in Theorem 4 to understand if the geometry can play
a role in the creation of bound states.

Once again, the proof of Theorem 4 is divided in two steps. We first prove
Theorem 4 in the special case of Ωε being a straight strip via a projection on the
modes of a one-dimensional transverse Dirac operator. The obtained operator
can be seen as a block operator 2 × 2 matrix, and the main difficulty here lies
in the fact that if the mass m is nonzero, there are off-diagonal terms. They
are handled using Schur’s complement theory but a special care is needed in
order to control the ε-dependence of each term.

In the second step, we use a perturbation argument to prove that the
general waveguides Ωε can be seen as a perturbation of sufficiently high order
of the special case of the straight strip. This step requires a thorough control
in ε of the norm of the resolvent of some operators.

1.3.2. Large Mass Regime m → +∞. In order to state our results in the
large mass regime m → +∞ we need a few notation and definition. First, all
along the paper N := {1, 2, . . . } denotes the set of positive natural integers.
We also recall the well-known definitions of the min–max values as well as the
min–max principle (see [11, Thm. 4.5.1 & 4.5.2]).

Definition 5. Let q be a closed lower semi-bounded below quadratic form with
dense domain dom(q) in a complex Hilbert space H. For n ∈ N, the n-th
min–max value of q is defined as

μn(q) := inf
W⊂dom(q)

dim W=n

sup
u∈W\{0}

q(u)
‖u‖2

H
. (10)

We also denote by q the associated sesquilinear form. If A is the unique
self-adjoint operator acting on H associated with the sesquilinear form q via
Kato’s first representation theorem (see [18, Ch. VI, Thm. 2.1])), we shall refer
to (10) as the n-th min–max value of A and set μn(A) := μn(q).

Proposition 6. (min–max principle) Let q be a closed semi-bounded below qua-
dratic form with dense domain in a Hilbert space H and let A be the unique
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self-adjoint operator associated with q. Then, for n ∈ N, we have the following
alternative:

(1) if μn(A) < inf Spess(A) then μn(q) is the n-th eigenvalue of A (counted
with multiplicity),

(2) if μn(A) = inf Spess(A) then for all k ≥ n there holds μk(q) = inf Spess(A).

Now, we fix ε > 0 as we are interested in the large mass regime m → +∞.
Up to an adequate renormalization, this limit can be interpreted as a non-
relativistic limit and the Dirichlet Laplacian is expected to be the effective
operator in this case (see [31, Sec. 6] for general remarks on this limit). To this
aim, we introduce LΓ(ε), the (spinorial) Dirichlet Laplacian in the waveguide
Ωε, defined by

LΓ(ε) := −Δ, dom (LΓ(ε)) := H1
0 (Ωε,C

2) ∩ H2(Ωε,C
2). (11)

Observe that the Sobolev space H1
0 (Ωε,C

2) of spinors consists of C
2-valued

functions f = (f1, f1)� such that the components fj belong to the ordinary
(scalar-valued) Sobolev space f ∈ H1

0 (Ω). The same remarks, of course, applies
to H2(Ωε,C

2) and to the other Sobolev spaces of spinors involved in the text.
The following proposition summarizes results established in [13,19].

Proposition 7. LΓ(ε) is self-adjoint, and there holds

Spess(LΓ(ε)) =
[ π2

4ε2
,+∞

)
.

Moreover, if Γ is not a straight line, then there exists NΓ ∈ N ∪ {+∞} such
that


Spdis(LΓ(ε)) = 2NΓ. (12)

The factor 2 in (12) comes from the fact that in (11), we consider the
Dirichlet Laplacian acting on C

2-valued functions instead of the usual scalar
one. In particular, any eigenvalue of LΓ(ε) has even multiplicity. Here, we use
the convention that if NΓ = +∞ then 2NΓ = +∞.

Our first result in the large mass regime reads as follows.

Proposition 8. Let us assume that Γ is not a straight line, fix ε > 0 and let
n ∈ {1, . . . , NΓ}. There exists m0 > 0 such that for all m > m0

#Spdis(DΓ(ε,m)) ≥ 2n.

Proposition 8 is proved by comparing the quadratic forms of the renor-
malized operator DΓ(ε,m)2 − m2 to the quadratic form of LΓ(ε), using the
min–max principle (Proposition 6), the asymptotic behaviour of E1(m) when
m → +∞ and Proposition 7.

Actually, one can show that all the min–max values of the renormalized
operator DΓ(ε,m)2 − m2 converge to those of the Dirichlet Laplacian in the
regime m → +∞. This is the purpose of the following theorem.



4076 W. Borrelli et al. Ann. Henri Poincaré

Theorem 9. (Large mass limit) Let us assume additionally that Γ is of class C4

and that κ′(s) → 0 and κ′′(s) → 0 when |s| → +∞. Then for all n ∈ N, there
holds:

lim
m→+∞

(
μn(D2

Γ(ε,m)) − m2
)

= μn(LΓ(ε)) . (13)

In particular, consider the positive part of the operator DΓ(ε,m) defined
by D+

Γ (ε,m) := 1x>0(DΓ(ε,m)) . Since the spectrum of DΓ(ε,m) is symmetric
with respect to zero, under the hypothesis of Theorem 9, we obtain for all
n ∈ N

μn(D+
Γ (ε,m)) = m +

1
2m

μ2n(LΓ(ε)) + o
( 1
m

)
, m → +∞; (14)

where we have taken into account that the spectrum of LΓ(ε) has even mul-
tiplicity. Asymptotics (14) illustrates the physically expected fact that in the
large mass regime m → +∞, the positive part of the Dirac operator with
infinite mass boundary condition converges to the scalar Dirichlet Laplacian.
The main novelty in Theorem 9 with respect to the previous work [1] is that
we have to deal with the unbounded domain Ωε. This difficulty is overcome
by a standard argument, approximating the min–max values of D2

Γ(ε,m)−m2

by those of similar operators in bounded waveguides using the so-called IMS
localization formula (see [10, Thm. 3.2]).

1.4. Outline of the Paper

Section 2 deals with the infinite mass Dirac operator in the straight strip
and with the study of a one-dimensional Dirac operator on a finite interval,
obtained by separating variables.

Then, in Sect. 3, we show that the Hamiltonian (5) is unitarily equivalent
to a Dirac operator in a straight strip, perturbed by a term encoding the
geometric properties of the waveguide. Using operator-theoretic methods, we
are able to prove the self-adjointness and to locate the essential spectrum, as
stated in Theorem 2.

Section 4 is devoted to the proof of Theorem 4, which is achieved in two
steps. First, we deal with the case of the straight waveguide, and second, we add
the perturbation induced by the curvature. A careful analysis of the resolvent
operator allows to prove that after a suitable renormalization, the Hamiltonian
(5) converges in the norm resolvent sense to that of a one-dimensional Dirac
operator on the line.

Section 5 contains the proof of Theorem 9, showing that in the large
mass regime the min–max values of the (renormalized) squared Hamiltonian
converge to those of the vectorial Dirichlet Laplacian LΓ(ε).

Finally, in Sect. 6, we obtain a quantitative condition for the existence of
at least two bound states in the gap of the essential spectrum. Even though the
existence of bound states can be obtained as a corollary of Proposition 8, we
mention this alternative proof because here the condition is given by a simple
inequality involving geometric properties of the waveguide Ωε.
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2. Straight Waveguides

In this section, we collect results concerning some auxiliary one-dimensional
operators that naturally appear in the study of the Hamiltonian (5) in the thin
waveguide regime. In order to simplify the overall presentation, we postpone
their proofs to “Appendix A”.

2.1. The Transverse Dirac Operator

For k ∈ R, consider the one-dimensional transverse Dirac operator

T (k,m) := −iσ2
d

dt
+ kσ1 + mσ3,

dom (T (k,m)) := {u = (u1, u2)� ∈ H1
(
(−1, 1),C2

)
, u2(±1) = ∓u1(±1)}.

(15)

The following proposition holds true.

Proposition 10. Let k ∈ R, m ≥ 0. The operator T (k,m) is self-adjoint and
has compact resolvent. Moreover, the following holds:

(i) Sp
(
T (k,m)

)
∩
[

−
√

m2 + k2,
√

m2 + k2
]

= ∅,
(ii) the spectrum of T (k,m) is symmetric with respect to zero and can be rep-

resented as Sp
(
T (k,m)

)
=
⋃

p≥1{±
√

m2 + k2 + Ep(m)}, with Ep(m) >
0 for all p ≥ 1,

(iii) for all p ∈ N, Ep(m) is the only root lying in
[
(2p − 1)2 π2

16 , p2 π2

4

)
of (7),

(iv) there holds

E1(m) =
π2

16
+ m + O(m2), when m → 0,

(v) there holds

E1(m) =
π2

4
− π2

4m
+ O(m−2), when m → +∞.

The proof of Proposition 10 will also yield the following corollary con-
cerning the operator T0 := T (0, 0), which is of crucial importance in the study
of the regime ε → 0.

Corollary 11. The operator T0 is self-adjoint and has compact resolvent. Its
spectrum is symmetric with respect to zero and verifies

Sp(T0) =
{

±k
π

4
: k ∈ N

}
.

Corresponding normalized eigenfunctions are given by

u±
k (t) :=

1
2

cos
(
k

π

4
(t + 1)

)(1
1

)
± 1

2
sin
(
k

π

4
(t + 1)

)( 1
−1

)
.
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2.2. The Dirac Operator in the Straight Strip

As given in Sect. 3, Theorem 2 can be obtained via classical perturbation
theory arguments. They rely on the fact that the operator DΓ(ε,m) can be
seen as a perturbation of the operator DΓ0(ε,m) in the straight strip Str(ε) :=
R × (−ε, ε). Here the base curve Γ0 := R × {0} is a straight line, which we
parametrize by γ0(s) := s(1, 0). The aim of this paragraph is to prove Theorem
2 in this special case.

Proposition 12. Let ε > 0. The operator DΓ0(ε,m) is self-adjoint on its do-
main. Moreover, there holds

Sp
(
DΓ0(ε,m)

)
= Spess

(
DΓ0(ε,m)

)

=
(

− ∞,−
√

ε−2E1(mε) + m2
]
∪
[√

ε−2E1(mε) + m2,+∞
)
,

where E1(m) is defined in Theorem 2.

In order to work with operators defined on a fixed geometrical domain,
we recall that Str = Str(1) and consider the unitary map

U : L2
(
Str(ε),C2

)
→ L2

(
Str,C2

)
, (Uv)(x) :=

√
εv(x1, εx2).

The operator E0(ε,m) := UDΓ0(ε,m)U−1 verifies

E0(ε,m) = −iσ1∂s − iε−1σ2∂t + mσ3 (16)

with domain dom (E0(ε,m)) = Udom (DΓ0(ε,m)) which rewrites as

dom (E0(ε,m)) = {u = (u1, u2)� ∈ H1(Str,C2) : u2(·,±1) = ∓u1(·,±1)}.(17)

In (16), we have used the new coordinates (s, t) ∈ Str defined by s = x1 and
t = ε−1x2.

Now, we are in a position to prove Proposition 12. We work with the
unitarily equivalent operator E0(ε,m) rather than the operator DΓ0(ε,m) and
the proof relies on a direct integral decomposition of the operator E0(ε,m) as
presented, e.g. in [29, §XIII.16.].

Proof of Proposition 12. Consider the unitary partial Fourier transform in the
s-variable

F : L2(Str,C2) → L2(Str,C2) , (Fu)(k, t) :=
1√
2π

∫

R

e−isku(s, t)ds .

The operator E0(ε,m) is unitarily equivalent to the direct integral

E0(ε,m) = F−1Ê0(ε,m)F , Ê0(ε,m) :=
∫ ⊕

R

Ê0(ε,m; k)dk,

where dom
(
Ê0(ε,m)

)
is the subspace of functions u = (u1, u2)� ∈ L2(Str,C2)

such that for almost all k ∈ R, we have ∂tu(k, ·) ∈ L2((−1, 1),C2), u2(k,±1) =
∓u1(k,±1) and for almost all t ∈ (−1, 1) there holds

∫
R

k2|u(k, t)|2dk < +∞.
One observes that Ê0(ε,m; k) satisfies Ê0(ε,m; k) = 1

εT (kε,mε) where
the operator T (·, ·) is defined in (15). In particular, Ê0(ε,m; k) is self-adjoint
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and so is Ê0(ε,m) by [29, Thm. XIII.85 (a)]. In particular, we have proved that
E0(ε,m) is a self-adjoint operator.

By [29, Thm. XIII.85 (d)], there holds

Sp(E0(ε,m)) =
⋃

k∈R

Sp(Ê0(ε,m; k)) . (18)

Remark that we have

Sp(Ê0(ε,m; k)) = ε−1 Sp(T (kε,mε)) =
⋃

p∈N

{
±
√

m2 + k2 + ε−2Ep(εm)
}

.

By (iii) Proposition 10, for all p ≥ 1, Ep(εm) ∈
[
(2p − 1)2 π2

16 , p2 π2

4

)
. In partic-

ular, there holds

Sp
(
E0(ε,m)

)
=
(

− ∞,−
√

m2 + ε−2E1(εm)
]
∪
[√

m2 + ε−2E1(εm),+∞
)
.

It concludes the proof of Proposition 12. �

3. First Properties in Curved Waveguides

The main goal of this section is to prove Theorem 2. As mentioned before, the
overall strategy consists in regarding the operator DΓ(ε,m) in the curved strip
Ωε as a perturbation of the operator DΓ0(ε,m) in the straight strip Str(ε).

In the first paragraph of this section, we derive an operator in a straight
waveguide, unitarily equivalent to DΓ(ε,m), which is given by a Dirac-type
operator in the horizontal strip Str = R × (−1, 1) perturbed by a curvature-
induced potential. The second and third paragraphs deal with the self-
adjointness and the invariance of the essential spectrum, respectively. The
key arguments rely on perturbation theory.

3.1. Straightening the Waveguide

This paragraph is devoted to the proof of Proposition 3. The overall scheme
is well-known in the study of non-relativistic waveguides and numerous works
have taken advantage of such a reduction (see, e.g. [13]). However, we give
a complete proof here because the algebraic structure of the Dirac operator
allows to gauge out one part of the curvature-induced potential, which appears
to be a new effect.

Proof of Proposition 3. The proof is divided into three steps. In the first one,
we rewrite the problem in tubular coordinates in order to work in the strip Str.
The resulting operator acts in a weighted L2-space and we perform a unitary
transform in order to work in a non-weighted L2-space; this is the purpose
of the second step. Finally, we build a unitary map in order to recover the
same boundary condition as the one of the operator E0(ε,m) investigated in
Sect. 2.2. This last step partially simplifies the curvature-induced potential.

Step 1. Consider the unitary map

U1 : L2(Ωε,C
2) −→ L2(Str,C2; gdsdt), (U1u)(s, t) := u(Φε(s, t)), (19)
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where Φε is the parametrization of the waveguide given in (3) and where

g(s, t) := ε
(
1 − εtκ(s)

)
.

Next, we consider the operator DΓ,1(ε,m) := U1DΓ(ε,m)U−1
1 . One sees that

its domain is

dom (DΓ,1(ε,m)) = U1dom (DΓ(ε,m))

=
{

u = (u1, u2)� ∈ L2(Str,C2; gdsdt) :

(1 − εtκ)−1∂su, ∂tu ∈ L2(Str,C2; gdsdt),

for all s ∈ R u2(s,±1) = ±in(s)u1(s,±1)
}

,

where for s ∈ R we have set n(s) := ν1(s) + iν2(s). The operator DΓ,1(ε,m)
acts on u ∈ dom (DΓ,1(ε,m)) as

DΓ,1(ε,m)u = − i

1 − εtκ
σγ′∂su − i

ε
σν∂tu + mσ3u,

where for x = (x1, x2) ∈ R
2 we have set σx := σ · x.

Step 2. In order to flatten the metric, consider the unitary map

U2 : L2(Str,C2; gdsdt) −→ L2(Str,C2), U2u :=
√

gu . (20)

Let DΓ,2(ε,m) := U2U1DΓ(ε,m)U−1
1 U−1

2 = U2DΓ,1(ε,m)U−1
2 . The domain of

DΓ,2(ε,m) is given by

dom (DΓ,2(ε,m)) = U2dom (DΓ,1(ε,m))

=
{
u = (u1, u2)� ∈ H1(Str,C2) :

for all s ∈ R u2(s,±1) = ±in(s)u1(s,±1)
}
,

and for u ∈ dom (DΓ,2(ε,m)) the operator DΓ,2(ε,m) acts as

DΓ,2(ε,m)u =
1

1 − εtκ
(−iσγ′)∂su +

1
ε
(−iσν)∂tu

+
εtκ′

2(1 − εtκ)2
(−iσγ′)u +

κ

2(1 − εtκ)
(−iσν)u + mσ3u.

Note that the H1(Str,C2) regularity of functions in dom (DΓ,2(ε,m)) is a con-
sequence of the regularity hypothesis on the curve Γ (see (A) and (B)).

Step 3. Recall that n = ν1 + iν2, and by the Frenet formula (1), we have
n′ = iκn. In particular, there holds

n(s) = exp
(

i

∫ s

0

κ(ξ)dξ

)
n0.

where we have set n0 := n(0). Moreover, there exists θ0 ∈ R such that n0 :=
eiθ0 . By setting

θ(s) := θ0 +
∫ s

0

κ(ξ)dξ , (21)
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we get n(s) = exp(iθ(s)). For any fixed s ∈ R, consider the unitary matrix

Uθ(s) :=
(

exp
(
i(π

4 + 1
2θ(s))

)
0

0 − exp
(

− i(π
4 + 1

2θ(s)
)
)

.

Note that the mapping s ∈ R �→ Uθ(s) ∈ C
2×2 is of class C2(R). In order to

obtain a boundary condition independent of the normal vector ν, we introduce
the unitary map

U3 : L2(Str,C2) −→ L2(Str,C2), U3u := Uθu. (22)

The operator DΓ,3(ε,m) :=U3DΓ,2(ε,m)U−1
3 is unitarily equivalent to DΓ(ε,m).

As Uθ is a bounded and C2(R) function, its domain is given by

dom (DΓ,3(ε,m)) = U3dom (DΓ,2(ε,m))

=
{
u = (u1, u2)� ∈ H1(Str,C2) :

for all s ∈ R u2(s,±1) = ∓u1(s,±1)
}
.

Remark that other choices are possible for the matrices Uθ but the present one
gives the same boundary condition as in the straight waveguide case. Moreover,
for u ∈ dom (DΓ,3(ε,m)), there holds

DΓ,3(ε,m)u =
1

1 − εtκ
Uθ(−iσγ′)∂s(U∗

θ u) +
1
ε
(−iσ2)∂tu

+
εtκ′

2(1 − εtκ)2
(−iσ1)u +

κ

2(1 − εtκ)
(−iσ2)u + mσ3u,

where we have used the identities

Uθσγ′U∗
θ = σ1, UθσνU∗

θ = σ2, Uθσ3U
∗
θ = σ3.

One also obtains

Uθ(−iσγ′)∂s(U∗
θ ) =

κ

2
(iσ2)

which finally gives

DΓ,3(ε,m)u =
1

1 − εtκ
(−iσ1)∂su +

1
ε
(−iσ2)∂tu

+
εtκ′

2(1 − εtκ)2
(−iσ1)u + mσ3u.

The proof is completed by setting EΓ(ε,m) := DΓ,3(ε,m). �

3.2. Quadratic Form of the Square

This section contains an explicit expression of the quadratic form of the square
of the operator EΓ(ε,m) defined in Proposition 3. Throughout this section, we
assume that Γ is of class C4, in order to give a meaning to κ′′.
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Proposition 13. Let us assume additionally that Γ is of class C4. Then, for
every u ∈ dom (EΓ(ε,m)), there holds

‖EΓ(ε,m)u‖2
L2(Str,C2) =

∫

Str

1
(1 − εtκ)2

|∂su − i
κ

2
σ3u|2dsdt +

1
ε2

∫

Str

|∂tu|2dsdt

+
m

ε

∫

R

(
|u(s, 1)|2 + |u(s,−1)|2

)
ds + m2‖u‖2

L2(Str,C2)

−
∫

Str

κ2

4(1 − εtκ)2
|u|2dsdt − 5

4

∫

Str

(εtκ′)2

(1 − εtκ)4
|u|2dsdt

− 1
2

∫

Str

εtκ′′

(1 − εtκ)3
|u|2dsdt .

The proof of Proposition 13 is omitted. It relies on the next lemma, whose
proof follows arguing as in [3, Lemma 2.1]. Then, the quantity ‖EΓ(ε,m)u‖2

for u ∈ dom (EΓ(ε,m)) can be simplified performing rather straightforward
(but demanding) integration by parts.

Lemma 14. The set C∞
0 (Str,C2)∩dom (E0(ε, 0)) is dense in dom (E0(ε, 0)) for

the graph norm.

3.3. Self-adjointness

In this paragraph, we prove that DΓ(ε,m) is self-adjoint using the Kato-Rellich
theorem (see, e.g. [18, Thm. 4.3.]).

Proposition 15. The operator DΓ(ε,m) is self-adjoint.

Before going through the proof of Proposition 15, we need a few lemmata
regarding the operator E0(ε,m) introduced in (16). The first lemma is a con-
sequence of Proposition 13, taking into account that in this special case κ = 0
and m = 0.

Lemma 16. For all u ∈ dom (E0(ε, 0)), there holds

‖E0(ε, 0)u‖2
L2(Str,C2) = ‖∂su‖2

L2(Str,C2) +
1
ε2

‖∂tu‖2
L2(Str,C2).

The following Lemma is well-known and follows integrating by parts tak-
ing into account the boundary condition.

Lemma 17. The operator DΓ(ε,m) is symmetric.

We are now ready to prove Proposition 15.

Proof of Proposition 15. Instead of working with the operator DΓ(ε,m), we
work with the unitarily equivalent operator EΓ(ε,m) introduced in Proposition
3. Moreover, as the multiplication operator by σ3 is bounded and self-adjoint
in L2(Str,C2), we set m = 0 without loss of generality.

Remark that dom (EΓ(ε,m)) = dom (E0(ε,m)) where E0(ε,m) is defined
in (16), and that for u ∈ dom (EΓ(ε, 0)), there holds

EΓ(ε, 0)u = E0(ε, 0)u + V (ε),
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where the perturbation operator V (ε) is defined as

V (ε) :=
εtκ

1 − εtκ
(−iσ1)∂s +

εtκ′

2(1 − εtκ)2
(−iσ1),

dom (V (ε)) := dom (E0(ε, 0)) . (23)

Remark that V (ε) is a symmetric operator because V (ε) is the difference of two
symmetric operators: E0(ε, 0) is self-adjoint thus symmetric (see Proposition
12) and EΓ(ε, 0) is symmetric because it is unitarily equivalent to a symmetric
operator (see Lemma 17 and Proposition 3).

Now, remark that for u ∈ C∞
0 (Str,C2) ∩ dom (E0(ε, 0)), there holds

‖V (ε)u‖L2(Str,C2) ≤
ε‖κ‖L∞(R)

1 − ε‖κ‖L∞(R)
‖∂su‖L2(Str,C2)

+
ε‖κ′‖L∞(R)

2
(
1 − ε‖κ‖L∞(R)

)2 ‖u‖L2(Str,C2).

Using Lemma 16, we obtain

‖V (ε)u‖L2(Str,C2) ≤
ε‖κ‖L∞(R)

1 − ε‖κ‖L∞(R)
‖E0(ε, 0)u‖L2(Str,C2)

+
ε‖κ′‖L∞(R)

2
(
1 − ε‖κ‖L∞(R)

)2 ‖u‖L2(Str,C2) (24)

and by density of C∞
0 (Str,C2) ∩ dom (E0(ε, 0)) in dom (E0(ε, 0)) for the graph

norm (see Lemma 14), (24) also holds for u ∈ dom (E0(ε, 0)).
Remember that we assumed (C). Hence, we have

ε‖κ‖L∞(R)

1 − ε‖κ‖L∞(R)
< 1.

As V (ε) is symmetric and E0(ε, 0)-bounded with E0(ε, 0)-bound smaller than
1, we can apply [18, Thm. 4.3.] and EΓ(ε, 0) is self-adjoint. �

3.4. Invariance of the Essential Spectrum

In this paragraph, we prove that the essential spectrum of EΓ(ε,m) is the same
as the one of E0(ε,m). This is the purpose of the following proposition.

Proposition 18. There holds

Spess(DΓ(ε,m)) =
(

− ∞,−
√

m2 + ε−2E1(mε)
]
∪
[√

m2 + ε−2E1(mε),+∞
)
.

Proof of Proposition 18. Instead of working with the operator DΓ(ε,m), we
work with the unitarily equivalent operator EΓ(ε,m). Our aim is to apply
Weyl’s criterion [29, Thm. XIII.14], and for this purpose, we define

W := (EΓ(ε,m) + i)−1 − (E0(ε,m) + i)−1

and by the second resolvent identity, one gets W = (E0 − i)−1V (ε)(EΓ + i)−1,
where the perturbation V (ε) is defined in (23).
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Observe that

V (ε) = a∂s + ∂sa , where a :=
1
2

(
1

1 − εκt
− 1
)

(−iσ1) .

Then, we get

−W = (E0 − i)−1V (ε)(EΓ + i)−1

= (E0 − i)−1a ∂s(EΓ + i)−1 + (E0 − i)−1∂s a(EΓ + i)−1 .

Here, a(EΓ + i)−1 and (E0 − i)−1a are compact operators in L2(Str,C2) due to
hypothesis (A) (the latter operator is compact because its adjoint a(E0 + i)−1

is compact). At the same time, ∂s(EΓ + i)−1 and (E0 − i)−1∂s are bounded
operators in L2(Str,C2). (The latter operator is bounded because its adjoint
−∂s(E0 + i)−1 is bounded.) Then, the compactness of W follows by the well-
known fact that compact operators are *-both-sided ideal in the space of
bounded operators. �
3.5. Proof of Theorem 2

We are now in a good position to prove Theorem 2.

Proof of Theorem 2. Thanks to Proposition 15 and Proposition 18, the only
thing left to prove is the symmetry of the spectrum of DΓ(ε,m). It is a conse-
quence of the invariance of the system under charge conjugation, corresponding
to the operator

C := σ1C

where C is the complex conjugation operator. A straightforward computation
shows that for all u ∈ dom (DΓ(ε,m)), we have Cu ∈ dom (DΓ(ε,m)) and

DΓ(ε,m)(Cu) = −CDΓ(ε,m)u.

In particular, any Weyl sequence (un)n∈N associated with λ ∈ Sp(DΓ(ε,m))
corresponds to a Weyl sequence (Cun)n∈N associated with −λ which proves
that the spectrum of DΓ(ε,m) is symmetric and concludes the proof of Theo-
rem 2. �

4. Thin Waveguide Limit

In this section, we prove Theorem 4, which deals with the thin waveguide
limit ε → 0. We first show that up to a renormalization, the operator EΓ(ε,m)
defined in Proposition 3 converges to the one-dimensional Dirac operator (8)
in the norm resolvent sense.

The proof is achieved in two different steps. First, in Sect. 4.1, we deal
with the case of a straight strip and then, in Sect. 4.2, we consider the curved
waveguide.

Roughly speaking, the main idea of the proof is to project onto the eigen-
functions of the transverse part of the operator. It turns out that after renor-
malization, all transverse modes converge to zero except the first positive and
negative one. The operator EΓ(ε,m) restricted to these two modes is unitarily
equivalent to a one-dimensional Dirac operator as defined in (8).
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4.1. Convergence for the Straight Strip

For k ≥ 1, let πk denote the projector in L2((−1, 1),C2) on the vector space
span(u+

k , u−
k ), where u±

k are given in Corollary 11. Similarly, we consider the
projectors in L2((−1, 1),C2) defined by p± := 1{±x>0}(T0) where T0 is defined
in Sect. 2.1. These projectors can be extended to L2(Str,C2) setting for u ∈
L2(Str,C2)

Πku := πku, P±u := p±u. (25)

For further use, we renormalize the operator E0(ε,m) as follows:

C(ε,m) := E0(ε,m) − π

4ε

(
P+ − P−). (26)

To investigate the behaviour of the resolvent operator (C(ε,m) − i)−1 in the
thin waveguide regime ε → 0, we consider the unitary map

U : L2(Str,C2) → Π1L
2(Str,C2) × Π⊥

1 L2(Str,C2), (Uv) := (Π1v,Π⊥
1 v)�,

(27)

and remark that there holds

U(C(ε,m) − i)U−1 =
(

C1(ε,m) − i Π1C(ε,m)Π⊥
1

Π⊥
1 C(ε,m)Π1 C⊥

1 (ε,m) − i

)
, (28)

where we have set

C⊥
1 (ε,m) := Π⊥

1 C(ε,m)Π⊥
1 . (29)

For further uses, for all k ≥ 1, we introduce the operators

Ck(ε,m) := ΠkC(ε,m)Πk. (30)

In the remaining part of this paragraph, we will make an extensive use
of block operator matrix theory to investigate (28) (see [32] for an extensive
discussion).

4.1.1. A Few Lemmata. The first lemma is about the operators Ck(ε,m) de-
fined in (30). It states that they are unitarily equivalent to one-dimensional
Dirac operators (see (8)).

Lemma 19. Let k ≥ 1 and consider the unitary map Uk : ΠkL2(Str,C2) →
L2(R,C2) defined by Ukv :=

(
〈v, u+

k 〉L2((−1,1),C2)

〈v, u−
k 〉L2((−1,1),C2)

)
. There holds

UkCk(ε,m)U−1
k = D1D((k − 1)

π

4ε
+ me,k)

where me,k :=
{

0 if k is even,
2

kπ m if k is odd. In particular, there holds

Sp(Ck(ε,m)) =
(

− ∞,−(k − 1)
π

4ε
− me,k

]
∪
[
(k − 1)

π

4ε
+ me,k,+∞

)
.



4086 W. Borrelli et al. Ann. Henri Poincaré

Proof of Lemma 19. Let us pick f =
(

f+

f−

)
∈ H1(R,C2) and consider

Ck(ε,m)U−1
k f

= Ck(ε,m)(f+u+
k + f−u−

k )

= Πk((−iσ1)∂s +
1
ε
(−iσ2)∂t + mσ3)(f+u+

k + f−u−
k )

=
(

− i(f+)′)u−
k +

(
− i(f−)′)u+

k + (k − 1)
π

4ε

(
f+u+

k − f−u−
k

)

+ mΠk(f+σ3u
+
k + f−σ3u

−
k )

=
(

− i(f+)′)u−
k +

(
− i(f−)′)u+

k + (k − 1)
π

4ε

(
f+u+

k − f−u−
k

)

+ mf+(〈σ3u
+
k , u+

k 〉L2((−1,1),C2)u
+
k + 〈σ3u

+
k , u−

k 〉L2((−1,1),C2)u
−
k )

+ mf−(〈σ3u
−
k , u+

k 〉L2((−1,1),C2)u
+
k + 〈σ3u

−
k , u−

k 〉L2((−1,1),C2)u
−
k ).

However, using that σ1u
±
k = u∓

k as well as the anti-commutation rules of the
Pauli matrices, we get

〈σ3u
+
k , u+

k 〉L2((−1,1),C2) = −〈σ3u
−
k , u−

k 〉L2((−1,1),C2),

〈σ3u
+
k , u−

k 〉L2((−1,1),C2) = −〈σ3u
−
k , u+

k 〉L2((−1,1),C2).

Now, a simple computation gives

〈σ3u
+
k (t), u−

k (t)〉C2 = 0, 〈σ3u
+
k , u+

k 〉L2((−1,1),C2) =
{

0 if k is even,
2

kπ if k is odd, (31)

and we set me,k := m〈σ3u
+
k , u+

k 〉L2((−1,1),C2). In particular, there holds

Ck(ε,m)U−1
k f =

(
− i(f+)′)u−

k +
(

− i(f−)′)u+
k + (k − 1)

π

4ε

(
f+u+

k − f−u−
k

)

+ me,kf+u+
k − me,kf−u+

k ,

so that

UkCk(ε,m)U−1
k f =

(
− iσ1

d

ds
+ (me,k + (k − 1)

π

4ε
)σ3

)
f

= D1D(me,k + (k − 1)
π

4ε
)f , (32)

and the claim follows. �

Remark 20. Notice that for k = 1, the one-dimensional Dirac operator in (32)
does not depend on ε, that is

U1C1(ε)U−1
1 =

(
− iσ1

d

ds
+

2
π

mσ3

)
= D1D(2π−1m).

The next lemma concerns the off-diagonal operators ΠjE0(ε,m)Πk for
j, k ∈ N and j �= k.

Lemma 21. Let k, j ≥ 1 such that j �= k. The operator ΠjE0(ε,m)Πk satisfies
for all u ∈ dom (E0(ε,m)):

ΠjE0(ε,m)Πku = mΠjσ3Πku.
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Hence, ΠjE0(ε,m)Πk can be extended uniquely into a bounded operator in
L2(Str,C2) with same operator norm.

Proof of Lemma 21. Let v ∈ dom (E0(ε,m)) and k, j ≥ 1 such that k �= j. Set
Πkv = f+u+

k + f−u−
k ∈ dom (E0(ε,m)), there holds

ΠjE0(ε,m)Πkv = Πj

(
(−i(f+)′)u−

k + (−i(f−)′)u+
k + k

π

4ε
(f+u+

k − f−u−
k )
)

+ mΠjσ3Πkv

= mΠjσ3Πkv.

As mΠjσ3Πk is a bounded operator in L2(Str,C2) and dom (E0(ε,m)) is dense
in L2(Str,C2), we deduce that ΠjE0(ε,m)Πk can be extended uniquely into a
bounded operator in L2(Str,C2) and this operator acts as mΠjσ3Πk. �
Proposition 22. Let C⊥

1 (ε,m) be the operator defined in (29). The operator
C⊥
1 (ε,m) − i acting in Π⊥

1 L2(Str,C2) is boundedly invertible, and there exists
C > 0 and ε0 > 0 such that for all ε ∈ (0, ε0), there holds

‖(C⊥
1 (ε,m) − i)−1‖B(Π⊥

1 L2(Str,C2)) ≤ Cε.

Remark 23. In Proposition 22, we used the notation B(H) which for a complex
Hilbert-space H stands for the space of bounded operators on H. Similarly,
if H1 and H2 are two complex Hilbert spaces, B(H1,H2) denotes the set of
bounded operators from H1 to H2.

Proof of Proposition 22. First, remark that C⊥
1 (ε,m) is a self-adjoint operator

when acting in Π⊥
1 L2(Str,C2) with domain Π⊥

1 dom (E0(ε,m)). Hence, the op-
erator C⊥

1 (ε,m) − i is boundedly invertible in Π⊥
1 L2(Str,C2). Second, observe

that on Π⊥
1 L2(Str,C2), there holds

C⊥
1 (ε,m) =

(∑

j≥2

Πj

)
C(ε,m)

(∑

k≥2

Πk

)

=
∑

j≥2

(ΠjC(ε,m)Πj) +
∑

j,k≥2
j =k

(ΠjC(ε,m)Πk)

=
∑

j≥2

(ΠjC(ε,m)Πj)

︸ ︷︷ ︸
:=G(ε,m)

+ m
∑

j,k≥2
j =k

Πjσ3Πk

︸ ︷︷ ︸
:=B

,

where we have used Lemma 21 in the last equation, observing that

ΠjC(ε,m)Πk = ΠjE0(ε,m)Πk , if j �= k.

Remark that as defined, the operator G(ε,m) is self-adjoint and B ∈ B(Π⊥
1 L2

(Str,C2)). Indeed, we have
∑

j,k≥2
j =k

Πjσ3Πk =
∑

j≥2

Πjσ3

∑

k≥2
k =j

Πk =
∑

j≥2

Πjσ3(Π⊥
1 − Πj)

= Π⊥
1 σ3Π⊥

1 −
∑

j≥2

Πjσ3Πj .
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Now, the first term on the right-hand side is a bounded operator in Π⊥
1 L2(Str,

C
2), while for the second, we can argue as follows. Let u ∈ Π⊥

1 L2(Str,C2),
there holds

∥
∥
∥
∑

j≥2

Πjσ3Πju
∥
∥
∥

2

Π⊥
1 L2(Str,C2)

=
∑

j≥2

‖Πjσ3Πju‖2
Π⊥

1 L2(Str,C2)

≤
∑

j≥2

‖Πju‖2
Π⊥

1 L2(Str,C2)

= ‖u‖2
Π⊥

1 L2(Str,C2). (33)

Moreover, we have

(C⊥
1 (ε,m) − i)−1 = (G(ε,m) − i)−1

(
1 + mB(G(ε,m) − i)−1

)−1
. (34)

Now, we need to estimate ‖(G(ε,m) − i)−1‖B(Π⊥
1 L2(Str,C2)) = dist(i, Sp

(G(ε,m)))−1. Recall that by construction, we have

G(ε,m) =
⊕

k≥2

Ck(ε,m),

see [29, p. 268] for the definition of the direct sum of self-adjoint operators. In
particular, by [29, Thm. XIII.85], there holds

Sp(G(ε,m)) =
⋃

k≥2

Sp(Ck(ε,m)) =
(

− ∞,− π

4ε

]
∪
[ π

4ε
,+∞

)
.

Indeed, thanks to Lemma 19 for all k ≥ 2, there holds

Sp(Ck(ε,m)) =
(

− ∞,−(k − 1)
π

4ε
− me,k

]
∪
[
(k − 1)

π

4ε
+ me,k,+∞

)
,

and for all k ≥ 2, we have

inf
k≥2

{
me,k + (k − 1)

π

4ε

}
=

π

4ε
.

Hence, we get dist(i,Sp(G(ε,m))) =
√

1 + π2

16ε2 , and we obtain

‖(G(ε,m) − i)−1‖B(Π⊥
1 L2(Str,C2)) =

1
√

1 + π2

16ε2

.

In particular, we get

‖(G(ε,m) − i)−1‖B(Π⊥
1 L2(Str,C2)) =

4
π

ε + O(ε3), when ε → 0. (35)

Next, remark that by (33), there holds ‖B‖B(Π⊥
1 L2(Str,C2)) ≤ 2 and using a

Neumann series, we arrive at

‖
(
1 + mB(G(ε,m) − i)−1

)−1‖B(Π⊥
1 L2(Str,C2)) = 1 + O(ε), when ε → 0.

(36)

Finally, combining (35) and (36), (34) yields

‖(C⊥
1 − i)−1‖B(Π⊥

1 L2(Str,C2)) ≤ 4
π

ε + O(ε2), when ε → 0.
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It concludes the proof of Proposition 22. �
4.1.2. Proof of Theorem 4 in the Case of the Straight Strip. In this paragraph,
we prove Theorem 4 in the special case of a straight strip but first, we need the
next proposition whose proof is a direct application of block operator matrices
theory.

Proposition 24. Recall that U is the unitary map defined in (27). There holds

U(C(ε,m) − i)−1U−1 =
(

C1,1(ε,m) C1,2(ε,m)
C2,1(ε,m) C2,2(ε,m)

)

where
C1,1(ε,m) := (C1(ε,m) − i)−1

+ m2(C1(ε,m) − i)−1Π1σ3Π⊥
1 S(i)−1Π⊥

1 σ3Π1(C1(ε,m) − i)−1,

C1,2(ε,m) := −m(C1(m, ε) − i)−1Π1σ3Π⊥
1 S(i)−1,

C2,1(ε,m) := −mS(i)−1Π⊥
1 σ3Π1(C1(ε,m) − i)−1,

C2,2(ε,m) := S(i)−1.

Here, S(i) denotes the Schur complement:

S(i) := C⊥
1 (ε,m) − i − m2Π⊥

1 σ3Π1(C1(ε,m) − i)−1Π1σ3Π⊥
1 . (37)

Proof of Proposition 24. According to the notation of [32, Thm. 2.3.3], we set

A := C1(ε,m), B := mΠ1σ3Π⊥
1 , C := mΠ⊥

1 σ3Π1, D := C⊥
1 (ε,m),

where we have used Lemma 21 to rewrite the operators B and C.
Now, we check all the hypothesis of [32, Thm. 2.3.3]:

• dom (A) = Π1dom (E0(ε,m)) ⊂ dom (C) = Π1L
2(Str,C2),

• A is self-adjoint as an operator acting in Π1L
2(Str,C2) thus i /∈ Sp(A),

• as A is self-adjoint and B is bounded, the operator (A−i)−1B is bounded
in Π⊥

1 L2(Str,C2),
• the operator S(i) is closed because D is self-adjoint and the operator

Π⊥
1 σ3Π1(A − i)−1Π1σ3Π⊥

1 ∈ B(Π⊥
1 L2(Str,C2)) (hence both are closed).

Thus, [32, Thm. 2.3.3] yields

U(C(ε,m) − i)−1U−1 =
(

C1,1(ε,m) C1,2(ε,m)
C2,1(ε,m) C2,2(ε,m)

)

with

C1,1(ε,m) := (A − i)−1
(
1 + BS(i)−1C(A − i)−1

)

C1,2(ε,m) := −(A − i)−1BS(i)−1

C2,1(ε,m) := −S(i)−1C(A − i)−1

C2,2(ε,m) := S(i)−1.

This finishes the proof. �
We are now in a good position to prove (9) in Theorem 4 for the straight

waveguide.
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Proposition 25. There exists a unitary map V such that V : L2(Str,C2) →
L2(R,C2) ⊕ Π⊥

1 L2(Str,C2), and there holds

V
(
E0(ε,m) − π

4ε
(P+ − P−) − i

)−1
V −1 =

(
D1D(2π−1m) − i

)−1 ⊕ 0 + O(ε) ,

in the operator norm, where P± are the projectors defined in (25).

Proof of Proposition 25. The proof is performed in three steps. In the first two
steps, we estimate the norm of the bounded operators (C1(ε,m)− i)−1 and the
Schur complement S(i)−1 (defined in (37)). In the last step, we use Proposition
24 to obtain an asymptotic expansion of the operator U(C(ε,m) − i)−1U−1.
Step 1. Thanks to Lemma 19, we know that Sp(C1(ε,m)) = (−∞,− 2

π m] ∪
[ 2
π m,+∞). In particular, there holds

‖(C1(ε,m) − i)−1‖B(Π1L2(Str,C2)) =
1

dist(i,Sp(C1(ε,m)))
=

1
√

1 + 4
π2 m2

.

(38)

Step 2. Remark that there holds

S(i)−1 =
(
1 − m2(C⊥

1 (ε,m) − i)−1Π⊥
1 σ3Π1(C1(ε,m) − i)−1Π1σ3Π⊥

1

)−1

(C⊥
1 (ε,m) − i)−1,

and in particular, we have

‖(C⊥
1 (ε,m) − i)−1Π⊥

1 σ3Π1(C1(ε,m) − i)−1Π1σ3Π⊥
1 ‖B(Π⊥

1 L2(Str,C2))

≤ ‖(C⊥
1 (ε,m) − i)−1‖B(Π⊥

1 L2(Str,C2))‖(C1(ε,m) − i)−1‖B(Π1L2(Str,C2))

≤ C
√

1 + 4
π2 m2

ε := C̃ε, when ε → 0.

Here, the first inequality is obtained using that σ3 is a unitary operator from
L2(Str,C2) onto itself and that Π1 and Π⊥

1 , being orthogonal projectors, are
bounded operators with norm smaller than 1. The second inequality is a con-
sequence of (38) and Proposition 22. In particular, using a Neumann series
and Proposition 22, it yields the existence of C ′ > 0 and ε1 > 0 such that for
all ε ∈ (0, ε1), there holds

‖S(i)−1‖B(Π⊥
1 L2(Str,C2)) ≤ C ′ε. (39)

Step 3. Thanks to Proposition 24, there holds

U(C(ε,m) − i)−1U−1 =
(

(C1(ε,m) − i)−1 0
0 0

)
+
(

R1,1(ε,m) C1,2(ε,m)
C2,1(ε,m) C2,2(ε,m)

)
,

where we have set

R1,1(ε,m) = m2(C1(ε,m) − i)−1Π1σ3Π⊥
1 S(i)−1Π⊥

1 σ3Π1(C1(ε,m) − i)−1.

Now, we examine the norm of each bounded operator appearing in the second
block matrix on the right-hand side. Remark that by (38) and (39), for all
ε ∈ (0, ε1), there holds

‖R1,1(ε,m)‖B(Π1L2(Str,C2))
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≤ m2‖(C1(ε,m) − i)−1‖2
B(Π1L2(Str,C2))‖S(i)−1‖B(Π⊥

1 L2(Str,C2))

≤ m2 C ′

1 + 4
π2 m2

ε. (40)

Similarly, for ε ∈ (0, ε1), there holds

‖C1,2(ε,m)‖B(Π⊥
1 L2(Str,C2),Π1L2(Str,C2)) ≤ m

C̃
√

1 + 4
π2 m2

ε (41)

and

‖C2,1(ε,m)‖B(Π1L2(Str,C2),Π⊥
1 L2(Str,C2)) ≤ m

C̃
√

1 + 4
π2 m2

ε. (42)

Gathering (40), (41), (42) and (39), we get

U(C(ε,m) − i)−1U−1 =
(

(C1(ε,m) − i)−1 0
0 0

)
+ O(ε), when ε → 0.

To conclude, we introduce the unitary map

V : L2(Str,C2) → L2(R,C2) ⊕ Π⊥
1 (L2(Str,C2)), (V u) :=

(
U1Π1u, Π⊥

1 u
)
,

where the unitary map U1 is defined in Lemma 19. When ε → 0, there holds

V (C(ε,m) − i)−1V −1 =
(

U1(C1(ε,m) − i)−1U−1
1 0

0 0

)
+ O(ε)

=
(

(D1D(2π−1m) − i)−1 0
0 0

)
+ O(ε)

= (D1D(2π−1m) − i)−1 ⊕ 0 + O(ε).

�

4.2. Convergence for the Curved Waveguide

This paragraph is devoted to the proof of Theorem 4. Once again, we use a
perturbation argument. We start with a few auxiliary results.

The first lemma deals with the quadratic form for the transverse part of
the operator.

τm(u) := ‖(−iσ2)u′‖2
L2((−1,1),C2) + m

(
|u(1)|2 + |u(−1)|2

)
,

dom (τm) := {u = (u1, u2)� ∈ H1((−1, 1),C2) : u2(±1) = ∓u1(±1)} .
(43)

Remark that τm is the quadratic form associated with the operator T (0,m)2−
m2, where T (0,m) is defined in (15), as can be seen in (69) and below.

Lemma 26. Let u ∈ dom (τm), there holds

τm(u) ≥ E1(m)‖π1u‖2
L2((−1,1),C2) + τ0(π⊥

1 u),

where the projector π1 is defined in Sect. 4.1 and where we have set π⊥
1 = 1−π1.
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Proof of Lemma 26. Let u ∈ dom (τm), there holds

τm(u) = τm(π1u + π⊥
1 u) = τm(π1u) + τm(π⊥

1 u) + 2�(τm(π1u, π⊥
1 u))

≥ E1(m)‖π1u‖2
L2((−1,1),C2) + τ0(π⊥

1 u)

+ 2�(τm(π1u, π⊥
1 u)), (44)

where we have used the min–max principle (Proposition 6) and bounded from
below the quadratic form τm by τ0. Now, remark that for all v ∈ dom (τm),
there holds

τm(v) = ‖(−iσ2)v′ + mσ3v‖2
L2(Str,C2) − m2‖v‖2

L2(Str,C2).

In particular, for the associated sesquilinear form, it gives

τm(π1v, π⊥
1 v) = 〈

(
(−iσ2)

d

dt
+ mσ3

)
π1v,

(
(−iσ2)

d

dt
+ mσ3

)
π⊥

1 v〉L2((−1,1),C2)

− m2〈π1v, π⊥
1 v〉L2((−1,1),C2)

= m
(
〈T0π1v, σ3π

⊥
1 v〉L2((−1,1),C2) + 〈σ3π1v, T0π

⊥
1 v〉L2((−1,1),C2)

)
.

Now, remark that

〈T0π1v, σ3π
⊥
1 v〉L2((−1,1),C2) = 〈T0v, π1σ3π

⊥
1 v〉L2((−1,1),C2),

〈σ3π1v, T0π
⊥
1 v〉L2((−1,1),C2) = 〈π⊥

1 σ3π1v, T0u〉L2((−1,1),C2).

If v ∈ dom (τm) = dom (T0), then π⊥
1 σ3π1u ∈ dom (T0) and as T0 is self-adjoint

there holds

〈T0v, π1σ3π
⊥
1 v〉L2((−1,1),C2) = 〈v, T0π1σ3π

⊥
1 v〉L2((−1,1),C2)

= −〈π⊥
1 σ3π1v, T0v〉L2((−1,1),C2),

where we have used that T0 commutes with π1 and π⊥
1 and that σ2 anti-

commutes with σ3. In particular, we obtain that τm(π1u, π⊥
1 u) = 0 which

combined with equation (44) yields

τm(u) ≥ E1(m)‖π1u‖2
L2((−1,1),C2) + τ0(π⊥

1 u),

which is precisely Lemma 26. �

Remark 27. Observe that the quadratic form τm in (43) is a priori defined
for functions of t ∈ (−1, 1). With an abuse of notation, in what follows, we
extend it to functions defined on the strip Str acting only on the transverse
variable. More precisely, there holds u(s, ·) ∈ dom (τm) for a.e. s ∈ R, if u ∈
dom (E0(ε,m)).

We now state a technical result, of crucial importance in the proof of
Theorem 4, whose proof is postponed to “Appendix A” for simplicity.

Lemma 28. Let u ∈ dom (E0(ε,m)), there exists ε0 > 0 and K > 0 such that
for all ε ∈ (0, ε0), we have

‖(−iσ1)∂su + mσ3u‖L2(Str,C2) ≤ ‖C(ε,m)u‖L2(Str,C2) + K‖u‖L2(Str,C2),

where the operator C(ε,m) is defined in (26).
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We are now in a good position to prove Theorem 4.

Proof of Theorem 4. Let us set

CΓ(ε,m) := EΓ(ε,m) − π

4ε
(P+ − P−).

and remark that

CΓ(ε,m) = C(ε,m) + V (ε),

where C(ε,m) is defined in (26) and the symmetric operator V (ε) is defined in
(23).

Consider the operator

(CΓ(ε,m) − i)−1 = (C(ε,m) − i + V (ε))−1

= (C(ε,m) − i)−1
(
1 + V (ε)(C(ε,m) − i)−1

)−1
.

We claim that there exists ε0 > 0 and K ′ > 0 such that for all ε ∈ (0, ε0),
there holds

‖V (ε)(C(ε,m) − i)−1‖B(L2(Str,C2)) ≤ K ′ε.

Indeed, for u ∈ L2(Str,C2), there holds

‖V (ε)(C(ε,m) − i)−1u‖L2(Str,C2)

≤
ε‖κ‖L∞(R)

1 − ε‖κ‖L∞(R)
‖(−iσ1)∂s(C(ε,m) − i)−1u‖L2(Str,C2)

+
ε‖κ′‖L∞(R)

2(1 − ε‖κ‖L∞(R))2
‖(C(ε,m) − i)−1‖B(L2(Str,C2))‖u‖L2(Str,C2).

One remarks that

‖(−iσ1)∂s(C(ε,m) − i)−1u‖L2(Str,C2)

= ‖
(
(−iσ1)∂s + mσ3 − mσ3

)
(C(ε,m) − i)−1u‖L2(Str,C2)

≤ ‖
(
(−iσ1)∂s + mσ3

)
(C(ε,m) − i)−1u‖L2(Str,C2)

+ m‖(C(ε,m) − i)−1u‖L2(Str,C2).

Hence, by Lemma 28, there exists K > 0 and ε1 > 0 such that for all ε ∈ (0, ε1),
there holds:

‖(−iσ1)∂s(C(ε,m) − i)−1u‖L2(Str,C2)

≤ ‖C(ε,m)(C(ε,m) − i)−1u‖L2(Str,C2)

+ (m + K)‖(C(ε,m) − i)−1u‖L2(Str,C2)

≤ ‖(C(ε,m) − i)(C(ε,m) − i)−1u‖L2(Str,C2)

+ (1 + m + K)‖(C(ε,m) − i)−1u‖L2(Str,C2)

≤ ‖u‖L2(Str,C2)

+ (m + 1 + K)‖(C(ε,m) − i)−1‖B(L2(Str,C2))‖u‖L2(Str,C2).

Remarking that

‖(C(ε,m) − i)−1‖B(L2(Str,C2)) = dist(i, Sp(C(ε,m)))−1 ≤ 1 (45)
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, we obtain that there exists ε0 ∈ (0, ε1) such that

‖V (ε)(C(ε,m) − i)−1u‖L2(Str,C2) ≤ K ′ε‖u‖L2(Str,C2),

for some constant K ′ > 0. Thus, developing in Neumann series and using (45),
we get

(CΓ(ε,m) − i)−1 = (C(ε,m) − i)−1 + O(ε)

and the theorem is proved applying Proposition 25. �

5. Non-relativistic Limit

This section is devoted to the proof of Proposition 8 and Theorem 9. In the
sequel, we will assume ε > 0 to be fixed, as we are only interested in the regime
m → +∞. We start by proving Proposition 8 before turning to the proof of
Theorem 9.

5.1. Proof of Proposition 8

Our starting point is the expression of the quadratic form associated with the
operator DΓ(ε,m)2 that can be computed arguing as in [26, Prop. 14].

Lemma 29. Given u ∈ dom (DΓ(ε,m)), there holds

‖DΓ(ε,m)u‖2
L2(Ωε,C2) =‖∇u‖2

L2(Ωε,C2)+m2‖u‖2
L2(Ωε,C2)+

∫

∂Ωε

(m − κε

2
)|u|2ds ,

where κε is the signed curvature of the boundary ∂Ωε with respect to the outer
normal νε.

Let us introduce the quadratic forms

qm(u) := ‖DΓ(ε,m)u‖2
L2(Ωε,C2) − m2‖u‖2

L2(Ωε,C2), dom (qm) := dom (DΓ) ,

and

q∞(u) := ‖∇u‖2
L2(Ωε,C4), dom (q∞) := H1

0 (Ωε,C
2).

of the Dirichlet Laplacian LΓ(ε) defined in (11). In the following, we shall
consider the min–max values of the forms above, as introduced in Definition 5.
We are now in a good position to prove Proposition 8.

Proof of Proposition 8. Observe that dom (q∞) ⊂ dom (DΓ(ε,m)) and that by
Lemma 29 if u ∈ dom (q∞) we have q∞(u) = qm(u). Then, by Proposition 6,
we immediately get for all j ∈ N:

μj(qm) ≤ μj(q∞). (46)

Recall that by Theorem 2, ε−2E1(mε) is the bottom of the essential spectrum
of DΓ(ε,m)2 − m2. Now, fix j0 ∈ N with j0 < NΓ + 1 (with the convention
that NΓ + 1 = +∞ if NΓ = +∞). Then, by Proposition 6, (v) of Proposition
10 and Proposition 7, we get for all j ∈ {1, . . . , 2j0}:

μj(qm) − E1(mε)
ε2

≤ μj(q∞) − E1(mε)
ε2

≤ μ2j0(q∞) − π2

4ε2
︸ ︷︷ ︸

<0

+
C

m
,
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for some constant C > 0. Then, the claim follows taking m large enough. �

5.2. Finite Waveguides

In our proof of Theorem 9, we need to investigate the min–max values of
quadratic forms in finite waveguides. To this aim, for R > 0, we split the
waveguide Ωε into the following three domains:

ΩR
ε := {γ(s) + εtν(s) : |s| < R , t ∈ (−1, 1)},

ΩR,±
ε := {γ(s) + εtν(s) : ±s > R , t ∈ (−1, 1)},

and consider the following four forms:

qR
∞(u) := ‖∇u‖2

L2(ΩR
ε ,C4),

dom
(
qR
∞
)

:= H1
0 (ΩR

ε ,C2),

qR
m(u) := ‖DΓ(ε,m)u‖2

L2(ΩR
ε ,C2) − m2‖u‖2

L2(ΩR
ε ,C2),

dom
(
qR
m

)
:=
{
u ∈ H1(ΩR

ε ,C2) : −iσ3σ · νεu = u on ∂ΩR
ε ∩ ∂Ωε,

u = 0 on ∂ΩR
ε \ ∂Ωε

}
,

qR,±
m (u) := ‖DΓ(ε,m)u‖2

L2(ΩR,±
ε ,C2)

− m2‖u‖2
L2(ΩR,±

ε ,C2)
,

dom
(
qR,±
m

)
:=
{
u ∈ H1(ΩR,±

ε ,C2) : −iσ3σ · νεu = u on ∂ΩR,±
ε ∩ ∂Ωε,

u = 0 on ∂ΩR,±
ε \ ∂Ωε

}
.

In the following, we shall consider the min–max values of the above forms
as introduced in Definition 5.

The same compactness argument as in [1, Prop. 2.1] allows to prove the
following local convergence result, whose proof is omitted.

Lemma 30. For all R > 0 and j ∈ N, there holds

lim
m→+∞ μj(qR

m) = μj(qR
∞) .

For further use, we need the following lemma which is proved using the
well-known IMS formula.

Lemma 31. For all j ∈ N there holds

lim
R→+∞

μj(qR
∞) = μj(q∞) .

Proof of Lemma 31. Fix j ∈ N and observe that thanks to a Dirichlet brack-
eting argument one gets μj(qR

∞) ≥ μj(q∞), for all R > 0. Then,

lim inf
R→∞

μj(qR
∞) ≥ μj(q∞) . (47)

Now, we need to prove the opposite inequality

lim sup
R→∞

μj(qR
∞) ≤ μj(q∞) . (48)

Take a cut-off function θ ∈ C∞
0 (R) such that 0 ≤ θ ≤ 1, θ(s) = 1 for

|s| ≤ 1
2 and θ(s) = 0 for |s| ≥ 1. Given R > 0, define

θR(s) := θ(R−1s) , s ∈ R .



4096 W. Borrelli et al. Ann. Henri Poincaré

We introduce

χR := (U1)−1θR,

where U1 is the unitary map (19). For further use, we compute ∇χR.
Since χR(γ(s) + εtν(s)) = θ(R−1s), we get
{

∂sχR = γ′
1(1 − εtκ)∂1χR + γ′

2(1 − εtκ)∂2χR = R−1θ′(R−1s) ,

∂tχR = εν1∂1χR + εν2∂2χR = 0 ,
(49)

where γ′ = (γ1, γ2)� and ν = (ν1, ν2)� = (−γ′
2, γ

′
1)

�. Then, (49) can be
rewritten as

(
γ′
1(1 − εtκ) γ′

2(1 − εtκ)
−εγ′

2 εγ′
1

)(
∂1χR

∂2χR

)
=
(

R−1θ′(R−1s)
0

)
, (50)

so that, inverting the matrix in (50) and after straightforward computations
one finds for x = γ(s) + εtν(s) :

∇χR(x) = ∇χR(γ(s) + εtν(s)) =
θ′(R−1s)

R(1 − εtκ(s))
γ′(s). (51)

Take u = (u1, u2)� ∈ dom (q∞). As chosen, we have χRu ∈ dom
(
qR
∞
)
. Thus,

we find

q∞(χRu) = qR
∞(χRu). (52)

On the other hand, we have

q∞(χRu) =
2∑

k=1

(
‖χR∇uk‖2

L2(Ωε,C2)︸ ︷︷ ︸
:=ak

+ ‖uk∇χR‖2
L2(Ωε,C2)︸ ︷︷ ︸

:=bk

+ 2�
(
〈χR∇uk, uk∇χR〉L2(Ωε,C2

)

︸ ︷︷ ︸
:=ck

)
.

(53)

Let k ∈ {1, 2}, we get

ak ≤ ‖∇uk‖2
L2(Ωε,C2).

By (51), the second term bk can be estimated as

bk ≤
‖θ′‖2

L∞(R)

R2(1 − ε‖κ‖L∞(R))2
‖uk‖2

L2(Ωε) .

Similarly, we obtain

ck ≤ 2‖(∇χR)uk‖L2(Ωε,C2)‖χR∇uk‖L2(Ωε,C2)

≤
2‖θ′‖L∞(R)

R(1 − ε‖κ‖L∞(R))
‖uk‖L2(Ωε)‖∇uk‖L2(Ωε,C2)

≤
‖θ′‖L∞(R)

R(1 − ε‖κ‖L∞(R))
(‖∇uk‖2

L2(Ωε,C2) + ‖uk‖2
L2(Ωε)).
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Combining the above estimates with (52) and (53), we obtain that there
exists C > 0 such that for all R > 0, there holds

qR
∞(χRu) ≤

(
1 +

C

R

)
q∞(u) +

C

R
‖u‖2

L2(Ωε,C2). (54)

Now, by Definition 5, for η > 0, there exists Wη ⊂ dom (q∞) a j-th dimensional
vector space such that

μj(q∞) ≤ sup
u∈Wη\{0}

q∞(u)
‖u‖2

L2(Ωε,C2)

≤ μj(q∞) + η. (55)

Remark that if (uη
1 , . . . , uη

j ) is an orthonormal basis of Wη, then there exists
R0 := R0(η) > 0 such that for all R > R0 the family (χRuη

1 , . . . , χRuη
j ) is a

basis in L2(ΩR
ε ,C2) of the vector space WR

η := {χRu : u ∈ span(uη
1 , . . . , uη

j )}.
Indeed, for all k, p ∈ {1, . . . , j}, there holds

〈χRuη
k, χRuη

p〉L2(ΩR
ε ,C2) = δk,p −

∫

ΩR
ε

(1 − χ2
R)〈uη

k, uη
p〉C2dx.

Hence, by the dominated convergence theorem, the second term on the right-
hand side of the above equation converges to 0 as R → +∞ and there exists
R0 > 0 such that for all R > R0 there holds dim(WR

η ) = j.
Now, pick a u	 ∈ Wη \ {0} such that

qR
∞(χRu	)

‖χRu	‖2
L2(ΩR

ε ,C2)

= sup
u∈W R

η \{0}

qR
∞(u)

‖u‖2
L2(ΩR

ε ,C2)

≥ μj(qR
∞).

Consequently, as WR
η ⊂ dom

(
qR
∞
)
, the min–max principle (Proposition

6), (54) and (55) give

μj(qR
∞)

‖χRu	‖2
L2(ΩR

ε ,C2)

‖u	‖2
L2(Ωε,C2)

≤ (1 +
C

R
)

q∞(u	)
‖u	‖2

L2(Ωε,C2)

+
C

R
≤ (1 +

C

R
)(μj(q∞) + η) +

C

R
. (56)

Observe that by dominated convergence, one also gets ‖χRu	‖L2(ΩR
ε ,C2) →

‖u	‖L2(Ωε,C2), as R → ∞. Thus, letting R → ∞ in (56), we obtain the in-
equality

lim sup
R→∞

μj(qR
∞) ≤ μj(q∞) + η .

As this is true for all η > 0, we get (48) and the proof is concluded. �

We conclude this paragraph with the following lemma.

Lemma 32. Let us assume additionally that Γ is of class C4, that κ′(s) → 0
and κ′′(s) → 0 when |s| → +∞ and let R > 0. For all u ∈ dom

(
qR,±
m

)
, there

holds

μ1(qR,±
m ) ≥ E1(mε)

ε2
− η±(R),

where η± ≥ 0 does not depend on m and verifies η±(R) → 0 when R → +∞.
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Proof of Lemma 32. Let u ∈ dom
(
qR,±
m

)
and consider u0 its extension by

0 to the whole waveguide Ωε. Remark that u0 ∈ dom (qm) and set v0 =
(U3U2U1)u0 where the unitary maps U1, U2 and U3 are defined in (19), (20)
and (22), respectively. By Proposition 13, and using the min–max principle on
the operator acting in the t-variable, we get

qR,±
m (u) = qm(u0) ≥ E1(mε)

ε2
‖v0‖2

L2(Str,C2) −
∫

Str

κ2

4(1 − εtκ)2
|v0|2dsdt

− 5
4

∫

Str

(εtκ′)2

(1 − εtκ)4
|u|2dsdt − 1

2

∫

Str

εtκ′′

(1 − εtκ)3
|u|2dsdt

=
E1(mε)

ε2
‖v0‖2

L2(Str,C2) −
∫

StrR,±

κ2

4(1 − εtκ)2
|v0|2dsdt

− 5
4

∫

StrR,±

(εtκ′)2

(1 − εtκ)4
|v0|2dsdt

− 1
2

∫

StrR,±

εtκ′′

(1 − εtκ)3
|v0|2dsdt,

where we have taken into account that v0 is supported in StrR,± := {(s, t) ∈
R

2 : ±s > R, t ∈ (−1, 1)}. This last equality gives

qR,±
m (u) ≥E1(mε)

ε2
‖u‖2

L2(Str,C2) − η±(R)‖u‖2
L2(Str,C2)

with

η±(R)

:= sup
{±s>R}

{ κ2(s)

4(1 − ε‖κ‖L∞(R))
+

5

4

ε2κ′(s)2

(1 − ε‖κ‖L∞(R))4
+

1

2

ε|κ′′(s)|
(1 − ε‖κ‖L∞(R))3

)}
.

By (A) and by the additional assumptions on κ′ and κ′′, we get η±(R) → 0
when R → +∞ and the Lemma is proved applying the min–max principle
(Proposition 6). �

5.3. Convergence of Min–Max Values for m → +∞
Combining the results of the previous paragraph, we can prove the convergence
of the min–max values in the large mass limit. This proof relies on the well-
established IMS formula.

Proof of Theorem 9. In this proof, we assume that Γ is of class C4, κ′(s) → 0
and κ′′(s) → 0 when |s| → +∞.

Consider a partition of unity given by cut-off functions θ1, θ2, θ3 ∈ C∞(R),
with 0 ≤ θk ≤ 1, k = 1, 2, 3, and such that θ2

1 + θ2
2 + θ2

3 = 1. We also assume
that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ1(s) = 0 if s ≥ −1
2

,

θ2(s) = 0 if s ≤ 1
2

,

θ3(s) = 0 if |s| ≥ 1 .
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Recall that U1 is the unitary map defined in (19) and for k ∈ {1, 2, 3}, define

χk,R := (U−1
1 θk,R),

where for s ∈ R we have set θk,R(s) := θk(R−1s). In particular, arguing as in
(51), we get for all x = γ(s) + tεν(s) ∈ Ωε:

∇χk,R(x) =
θ′

k,R(R−1s)
R(1 − εtκ)

γ′(s). (57)

Let u = (u1, u2)� ∈ dom (qm), then by Lemma 29 and the fact that χ2
1,R +

χ2
2,R + χ2

3,R = 1, we have

qm(u) =
3∑

k=1

(∫

Ωε

|χk,R∇u|2 dx +
∫

∂Ωε

(m − κε

2
)|χk,Ru|2 ds

)
. (58)

Let us rewrite the first integral in (58). We have

∫

Ωε

|χk,R∇u|2 dx =
2∑

j=1

∫

Ωε

|∇(χk,Ruj) − uj∇χk,R|2 dx

=
2∑

j=1

{∫

Ωε

|∇(χk,Ruj)|2 dx +
∫

Ωε

|uj |2|∇χk,R|2 dx

− 2�
(∫

Ωε

〈∇(χk,Ruj), uj∇χk,R〉dx

)}

.

Moreover for j ∈ {1, 2}, there holds

2�
(∫

Ωε

〈∇(χk,Ruj), uj∇χk,R〉dx

)
=2
∫

Ωε

|uj |2|∇χk,R|2 dx

+
1
2

∫

Ωε

〈∇(χ2
k,R),∇(|uj |2)〉dx .

Recall that
∑3

k=1 χ2
k,R = 1, so that, summing up with respect to k ∈ {1, 2, 3},

the last term in the above formula vanishes. Thus, we find the following IMS
formula :

qm(u) = q
R
2 ,−

m (χ1,Ru) + q
R
2 ,+

m (χ2,Ru) + qR
m(χ3,Ru) −

∫

Ωε

WR|u|2 dx , (59)

where WR :=
∑3

k=1 |∇χk,R|2 and ‖WR‖L∞(Ωε) ≤ C
R2 , for some constant C > 0,

by (57).
Now, fix j ∈ N and consider the isometry

I : L2(Ωε,C
2) → L2(Ω

R
2 ,−
ε ,C2) × L2(Ω

R
2 ,−
ε ,C2) × L2(ΩR

ε ,C2)

defined by Iu = (χ1,Ru, χ2,Ru, χ3,Ru). Let W ⊂ dom (qm) be a vector space
of dimension j, by (59), there holds
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(
sup

u∈W\{0}

qm(u)
‖u‖2

L2(Ωε,C2)

)
+

C

R2

≥ sup
v=(v1,v2,v3)∈(IW )\{0}

q
R
2 ,−

m (v1) + q
R
2 ,+

m (v2) + qR
m(v3)

‖v1‖2

L2(Ω
R
2 ,−

ε ,C2)
+ ‖v2‖2

L2(Ω
R
2 ,+

ε ,C2)
+ ‖v3‖2

L2(ΩR
ε ,C2)

.

As I is an isometry, we get dim(IW ) = j and by definition of the cut-off

functions χk,R (k ∈ {1, 2, 3}), we also have (IW ) ⊂ D := dom
(
q

R
2 ,−

m

)
×

dom
(
q

R
2 ,+

m

)
× dom

(
qR
m

)
. In particular, there holds

(
sup

u∈W\{0}

qm(u)

‖u‖2
L2(Ωε,C2)

)
+

C

R2

≥ inf
V ⊂D

dim(V )=j

sup
v=(v1,v2,v3)∈V \{0}

q
R
2 ,−
m (v1) + q

R
2 ,+
m (v2) + qRm(v3)

‖v1‖2

L2(Ω
R
2 ,−

ε ,C2)
+ ‖v2‖2

L2(Ω
R
2 ,+

ε ,C2)
+ ‖v3‖2

L2(ΩR
ε ,C2)

.

Now, taking the infimum over all vector spaces W ⊂ dom (qm) of dimension j
and noting that the right-hand side is the j-th min–max value of the quadratic
form of the tensor product of the three self-adjoint operators associated with
the quadratic forms q

R
2 ,−

m , q
R
2 ,+

m and qR
m, respectively, the min–max principle

(Proposition 6) yields:

μj(qm) +
C

R2
≥ j-th smallest element of the set

{μj(qR
m)}j∈N

⋃
{μj(q

R
2 ,+

m )}j∈N

⋃
{μj(q

R
2 ,−

m )}j∈N.

First, remark that by the min–max principle for all j ∈ N, m �→ μj(qm) is
a non-decreasing function on [0,+∞) and such that μj(qm) ≤ μj(q∞). In
particular, μj(qm) has a limit when m → +∞.

Now, pick j0 ∈ N such that j0 < NΓ + 1 (with the convention that
NΓ + 1 = +∞ if NΓ = +∞). Recall that by Proposition 7 μj(q∞) < π2

4ε2 for
all j ∈ {1, . . . , 2j0}. For all k ∈ N, by Lemma 32, there holds

μk

(
q

R
2 ,±

m

)
≥ μ1

(
q

R
2 ,±

m

)
≥ E1(mε)

ε2
− η±(R),

and η± does not depend on m and η±(R) → 0 when R → +∞. In particular,
if one fixes α > 0, there exists R0 > 0 such that for all R > R0, there holds
η±(R) < α

2 . Now, using (v) of Proposition 10, there exists m0 > 0 such that
for all m > m0, there holds E1(mε)

ε2 ≥ π2

4ε2 − α
2 . Choosing α = 1

4

(
π2

4ε2 −μ2j0(q∞)
)

it gives

μ1(q
R
2 ,±

m ) ≥ π2

4ε2
− 1

4

(
π2

4ε2
− μ2j0(q∞)

)
, (60)

and by Lemma 31, there exists m1 > 0 such that for all m ≥ m1, there holds

μj(qR
m) ≤ μj(qR

∞) ≤ μj(q∞) +
1
4

(
π2

4ε2
− μ2j0(q∞)

)
≤ μ2j0(q∞)
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+
1
4
( π2

4ε2
− μ2j0(q∞)

)
. (61)

As there holds

μ2j0(q∞) +
1
4

(
π2

4ε2
− μ2j0(q∞)

)
<

π2

4ε2
− 1

4

(
π2

4ε2
− μ2j0(q∞)

)
,

(60) and (61) give that for all m > max(m0,m1) and all R > R0, there holds

μj(qm) +
C

R2
≥ μj(qR

m).

Hence, taking the limit m → +∞ then R → +∞ in the last equation, by
Lemma 30 and Lemma 31, we obtain

lim
m→+∞ μj(qm) ≥ μj (q∞) .

In particular, if NΓ = +∞, the proof is completed. Now assume that NΓ <

+∞ and let j ≥ 2NΓ + 1. Let us prove that μj(qm) converges to π2

4ε2 . By
Proposition 6 and Proposition 7, there holds

μj(qm) ≤ μj(q∞) =
π2

4ε2
.

In particular, let us consider the j-th smallest element of the set

{μj(qR
m)}j∈N

⋃
{μj(q

R
2 ,+

m )}j∈N

⋃
{μj(q

R
2 ,−

m )}j∈N.

Either there exists k0 ≥ 2NΓ + 1 such that this element is μk0(q
R
m) or p0 ∈ N

such that this element is μp0(q
R
2 ,±

m ). In the first case, there holds:

− C

R2
≤ π2

4ε2
− (μj(qm) +

C

R2
) ≤ π2

4ε2
− μk0(q

R
m) ≤ π2

4ε2
− μ2NΓ+1(qR

m).

Now, in the second case, there holds

− C

R2
≤ π2

4ε2
− (μj(qm) +

C

R

2

) ≤ π2

4ε2
− μp0(q

R
2 ,±

m ) ≤ π2

4ε2
− μ1(q

R
2 ,±

m )

≤ π2

4ε2
− E1(mε)

ε2
+ η±(R),

where we have used Lemma 32. These two inequalities yield

− C

R2
≤ π2

4ε2
− (μj(qm) +

C

R

2

)

≤ min
( π2

4ε2
− μ2NΓ+1(qR

m),
π2

4ε2
− E1(mε)

ε2
+ η±(R)

)

Now, taking the limit m → +∞ and then R → +∞ by Lemma 30, Lemma 31,
(v) of Proposition 10 and Lemma 32, we get

lim
m→+∞ μj(qm) =

π2

4ε2

and Theorem 9 is proved. �
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6. A Quantitative Condition for the Existence of Bound States

The goal of this section is to obtain an explicit geometric condition on the
curvature of the base curve Γ which ensures that the operator DΓ(ε,m) has
at least two bound states.

To state it, whenever Γ is of class C4, we introduce the well-known geo-
metric potential (cf. [15, Eq. (3.9)])

Vε(s, t) := −1
4

κ(s)2

(1 − εtκ(s))2
− 1

2
κ′′(s) εt

(1 − εtκ(s))3
− 5

4
κ′(s)2 ε2t2

(1 − εtκ(s))4
.

It depends on the geometry of the waveguide Ωε through the curvature κ of the
base curve Γ, its two derivatives and the radius ε of the tubular neighbourhood.

The sufficient condition we obtain reads as follows.

Proposition 33. (Quantitative existence of bound states) Let us assume addi-
tionally that Γ is of class C4 and that suppκ ⊂ (−L,L) with L > 0. If

Iε := −
∫

R

∫ 1

−1

Vε(s, t) cos2
(π

2
t
)

dt ds > 0 , (62)

then there exists m0 ∈ R such that for every m > m0,

Spdis(DΓ(ε,m)) �= ∅. (63)

Moreover, there holds

m0 ≤ 1
2ε

[ 1
I2
ε

(4π2L

3ε2
+

2
L

)2

− 1
]

(64)

Remark that if (63) holds, due to charge conjugation symmetry, we have
#Spdis(DΓ(ε,m)) ≥ 2.

Note that the integral Iε is independent of m. Since Vε(s, t) → − 1
4κ(s)2

as ε → 0, uniformly in (s, t) ∈ R × (−1, 1), the sufficient condition (62) is
always satisfied whenever the curvature κ is not identically equal to zero and
ε is small enough.

Compared to Proposition 8, Proposition 33 gives a quantitative geometric
bound control on m0 to obtain the existence of bound states.

We work with the square of the operator DΓ(ε,m) studying the min–
max value μ1(DΓ(ε,m)2) following the notation introduced in Definition 5.
The main idea is that thanks to Proposition 3 and Proposition 13, we have

μ1(DΓ(ε,m)2) = inf
u∈dom(EΓ(ε,m))\{0}

‖EΓ(ε,m)u‖2
L2(Str,C2)

‖u‖2
L2(Str,C2)

. (65)

Proof of Proposition 33. In view of (65) and the symmetry of the spectrum of
DΓ(ε,m) (see Theorem 2), it is enough to find a test function u ∈ dom (EΓ(ε,m))
such that

q(u) := ‖EΓ(ε,m)u‖2
L2(Str,C2) −

(
m2 + ε−2E1(mε)

)
‖u‖2

L2(Str,C2) < 0 , (66)

with dom (q) := dom (EΓ(ε,m)). Then, necessarily we have μ1(q) < 0.
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Fix η > 0, and define

uη(s, t) :=
1√
2
ϕη(s) cos

(π
2

t
)
(

ei θ(s)
2

e−i θ(s)
2

)

,

where θ is defined in (21) and, for every η ∈ R,

ϕη(s) :=

⎧
⎪⎪⎨

⎪⎪⎩

1 if |s| ≤ η ,
2η − |s|

η
if η < |s| < 2η ,

0 if |s| ≥ 2η .

Remark that uη ∈ H1
0 (Str,C2) ⊂ dom (q) and ‖uη‖2

L2(Str,C2) = ‖ϕη‖2
L2(R) = 8

3η.
Using the boundary condition, one easily checks the identity

1
ε2

∫

Str

|∂tuη(s, t)|2 ds dt + εm

∫

R

|uη(s,−1)|2 ds + εm

∫

R

|uη(s, 1)|2 ds

=
π2

4ε2
‖uη‖2

L2(Str,C2) .

Consequently, there holds

q(uη) =ε−2
(π2

4
− E1(mε)

)
‖uη‖2

L2(Str,C2) +
∫

Str

|(∂s − iκ
2 σ3)uη(s, t)|2

(1 − εtκ(s))2
ds dt

+
∫

Str

Vε(s, t) |uη(s, t)|2 ds dt . (67)

To deal with the second term on the right-hand side of (67), we set
vη := e−i θ

2 σ3uη and remark that for all (s, t) ∈ Str there holds

vη(s, t) =
1√
2
ϕη(s) cos

(π
2

t
)
(

1
1

)
, ‖vη(s, t)‖C2 = ‖uη(s, t)‖C2 .

In particular, we remark that

e−i θ
2 σ3(∂s − i

κ

2
σ3)uη(s, t) = (∂svη)(s, t) =

1√
2
ϕ′

η(s) cos
(π
2

t
)
(

1
1

)
.

Consequently, we obtain

q(uη) = ε−2
(π2

4
− E1(mε)

)
‖ϕη‖2

L2(R)

+
∫

R

|ϕ′
η(s)|2

∫ 1

−1

1
(1 − κ(s) εt)2

cos2
(π

2
t
)

dt ds (68)

+
∫

R

|ϕη(s)|2 Vε(s, t) cos2
(π

2
t
)

dt ds.

Now, we employ the hypothesis that the curvature κ (and therefore also
its derivatives κ′ and κ′′) is compactly supported and choose η ≥ L. Then, the
last line equals −Iε and the second line equals ‖ϕ′

η‖2
L2(R) = 2

η . In summary,

q(uη) = ε−2
(π2

4
− E1(mε)

)8
3
η +

2
η

− Iε .
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Using in (73) the elementary bound tan(x) ≤ x − π valid for every x ∈ (π
2 , π],

we get the estimate
√

E1(mε) ≥ π

2
2mε

1 + 2mε
.

Remark that this lower bound on E1(mε) holds for all masses m ≥ 0 but there
is no reason for it to be optimal for small masses. Consequently, using the
elementary inequality (1 + 4mε) ≤ 2(1 + 2mε), we get

q(uη) ≤ π2

4ε2

1 + 4mε

(1 + 2mε)2
8
3
η +

2
η

− Iε ≤ π2

2ε2

1
(1 + 2mε)

8
3
η +

2
η

− Iε .

Setting η := L
√

1 + 2mε ≥ L, we find

q(uη) ≤
(

4π2L

3ε2
+

2
L

)
1√

1 + 2mε
− Iε .

Therefore, if Iε > 0, we see that q(uη) is negative whenever m ≥ m̃0, where m̃0

coincides with the right-hand-side of (64). It concludes the proof of Proposition
33. �

Remark 34. The hypothesis that κ is compactly supported is apparently just
a technical condition in order to simplify the expression (68).
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Appendix A. Proof of some technical results

In this section, we collect the proofs of some technical results stated in the
paper, in order to simplify the overall presentation.

Proof of Proposition 10 and Corollary 11. The multiplication operators by σ1

and σ3 are bounded and self-adjoint in L2
(
(−1, 1),C2

)
thus T (k,m) is self-

adjoint if and only if T0 is self-adjoint. An integration by parts easily yields
that T0 is symmetric and by definition, one has

dom (T ∗
0 ) =

{
u ∈ L2

(
(−1, 1),C2

)
: ∃ w ∈ L2

(
(−1, 1),C2

)
such that

∀ v ∈ dom (T0) , 〈u, T0v〉L2((−1,1),C2) = 〈w, v〉L2((−1,1),C2)

}
.

For every v ∈ D := C∞
0

(
(−1, 1),C2

)
and u ∈ dom (T ∗

0 ), there holds
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〈T ∗
0 u, v〉L2((−1,1),C2) = 〈u, T0v〉L2((−1,1),C2) = 〈u,−iσ2v

′〉L2((−1,1),C2)

= 〈u, iσ2v′〉D′,D
= 〈−iσ2u

′, v〉D′,D
= 〈T ∗

0 u, v〉D′,D,

where 〈·, ·〉D′,D is the duality bracket of distributions. In particular, we know
that T ∗

0 u = −iσ2u
′ ∈ L2

(
(−1, 1),C2

)
thus we get u ∈ H1

(
(−1, 1),C2

)
. More-

over, if v ∈ dom (T0), there holds

〈T ∗
0 u, v〉L2((−1,1),C2) = 〈−iσ2u

′, v〉L2((−1,1),C2)

= 〈u,−iσ2v
′〉L2((−1,1),C2) +

[
〈−iσ2u, v〉C2

]1

−1

= 〈u, T0v〉L2((−1,1),C2) − u2(1)v1(1) + u1(1)v2(1)

+ u2(−1)v1(−1) − u1(−1)v2(−1).

Since v ∈ dom (T0), we obtain

0 = −(u2(1) + u1(1))v1(1) + (u2(−1) − u1(−1))v1(−1).

This holds for any v ∈ dom (T0), so that u2(±1) = ∓u1(±1) and v ∈ dom (T0).
In particular T ∗

0 = T0. Observe that, by the closed graph theorem,
dom (T (k,m)) is continuously embedded in H1

(
(−1, 1),C2

)
which itself is

compactly embedded in L2
(
(−1, 1),C2

)
. Thus, T (k,m) has compact resolvent.

Let us prove Point (i) by picking u ∈ dom (T (k,m)) and considering

‖T (k,m)u‖2 = ‖u′‖2
L2((−1,1),C2) + (m2 + k2)‖u‖2

L2((−1,1),C2)

+ 2mk�
(
〈σ3u, σ1u〉L2((−1,1),C2)

)

+ 2m�
(
〈−iσ2u

′, σ3u〉L2((−1,1),C2)

)

+ 2k�
(
〈−iσ2u

′, σ1u〉L2((−1,1),C2)

)
.

(69)

We rewrite (69), arguing as follows. Using the anti-commutation rules of Pauli
matrices and the boundary condition, we get

2�
(
〈σ3u, σ1u〉L2((−1,1),C2)

)
= 2�

(
〈−iσ2u

′, σ1u〉L2((−1,1),C2)

)
= 0

and

2�
(
〈−iσ2u

′, σ3u〉L2((−1,1),C2)

)
= ‖u(1)‖2

C2 + ‖u(−1)‖2
C2 . (70)

In particular, we obtain

‖T (k,m)u‖2
L2((−1,1),C2) = ‖u′‖2

L2((−1,1),C2) + (m2 + k2)‖u‖2
L2((−1,1),C2)

+ m(‖u(1)‖2
C2 + ‖u(−1)‖2

C2)

≥ (m2 + k2)‖u‖2
L2((−1,1),C2).

Hence, by the min–max principle (see Proposition 6), if λ ∈ Sp(T (k,m)), we
get |λ| ≥

√
m2 + k2. Moreover, the last inequality is strict. Indeed, if u is

an eigenfunction of T (k,m) associated with an eigenvalue λ such that |λ| =√
m2 + k2 we necessarily get that u is a constant C2-valued function on (−1, 1)

satisfying the boundary conditions given in (15). It is a contradiction because it
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implies that u = 0 identically. Hence, Sp(T (k,m))∩[−
√

m2 + k2,
√

m2 + k2] =
∅ and Point (i) is proved.

Now, let λ ∈ Sp(T (k,m)) and pick an associated eigenfunction u =
(u1, u2)� ∈ dom (T (k,m)). There holds

{
mu1 + ku2 − u′

2 = λu1 ,
ku1 + u′

1 − mu2 = λu2 .
(71)

The second equation gives (m+λ)u2 = ku1 +u′
1 and multiplying the first line

by (λ + m), we get

−u′′
1 = Eu1 , E := λ2 − (m2 + k2) .

Recall that m ≥ 0 and that by Point (i), we have E > 0 for all k ∈ R. Thus,
we find

u1(t) = α cos
(√

E(t + 1)
)

+ β sin
(√

E(t + 1)
)
,

for some constants α, β ∈ C and as m + λ �= 0 we get

u2(t) =
1

λ + m
cos
(√

E(t + 1)
)(

kα +
√

Eβ
)

+
1

λ + m
sin
(√

E(t + 1)
)(

kβ −
√

Eα
)
.

The boundary condition at t = −1 gives

(m + λ − k)α −
√

Eβ = 0 .

The boundary condition at t = 1 gives
(
(m + λ + k) cos(2

√
E) −

√
E sin(2

√
E)
)
α +

(
(m + λ + k) sin(2

√
E) +

√
E cos(2

√
E)
)
β = 0.

To obtain a nonzero eigenfunction u, there has to hold

0 =

∣
∣∣
∣

m + λ − k −√
E

(m + λ + k) cos(2
√

E) − √
E sin(2

√
E) (m + λ + k) sin(2

√
E) +

√
E cos(2

√
E)

∣
∣∣
∣ .

Computing the determinant, we are left with the implicit equation

m sin(2
√

E) +
√

E cos(2
√

E) = 0. (72)

In particular, it yields that the spectrum of T (k,m) is symmetric with respect
to the origin and we remark that when m = k = 0, we necessarily have√

E = |λ| = pπ
4 (with p ∈ N), and that in this case, a normalized eigenfunction

associated with λ = ±π
4 is given by

u±
k (t) =

1
2

cos
(
k

π

4
(t + 1)

)(1
1

)
± 1

2
sin
(
k

π

4
(t + 1)

)( 1
−1

)
,

which proves Corollary 11.
Remark that for m > 0, a solution E to (72) verifies cos(2

√
E) �= 0, and

we obtain

tan(2
√

E) +
√

E

m
= 0. (73)
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Now, for p ∈ N0 = N ∪ {0}, define the line segments I0 := [0, π
2 ) and Ip+1 =

((2p + 1)π
2 , (2p + 3)π

2 )

gp : Ip → R, gp(x) = tan(2x) +
x

m
. (74)

Remark that g′
p(x) > 0, and in particular, the only solution to g0(x) = 0 is

x = 0. For all p ≥ 1, we have

lim
x→(2p−1) π

2
+

gp(x) = −∞, gp(pπ) = p
π

m
> 0.

In particular, for all p ≥ 1, there is a unique solution xp ∈ Ip to gp(x) = 0.
Moreover, it satisfies xp ∈

(
(2p − 1)π

2 , pπ
)
. Hence, for p ≥ 1, Ep(m) is defined

as the unique solution E to gp(2
√

E) = 0. In particular, Ep(m) ∈ ((2p −
1)2 π2

16 , p2 π2

4 ) which proves Points (ii) and (iii).
Now, we prove (iv). Guided by (72), we define the C∞ function

F :
{
R × R → R

(μ,m) �→ 2m sin(μ) + μ cos(μ) .

One remarks that F (π
2 , 0) = 0 and ∂μF (π

2 , 0) = π
2 . Hence, by the implicit

function theorem, there exists δ1, δ2 > 0 and a C∞ function μ : (−δ1, δ1) →
(π

2 − δ2,
π
2 + δ2) verifying μ(0) = π

2 and such that for all |m| < δ1, there holds
F (μ(m),m) = 0. Moreover, when m → 0, there holds

μ(m) = μ(0) + μ′(0)m + O(m2) =
π

2
+

4
π

m + O(m2).

Necessarily, for m > 0 sufficiently small, there holds E1(m) = 1
4μ(m)2. Hence,

when m → 0, there holds

E1(m) =
π2

16
+ m + O(m2),

which is precisely Point (iv).
Finally, we prove (v). Once again, guided by (72), we define the C∞

function

G :
{
R × R → R

(μ, ν) �→ 2 sin(μ) + μν cos(μ) .

One remarks that G(π, 0) = 0 and ∂μG(π, 0) = −2. Hence, by the implicit
function theorem, there exists δ1, δ2 > 0 and a C∞ function μ : (−δ1, δ1) →
(π − δ2, π + δ2) verifying μ(0) = π and such that for all |ν| < δ1 there holds
G(μ(ν), ν) = 0. Moreover, when ν → 0, there holds

μ(ν) = μ(0) + μ′(0)ν + O(ν2) = π − π

2
ν + O(ν2).

Necessarily, for m > 0 sufficiently large, there holds E1(m) = 1
4μ(m−1)2.

Hence, when m → +∞, there holds

E1(m) =
π2

4
− π2

4m
+ O(m−2),

which gives (v). �
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Proof of Lemma 28. Let u ∈ dom (E0(ε,m)) and remark that there holds

‖C(ε, m)u‖2
L2(Str,C2) = ‖(−iσ1)∂su + mσ3u‖2

L2(Str,C2)

+
1

ε2
‖(−iσ2)∂tu − π

4
(P+ − P −)u‖2

L2(Str,C2)

︸ ︷︷ ︸
:=A

+
1

ε
2�(〈(−iσ1)∂su, (−iσ2)∂tu − π

4
(P+ − P −)u〉L2(Str,C2))

︸ ︷︷ ︸
:=B

+
m

ε
2�(〈σ3u, (−iσ2)∂tu〉L2(Str,C2))
︸ ︷︷ ︸

:=C

− mπ

4ε
2�(〈σ3u, (P+ − P −)u〉L2(Str,C2))
︸ ︷︷ ︸

:=D

. (75)

Now, we deal with each term appearing on the right-hand side of (75). For
further use, for all k ≥ 1, we set f±

k := 〈u, u±
k 〉L2((−1,1),C2) and recall that Πk

denotes the projector defined in (25). In particular, for all k ≥ 1, there holds

‖Πku‖2
L2(Str,C2) =

∫

R

(
|f+

k (s)|2 + |f−
k (s)|2

)
ds.

Step 1. In this step, we analyze the term A appearing in (75). We remark that

(−iσ2∂t − π

4
(P+ − P−))u =

∑

k≥2

(k − 1)π
4

(f+
k u+

k − f−
k u−

k ). (76)

In particular, it gives

A =
π2

16

∑

k≥2

(k − 1)2‖Πku‖2
L2(Str,C2). (77)

Step 2. A straightforward computation gives

−iσ1∂su =
∑

k≥1

−i(f−
k )′u+

k − i(f+
k )′u−

k .

In particular, using (76), there holds

〈−iσ1∂su,
(

− iσ2∂t − π

4
(P+ − P−)

)
u〉L2(Str,C2)

=
π

4

∑

k≥2

(k − 1)
(

− i

∫

R

(f−
k )′(s)f+

k (s)ds + i

∫

R

(f+
k )′(s)f−

k (s)ds
)
. (78)

Integrating by parts, we find

−i

∫

R

(f−
k )′(s)f+

k (s)ds + i

∫

R

(f+
k )′f−

k (s)ds

= i

∫

R

(f−
k )′(s)f+

k (s)ds − i

∫

R

(f+
k )′(s)f−

k (s)ds

= −
(

−i

∫

R

(f−
k )′(s)f+

k (s)ds + i

∫

R

(f+
k )′(s)f−

k (s)ds

)
,
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and then using (78), we get

〈−iσ1∂su,
(

− iσ2∂t − π

4
(P+ − P−)

)
u〉L2(Str,C2)

= −〈
(

− iσ2∂t − π

4
(P+ − P−)

)
u,−iσ1∂su〉L2(Str,C2).

In particular, we obtain

B = 2�(〈−iσ1∂su,
(

− iσ2∂t − π

4
(P+ − P−)

)
u〉L2(Str,C2)) = 0. (79)

Step 3. In this step, we deal with the term C. Integrating by parts as in (70),
we obtain:

C =
∫

R

|u(s, 1)|2 + |u(s,−1)|2ds. (80)

Step 4 It remains to deal with the term D. To do so, we remark that:

〈σ3u, (P+ − P−)u〉L2(Str,C2) = 〈Π1σ3Π1u, (P+ − P−)u〉L2(Str,C2)︸ ︷︷ ︸
:=α

+ 〈Π⊥
1 σ3Π⊥

1 u, (P+ − P−)u〉L2(Str,C2)︸ ︷︷ ︸
:=β

+ 〈Π1σ3Π⊥
1 u, (P+ − P−)u〉L2(Str,C2)︸ ︷︷ ︸

:=γ

+ 〈Π⊥
1 σ3Π1u, (P+ − P−)u〉L2(Str,C2)︸ ︷︷ ︸

:=δ

. (81)

Now, in each of the next substep, we deal with the terms appearing on the
right-hand side of (81).
Substep 4.1 Remark that there holds

α = 〈f+
1 σ3u

+
1 + f−

1 σ3u
−
1 , f+

1 u+
1 − f−

1 u−
1 〉L2(Str,C2)

= 〈σ3u
+
1 , u+

1 〉L2((−1,1),C2)‖f+
1 ‖2

L2(R) − 〈σ3u
−
1 , u−

1 〉L2((−1,1),C2)‖f−
1 ‖L2(R)

− 〈σ3u
+
1 , u−

1 〉L2((−1,1),C2)〈f+
1 , f−

1 〉L2(R)

+ 〈σ3u
−
1 , u+

1 〉L2((−1,1),C2)〈f−
1 , f+

1 〉L2(R).

Thanks to (31), we get

α =
2
π

‖Π1u‖2
L2(Str,C2). (82)

Substep 4.2 We handle the term β by obtaining the following upper-bound
thanks to the Cauchy–Schwarz inequality:

|β| = |〈Π⊥
1 σ3Π⊥

1 u, (P+ − P−)u〉L2(Str,C2)| ≤ ‖Π⊥
1 u‖2

L2(Str,C2). (83)

Substep 4.3 Now, let us focus on the two off-diagonal terms γ and δ. A direct
computation shows that

〈σ3u
−
k , u+

1 〉C2 = −〈σ3u
+
k , u−

1 〉C2 , 〈σ3u
−
k , u−

1 〉C2 = −〈σ3u
+
k , u+

1 〉C2 .
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Then, we get

Π1σ3Π⊥
1 u =

⎛

⎝
∑

k≥2

akf+
k − bkf−

k

⎞

⎠u+
1 +

⎛

⎝
∑

k≥2

bkf+
k − akf−

k

⎞

⎠u−
1 ,

where we have set for k ≥ 2

ak := 〈σ3u
+
k , u+

1 〉L2((−1,1),C2) =
4
π

sin2(π
4 (k + 1))

(k + 1)
,

bk := 〈σ3u
+
k , u−

1 〉L2((−1,1),C2) =
4
π

sin2(π
4 (k − 1))

(k − 1)
. (84)

Thus, we find

γ =
∑

k≥2

∫

R

〈(ak − σ1bk)
(

f+
k

f−
k

)
,

(
f+
1

f−
1

)
〉C2ds. (85)

A similar computation gives

δ =
∑

k≥2

∫

R

〈
(

f+
1

f−
1

)
, (ak + σ1bk)

(
f+

k

f−
k

)
〉C2ds. (86)

In particular, using (85) and (86), we get

γ + δ = 2�
(∑

k≥2

ak

∫

R

〈
(

f+
1

f−
1

)
,

(
f+

k

f−
k

)
〉C2ds

)

+ 2i�
(∑

k≥2

bk

∫

R

〈
(

f+
1

f−
1

)
, σ1

(
f+

k

f−
k

)
〉C2ds

)
. (87)

Using (81), (82) and (87), we obtain

D =
4
π

‖Π1u‖2
L2(Str,C2) + 2�(β) + 4�

(∑

k≥2

ak

∫

R

〈
(

f+
1

f−
1

)
,

(
f+

k

f−
k

)
〉C2ds

)
.

In particular, using the Cauchy–Schwartz inequality, we get

D ≤ 4
π

‖Π1u‖2
L2(Str,C2) + 2|β| + 4

∑

k≥2

(
|ak|‖Π1u‖L2(Str,C2)‖Πku‖L2(Str,C2)

)
.

(88)

Now, let us fix c > 0 to be chosen later. For all a, b ∈ R and ε > 0, we recall
the elementary inequality ab ≤ cε

2 a2 + 1
2cεb2 that we use to get for all k ≥ 2:

|ak|‖Π1u‖L2(Str,C2)‖Πku‖L2(Str,C2) ≤ cε

2
a2

k‖Π1u‖2
L2(Str,C2) +

1
2cε

‖Πku‖2
L2(Str,C2).

Then, summing up for k ≥ 2, we get
∑

k≥2

(
|ak|‖Π1u‖L2(Str,C2)‖Πku‖L2(Str,C2)

)
≤ 1

2
cεS‖Π1u‖2

L2(Str,C2)

+
1

2cε
‖Π⊥

1 u‖2
L2(Str,C2), (89)
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where we have set S =
∑

k≥2 a2
k < +∞ because a2

k = O(k−2) when k → +∞
by (84). Taking into account (83) and (89), (88) gives

D ≤ (
4
π

+ 2cSε)‖Π1u‖2
L2(Str,C2) + 2(1 +

1
cε

)‖Π⊥
1 u‖2

L2(Str,C2). (90)

Step 5. In this step, we conclude the proof. Using (77), (79) and (80), (75)
becomes

‖C(ε,m)u‖2
L2(Str,C2)

= ‖(−iσ1∂s + mσ3)u‖2
L2(Str,C2) +

π2

16ε2

∑

k≥2

(k − 1)2‖Πku‖2
L2(Str,C2)

+
m

ε

∫

R

(
|u(s, 1)|2 + |u(s,−1)|2

)
ds − mπ

4ε
D

= ‖(−iσ1∂s + mσ3)u‖2
L2(Str,C2) +

π2

16ε2

∑

k≥2

(k − 1)2‖Πku‖2
L2(Str,C2)

+
1
ε2

∫

R

(τmε(u)(s) − τ0(u)(s))ds − mπ

4ε
D

= ‖(−iσ1∂s + mσ3)u‖2
L2(Str,C2) +

π2

16ε2

∑

k≥2

(k − 1)2‖Πku‖2
L2(Str,C2)

− π2

16ε2
‖Π1u‖2

L2(Str,C2) +
1
ε2

∫

R

(τmε(u)(s) − τ0(Π⊥
1 u)(s))ds − mπ

4ε
D,

where the quadratic forms τεm and τ0 are defined in (43). Notice that in the
above formula, we used the fact that

τ0(u)(s) = τ0(Π1u)(s) + τ0(Π⊥
1 u)(s)

=
π2

16
‖(Π1u)(s)‖2

L2(−1,1,C2) + τ0(Π⊥
1 u)(s) , s ∈ R

and

‖Π1u‖2
L2(Str,C2) =

∫

R

‖(Π1u)(s)‖2
L2((−1,1),C2)ds .

Using Lemma (26), this last inequality becomes

‖C(ε,m)u‖2
L2(Str,C2) ≥ ‖(−iσ1∂s + mσ3)u‖2

L2(Str,C2) +
π2

16ε2
‖Π⊥

1 u‖2
L2(Str,C2)

+
1
ε2

(
E1(mε) − π2

16

)
‖Π1u‖2

L2(Str,C2) − mπ

4ε
D

and (90) yields

‖C(ε,m)u‖2
L2(Str,C2) ≥ ‖(−iσ1∂s + mσ3)u‖2

L2(Str,C2)

+
1
ε2

(π2

16
− mπ

2c
− mπ

2
ε
)
‖Π⊥

1 u‖2
L2(Str,C2)

+
1
ε2

(
E1(mε) − π2

16
− mε − mπcS

2
ε2
)
‖Π1u‖2

L2(Str,C2).

(91)
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Now, we choose c > 8m
π and remark that there exists ε1 > 0 such that for all

ε ∈ (0, ε1), there holds

π2

16
− mπ

2c
− mπ

2
ε > 0. (92)

Moreover, thanks to (iv) of Proposition 10, there exists ε2 and K > 0 such
that for all ε ∈ (0, ε2)

E1(mε) − π2

16
− mε − mπcS

2
ε2 > −Kε2. (93)

Setting ε0 := min(ε1, ε2) and taking into account (92) and (93) in (91) we
obtain that for all ε ∈ (0, ε0), there holds

K‖Π1u‖2
L2(Str,C2) + ‖C(ε,m)u‖2

L2(Str,C2) ≥ ‖(−iσ1∂s + mσ3)u‖2
L2(Str,C2).

The proof of Lemma 28 is completed remarking that ‖Π1u‖2
L2(Str,C2) ≤

‖u‖2
L2(Str,C2). �
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[20] Krejčǐŕık, D., Raymond, N., Royer, J., Siegl, P.: Reduction of dimension as a
consequence of norm-resolvent convergence and applications. Mathematika 64,
406–429 (2018)

[21] Krejčǐŕık, D., Šediváková, H.: The effective Hamiltonian in curved quantum
waveguides under mild regularity assumptions. Rev. Math. Phys. 24, 1250018
(2012)
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Università Cattolica del Sacro Cuore
Via Garzetta 48
Brescia
Italy
e-mail: william.borrelli@unicatt.it

Philippe Briet
Aix-Marseille Université
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