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Asymptotic Scattering by Poissonian
Thermostats
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Abstract. In the present paper, we consider an infinite chain of harmonic
oscillators coupled with a Poisson thermostat attached at a point. The
kinetic limit for the energy density of the chain, given by the Wigner dis-
tribution, satisfies a transport equation outside the thermostat location.
A boundary condition emerges at this site, which describes the reflection-
transmission-scattering of the wave energy scattered off by the thermo-
stat. Formulas for the respective coefficients are obtained. Unlike the case
of the Langevin thermostat studied in Komorowski et al. (Arch. Ration.
Mech. Anal. 237, 497-543, 2020), the Poissonian thermostat scattering
generates in the limit a continuous cloud of waves of frequencies differ-
ent from that of the incident wave.

1. Introduction

In the present paper, we consider a one-dimensional infinite chain of harmonic
oscillators, with a thermostat attached a point. The thermostat, maintained at
a fixed temperature T', is usually modelled, at the microscopic level, by some
stochastic process: for example, by the Langevin stochastic dynamics, or by
the renewal of velocities at random times with Gaussian distributed velocities
of variance T'. The latter represents the interaction with an infinitely extended
reservoir of independent particles in equilibrium at temperature 7" and uniform
density. A natural question arises to describe the effect of a thermostat on the
wave energy density propagation in the system in a large space-time scale limit.
In the paper, we investigate this issue in the case of the kinetic (hyperbolic)
space-time scaling. This question has been studied for a Langevin thermostat
in the recent article [5]. The goal of this paper is to find out how other classes of
thermostats, in particular of the Poisson type, influence the energy transport
in the chain in the kinetic limit.
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More specifically, consider an infinite one-dimensional chain of harmonic
oscillators, where particles are labelled by the elements of the integer lattice Z.
The chain is coupled with a thermostat acting on the particle labelled 0. The
thermostat is modelled by a random mechanism depending on two parameters:
~v > 0, describing its strength, and @ > 1/2, whose role is more technical as
it describes an interpolation between Poisson and Gaussian mechanisms. At
random times determined by a Poisson process of intensity yu, the velocity pg
of the particle 0 is changed to

1 V2u—1 _
p6:<1—u)po+up

)

where p is a centred Gaussian random variable with variance T' (the tempera-
ture of the thermostat). The case p = 1/2 corresponds to a velocity flip from
po — —po at Poisson random times, u = 1 ensures complete renewal of pg,
replacing it at those times by a N (0,7T) random variable p. Letting u — oo
the process described in the foregoing converges to the Langevin thermostat
considered in [5](cf. (2.11)). In this sense, the parameter p allows to interpolate
between various models of thermostats: starting from the random flip process
(1 = 1/2), through the simple complete Poisson renewal (x = 1) and ending
up at the Langevin thermostat (4 = +00).

In the case p = 1/2 (the random velocity flip), the energy of the chain
is conserved and there is no thermalization. On the other hand, when p >
1/2, the Gaussian distribution N(0,7T) is the only stationary measure that is
asymptotically stable for the process associated with the thermostat and the
thermalization of the chain at temperature T occurs.

To describe the energy density distribution in the space and frequency
domain, we use the Wigner distribution. When there is no thermostat present,
the limit of the Wigner distribution, under the hyperbolic scaling, is the solu-
tion of a simple transport equation. It describes the evolution of the density
of phonons, travelling independently of each other, with the group velocity
&' (k) := w'(k)/(27) corresponding to the phonon of wavenumber k. Here w(k)
is the dispersion relation of the harmonic chain and a wavenumber k£ belongs
to T - the unit torus. Taking into account the presence of the thermostat
the respective limit, see (2.53) below, can be decomposed into the parts that,
besides the aforementioned free energy transport, correspond to the produc-
tion, absorption, scattering, transmission and reflection of a phonon. More
precisely, we show that when the dispersion relation is unimodal, see Sect. 2 for
a precise definition, in the scaling limit, the thermostat at temperature 7' > 0
and corresponding to p > 1/2 enforces the following reflection-transmission
and production conditions at = 0: phonons of wavenumber ¢ are generated
at the rate p,ps¥(¢)T and an incoming ¢-phonon, arriving with velocity &’(£), is
transmitted with probability p (¢), reflected with probability p_(¢), scattered,
as a k-phonon, with the outgoing velocity @’(k), according to the scattering
kernel §(€)psc(k), and absorbed with probability paps¥(€), see formulas (2.43)
below. These coeflicients are non-negative, depend on w(-), the parameters
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v >0 and p > 1/2, and satisfy
P+(€) + p—(€) + pansF(€) + 9(£) / pec(k)dk =1, £€T,
T

Coefficients p+ (¢), $(¢) do not depend on p. The coefficient p,ps is independent
of £ and for g — 400, paps — 1 and psc(k) — 0. With such boundary condi-
tions the thermal equilibrium Wigner function W (t,z, k) = T is a stationary
solution of the transport equation for any p > 1/2.

Our result covers also the random flip of sign of pg, i.e. p = 1/2. In this
case there is no absorption of phonons: p.,s = 0, and prSC(k)dk =1, ie.
all the energy that is not transmitted or reflected at the same frequency is
scattered at various frequencies.

The thermostat corresponding to a finite value of u plays a role of a
“scatterer” of time-varying strength. At the macroscopic scale a wave incident
on the thermostat produces reflected and transmitted waves at all frequencies.
This is in stark contrast with the case of the Langevin thermostat (1 = +00)
considered in [5], where, after the scaling limit, the reflected and transmitted
waves are of the same frequency as the incident wave (ps.(k) = 0).

Similar to [5] the presence of oscillatory integrals, responsible for the
damping mechanism, presents the difficulty of the model and is dealt with using
the Laplace transform of the Wigner distribution. An additional difficulty lies
in the fact that, contrary to [5], the noise appearing in the dynamics (2.12) is
multiplicative (rather than additive as in ibid.), which makes the computations
much less explicit.

Introducing a rarefied random scattering in the bulk, in the same fashion
as in [1], should lead to a similar transport equation with a linear scattering
term, without modifying the conditions at the interface with the thermostat.
Analogous case for the Langevin thermostat has been considered in [4].

2. Preliminaries and Formulation of the Main Result

2.1. Notation

We use the notation T, = [—a/2, a/2] for the torus of size a > 0, with identified
endpoints. In particular for a = 1 we write T instead of T;. We shall also write
T, =keT:0<k<1/2/and T_:=[keT: -1/2 <k <0].

The Fourier transform of a square integrable sequence («,) and the
inverse Fourier transform of & € L?(T) are defined as:

a(k) = Z oy exp{—2mizk}, a, = / a(k) exp{2mizk}dk, x€Z, keT.
T€EZ T
(2.1)

Suppose that f,g € L'[0,+00). Their convolution, also belonging to
L]0, +00), is given by

fxg(t) = /O/f(t —8)g(s)ds, te€[0,+0)
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By f** we denote the k-times convolution of f with itself, i.e. f*! := f,
frRtl= fu 5k k> 1. We let f%0 % g := g. We denote by

+oo
fN :/ e Mf(t)dt, Rel >0,
0
the Laplace transform of f. We also use the notation
(axb)y Zay yby, YEZL (2.2)
y' €L

for the convolution of two absolutely summable sequences (ay)yez, (by)yez.-

Given a function G(z, k), we denote by G : Rx Z — C, G : Rx T — C
the Fourier transforms of G in the k and x variables, respectively,

G(z,y) = / e MGz, k)dE, (z,y) €R X Z,
B (2.3)

Gn, k) = / e MGz, k)dx, (n,k) € R x T.
R

Let us denote by A the Banach space obtained as the completion of
S(R x T) in the norm

IGll.a = / sup |G (n, k)| dn (24)
R keT
and by A’ its dual.

2.2. Poisson Type Thermostat

The stochastic process describing a thermostat is a jump process, whose gen-
erator is given by

TH
L = 1——)p+ -
waf0)i= 5= | {f (( M) P+ p(n )p> f(p)]
ﬁ A
exp{—2T}dp, f € By(R). (2.5)
Here, By(R) denotes the space of all bounded and Borel measurable functions,

T,v>0,p>1/2 and
V2u—1

1
It is easy to verify that the Gaussian measure A(0,T) is invariant under the
dynamics of the process. In the case p = 1/2 Gaussian measure N (0,77) is
invariant for each T” > 0.

The process (p)¢>0 can be also described using the It stochastic differ-
ential equation, with a noise corresponding to a Poisson jump process, see, for
example, [8, Chapter V],

dp(t) = (ﬁ(t—) - ip(t—)) AN (), £ >0,
p(0) = po.

pp) = (2.6)

(2.7)
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Here (N (t)),s is a Poisson process of intensity 1 defined over some probability
space (02, F,P) and (p(t)),> is given by

ﬁ(t) = p(M)ﬁN’('yut)a (28)
where N'(t) = N(t) + 1. We suppose that (p,);>0 are i.i.d. N(0,7) random
variables over (2, F,P).

The process (p(t)), is, stationary and
Ep(t) =0,
1

E [3(t)p(¢')] = QMT; (2.9)

eIy 4 >,

From Eq. (2.7), we can see that in case u = 1 we have p(t) = pn/(4e), t > 0.
On the other hand, after a simple calculation, from (2.5), we conclude that for
any f € C*(R)

m Lo f9) = Loy f(P) _vTexp{'ﬁ b (o] QT} o))
(2.10)

The termostat corresponding to g = +o0o can be therefore identified with the
Langevin thermostat at temperature T', whose dynamics is described by the Ito
stochastic differential equation, with an additive Gaussian white noise dw(t):

dp(t) = —yp(t)dt + /27Tdw(t), t>0,
p(0) = po-

This case has been considered in [5].

(2.11)

2.3. Harmonic Chain Coupled with a Point Thermostat

We couple the particle with label y = 0 with a thermostat described in Sect.
2.2. Then, the dynamics of the chain, with a stochastic source at y = 0, is
governed by

dy () = py(t),
dpy(t) = —(axq(t)),dt 4 do,y <p(u)ﬁw(w) - ;py(t—)) dN(yut), y€Z.
(2.12)

The convolution operator « is defined in (2.2). The coupling constants (o, )yez
are even av_, = ay, for all y € Z and real valued. In addition, we assume that
they decay exponentially, i.e. there exists C' > 0 so that

| < Ce™W/C forall y € Z, (2.13)

and
= ayexp{-2miky} >0, keT,:=T)\{0}. (2.14)

Y
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Estimate (2.13) in particular implies that & € C*(T). By (q,p) = (py, qy)y.EZ
we denote the entire momentum-position configuration. Equation (2.12) pos-
sesses a unique (mild) cadlag solution taking values in the space of square
summable sequences (g, p), see, for example, [7, Sect. 9.4].

2.3.1. The Dispersion Relation and its Basic Properties. Define the dispersion
relation

w(k):=+/a(k), keT. (2.15)
In light of (2.14), it is C*° regular when &(0) > 0. If, on the other hand &(0) =
0, the dispersion relation is a continuous function on T belonging to C*°(T,),
with the derivative possessing one sided limits at £k = 0. The typical examples
are provided by the acoustic chains, where w(k) ~ |k| for k ~ 0, and the
optical chains where w'(k) ~ k for k ~ 0. We assume also that w is unimodal,
i.e. it is increasing on [0, 1/2]. Denote its unique minimum, attained at k = 0,
by Wmin > 0 and its unique maximum, attained at k = 1/2, by wpax. The two
branches of the inverse of w(-) are denoted by w : [Wmin, Wmax] — [0, 1/2] and
W = —W4.

2.3.2. The Wave-Function. Define the complex-valued wave function

Py(t) = (W a(t))y + ipy(t). (2.16)

Here (ij)y ¢z 1s the inverse Fourier transform of the dispersion relation w(k).

The square of the wave function [, (¢)|? describes the local energy of the chain
at time ¢. The Fourier transform of (¢, (t))y ¢z 1s given by

Pt k) = w(k)q(t, k) +ip(t, k), keT. (2.17)
We have

B () = 5, [6(t k) = (6, —)] and poft) = [ T (e, )k

Using (2.12), it is easy to check that the wave function evolves according to

A (t, k) = —icw (k)b (t, k)dt + i (p(t—) - ;po(t—)) AN(yut).  (2.18)

2.3.3. The Initial Conditions. Assume that for a given (small) value of the
parameter € > 0, the initial wave function is distributed randomly, according to
a Borel probability measure p. on the space of square summable configurations.
We suppose that

sup > e(lvy ). = sup e{l|YF2im))p. < oo (2.19)
se(o,l)yGZ e€(0,1)

Here (-),,. denotes the expectation with respect to p.. Assumption (2.19) guar-
antees that the energy density per unit length on the macroscopic scale x ~ ey
stays finite, as € — 0+.

In addition, to simplify somewhat our ensuing calculations, we will also
assume that

(WD (k)D(0),. =0, kL€, (2.20)
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The above hypothesis is of purely technical nature. It can be replaced by
somewhat more general assumption that (@(k)d}(é))#g ~ 0, as € — 0, with no
significant change in the main line our argument. However, the calculations
would become more involved. Later on we shall also assume some additional

hypothesis, see (2.27) below.

2.3.4. The Wigner Distributions. Denote the rescaled wave function 1/11(15) (t) =
¥, (t/e) and its Fourier transform () (¢, k). The (averaged) Wigner distri-
butions Wf) (t) and Yf) (t) are defined by their action on a test function
GeSRxT):

GWEW) = [ Wes(t,n, k)G (n, k)dndk,
e (2.21)
(G, Y1) = / V. (6., k)G (0, k),
TxR
where
We x(t,n, k) == gE {(W) (t,ik - %) $© (t,ik n %)} ,
Teot (b, k) = E [W (t,k+ g) e (t,—k+ g)} , (2.22)

oty = SB[ (99)" (k= 2) (59) (1-k= 2] ) € Tope xT

are the respective Fourier-Wigner functions. Here, E is the expectation with
respect to the product measure p. @ P. To simplify the notation, we shall also
write /V[Z(t,m k) instead of W5’+(t7n, k).

A straightforward calculation, using (2.18), shows that

d ~ 2 ¥ 1

fad (e) —1(o_= _R[pE) ()12

dt/TJE\w (t, k)| dk = . (2 u) (T Elpy” ()] ) (2.23)
with p((f)(t) :=po(t/e). As a result we get

) . 1
E/E|w(€)(t,k)|2dk < 5/]E|¢(5)(O,k:)|2dk + (2 - M> ATt t>0. (2.24)
T T

Thus, we conclude from (2.24) that (see [2])

sup |[WE)(t)||a < oo, for each 7 > 0. (2.25)
te(0,7]
Hence, W) (.) is sequentially weak-+ compact over (L'([0,7];.A))* for any
7> 0.
The initial Wigner distribution

o~ o~

We(n, k) == Wo(0,n,k), (n,k)€Tye xT (2.26)

is assumed to converge x-weakly, as ¢ — 0, in A’ to a non-negative function
Wo € LY(R x T)NC(R x T). In addition, we suppose that there exist C, x > 0
such that

(Wo(n, k)| < Co(n), (n,k) € Tope x T, € € (0,1], (2.27)
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where
o) = (228)
Define the Fourier-Laplace-Wigner functions
Wyc(Nnk)=¢ /Om e AWy (8, k), (2.29)

+oo .
Yte(\n, k) = 6/ e Yy (t,m, k)dt,
0

where Re A > 0, (n,k) € Ty). x T. We shall also write @, (\,n, k) instead of
@-‘!-,E()Hna k)

2.4. Some Additional Notation
Define

J(t) = /Tcos (w(k)t)dk, teR. (2.30)

Its Laplace transform

B o0 A
A) = “MINdt = | ———dk A > 0. 2.31
J(\) /0 e MI(t) /Tvﬂﬂ(k) ., ReA>0 (2.31)

One can easily see that

5 1
[J(N)] < X for Re A > 0. (2.32)
Let 3
g\ = (1 4+~yJ(\) (2.33)
We have Re J(\) > 0 for A € C, := [\ € C: Re\ > 0], thus in consequence
gV <1, XeC,. (2.34)
In addition, we have
s H00 < L1 -7 JO) R
GO = =(1 = §(A)= — 2L N ()i 2.35
@) = = ey v SR CYCE D

The first two equalities in (2.35) hold for all A € C,, while the last one for
Re A > v (cf (2.32)).

Since |J(t)| < 1 we have |J*"(t)| < t"~1/(n—1)!, as the n-th convolution
power involves the integration over an n — l-dimensional simplex of size t.

Therefore, the series
“+ o0

gu(t) == 3 ()" (1) (2.36)
n=1
defines a C° class function on [0,+00) that satisfies the following growth
condition: there exists C' > 0 such that |g.(t)] < Ce, t > 0. In addition,
comparing the Laplace transform of g.(t) with (1 — g(\))/~, as expressed by
the utmost right-hand side of (2.35), we conclude that

3N =3\ —1==7(G))(A), ReA>n. (2.37)
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Therefore, g(\), given by (2.33), is the Laplace transform of the signed measure
g(dt) := do(dt) + g.(t)dt. Combining (2.33), (2.36) and (2.37), we obtain

+oo
VI xg(t) =D ()" YT () = —gu(t), t>0. (2.38)

n=1

It turns out, see Lemma 1, that Jx g € L?(R) and supp J x g C [0, +00). This
allows us to conclude the existence of g,—the Laplace transform of g.(-)—and
equality (2.37) for all A € C,.

2.5. Functions g and J

Since the function g(-) is analytic on C4 we conclude, by the Fatou theorem,
see, for example, p. 107 of [6], that

g(ip) = Elirilog(e +i8), PER (2.39)
exists a.e. In Sect. 6.1, we show the following.

Lemma 1. The holomorphic function J§ belongs to the Hardy space HP(Cy)
for any p € (1,400). The limit

(J9)(if) = lim

exists both a.e. and in the LP(R) sense for p € (1,+00).
In addition, there exists

v(k) = el—lg-log(g +iw(k)), k€, (2.41)

(Jg)(e+iB), BeR (2.40)

where ==k € T: W'(k) =0, or w(k)=0]. The function is continuous
on T\ Q.. Moreover, for any § > 0 there exists C > 0 such that

‘g(g +iw(k)) — z/(k)‘ < Ce, dist (k,Q.) > b, € (0,1). (2.42)

To state our main result, we need some additional notation. Define the
group velocity

&'(k) == w'(k)/(27)

and
_ v(k) _lvR)? _1 -
p(k) == 5/ (B)]’ 9(k) == o (B p+(k) == [1—p(k)*, p-(k):= |p(k)*
(2.43)
It has been shown in Section 10 of [5] that
_ v 2
Rev(k) = (1 + 2w’(k)|> (k) (2.44)
and
pe(k) +p (k) = 1—9(k) < 1, (2.45)

so that, in particular, we have
0<ygk)<1, keT. (2.46)
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In the model considered in [5] the coefficients p;(k), p—(k) and g(k) have
expressed, see [5, Theorem 2.1], the probabilities of a phonon being transmit-
ted, reflected and absorbed at the interface [z = 0].

In our present situation, the absorption probability needs to be modified.
In addition, the phonon can be also scattered at the interface with outgoing
frequency ¢ with some scattering rate r(k, £). To be more precise, we introduce
the following notation

1 1 1
= 11— — . = —_— 2 24
b= 1o (1755 ) 0= gt OF, (247
where
.= 21/ |Jg(iB")|2dp . (2.48)
T JR
The following result holds.
Lemma 2. For any v > 0 we have
1 1
r+f/prM=f. (2.49)
2 Jy 2
In addition, if p > 1/2, then
Dabs + /psc(é)dé =1 (2.50)
T

The proof of the lemma is contained in Sect. 6.2.

Remark 1. Tt turns out, see [3, Theorem 4. part iii)], that for any unimodal
dispersion relation we have |v(£)] > 0, except possibly £ = 0, or 1/2. Thanks
to the identity (2.49) below, we have then

1
I'< 3 < pu. (2.51)
Therefore, in particular, the coefficients defined in (2.47) are strictly positive
for > 1/2 and £ & {0,1/2}.
2.6. The Main Result

For brevity sake, we use the notation

__)0,a], if a>0
[0, al] == {[a,O], if a < 0.

The main result of the paper can be formulated as follows.

Theorem 1. Suppose that the initial conditions and the dispersion relation sat-
isfy the above assumptions. Then, for any T > 0 and G € L' ([0, 7]; A) we have

T

lim <G(t),W€(t)>dt:/ dt G*(t,x, k)W (t, z, k)dxdk, (2.52)
=0 Jp 0 RxT
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where

w (t, x, k:) =Wo (:L‘ — D/(k)t, k) 1[[0,@’(k)t]]‘1 (I) + p+ (k)Wo (I — LZ)/(k‘)t, k?) 1[[0,5;'(k)t]] (l‘)
+p—(k)Wo (—z + & (k)t, —k) 1j0, 0" (k)] (x)

IR 10,00y () /T Wo (‘:”(“) (@ - a’(k)t),e> pec(b)dt

w’ (k)
+ pabs & (K)TL {0,/ (k)21 ().

(2.53)

The proof of this result is given in Sect. 5.4.

The limit dynamics can be characterized as follows: W (¢, z, k) describes
the energy density in (x, k) at time ¢ of the phonons initially distributed accord-
ing to Wy(x, k). The first term corresponds then to the ballistic transport of
those phonons which did not cross {z = 0} up to time ¢. The second and
third terms correspond, respectively, to the transmission and reflection of the
phonons at the boundary point {z = 0} with probabilities p; (k) and p_(k),
respectively. The fourth term describes the phonon scattering that occurs at
the interface. The phonon with frequency ¢, arriving at the interface with the
velocity @'(¢) is scattered with frequency k at the rate §(¢)ps.(k) and moves
away from the interface with the velocity @’(k). Finally, the last term in the
right side of (2.53) describes the k-phonon production of the thermostat at
the rate paps¥(k)T. From (2.45) and (2.50), we conclude that

1- b+ (6) — P- (6) - g}(f) /]l‘pr(k)dk - pabsg(g), ?eT. (254)

Therefore, the f-phonon is absorbed by the thermostat with probability
PabsI(£). Note that in the special case when the thermostat operates by the
flip of the momentum, which happens when p = 1/2, there is no absorption,
as according to (2.47) we have paps = 0. This is consistent with the fact that
the total energy of the chain is then conserved, see (2.23).

Our result can be written as a boundary value problem. Note that
W (t, z, k) solves the homogeneous transport equation

OW (t, 2, k) + & (k)0 W (t, 2, k) = 0, (2.55)

away from the boundary point {z = 0}.
Let

W(t, 0% k) := lim W(t, @, k).

If k € T4 (k> 0), then
W (t,07,k) = pyp ()W (¢,07,k) + p— (k)W (£,07, —k) + pabs 9(k)T

(k) /T W (£,07,4) psc(£)de

Jr*zl(k)/T W (t,07, —0) psc(€)de. (2.56)
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If, on the other hand, k € T_ (k < 0), then
W (t,07,k) = ps (k)W (£,0%, k) + p— (k)W (t,07, —k) + pabs 9(k)T
+ 9(k) / W (£,0%,0) puc(£)de

+a(k) / W (£,07, ) puc(O)dL.

3. The Solution of (2.18) and its Laplace-Fourier—Wigner
Distribution

In this section, we obtain an explicit expression for the solution of the wave
function (2.18). The mild formulation of the equation reads as follows:

Dt k) =e®ap(k) —

. t

Z —'LLA) S

L / e~ =) p (5 )IN (ypis)
0

K (3.1)

t
+i [N )

where p(t) is given by (2.8). Letting

pi(0) =1 ([ i) (32)

we conclude the following closed equation on the momentum at y = 0:

¢ ¢
palt) = B8~ 5 [ (¢ = s)pols=)iN () + [ T(t = s)p(s=)dN ).
0 0 (3.3)
Equation (3.1) is linear, so its solution can be written as the sum of the solution
41 (L, k) corresponding to the null initial data 1(k) = 0 and the solution ¢y (t, k)
of the homogeneous equation corresponding to p(t) = 0.
More precisely, suppose that 1/31(15, k) is the solution of

s (0.8) = iRyt Ryt + (30-) = Spoa(e-) ) aN )
’(;1 (O, k) =
and 1y (t, k) satisfies
diba(t, k) = —iw(k)ia(t, k) — iPO,Q(t—)dN(%Ut),

¢2(07 k) = 1&(]{)

(3.4)

Here

pos(t)i=m [ Dt )k, =12
T

Then R . .
V(L. k) = v1(t k) + ¥a(t k). (3.6)
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The respective Fourier—Wigner functions are defined as:
t

— . £ - e A t 15 ..
nglsJZ(t7'r)’ k) = i]E |:1/}j1 <E7k - 277) 11[}32 <57k+ 2”):| ) Jis J2 S {172}

Since the process (p(t)),., is independent of the initial data field (ﬁ;(k))

t>0 keT’
we conclude easily that
W23 (0, k) =0, if j1 # .
Therefore,
Wottm k) = B |0 (L= ) g (e 0
15 ) ’r]’ A 2 E ) 2 E 9 2
= Wt k) + W22t k). (3.7)
Accordingly, the respective Laplace-Fourier-Wigner transforms satisfy
We(A,n, k) = @1 (A k) + @22 (N1, k), (3.8)

where

+w —~
We(N\,n, k) = / e MWL (t,n, k)dt, (n,k) € Ty/e x T
0

and Re A > 0. The definitions of @/, corresponding to Wg’j(t,n, k),j=1,2,
are analogous.

3.1. Solving (2.18) for the Null Initial Data
We suppose that (0, k) = 0. Let so := ¢, Ay (t) := [0,¢] and

An(t):=1[(s1,-.-y8n): t>81>8>...>8,>0], n>2.
Iterating (3.3) and remembering that pJ(¢) = 0, we can write

=3 (1) ] HJsJ (s )N (ypsn) .. dN (s,

n=1
(3.9)
with sg := t. Therefore, substituting for the momentum in the respective form
of (3.1), we get

t
1/;1(t,k) = i/o e~ wk)(t=s) <;5(s) — ;po(s—)> AN (yps) Zwl n(t k),
(3.10)



3766 T. Komorowski, S. Olla Ann. Henri Poincaré

where

t
Dia(t,k) =i / ¢ I=5) 55 )AN (ypis),
0

1 n—1
bt ) o= () ; /
1% A, (t)

H — 8j41)D(8n—)dN (yus1) ... dN(yusyn), n>2.

(3.11)
3.2. The Case T' = 0 and Non-Zero Initial Data

The mild formulation of (3.5) is as follows:

ot

Dot k) = e @Bt (k) — - / e R p, o (s—)dN (yus). (3.12)
HJo

From here we conclude the following closed equation on the momentum at

y=0:

1t

poa(t) = B8t =~ [ 7= poa(sm)aN (). (313)
0

where p§(t) is given by (3.2). The solution of (3.13) is given by

“+o0 n
poa(t) = pd(0) (—;) /. S )

n=1

X pY(sn)dN (yps1) ... dN (ypsy).
Substituting in (3.12), we get

+oo
k) =Y tan(t k), (3.15)
n=0
where
.t
7 ¢ —iw —5
Yot k) = —;/ e~ R0 (5)dN (yus)
0

1 n+1
Dot k) = —i <_> / —iw(k)(t—s1) HJ s —sy41) (510)
Ay, (1)

X pO(5,)dN (yusy) ... dN('yusn), n>2.

4. The Limit in Case of Null Initial Data: The Phonon Creation
Term

Consider first the case when the null initial data, i.e. 1&2(1?, k) = 0. Then,
@EO\JL k) - @2171)(>‘vn7k)' (41)

We wish to use the chaos expansion, corresponding to the Poisson process
(N(t))i>0 to represent the Laplace-Fourier-Wigner function @w. (A, 7, k).
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Lemma 3. Suppose that p > 1/2. The following formula holds

a0 ) = (1 - 21/1) /Om B[ (s =)k (sh ) ds

(4.2)
for any A€ Cy, (n,k) € Ty). x T and e > 0. Here

+oo n
) ::exp{—w<k>t}+z(—l) [ el ) (43)

n=1 H JAL (L)
x [ J(s5 = sj41)dN(yps1) ... AN (yusn),
=1

with Sp4+1 = 0.
If, on the other hand p=1/2 and e,y > 0, then

We(\,n, k) =0, NeCy, (n,k)eRxT. (4.4)

Remark 2. Note that (4.4) is consistent with the physical interpretation of the
model. Namely, we have assumed that initially the energy of the chain is null.
On the other hand, the momentum flip mechanism of the thermostat, that
corresponds to the case u = 1/2, conserves the total energy of the system.

Proof of Lemma 3

The series appearing on the right-hand side of (4.3) converges in the L' sense.
Indeed, since |J(t)| < 1 its terms are dominated by the respective terms of the
series

+oo n
o) =1+ Z <1> /An(t) AN (yu81) - . . AN (y1a8p)- (4.5)

The process ©(t) is the unique solution of the stochastic differential equation
dO(t) = (6(t—)/u)dN(yut), ©(0) = 1 and is given by the stochastic expo-
nential, see, for example, [8, Theorem 11.8.37, p. 84],

O(t) = exp {N(Wt) log (1 + ;) } .

We have [x(t, k)| < ©(t), therefore

E[X(t, k)|> < EO2(t) = exp {'yut[exp {210g (1 + ;)} - 1} }

and the right-hand side of (4.2) is well defined, as an element of A’ (see (2.4)),

at least for Re A > 2ve~!. In what follows we show that equality (4.2) holds

for this range of A. Note that this implies the validity of (4.2) for all A €

C4. Indeed, if p = 1/2, then by the analytic continuation we conclude that

We(A,m, k) =0 for all Re A > 0 and the formula (4.4) follows.

For p > 1/2, the equality of the Laplace transforms, see (4.2), for Re A >
2ve~! implies in particular, when n = 0, that

2 2

T7(11)1E X<tk) cdp z/?l<t,k> . t>0.

2 5 €

T 24t
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In light of (2.23), this allows us to extend the validity of (4.2) to all Re A > 0.
Now we proceed with the proof of (4.2) for Re A > 2ye~!. Substituting
from (3.11) we get

)\ 0,k Z wanm /\ Thk‘), (46)

n,m=1

where

We,n,m (A1, k) 1= §/+oo e MR [tﬁin (t,k - %7) V1,m (t,k + ?)] dt n,m>1.

0
The convergence of the series follows by the comparison with the series defining
the stochastic exponential, see (4.5). Note that for s > s’

E[p(s=)i(s'~), N(yps—) = N(yus') = 1] = 0.

The above implies that
2 1\ "7+m [too
Bemm (N0, k) == (») / e iR
2 M 0

/ AN (ypsy) .. AN (yus,,)
NNO!

onfio-2) s )~

/ dN(yps1) ... dN(ypsn)
A (t)

X H J(sj — 8j+1) H J(s} — 5;+1)ﬁ(5n)ﬁ(s;n):|

1 1 n+m “+ oo t
:€2T'y (1 - —) <77) / efAEtdt/ ds
2n Iz 0 0

X E / AN (3151) - - AN (450 1)
n—1(t—s)

<[ dN(ys}) ... N (ypisy_,)
m-1(t—s)

comp o (- Z) =)}
exp{fiw (k + 5—”) (t—s— 5/1)}
H J(sj — s511) mHIJ s;+1):| .

Here s, = s}, := 0. Integrating out the ¢ variable, we get

Bem (00, k) =510 (1 - i) (—i)nm /;oo e
exp{i [w (k— %) —w (k—l— ?)} s}ds
x E |:/ dN (yps1)...dN(yusn—1)
An—1(s)

< NGl AN st )
m—1
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X exp{—iw (k: — %) 81} exp {iw (k + %7) s/l}

n—1 m—1
1T 7(s5 = s541) J(sj — 8511)
j=1 j=1
for n,m > 1. Summing out over n, m we conclude (4.2). O

Next, we write the Poisson chaos decomposition of the random field
x(t, k). Let

t
ot k) = / e~ wkE=9) g (). (4.7)
0
Define the cadlag martingale
N(t):=N(t) —t, t>0. (4.8)

Lemma 4. The following expansion holds

+oo
n=0

where

XO(tvk) = (b(ta k)
1 n
= (_M> /M (t—s1.k HJ*g = 5j41) (4.10)
x dN (ypsy) . ..dN(’yusn), n>1.

Proof. Writing N (yut) = N(yut) + yut, where ( (yut)) o is a cadlag mar-

tingale, we obtain

+00
x(t, k) = exp {—iw (k) t} + Z(_V)n /A .

exp {—iw (k) (t — s1) H — Sj41)dst1...dsy
X () g IGZIR/
exp {—iw (k) (t — s1)} H J(s5 = sj1)dsi [ [ AN (yus;)
i=1 igi
+oo 1 n
ot (H) /An(t)
exp {—iw (k) (t — s1)} H J(s; — 8501)dN (yps1) . . . AN (ypsy).
j=1

(4.11)
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For 1 < k < n we denote by Z;' the set of all ordered k-indices i: 1 <43 <
. < 1 < n. We shall also use the abbreviation ds; := Hjei ds;.
Using (2.38), we can combine the first two terms in the right-hand side
of (4.11) and obtain that they are equal to ¢(t, k) (cf (4.7))
Changing the order of summation in the remaining two expressions in
the right-hand side of (4.11), we conclude that their sum equals

f(-)nf Z / exp {—iw (k) (t — s1)}

n=1 r1=07r2,..., =1 An(t)
x [T =177 (s = 8511)dN (ypsa) ... AN (ypsn)
=1

Using formula (2.38), the above expression can be rewritten in the form:

Jff <_/i>n /An(t) (/ot_s1 exp {—iw (k) (t — 51 — J)}g(do)>

n=1

X H Jxg(sj — 8j41)dN(yus1) ... dN(yus,)
1

+J n . ) ~
Zl < > /A"(t) ot — s1, k)jl:[l Jxg(sj —sj11)dN(yps1) ... dN(yusy)
9),

and (4.9), with (4.10) follow. O

Coming back to calculation of the asymptotics of w.(A,n, k) given by
(4.1), we have the following result.

Proposition 1. For any v > 0 the parameter T', defined by (2.48), belongs to
(0,1/2). In addition, for any pn > 1/2, v >0, A € C4 and (n,k) € R x T we
have

ATl (k)P 1
Ji @00 = o s () e

Proof. We can use the L?(P) orthogonality of the terms of the expansion (4.9),
with (4.10). For Re A > 0 sufficiently large we get

Ok = S 00 ), (413)

n=0

/;00 e*“tdt/A \ o* (t sk — %’7) ¢ (t skt %7) (4.14)
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n

X H (J*g(s; — sj+1))2 dsi...ds,, n>1
j=1
In what follows, see (4.23) below, we show that (4.13) in fact holds for all
reCy.
Computation of 'Lﬁéo) (A, m, k)
Thanks to (4.10) and (4.14), we have

. eT 1 +oo
w£0)(A’na k) /\,y (1 - 2/‘) /
0

+oo
1 —eX(t+t')/2 EAPE" _&n / en
/0 dtdt'e 5(t —#)6" (1, 2)¢(t,k+2) (4.15)
Using
1 N
S(t—t) = —/elﬁ“*t)dﬂ, (4.16)
2T Jg

T
we can write

T 1 Foo ,
DO\, n, k) = — (1-)/%/ ~(eA/2=B) gy
wa PRI R (&
Ak = U2 ) L,
X

A
/Ot exp {iw (k - %) (t— s)} g(ds) (4.17)

+o0 t
—(eX/2+iB)t" 41 . en / ’ /
X e dt / expq —iw |k + (t'— ") ¢ g(ds).
/0 ; { ( 2 ) }

Remark 3. The use of formula (4.16) in derivation of (4.17) is a bit formal. To
justify (4.17) rigorously one can modify (4.15) as follows: 4(+) is replaced by
its approximation, for example

(2 WE N RIS G o
Nf*( ~ )QW/RG =t exp{ 5N dg, (4.18)

when N — +oo. Here f.(t) = (2m)~1/2et"/2 is the density of the standard
normal distribution. Formula (4.17) is then a consequence of the passage with
N to infinity and an application of the Lebesgue dominated convergence the-
orem.

Integrating out s,t and s’,t’ variables, we obtain

GO\, n, k) = (;C;A (1 - 2;) /R{E/\/2 —w (k - %) - w}_l
{iw (b+ %) Fer/2 iﬁ}_lg(e)\/Q —iB)d(eN/2 + iB)d5.
Change variables ¢’ := 3+ w (k — 5!) and obtain, cf (2.41),
@O\ n, k) = (277?» (1 ;ﬂ) / {A/Q—zﬁ} {iégw(k/‘;n)—i—)\/Z-ﬁ-iﬁ}il
X (e)\/2 — e+ iw (k; — (%7)) g (s)\/Q +iefl — iw (k + %)) dg.
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Here
Sew(ksm) ==t [w (k + %) —w ( - %7) ] (4.19)
Therefore
X {iw’(kz)n FA/2 4 iﬂ}_ldﬂ. (4.20)

To integrate out the ( variable, we use the Cauchy integral formula that in

our context reads i8)

L [ fiB)ds

— = Cy. 4.21

3 [ D0 = 1), zecy (1.21)
It is valid for any holomorphic function f on the right half-plane C, that
belongs to the Hardy class H?(C,) for some p > 1, see, for example, [6, p.
113]. Applying the formula we get

. (0) _ A Tlv(k)? 1
fim @70 k) = S o L2 ) (422)

€
Computation of 'Lﬁé")()\, n,k) forn >1
Change variables
To:=1— 51, .., Tn = Sp — Snt1(= Spn)

in (4.14). As a result, we get

T 1 oo
ﬂ)\én) (>\; 7]7 k) = £ PY < - > (Py> / eigAt/zdt/ dTO,n
A 2u) \p/) Jo [0,4-00)+1

exp{—eX(ro+...+7n) /2} x6(t—To— ... — Tn) @* (To,k‘—%q)

<o (m+ D) T[T g(m))"

j=1
Here dry,p, :=dry ... d7,. Using (4.16) for each variable t and 7;, j =0,...,n,
we can further write

T 1 n
5™ (X k:i(l——)(l> /d d / dTo.ndT,
We ( y ) (27T)n+2>\ 2/.}, 1 & ﬂ —_— BO, [0, +o0)2n+2 70, TO,n

+oo 4 n
X / 67(5A/2725)tdtH exp{—(eX/4+1i8/2 4+ iB;)T;}
0

=0

H exp {—(eA/4 +1iB/2 —iB;)7}}

3=0
<6 (mok = D) o (st D) [T watm) IT (7 0).

To abbreviate, we have used the notation dgy ,, := dfy ... dS3, and analogously
for the remaining variables.



Vol. 23 (2022) Asymptotic Scattering 3773

Integrating the t, 7 variables and their primed counterparts, we get

() ey (. LN(a\'[_dB
T k) = Gy (1 2u) <u> /st—w s 2P0
G(eEN/A+ By +16/2)

e/d+i(fo+B/2-w(k—%))
§(eN/4 —ifo +i3/2)
e/d+i(B/2— Bo+w(k+%))

X

n

H G(eN/4+iB/2 + if3;) ng(ek/4+i5/2—i5j).

We integrate the § variable using the Cauchy integral formula (4.21) and get

() _ ey (N () / J
We (Avnvk) (27_‘_)”_,_1/\ (1 2.“ 1 —_— ﬂO,n

n n

H 5)\/2+zﬁjH G(eX/2 —iB;)

N2 rim) sy
X2+i(fo—w(k-2))  \2+i(—fo+w(k+))

Change of variables 3 := 3y —w (k — ) and obtain
T 1 n n N
o (\ kzi’y 1— — J / dBo n Ja(eN/2 + i,
’LUg ( s 1 ) (27T>n+1)\ < 2/1/ L - /80, jl;[l 9(5 / + Zﬁ])

- ‘ G(eN/2 +iefo +iw (k — )
H g(eA/2 —i0;) x N2+ B

X

G(eX/2 —iefy —iw (k — L))
A2+ i (—Po + dew(k;n))

According to Lemma 1, we have J§ € H?(C,.); therefore, see, for example, [9,
Theorem 19.2],

y 7~ N Y G N2 1
Py <—/1J dg=T< - < ReA > 0.
o [1aOig)Pas < - [ 1aRPAS =T < 5 < Red>

The last estimate follows from (2.51). In particular, there exists a constant
C' > 0 such that

F n
|@£")(>\,n,k)|<0<u> , n>0,e>0,A€Cy and (k) € RxT. (4.23)

This proves that the validity of (4.13) for all A € C.
Furthermore,

@™\ n,k) = lim @™ (\n, k)
e—0+4
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T (I (1oL dfo
= Xen) <u> k)l (1 2u)/R(A/2+wo>{x/2+i[—ﬂo+w/<k>n}}‘

Here T is given by (2.48). Integrating the [y variable out, using again (4.21),

we get
@M\, k) = m (D” <1 - 21M> '

Using (4.23), by the dominated convergence theorem, we conclude that

w(A,n, k Zw(") (A, k (4.24)

and formula (4.12) follows. O

5. The Case T' = 0 and Non-Zero Initial Data

Here, as in Sect. 3.2, we assume that 7" = 0 and the initial data need not be
null, and satisfies the assumptions made in Sects. 2.3.3 and 2.3.4. The solution
O(t, k) is then described by the expansion (3.14) and (3.16).

Using the same argument as in the proof of Lemma 4, we obtain the
following Poisson chaos expansion for the momentum at = 0 and the Fourier
transform of the wave function

po(t) = g+ (0 +Z(—) L.
x H Jxg(sj—1— 5509 % Po(sn)dN (yus1) ... dN(ypsn),  (5.1)

and

t
1ﬁ(t k) = e—iw(k)td}(o’ k) - 27/ (b(t - S, k‘)pg(S)dS
0

“+o00 1 n
+i —= / Bt — 51,k
n=1 ( M> An(t) ( b b (52)
n—1 - -
IT 7 *9(s; = 554109 % b5 (s0)dN (yps1) . . . AN (ypsn),
j=1

where pJ(-) is given by (3.2). In light of (2.51), both of these expansions are
valid for any p > 1/2.
On the other hand, from (2.18), with p(¢t) = 0, we obtain the following
1, k)

equation on the Fourier-Wigner function W (¢,n
t
O (b, ) + 0. ks ) Wt ) = - [p% (2] (5:3)

S e D] o (o m ()



Vol. 23 (2022) Asymptotic Scattering 3775

Taking the Laplace transform on both sides, we arrive at
()‘ + iaEw(k; 77)) ’&}6(/\’ m, k) = W: (Ov m, k)
Yoy NN ey (54)
e {ae ()\,k )+o€ (A,k+ 2)]

2 2
where
+oo
() = /O B [p2 ()] dt and
+oo R
0\ k) = ie / e [w* (t. k) po (t)} dt. (5.5)
0

In the present section, we show the following.

Proposition 2. For any G € S(R x T) and Re X > 0 we have

/ / B\, k)G (0, k)dndk = lim / / (0 1, K)G" (5, K)diyd,
RJT e—0+

where
_ . W(0,n,k) v (k)|? W (0,7, 0)[v(0)]?
k) = S o T 200+ e ) / / Nt (O
_ ARelu(k) WOk ., ek S 6
A+ iw (k) /DM A +iw’(k=)77’d * 4N+ iw’ (k)n) (5:6)
W (0,7', k)dn’ va(k) T (0,7, —k)di’

rxT A+ iw’(k)n’ AN+ iw’(k)n) Jrxt A —w!(k)n’

The proof of the proposition is carried out throughout Sects. 5.1-5.3.

5.1. Asymptotics of e, ()

Proposition 3. Under the assumption about the initial data made in Sects.
2.8.8 and 2.8.4, we have

W (0,n,¢ )I
lim e, .
o ¢ (N) = l—I‘/,u / )\—i—z At w0y b (5:7)

Proof. From (5.1) we get

E [p (1)] = Elg » po(t +Z< ) /Am

. (5.8)
H J % 9)2(sj—1 — 5;)E[g % pQ(sn)]?ds1 .. . dsy,
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Arguing as in the proof of Proposition 1, we conclude that for A € C
+oo
= Z E$)()), where

+oo
. € e
ED) = 7/0 MR g % pl (1),

2
(e) ._E 1 " +Ooe—)\5t 2 —s oty * — s
pOW =5 (1) [ e[ et D I +07%s; = )

x Elg * p)(s,)]%dsy .. . ds,
(5.9)

Asymptotics of E(()E)()\). Using (4.16) we can write

EY () =~ | dkdk’ / T / T gtk
0 T 27

t
/ / gldo)g(de') [ dgei®-0)
0 0 R
% ]E{{efiw(k)(tfa)d;(k) - eiw(k)(tfcr)i)*(k)}
{e—iw(k/)(t’—a’),(/;(k/) _ eiw(k/)(t’—a/),l/“}*(k/)}} _

Thanks to (2.20), we can write

+oo +oo . ,
B (\) = %/T dkdk:’/ dt/ **E<f+t>/2/ / (do)g(do’) /dﬁelﬁ(t’”

x exp {iw (k') (t' — o) = iw(k)(t — o)} E{ (k)" (k)] -
Integrating out the ¢ and t’ variables, we get

90 (R GG L) S
By ( T 2 /Tz / Xe/2 —ifB+iw(k) Ae/2+if — iw(k")dkdk ap.

Next we change variables 3" := 8 — w(k’), which leads to

(&) G026+ i) E{IEFE}
Eg7(N) = /11‘2/ A2 —iB+ie w(k) — w(k)] N2+ B dkdk'dg.
(5.10)
Change variables (k, k") — (n,£), by letting
bimt+3h K=o (5.11)

The image of T? under this mapping is

1 1—¢ln|
T2 = (nag) : |77| < gv W < T

€

C Tyje X T. (5.12)
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Then, cf (4.19),

1
227

|G (Ae/2 — B+ iw(t + ) |
02 —iB +i0.w(l,n) (N2 +i8)

Using estimates (2.27), (2.28) and the Cauchy formula (4.21), we obtain

v(O)] W(0, 1, £)
€£%1+Eo T 227 /dn/dﬂ/dﬂ )\/2*Zﬂ+ZW() ) (A/2415)

W (0,7, )I
— = dndl. 1
/ )\+zw (5-13)

B0 = g5 | W0 anae [ a

Asymptotics of E(5)(X) for n > 1. Using (3.2) and (2.20), we get

EE () = 2% (%)n/qrdk/%dk’ﬂi {z&(k)v/}*(k’)}/;w e‘AEtdt/A"(t)(J*gf(t—sl)dt

x H (70 (ss = sy0) [ [ gtden)atact)
x exp {iw(k")(sn — 01) —iw(k)(sn —o1)} .

We substitute 7; := s; — 541, J = 0,...,n, with s¢ := ¢ and s,,41 := 0, and
then use (4.16) to double variables 7; and 7;. In this way we obtain

Oy ()" / )
BP0\ = 5 T (u) /R _dpdp 5 dkdk

/ dtdt' e /AR {1&(1«)1&*(/@’)}
(0,400)?

n
X/ dT(),n/ dTé,n/ dﬁO,nHeiﬂj(Tj_T;)
(0,400)7+1 (0,400)m+1 RrHL g

n

X exp { —Ae ZTj /4 »exp —Ae ZTJ’

=0 j=0
n n
explifB |t — ZTj expqif [t =) 7]
— =
n—1 n—1 Tn
Lo [0 |
j=0 j=0

/0 " gdo)g(do’) exp {iw(K)(r!, — o) — iw(k)(rs — o)}

To abbreviate we have used the notation dro,, = dr...dr,, dfon =
dpBy . ..dp, and similarly for the prime variables. Integrating out the ¢, 7 vari-
ables and their prime counterparts, we get
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- _ £ Y " / " / n Tk 1
E,@)(A)_W(;) /de,b‘dﬁ g dkdk /RM dﬁo,nE{w(k)w (k)}

< T] (Ja) e/a— i35 +i8) [[ (Ja) e/ + i85 + i)

j=0 =0
1 ) 1 Cg0e/4—iBn +iB)  Ge/4+iBn +1iB)
Xe/d—iB Ae/d—if Ae/d—iBn +iB +iw(k) Ae/A+iBn +iB —iw(k')’

(5.14)
Change variables k, k' according to (5.11) and

P =P —w(k), eB:=p, ef =p

we obtain
L ()" dgdg’ .
Oy L (7
£ = s (1) L oo i) j [ 0

X / dBo,n H g) (Xe/4 —iB; +iep) H (J§) (\e/4 +iB; —ieB’)
Rn+1

g(Ae/4 — zeﬁn w(l —en/2) +ieB) g()\s/4 + iefn + iw(f —en/2) + il )

A4 —iBy, +iB + idew(l,n) N4+ By + i
Hence
lim E(©) (A / W(0,n.¢ )l 22PN ande. (5.15)
e—0+ Qu A+ zw’

The conclusion of the proposition then follows from an application of the
dominated convergence theorem to the series appearing in (5.9), as T'/u €
(0,1). O
5.2. Asymptotics of the Term Involving 0. (\)

Invoking (5.4) we wish to calculate the limit lim._,o4 £., where

<. :/T/R[ae ()\,k—%) Ak )} m (5.16)

for any G € S(R x T).
Taking into account (5.1) and (5.2), we get

“+o0
k)= D5\ k), (5.17)
n=0
where
D§(A k) = DG 1 (A k) + DG (A, k) (5.18)
and

+oo
D5 (N k) = z's/ e~ Aeteiw (bR [w (o,k)g*pS(t)] di
0

+oo t
D5 o(M k) = —ev / et / 6*(t — 5, K)E [p(s)g * p3(1)] ds
0 0
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DE(\E) i=¢ (Z)n/om e_’\tdt/An(t) Ot —s1,k)(Txg)(t —s1)  (5.19)

n—1

H(J*g) (sj —sj+1)E [(g*pg(sn))ﬂ dsi...ds,,n>1.

=1

<.

Accordingly we can write £. = 30 £ where

£ ;=/]R/T [Dfl (A,k—%n) (D) ()\ k+5n)} %dndh
(5.20)

5.2.1. Computation of Dg ; (A, k). The term D ; (A, k) coincides with oL\ k)
defined in [5, formulas (5.6) and (5.7)]. Therefore, see [5, Lemma 5.1], we have
the following result.

Lemma 1. For any test function G € S(R x T) and A > 0, we have

Yo G*(n, k) { ( €n> . ( 877)}
— 1 lim — = Y Ips (A k- 2L De MNEk+— ) b dndk
2 6—1>0+/]R><’]1‘ A+ idew(k,n) 0,1 2 +(D6.1) 2 g

(5.21)
[ Rel W (0,7', k) G*(n, k)
- V/RXTR : (k)]AJriw’(k)n’ {/]R A +iw’ (k)n

dn} dkdn’.

5.2.2. Asymptotics of Dg ,(A, k). Using (4.7) we can write

400 t
DE4(0 k) = —e4 / et / ds exp {iw(k)(t — )} E [g % p(s)g * p3(8)]

The expression for Df 5(), k) is therefore identical with 92 (X, k) defined by [5,
formulas (5.6) and (5.7)]. We have therefore, see [5, Lemma 5.2].

Lemma 5. For any A > 0 and G € S(R x T) we have

o . e . en\1 G*(n, k)dndk
_5511—% RxT [DO’Z (A’k 2 ) + (D0’2) (A kot )] A+ id.w(k,n)
v [ FRWO,, k)dy'dk / G (1, k)dn

4 Jrsr A+ w! (k) A+ w! (k)n
v o[ SRWO,n, —k)dy'dk / G*(n, k)dn

+Z RxT A —w' (k) R A+ iw'(k)n’

(5.22)
Summarizing, taking into account definitions (2.43), we have

Y g 0 _ (P (R) = 1) | (R)] W (0,7, k)dn'
im £
2« A+ iw (k) RxT A+ iw (k)n’

W() ,
)\—Hw |/ 77 (5.23)
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5.2.3. Asymptotics of Z+°° D; (A, k). We prove the following.

Lemma 6. For any A > 0 we have
Y en\] G*(n, k)dndk
A _ =7 De< Sy AL R
yim S [ [on (- 9) o (o ) 550

v G*(n. )[1 = |v(k)[*)dndk / OPW (0,1, )dn’de
2u(l = T/p) Jrxr A+ w’(k)n RxT A+ w’ (€)n

(5.24)

The proof of the lemma is presented in Sect. 5.2.5. It requires some aux-
iliary calculations that are done in Sect. 5.2.4.

5.2.4. Auxiliary Calculations. We suppose that n > 1. Using the change of
variables 7; := s; — 511, 7 = 0,...,n, with 59 := ¢ and 5,41 := 0 in the last
formula of (5.19) and then (4.16) we get

n 400
DE(ME) = — (2 e et/2gt | 4p 7o
2 El
T\ M 0 R (0,400)n+1

xexplif|t— ZTj exp < — ZT] /2 3 &* (10, k)(J * g)(10)
=0
’ (5.25)

H Jxg)? {(g*pg(Tn))Q} .n>1.

Doubling the 7; variables, via (4.16), we get

; Fy n - / / / :
D;(Mk)= ——— | — dt d d d d
'n.( ’ ) (271_)".:,_2 <’u> /0 - ﬂO,n e 0400y T0,n (0 ooy To,n

« e—Net/2 H exp {iB;(1j — TJ’.)}exp {iﬁ (t — % Z Tj — % Z TJ) }
j=0 j=0

j=0

X exp {—)\5 (Zi: Tj) /4} exp {—As (é: 7'7'> /4}

n—1

x ¢* (4, k)(J * g)(70) H(J*g) ) [ (T 9)(T)E [(g% pd (7)) (g% p5(1))] -

j=1

Integrating out the ¢, 7 and 7/ variables, we get

Dy (\ k) = (277 y2 () / )\e/Q—zﬁ (5.26)
/R”+1 dBon(JG) (Ne/4 —iBo +iB/2) ¢*(Ne/4 — iBy — iB3/2, k)

n—1
x [179) (he/a—i8; +i8/2)
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n—1

11(78) Ne/a+iB; +iB/2) Gre/4 = iB +i8/2)F(N\e/4 + iy +iB/2)

j=1
x E [pg(Ae/4 —iBn + iB/2)pg(Ae /A + iB, +iB/2)] .
Here
g
A+ iw(k)

; ! 0 v (0)
0(y\) — — _
oY) =5 /TF { i) o —iw( (Y
are the Laplace transforms of ¢(t, k) and pJ(t), respectively.
Thanks to (2.20), we have

[pO )\1 ]JO )\2 = /d@/dﬁl

E[$(0)" w>} . B
(M +iw(0) (A2 —iw(?)) (A —iw(0)) (A2 + iw())

and

Substituting in (5. 26) we get

DE(\ k) = % s () /jT dzdz’/ A€/2_zﬁ

/Rﬂ+1 dﬂom(Jg) (Ne/4d —ify +1i06/2)

d\e/4+iBo +1i3/2)
Xe/4+ iBo +iB/2 — iw(k)

g(he/d —iB, +iB/2)g(Ne/4 +iB, +i5/2)

n—1 _
x [[(J9) (Ae/4 —iB; +iB/2) H (J§) (Ne/4+iB; +iB/2)

j=1 j=1

E [4(09(¢)]
"\ e/d—iBn +iB/2 + iw(O)|[Ne/4 + By + B2 — iw(0)]

E[4(09(0)]
T N/A =B + B2 —iw(D]De /4 + B + B2 + io(0)]

Change variables 8} := §; + 3/2, j = 0,...,n and integrate out the
variable, using (4.21). We can write then

n—1

D5\ k) = 4%” (%)"7 LLIL. / 1 [](T9) Bre/4 — iB;)

j=1

1:[ (J§) (Ne/4+1iB5), (5.27)
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where
g(\e/4+ifo)
Ae/d + 18y — iw(k)

L= L (Jg) (3X\e/4 — i)

o dfo (5.28)

and
A / dede’ / 3N/ — iB) GO /A + i)
271' T2 R

E [ (09"(¢)]
[BAe/4 —iBn + iw(O)][Ae/4 + iBn — iw(l)]

(5.29)

+

E 4 (0d()] ]
[BAe/4 — i, —iw(0)][Ne/4 + il + iw(L)) Fn.

5.2.5. The End of the Proof of Lemma 6. Using formula (5.27) we conclude,
cf (5.20) and (2.48), that

hm+£”) = lim gln (5.30)

where
I —2//ReD5 (\ k) G ( (]2) dndk. (5.31)

Here

- Fn—l
D (N k) = ——1.1I,.
4pun
The calculation of the limit (5.30) reduces therefore to computing the limits
of I, and II..

Computation of lim, o4 I.. Since §(\) = 1 — vJg(\), we can write [, =
I! + 12, where

L0 [ (J§) (BAe/4 —ifo)
L= RA€/4+iﬁ0—iw(k)dﬁ0
2= [ () e/a—ipy) DX ) g

2 R
Using (4.21) we get

1_ 7 (J§) (3Xe/4 —if3o) L _
o r Ae/4+ifo — Z'w(;)dﬁo =7(J9) (Ae —iw(k)).

Ae/4+ify — iw(k)

Therefore

1 p—
Eli%lJrI =1-wv(k). (5.32)

On the other hand
lim (J§) (3e/4 — ifo) (JG)(Ne/4 + i) = |(J§)[* (i)
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in any LP(R), p € (1,400) and pointwise. Therefore,

T A 1(73) (iBo) [2dBo
61—1>%1+I€ Y El—l%l-i- {/R Ae/4+ify — iw(k) } .

Since j(6o) := |(J§) (iBo)|? belongs to any LP(R) for p € [1,+00), by the
multiplier theorem, see, for example, [11, Corollary of Theorem 3, p. 96]

. J(Bo)dfo oo © aming’
iy [ i o o0 = [ e,

in the LP(R) sense, for any p € (1,400). Here
i) = [ e i(s)as

is the Fourier transform of j.
We have w " (wmin) = 0, wi ' (Wmax) = 1/2. In the case w € C*°(T):

(wgl)/(w) = +(w — wmin) " 2pe (W), W — Wiy < 1, (5.33)
and

(w;l)/(w) = +(Wmax — W) Y 2p* (W), Wmax —w < 1, (5.34)
with p,, p* € C°(T) that are strictly positive. When w is not differentiable at
0 (the acoustic case), condition (5.34) does not change but then

(wih) (W) = £pu(w), = wmin < 1, (5.35)
In consequence,
2
. 2 _ 0.
Jim 12 = —o—jw(k) (5.36)

in the LP(T) sense for any p € [1,2). We have shown therefore that
2
. T .
dim L= = 1= v(k) = i(w(k) (5.37)
in the LP(T) sense for any p € [1,2). Since j is real valued we have
1 . 1.
5 Rei(B) = 5i(5) (5.38)

and
I Loy (i 2
%Re)(w(k;)) = §|(J9) (iw(k)) |-

Thus, using the relation

we conclude that

Rel =1 = Rev(k) = L-[(Jg) (iw(k)) |

1

) (5.39)
= 1= Rev(k) = 5|1 = (k)" = 5 (1= [v(k)).
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Computation of lim. o4 II.. We have II. = II! + II?, where

e [ [ SN/ 8050/ B, )E (G0 (¢)]
21 oo / 6” [BAe/4 —iB, +iw(0)][Ne/4 + i3y, —iw(l)]
e <3As/4 —iB)0e/4 + i6) [ (0d ()]

dedl’ d n .
Changing variables 4, := 3, — w(¢'), we obtain

.= 1 dear / dpy,
271' T2 R

G(3A/4 B, — iw(0)(Ne/4 + iefn + iw(D)E [(0)i (¢)]
BA/4 — iB, + ie— (w(€) — w(¢))][N/4+iB,] '

Therefore

lim 11! = dede’.

e—0+ T oon £—>0+

L MOPEOi )]
/W A+ ie=Hw(l) — w())

Changing again variables

;e 5 en
t=0+= r=i-=!
T 2

we conclude that

2W 14
lim I :2/ OFWO.0.0) ;00 (5.40)
e—0+ RXT /\ + iw'(0)n
A similar calculation proves that also
0 14
lim 112 :2/ OFWO.n.0 0 (5.41)
e—0+ RxT )\ + w' (£)n
We conclude therefore
o
= lim II. =4 / OFWO.0.6) 0 (5.42)
e—0+ rRxT A+ iw'()n

The right-hand side of (5.42) is real valued. Gathering all the facts proven
above, we conclude that

| 1 *
11%;:(”) = 2/7 / UReJmczndk (5.43)
e RxT
n-1 1 — |v(k)[>)G*(n, k 2W(0, 7'
T / (L= )& o )dndk/ WOEWO, 1,6 4 gy,
o JrxT A +iw' (k)n rRxT At iw (O)n

Combining this with formula (5.31), we conclude the proof of Lemma 6. [
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5.3. Proof of Proposition 2
According to (5.4) for any we have

3
/ @ (N1, k)G (1, k)dndk = > W, where
j=1
We (0,1, k)G (n,k)dndk

RxT At idew(k;n) (5.44)

€ <(\) G*(n, k)
wie) = el / : dndk

2 w RXT /\+156W(k§n) 1

W [ o (k- ) e (e )

It is easy to see that the limit of W{E), as € — 04, corresponds to the first
term in the right hand side of (5.6). Using Proposition 3, we conclude that the

limit of WQ(E) matches the second term there. Finally, Wg(e) Z+°° S(")
and the respective limit is a consequence of Lemmas 1, 5 and 6. ThlS ends the
proof of the proposition. O

5.4. The End of the Proof of Theorem 1

Using the equality (3.8) and the results of Proposition 1 (for > 1/2), Lemma
3 (for ;1 = 1/2) and Proposition 1, together with formula (5.6) we conclude that
for any A € C; the Laplace—Fourier—-Wigner functions w,(\, n, k) converge, as
€ — 0+, in A’, in the x-weak topology to

W (0,1, k) VT w(k)[? 1
Nt i (on = TJmAO -+ i (o)) (1 2u>
v (k)2 w(OPW©,7.0)

20l + i () (1= T /) / RIS
_ ARelv(k)] [ W(O,7k)
A+iw' (k)n Jrg A+ i’ (k)n
19(k) W (0,1, k)dn’ W 0,7 7—k i
AN+ (k)n) Jg A+ (k)y 4\ —l— iw!( 7'

Inverting both the Laplace transform in ¢ and Fourler tranbform in z we obtaln
(2.53), which ends the proof of the theorem. O

w(A,n, k) =

(5.45)

6. Proofs of Lemmas 1 and 2

6.1. Proof of Lemma 1
We have

where

1 e 1 dv
GO\ = Q/T+ em 0= Q/T+ T (6.2)
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Thanks to (6.1) and (2.34), we conclude that

~ 1
[(GT) N < —————,  |A] > Wmax, ReA > 0. (6.3)
‘)\| — Wmax
On the other hand, thanks to (2.34) and (2.35), we have also
~ 2
[(gJ)(N)] < e Re A > 0. (6.4)

As a result §J € HP(C,) for any p € (1,+00). The limits in (2.40) and (2.41)
can be substantiated by the results of Sections A and B of Chapter 6 of [6].
Recall that w}'(-) is the inverse of the restriction wio,1/2]- From (6.2) we

—~

get

- B 1 Wmax dv
G(e +iw(k)) = 2/ W' (Wit (W)[e +i(v+ w(k))]

Wmin

To simplify assume that k € [0,1/2]. It is clear that

. . ; . o dv
Jim G+ i(h) = Glist) =~ [ s

and there exists C' > 0 such that
Gle +iw(k)) — G(iw(k‘))‘ <Ce, ke ce(0,1), (6.5)

where fo) =[keT: dist (k, Q*) > 0]. Concerning H(-) we have

‘ _1 Wmax dv
(e +ivk) = 5 | W (w7 () e + i(wk) —v)]

A simple calculation leads to

Hiw(k)) = Tim H(e +iw(k))

1 . Wmax — w(k)
~ a1 (G o)
i / W (k) — ' (w7 (0) v
2 Jomin @' (W5 (0))w' (k) (w(k) —v)
Since w’(+) is Lipschitz the integral in the right hand side makes sense. A
straightforward calculation implies the existence of C' > 0 such that

)H(e +iw(k)) — H(iwk)| < Ce, ke l®, e e (0,1). (6.6)

From (6.5) and (6.6) we conclude (2.42). In addition we infer also the continuity
of v(k) on T\ Q.. O
6.2. Proof of Lemma 2

For a given f € L'(R) such that f > 0 a.e. we let

B fla)da

R Z+'LO{’

M(z) : z€Cy. (6.7)
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The function is holomorphic and Re M (z) > 0 for z € C,.. In addition, for any
p > 0 we have

, pf(a)da / (B + ) f(a)da
M(p+ = / — , eR. 6.8

R A T ER A R (8)
Suppose also that f € LP(R) for some p > 1. By [11, Corollary of Theorem 3,
p. 96] we conclude that

My(8) = lim M(p+iB) =nf(~0) ~iHI/IB), BER  (69)

where
wifl) = i [ GEDIOE e (6.10)

and the limits in (6.9) and (6.10) are understood in the L? sense.
We shall prove the following result.

Proposition 4. Suppose that f € L*(R) N LP(R) for somep > 1 and f >0 a.e.
Then, for any v > 0 the following identity holds

T Jr L+ My (B)]? \1+7M+

Before proving the proposition, which we are going to do momentarily,
let us first apply it to show how, with its help, to finish the proof of Lemma 2.

6.2.1. Proof of Lemma 2. From (2.31) we get
. vz dk vz dk fi(v)dov
JO\) = L — NN 12
) /0 )\+iw(k)+/0 ) Je At (6.12)

fe(w) := W, v ER. (6.13)
+

where

Recalling that

W (Wit (v)) ~ (Wiax — V)Y2, wmax — v < 1,
see (5.33), and

W (Wit (W) ~ (v — Wmin) 2, 0 — wmin < 1

in the optical case (see (5.34)), and |’(w;'(v))| ~ 1, v < 1 in the acoustic
one we conclude that f. € LP(R) for any p € [1,2) and [, fu(v)dv = 1. It is
easy to see from (6.12) and (6.13) that

J*A) =J(\), reCy. (6.14)
Recall that J(iw(k)) = hmgﬁ(w J(e +iw(k)), cf (2.40), therefore

s —/
|1—|—7sz DIE

B 1/2 1/2 dr
_/o |1+7J(M( ))I2+/o |1+~ > (iw(0)) 2
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Y
p+ Ri

p—Ri

FiGURE 1. Contour of integration

Y LN S T
0 @@ Jo T rrdCiw@)E  Ja [1+dG)
Formula (2.49) is then a direct consequence of (6.11). Equality (2.49) is in fact
equivalent with

1 1
1= 2 1
which in turn yields (2.50). O

6.2.2. Proof of Proposition 4. Suppose that p, R > 0. Consider the contour
C),r, cf Figure 1, made of the line segment from p — Ri to p + Ri and the
semicircle centred at p of radius R, oriented clockwise. Since M(z) is analytic

in C4, we have
M(z)d
/ MEd= (6.16)
cpn L+ 7M(2)
The above equality yields

B M(p+ip)dp /”/2 M(p+ Re'®)Re'df
_r1+yM(p+ipB) —x2 L+yM(p+ Re®?)
Letting first p — 0+ and then R — +o0, in this order, we conclude, thanks to

the definition of M(z) and the fact that the expression under the integral is
bounded, that

(6.17)

R
I - 1
Rotoo | g1+ 7M+ / Ut (6.18)
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Taking complex conjugation on both sides

R M*
li .
[0 (e o
Adding (6.18) and (6.19) sideways, and using (6.9) we get
R 2 R
| M, (B)|dp : / f(=p)dp
2y lim ———— 427 lim ——
R—too J g [L+yMi(B)]? R—+too J g [L+ ML (B) (6.20)
—2n [ f(9)d5.
R
This ends the proof of the proposition. O
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