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Abstract. I study a class of global, causal geodesically complete solutions
to the spherically symmetric Einstein scalar field (SSESF) system . Ex-
tending results of Luk and Oh (Anal PDE 8(7):1603–1674, 2015), Luk et
al. (Ann PDE 4(1):1–59, 2018), I provide new bounds controlling higher
derivatives of both the metric components of the solution and the scalar
field itself for large data solutions to SSESF. Moreover, by constructing
a particular set of generalized wave coordinates, I show that, assuming
sufficient regularity of the data, these solutions are globally non-linearly
stable to non-spherically symmetric perturbations by recent results of Luk
and Oh. In particular, I demonstrate the existence of a large collection of
non-trivial examples of large data, globally nonlinearly stable, dispersive
solutions to the Einstein scalar field system.

1. Introduction

I study the decay properties of a class of spherically symmetric solutions
(M, g, φ) to the Einstein scalar field system, for M a 3 + 1-dimensional mani-
fold, g a Lorentzian metric, and φ : M → R a real-valued scalar field:{

Rμν − 1
2gμνR = 2Tμν

∇μ∂μφ = 0
. (ESF)

Recently, Luk and Oh in [15] proved a large data stability criterion for solu-
tions to (ESF); in this paper, I prove the following

Theorem 1.1. There exist large data solutions satisfying the stability criterion
of [15].

From this, we obtain the immediate corollary:

Corollary 1.2. There exists an open set of large initial data for ESF which give
rise to dispersive solutions.
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http://orcid.org/0000-0002-4668-8424
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This is the first such result in the large data case; previously there is
no known existence result for global dispersive solutions to (ESF) outside of
spherical symmetry [18], or the small data regime [7,14] (note, however, the
spectacular recent advances in the stability of the black hole problem, see
[10,12,13]).

I build off the results of Luk–Oh–Yang in [18] in which a large class of
large data spherically symmetric solutions to the Einstein scalar field system
are constructed to the future of a cone1, with decay estimates both toward
null and timelike infinity up to second derivatives in a spherically symmetric
double null coordinate system:

• I begin by improving the estimates of Luk–Oh–Yang to all order of deriva-
tives, since the stability result of Luk–Oh, [15], requires ≥ 11 derivatives.
Given the basic control of the spacetime geometry that has been estab-
lished in [16], these estimates follow from the methods of [18], with some
additional care given to controlling terms near the axis of symmetry.

• Next, I extend the Luk–Oh–Yang spacetime (originally only to the future
of a cone) to a larger spacetime defined to the future of an asymptotically
flat Cauchy hypersurface. This is realized by solving a “sideways” char-
acteristic initial value problem toward spatial infinity. This builds upon
the work of Dafermos in [9]. As before, I prove decay estimates for all
higher order derivatives.

• In this spherically symmetric spacetime, I then introduce a future-normal-
ized spherically symmetric double-null gauge in which one obtains some
slightly stronger decay estimates. It is at this point when one identifies
the logarithmic terms arising from the contribution of the mass, which
play an important role in the generalized wave coordinates that are later
introduced.

• Finally, I introduce a generalized wave coordinate system and show that
the constructed spacetime satisfies the estimates required by Luk–Oh in
[15], which are defined in terms of commuting vector fields in terms of
the generalized wave coordinates. Here, one must take advantage of the
null condition (manifested in the different decay estimates for the ∂v and
∂u derivatives) and also be careful about the regularity of the solution at
the axis (since the function r is not smooth at the axis).

1.1. Prior Results

In the early 1990s, Christodoulou-Klainerman in [7] established the first global
nonlinear stability results in the asymptotically flat setting, showing that
Minkowski spacetime is globally non-linearly stable under the Einstein vac-
uum equations; see also [11]. In particular, they showed that for asymptotically

1In [18], Luk–Oh–Yang also construct global spacetimes by solving a scattering problem from

past null infinity. For technical reasons, I do not directly control such global spacetimes, but

instead start from the spacetimes defined to the future of a cone. It thus remains open

whether there are future and past complete spacetimes satisfying the assumptions of Luk–

Oh’s result [15] in both the future and past directions.
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flat initial data which are sufficiently close to Minkowski, the maximal glob-
ally hyperbolic development is causally geodesically complete and approaches
Minkowski at large times. Lindblad-Rodnianski [14] later simplified the proof
and extended the result to the Einstein scalar field system. These results both
require explicit smallness of the data. Recently, Luk-Oh further extended the
results and techniques of [14] in [15], to give a set of criteria for large data
causally geodesically complete solutions to be globally non-linearly stable for
the Einstein scalar field system. These criteria consist of decay conditions for
high order derivatives of the geometry and scalar field, as well as the existence
of a gauge in which the solution satisfies some specific asymptotic relations.
This was the first such stability result for large data.

The spherically symmetric Einstein scalar field system has been stud-
ied extensively over the past four decades, being among the most accessible
systems containing matter in the spherically symmetric class. Through the
1980s and 1990s, Christodoulou established a complete picture of the singu-
larity structure of spherically symmetric solutions (cf [1–6]). In particular, he
showed that generic (in BV) initial data give rise to a solution which is either
dispersive, or contains a black hole region and a spacelike curvature singular-
ity. This work established both a complete understanding of the singularity
structure of the spherically symmetric Einstein scalar field and qualitative
description of the long term dynamics of the system. Moreover, [1] gives quan-
titative control for small data. It remained to establish quantitative bounds in
the large data case.

There has since been significant progress in this direction. In the black
hole case, this was done by Dafermos-Rodnianski in [8], in which they estab-
lished polynomial decay rates conjectured by Price [19]. Corresponding lower
bounds have more recently been established in [17]. We will focus on the dis-
persive case, which was studied by Luk-Oh in [16]. They establish quantitative
decay rates for φ as well as the geometry of the system for up to C2 solutions,
without (quantitative) restriction on the BV norm of the data. The new high-
order decay established in this paper is an extension of these results to Ck

data for arbitrary k ≥ 2 (controlling up to k derivatives of φ and geometric
terms).

The above references provide only an incomplete picture of the full devel-
opment of the current understanding of the Einstein scalar field system. For a
more complete collection, see [15].

1.2. Outline of the Paper

In Sect. 2, we will lay out the problem, establish our notations and conventions,
and restate some prior results (from [9,16]) which will be referenced later. In
Sect. 3, we will provide precise statements of the primary results of the paper
(cf. theorems 3.1 and 3.4).

The remainder of the paper is devoted to proving the results stated in
Sect. 3. In Sects. 4 and 5, we have Theorem 3.1. In particular, Sect. 4 provides
estimates at arbitrary differential order in a region with compact curves of
constant u (respectively, v). In Sect. 5, I establish the estimates of Theorem 3.1
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in a region away from the axis of symmetry. Together, these complete the proof
of Theorem 3.1.

Finally, Sects. 6 and 7 are devoted to proving global nonlinear stability
of the spacetimes considered in Theorem 3.1 (Theorem 3.4), from the results
of Theorem 3.1. In Sect. 7, we show that our estimates in spherical symmetry
extend nicely to the full, un-reduced spacetime, and in Sect. 6 we check that
the class of solutions considered in Theorem 3.4 in fact satisfies the conditions
of the main theorem of [15] and thus exhibits global nonlinear stability to (an
open class of) non-spherically symmetric perturbations.

2. Preliminaries

In this section, we will go over the setup of the problem at hand, the form of
the equations and coordinates we will use, some important terms and useful
machinery, and prior results we will use throughout the paper.

2.1. The Einstein Scalar Field System

We begin with an overview of the deriving of the spherically symmetric Ein-
stein scalar field system. We begin with the full Einstein scalar field system in
3+1 dimensions.

Solutions are described by a triple (M, gμν , φ) where (M, gμν) is a (3+1)-
dimensional Lorentzian manifold, and φ is a real-valued function on M. The
metric and scalar field satisfy the Einstein scalar field system:{

Rμν − 1
2gμνR = 2Tμν

∇μ∂μφ = 0
(ESF)

where Rμν is the Ricci curvature of g, R is the scalar curvature, ∇μ is the
covariant derivative corresponding to the Levi-Civita connection on (M, g),
and Tμν is the energy–momentum tensor given by φ:

Tμν = ∂μφ∂νφ − 1
2
gμν∂λφ∂λφ.

Assume that (M, g, φ) admits a smooth action of SO(3) by isometries on
(M, g) such that each orbit is either a point, or isometric to S2 with a round
metric, and φ is constant on each orbit. Such a solution is called spherically
symmetric. These properties are all propagated by (ESF); thus, if (M, g, φ) is
a Cauchy development of some initial data, it suffices to assume that the initial
data are spherically symmetric to ensure spherical symmetry of the solution.

Under this assumption, we can take the quotient M/SO(3) which yields
a (1+1)-dimensional Lorentzian manifold with boundary which we will denote
by (M, g). The boundary Γ is the set of fixed points of the SO(3) action.

In this setup, we can define the area radius function r on M by

r :=

√
area of symmetry sphere

4π

with r = 0 on Γ. Note that each connected component of Γ is a timelike
geodesic.



Vol. 23 (2022) Global Non-linearly Stable Solutions to ESF 3097

Henceforth, we will assume that Γ is non-empty and connected, and that
there exists a system of global double null coordinates (u, v), in which the
metric takes the form

gabdxadxb = −Ω2dudv

for some Ω > 0. Both of these assumptions are certainly justified so long as
(M, g) is a Cauchy development of a spacelike hypersurface homeomorphic to
R

3.
We can recover the metric g on M from Ω and r:

gμνdxμdxν = −Ω2dudv + r2ds2
S2

where ds2
S2 is the line element for the unit sphere S2 ⊂ R

3. From this, we can
reformulate our inherited equations on (M, g) as the spherically symmetric
Einstein scalar field system (SSESF) in terms of the triple (φ, r,Ω) as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u∂vr = −∂ur∂vr − 1
4Ω2

r2∂u∂v log Ω = ∂ur∂vr + 1
4Ω2 − r2∂uφ∂vφ

r∂u∂vφ = −∂ur∂vφ − ∂vr∂uφ

2Ω−1∂ur∂uΩ = ∂2
ur + r(∂uφ)2

2Ω−1∂v∂vΩ = ∂2
vr + r(∂vφ)2

(SSESF)

with the boundary condition r = 0 on Γ.
We can reformulate this problem once more in terms of the Hawking mass

m defined by

1 − 2m

r
= ∂ar∂ar = 4Ω−2∂ur∂vr. (2.1)

We also define the mass ratio:

μ :=
2m

r
,

and introduce some shorthand for important derivatives of r:

λ := ∂vr ν := ∂ur.

With this in mind, we see that we can reformulate (SSESF) in terms of the
triple (φ, r,m) in the following way:

We say that (φ, r,m) is a solution to (SSESF) if the following relations
hold: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u∂vr = 2mλν
(1−μ)r2

∂u∂v(rφ) = 2mλν
(1−μ)r2 φ

ν−1∂um = 1
2 (1 − μ)r2(ν−1∂uφ)2

λ−1r∂vm = 1
2 (1 − μ)r2(λ−1∂vφ)2,

(SSESF’)

and moreover, r = m = 0 on Γ.
Observe that we can equivalently write our equation for rφ as:{(

ν−1∂u

) (
λ−1∂v

)
(rφ) = 2m

(1−μ)r2 φ − 2m
(1−μ)r2 (λ−1∂vφ)(

λ−1∂v

) (
ν−1∂u

)
(rφ) = 2m

(1−μ)r2 φ − 2m
(1−μ)r2 (ν−1∂uφ)

. (2.2)
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2.2. Notation and Conventions

Here we will write down some notation and assumptions that will carry
throughout the remainder of the paper.

We begin with a more concrete definition of the reduced space we work
with.

Let R1+1 denote the (1 + 1) dimensional Minkowski space with standard
double null coordinates (u, v). Let M be a (1 + 1) dimensional Lorentzian
manifold conformally embedded in R

1+1 with ds2
M = −Ω2dudv. From r a

non-negative function on M , define the set

Γ := {(u, v) ∈ M | r(u, v) = 0}.

Define M = M × S2/ ∼ where ∼ is the equivalence

(u, v, s) ∼ (u, v, s′)

if and only if (u, v) ∈ Γ, s, s′ ∈ S2. This is the full 3 + 1-dimensional space
above M .

We assume that Γ is connected, the image of a future-directed timelike
curve emanating from (1, 1). We also assume that CR, CR ⊂ M for all R > 0,
where

CR =
{
(u, v) ∈ R

1+1
∣∣u = R,R ≤ v < ∞

}
CR =

{
(u, v) ∈ R

1+1
∣∣ v = R,−∞ < u ≤ v

}
.

Finally, define past and future null infinity (denoted by I−, I+, respec-
tively) to be the sets of “points” (−∞, v), and (u,∞), respectively, s.t. supCu

r = supCv
r = ∞.

Combining this with the Hawking mass above, we define the Bondi mass
as Mu = limv→∞ m(u, v). The final Bondi mass Mf = limu→∞ Mu and the
initial Bondi mass Mi = limu→−∞ Mu.

We also outline our convention for integrating over curves in M . When
integrating over Cu or Cv, we write∫

Cu∩{v1≤v≤v2}
f =

∫ v2

v1

f(u, v′)dv′

∫
Cv∩{u1≤u≤u2}

f =
∫ u2

u1

f(u′, v)du′.

We define the domain of dependence of a line segment Cu0 ∩ {v ≤ v0}
(which we denote D(u0, v0)) to be the set of points p ∈ M such that all past-
directed causal curves through p intersect Γ ∪ (Cu0 ∩ {v ≤ v0}) along with the
segment Cu0 ∩ {v ≤ v0}.

2.3. Gauge Conditions

Observe that, to this point, the coordinates u, v are free to be reparametrized
by transformations of the form

u �→ ũ(u) v �→ ṽ(v) ũ(1) = ṽ(1) = 1
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for any monotone increasing ũ, ṽ. To fix these coordinates, we must prescribe
some gauge condition.

In what follows, we will consider the following three different conditions:
(G1) λ ≡ 1

2 on C1, Γ = {(u, v) | u = v}.
(G2) limv→∞ ν(u, v) = − 1

2 for all u, and Γ = {(u, v) | u = v}.
(G3) λ ≡ 1

2 on C1 and ν ≡ − 1
2 on CR for some R � 1

Remark 2.1. The gauge (G2) can be obtained from (G1) by the following
transformations:

ũ2(u1, v1) = −2
∫ u1

1

ν̄(u′
1)du′

1 ṽ2(u1, v1) = −2
∫ v1

1

ν̄(v′
1)dv′

1 (2.3)

where ν̄(u) := limv→∞ ν(u, v).
(G3) can be obtained via a similar transformation fixing v = R rather

than taking this limit.

Remark 2.2. In both the gauges (G1) and (G2) for r, φ Ck-smooth on M , the
following hold

lim
v→u+

(∂u + ∂v)lr(u, v) = lim
u→v−

(∂u + ∂v)lr(u, v) = 0

lim
v→u+

(∂u + ∂v)l(rφ)(u, v) = lim
u→v−

(∂u + ∂v)l(rφ)(u, v) = 0

for all l ≤ k.

Remark 2.3. Also under either of (G1) or (G2), the domain of dependence
D(u0, v0) has the form

D(u0, v0) = {(u, v) ∈ M |u ∈ [u0, v0], v ∈ [u, v0]}.

2.4. The Characteristic Initial Value Problem

We are now ready to pose the problem on which our analysis will focus through-
out the first half of the paper. Of course, the equation we must satisfy is given
by (SSESF’), but it remains to specify the precise notions of solution and
specify the constraints on initial data that we will consider.

This initial data are quite constrained by (SSESF’). In fact, to obtain a
solution in all of R1+1

x≥0 it suffices to pose data for ∂v(rφ) and ∂u(rφ) on the char-
acteristic curves C1 and CR, respectively, as well as the values φ(1, 1),m(1, 1)
(which we will take to be 0), and a choice of gauge. The data on C1 then
completely determine the solution in the region DC1 , because our gauge in
combination with the equation determines data for m and r as well. Of course,
on CR we must check that our data in the region u ≥ 1 are compatible with
that posed for CR. This is only a local constraint, in that we can prescribe
whatever data we want for u < 1 − ε for any ε > 0, and (Ck)-smoothly inter-
polate in the region [1 − ε, 1].

Definition 2.4. (Ck solutions to (SSESF’) (in (G1))) A solution (φ, r,m) to
(SSESF’) is called a Ck solution on M if the following holds on every domain
of dependence D(u0, v0):



3100 E. Kilgore Ann. Henri Poincaré

(1) supD(u0,v0)(−ν), supD(u0,v0) λ−1 < ∞.
(2) λ, ν are Ck on D(u0, v0).
(3) For each (u, u) ∈ Γ

lim
ε→0+

(ν + λ)(u, u + ε) = lim
ε→0+

(ν + λ)(u − ε, u) = 0.

(4) ∂v(rφ), ∂u(rφ) are Ck on D(u0, v0).
(5) For each (u, u) ∈ Γ

lim
ε→0+

(∂v(rφ) + ∂u(rφ))(u, u + ε) = lim
ε→0+

(∂v(rφ) + ∂u(rφ))(u − ε, u) = 0.

This initial value problem is well-posed for Ck (k ≥ 1) initial data: For
compatible Ck initial data posed on C1 and CR, there exists a unique Ck

solution on some domain {(u, v) | ū > u ≥ 1, v > 1}∪{(u, v) | v̄ > v ≥ R, u ≤ 1}
where ū, v̄ depend only on R and the size of the initial data (in Ck). The
proof is via standard iteration and not repeated here. For discussion of the
compatibility of the two pieces of data, see [9].

Note that data which are Ck on C1, CR will give rise to a Ck solution.

2.5. Definitions and Prior Results

Here we state some longer definitions of terms we will use throughout the
paper.

It is essential to obtaining the desired decay that the prescribed initial
data already verify such an estimate. As such, we make the following definition.

Definition 2.5. (Asymptotic Flatness of Order ω′ ≥ 0 in Ck) An initial data
set is said to be asymptotically flat of order ω′ in Ck toward I+ (resp. I−)
if ∂v(rφ)(1, ·) ∈ Ck[1,∞) (∂u(rφ)(·, R) ∈ Ck(−∞, 1]) and there exists A > 0
(A′) such that

sup
C1

vω′+l
∣∣∂l+1

v (rφ)
∣∣ ≤ A < ∞ (2.4)

sup
CR

(1 + |u|)ω′+l
∣∣∂l+1

v (rφ)
∣∣ ≤ A′ < ∞ (2.5)

for all l ≤ k.

The solutions we consider will also be required to satisfy an additional
constraint:

Definition 2.6. (Local Scattering) A Ck solution (φ, r,m) on M is said to be
locally scattering if the following holds:
(1) The full (3+1)-dimensional solution (M, g, φ) is future causally geodesi-

cally complete.
(2) There exists r0 > 0 such that∫

Cu∩{r≤r0}

∣∣∂2
v(rφ)

∣∣→ 0,

∫
Cu∩{r≤r0}

∣∣λ−1∂vλ
∣∣→ 0

as u → ∞.
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Throughout what follows, we will frequently be writing down bounds for
various quantities. We will not often write out explicit constants, as all will
be taken to be the same in the end and depend on the same quantities. To
this end, we will write ∂αA � B to mean that A is bounded by B up to a
constant depending on the constants A,A′ above, the order of derivative |α|,
the initial Bondi mass M−∞, and some more complicated quantities depending
on low-order behavior of solutions2. The important point is that our constants
are global; in particular, they have no dependence on coordinates.

Here we will give some names to various spacetime regions we will be
interested in. Let

Q := {(u, v) ∈ M |u ≥ 1, v ≥ u}
OR := {(u, v) ∈ M |u ≤ 1, v ≥ R}

I := {(u, v) ∈ M | v ≥ |u|}.

Remark 2.7. The region I corresponds to essentially to the future of the curve
u + v = 0 in this spacetime.

We will also be interested in decay of solutions along certain vector fields,
in particular those generating the symmetries of Minkowski space. We in-
troduce some shorthand for these (vector fields on M). In what follows in
this section, let (t, x1, x2, x3) be coordinates on the manifold(-with-boundary)

[0,∞)×R
3, r̃ =

√∑3
i=1(xi)2. We will write latin indices i, j ∈ {1, 2, 3} for spa-

tial coordinates and greek indices α, β ∈ {0, 1, 2, 3} for spacetime coordinates
(in what follows t = x0).

Definition 2.8. (Minkowski Commuting Vector Fields) The Minkowskian com-
muting vectors fields are the set of vector fields{

∂μ, xi∂j − xj∂i, t∂i + xi∂t, S := t∂t +
3∑

i=1

xi∂i

}
.

We will henceforth use Γ to denote a general Minkowskian commuting
vector field. For a multi-index I = (i1, i2, . . . , i|I|), ΓI denotes a product of |I|
Minkowksian vector fields.

We will also write in these coordinates r̃ =
√∑

(xi)2.
We also define the vector fields L,L,E1, E2, E3:

Definition 2.9. Let ∂r̃ =
∑3

i=1
xi

r̃ ∂i. Define

L = ∂t + ∂r̃, L = ∂t − ∂r̃.

Define the vector fields

{E1, E2, E3} :=
{

x2

r̃
∂3 − x3

r̃
∂2,

x1

r̃
∂3 − x3

r̃
∂1,

x1

r̃
∂2 − x2

r̃
∂1

}
tangent to the coordinate 2-spheres of constant r̃, t.

2For details of these dependencies see [16].
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Later, we will use coordinates (s, q, θ, φ) where (θ, φ) the standard spher-
ical coordinates, and (s, q) are given by

s = t + r̃, q = r̃ − t.

This leads us immediately to the vector fields

∂s =
1
2
(∂t + ∂r̃), ∂q =

1
2
(∂r̃ − ∂t).

We introduce a little more notation before we are ready for our final
definition. For a scalar function ξ, we write

|∂ξ| : =
3∑

μ=0

|∂μξ|2 ,
∣∣∂̄ξ
∣∣2 := |∂sξ|2

+
1
2

3∑
i,j=1

(
xi

r̃
∂jξ − xj

r̃
∂iξ

)2

=:
∣∣∂sξ

2
∣∣+ ∣∣ /∇ξ

∣∣2 .

Next, for a 2-tensor p define

|p|2 =
∑

0≤μ,ν≤3

|pμν |2

Define also for a first-order differential operator D, Dp to be D applied
component-wise to p: (Dp)μν = D(pμν).

With this in mind, we make the following definition:

Definition 2.10. Let T =
{
L,E1, E2, E3

}
, U =

{
L,L,E1, E2, E3

}
, L = {L}.

Then, for any two of these families V,W (allowing repeats), and a 2-tensor p
define

|p|2VW =
∑

V ∈V,W∈W

∣∣pαβV αW β
∣∣2 .

Now we make the following definition as in [15].

Definition 2.11. (Dispersive Spacetime Solution of Size (C, γ0, N)) Let γ0 > 0
be a real number and N ≥ 11 be an integer. A spacetime (M = [0,∞)×R

3, g)
with scalar field φ : M → R is a dispersive spacetime solution of size (C, γ0, N)
if
(D1) The triple (M, g, φ) is a solution to the Einstein scalar field system.
(D2) There exists a global system of coordinates (t, x1, x2, x3) such that with

respect to this coordinate system the metric takes the form

g − m = h

where

m = −dt2 +
3∑

i=1

(dxi)2

is the Minkowski metric and h satisfies the bound∣∣ΓIh
∣∣ ≤ C log(2 + s)

1 + s
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for |I| ≤ N +1 where I a multi-index, Γ’s are the Minkowski commuting
vector fields defined above.

(D3) For |I| ≤ N + 1, we have∣∣∂ΓIh
∣∣ ≤ C

(1 + s)(1 + |q|)γ0

for any combination of Minkowski commuting vector fields Γ.
(D4) For |I| ≤ N + 1, we have∣∣∂̄ΓIh

∣∣ ≤ C

(1 + s)1+γ0

for any combination of Minkowskian commuting vector fields Γ.
(D5) For |I| ≤ 1, the following components satisfy bounds:∑

|I|≤1

∣∣ΓIh
∣∣
LL

+ |h|LT ≤ C

(1 + s)1+γ0
.

(D6) For |I| ≤ N + 1, we have∣∣∂ΓIφ
∣∣ ≤ C

(1 + s)(1 + |q|)γ0
,
∣∣∂̄ΓIφ

∣∣ ≤ C

(1 + s)1+γ0
.

(D7) The metric g is everywhere Lorentzian with uniformly bounded inverse∣∣g−1
∣∣ ≤ C.

Let (ĝ)ij be the restriction of the metric g on the tangent space to the
constant t-hypersurfaces (i, j = 1, 2, 3). (ĝ)ij satisfies the condition that
for any ξi,

C−1 |ξ|2 ≤
3∑

i,j=1

(ĝ−1)ijξiξj ≤ C |ξ|2

where

|ξ|2 = (ξ1)2 + (ξ2)2 + (ξ3)2.

Moreover, the spacetime gradient of t is timelike and satisfies

(g−1)00 = (g−1)αβ∂αt∂βt ≤ −C−1 < 0.

(D8) For |I| ≤ N + 1, the global coordinate functions satisfy the estimate∣∣ΓI(�gx
μ)
∣∣ ≤ C log(2 + s)

(1 + s)2

where �g is the Laplace–Beltrami operator associated with g:

�g =
1√

−det g
∂α((g−1)αβ

√
−det g∂β).

Finally, we are ready to state the main theorem of [15]

Theorem. (Large Data Stability, Luk & Oh) Let N ≥ 11 and 0 < γ, γ0 ≤ 1
8 .

For every-dispersive spacetime solution M, g, φ) of size(C, γ0, N) there exists
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ε = ε(C, γ, γ0, N) > 0 such that for all (ε, γ,N)-admissible perturbations3 of
(M, g, φ) the maximal globally hyperbolic future development is future causally
geodesically complete and the spacetime remains close to (M, g, φ)4.

This paper is devoted to finding a class of spherically symmetric solutions
which satisfy the hypotheses of this theorem.

2.6. Averaging Operators

Some of the estimates near the axis will require some extra machinery to
obtain. In particular, it will sometimes be useful to consider the averages of
certain quantities over regions near the axis in order to obtain better control
over them. To this end, following [18] we introduce the operators:

Is
v [f ](u, v) =

1
rs(u, v)

∫ v

u

f(v′)rs−1λ(u, v′)dv′ (2.6)

Is
v [f ](u, v) =

1
rs(u, v)

∫ u

v

f(u′)rs−1ν(u′, v)du′ (2.7)

Is
r̃ [f ](u, v) =

1
r̃s(u, v)

∫ R

0

f(r̃′)(r̃′)s−1dr̃′ (2.8)

where as above r̃ := v − u
Similar to the u, v cases demonstrated in [18], we have for this r-averaging

operator a differential formula:

Lemma 2.12. For s ≥ 1,

∂rI
s
r [f ](r) = Is+1

r [∂rf ](r)

Proof. The procedure is identical to that presented in [18], but we will repeat
it here in the new case for completeness. So let ρ = rs. Then sρ1− 1

s dr = dρ
and sρ1− 1

s ∂ρ = ∂r. Then, the LHS is

(∂rI
s
r [f ])(r) = ρ1− 1

s ∂ρ

(
1
ρ

∫ ρ

0

f(ρ′)dρ′
)

.

One then checks that, letting σ′ = ρ′

ρ

∂ρ

(
1
ρ

∫ ρ

0

f(ρ′)dρ′
)

= ∂ρ

(∫ 1

0

f(ρσ′)dσ′
)

=
∫ 1

0

(∂ρf)(ρσ′)σ′dσ′

=
1
ρ2

∫ ρ

0

(∂ρf)(ρ′)ρ′dρ′.

Thus,

ρ1− 1
s ∂ρ

(
1
ρ

∫ ρ

0

f(ρ′)dρ′
)

=
1

ρ1+ 1
s

∫ ρ

0

f(ρ′)ρ′dρ′ =
1

rs+1

∫ r

0

f(r′)(r′)sdr′.

3For a definition of this term see [15] section 3.
4In a sense defined precisely in Section 4 of [15].
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So substituting we have

(∂rIs[f ])(r) = Is+1
r [∂rf ](r)

as claimed. �

3. Main Results

In this section, I give precise formulations of the main results of this paper.
The first two sections will focus on establishing decay for φ and the geometry
of solutions in the 1 + 1-dimensional, spherically symmetric setting:

Theorem 3.1. Let (φ, r,m) be a locally scattering solution to (SSESF’) with
initial data asymptotically flat of order ω′ ≥ 2 in Ck (k ≥ 1) toward I+

and I−. Then, the following estimates hold in I for all multi-indices α, β with
|α| ≤ k, |β| ≤ k + 1:∣∣∣(λ−1∂v

)|α|
λ
∣∣∣ � (1 + v)−(|α|+1) (3.1)∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
λ
∣∣∣

� min
{

(1 + |u|)−(αu+1)v−αv , (1 + |u|)−αu(1 + v)−(αv+1)
}

(3.2)∣∣∣(ν−1∂u

)|α|
ν
∣∣∣ � (1 + |u|)−(|α|+1) (3.3)∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
ν
∣∣∣

� min
{

(1 + |u|)−(αu+1)(1 + v)−αv , (1 + |u|)−αu(1 + v)−(αv+1)
}

(3.4)∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
φ
∣∣∣

� min
{

(1 + |u|)−(αu+1(1 + v)−αv , (1 + |u|)−αu(1 + v)−(αv+1)
}

(3.5)∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
m
∣∣∣

� min
{

(1 + |u|)−(αu+1)(1 + v)−αv , (1 + |u|)−αu(1 + v)−(αv+1)
}

(3.6)∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv m

rl

∣∣∣
� min

{
(1 + |u|)−(αu+1+l)(1 + v)−αv , (1 + |u|)−αu(1 + v)−(αv+1+l)

}
(3.7)∣∣∣(ν−1∂u

)βu
(
λ−1∂v

)βv (rφ)
∣∣∣

� min
{

(1 + |u|)−(βu+1)(1 + v)−βv , (1 + |u|)−βu(1 + v)−(βv+1)
}

(3.8)∣∣∣(λ−1∂v

)|β|
(rφ)

∣∣∣ � (1 + v)−(|β|+1) (3.9)∣∣∣(ν−1∂u

)|β|
(rφ)

∣∣∣ � (1 + |u|)−(|β|+1) (3.10)

for l ≤ 2.
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Here, and throughout the remainder of this paper we will use the symbol
� to indicate an inequality up to an unspecified constant depending only on
the size of initial data (Bondi mass and |φ|), |α| and |β|.

Remark 3.2. There exist locally scattering solutions with initial data of the
above required asymptotic flatness. In particular, Luk, Oh and Yang show in
[18] (see Theorem 1.5) that initial data ∂v(rφ)(1, v) = Φ(v) asymptotically flat
of order ω′ > 1 satisfying∫ v

u

|Φ(v′)| dv′ ≤ ε(v − u)1−γ , |Φ(v)| + |Φ′(v)| ≤ ε, ∀v ≥ u ≥ 1 (3.11)

for some γ, ε > 0, and

sup
v∈[1,∞]

(
(1 + v)ω′ |Φ| (v) + (1 + v)ω′+1 |∂vΦ| (v)

)
≤ A0 < ∞ (3.12)

gives rise to an equation satisfying the bounds:∣∣∂2
vrφ
∣∣ � min

{
u−ω+1, r−ω+1

}
, (3.13)

|∂vλ| � min
{
u−3, r−3

}
, (3.14)

λ >
1
3
. (3.15)

Here ω = min ω′, 3. In particular, for ω′ ≥ 2, these three bounds imply that
the solution corresponding to Φ is locally scattering in Ck in the sense de-
scribed above. In particular, any initial data which are asymptotically flat of
the required order and satisfy these additional bounds give rise to a locally
scattering solution of the type considered in Theorem 3.1.

Remark 3.3. In the proof of this theorem, we will not explicitly check that
data of the type above gives rise to a global solution (i.e., one defined in the
entire right half plane) of the form we wish to consider. This is, however, true,
and we will assume as much. For discussion of this, see [9].

In fact, we will prove slightly stronger decay in Q en-route to this theorem;
however, the above bounds suffice to prove our second result:

Theorem 3.4. Let (φ, r,m) be as above, and suppose k ≥ 11. Let 0 < γ ≤ 1
8 .

Then, the corresponding (3 + 1)-dimensional solution to ESF (M, g, φ̃) is a
dispersive spacetime solution of size (C, γ0, k) (for some C > 0 depending on
the constants of Theorem 3.1) and is thus globally non-linearly stable to good
non-spherically symmetric perturbations by Sect. 2.5.

4. Inductive Estimates in u, v in the Region Q
In this section, we prove that in Q all f ∈ {λ, ν, μ, φ} satisfy estimates of the
form

|∂αf | (u, v) ≤ min
{

C

u|α| ,
C

uαurαv

}
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to arbitrary differential order. We will work in the gauge (G1). Moreover, in
this section we will only consider data posed on C1, rather than the full setting
eventually required. This is all that’s required to address the region Q, and is
consistent by our compatibility assumption on the initial data.

We will, throughout this section, make use of several of the estimates in
Q proved in [16]

Theorem. Let (φ, r,m) be a locally scattering solution to (SSESF’) on Q with
initial data asymptotically flat of order ω′ in Ck toward I+ for k ≥ 1. Then,
the following bounds hold:

1
3

≤ λ ≤ 1
2

1
3

≤ −ν ≤ 2
3

2
3

≤ (1 − μ) ≤ 1 (4.1)

|φ| � min
{
r−1u−1, u−2

}
(4.2)

|∂vλ| � min
{
r−3, u−3

}
(4.3)

|∂uν| � u−3 (4.4)
|∂v(rφ)| � min

{
v−2, u−2

} ∣∣∂2
v(rφ)

∣∣ � min
{
v−3, u−3

}
(4.5)

|∂u(rφ)| � u−2
∣∣∂2

u(rφ)
∣∣ � u−3 (4.6)

|∂vφ| � min
{
r−2u−1, u−3

}
(4.7)

|∂uφ| � min
{
r−1u−2, u−3

}
(4.8)

|m| � min
{
u−3, r3u−6

}
. (4.9)

4.1. Outline of the Proof

The proof proceeds in three main parts. First we obtain the required control
of mixed derivatives of r and rφ which follow directly from the inductive
hypothesis and our equation. We also obtain some initial improvements on
decay for certain derivatives of m,φ and m

rk for k = 1, 2 in the same manner.
Next we establish the required estimates for non-mixed (only u or v) derivatives
of rφ. In v, these are obtained via a bootstrap argument, using the boundedness
of the total variation in rφ, and the boundedness (resp. decay) of φ and m

r2 ,
combined with our high order asymptotic flatness assumption. In u, they are
obtained by bootstrapping from the boundary condition. Finally, we use these
estimates for u and v derivatives to obtain bounds for non-mixed derivatives
of r and the required bounds for φ,m, μ, and m

r2 using the equation.

4.2. Inductive Framework

The goal in this section is to obtain bounds to arbitrary differential order in
u, v via an inductive process. Our goal is the following inductive step:

Theorem 4.1. Let (φ, r,m) be a locally scattering, asymptotically flat of order
ω′ ≥ 2 in Cq toward I+ solution to (SSESF’) in Q,with data prescribed on
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some Cu. Suppose that for all α = (αu, αv), β ∈ Z
2 multindices with 1 ≤ |α| ≤

n < q, |β| ≤ n + 1 (excluding α, β = (0, 0)), we have the estimates∣∣∣(λ−1∂v

)|α|
λ
∣∣∣ � min

{
r−(|α|+2), u−(|α|+2)

}
(4.10)∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
λ
∣∣∣ � min

{
r−(αv+2)u−(αu+1), u−(|α|+4)

}
(4.11)∣∣∣(ν−1∂u

)|α|
ν
∣∣∣ � u−(|α|+2) (4.12)∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
ν
∣∣∣ � min

{
r−(αv+1)u−(αu+2), u−(|α|+5)

}
(4.13)∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
φ
∣∣∣ � min

{
r−(αv+1)u−(αu+1), u−(|α|+2)

}
(4.14)∣∣∣(λ−1∂v

)|β|
(rφ)

∣∣∣ � min
{

r−(|β|+1), u−(|β|+1)
}

(4.15)∣∣∣(ν−1∂u

)|β|
(rφ)

∣∣∣ � min
{

u−(|β|+1)
}

(4.16)∣∣∣(ν−1∂u

)βu
(
λ−1∂v

)βv (rφ)
∣∣∣ � min

{
r−(βv+1)u−(βu+2), u−(|β|+4)

}
(4.17)∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
m
∣∣∣ � min

{
r−(αv+k)u−(αu+2), u−(|α|+3)

}
(4.18)∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv m

rk

∣∣∣ � min
{

r−(αv+ku−(αu+2), u−(|α|+k+3)
}
(4.19)

for k ≤ 2, where in the region Q, and we take αu, βu > 0 in (4.11), and (4.17),
and αv, βv > 0 in (4.13) and (4.17), respectively. Then, in fact these bounds
hold for |α| = n + 1, |β| = n + 2.

The remainder of this section will be devoted to the proof of this result
and thus the closing of our first inductive bounds.

Before proceeding any further, it will be useful at times to exchange
the order of (gauge invariant) derivatives without worry about changing the
form of the resulting bounds. Moreover, we would like to know that the above
bounds apply to more than just the specific orderings of derivatives written.
To this end, we prove the following lemma:

Lemma 4.2. Suppose the bounds of Theorem 4.1 hold for |α| ≤ n, |β| ≤ n + 1.
Then, if any of the bounds (4.11), (4.13), (4.14), or (4.18) hold for some
ordering of derivatives

(
λ−1∂v

)
,
(
ν−1∂u

)
at differential order n + 1, then in

fact the same estimates hold for arbitrary reorderings of
(
ν−1∂u

)
,
(
λ−1∂v

)
.

Moreover, if Eqs. (4.11) and (4.13) hold at order n + 1, then if (4.17)
holds at order n + 2 for any ordering of

(
λ−1∂v

)
,
(
ν−1∂u

)
, it holds for all

orderings.

Proof. It suffices to check that the difference between two adjacent (i.e. differ-
ing by a single exchange of u and v derivatives) orderings always satisfies at
least the same bound as the initial ordering.

We denote an ordering as a k-tuple of integers �l where the first entry
represents the number of u derivatives acting at the far left of our differential
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expression, and subsequent entries give the number of derivative of the type
different from that preceding it that occur before the next change. We will
write an ordered gauge normalized differential with multi-index γ = (γu, γv)
as ∂̄γ,
l. For example, ∂̄(2,1),(1,1,1)f =

(
ν−1∂u

) (
λ−1∂v

) (
ν−1∂u

)
f .

We begin with the first part of our result. We also assume that Lemma 4.2
holds at all orders ≤ n.

Then, let |γ| = n + 1, �l,�l′ be two orderings corresponding to γ that differ
by one exchange. Then, for a function f = f(u, v) we can write∣∣∣(∂̄γ,
l − ∂̄γ,
l′

)
f
∣∣∣ = ∣∣∣∂̄γ1,
l1

((
λ−1∂v

)
ν
(
ν−1∂u

)
−
(
ν−1∂u

)
λ
(
λ−1∂v

))
∂̄γ2,
l2f

∣∣∣
for γ1, γ2,�l1,�l2 splitting γ,�l around the two derivatives which are exchanged.
Thus, we see that if∣∣∣∂̄γ3,
s

(
λ−1∂v

)
ν∂̄γ′

3,
s′ (
ν−1∂u

)
∂̄γ2,
l′f − ∂̄γ3,
s

(
ν−1∂u

)
λ∂̄γ′

3,
s′ (
λ−1∂v

)
∂̄γ2,
l′f

∣∣∣
�
∣∣∣∂̄γ,
lf

∣∣∣
for all γ3 + γ′

3 = γ1 and appropriate sub-orderings given by the Leibniz rule,
then the �l′ ordering must satisfy the same estimate as the �l ordering. So in our
first case, since all our bounds increase by no more than one power of r or u
as a derivative is added, we need only check that∣∣∂̄γ3,
s

(
λ−1∂v

)
ν
∣∣ � min

{
r−(γ3,v+1)u−γ3,u , u−(|γ3|+1)

}
and the analogous statement for λ. But each of these hold immediately since
|γ| + 1 ≤ n by construction, so by our hypotheses, these terms verify (4.13),
(4.11), respectively. (There is a single exception to this, which is the case of a
derivative of λ or ν with only a single u or v derivative, respectively. In this
case, the change in hypothesized order of decay from the mixed derivative to
the non-mixed is slightly more; however, one checks that in fact the change
is still covered, since it is given by exactly the extra term we obtain from the
exchange). Thus, our first case is complete.

The second case is completely identical, requiring this extra order of
derivative only because we work at one order higher (again there is some
subtlety making the change from a mixed derivative of rφ to a non-mixed
derivative. Again one easily checks that this in fact a non-issue).

It remains to check that our assumption that Lemma 4.2 holds at all
lower orders is justified. By induction, it suffices to check this for the case
n = 0. The only non-trivial case here is∣∣(ν−1∂u

) (
λ−1∂v

)
(rφ) −

(
λ−1∂v

) (
ν−1∂u

)
(rφ)

∣∣
=
∣∣(λ−1∂v

)
ν
(
ν−1∂u

)
(rφ) −

(
ν−1∂u

)
λ
(
λ−1∂v

)
(rφ)

∣∣
�
∣∣(λ−1∂v

)
ν
(
ν−1∂u

)
(rφ)

∣∣
� min

{
r−2u−5, u−7

}
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which is better decay than that hypothesized for
(
ν−1∂u

) (
λ−1∂v

)
(rφ), so

the exchange holds (note that this also checks the problematic portion of the
second case above).

Thus, the proof is complete. �

4.3. Decay for Mixed Derivatives of r

We begin with mixed derivatives of r, i.e., ∂αr such that neither αu nor αv is
0.

Lemma 4.3. Under the hypothesis of Theorem 4.1, let |α| , |β| = n + 1 and
αu, βv > 0. Then, the following hold:∣∣∣(λ−1∂v

)αv
(
ν−1∂u

)αu
λ
∣∣∣ � min

{
r−(αv+2)u−(αu+2), u−(|α|+4)

}
(4.20)∣∣∣(ν−1∂u

)βu
(
λ−1∂v

)βv
ν
∣∣∣ � min

{
r−(βv+1)u−(βu+3), u−(|β|+5)

}
. (4.21)

Proof. In each case, this is essentially completely computational. We start with
(4.20). By our hypothesis and (SSESF’), we can rewrite the LHS as

(
λ−1∂v

)αv
(
ν−1∂u

)αu
λ =

(
λ−1∂v

)αv
(
ν−1∂u

)αu−1
(

mλ

r2(1 − μ)

)
.

Expanding this expression via the Leibniz rule, we have a general term:
1

(1 − μ)|α3|+1

(
λ−1∂v

)α1
v
(
ν−1∂u

)α1
u

(m

r2

) (
λ−1∂v

)α2
v
(
λ−1∂v

)α2
u (λ)

×
(
λ−1∂v

)α3
v
(
ν−1∂u

)α3
u (μ)

where α1+α2+α3 = (αu−1, αv). We may ignore the leading term as μ < 1
2 by

(4.1), so we only consider the differential terms. There are, in principle, many
combinations to check; however, observing that by the form of our hypothe-
sized estimates (in particular the uniform gains on certain terms) we only need
to address the following cases:
(1) α1 = α2 = 0.
(2) α1 = α3 = 0.
(3) α2 = α3 = 0.
(4) α2 = 0, α1, α4 �= 0.

All other terms are strictly better by our inductive hypothesis, since they gain
more than one power of decay per derivative. In the first case, we have∣∣∣m

r2
λν
(
λ−1∂v

)αv
(
ν−1∂u

)αu−1
μ
∣∣∣ � m

r2
min
{

r−(αv+1u−(αu+1), u−(|α|+3)
}

� min
{
r−(αv+3)u−(αu+4), u−(|α|+8)

}
by (4.9), (4.18). The second case is bounded (up to a constant) by∣∣∣m

r2

(
λ−1∂v

)αv
(
ν−1∂u

)αu−1
λ
∣∣∣ � m

r2
min
{

r−(αv+2)u−(αu−2), u−(|α|+1)
}

� min
{

r−(αv+4)u−(αu+1), u−(|α|+6)
}

.
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The third case has∣∣∣(λ−1∂v

)αv
(
ν−1∂u

)αu−1
(m

r2

)∣∣∣ � min
{

r−(αv+2)u−(αu+1), u−(|α|+4)
}

.

Finally, in the fourth case we have∣∣∣∣(λ−1∂v

)α1
v
(
ν−1∂u

)α1
u
(m

r2

)(
λ−1∂v

)α3
v
(
ν−1∂u

)α3
u

μ

∣∣∣∣
� min

{
r−(α1

v+2)u−(α1
u+2), u−(|α1|+5)

}
· min

{
r−(α3

v+1)u−(α4
u+2), u−(|α3|+4)

}
≤ min

{
r−(αv+3)u−(αu+3), u−(|α|+8)

} .

Thus, all our terms satisfy the desired decay.
The ν case then amounts to the same bounds, except that we lose a

power of v via (SSESF’) instead of u. Thus, we will not repeat the details of
this proof. �

This proposition leaves out exactly two cases, ∂n+1
u ν, ∂n+1

v λ, which re-
quire slightly more careful treatment. We will return to these after closing
some of the other bounds at order n + 1.

4.4. Decay for Mixed Derivatives of rφ

We are now ready to work on derivatives of rφ at order n + 2. The goal is as
above:

Lemma 4.4. Under the hypotheses of Theorem 4.1 for β a multi-index with
|β| = n + 2 and βu, βv �= 0, we have∣∣∣(λ−1∂v

)βv−1 (
ν−1∂u

)βu
(
λ−1∂v

)
(rφ)

∣∣∣ � min
{

r−(βv+1)u−(βu+2), u−(|β|+4)
}

.

Proof. The procedure here is roughly the same as that for mixed derivatives
of λ and ν above. We have by the wave equation for φ that(

ν−1∂u

) (
λ−1∂v

)
(rφ) =

2m

(1 − μ)r2

(
φ −

(
λ−1∂v

)
(rφ)

)
.

Thus, we can rewrite our first expression as(
λ−1∂v

)βv−1 (
ν−1∂u

)βu
(
λ−1∂v

)
(rφ)

=
(
λ−1∂v

)βv−1 (
ν−1∂u

)βu−1
(

m

(1 − μ)r2

(
φ −

(
λ−1∂v

)
(rφ)

))
.

Then, we can expand this term by term via the Leibniz rule with the general
term being of the form (omitting terms of order 1)(

λ−1∂v

)γ1
v
(
ν−1∂u

)γ1
u

(m

r2

) (
λ−1∂v

)γ2
v
(
ν−1∂u

)γ2
u μ
(
λ−1∂v

)γ3
v
(
ν−1∂u

)γ3
u (φ

−
(
λ−1∂v

)
(rφ)

)
with

∑
i γi = α′. As before, the terms with lowest order of decay occur when

exactly one term is acted on by all derivatives. Thus, we have three cases to
check:
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(1) γ1 = γ2 = 0.
(2) γ1 = γ3 = 0.
(3) γ2 = γ3 = 0.

All other mixtures only improve by a constant order in r or u, so we need not
consider these.

In the first case, we have∣∣∣m
r2

(
λ−1∂v

)βv−1 (
ν−1∂u

)βu−1 (
φ −

(
λ−1∂v

)
(rφ)

)∣∣∣
�
∣∣∣m
r2

∣∣∣ (min
{

r−(βv)u−(βu), u−(|β|)
}

− min
{

r−(βv−1)u−(βu−1), u−(|β|−1)
})

� min
{

r−(βv+1)u−(βu+2), u−(|β|+4)
}

by (4.9), (4.14), (4.17), (4.15). In the second case, we have∣∣∣m
r2

(
φ −

(
λ−1∂v

)
(rφ)

) (
λ−1∂v

)βv−1 (
ν−1∂u

)βu−1
μ
∣∣∣

�
∣∣∣m
r2

(
φ −

(
λ−1∂v

)
(rφ)

)∣∣∣min
{

r−(βv)u−(βu+1), u−(|β|+2)
}

� min
{

r−(βv+4)u−(βu+4), u−(|β|+8)
}

by (4.9), (4.5), (4.2). The third case similarly gives us∣∣∣(φ −
(
λ−1∂v

)
(rφ)

) (
λ−1∂v

)βv−1 (
ν−1∂u

)βu−1
(m

r2

)∣∣∣
�
∣∣(φ −

(
λ−1∂v

)
(rφ)

)∣∣min
{

r−(βv+1)u−(βu+1), u−(|β|+3)
}

� min
{

r−(βv+1)u−(βu+3), u−(|β|+5)
}

by (4.2), (4.5), (4.18). So in each case the the desired bound holds, and we
conclude that the first relation holds at order n + 1. �

As above, it remains to deal with the cases ∂n+1
v (rφ), ∂n+1

u (rφ).

4.5. Preliminary Estimates for φ, m and m
rk

In this section, we will use our upgraded bounds for derivatives of r above to
obtain some initial estimates for φ, m weightings at order n+1. We will begin
with an easy bound for φ.

Lemma 4.5. Suppose our inductive hypotheses hold at order n. Then, for |α| =
n + 1 we have the bounds∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
φ
∣∣∣ � min

{
r−(αv+1)u−(αu+1), r−1u−(|α|+1)

}
.

Proof. This follows by expanding
∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv (rφ)
∣∣ to obtain∣∣∣r((ν−1∂u

)αu
(
λ−1∂v

)αv
φ) + αuαv

((
ν−1∂u

)αu−1 (
λ−1∂v

)αv

∣∣∣
+
∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv−1
)

φ
∣∣∣

� min
{

r−(αv+1)ϑ(αv)u−αu , u−(|α|+1)
}
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by (4.15), (4.16), (4.17), where ϑ(n) =

{
1 n ≥ 1
0 otherwise

. So then via the triangle

inequality we can write∣∣∣r (ν−1∂u

)αu
(
λ−1∂v

)αv
φ
∣∣∣

≤ C min
{

r−(αv+1)ϑ(αv)u−αu , u−(|α|+1)
}

−
∣∣∣αuαv

((
ν−1∂u

)αu−1 (
λ−1∂v

)αv +
(
ν−1∂u

)αu
(
λ−1∂v

)αv−1
)

φ
∣∣∣

and thus

|∂αφ| � min
{
r−(αv+1)u−(αu+1), r−1u−|α|+1

}
dividing through by the r and taking our most weakly decaying terms (those
which lose a v derivative acting on φ) on the RHS as our minimal order of
decay to obtain our desired bound. �

Observe that this bound then allows us to immediately obtain optimal
next order control over m as well:

Corollary 4.6. With the estimate Lemma 4.5 we have, for |α| = n + 1, αv > 0,
we have ∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
m
∣∣∣ � min

{
r−(αv+1)u−(αu+2), u−(|α|+3)

}
∣∣∣(ν−1∂u

)n+1
m
∣∣∣ � u−(n+3).

Proof. We begin with our first relation. Recall from (SSESF’) that we have

λ−1∂vm =
1
2
(1 − μ)r2(λ−1∂vφ)2.

Then, the cases we need to consider here are:
i. All derivatives act on r2 and (∂vφ)2.
ii. All derivatives act on (1 − μ) and r2.

In the first case, we have a general term:∣∣∣∣12(1 − μ)r2−|β| (ν−1∂u

)αu−βu
(
λ−1∂v

)αv−βv−1
(λ−1∂vφ)2)

∣∣∣∣
� min

{
r−(αv+1)u−(αu+2), u−(|α|+3)

}
for |β| ≤ 2, where we have used the inductive hypothesis and the result of
Lemma 4.5, as well as the fact that r−ku−l � min

{
r−(k+s)u−(l−s), u−(k+l)

}
to control each case, as we gain the same overall power of decay by taking a
derivative of r, as we do by differentiating a copy of

(
λ−1∂v

)
φ. This gives us

the desired order of decay.
In the second case, we have the term∣∣∣∣12r2−|β| (ν−1∂u

)αu−βu
(
λ−1∂v

)αv−βv−1
(1 − μ)(λ−1∂vφ)2

∣∣∣∣
� min

{
r−(αv+2)u−(αu+4), u−(|α|+7)

}
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using (4.7), (4.18) and the same strategy as above. Thus, we have our bound
in the case αv > 0.

It remains to address the case where αv = 0. Now we must use our other
equation for m: (

ν−1∂u

)
m =

1
2
(1 − μ)r2(

(
ν−1∂u

)
φ)2.

As above, we have two distinct cases. The overall analysis is the same, differing
only in the fact that we now lose our extra power of r decay from the additional(
λ−1∂v

)
φ term. As such we will arrive at a bound of the same overall form,

with one less power of r decay than we would expect if we had a v derivative,
and so arrive at a bound:∣∣∣(ν−1∂u

)n+1
m
∣∣∣ � u−(n+3)

by the same computation as above. �
With this control of m established, we now must concern ourselves with

the weighted versions μ, m
r2 . The following lemma will take care of this:

Lemma 4.7. Given the result of Corollary 4.6, we have the bounds∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
(m

rk

)∣∣∣ � min
{

r−(αv+k)u−(αu+2), r−ku−(|α|+3)
}

for k = 1, 2, |α| = n + 1.

Proof. We will employ a similar technique as was used to gain our initial bound
on ∂αφ above. In particular, observe that we have(

ν−1∂u

)αu
(
λ−1∂v

)αv m

=
(
ν−1∂u

)αu
(
λ−1∂v

)αv

(m

rk
rk
)

=
∑

β+γ=α

(αv

βv

)(αu

βu

) (
ν−1∂u

)βu
(
λ−1∂v

)βv

(m

rk

) (
ν−1∂u

)γu
(
λ−1∂v

)γv (rk).

So rearranging we find∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
m

rk

∣∣∣

≤ 1

rk

⎛
⎜⎜⎝∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv m
∣∣

+
∑

β+γ=α
γ �=0

∣∣∣∣(αv

βv

)(αu

βu

) (
ν−1∂u

)βu
(
λ−1∂v

)βv

(m

rk

) (
ν−1∂u

)γu
(
λ−1∂v

)γv (rk)

∣∣∣∣
⎞
⎟⎟⎠ .

This gives rise to the bound∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv m

rk

∣∣∣
� 1

rk

(
min

{
r−(αv+ϑαv)u−(αu+2), u−(|α|+3)

}
+min

{
r−(αv)u−(αu+2), u−(|α|+3)

})
,
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where we bound the general term in the sum using thatr−su−t �
min

{
r−(s+l)u−(t−l), u−(s+t)

}
. Thus, the overall order of decay this obtains is∣∣∣∂α m

rk

∣∣∣ � min
{

r−(αv+k)u−(αu+2), r−ku−(|α|+3)
}

.

�

Remark 4.8. The r decay obtained in this manner for μ, m
r2 is already as strong

as we hope for.

4.6. Full Decay for Derivatives of rφ

With this initial control, we find ourselves in a difficult position. The remaining
terms to bound all suffer from a heavy r−1 weighting, which will prevent us
from closing any further bounds through the standard manner of computation
we have pursued thus far (and also excludes the use of averaging operators).

In order to proceed, it will be necessary to obtain some next order control
near the axis as well. To do this, we will employ a bootstrapping approach
centered around next order control of rφ. Before beginning this however, we
will need a few preliminary estimates in order to check that the bootstrap
closes:

Proposition 4.9. Suppose, under the hypotheses of Lemma 4.5, with associated
constants at order α = (αu, αv), Cαu,αv

, we, in addition, have the bound∣∣∣(λ−1∂v

)n+2
(rφ)

∣∣∣ ≤ Cv−(n+3) (4.22)

For 1 ≤ u < U .
Then, the following hold on 1 ≤ u < U , for some C ′ depending only on

n (in particular, we require only one constant on all of Q)∣∣∣(λ−1∂v

)n+1
φ
∣∣∣ ≤ CC ′ min

{
r−(n+2)u−1, u−(n+3)

}
(4.23)∣∣∣(λ−1∂v

)n+1 m

r2

∣∣∣ ≤ CC ′ min
{

r−(n+3)u−2, u−(n+6)
}

(4.24)∣∣∣(λ−1∂v

)n+1
μ
∣∣∣ ≤ CC ′ min

{
r−(n+2)u−2, u−(n+5)

}
. (4.25)

Proof. To obtain (4.23), we simply employ our averaging operator:

∂n+1
v φ(u, v) =

1
rn+2(u, v)

∫ v

u

∂n+2
v (rφ)(u, v′)rn+1(u, v′)dv′

and then applying our hypothesis (4.22) the RHS is bounded in absolute value
by

C

rn+2(u, v)

∫ v

u

(v′)−(n+3)rn+1(u, v′)dv′ ≤ 3
2
C min

{
r−(n+2)u−1, u−(n+3)

}
,

where the first bound is obtained by dividing through by v−(n+2) and pulling
out the remaining copy of v−1, to yield a bounded integral with an additional
u weight, and the second bound is obtained by using the simple supremum
estimate to remove the v term and then integrating directly. The additional
factor of 3

2 results from evaluating the integral in r thanks to our bound on |λ|,
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(4.1). Since the derivatives acting on extra factors of λ are all well controlled,
we ignore these terms without restriction.

Next, turning our attention to (4.24) we observe:(
λ−1∂v

)n+1 m

r2
=
(
λ−1∂v

)n(∂vm

λr2

)
−
(
λ−1∂v

)n 2m

r3
.

Note that by our hypotheses we can then simply ignore the terms with deriva-
tives acting on the λ’s, as these cannot be worse than those in which only m

r3 is
differentiated. We do not have enough a-priori control of either of these terms.
Observe that, employing averaging operators, we have

∂n
v

m

r3
(u, v) =

1
rn+3

∫ v

u

∂n
v

(
1 − μ

2λ
(∂vφ)2

)
rn+2dv′.

In particular, we need only to bound the term ∂n
v

∂vm
r2 in order to control the

derivative of m
r3 . But this is exactly our first term, thus estimating this is

sufficient. By our equation (SSESF’), the first term is(
λ−1∂v

)n
(
1
2
(1 − μ)(

(
λ−1∂v

)
φ)2).

Observing that, by our hypotheses and the bound found above, all these terms
gain either a power of r or of u decay for each derivative applied, we immedi-
ately have:∣∣∣∣(λ−1∂v

)n (1

2
(1 − μ)

(
λ−1∂v

)
φ
(
λ−1∂v

)
φ

)∣∣∣∣ ≤ C1C min
{

r−(n+4)u−2, u−(n+6)
}

by our hypotheses and the above estimates (Thus, C1 depends only on con-
stants controlling lower-order terms and C for the highest derivatives of φ).
This controls the first term we are interested in directly, and we use this to
obtain ∣∣∣∂n

v

m

r3

∣∣∣ ≤ CC1

rn+3

∫ v

u

min
{

r−(n+4)u−2, u−(n+6)
}

rn+2dv′

� CC2 min
{

r−(n+3), u−(n+6)
}

.

Splitting the integral into regions rn+4(u, v′) < un+6, rn+4(u, v′) > un+6 and
applying the appropriate bounds to obtain the first bound, and simply using
the uniform u bound to obtain the second, modifying the constant to C2 to
account for various constants (all independent of C by our above bounds) that
enter in this integration, the desired estimate (4.24) follows.

Finally, we will check (4.25). This is quite similar to (4.24) above, but
now our term is:(

λ−1∂v

)n+1
μ =

(
λ−1∂v

)n(∂vm

λr
−
(
λ−1∂v

)n m

r2

)
.

The second term is already optimally controlled by our hypotheses, so we need
only address the first. This is given by(

λ−1∂v

)n(1
2
(1 − μ)r(

(
λ−1∂v

)
φ)2
)

.
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Since we lose at most one derivative to removing this extra power of r, this is
bounded by

C min
{

r−(n+2)u−2, u−(n+5)
}

.

Combining this with our bound for the second term, we obtain the desired
bound (with an extra leading factor to observe the constant independent of
C). �

In order to do our bootstrapping, we must guarantee some smallness of
the term dependent on the highest order constant C above. To this end, we
prove the following proposition:

Proposition 4.10. Let ε > 0. There exists some v0 > 1 such that for all v > v0,∫ v

1

∣∣∣m
r2

(u′, v)
∣∣∣ du′ < εv−1, (4.26)∫ v

1

|φ(u′, v)| du′ < ε, (4.27)

and ∫ v

1

|∂v(rφ)| (u′, v)du′ < ε. (4.28)

Proof. Since we need only find some v0 > 1, and r is monotone in v and
unbounded, we may assume without restriction that r(1, v) > v

6 > 1. We
begin with (4.26). We have by eq. (4.9) that

m

r2
� min

{
ru−6, r−2u−3

}
.

By monotonicity of r in u, we can thus bound (4.26) by

C̃

(∫
0≤r(u′,v)≤1

(u′)−6du′ +
∫

1≤r(u′,v)≤ v
6

(u′)−3du′

+
∫

v
6 ≤r(u′,v)≤r(1,v)

r−2(u′, v)(u′)−3du′

)
.

Now recall that 1
3 (v − u) ≤ r(u, v) ≤ 1

2 (v − u); thus, we conclude that

u ≥ v − 3r(u, v).

The first two terms can simply be evaluated directly. The last term can be
rewritten

36
v2

∫
v
6 ≤r(u′,v)≤r(1,v)

(u′)−3du′ ≤ 36
v2

.

Then, evaluating each term above using these bounds, we conclude that we
can bound (4.26) by

C̃
(
C1(v − 3)−6 + 4C2v

−2 + 36v−2
)
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with C1, C2 accounting for the necessary change of variable factors. Thus, we
see that we can take v0 > 11 max{C1,C2,36}C̃+1

ε and this satisfies the required
conditions.

We will now address (4.27). In this case, we have by (4.2) that

|φ(u, v)| ≤ C̃ ′ min
{
u−2, r−1(u, v)u−1

}
.

Thus, (4.27) is bounded by

C̃ ′

(∫
0≤r(u′,v)≤ v

6

∣∣(u′)−2
∣∣du′ +

2
v

∫
v
6 ≤r(u′,v)≤r(1,v)

∣∣r−1
∣∣) .

Integrating, and absorbing constants from changing variables into an overall
factor C̃ ′′, we can bound (4.27) by

C̃ ′′
(

6
v

+
∣∣∣∣2v (log |v| + C4)

∣∣∣∣
)

,

with C4 absorbing any multiplicative factors in the logarithm (again from
integration). Thus, we can find a v0 satisfying our requirements.

Finally, to obtain (4.28), we have∫ v

1

|∂v(rφ)| (u′, v)du′ �
∫ v

1

min
{
r−2, (u′)−2

}
du′ � v−1

by simply integrating to u′ = v
2 in r−2 and the rest of the way using the

u bound. We thus, again, find a suitable v0. Taking the largest of the three
choices, we have our result. �

Lemma 4.11. In fact, we have:∣∣∣∣∣
(

∂v

λ

)n+2

(rφ)

∣∣∣∣∣ � v−(n+3). (4.29)

Proof. Recall from the asymptotic flatness and gauge conditions that we have
(2.5):

sup
C1

vn+3

∣∣∣∣∣
(

∂v

λ

)n+2

(rφ)

∣∣∣∣∣ ≤ In+2.

Moreover, observe that we have the following bound for ∂u

ν

(
∂v

λ

)n+2
(rφ):∣∣∣∣∣∂u

ν

(
∂v

λ

)n+2

(rφ)

∣∣∣∣∣ ≤
∣∣∣∣(λ−1∂v

)n+1
(

− m

(1 − μ)r2
(ν−1∂u(rφ)) +

m

(1 − μ)r2
φ

)∣∣∣∣
+C ′v−(n+3) ≤ C ′′ min{r−(n+3), r−2u−(n+1)},

using the results of corollary 4.6 and lemma 4.5, with our remainder term
contributed by those terms in which some derivative acts on the λ−1, ν−1

weights. In particular, for any C > 0 there is an εC such that∣∣∂n+2
v (rφ)

∣∣ (1 + δ, v) ≤ (In+2 + C)v−(n+3)
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for all δ ≤ εC . Thus, we are in the scenario of proposition 4.9, and we can
conclude the results of proposition 4.9 for u ≤ 1+ εC . Our goal is to bootstrap
this bound for

(
λ−1∂v

)n+2 (rφ), so in particular we would like to improve our
control of the integral∫ u

1

(
λ−1∂v

)n+1
(

− m

(1 − μ)r2
(λ−1∂v(rφ)) +

m

(1 − μ)r2
φ

)
du′.

Observe that by taking C large enough, we can ignore all the integral terms
that do not themselves include a factor of C. By proposition 4.9 and our
previous bounds, all terms immediately verify estimates with the proper u
and v weights except those with all derivatives acting on one of φ, μ and m

r2 .
We will check these explicitly. In the φ case, we have∫ u

1

∣∣∣∣ m

(1 − μ)r2

(
λ−1∂v

)n+1
φ

∣∣∣∣du′

≤ CC ′ min
{

r−n+2u−1, u−(n+3)
}∫ u

1

m

(1 − μ)r2
du′

≤ εCC ′v−1 min
{

r−(n+2)u−1, u−(n+3)
}

,

using proposition 4.9 and (4.26), so long as v > v0 corresponding to the re-
quired ε (which depends only on n by construction). By (4.25) and our bounds
on φ, the μ case satisfies the same bound (in fact better, but the procedure is
the same). It remains to check the m

r2 case. Here we have:∫ u

1

∣∣∣∣ λνφ

(1 − μ)
(
λ−1∂v

)n+1 m

r2

∣∣∣∣du′ ≤ CC ′ min
{

r−(n+3)u−2, u−(n+6)
}

∫ u

1

|φ| ≤ εCC ′ min
{

r−(n+3)u−2, u−(n+6)
}

using proposition 4.9. We obtain the same result for the other
(
λ−1∂v

)n+1 m
r2

term, as a consequence of (4.28). Since we can suppress our leading constants
as much as we like for v > v0, and the region {(u, v) | v ≤ v0} is compact, if we
take our C large enough, we can improve our estimates to:∣∣∂n+2

v (rφ)
∣∣ (1 + δ, v) ≤

(
In+2 +

1
2
C

)
v−(n+3)

+
∫ v

u

m

(1 − μ)r2

(
λ−1∂v

)n+2
(rφ)du′.

Using (4.26), and Gronwall’s lemma, we can deal with this last term to obtain(
λ−1∂v

)n+2
(rφ)(1 + δ, v) ≤ eε

(
In+2 +

1
2
C

)
v−(n+3).

Taking ε small enough, this represents a strict improvement on our initial
bound.

Thus, we conclude by continuity, and our preliminary estimates, that the
region on which ∂n+2

v (rφ) satisfies our bound is, in fact, strictly larger along
each Cv. In particular, we conclude that the region on which (4.29) is closed
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(by continuity), open, and non-empty (by the above). Thus, it is our entire
domain, so we have our required estimate. �

With this established, we can also address the u derivative case.

Lemma 4.12. Suppose the following bound holds in a neighborhood Op(Γ) of
the axis: ∣∣∂n+2

u (rφ)
∣∣ ≤ Cu−(n+3). (4.30)

Then, we have the following bounds on a neighborhood of Γ:∣∣∂n+1
u φ

∣∣ ≤ CC ′ min
{

r−1u−(n+2), u−(n+3)
}

, (4.31)∣∣∣∂n+1
u

m

r2

∣∣∣ ≤ CC ′ min
{

u−(n+4)r−2, u−(n+6)
}

, (4.32)∣∣∂n+1
u μ

∣∣ ≤ CC ′ min
{

r−2u−(n+3), u−(n+5)
}

. (4.33)

Proof. The approach for each term is essentially the same as above. In order
to obtain (4.31), we again employ our averaging operators, now integrating in
u rather than v. We have

∂n+1
u φ(u, v) =

1
rn+2(u, v)

∫ u

v

∂n+2
u (rφ)rn+1du′.

So using the sup bound for our u term, and integrating in r, we find that∣∣∂n+1
u φ

∣∣ (u, v) ≤ Cu−(n+3).

If we instead use the sup bound for r, and integrate in u, we also obtain∣∣∂n+1
u φ

∣∣ (u, v) � r−1u−(n+2).

Together, these give our bound.
Now we can move to m

r2 . We can employ the same technique as above,
noting that(

ν−1∂u

)n+1 m

r2
=
(
ν−1∂u

)n(∂um

νr2

)
−
(
ν−1∂u

)n 2m

r3
.

As above we will ignore terms in which ν is differentiated, as these are no
worse than those in which m

r3 is by hypothesis. Similar to the above, it suffices
to control the expression ∣∣∣∣∂n

u

(
1
2ν

(1 − μ)(∂uφ)2
)∣∣∣∣ .

This verifies the bound∣∣∣∣∂n
u

(
1
2ν

(1 − μ)(∂uφ)2
)∣∣∣∣ ≤ CC ′ min

{
r−2u−(n+4), u−(n+6)

}
.

This controls our first term directly, so we need only address our m
r3 term. This

time we obtain control by averaging in u:

∂n
u

m

r3
(u, v) =

1
rn+3

∫ u

v

(
∂n

u

(
1
2ν

(1 − μ)(∂uφ)2
))

rn+2du′.
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Observe that, substituting our bounds in, this integral is the same as that used
to bound (4.24) but with the roles of u and r interchanged. Thus, we obtain
the following bound:(

ν−1∂u

)n+1 m

r2
≤ CC1 min

{
u−(n+4)r−2, u−(n+6)

}
.

Finally, we can address (4.33). As above, we need only consider the term(
ν−1∂u

)n ∂um

rν
=
(
ν−1∂u

)n( 1
2ν

(1 − μ)r(∂uφ)2
)

.

Applying the same analysis as above, we conclude that∣∣∣(ν−1∂u

)n+1
μ
∣∣∣ ≤ CC2 min

{
r−2u−(n+3), u−(n+5)

}
,

so taking C ′ sufficiently large we have our result. �

Again in parallel to the case above, we must obtain some small quantities
in order to close this second bootstrap.

Proposition 4.13. For any ε > 0 there is U > 1 such that for all u > U ,∫ ∞

u

m

r2
(u, v′)dv′ < ε. (4.34)

Proof. We begin with (4.34). By (4.9), we have the bound∣∣∣m
r2

∣∣∣ ≤ C1 min
{
r−2u−3, ru−6

}
.

So, integrating the second bound from r = 0 to 1, and the first the rest of the
way, we obtain∫ ∞

u

∣∣∣m
r2

∣∣∣ (u, v′)dv′ ≤ C1

(
u−6

∫
0≤r≤1

rdv′ + u−3

∫
r>1

r−2dv′
)

≤ C1C
′(u−6 + u−3)

≤ (C1C
′ + 1)u−3,

where C ′ absorbs any integration constants. Thus, we have our result, taking
U > C1C′+1

ε . �

Lemma 4.14. Similar to Lemma 4.11, we in fact have:∣∣∣(ν−1∂u

)n+2
(rφ)

∣∣∣ � u−(n+3). (4.35)

Proof. As above, we will ignore the extraneous factors of λ, ν introduced by
our weighted derivatives, since these cannot contribute anything worse than
our desired decay.

Recall that, by our initial data, we have that, on Γ:

lim
ε,δ→0+

(∂u + ∂v)k(rφ)(u − ε, u + δ) ≡ 0

for all k. In particular, we obtain the bound:∣∣∣(ν−1∂u

)n+2
(rφ)

∣∣∣ (u, u) ≤ Cu−(n+3)



3122 E. Kilgore Ann. Henri Poincaré

from our bounds (4.29), and Lemma 4.4, for some C > 0. Then, by continuity,
there is a neighborhood N ⊃ Γ such that∣∣∣(ν−1∂u

)n+2
(rφ)

∣∣∣ (u, v) ≤ 2Cu−(n+3)

for all (u, v) ∈ N . We can also estimate
(
ν−1∂u

)n+2 (rφ) by∣∣∣(ν−1∂u

)n+2
(rφ)

∣∣∣ (u, v)

=
∣∣∣(ν−1∂u

)n+2
(rφ)(u, u)

∣∣∣+ 3
∣∣∣∣
∫ v

u

(
λ−1∂v

) (
ν−1∂u

)n+2
(rφ)(u, v′)dv′

∣∣∣∣ .
In turn, we can bound this by:

(C + C1)u−(n+3)

+C̃

∣∣∣∣
∫ v

u

(
ν−1∂u

)n+1
(

− 2m

(1 − μ)r2
(ν−1∂u(rφ)) +

2m

(1 − μ)r2
φ

)
(u, v′)dv′

∣∣∣∣
for C1, C̃ independent of our bootstrap constant C, in particular depending
only on n, and bounds on low order derivatives of λ, ν.

The only terms which can contribute constants proportional to C are
those in which all derivatives act on φ, μ or m

r2 . In the first two cases, we find
similar to the above that this constant can be suppressed as much as we like
outside some region with bounded u, by (4.31), (4.33), (4.34). Thus, we are
left only to address the m

r2 terms. First, we have∫ v

u

(
ν−1∂u

)
(rφ)

(1 − μ)
(
ν−1∂u

)n+1 m

r2
dv′ ≤ CC ′

∫ v

u

min
{

r−2u−(n+6), u−(n+8)
}

dv′

for C ′ dependent only on n. Splitting the integral in a manner similar to the
above, we conclude that we can bound this term by∫ v

u

(
λ−1∂v

)
(rφ)

(1 − μ)
(
ν−1∂u

)n+1 m

r2
dv′ ≤ 4CC ′u−(n+7).

Thus, as above, this constant can be suppressed arbitrarily outside of some
finite u region.

Finally, we have∫ v

u

φ

(1 − μ)
(
λ−1∂v

)n+1 m

r2
dv′ ≤ CC ′′

∫ v

u

min
{

r−3u−(n+5), u−(n+8)
}

.

So once again integrating, we obtain a bound∫ v

u

φ

(1 − μ)
(
λ−1∂v

)n+1 m

r2
dv′ ≤ 3CC ′′u−(n+7).

Thus, we conclude that there is some universal U > 1 satisfying the
conditions for (4.34) to hold with small enough ε and moreover satisfying

U4 > 10C̃ max{3C ′, 4C ′′}.

In particular, this U does not depend on C or N . Then, taking C large enough
to absorb lower order constants, we conclude that we strictly improve our es-
timate in the region u > U . For u ≤ U , we can simply take C large enough
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to make our bound hold everywhere in this region if it does not already, since
for any finite u region we require only some constant bound, which holds im-
mediately by continuity. Thus, we conclude that we can improve our estimate
to ∣∣∣(ν−1∂u

)n+2
(rφ)

∣∣∣ (u, v) ≤ 3
2
Cu−(n+3)

on N . Then, our initial bound is satisfied on some strictly larger neighborhood,
and as above we conclude by connectedness and continuity that there is C such
that ∣∣∣(ν−1∂u

)n+2
(rφ)(u, v)

∣∣∣ ≤ 2Cu−(n+3)

on all of Q. �

4.7. Full Decay for Derivatives of λ, ν

We are now ready to control non-mixed derivatives of r.

Lemma 4.15. ∣∣∣(λ−1∂v

)n+1
λ
∣∣∣ � min

{
r−(n+3), u−(n+3)

}
, (4.36)∣∣∣(ν−1∂u

)n+1
ν
∣∣∣ � min

{
u−(n+3)

}
. (4.37)

Proof. As usual, we can safely ignore terms where some derivatives act on
different copies of λ or ν, as there immediately satisfy our bounds as a conse-
quence of our inductive hypothesis.

We’ll start with (4.36). To begin, we use our gauge condition to obtain:

(
λ−1∂v

)n+1
λ(u, v) =

∫ u

1

ν−1∂u

(
λ−1∂v

)n+1
λ(u′, v)du′.

The only term we must control on the RHS is∫ u

1

∣∣∣∣(λ−1∂v

)n+1
(

mλν

(1 − μ)r2

)∣∣∣∣ du′ ≤ C min
{

r−(n+3), u−(n+3)
}

+
∫ u

1

m

(1 − μ)r2

(
λ−1∂v

)n+1
λdu′,

since all the other terms satisfy the required decay up to some constant C by
our hypotheses, (4.24), (4.25), Lemma 4.3 and the split integration employed
above. This can then be controlled by Gronwall’s lemma, and (4.26); thus, we
conclude (4.36).

For (4.37), we gain initial control by the second half of our gauge condi-
tion:

(∂u + ∂v)kr = 0

on Γ. As a result of this, (4.36) and Lemma 4.3, we conclude that∣∣∣(ν−1∂u

)n+1
ν
∣∣∣ (u, u) ≤ Cu−(n+3).
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Thus, we have∣∣∣(ν−1∂u

)n+1
ν
∣∣∣ (u, v) ≤ Cu−(n+3) +

∫ v

u

∂v

(
ν−1∂u

)n+1
ν(u, v′)dv′.

As above, we can commute the v derivative past all the others, and then, we
only need to control the term∫ v

u

(
ν−1∂u

)n+1 mλν

(1 − μ)r2
dv′.

By (4.33), (4.32), Lemma 4.3, and splitting the integral into the regions r < 1,
r > 1 we control all terms adequately except that in which all derivatives act
on ν. In this case, we once again employ Gronwall and (4.34) and conclude the
desired bound. �

4.8. Full Decay for Derivatives of φ,m
rk

Following the results of proposition 4.9, eqs. (4.29) and (4.35), and lemma 4.12,
we can conclude optimal bounds for all the n + 1st derivatives of φ, μ and m

r2 .
To aid in this, we will need some auxiliary estimates:

Proposition 4.16. For φ a solution to (SSESF’)

2λ |∂u∂vφ| (u, v) = −∂v(ν∂vφ) − ∂vλ∂uφ − r∂2
v∂uφ.

Proof. Observe that we have

∂u∂vφ = ∂u∂v(rφ) − λ

r
∂uφ − ν

r
∂vφ − φ∂u∂vr.

By (SSESF’) ∂u∂v(rφ) = φ∂u∂vr, so we are left with

∂u∂vφ = −λ

r
∂uφ − ν

r
∂vφ.

Now consider

∂2
v(r∂uφ) = ∂vλ∂uφ + 2λ∂u∂vφ + r∂2

v∂uφ.

Expanding this last term, we see

r∂2
v∂uφ = −r∂v

(
λ

r
∂uφ +

ν

r
∂vφ

)

= −∂vλ∂uφ − λ∂u∂vφ − ν∂2
vφ + −∂vν∂vφ +

λ2

r
∂uφ +

λν

r
∂vφ

= −∂v(ν∂vφ) − 2λ∂u∂vφ − ∂vλ∂uφ.

Returning to our original equation, we find that

∂2
v(r∂uφ) = −∂v(ν∂vφ);

thus, substituting this in and rearranging we have

2λ∂u∂vφ = −
(
∂v(ν∂vφ) + ∂vλ∂uφ + r∂2

v∂uφ
)
.

�
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We also note the following relation:

ν−1∂u

(m

rk

)
− λ−1∂v

(m

rk

)
=

r2−k

2
(1 − μ)

(
(ν−1∂uφ)2 − (λ−1∂vφ)2

)
(4.38)

for k = 1, 2.
We begin with φ.

Lemma 4.17. The following holds for |α| = n + 1.∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
φ(u, v)

∣∣∣ � min
{

r−(αv+1)u−(αu+1), u−(|α|+2)
}

.

(4.39)

Proof. The non-mixed cases have already been done, and moreover, the r
weighted bounds follow immediately from (4.4), (4.29), (4.35) and our induc-
tive hypothesis by the same method as Lemma 4.5. Thus, it remains only to
address the non-r-weighted bounds. In order to do this we employ proposi-
tion 4.16, noting that, as a consequence, we can write for |α| = n+1, αu, αv >
0:

∂αu−1
u ∂αv−1

v (2λ∂u∂vφ) = −∂αu−1
u ∂αv−1

v

(
∂v(ν∂vφ) + ∂vλ∂uφ + r∂2

v∂uφ
)
.

The left hand side can be rewritten

∂αu−1
u ∂αv−1

v (2λ∂u∂vφ) = ναuλαv (2λ
(
ν−1∂u

)αu
(
λ−1∂v

)αv
φ + R0)

where R0 equal to the sum of remaining terms (those with some product
of derivatives of at least two of λ, ν and ∂u∂vφ) all of which are controlled
by hypothesis as each individual term is of lower total differential order. In
particular, we have that

|R| � u−(|α|+4).

On the RHS, we will work term by term:
First, we have

∂αu−1
u ∂vαv(ν∂vφ)) = ναu−1λαv+1(ν

(
ν−1∂u

)αu−1 (
λ−1∂v

)αv+1
φ + R1)

where as above R1 collects terms with derivatives acting on at least two of
λ, ν, φ. This is similarly controlled by the hypotheses (4.14), (4.11), (4.10),
(4.12), and (4.13) as each derivative is of total order smaller than n + 1, so we
have

|R1| � u−(|α|+4).

The next term is

∂αu−1
u ∂αv−1

v (∂vλ∂uφ) = ναuλαv
(
ν−1∂u

)αu−1

×
(
λ−1∂v

)αv−1
(
(
λ−1∂v

)
λ
(
ν−1∂u

)
φ) + R2,

with R2 defined similar to R0, R1 above. But all of these terms are immediately
bounded (up to overall constant) by u−(|α|+4) by (4.14), (4.11), (4.10), (4.12),
and (4.13) since no single term receives more than n derivatives.
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Finally, we consider

∂αu−1
u ∂αv−1

v (r∂2
v∂uφ) = (αv − 1)λ∂αu

u ∂αv
v φ + (αu − 1)ν∂αu−1

u ∂αv+1
v φ

+r∂αu
u ∂αv+1

v + R3,

where R3 absorbs all terms with at least two derivatives acting on r. We can
rewrite this further in terms of our gauge invariant derivatives as

∂αu−1
u ∂αv−1

v (r∂2
v∂uφ) = ναuλαv (αv − 1)λ

(
ν−1∂u

)αu
(
λ−1∂v

)αv
φ

+ναu−1λαv+1(αu − 1)ν
(
ν−1∂u

)αu−1 (
λ−1∂v

)αv+1
φ

+rναuλαv+1
(
ν−1∂u

)αu
(
λ−1∂v

)αv+1
φ

−rναuλαv+1
((

ν−1∂u

)
λ

+
(
ν−1∂u

)
ν
) (

ν−1∂u

)αu−1 (
λ−1∂v

)αv+1
φ

−rναuλαv+1
(
λ−1∂v

)
λ
(
ν−1∂u

)αu
(
λ−1∂v

)αv
φ + R′

3,

(4.40)

where R′
3 additionally absorbs the additional mixed derivative remainder terms

from converting to gauge invariant derivatives excluding those from
r∂αu

u ∂αv+1
v φ already included above. This term is controlled by (4.14), (4.3),

(4.11), (4.10), (??), and (4.13) as no derivative of order greater than n acts on
φ, and no term of order beyond n+1 acts on λ, ν. As such, this term satisfies

|R′
3| � u−(|α|+4).

Combining all of this, we arrive at the following equation:

ναuλαv (2λ
(
ν−1∂u

)αu
(
λ−1∂v

)αv
φ + R0)

= −
(
ναu−1λαv+1ν

(
ν−1∂u

)αu−1 (
λ−1∂v

)αv+1
φ

+ναuλαv
(
ν−1∂u

)αu−1 (
λ−1∂v

)αv−1
(
(
λ−1∂v

)
λ
(
ν−1∂u

)
φ)

+ναuλαv (αv − 1)λ
(
ν−1∂u

)αu
(
λ−1∂v

)αv
φ

+ναu−1λαv+1(αu − 1)ν
(
ν−1∂u

)αu−1 (
λ−1∂v

)αv+1
φ

+rναuλαv+1
(
ν−1∂u

)αu
(
λ−1∂v

)αv+1
φ

−rναuλαv+1(
(
ν−1∂u

)
λ +

(
ν−1∂u

)
ν)
(
ν−1∂u

)αu−1 (
λ−1∂v

)αv+1
φ

−rναuλαv+1
(
λ−1∂v

)
λ
(
ν−1∂u

)αu
(
λ−1∂v

)αv
φ + R1 + R2 + R′

3

)
.

(4.41)

Observe that we have two terms proportional to
(
ν−1∂u

)αu
(
λ−1∂v

)αv
φ on

the RHS, so we can rearrange to obtain:



Vol. 23 (2022) Global Non-linearly Stable Solutions to ESF 3127

ναuλαv+1(αv + 1 −
(
λ−1∂v

)
λ)
(
ν−1∂u

)αu
(
λ−1∂v

)αv
φ

= −
(
ναu−1λαv+1ν

(
ν−1∂u

)αu−1 (
λ−1∂v

)αv+1
φ

+ ναuλαv
(
ν−1∂u

)αu−1 (
λ−1∂v

)αv−1
(
(
λ−1∂v

)
λ
(
ν−1∂u

)
φ)

+ ναu−1λαv+1(αu − 1)ν
(
ν−1∂u

)αu−1 (
λ−1∂v

)αv+1
φ

+ rναuλαv+1
(
ν−1∂u

)αu
(
λ−1∂v

)αv+1
φ

− rναuλαv+1
((

ν−1∂u

)
λ +

(
ν−1∂u

)
ν
) (

ν−1∂u

)αu−1 (
λ−1∂v

)αv+1
φ

+R0 + R1 + R2 + R′
3) . (4.42)

Then, recall that
(
λ−1∂v

)
λ ≤ C min{r−3, u−3}, for some C > 0; thus, outside

of some compact region we have (αv +1−
(
λ−1∂v

)
λ) > 1 for all αv ≥ 1. Since

the region is compact, we need not be concerned with the behavior inside as
this can be absorbed by a constant.

Thus, it suffices to bound the RHS of (4.42) in order to control
(
ν−1∂u

)αu(
λ−1∂v

)αv
φ. We will do this inductively, inducting on αu. The base case αu =

0 is already covered by our bootstrap, so suppose the bound (4.39) holds for
αu < k < n. So treating each term individually, we have by our inductive
hypothesis (on αu)∣∣∣ν (ν−1∂u

)αu−1 (
λ−1∂v

)αv+1
φ
∣∣∣ � min

{
r−(αv+2)u−(αu), u−(|α|+2)

}
,

which is strictly better than required (the estimates agree near the axis, and
the r estimate is strictly better at large r). Thus, we can move to our next
term: (

ν−1∂u

)αu−1 (
λ−1∂v

)αv−1
(
(
λ−1∂v

)
λ
(
ν−1∂u

)
φ),

but there is nothing to do here, as all these terms are controlled by hypothesis
and thus immediately verify the necessary bounds.

Next, we consider∣∣∣ναu−1λαv+1(αu − 1)ν
(
ν−1∂u

)αu−1 (
λ−1∂v

)αv+1
φ
∣∣∣ .

This now is controlled by our inductive hypothesis, as we take one fewer deriva-
tives in u and overall order n + 1. This leaves us∣∣∣rναuλαv+1

(
ν−1∂u

)αu
(
λ−1∂v

)αv+1
φ
∣∣∣ � rr−1u−(|α|+2) = u−(|α+2|)

where we obtain this bound by the same mechanism as Lemma 4.5 at the next
order. Finally, we have∣∣∣rναuλαv+1

((
ν−1∂u

)
λ +

(
ν−1∂u

)
ν
) (

ν−1∂u

)αu−1 (
λ−1∂v

)αv+1
φ
∣∣∣

� ru−3r−1u−(|α|+1),

again obtaining an r−1 weighted bound in the manner of Lemma 4.5 and using
the u−3 bound for

(
ν−1∂u

)
λ,
(
ν−1∂u

)
ν of eq. (4.4), (4.11).
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Putting this all together, we obtain∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
φ
∣∣∣ � u−(|α|+2).

So by induction on αu we have our result. �

It remains only to check that μ, m
r2 also verify the required estimates to

complete our induction:

Lemma 4.18. For |α| = n + 1, αu, αv �= 0 we have∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv m

rk

∣∣∣ � min
{

u−(n+4+k)
}

(4.43)

for k = 1, 2.

Proof. Recall that for αv = n + 1, αu = n + 1 we already have our optimal
bounds via the bootstrap. Moreover, optimal r-weighted bounds are achieved
in general in Lemma 4.7, so we need only concern ourselves with bounds in
terms of u only. We will proceed via induction in αu with base case 0 al-
ready done. To induct, suppose (4.43) already holds for all αu < l < n. By
Lemma 4.2, it suffices to control

(
ν−1∂u

)l−1 (
λ−1∂v

)n+1−l (
ν−1∂u

)
m
rk in order

to proceed to the next level. Then, by Eq. (4.38) we have(
ν−1∂u

)l−1 (
λ−1∂v

)n+1−l (
ν−1∂u

) m

rk

=
(
ν−1∂u

)l−1 (
λ−1∂v

)n+1−l

×
((

λ−1∂v

) m

rk
+

r2−k

2
(1 − μ)

(
(ν−1∂uφ)2 − (λ−1∂vφ)2

))
.

Splitting this up term by term, we have∣∣∣(ν−1∂u

)l−1 (
λ−1∂v

)n+2−l m

rk

∣∣∣ � min
{

u−(n+4+k)
}

by our inductive hypothesis. Next we have
(
ν−1∂u

)l−1 (
λ−1∂v

)n+1−l rk−2

2
(
(
ν−1∂u

)
φ)2,

and (
ν−1∂u

)l−1 (
λ−1∂v

)n+1−l rk−2

2
(
(
λ−1∂v

)
φ)2.

Observe that regardless of the derivative that acts on φ these terms will satisfy
the same order of u decay by our above results, so we will only prove this for
the first of these terms.

When k = 2, this is simply(
ν−1∂u

)l−1 (
λ−1∂v

)n+1−l
(
(
ν−1∂u

)
φ)2 � u−(n+6)

by (4.14). When k = 1 we have(
ν−1∂u

)l−1 (
λ−1∂v

)n−l
r(
(
ν−1∂u

)
φ)2 � u−(n+5)
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by (4.14), obtaining a term with an r−1 (in the case all derivatives act
on the

(
ν−1∂u

)
φ’s) by the methods of Lemma 4.5.

Putting this together, we have our result by induction. �

4.9. Closing Induction

Finally, we can close our induction checking that our bounds hold at order
|α| = 1, which is immediate from the previous results of [16].

5. Extension to the First Quadrant

To prove Theorem 3.1, it remains to control solutions in the region I \ Q. In
order to do this, we will have to turn to our full data prescribed on both C1 and
CR. In fact, we will establish estimates on all of the region OR, completing the
proof of Theorem 3.15. The initial data considered in Sect. 4 are thus extended
by any compatible prescription of ∂u(rφ), ν on C2R (we modify our notation
here slightly to ease things later). Note that this is a well-posed problem since
we work in the spherically symmetrically reduced setting. This extension is
studied at first order in [9], and one can check by a standard iteration argument
that this is a well-posed initial value problem on the region between C1 and
C2R for sufficiently regular data, so long as one guarantees that the data agree
at the intersection point C1 ∩ C2R.

In this section, we will consider data which are asymptotically flat of
order ω′ ≥ 2 in Ck toward both I+ and I− and the gauge (G3).

As in Sect. 4, we will inductively establish the control that we need. The
goal will be the following

Theorem 5.1. Let (r, φ,m) a solution to (SSESF’) in the region O2R with data
asymptotically flat of order ω′ ≥ 2 in Ck toward both I+ and I−. Then, the
following bounds hold for all multi-indices α, β with |α| ≤ k, |β| ≤ k + 1:

∣∣∣(λ−1∂v

)|α|
λ
∣∣∣ � v−(|α|+1), (5.1)∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
λ
∣∣∣ � r−1(1 + |u|)−αuv−αv , (5.2)∣∣∣(ν−1∂u

)|α|
ν
∣∣∣ � (|u| + 1)−(|α|+1), (5.3)∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
ν
∣∣∣ � r−1(1 + |u|)−αuv−αv , (5.4)∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
φ
∣∣∣ � r−1(1 + |u|)−αuv−αv , (5.5)∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
m
∣∣∣

� min
{

(1 + |u|)−(αu+1)v−αv , (1 + |u|)−αuv−(αv+1)
}

, (5.6)

5In fact, this leaves a compact region of I without explicit control. By standard persistence
of regularity, the solution is still Ck smooth in this region (for some discussion cf. [9]), and
thus, the decay can be realized simply by adjusting our constants.
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∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv m

rk

∣∣∣
� r−k min

{
(1 + |u|)−(αu+1)v−αv , (1 + |u|)−αuv−(αv+1)

}
, (5.7)∣∣∣(ν−1∂u

)βu
(
λ−1∂v

)βv (rφ)
∣∣∣ � r−1(1 + |u|)−βuv−βv , (5.8)∣∣∣(λ−1∂v

)|β|
(rφ)

∣∣∣ � v−(|β|+1), (5.9)∣∣∣(ν−1∂u

)|β|
(rφ)

∣∣∣ � (1 + |u|)−(|β|+1), (5.10)

where we take αu, βu to be nonzero in eqs. (5.2) and (5.8), respectively, and
αv, βv nonzero in eqs. (5.4) and (5.8), respectively.

5.1. First Estimates for λ, ν, rφ and m

We will make use of the following result of [9] (cf. Proposition 5):

Proposition 5.2. There exists R0 > 1 (depending on the size of our data) such
that for R > R0 the domain of the solution to (SSESF’) with data posed on
C2R (in the u, v coordinates) is O = [−∞, 1] × [2R,∞], and moreover, the
following estimates hold on O:

|rφ| � 1, (5.11)
1
2

≤ λ ≤ 2, (5.12)

1
2

≤ −ν ≤ 2, (5.13)

1
4

≤ 1 − μ ≤ 1, (5.14)∣∣(ν−1∂u

)
(rφ)

∣∣ � (|u| + 1)−2, (5.15)∣∣(λ−1∂v

)
(rφ)

∣∣ � v−2, (5.16)
|m| � 1. (5.17)

We’ll now obtain some additional low order bounds necessary to begin
our bounding by induction on the order of derivatives.

Proposition 5.3. The following bounds hold on O:∣∣(λ−1∂v

)
λ
∣∣ � v−2, (5.18)∣∣(ν−1∂u

)
λ
∣∣ � r−2, (5.19)∣∣(ν−1∂u

)
ν
∣∣ � (|u| + 1)−2, (5.20)∣∣(λ−1∂v

)
ν
∣∣ � r−2, (5.21)∣∣(λ−1∂v

)
φ
∣∣ � r−1v−1, (5.22)∣∣(ν−1∂u

)
φ
∣∣ � r−1(|u| + 1)−1, (5.23)∣∣(λ−1∂v

)
m
∣∣ � v−2, (5.24)∣∣(ν−1∂u

)
m
∣∣ � (|u| + 1)−2, (5.25)∣∣∣(λ−1∂v

) m

rk

∣∣∣ � r−kv−1, (5.26)
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∣∣∣(ν−1∂u

) m

rk

∣∣∣ � r−k(|u| + 1)−1, (5.27)∣∣(ν−1∂u

) (
λ−1∂v

)
(rφ)

∣∣ � r−2v−1, (5.28)∣∣(λ−1∂v

) (
ν−1∂u

)
(rφ)

∣∣ � r−2(|u| + 1)−1, (5.29)∣∣∣(λ−1∂v

)2
(rφ)

∣∣∣ � v−3, (5.30)∣∣∣(ν−1∂u

)2
(rφ)

∣∣∣ � (|u| + 1)−3. (5.31)

Proof. (5.19), (5.21), (5.28), and (5.29) can be read off directly from (SSESF’)
and proposition 5.2.

From here, we will begin with (5.22), and (5.23). For (5.22), we have(
λ−1∂v

)
(rφ) =

∣∣φ + r
(
λ−1∂v

)
φ
∣∣ .

So rearranging, we have by (5.16), and (5.11)∣∣(λ−1∂v

)
φ
∣∣ ≤ r−1

(∣∣(λ−1∂v

)
(rφ)

∣∣+ |φ|
)

� r−2 + r−1v−2 ≤ r−1v−1.

The same can be done for
(
ν−1∂u

)
φ using (5.15),and (5.11), and we obtain

(5.23) as well.
Now we can move to our bounds for m (5.24) and (5.25). For (5.24), we

have ∣∣(λ−1∂v

)
m
∣∣ = ∣∣∣∣12(1 − μ)r2(

(
λ−1∂v

)
φ)2
∣∣∣∣ � v−2

using (5.22). We similarly obtain (5.25) using (5.23).
From this, (5.26) and (5.27) follow immediately via the Leibniz rule and

(5.12), (5.13).
Next, for (5.18):

∣∣(λ−1∂v

)
λ
∣∣ (u, v) =

∣∣∣∣
∫ u

1

∂u

(
λ−1∂v

)
λ(u′, v)du′

∣∣∣∣
=
∣∣∣∣−
∫ u

1

λ−2∂uλ∂vλdu′ +
∫ u

1

λ−1∂v∂uλdu′
∣∣∣∣ .

By our assumptions on R, and (5.19)
∫ u

1
|∂uλ(u′, v)| du′ � r−1(1, v) for all

v ≥ 2R, so we can apply Gronwall’s inequality to deal with our first term, and
our decay will be determined by the second term. Applying (SSESF’), this can
be bounded by ∫ −∞

1

λ−1∂v

(
2mλν

(1 − μ)r2

)
du′.

The ∂vλ can be grouped with our other term containing this in our application
of Gronwall (the coefficient decays like m

r2 and thus is integrable by (5.25)),
so our decay is determined by the remaining terms, thus bounded by r−2v−1

(with the term differentiating r−2 having the lowest order of decay), using
(5.21), (5.24). Thus, integrating we obtain (5.18). Again repeating the same
procedure for

(
λ−1∂v

)
ν obtains the symmetric u bound (5.20).
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Now, for (5.30) we have(
λ−1∂v

)2
(rφ)(u, v) =

(
λ−1∂v

)2
(rφ)(1, v) +

∫ u

1

∂u

(
λ−1∂v

)2
(rφ)(u′, v)du′.

This leading term is bounded by v−3, and the latter term can be written∫ u

1

(
λ−1∂v

)
(∂u

(
λ−1∂v

)
(rφ))(u′, v) − ∂uλλ−1

(
λ−1∂v

)2
(rφ)(u′, v)du′.

The second term here can be controlled via Gronwall’s inequality since ∂uλ is
integrable by (5.19). The first term can be expanded:∫ u

1

(
λ−1∂v

) ( mν

(1 − μ)r2

(
φ −

(
λ−1∂v

)
(rφ)

))
(u′, v)du′.

As usual, we can absorb the
(
λ−1∂v

)2 (rφ) term via Gronwall, so we are left
with only the other terms. By the above results, we have that these are all
bounded by r−2v−2, so we obtain as an overall bound:∣∣∣(λ−1∂v

)2
(rφ)

∣∣∣ (u, v) � v−3

since our integral contributes a r−1v−2 which is strictly smaller than v−3

on O. One sees directly that (5.31) can be obtained in the same manner by
exchanging the roles of u and v at each step and substituting the correct
bounds from above. �

5.2. Higher-Order Derivatives

The remainder of this section will be devoted to closing the following induction
which completes the proof of Theorem 5.1:

Lemma 5.4. Let r, φ,m solve (SSESF’) in the region O with initial data
smooth, asymptotically flat to order N , satisfying the assumptions of Propo-
sition 5.2. Suppose the following bounds hold for multi-indices |α| ≤ n, |β| ≤
n + 1 < N :∣∣∣(λ−1∂v

)|α|
λ
∣∣∣ � v−(|α|+1), (5.32)∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
λ
∣∣∣ � r−1(1 + |u|)−αuv−αv , (5.33)∣∣∣(ν−1∂u

)|α|
ν
∣∣∣ � (|u| + 1)−(|α|+1), (5.34)∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
ν
∣∣∣ � r−1(1 + |u|)−αuv−αv , (5.35)∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
φ
∣∣∣ � r−1(1 + |u|)−αuv−αv , (5.36)∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
m
∣∣∣

� min
{

(1 + |u|)−(αu+1)v−αv , (1 + |u|)−αuv−(αv+1)
}

, (5.37)∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv m

rk

∣∣∣
� r−k min

{
(1 + |u|)−(αu+1)v−αv , (1 + |u|)−αuv−(αv+1)

}
, (5.38)
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∣∣∣(ν−1∂u

)βu
(
λ−1∂v

)βv (rφ)
∣∣∣ � r−1(1 + |u|)−βuv−βv , (5.39)∣∣∣(λ−1∂v

)|β|
(rφ)

∣∣∣ � v−(|β|+1), (5.40)∣∣∣(ν−1∂u

)|β|
(rφ)

∣∣∣ � (1 + |u|)−(|β|+1), (5.41)

where we take αu to be nonzero in (5.33), respectively, and αv nonzero in
(5.35) and βu, βv both nonzero in (5.39).

Then, in fact these estimates hold for |α| ≤ n + 1, |β| ≤ n + 2.

Before proving this, we must check, in the same vein as Lemma 4.2, that
in fact suffices to control only one ordering of the above derivatives in order
to obtain the listed order of decay for any rearrangement of them:

Proposition 5.5. Suppose the hypotheses of Lemma 5.4 hold for |α| ≤ n, |β| ≤
n + 1, for some ordering of derivatives

(
λ−1∂v

)
,
(
ν−1∂u

)
, then in fact the

same estimates hold for arbitrary reorderings of
(
ν−1∂u

)
,
(
λ−1∂v

)
.

Proof. The proof is identical to that given for Lemma 4.2 above and is not
repeated. �

Observe that the hypothesis above is immediately satisfied by proposi-
tion 5.3. Thus, proving Lemma 5.4 immediately gives us Theorem 5.1.

Proof of lemma 5.4. We begin with (5.36). In this case, we write∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv (rφ)
∣∣∣ = ∣∣∣r (ν−1∂u

)αu
(
λ−1∂v

)αv
φ
∣∣∣

+
∣∣∣ϑ(αv − 1)αv

(
ν−1∂u

)αu
(
λ−1∂v

)αv−1
φ
∣∣∣

+
∣∣∣ϑ(αu − 1)αu

(
ν−1∂u

)αu−1 (
λ−1∂v

)αv
φ
∣∣∣ ,

where ϑ(x) is a step function, 0 for x < 0, 1 for x ≥ 0. Thus, we obtain the
desired bound∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
φ
∣∣∣ � r−1(1 + |u|)−αuv−αv ,

by simply multiplying our hypothesized bounds at these orders and using the
fact that u, v � r in O.

Next, we move to (5.39). By proposition 5.5, it suffices to check the
following case:∣∣∣(ν−1∂u

)βu−1 (
λ−1∂v

)βv−1 (
ν−1∂u

) (
λ−1∂v

)
(rφ)

∣∣∣
=
∣∣∣∣(ν−1∂u

)βu−1 (
λ−1∂v

)βv−1
(

m

(1 − μ)r2

(
φ −

(
λ−1∂v

)
(rφ)

))∣∣∣∣ .
By hypothesis, this is bounded by∣∣∣(ν−1∂u

)βu−1 (
λ−1∂v

)βv−1 (
ν−1∂u

) (
λ−1∂v

)
(rφ)

∣∣∣
� r−2(1 + |u|)−(βu−1)v−βv ≤ r−1(1 + |u|)−βuv−βv ,

so we have our required decay.
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The bounds (5.33), and (5.35) follow similarly directly from (SSESF’)
and our hypothesis.

Now for (5.37), we consider the terms(
ν−1∂u

)αu
(
λ−1∂v

)αv
m

=
(
ν−1∂u

)αu
(
λ−1∂v

)αv−1
(

1
2
(1 − μ)r2(

(
λ−1∂v

)
φ)2
)

(
ν−1∂u

)αu−1 (
λ−1∂v

)αv
(
ν−1∂u

)
m

=
(
ν−1∂u

)αu−1 (
λ−1∂v

)αv

(
1
2
(1 − μ)r2(

(
ν−1∂u

)
φ)2
)

.

In each case, the term with minimal decay is when all derivatives act on some
copy of

(
λ−1∂v

)
φ or

(
ν−1∂u

)
φ, respectively, and by (5.36) this is bounded

by ∣∣∣(ν−1∂u

)αu
(
λ−1∂v

)αv
m
∣∣∣ � (1 + |u|)−αuv−(αv+1),

and ∣∣∣(ν−1∂u

)αu−1 (
λ−1∂v

)αv
(
ν−1∂u

)
m
∣∣∣ � (1 + |u|)−(αu+1)v−αv .

But by proposition 5.5, the difference between these two terms is of order

(1 + |u|)−(αu+1)v−(αv+1),

so in fact each satisfies both bounds, and we can safely take the minimal
value of these two bounds. Thus, we obtain (5.37). From this, (5.38) follows
immediately by splitting the derivatives over m and r−k.

Next we can proceed to (5.32), and (5.34). The approach and bounds are
completely symmetric by exchanging u for v, so we will only prove (5.32) in
detail. So we write:

(
λ−1∂v

)|α|
λ(u, v) =

∫ u

1

∂u

(
λ−1∂v

)|α|
λ(u′, v)du′.

By the same procedure as used in the proof of proposition 5.5, this integrand
can be bounded by∣∣∣∂u

(
λ−1∂v

)|α|
λ
∣∣∣ � ∣∣∣(λ−1∂v

)|α| (
ν−1∂u

)
λ
∣∣∣

+
|α|∑
i=1

∣∣∣(λ−1∂v

)i−1
(ν−1

(
λ−1∂v

)
ν
(
ν−1∂u

)∣∣∣
−
∣∣∣λ−1

(
ν−1∂u

)
λ
(
λ−1∂v

)
)
(
λ−1∂v

)|α|−i
∣∣∣ .

By our hypothesized bounds and the results above, all of the terms in the
latter sum are bounded by r−1v−|α|u−1, or by r−2

(
λ−1∂v

)|α|
λ and so can

be controlled by Gronwall’s inequality. In either case, we have the necessary
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decay (since the former term integrates to v−(|α|+1)), so we can safely ignore
these. Thus, all that remains is(

λ−1∂v

)|α| (
ν−1∂u

)
λ =

(
λ−1∂v

)|α| mλ

(1 − μ)r2
.

The term in which all derivatives act on λ can be controlled by Gronwall,
since r−2 in globally integrable, and the remaining terms all satisfy decay like
r−2v−|α| with

(
λ−1∂v

)|α|
r−2 being the term with the lowest power of decay.

Thus, integrating, we obtain the bound∣∣∣(λ−1∂v

)|α|
λ
∣∣∣ � v−(|α|+1),

as desired.
Finally, we move to (5.40), (5.41). As with (5.32), and (5.34), the proof

of (5.41) is the same as that for (5.40) with the roles of u and v interchanged,
and so is not repeated. Thus, we have(
λ−1∂v

)|β|
(rφ)(u, v) =

(
λ−1∂v

)|β|
(rφ)(1, v) +

∫ u

1

∂u

(
λ−1∂v

)|β|
(rφ)(u′, v)du′.

By our constraints on the data,
(
λ−1∂v

)|β| (rφ)(1, v) is already good enough
so we need to control the integral term. We can bound this integrand by∣∣∣∂u

(
λ−1∂v

)|β|
(rφ)

∣∣∣
�
∣∣∣∣(λ−1∂v

)|β|−1
(

mν

(1 − μ)r2

(
φ − (

(
λ−1∂v

)
(rφ))

))∣∣∣∣
+ r−1(1 + |u|)−1v−(|β|+1).

This second term already satisfies the necessary decay, so we are concerned
only with the first. By our hypothesis and the bounds already checked above,
we have that (expanding) each term in this derivative verifies decay bounded
by at least

r−2v−|β|.

Thus, our integral is bounded overall by v−(|β|+1), so we have∣∣∣(λ−1∂v

)|β|
(rφ)

∣∣∣ (u, v) � v−(|β|+1).

The u case is similar. �

This completes the proof of Lemma 5.4 and thus Theorem 5.1. In partic-
ular, we have our first main result: Theorem 3.1.

6. Stability to Non-symmetric Perturbations

It remains now to prove Theorem 3.4. We have established control in spherical
symmetry through the proof of Theorem 3.1 above, but it remains to check
that the lifts of these solutions to (3 + 1)-dimensional solutions to (ESF) are
in fact dispersive of order (C, γ0, N) for γ0, N sufficiently large. To do this, we
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must (1) check that these bounds transfer nicely to the full (3+1)-dimensional
solution, and (2) construct a suitable gauge and coordinate system.

In this section, we address this second issue. In particular, we construct a
gauge and coordinate system and check that in this setting (given a resolution
for the first concern above) the conditions for our solution (M, g, φ̃) to be dis-
persive of order (C, γ0, N) hold for the solutions considered in the hypotheses
of Theorem 3.4.

6.1. Coordinates and Gauge

We must construct a set of coordinates and prescribe a gauge for our solutions
to (ESF) on M before we can check the conditions of 2.11. Since we take
our solution to project to a solution of (SSESF’) of the type considered in
Theorem 3.1, we have immediately that our solution is spherically symmetric
and admits a double-null-ruling by coordinates (û, v̂, θ, φ) in which the metric
takes the form

g = −Ω2dûdv̂ + r2(û, v̂)ds2
S2

as in Sect. 2. Recall also that these coordinates present our solution as a lift
of the solution to (SSESF’) via the projection (û, v̂, θ, ϕ) �→ (û, v̂). Thus, as
in the (1 + 1)-dimensional reduced case, these û, v̂ are free up to a choice of
gauge. In what follows, we will impose the gauge condition (G2).

Then, define t = û + v̂ and r̂ = v̂ − û. From here, we obtain a coordinate
system (t, x1, x2, x3) defined as

t = û + v̂ x1 = r̂ cos θ sinϕ x2 = r̂ sin θ sinϕ x3 = r̂ cos ϕ.

The remainder of this section will be devoted to showing that lifts of the
solutions considered in Theorem 3.1 represented in this coordinate system
and gauge satisfy the conditions of 2.11. We do this in two parts: First we
check that changing from (G1) to (G2) preserves the decay properties shown
in Theorem 3.1. Then, we check the remaining conditions of 2.11 using the
results of Sect. 7.

6.2. Changing Gauge

Here we check that changing gauge from (G1) to (G2) (at least) preserves the
decay found in Theorem 3.1. Observe that it suffices to do so in the (1 + 1)-
dimensional setting, since the null coordinates here induce an equivalent choice
of null coordinates on M by construction.

The result is the following:

Lemma 6.1. Let (r, φ,m) a solution to (SSESF’) verifying hypothesis of The-
orem 3.1 in (G1). Then, the estimates eqs. (3.1)–(3.10) also hold exchanging
the u, v of (G1) for ũ, ṽ null coordinates for the gauge (G2).

Proof. Recall that we obtain the coordinates ũ, ṽ from u, v by the transforma-
tion

ũ(u, v) = −
∫ u

1

2ν̄(u′)du′ ṽ(u, v) = −2
∫ v

1

ν̄(v′)dv′,



Vol. 23 (2022) Global Non-linearly Stable Solutions to ESF 3137

where ν̄(x) = limv→∞ ν(x, v). It follows that

∂ũ =
∂u

∂ũ
∂u ∂ṽ =

∂v

∂ṽ
∂v.

By the above,
∂u

∂ũ
= − 1

2ν̄(u)
∂v

∂ṽ
= − 1

2ν̄(v)
.

Then, by the bounds eqs. (3.1) and (3.3), it follows immediately from Theo-
rem 3.1 that any solution satisfying the hypotheses of Theorem 3.1 in (G1)
verifies the same decay estimates in (G2) as well. �
Remark 6.2. Essentially the same argument allows us to pass between (G3)
and (G1) without concern as well, since our transformation is nearly identical.

Note that in (G2) we can augment the bounds of Theorem 3.1 slightly,
as we obtain some new control of ∂l

uν. In particular, we have the following:

Lemma 6.3. Let (r, φ,m) be as in Theorem 3.1, but presented in the gauge (G2).
Then, we have∣∣∣(ν−1∂u

)l
ν
∣∣∣ � min

{
(1 + |u|)−(l+1), (1 + |u|)−lv−1

}
.

Proof. In (G2), we have limv→∞ ν(u, v) ≡ − 1
2 . In particular, we have

limv→∞ ∂l
uν(u, v) = 0 for any u, l ≤ k (since the convergence to − 1

2 is uniform
by construction). Thus, we can write(

ν−1∂u

)l
ν(u, v) = −

∫ ∞

v

∂v

(
ν−1∂u

)l
ν(u, v′)dv′.

The desired bound then follows immediately from (3.4). �
Finally, (G2) gives us control of the limiting values of λ at I−:

Proposition 6.4. In (G2) we have limv→∞ λ(u, v) = 1
2 .

Proof. We have by (G2) that λ(u, u) = −ν(u, u) for all u ≥ 1. Moreover, by
Theorem 3.1 we have that |∂uλ| � min

{
(1 + |u|)−2, (1 + |u|)−1(1 + v)−1

}
.

Integrating the intermediate bound (1 + |u|)−1(1 + v)−1, we conclude

|λ(u, v)| � −ν(v, v) +
∣∣∣∣ log(1 + |v|)

1 + v

∣∣∣∣ .
Then, we have (∂u + ∂v)ν � (1 + |u|)−2, and limt→∞ ν(t, r̂) = − 1

2 for any r̂.
Thus ∣∣∣∣ν(u, u) +

1
2

∣∣∣∣ � 1
1 + |u| ,

so we conclude that∣∣∣∣λ(u, v) − 1
2

∣∣∣∣ � 1
1 + |v| +

log(1 + |v|)
1 + v

,

and thus, our limit holds. �
From this bound, we have immediately the following corollary:
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Corollary 6.5.

|λ + ν| � log(2 + |v|)
1 + v

.

6.3. Checking Dispersiveness

Finally we are ready to check the conditions of 2.11. Note that conditions
(D1), (D7) follow immediately from Theorem 3.1 and our choice of coordinates.
It remains to carefully check the remaining conditions of 2.11. We will do this
in two parts: first when |I| = 0 and then addressing separately the case ΓI

acts on the term of interest.

Proposition 6.6. The bounds (D2)–(D8) hold for |I| = 0.

Proof. We begin with the components of the metric hB . Recall that in null
coordinates the metric has the form:

−Ω2

2
(du ⊗ dv + dv ⊗ du) + r2dγS2 .

Thus, in our (t,x) coordinates described above the metric has the following
components:

gtt = −Ω2 git = 0 gij = δij
r2

r̂2
+

1
r̂2

(
Ω2 − r2

r̂2

)
xixj ,

where Ω2 = −4λν
1−μ , and δij is the Kronecker δ.

So the components of the background-subtracted metric hB are:

(hB)tt = −(Ω2 − 1) (hB)it = 0

(hB)ij = δij

(
r2

r̂2
− 1
)

+
1
r̂2

(
Ω2 − r2

r̂2

)
xixj .

We’ll begin with the necessary estimates near the axis (r̂ ≤ 1).
There are three terms we must control:

Ω2 − 1, (6.1)
r2

r̂2
− 1, (6.2)

1
r̂2

(
Ω2 − r2

r̂2

)
. (6.3)

We start with (6.1). Recall that Ω2 = −4λν
1−μ . By (4.9), we can write this

as

Ω2 = −4λν

∞∑
n=0

μn,

and thus,

Ω2 − 1 = (−4λν − 1) − 4λν
∞∑

n=1

μn.

Then, by (4.9) |μn| � r3n−1(1+ |u|)−6n, so this latter term immediately satis-
fies the required decay for r ≤ 1, since λν is bounded, and t ≤ 2(|u|+1) in this
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region. It thus remains to control −4λν − 1. Observe that by our construction
of the gauge (G2), we have that

lim
t→∞

λ(t, 0) = − lim
t→∞

ν(t, 0) =
1
2
.

Thus, limt→∞ λν(t, 0) = − 1
4 . So we can write

(−4λν − 1)(t, 0) = 4
∫ ∞

t

∂t(λν)dt.

Observe that since we are near Γ, we are WLOG in the region Q upon projec-
tion. Thus, by the results of Sect. 4 we have that ∂t(λν) � (1 + |u|)−3 � t−3.
We thus obtain

|−4λν − 1| (t, 0) � 1
(1 + v)

,

since t ∼ v in the region r̂ ≤ 1. Moreover, by the results of Sects. 4 and 7 we
have that

|∂iλν| � (1 + |u|)−3,

so we conclude that for all |x| ≤ 1,

|−4λν − 1| (t, x) � 1
(1 + v)2

as well. Thus, we have the necessary control of (6.1).
Next we consider the term (6.2). Observe that we can write (reducing to

2-dimensions by spherical symmetry):

r(t, x) =
∫ |x|

0

(λ − ν)(t, r̂)dr̂.

Let λ0(t, x) = λ(t, 0), and ν0(t, x) = ν(t, 0). Then, we can rewrite the above
as:

r(t, x) = (λ0 − ν0)r̂ +
∫ |x|

0

(λ − ν)(t, r̂) − (λ0 − ν0)(t, r̂)dr̂,

and so we have:

r2

r̂2
(t, x) = (λ0 − ν0)2 + 2(λ0 − ν0)

1
r̂

∫ |x|

0

(λ − ν)(t, r̂) − (λ0 − ν0)(t, r̂)dr̂

+

(
1
r

∫ |x|

0

(λ − ν)(t, r̂) − (λ0 − ν0)(t, r̂)dr̂

)2

.

Thus, similar to the above we must control the terms (λ0 − ν0)2 − 1 and
1
r̂

∫ |x|
0

(λ − ν)(t, r̂) − (λ0 − ν0)(t, r̂)dr̂.
We begin with the former. By the above, we have that limt→∞ λ0 =

limt→∞ − ν0 = 1
2 . Thus, we have

∣∣(λ0 − ν0)2 − 1
∣∣ (t, x) =

∫ ∞

t

∂t(λ − ν)(t′, 0)dt′.
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By Sect. 4, |∂t(λ − ν)(t, 0)| � (1 + |u|)−3, and thus,∣∣(λ0 − ν0)2 − 1
∣∣ (t, x) � 1

(1 + v)2

as required. We can thus move to our other term.
In this case, we have∣∣∣∣∣1r̂
∫ |x|

0

(λ − ν)(t, r̂) − (λ0 − ν0)(t, r̂)dr̂

∣∣∣∣∣ =
∣∣∣∣∣1r̂
∫ |x|

0

∫ r̂

0

∂r̂(λ − ν)(t, r̂′)dr̂′dr̂

∣∣∣∣∣
by Theorem 3.1. By arguments of Sect. 7, we in fact have that ∂r̂(λ−ν) |Γ= 0;
thus, we can write

∂r̂(λ − ν)(t, x) =
∫ |x|

0

∂2
r̂ (λ − ν)(t, r̂)dr̂.

Substituting this in above, and using the bounds of Theorem 3.1 we have∣∣∣∣∣1r̂
∫ |x|

0

(λ − ν)(t, r̂) − (λ0 − ν0)(t, r̂)dr̂

∣∣∣∣∣ � r̂2(1 + v)−3

satisfying the required bound for |x| ≤ 1. This bounds (6.2).
Finally, we move to (6.3). We start with just Ω2 − r2

r̂2 . Now we can write:(
Ω2 − r2

r̂2

)
= −4λ0ν0 − 4

∫ |x|

0

∂r̂(λν)(t, r̂)dr̂ − 4λν
∞∑

n=1

μn − (λ0 − ν0)2

−2(λ0 − ν0)
1
r̂

∫ |x|

0

(λ − ν)(t, r̂) − (λ0 − ν0)(t, r̂)dr̂

−
(

1
r

∫ |x|

0

(λ − ν)(t, r̂) − (λ0 − ν0)(t, r̂)dr̂

)2

.

Note that since λ = −ν on Γ we have that −4λ0ν0 = 4λ2
0 = (2λ0)2 = (λ0−ν0)2

so these constant terms vanish. By the above, it remains only to estimate∫ |x|

0

∂r̂(λν)(t, r̂)dr̂.

By the arguments presented in Sect. 7, it follows that

∂r̂(λν)(t, r̂) =
∫ r̂

0

∂2
r̂ (λν)(t, r̂′)dr̂′,

so we have ∣∣∣∣∣
∫ |x|

0

∂r̂(λν)(t, r̂)dr̂

∣∣∣∣∣ � r̂2(1 + v)−3.

Putting this together, we see that∣∣∣∣ 1
r̂2

(
Ω2 − r2

r̂2

)∣∣∣∣ � (1 + v)−2,

and thus satisfies the required bound.
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This establishes the condition (D2) close to the axis, for |I| = 0. In fact,
with the strength of the estimates above, this also establishes (D5) under the
same extra conditions. It remains to address (D3) and (D4).

In this case, since u ∼ v in the finite r̂ region we can address each term
at the same time. As above, there are three distinct terms to deal with:

Ω2 − 1, (6.4)
r2

r̂2
− 1, (6.5)

1
r̂2

(
Ω2 − r2

r̂2

)
xixj . (6.6)

It suffices to control ∂α(hB)μν (as the angular terms in ∂̄ can only act on the
xixj which does not affect the decay at all). In the first two cases, the result
follows directly from the analysis of corollary 7.4. In the case (6.6), this instead
follows from corollary 7.6, and the above work to show (D2).

With this completed, it remains to establish the required estimates in the
region r̂ > 1. In this region, we need not worry about potential singularities in
our metric components, since everything is uniformally bounded and smooth
away from the axis. Once more we have three types of terms that we must
bound:

Ω2 − 1, (6.7)
r2

r̂2
− 1, (6.8)(

Ω2 − r2

r̂2

)
xixj =

(
Ω2 − r2

r̂2

)
Si(θ, φ)Sj(θ, φ), (6.9)

where Sj(θ, φ) = xi

r̂ is the completely angular part of xi written in (t, r̂, θ, φ)
coordinates. Note that

∂iSj =
δij

r̂
− SiSj

r̂
∼ 1

r̂
.

We first establish (D2) for each of these terms and then move on to each
of (D3)–(D5)

We’ll begin with Ω2 − 1. Here we have

Ω2(u, v) − 1 =
−4λν

1 − μ
− 1.

By proposition 6.4 and Theorem 3.1, we can write

λ(u, v) =
1
2

+ Eλ(u, v) ν(u, v) = −1
2

+ Eν(u, v),

where |Eλ| � 1
1+v + log(1+|u|)

1+v , and |Eν | � 1
1+v . Thus, we can write:

Ω2(u, v) = (1 + Eλ + Eν + EλEν)
∞∑

n=0

μn.
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By Theorem 3.1, terms with n ≥ 1 immediately satisfy the bounds of (D2)
since the prefactor is uniformly bounded. The remaining term is

1 + Eλ + Eν + EλEν − 1 = Eλ + Eν + EλEν ,

but then as above, each of these also satisfies the bounds of (D2), since |u| � |v|
in I.

Next we move on to r2

r̂2 − 1, so we begin by showing that this, in fact,
vanishes for large r̂. Note that we have

r(t, r̂) =
∫ r̂

0

λ − νdr̂′.

Then, as above we can write

λ − ν = 1 + Eλ − Eν ,

so we have

r − r̂ =
∫ r̂

0

Eλ − Eνdr̂′.

By Theorem 3.1 and the arguments of proposition 6.4, we have that

|Eλ| � max
{
(1 + |u|)−1, (1 + v)−1

}
|Eν | � (1 + v)−1,

and moreover, in I we have r̂ ≤ v, |u| ≤ r̂, so this is bounded by

|r − r̂| � log(2 + r̂),

so we can write

r = r̂ + Er

where |Er| � log(2 + r̂). Thus, we conclude:∣∣∣∣r2

r̂2
− 1
∣∣∣∣ � log(2 + r̂)

r̂
.

Above, we already showed that this term is bounded by r̂2

(1+v)3 , so, applying
this new bound in the region I \ Q we have the required control of this term.

Finally, we consider
(
Ω2 − r2

r̂2

)
SiSj , but this is immediately controlled

by combining our work above for Ω2 − 1 and r2

r̂2 − 1, and the boundedness of
the Si’s.

Now we address (D3). Thus, we must establish the bound

|∂thμν | +
∣∣∣∑ ∂ihμν

∣∣∣ � 1
(1 + v)(1 + |u|)γ0

for some γ0 > 0. In fact, we obtain this for any γ0 < 1. In the case of ∂t, all
of the required bounds hold immediately by Theorem 3.1, and corollary 6.5.
For ∂i, if we allow this to act on a Ω2, then this again immediately satisfies
our bound by Theorem 3.1. If instead we allow this to act on some SiSj term,

then this simply multiplies
(
Ω2 − r2

r̂2

)
by a term proportional to 1

r̂ . By our
above work to prove (D2), this gives us the required bound as well.
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Finally, we must deal with the case ∂i
r2

r̂2 . In this case, we can expand:

∂i
r2

r̂2
=

2rSi(λ − ν)
r̂2

− 2Sir
2

r̂3
= 2

Si

r̂

(
r̂r(λ − ν) − r2

r̂2

)
.

It thus suffices to establish an estimate for r̂(λ − ν) − r. Recalling what we’ve
done above, we can write this as

r̂(λ − ν) − r = r̂ + (Eλ − Eν)r̂ − r̂ +
∫ r̂

0

Eλ − Eνdr̂′,

so we are left with:

(Eλ − Eν)r̂ +
∫ r̂

0

Eλ − Eνdr̂′.

Thus, the overall term can be written as

2
Si

r̂

r

r̂

(
(Eλ − Eν) +

1
r̂

∫ r̂

0

Eλ − Eνdr̂′

)
.

By the results of Sect. 5 in the region Q, Eλ and Eν are controlled by 1
t2 , so

our term is immediately bounded by
1

t2r̂
.

On the other hand, using the universal bounds of Theorem 3.1 as we did above,
we obtain the bound

log(2 + r̂)
r̂2

.

Together, these give us the required bound in the region r̂ > 1, so we conclude
that (D3) holds.

Next we consider (D4). Here we must bound |∂vh| +
∣∣ /∇h
∣∣; we will treat

these terms separately, beginning with ∂vh = (∂t + ∂r)h. We have by Theo-
rem 3.1 that ∂vΩ2 immediately satisfies the required estimates. In the case of
r2

r̂2 , we have

∂v
r2

r̂2
=

2rr̂λ − r2

r̂3
.

Now similar to the above we must bound

2r̂λ − r = r̂ + 2r̂Eλ − r̂ +
∫ r̂

0

(Eλ − Eν)dr̂′,

and thus, the resulting term is

r

r̂

(
2
r̂
Eλ − 1

r̂2

∫ r̂

0

(Eλ − Eν)dr̂′

)
.

As above, this is bounded by 1
t2r̂ , and log(2+r̂)

r̂2 which gives us the overall
required bound.

Finally, ∂v acts as 0 on the Si as these are totally angular.
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Thus, we are left to deal with /∇h. /∇ acts non-trivially only on non-
spherically symmetric terms, so this can only affect the terms xixj in our
metric. On these terms, the operator acts as:

/∇xi = Sj − Sk

for j, k �= i. In particular, this serves to multiply by an additional factor of 1
r̂ .

Thus, we can apply our work above for (D2) and immediately conclude (D4).
Finally, we must deal with (D5). All terms without a Γ are identically 0

in this case thanks to simple algebraic cancellations.
Now we move to φ and (D6). Again we are interested only in the case

where |I| = 0. We begin near the axis. For both |∂φ| and
∣∣∂̄φ
∣∣, the required

bounds of (D6) hold immediately by corollary 7.4, since u ∼ v. Away from
the axis, we can directly apply the results of Theorem 3.1. In particular,
|∂φ| � |∂uφ|, and

∣∣∂̄φ
∣∣ = |∂vφ|, since the φ is spherically symmetric, so the

angular portion of ∂̄ vanishes. Thus, the desired estimates follow directly from
Theorem 3.1.

Finally, we must deal with (D8). We must begin by computing �g in the
first place. Using our computed metric components above, we see through a
bit of algebra that √

−det g = Ω2 r2

r̂2

We can also compute the components of the inverse metric (g−1)αβ :

(g−1)00 = −Ω−2,

(g−1)0i = 0,

(g−1)ij = δij
r̂2

r2
+

1
r̂2

(
Ω−2 − r̂2

r2

)
xixj .

Thus, we have

�g = Ω−2 r̂2

r2
∂α

(
(g−1)αβΩ2 r2

r̂2
∂β

)
,

and there are four terms we must address:

�gt = −Ω−2 r̂2

r2
∂t

r2

r̂2
, (6.10)

�gx
j = Ω−2 r̂2

r2
∂i

(
δijΩ2 +

1
r̂2

(
r2

r̂2
− Ω2

)
xixj

)
, (6.11)

for j = 1, 2, 3. As above, we separate the near axis and large r̂ estimates.
We begin with (6.10), near the axis (r̂ < t/2). We can rewrite this as:

�gt = −Ω−2 r(λ + ν)
r2

= −Ω−2 λ + ν

r
.

Ω−2 is uniformly bounded, so we must control λ+ν
r . By (G2) we have that

λ + ν |Γ= 0, we can write by our averaging operator:

λ + ν

r
(t, r̂) =

r̂

r

1
r̂

∫ r̂

0

∂r̂(λ + ν)(t, r̂′)dr̂′.
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We show in Sect. 7 that r̂
r is bounded, so it suffices to control the averaged

term. Then, by Theorem 3.1 we have

|∂r̂(λ + ν)| � (1 + |u|)−2.

Thus, integrating, �gt satisfies the required bound.
Away from the axis (r̂ ≥ t/2), we must control ∂t

r2

r̂2 , since once again the
pre-factor is only uniformly bounded. This is:

2r(λ + ν)
r̂2

.

By corollary 6.5, we have that |λ + ν| � log(2+|u|)
(1+v) , so we immediately obtain

an overall bound of

|�gt| � log(2 + |u|)
(1 + v)r̂

.

This is good enough outside of Q, and moreover, using the better bounds which
hold in Q by Theorem 3.1 in this region, we in fact have

|�gt| � log(2 + |u|)
(1 + v)2r̂

,

which gives us the required bound everywhere.
Finally, we turn to (6.11), beginning near the axis. As before Ω−2 r̂2

r2 is
uniformly bounded, so we are concerned only with the differential terms. In
each case, we are thus left with

∂iΩ2 +
∑

j=1,2,3

xixj∂i

(
1
r̂2

(
r2

r̂2
− Ω2

))
+

1
r̂2

(
r2

r̂2
− Ω2

)
xj .

We have already obtained sufficient control of 1
r̂2

(
r2

r̂2 − Ω2
)

xj above, so we

need only be concerned with ∂iΩ2 and ∂i

(
1
r̂2

(
r2

r̂2 − Ω2
))

xixj . Each of these
quantities is adequately controlled by Theorem 3.1 and Sect. 7, so again we
can move to the case away from the axis.

Observe that in fact

∂i(δijΩ2 − Ω2SiSj) = −Ω2∂i(SiSj).

Thus, we are left to control the terms:(
∂i

r2

r̂2

)
SiSj = 2

rr̂(λ − ν) − r2

r̂3
Sj ,

and (
r2

r̂2
− Ω2

)
∂i(SiSj).

But these two terms are already adequately bounded by our work to con-
clude (D2) and (D3) above, so there is nothing left to do. �

Proposition 6.7. The bounds (D2)–(D8) hold for |I| ≤ k.
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Proof. The idea for each term, both near and far from the axis, is to be able to
count the total number of derivatives acting, as well as the total powers of the
accompanying weights, and then apply the results of Theorem 3.1 in order to
obtain the required decay. To this end, we will write the most general operator
which may act on a given term, and then examine this count of derivatives
and weights.

We begin with the components of the metric hB near the axis.
Here we have a general term:

∂A(xi∂j − xj∂i)B(t∂i + xi∂t)C(t∂t + r̂∂r̂)l(hB)μν ,

where A,B,C are multi-indices specifying the particular Γ applied. We will
work right to left to write the general term we must bound in a nicer way.
To do this, we determine the form of the general term of the above operator
acting on a spherically symmetric function f . Once we have done this, we will
go back to modify our expression to account for the non-spherically symmetric
parts of hB .

So we begin with S = t∂t+ r̂∂r̂. Observe that we can rewrite this in terms
of the operator X̂ := 1

r̂ ∂r̂:

S = t∂t + r̂2X̂.

Observe that X̂t = 0, and X̂r̂2 = 2, so t∂t and r̂2X̂ commute, and we can
write:

Slgμν =
l∑

n=1

(
l

n

)
(r̂2X̂)n(t∂t)l−nf.

We can write a generic term in this sum (up to a multiplicative constant) as:

r̂2(n−n1)tl−n−n2X̂n−n1∂l−n−n2
t f,

for n1 < n, n2 < l − n.
The next term that can act on our sum above is:

(t∂i + xi∂t)C .

The multi-index C need not be ordered since these all commute with each other
(up to differential terms with no weight, thus not contributing negatively to
our final power counting). Now note that ∂tr̂

2 = 0, ∂it = 0, ∂ir̂
2 = 2xi, and,

since X̂ l∂s
t f is spherically symmetric for any l, s we have that

∂iX̂
l∂s

t f = xiX̂ l+1∂s
t f.

Finally, ∂t and ∂i commute for all i, so we need not be concerned with ordering
these either. The generic operator this contributes is then:

t|m|−p∂
|C|−|m|−p
t

∏
i=1,2,3

(xi)Ci−mi−qi∂mi−qi

i ,

For p < min{|m| , |C|} the number of time derivatives acting on factors of t,
and qi < min{mi, Ci} similar. Finally, letting this act on our general term
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above, we have

tl+|m|−n−n2−p−ar̂2(n−n1−|b|)
(∏

(xi)Ci−2qi

)
·X̂ |m|+n−n1−|q|−|b|∂

l+|C|−|m|−n−n2−p−a
t f.

Now we have the term (xi∂j −xj∂i)B . Observe that this operator is completely
angular, and thus acts as 0 on t, r̂2 and derivatives of f , and only has the effect
of exchanging a copy of xi for one of xj (possibly with a change of sign). We
can ignore the sign here, since this is just a global multiplicative factor, so
letting the multi-index B = (B12 + B21, B23 + B32, B31 + B13) we have the
general term:

tl+|m|−n−n2−p−ar̂2(n−n1−|b|)
(∏

(xi)Ci−2qi+
∑

j �=i(Bji−Bij)
)

·X̂ |m|+n−n1−|q|−|b|∂
l+|C|−|m|−n−n2−p−a
t f,

for j �= i, and Bij ≤ Ci + Bji − 2qi.
Finally, we have our derivatives ∂A for a multi-index A = (At, A1, A2, A3).

The resulting term letting ∂A act on the above expression is:

tl+|m|−n−n2−p−a−Nt r̂2(n−n1−|b|−|K|)
(∏

(xi)Ai+Ci−2qi−2Ni+
∑

j �=i(Bji−Bij)
)

· X̂ |m|+n−n1−|q|−|b|+
∑

i=1,2,3(Ai−Ni−Ki)∂
l+|C|−|m|−n−n2−p−a+At−Nt

t f.

This gives the general term we will consider for our spherically symmetric
functions near the axis.

In the case of the background-subtracted metric hB , the only non-
spherically symmetric terms we must consider are of the form

1
r̂2

(
Ω2 − r2

r̂2

)
xixj

composed of a spherically symmetric term

1
r̂2

(
Ω2 − r2

r̂2

)
,

and some non-symmetric terms xixj . t derivatives act trivially on the xi, if a
r̂2X̂ operator acts on the non-spherically symmetric part we have

r̂2X̂(xixj) = 2xixj ,

and finally we have

∂ixj = δij .

In particular, an indefinite number of r̂2X̂ terms can be absorbed by the non-
symmetric terms, and only at most two spatial directional derivatives (without
weighting) can act on non-symmetric terms before they vanish, as with any
spatial coordinate terms the angular derivatives can exchange an xi for and
xj . Thus, our generic operator above may be modified by reducing the pow-
ers of r̂2 and X̂ in proportion to one another (i.e., reducing l and associated
quantities)—recalling the order in which these terms appear—dropping ex-
changing pairs (i.e., decreasing the total order of |B|) and dropping at most
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two isolated spatial directional derivatives (reducing the Ai or the mi con-
tributing to differential terms).

Thus, the terms (acting on spherically symmetric parts) we must consider
are:

tl+|m|−n−n2−p−a−Nt+2r̂2(n−n1−|b|−|K|)
(∏

(xi)Ai+Ci−2qi−2Ni+
∑

j �=i(Bji−Bij)
)

· X̂ |m|+n−n1−|q|−|b|+
∑

i=1,2,3(Ai−Ni−Ki)∂
l+|C|−|m|−n−n2−p−a+At−Nt

t f,

as the number of r̂2 terms and xi terms remain relative to the number of X̂
factors, but up to two t∂i terms may lose their derivatives, leaving (at worst)
an extra two factors of t. Then, Lemma 7.3 allows us to write these terms as
acting as:

tl+|m|−n−n2−p−a−Nt+sr̂2(n−n1−|b|−|K|)
(∏

(xi)Ai+Ci−2qi−2Ni+
∑

j �=i(Bji−Bij)
)

· ∂
2(|m|+n−n1−|q|−|b|+

∑
i=1,2,3(Ai−Ni−Ki))

r̂ ∂
l+|C|−|m|−n−n2−p−a+At−Nt

t f,

where s ≤ 2, s ≤ |m|. From here the bounds (and corresponding order-on-
order increases in decay) of Theorem 3.1, reduce this to a question of counting
derivatives and the corresponding powers of weights. In this generic term, we
find that we have

|m| + n + 2 |A| − 2 |N | − 2 |K| + l + |C| + At − 2n1 − n2 − 2 |q|
−2 |b| − p − a − Nt

derivatives acting on a given term (we do not distinguish between r̂ and t
derivatives since we will work with bounds in terms of u and v, and each of
these operators mix the two),

l + |m| − n − n2 − p − a − Nt + 2

powers of t and

2n − 2n1 − 2 |b| − 2 |K| + |A| + |C| − 2 |q| − 2 |N |

powers of r̂. Since r̂ is at worst comparable to t in the near axis region, we can
combine these weights to get a total weight of

n + l + |m| + |A| + |C| − 2n1 − n2 − p − a − 2 |b| − 2 |K| − 2 |q|
−2 |N | − Nt + s,

and so the net difference between the total number of derivatives and total
power of weights is −2,− |m| ≤ |A| + At − s. Observe also that this s only
enters on our terms with some non-spherically symmetric part, and in this
case, Lemma 7.5 also gives us two extra differential orders, so our difference
is actually just |A| + At, as we might expect. The required bounds now follow
immediately by the work done in the previous proposition, and the u, v bounds
given by Theorem 3.1.

Away from the axis (r̂ > t/2), we must take a slightly different approach
in order to obtain our proper decay. In particular, we observe that we can
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write our differential operators (when acting on spherically symmetric terms)
in terms of u and v as follows:

t∂t + r̂∂r̂ =
(v + u)(∂v + ∂u) + (v − u)(∂v − ∂u)

2
= v∂v + u∂u,

t∂i + xi∂t =
Si

2
((v + u)(∂v − ∂u) + (v − u)(∂v + ∂u)) = Si(v∂v − u∂u),

and we also have that (xi∂j − xj∂i)Si = −Sj . Since the only non-spherically
symmetric terms we will work with are products of the xi or Si these relations,
along with the definition of the ∂i, ∂t allows us to deal with all of our differential
terms. In particular, we see that any auxiliary powers of v come along with an
additional v derivative, and likewise for u. Thus, the bounds of Theorem 3.1,
and Lemma 6.3 yield the required decay for (D2), (D3), and (D4).

The case is similar for φ, since this is spherically symmetric and satisfies
similar (also sufficient) bounds by Theorem 3.1.

Finally, we must check (D8). This is much the same as what we have
done above for (D2) but requires a bit more care.

We begin in the near axis region, r̂ < t/2, with our �gt term. This is
completely spherically symmetric, so we are again in the case of our generic
near axis operator above acting on

�gt = Ω−2 r̂2

r2
∂t

r2

r̂2
.

In the proof of corollary 7.4 below we establish the bounds∣∣∣∣X̂ l∂s
t

r̂

r

∣∣∣∣ (u, v),
∣∣∣X̂ l∂s

t

r

r̂

∣∣∣ (u, v) � sup
Su+v(v−u)

∣∣∂2l
r̂ ∂s

t (λ − ν)
∣∣ ,

and control these derivatives of Ω−2 in terms of bounds for derivatives of λν
and μ. Moreover, in the previous proposition we have established behavior for
non-differentiated terms, so this is simply a matter of applying our general
form for the operator acting on spherically symmetric terms found above and
counting worst-case order of decay. Doing this, we find that we have exactly
one extra derivative in comparison to our counting above, so in particular our
decay improves by a power of 1+ |u|, which is comparable to 1+v in the small
r̂ region we consider, and thus, our bounds will hold in this case.

Away from the axis again things are less subtle, and we can apply our sim-
pler general operator found above, differentiating näıvely throughout and again
count our decay. In this case, we act on the expression Ω−2 λ+ν

r = (1−μ)(λ+ν)
4rλν .

As previously, we have already controlled all these terms in their undifferen-
tiated state in the previous proposition, so, by our power counting above we
need only check that a ∂u (resp. ∂v) derivative acting on each term results in
an improvement in decay of one power of u (resp. v). Comparing our bounds
of the previous proposition with those of Theorem 3.1 and the improvements
in Lemma 6.3, we find that this is the case, and thus, the required estimates
hold here as well.
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Next we must address our spatial coordinate terms, and again we must
deal with some non-spherically symmetric pieces. Recall that we have

�gx
j = Ω−2 r̂2

r2
∂i

(
δijΩ2 +

1
r̂2

(
r2

r̂2
− Ω2

)
xixj

)
.

We can split this into three terms which we will deal with individually:

Ω−2 r̂2

r2
∂iΩ2, (6.12)

Ω−2 r̂2

r2
xixj∂i

(
1
r̂2

(
r2

r̂2
− Ω2

))
, (6.13)

Ω−2 r̂2

r2
xj

(
1
r̂2

(
r2

r̂2
− Ω2

))
. (6.14)

We begin with the near axis case. Here, (6.12) is immediately controlled
sufficiently by the power counting above and theorem 3.1 and Lemma 6.3,
since we gain an extra order of derivative immediately (∂i commutes with
our other operators up to more strongly decaying terms), and this provides
the extra order of decay required for (D8). Similarly, writing ∂i = xiX̂ we
see that (6.13) gains the required decay by our power counting (losing up to
three spatial derivatives now), and corollary 7.6, which gives us an extra two
derivatives acting, and thus an extra two powers of decay, for a total of one
additional power as required. (6.14) follows in the same manner (we lose our
extra derivative and one potential lost differential order from (6.13)).

Finally, away from the axis we see that the required bound on (6.12)
follows directly from our power counting and Theorem 3.1. Here it is easier to
combine (6.13) and (6.14) and write them instead as

Ω−2 r̂2

r2
∂i

(
SiSj

(
r2

r̂2
− Ω2

))
.

Then, using r̂ ∼ v in this region, and the estimates already considered above
the required bound is direct from power counting and Theorem 3.1, Lemma 6.3.

With this, we establish all the conditions for 2.11, and so we obtain
stability for our class of solutions. �

7. Regularity Near the Axis

In this section, we prove several key results used above in the proof of Theo-
rem 3.4. In particular, we show that the lift of our reduced spherically sym-
metric solution to (SSESF’) given above gives rise to a smooth solution to
(ESF) with good decay in (3 + 1) dimensions. Note that the only issue is due
to the singularity of the (u, v) coordinates along the axis of symmetry, thus
away from the axis there is already nothing left to do. However, in order to
guarantee control of spatial (xi) derivatives near the axis, we must control the
differential operator X̃ := 1

r̂ ∂r̂ across the axis (observe that away from the
axis this is immediately controlled).
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In order to do this, we note that it suffices to establish estimates in (1+1)
dimensions for the operator X := 1

r̃ ∂r̃ near the axis of symmetry. Thus, we
reduce again to the (1+1) dimensional setting for the remainder of this section.

7.1. Preparations

Before beginning, we note a few essential facts:

Remark 7.1. Corresponding to (r, φ,m) a solution to (SSESF’) in (1+1), there
is a spherically symmetric solution (M, φ, g) to (ESF) in (3 + 1) dimensions
which reduces to (r, φ,m). Moreover if the data are sufficiently smooth (C∞

certainly suffices), then by persistence of regularity and Sobolev embedding the
solution may be taken to be at least Ck, so φ and the components of the metric
must be Ck smooth in the smooth structure R

3+1. In particular, reducing to
(1+1) dimensions, this immediately implies that X lφ is well defined on R

(1+1)
+ ,

and bounded on the axis for l ≤ k, and thus, ∂2l+1
r̂ φ |Γ= 0 for all l ≤ �k

2 � − 1.
This final fact will be essential to what follows.

We will also make use of the following elementary proposition:

Proposition 7.2. Let R(1+1)
+ =

{
(x, t) ∈ R

2
∣∣x ≥ 0

}
, and let f : R(1+1)

+ → R be
Ck up to the boundary. Suppose the extension f̄ to all of R(1+1) given by

f̄(x, t) =

{
f(x, t) x ≥ 0
f(−x, t) x ≤ 0

is Ck as well. Then, limx→0+ ∂2l+1
x f(x, t) = 0 for all l ≤ �k

2 � − 1.

7.2. Estimates For φ, μ, λ − ν, and λν

In order to establish the necessary control of φ, μ, λ − ν and λν, we will make
use of the following lemma:

Lemma 7.3. Let f : R2
+ → R a C2k function such that ∂2l−1

x f |Γ≡ 0 for all
l ≤ k. Then, for 2l + s ≤ 2k:∣∣X l∂s

t f
∣∣ (t, x) � sup

St(x)

∣∣∂2l
x ∂s

t f
∣∣ .

Proof. Observe that since odd order derivatives of f vanish on the axis, we
can write

X lf(t, x) =
1

x2l−1

∫
{(t′,x′) | t′=t,x′∈[0,x]}

(X l−1∂2
xf)(x′)2l−2dx′.

Since we have

Xf =
1
x

∫
∂2

xfdx′ = I1
x[∂xf ],

and so applying our differentiation formula for averaging operators, and rewrit-
ing the integrand (multiplying and dividing by x′ to obtain extra X operators
and maintain the averaging operator form), we obtain the above expression.

Thus, integrating using the supremum bound for our f term we have∣∣X lf
∣∣ (t, x) � sup

St(x)

∣∣X l−1∂2
xf
∣∣ ,
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so it suffices to bound X l−1∂2
xf by ∂2l

x f . But ∂2
xf satisfies the same assumptions

as f with k′ = k−1. Proceeding inductively, we conclude by the same reasoning
as above that ∣∣X l−s∂2s

x f
∣∣ (t, x) ≤ sup

St(x)

∣∣X l−s−1∂2s+2
x f

∣∣ .
Thus, it follows that ∣∣X lf

∣∣ (t, x) � sup
St(x)

∣∣∂2l
x f
∣∣

for all l ≤ k.
Now observe that, since odd order derivatives of f vanish on the axis,

∂x, ∂t commute, and the axis is an integral curve of ∂t, we in fact have that

∂2l−1
x ∂s

t f |Γ≡ 0

for any 2l − 1 + s ≤ k. But then ∂s
t f satisfies the assumptions of our lemma,

so by the above argument we in fact have∣∣X l∂s
t f
∣∣ (t, x) � sup

St(x)

∣∣∂2l
x ∂s

t f
∣∣ .

�

Corollary 7.4. Let (r, φ,m) a locally scattering solution to (SSESF’) in Q with
data asymptotically flat of order ω′ ≥ 2 in C2k toward I+. Then, the following
bounds hold for all l ≤ k:∣∣X l∂s

t φ
∣∣ � ∣∣∂2l

r̂ ∂s
t φ
∣∣ , (7.1)∣∣X l∂s

t μ
∣∣ � ∣∣∂2l

r̂ ∂s
t μ
∣∣ , (7.2)∣∣X l∂s

t λν
∣∣ � ∣∣∂2l

r̂ ∂s
t λν
∣∣ , (7.3)∣∣X l∂s

t (λ − ν)
∣∣ � ∣∣∂2l

r̂ ∂s
t (λ − ν)

∣∣ . (7.4)

Proof. Observe that (7.1) holds immediately by Lemma 7.3 and Theorem 3.1,
since φ lifts to a smooth function on R

(3+1), and thus has X lφ bounded for all
l ≤ 2k, thus immediately verifying the hypotheses of Lemma 7.3.

We turn next to (7.3), and (7.4). Observe that the function r̄(u, v) :={
r(u, v) v ≥ u

−r(v, u) v ≤ u
is a smooth extension of r to all of R

(1+1) (one checks

directly that the derivatives in u and v match up across the axis so long as they
are well defined in R

(1+1)
+ ). Moreover this function is odd in the r̂ coordinate

(this is exactly the condition in u, v translated to these other coordinates),
and thus, it follows immediately that ∂r̃ r̄ = 1

2 (λ̄ − ν̄) is even. Thus, λ − ν
immediately satisfies the hypotheses of Lemma 7.3, and thus, by Theorem 3.1
verifies (7.4).

In the case of λν, observe that λ̄ν̄ is a smooth function on R
(1+1), and

we have

λ̄(u, v) = −ν̄(v, u)

by construction of r̄. Thus, we have
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λ̄ν̄(u, v) = (−ν̄)(−λ̄)(v, u) = λ̄ν̄(v, u).

So λ̄ν̄ is an even function, C2k extension of λν. As above, it follows by
Lemma 7.3 and Theorem 3.1 that λν satisfies (7.3).

We are left to deal with (7.2), which is rather more involved. Observe
first that we can write:

μ(u, v) =
r̃

r

1
r̃

∫
Su+v(v−u)

∂r̃mdr̃′.

We will deal with the terms r̃
r and 1

r̃

∫
Su+v(v−u)

∂r̃mdr̃′ separately, beginning
with the latter.

Employing our averaging operators, we have(
∂l

r̃

1
r̃

∫
Su+v(v−u)

∂r̃mdr̃′

)
(u, v) =

1
r̃l+1(u, v)

∫
Su+v(v−u)

∂l+1
r̃ m(r̃′)ldr̃′.

We also have

∂r̃m =
(1 − μ)r2

4

(
1
λ

(∂vφ)2 − 1
ν

(∂uφ)2
)

.

Recall that ∂2l−1
r̃ φ vanishes on the axis. It follows that the extension φ̄(u, v) :={

φ(u, v) v ≥ u

φ(v, u) u ≥ v
is a smooth, even extension of φ to all of R(1+1). Moreover,

we have that

∂uφ̄(u, v) = ∂vφ̄(v, u).

In particular, the function

1
λ̄

(∂vφ̄)2 − 1
ν̄

(∂uφ̄)2

is a smooth extension of 1
λ (∂vφ)2 − 1

ν (∂uφ)2, which is even, and thus has
vanishing odd order ∂r̃ derivatives on the axis. Since r admits an odd extension,
r2 is a smooth even extension and thus also has vanishing odd order derivatives.
Thus, we conclude that, so long as ∂l−1

r̃ (1−μ) = ∂r̃μ vanishes along Γ, so does

1
r̃l+1(u, v)

∫
Su+v(v−u)

∂l+1
r̃ m(r̃′)ldr̃′.

In particular, so long as r̃
r is well behaved, we can conclude by induction that

μ has vanishing odd order r̃ derivatives on the axis.
Now we must deal with r̃

r , as above we wish to show that the odd order
r̃ derivatives vanish on the axis. Observe that since r̃

r is bounded away from
0 (since λ, ν are bounded away from 0), it suffices to work with r

r̃ . This is
advantageous, as we can write

r

r̃
(u, v) =

1
r̃(u, v)

∫
Su+v(v−u)

1
2

(λ − ν) dr̃′.
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Thus, we have ∣∣∣∂l
r̃

r

r̃
(u, v)

∣∣∣ � sup
Su+v(v−u)

∣∣∂l
r̃(λ − ν)

∣∣ .
So by our analysis of λ−ν above, we conclude that every odd-order derivative
of r̃

r vanishes on the axis. Thus the same holds for r
r̃ . Moreover, we conclude

by Theorem 3.1 that∣∣∣∣∂l
r̃∂

s
t

r̃

r

∣∣∣∣ (u, v) � sup
Su+v(v−u)

∣∣∂l
r̃∂

s
t (λ − ν)

∣∣ ,
counting powers in the bounds (3.2), (3.4).

Combining this with the above, we conclude inductively that ∂2l−1
r̃ μ van-

ishes on Γ (since an odd number of derivatives must always act on one of the
terms in our expression for μ). Thus, (7.2) holds as well. �

Finally, we would like to make use of the above bounds for the extended
cases μ

r̃2 , (λ−ν)−(λ0−ν0)
r̃2 , and λν−λ0ν0

r̃2 (where λ0(t, r̃) = λ(t, 0), ν0 likewise). To
this end, we have the following lemma:

Lemma 7.5. Suppose f is as in Lemma 7.3 and moreover satisfies f(t, 0) = 0.
Then, f̃ := f

r̃2 also satisfies the assumptions of Lemma 7.3 and the bound:∣∣∣X l∂s
t f̃
∣∣∣ � sup

St(x)

∣∣∂2l+2
x ∂s

t f
∣∣ .

Proof. We check that the even extension of f̃ (which we also denote by f̃) is
in fact differentiable across the axis by inductively controlling its derivatives
in terms of those of f . First, we can write

f̃(t, R) =
1

R2

∫ R

0

∂r̃f(t, r′)dr′ =
1

R2

∫ R

0

∫ r′

0

∂2
r̃f(t, r′′)dr′′dr′

since f and ∂r̃f each vanish on the axis. We thus conclude that∣∣∣f̃(t, R)
∣∣∣ ≤ sup

r<R

∣∣∂2
r̃f
∣∣ ,

and moreover (via the same argument with the value on the axis subtracted),
if f is Ck for k ≥ 2 (resp. > 2), then f̃ is differentiable (resp. continuously
differentiable) across the axis.

Suppose now that we have that
∣∣∣∂n−1

r̃ f̃(t, R)
∣∣∣ ≤ supr<R

∣∣∂n+1
r̃ f

∣∣ for all
0 ≤ n − 1 < k − 2. We show that such a bound holds for at order n as well. So
we can write:

∂n
r̃ f̃ = ∂n

r̃

f

r̃2
=

n∑
m=0

(−1)m

(
n

m

)
(m + 1)!

∂n−m
r̃

r̃m+2

=
1

r̃n+2

n∑
m=0

(−1)m

(
n

m

)
(m + 1)!rn−m∂n−m

r̃ .
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Observe that every term in this sum vanishes along the axis by assumptions
on f , so we can differentiate each term and integrate to obtain

1
Rn+2

∫ R

0

(
(−1)n(n + 1)!∂r̃f(t, r)

+
n−1∑
m=0

(−1)m

(
n

m

)
(m + 1)!

(
(n − m)rn−m−1∂n−m

r f(t, r)

+rn−n∂n−m+1
r̃ f(t, r)

))
dr. (7.5)

Combining terms with equal powers of r and differential order on f , we
obtain

1
Rn+2

∫ R

0

n∑
m=0

(−1)m n!
(n − m)!

rn−m∂n−m+1
r̃ f(t, r)dr.

Once again every term in this sum vanishes on the axis so we can differentiate
and integrate once more to obtain

1
Rn+2

∫ R

0

∫ r

0

(−1)nn!∂n
r̃ f(t, r′)

+
n−1∑
m=0

(−1)m n!
(n − m)!

(
(n − m)(r′)n−m−1∂n−m+1

r̃ f(t, r′)

+(r′)n−m∂n−m+2
r̃ f(t, r′)

)
dr′dr. (7.6)

Every term in this expression cancels except for the highest differential order,
and we obtain:

1
Rn+2

∫ R

0

∫ r

0

(r′)n∂n+2
r̃ f(t, r′)dr′dr. (7.7)

From this expression, we immediately have the bound

∣∣∣∂n
r̃ f̃(t, R)

∣∣∣ � sup
r<R

∣∣∂n+2
r̃ f(t, r)

∣∣ , (7.8)

and similar to the above we also conclude that f is differentiable at order n+1
as well. Moreover, since odd-order derivatives of f vanish along the axis, the
same is true of those of f̃ , and thus, we are in the situation of Lemma 7.3, and
we obtain the required bounds. �
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Corollary 7.6. ∣∣∣X l∂s
t

μ

r̃2

∣∣∣ � ∣∣∂2l+2
r̂ ∂s

t μ
∣∣ , (7.9)∣∣∣∣X l∂s

t

(λ − ν) − (λ0 − ν0)
r̃2

∣∣∣∣ � ∣∣∂2l+2
r̂ ∂s

t (λ − ν)
∣∣ , (7.10)∣∣∣∣X l∂s

t

λν − λ0ν0

r̃2

∣∣∣∣ � ∣∣∂2l+2
r̂ ∂s

t λν
∣∣ , (7.11)∣∣∣∣X l∂s

t

(
1
r̃2

(
Ω2 − r2

r̃2

))∣∣∣∣ �
∣∣∣∣∂2l+2

r̂ ∂s
t

(
Ω2 − r2

r̃2

)∣∣∣∣ . (7.12)
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