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On the Ultraviolet Limit of the Pauli–Fierz
Hamiltonian in the Lieb–Loss Model

Volker Bach and Alexander Hach

Abstract. Two decades ago, Lieb and Loss (Self-energy of electrons in non-
perturbative QED. Preprint arXiv:math-ph/9908020 and mp-arc #99–
305, 1999) approximated the ground state energy of a free, nonrela-
tivistic electron coupled to the quantized radiation field by the infimum
Eα,Λ of all expectation values 〈φel ⊗ ψph|Hα,Λ(φel ⊗ ψph)〉, where Hα,Λ

is the corresponding Hamiltonian with fine structure constant α > 0
and ultraviolet cutoff Λ < ∞, and φel and ψph are normalized electron
and photon wave functions, respectively. Lieb and Loss showed that
cα1/2Λ3/2 ≤ Eα,Λ ≤ c−1α2/7Λ12/7 for some constant c > 0. In the present
paper, we prove the existence of a constant C < ∞, such that

∣
∣
∣
∣

Eα,Λ

F1 α2/7 Λ12/7
− 1

∣
∣
∣
∣

≤ C α4/105 Λ−4/105

holds true, where F1 > 0 is an explicit universal number. This result
shows that Lieb and Loss’ upper bound is actually sharp and gives the
asymptotics of Eα,Λ uniformly in the limit α → 0 and in the ultraviolet
limit Λ → ∞.

1. Introduction and Result

Soon after the discovery of quantum mechanics almost a century ago by Heisen-
berg and Schrödinger, the quantization of the radiation field was formulated by
Born, Heisenberg, and Jordan and by Dirac [11,15], and about seventy years
ago quantum electrodynamics (QED) was formulated by Feynman, Schwinger,
Tomonaga, and Dyson [16,18,34,38], laying the foundation to answer the ques-
tion whether light rays consisted of particles or waves that was open for several
centuries. Besides being conceptually satisfying, QED is one of the most suc-
cessful theories with quantitative predictions that match experimental data by
more than eight decimals.
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In spite of its success for applications, however, QED is still lacking essen-
tial parts of its mathematical foundation to this very day. Namely, all known
formulations require unphysical regularizations at large, ultraviolet, and/or
small, infrared, photon energies. The original (relativistic) QED was shown to
be perturbatively renormalizable [17], but its nonperturbative renormalizabil-
ity is wide open. One alternative route to approach the ultraviolet problem is
to resort to simpler models, especially those that replace the relativistic by a
nonrelativistic particle, known as nonrelativistic QED or Pauli–Fierz Hamilto-
nians. In fact, considerable progress has been made in the past three decades on
the construction of the infrared limit, i.e., the construction of a theory without
regularization at small photon energies [5–7,9,21] for these models. The con-
struction of the ultraviolet limit has been successfully carried out for some of
these models, notably the Nelson model by a Gross transformation [23,33], the
spin-boson Hamiltonian [14], and Fröhlich Hamiltonians [22,22,30]. Another
alternative is to replace the fully interacting model by an effective mean-field
theory [19,20,25].

One approach among these is a simplifying variational model proposed by
Lieb and Loss in 1999 [31]. Their starting point is the Pauli–Fierz Hamiltonian

Hα,Λ =
1
2

(
1
i
�∇x − α1/2 �AΛ(x)

)2

+ Hph (1.1)

of a nonrelativistic spinless particle (modeling the electron), minimally coupled
to the quantized radiation field. Here, 1

i
�∇x is the (particle) momentum oper-

ator, and �AΛ(x) =
∫

|k|≤Λ

(

e−ik·xa∗(k) + eik·xa(k)
) ε(k) dk

(2π)3/2 |k|1/2 is the magnetic
vector potential in Coulomb gauge and cut off for momenta larger than Λ in
magnitude. Moreover, Hph =

∫ |k| a∗(k) a(k) dk is the energy of the radiation
field, and α ≈ 1/137 is the (dimensionless) fine structure constant. The Hamil-
tonian Hα,Λ is an unbounded, self-adjoint operator on the domain dom[H0,0] ⊆
Hel ⊗Fph of the noninteracting Hamiltonian H0,0 = 1

2 (−Δ)⊗1ph +1el ⊗Hph,
see [26,28], where Hel = L2(R3) is the space of square-integrable functions on
R

3, and Fph is the Boson Fock space over the space L2(R3 × Z2) of square-
integrable, purely transversal vector fields, see Sect. 2 for a precise definition.

Note that Hα,Λ ≥ 0 as a quadratic form. The (nonnegative) ground state
of the energy of the system is characterized by the Rayleigh–Ritz variational
principle as the infimum of all energy expectation values of the system,

Egs(α,Λ) := inf
{

〈Ψ |Hα,ΛΨ〉
∣
∣
∣ Ψ ∈ Hel ⊗ Fph, ‖Ψ‖ = 1

}

. (1.2)

Lieb and Loss restricted [31] the variation in (1.2) to wave functions of product
form Ψ = φ ⊗ ψ, with normalized φ ∈ Hel and ψ ∈ Fph, to obtain a new
approximation and upper bound ELL(α,Λ) ≥ Egs(α,Λ) to the ground state
energy, i.e.,

ELL(α,Λ) := inf
{

Eα,Λ(φ, ψ)
∣
∣
∣ φ ∈ Hel, ψ ∈ Fph, ‖φ‖ = ‖ψ‖ = 1

}

, (1.3)

Eα,Λ(φ, ψ) :=
〈

φ ⊗ ψ
∣
∣Hα,Λ(φ ⊗ ψ)

〉

. (1.4)
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Note that upper bounds on the ground state energy are of particular interest
here because the ultraviolet problem is about the understanding of the diver-
gence of Egs(α,Λ) → ∞, as Λ → ∞. We henceforth refer to Eqs. (1.3)–(1.4)
as the Lieb–Loss Model.

In Theorem 1.1 in [31], Lieb and Loss proved the existence of two universal
constants C1, C2 ∈ R

+ such that

C1 α1/2 Λ3/2 ≤ ELL(α,Λ) ≤ C2 α2/7 Λ12/7. (1.5)

This is the first of a series of results of Lieb and Loss in [31], extending their
model to N ≥ 2 fermions or bosons, taking the electron spin into account by
studying the Pauli operator, and replacing the nonrelativistic kinetic energy
by a pseudorelativistic one. Lieb and Loss also demonstrate in [31] that the
bounds in (1.5) hold true for the actual ground state-energy Egs(α,Λ), too, and
they sketch an argument that up to a multiplicative constant, the right side of
(1.5) is also a lower bound to ELL(α,Λ). Note that the Lieb–Loss model does
not take the renormalization of the electron mass into account, and the actual
value of ELL(α,Λ) is of limited quantitative use in physics. The significance of
Eq. (1.5), however, lies in the fact that the formal perturbation expansion of the
ground state about the photon vacuum yields Egs(α,Λ) ∼ CαΛ2. In contrast,
Eq. (1.5) says that this grossly overestimates the ground state energy; it is a
warning sign that perturbation theory may not be adequate to construct the
ultraviolet limit.

The main result of this paper is the derivation of the asymptotics of
ELL(α,Λ), as Λ → ∞ or α → 0. That is, for any given 0 < α ≤ 1 and Λ ≥ 1,
we first reduce the minimization of Eα,Λ over pairs (φ, ψ) of normalized vectors
in Hel ×Fph to a minimization over normalized positive vectors φ ≡ |φ| ∈ Hel,
by showing that ELL(α,Λ) = infφ∈Hel, ‖φ‖=1 Eα,Λ

(|φ|, U|φ|Ω
)

, where Ω ∈ Fph

is the normalized vacuum vector and U|φ| is a Bogoliubov transformation that
parametrically depends on |φ|. We then compare the effective energy functional
Êα,Λ

(|φ|) := Eα,Λ

(|φ|, U|φ|Ω
)

to the auxiliary classical functional

Fβ(φ) :=
1
2

∥
∥ �∇φ
∥
∥

2

2
+ β ‖φ‖1, (1.6)

for β := (4α
9π )1/2Λ3 and all φ ∈ Y := H1(R3) ∩ L1(R3), where ‖f‖p :=

(
∫ |f(x)|p d3x)1/p denotes the usual Lp-norm, here and henceforth. It is not

hard to see that

Fβ := inf
{Fβ(φ)

∣
∣ φ ∈ Y, ‖φ‖2 = 1

}

(1.7)

satisfies the scaling relation

Fβ = β4/7 F1, (1.8)

and in [24], the second author shows that the infimum in (1.7) is actually
attained and strictly positive, in particular,

F1 > 0. (1.9)

Our main result is estimate (1.10), showing that the upper bound on
ELL(α,Λ) in (1.5) is actually tight.
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Theorem 1.1. There exists a universal constant C < ∞ such that for all α > 0
and Λ ≥ 1, the estimate

−C α
4
49 Λ− 4

49 ≤ ELL(α,Λ)
( 4
9π )2/7 F1 α2/7 Λ12/7

− 1 ≤ C α
4

105 Λ− 4
105 (1.10)

holds true.

We briefly sketch the derivation of (1.10). The intermediate steps yield
further insight on the minimizer of the Lieb–Loss model. The latter is described
in detail in Sect. 3.3.
(1) For technical reasons, we introduce an infrared cutoff σ > 0. The case

σ = 0 can be dealt with by a continuity argument in the limit σ → 0 using
standard relative bounds on �Aσ. We do not give details of the argument
but refer the reader to [6].

(2) We first analyze the functional Eα,Λ. A direct computation yields

Eα,Λ(φ, ψ) =
1
2

∥
∥ �∇φ
∥
∥

2

2
+
〈

ψ
∣
∣
∣ H
(|φ|2, Im{φ �∇φ})ψ

〉

F
, (1.11)

where 〈·|·〉F denotes the scalar product on the photon Fock space Fph

and H[ρ, �v] is for ρ : R3 → R
+ and �v : R3 → R

3 given as

H[ρ, �v] := Hph +
α

2

∫

ρ(x) �A2
σ,Λ(x) d3x

+
√

α

∫

�v(x) · �Aσ,Λ(x) d3x. (1.12)

In Theorem 4.4, in Sect. 4.1, we demonstrate that by a suitably chosen
Weyl transformation Wφ, the term linear in the fields, i.e., proportional
to �v = Im{φ �∇φ}, can be eliminated up to an additive constant in the
transformed Hamiltonian. The minimization of the energy functional con-
sequently enforces the reality of the wavefunction φ. More precisely,

Eα,Λ

(

φ, ψ
) ≥ Eα,Λ

(|φ|,Wφψ
)

. (1.13)

Defining

Êα,Λ

(

φ
)

:= inf
{

Eα,Λ(φ, ψ)
∣
∣
∣ ψ ∈ Fph, ‖ψ‖ = 1

}

, (1.14)

we therefore have that

Êα,Λ

(

φ
) ≥ Êα,Λ

(|φ|). (1.15)

We pause to remark that due to (1.15), the ground state energies of the
Hamiltonian operators in Eqs. (1.7) and (1.9) in [31] coincide. Hence,
Theorems 1.1 and 1.2 in [31] are actually bounds on the same number.
Our present result in Theorem 1.1 sharpens this as the constants C1 and
C2 in [31, Theorem 1.2] are shown to agree and the difference to be of
lower order in Λ and higher order in α.

We further remark that there is an alternative derivation of (1.15) by
using that the semigroup generated by Hα,Λ is positivity improving, if the
Hilbert space is represented as a space of square-integrable functions of
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the particle position and the magnetic vector potential, as was shown by
Hiroshima in [27,29]. This leads to a variant of the diamagnetic inequality
which can be used to establish (1.15) (see also Eq. (14.4) in [37]).

(3) Equation (1.15) guarantees that we can assume without loss of generality
that φ = |φ| ≥ 0, and in this case,

Eα,Λ
(

φ, ψ
)

=
1

2

∥
∥ �∇φ
∥
∥2
2 +

〈

ψ

∣
∣
∣
∣

(

Hph +
α

2

∫

|φ(x)|2 �A2
Λ(x) d3x

)

ψ

〉

F
. (1.16)

In Theorem 4.5, in Sect. 4.2, we give an alternative proof for the obser-
vation of Lieb and Loss that

inf

{〈

ψ
∣
∣
∣

(

Hph +
α

2

∫

|φ(x)|2 �A2
Λ(x) d3x

)

ψ
〉

F

∣
∣
∣
∣

ψ ∈ Fph, ‖ψ‖ = 1

}

=
1

2
Tr
{√−Δx + 2Θ|φ|,α − √−Δx

}

, (1.17)

where Θφ,α := α(2π)−3PCχσ,Λ(φ̂∗)∗(φ̂∗)χσ,ΛPC , with χσ,Λ := 1[σ2 ≤
−Δx ≤ Λ2] being the characteristic function of momenta with mag-
nitude between σ and Λ, φ̂∗ denoting convolution with φ̂, and PC :=
1
[

( �∇x·) = 0
]

being the projection onto divergence-free vector fields, i.e.,
vector fields in Coulomb gauge.

The heart of the proof of Theorem 4.5 is the determination of the
Bogoliubov transformation UB∗(φ) which diagonalizes the quadratic effec-
tive Hamiltonian H(|φ|2, 0) on the left side of (1.17). While the general
procedure to determine UB∗(φ) is well-known, the details of the explicit
computation are involved. As a future project, it is planned to conju-
gate the (fully interacting) Hamiltonian with UB∗(φ) and to separate in
the obtained operator UB∗(φ)Hα,ΛU

∗
B∗(φ), the diagonalized quadratic part

from a remainder which, hopefully, is less singular than the former in the
ultraviolet limit.

(4) Inserting (1.17) into (1.14)–(1.15), we arrive at

Êα,Λ

(

φ
)

=
1
2

∥
∥ �∇φ
∥
∥

2

2
+

1
2
X(2Θφ,α), (1.18)

for φ = |φ| ≥ 0, where

X(A) := Tr
(√

|k|2 + A − |k|
)

and (1.19)

Θφ,α :=
α

(2π)3
PC χσ,Λ φ(x)2 χσ,Λ PC , (1.20)

with φ(x) ≡ φ(i∇p) denoting the corresponding Fourier multiplier (with
respect to the momentum representation).

(5) In Sect. 5, we introduce the infima

E
(L)
LL (α,Λ) := inf

{

Êα,Λ(φL)
∣
∣
∣ φL ∈ YL

}

, (1.21)

F
(L)
β := inf

{

Fβ(φL)
∣
∣
∣ φL ∈ YL

}

, (1.22)
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of the Lieb–Loss functional ELL(α,Λ)(φL) and the auxiliary functional
Fβ(φL) under variation only over compactly supported functions φL ∈
YL := H1(B(0, L)) and compare these infima to ELL(α,Λ) and Fβ by
means of the IMS localization formula. Here, B(x, r) ⊆ R

3 denotes the
open ball of radius r > 0 centered at x ∈ R

3, as usual. More specifically,
we prove in Theorem 5.1 that

E
(L)
LL (α,Λ) − C L−2 ≤ ELL(α,Λ) ≤ E

(L)
LL (α,Λ), (1.23)

F
(L)
β − C L−2 ≤ Fβ ≤ F

(L)
β , (1.24)

for some universal constant C < ∞ and all L > 0. Consequently, the
leading orders of ELL(α,Λ) and Fβ , respectively, are determined by their
behavior on compactly supported functions.

(6) The sixth step carried out in Sects. 6 and 7 is to find upper and lower
bounds for all compactly supported φ = |φ| ∈ YL := H1

(

B(0, L)
)

on
X(ΘφL,α). In Theorem 6.1, we prove the existence of a universal constant
C < ∞ such that, for all 0 < ε ≤ 1, L ≥ 1/Λ, and φ ∈ YL,

1
2
X(2Θφ,α) −

√

4α

9π
Λ3 ‖φL‖1

≤ C
(

ε α
1
2 Λ3 + α

1
2 σ

3
2 Λ

3
2
) ‖φL‖1 + C ε−2 Λ2 L

3
2 ‖∇φL‖2. (1.25)

This is complemented by the lower bound in Theorem 7.2 which asserts
that there exists a universal constant C < ∞ such that, for all L ≥ 1/Λ
and φ ∈ YL,

1
2
X(2Θφ,α) −

√

4α

9π
Λ3 ‖φL‖1 ≥ −C α

1
4 Λ

7
2 L

3
2 ‖φL‖ 1

2
1 . (1.26)

(7) Estimates (1.25) and (1.26) suggest to compare the functional Êα,Λ(φ) =
1
2‖ �∇φ‖2

2 + 1
2X(2Θφ,α) to Fβ(α,Λ)(φ) = 1

2‖ �∇φ‖2
2 + β(α,Λ)‖φ‖1 with

β(α,Λ) :=
√

4α
9π Λ3 which is done in Sect. 8. Indeed, this leads us to

introduce the family of auxiliary functionals (Fβ)β>0, defined on Y :=
H1(R3) ∩ L1(R3) ⊂ H1(R3) as

Fβ(φ) :=
1
2

∥
∥ �∇φ
∥
∥

2

2
+ β ‖φ‖1, (1.27)

and their infima

Fβ := inf
{Fβ(φ)

∣
∣ φ ∈ Y, ‖φ‖2 = 1

}

. (1.28)

This family of functionals is analyzed by direct methods of the calculus
of variations in detail by the second author in a separate paper [24], and
here we describe its properties only briefly.

– For fixed β > 0, the functional Fβ possesses a minimizer, which is
unique up to translations, nonnegative, spherically symmetric and
decreasing. In particular, its infimum Fβ is attained and hence a
strictly positive minimum.
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– For all β > 0, both energy and minimizer are uniquely determined
by their scaling behavior in β and universal constants corresponding
to the case β = 1. In particular, F1 > 0 is a universal positive
number and Fβ = β4/7F1.

– The Euler–Lagrange equation, which corresponds to the inhomoge-
neous Helmholtz equation (−Δ − μ2)φ + β = 0, yields an explicit
characterization of this minimizer in terms of the zeroth Bessel func-
tion j0 of the first kind.

– The scaling relation Fβ = β4/7F1 and the numerical value of F1 >
0 can also be obtained in the following way: Introduce φλ(x) :=
λ3/2φ(λx), for any φ ∈ Y with ‖φ‖2 = 1 and λ > 0, so that ‖φλ‖2 =
1, too. Then, Fβ(φλ) = λ2

2 ‖ �∇φ‖2
2+βλ−3/2‖φ‖1, and a minimization

over λ > 0 yields

Fβ(φ) ≥ 7
4

(2
3

)3/7

β4/7
(

‖∇φ‖2
2 ‖φ‖4/3

1

)3/7

≥ 7
4

(2
3

)3/7

β4/7 C
−3/7
3 , (1.29)

where the last step uses Nash’s inequality in three spatial dimen-
sions, and C3 is the optimal constant computed in [12]. Moreover, in
[12] it is shown that the lower bound (1.29) is attained, and therefore
F1 = 7

4 ( 2
3 )3/7C

−3/7
3 > 0. We are grateful to one of the anonymous

referees for pointing this short derivation out to us.
In Sect. 8, we use the information on the auxiliary functional and espe-
cially the scaling relation Fβ = β4/7F1 to finally derive (1.10), formulated
again as (8.3) in Theorem 8.1. In order to simultaneously control the er-
rors on the right side of (1.25) and the localization error of order O(L−2),
we choose ε := α4/105Λ−4/105 and L := α17/105Λ−88/105 and arrive at the
upper bound in (1.10). Similarly, we choose L := α9/49Λ−40/49 to obtain
the lower bound in (1.10) from (1.26) and the localization estimate.

Note that the lower bound suggests that the length scale �(α,Λ)
of the particle in the ground state of the Lieb–Loss model is of order
�(α,Λ) ≈ ατ−1Λ−τ , with τ = 40

49 ≈ 0.82.

2. The Lieb–Loss Model

The Lieb–Loss model is a variational model for the study of the ground state
energy of a system containing a single nonrelativistic spinless particle which
is minimally coupled to the quantized radiation field. The dynamics of such a
quantum system is generated by the Pauli–Fierz Hamiltonian

Hα,σ,Λ :=
1
2

(

i �∇ +
√

α �Aσ,Λ(x)
)2

+ Hph, (2.1)

which we define here as a quadratic form on H1(R3)⊗D(N1/2
ph ), where H1(R3) ⊆

L2(R3) is the Sobolev space of square-integrable functions whose gradient is
square-integrable, as well, and D(N1/2

ph ) ⊆ Fph denotes the subspace of finite



2214 V. Bach and A. Hach Ann. Henri Poincaré

photon number expectation value of the photon Fock space Fph. The latter
is the boson Fock space over the one-photon Hilbert space h, i.e., it is the
orthogonal sum Fph =

⊕∞
n=0 F

(n)
ph of n-photon sectors, where F

(0)
ph := C · Ω is

the one-dimensional vacuum sector spanned by the normalized vacuum vector
Ω, and for n ≥ 1, the n-photon sector F

(n)
ph := Sn[h⊗n

pol] ⊆ h⊗n
pol, is the subspace

of the n-fold tensor product of hpol of totally symmetric vectors.
The one-photon Hilbert space hpol := L2(Sσ,Λ×Z2) is the space of square-

integrable, divergence-free vector fields �k �→ �ε(�k,+)f(k,+) + �ε(�k,−)f(k,−)
supported in the momentum shell Sσ,Λ := {�k ∈ R

3 : σ ≤ |�k| < Λ} ⊆ R
3

which excludes momenta of magnitude below the infrared cutoff σ ≥ 0 and
above the ultraviolet cutoff 1 ≤ Λ < ∞. The two transversal polarizations
are parameterized by the polarization vectors �ε(k,±) ⊥ k that are chosen so
as to form an orthonormal frame

(�k/|�k|, �ε(�k,+), �ε(�k,−)
)

in C ⊗ R
3, for all

�k ∈ Sσ,Λ\{�0}. Of course, the map k → �ε(k) is assumed to be measurable and,
for convenience, chosen to be real, �ε(k,±) ∈ R

3, almost everywhere in R
3 ×Z2.

In (2.1), the field Hamiltonian

Hph = dΓ(|k|) =
∫

|k| a∗(k) a(k) dk (2.2)

represents the energy of the radiation field, and

�Aσ,Λ(x) = (2π)− 3
2

∫ �ε(k)
|k| 1

2

(

a∗(k) e−ik·x + a(k) eik·x) dk (2.3)

is the quantized vector potential (in Coulomb gauge). In (2.2), (2.3), we denote
elements of Sσ,Λ × Z2 � (�k, τ) by k := (�k, τ) and then further −k := (−�k, τ),
|k| := |�k|, k ·x := k1x1 +k2x2 +k3x3,

∫

F (k) dk :=
∑

τ=±
∫

σ≤|�k|<Λ
F (�k, τ)d3k.

Furthermore, we use creation and annihilation operators a∗(k) and a(k), for
k ∈ Sσ,Λ ×Z2, in (2.2) and (2.3). These are operator-valued distributions con-
stituting a Fock representation of the canonical commutation relations (CCR)
on Fph, i.e.,

[

a(k1), a(k2)
]

=
[

a∗(k1), a∗(k2)
]

= 0 , (2.4)
[

a(k1), a∗(k2)
]

= δ(k1 − k2) , a(k1)Ω = 0, (2.5)

for all k1 = (�k1, τ1), k2 = (�k2, τ2) ∈ Sσ,Λ × Z2 (integrated over k1 and k2

against test functions), where δ(k1 − k2) = δ3(�k1 − �k2) δτ1,τ2 . Finally, the
photon number operator entering the definition of the domain D(N1/2

ph ) is
given by Nph :=

∫

a∗(k)a(k) dk.
The Lieb–Loss model is defined by the Lieb–Loss (energy) functional

Eα,σ,Λ : H1(R3)×D(N1/2
ph ) → R which results from varying only over products

φ⊗ ψ of normalized wave functions of the particle φ ∈ L2(R3) and the photon
state ψ ∈ Fph in the Rayleigh–Ritz principle, i.e.,

Eα,σ,Λ(φ, ψ) :=
〈

φ ⊗ ψ
∣
∣ Hα,σ,Λ(φ ⊗ ψ)

〉

. (2.6)
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Note that given a fixed φ ∈ H1(R3) and varying only over ψ ∈ D(N1/2
ph ), the

Lieb–Loss functional ψ �→ ELL(φ, ψ) becomes the expectation value in ψ of a
Hamiltonian that is quadratic in the boson fields. More specifically, a simple
computation shows that

Eα,σ,Λ(φ, ψ) =
1
2

∥
∥ �∇φ
∥
∥

2

2
+
〈

ψ
∣
∣
∣ H
(|φ|2, Im{φ �∇φ}) ψ

〉

F
, (2.7)

where 〈·|·〉F denotes the scalar product on the photon Fock space Fph and, for
fixed ρ : R3 → R

+ and �v : R3 → R
3, the quadratic Hamiltonian H[ρ, �v] is given

as

H[ρ, �v] := Hph +
α

2

∫

ρ(x) �A 2
σ,Λ(x) d3x +

√
α

∫

�v(x) · �Aσ,Λ(x) d3x. (2.8)

As we show below, it turns out that the minimal values of the Lieb–Loss
functional is attained for positive wave functions. To exhibit this, we define
r := |φ| ∈ H1(R3;R+

0 ) and choose γ ∈ H1(R3;R), for a given φ ∈ H1(R3;C),
so that

φ = r eiγ , |φ|2 = r2, Im{φ �∇φ} = r2 �∇γ, (2.9)

‖ �∇φ‖2
2 = ‖ �∇r‖2

2 + ‖r �∇γ‖2
2, (2.10)

and thus

Eα,σ,Λ(r eiγ , ψ) =
1
2
‖ �∇r‖2

2 +
1
2
‖r �∇γ‖2

2 +
〈

ψ
∣
∣
∣ H
(

r2, r2 �∇γ
)

ψ
〉

F
. (2.11)

Although convenient, the explicit parametrization of Couloumb gauge by po-
larization vectors �ε(�k,±) tends to obscure the picture by introducing a seeming
dependence of the model on the choice of �ε(�k,±), which, however, should be
physically meaningless. For this reason, we choose the one-photon space to be
the Hilbert space

h := PC

[

L2(Sσ,Λ;C ⊗ R
3)
]

=
{

f ∈ L2(Sσ,Λ;C ⊗ R
3)
∣
∣
∣ ∀ �k ∈ Sσ,Λ : �k ⊥ f(�k)

}

(2.12)

of divergence-free, square-integrable vector fields, where PC ∈ B[L2(Sσ,Λ;C⊗
R

3)
]

is the orthogonal projection acting as
[

PCf
]

(�k) := P⊥
�k f(�k) := f(�k) −

P�kf(�k), with P�k : R3 → R
3 being the projection in R

3 onto the unit vector
�k/‖�k| ∈ S

2. Note that for any arbitrary, but fixed, choice of polarization vectors
basis {�ε(�k,+), �ε(�k,−)}�k∈Sσ,Λ

described above, the map

Ξ : hpol → h,
[

Ξf
]

(�k) := �ε(�k,+) f(�k,+) + �ε(�k,−) f(�k,−) (2.13)

is unitary, with [Ξ−1f ](�k,±) = [Ξ∗f ](�k,±) = �ε(�k,±) · f(�k), and allows us to
switch between the photon representations, if necessary.
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Accordingly, the photon Fock space we use is Fph := Fb[h], the bosonic
Fock space over divergence-free vector fields. On Fph, we have a Fock repre-
sentation of the CCR of the form
[

a(�k1, ν1), a(�k2, ν2)
]

=
[

a∗(�k1, ν1), a∗(�k2, ν2)
]

= 0 , (2.14)
[

a(�k1, ν1), a∗(�k2, ν2)
]

= δ(�k1 − �k2)
(

P⊥
�k1

)

ν1,ν2
, a(k1)Ω = 0, (2.15)

for all �k1, �k2 ∈ Sσ,Λ and ν1, ν2 ∈ Z3, as operator-valued distributions, or
[

a(f), a(g)
]

=
[

a∗(f), a∗(g)
]

= 0 , (2.16)
[

a(f), a∗(g)
]

=
〈

f
∣
∣ PC g
〉

, a(f)Ω = 0, (2.17)

for all f, g ∈ h, where we write

a∗(f) :=
3∑

ν=1

∫

fν(�k) a∗(�k, ν) d3k , a(f) :=
3∑

ν=1

∫

fν(�k) a(�k, ν) d3k.

(2.18)

for all f = (f1, f2, f3)t ∈ h. In this representation, the operator �Aσ,Λ(x) of the
magnetic vector potential becomes �A(x) =

(

A1(x), A2(x), A3(x)
)

, with

Aμ(x) = a∗(mμ(x)
)

+ a
(

mμ(x)
)

=
3∑

ν=1

∫ {

mμ,ν(x, �k) a∗(�k, ν) + mμ,ν(x, �k) a(�k, ν)
}

d3k, (2.19)

mμ,ν(x, �k) :=
1
[

σ ≤ |�k| < Λ
]

(2π)3/2 |�k|1/2

(

P⊥
�k
)

μ,ν
e−ik·x, (2.20)

and the Hamiltonian H
(

r2, r2 �∇γ
)

in (2.11) turns into

H
(

r2, r2 �∇γ
)

= Hph +
α

2

∫
(

r(x) �A(x)
)2

d3x +
√

α

∫
(

r(x) �∇γ(x)
) · (r(x) �A(x)

)

d3x.

(2.21)

Note that the dependence of �A(x) on the cutoff parameters 0 < σ ≤ 1 and
1 ≤ Λ < ∞ is not displayed anymore.

3. Bogoliubov Transformations

Next, we analyze the infimum of ψ �→ 〈ψ ∣∣ H[r2, r2 �∇γ
]

ψ
〉

, as ψ ∈ D(N1/2
ph )

varies over normalized states, by means of Bogoliubov transformations. For a
suitable definition of these in the present context, the choice of the antilinear
involution J : h → h defined by

[Jf ](�k) := f(−�k) (3.1)

plays a key role. Before using J , we recall a few facts about antiunitary maps
and generalized creation and annihilation operators.
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3.1. Antiunitary Maps and Generalized Field Operators

For a general complex Hilbert space h the Riesz map R : h → h∗, ψ �→ 〈ψ|
is a canonical isomorphism from h onto its dual h∗ = B[h;C]. Moreover, R is
antiunitary, i.e., it obeys 〈R(f)|R(g)〉h∗ = 〈g|f〉h. Note that R is not the only
antiunitary map from h to h∗, for if u : h → h and v : h∗ → h∗ are unitary
operators on h and h∗, respectively, then v ◦ R ◦ u : h → h∗ is antiunitary, too.
Conversely, any antiunitary from h to h∗ is of this form.

In the present paper, we prefer to work with an antiunitary J which addi-
tionally constitutes an antilinear involution or real structure. Given a general
complex Hilbert space h, these are antiunitary bijections J : h → h, which obey

J2 = 1h and ∀ f, g ∈ h : 〈J(f)|J(g)〉h = 〈g|f〉h. (3.2)

Given an antiunitary involution J : h → h, we can define the maximal J-
invariant subspace

hR =
{

f ∈ h
∣
∣ Jf = f

} ⊆ h, (3.3)

which is a R-linear subspace of h. Writing f ∈ h as f = f1 + if2, with f1 :=
1
2 (f + Jf) ∈ h and f2 := 1

2i (f − Jf) ∈ h, we obtain a direct sum decomposition
h = hR ⊕ ihR. Similar to antiunitary operators h → h∗, antiunitary involutions
h → h are not unique. This gives us freedom to make a suitable choice for the
problem to solve, namely (3.1) in the present case.

To define Bogoliubov transformations it is convenient to use generalized
creation and annihilation operators which were first introduced by Araki and
Shiraishi in [2,3] to describe the second quantization of one-body Hamiltonians.
Bogoliubov transformations are also discussed in detail in [8,36]. Given an
antiunitary involution J : h → h, the generalized creation and annihilation
(field) operators A∗

J , AJ : h ⊕ h → B[D(N1/2);Fb(h)] are defined by

A∗
J(f ⊕ Jg) := a∗(f) + a(g) and AJ(f ⊕ Jg) := a(f) + a∗(g), (3.4)

for any f, g ∈ h. Note that

AJ(F ) = A∗
J (J F ), with J :=

(
0 J
J 0

)

(3.5)

being an antiunitary involution on h⊕h. The vectors in h⊕h which are invariant
under J are of the form y ⊕ Jy, with y ∈ h. They form a real subspace

(h ⊕ h)J :=
{

G ∈ h ⊕ h
∣
∣ G = J G

}

=
{

y ⊕ Jy
∣
∣ y ∈ h

}

= q[h], (3.6)

where q : h → (h ⊕ h)J is the real-linear map

q :=
(
1
J

)

, with adjoint q∗ : (h ⊕ h)J → h, q∗ =
(

1, J
)

. (3.7)

One advantage of the generalized formalism consists in encoding all orderings
in the second quantization of operators, so that we need not worry about
imposing normal-ordering. The price for this is the slightly modified form of
the canonical commutation relations (CCR), the generalized field operators
obey, namely

[

AJ(F ), A∗
J(F

′)
]

=
〈

F
∣
∣ SF ′〉, (3.8)
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where S is a natural symplectic form on h ⊕ h given by

S :=
(

1 0
0 −1

)

. (3.9)

3.2. Second Quantization and Bogoliubov Transformations

Next, we introduce the second quantization of one-photon operators. Let J :
h → h be an antiunitary involution and {Fi}∞

i=1 ⊆ h ⊕ h an orthonormal
basis. For T = T ∗ ∈ B[h ⊕ h] and y ∈ h, we define their second quantization
dΓJ[T, y] ∈ B[D(Nph);Fph)] by

dΓJ[T, y] :=
∞∑

i,j=1

〈Fi|TFj〉A∗
J(Fi)AJ(Fj)

+
∞∑

i=1

{〈Fi|q(y)〉A∗
J(Fi) + 〈Fi| q(y)〉 AJ(Fi)

}

. (3.10)

Note that the definition (3.10) of dΓJ[T, y] is independent of the choice of
the orthonormal basis {Fi}∞

i=1 ⊆ h ⊕ h. Moreover, dΓJ[T, y] is self-adjoint on
D(Nph) and dΓJ[T, y] is semibounded, provided T ≥ 0. Finally, [a(f), a(g)] = 0
and [a∗(f), a∗(g)] = 0 imply that dΓJ

[(
a b
c d

)

, y
]

= dΓJ

[(
a Jb∗J

Jc∗J d

)

, y
]

, and we
can and will henceforth always assume that

b∗ = J b J, for T = T ∗ =
(

a b
b∗ d

)

=
(

a b
JbJ d

)

. (3.11)

A second advantage of the generalized creation and annihilation operators
is that their use eases the definition of Bogoliubov transformations. We recall
that Bogoliubov transformations are unitary transformations Û on Fock space
Fph which preserve (3.7) and are linear in the field operators, i.e., they act as

Û a∗(f) Û∗ := a∗(Uf) + a(JV f) + 〈η|f〉, (3.12)

for all f ∈ h, where U and V are linear operators on h and η ∈ h. The
Bogoliubov transformations form a group which is the semidirect product of
the group of homogenous Bogoliubov transformations and the group of Weyl
transformations. That is, every Bogoliubov transformation Û can be written
as a composition

Û = UB Wη = Wμ UB (3.13)

of a homogeneous Bogoliubov transformation UB and a Weyl transformation
Wη or a composition of a Weyl transformation Wμ and UB , but with μ �= η,
in general.

Homogeneous Bogoliubov transformations UB are the special case η = 0
of (3.12). In terms of the generalized field operators, they assume the form

UB A∗
J(F )U∗

B := A∗
J(BF ), B ≡ B(U, V ) :=

(
U JV J
V JUJ

)

, (3.14)

where the form of B is determined by (3.5), i.e., J B = BJ , and (3.12). Note
that this makes explicit use of the antiunitary involution J : h → h. The
homogeneous Bogoliubov transformation UB is unitary iff it leaves the CCR
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invariant and preserves the norm of the vacuum vector Ω ∈ Fph, which is
equivalent to

B∗ S B = S , B S B∗ = S , and Tr
(

V ∗ V
)

< ∞. (3.15)

The second identity in (3.15) is actually a consequence of the first, as the
latter implies the invertibility of B, and then the second identity follows from
the uniqueness of the inverse. The requirement that V be a Hilbert–Schmidt
operator is known as the Shale-Stinespring condition. A simple computation
shows that the second quantization dΓJ[T, y] of T and y transforms under a
homogeneous Bogoliubov transformation UB with B ≡ B(U, V ) as

UB dΓJ[T, y]U∗
B = dΓJ

[

BTB∗, 1
2q

∗Bq(y)
]

. (3.16)

Weyl transformations Wη are the special case U = 1h and V = 0 of (3.12).
They act on the generalized field operators as

Wη A∗
J(F )W∗

η := A∗
J(F ) + 〈q(η) | F 〉. (3.17)

The unitarity of Wη is equivalent to the requirement η ∈ h. Another simple
computation shows that the second quantization dΓJ[T, y] of T and y trans-
forms under a Weyl transformation Wη as

Wη dΓJ[T, y]W∗
η = dΓJ

[

T, y + 1
2q

∗Tq(η)
]

+ 〈η| q∗Tq(η)〉 + 4Re〈η|y〉.
(3.18)

3.3. The Lieb–Loss Model in Terms of Second Quantization

We turn to the analysis of the Lieb–Loss model. Note that dΓJ[T, y] depends
on the choice of the antiunitary involution J : h → h. For the analysis of the
Lieb–Loss model it is of key importance to choose the antiunitary involution
J : h → h with corresponding real-linear map q : h → (h ⊕ h)J as

∀ f ∈ h, �k ∈ Sσ,Λ : [Jf ](�k) := f(−�k) (3.19)

because with this choice the operator T : hR ⊕ hR → hR ⊕ hR leaves the real
subspace hR ⊕ hR of h⊕ h invariant, and the vector y ∈ hR is contained in the
real subspace hR ⊆ h of J-invariant vectors, as is discussed below.

We identify H(r2, r2 �∇γ) with dΓJ [Tr,α, yr,γ,α], for suitably chosen Tr,α

and yr,γ,α. We state the result in form of Lemma 3.1.

Lemma 3.1. Let J : h → h be defined by (3.19) and r, γ ∈ H1(R3). Then, the
Lieb–Loss functional (2.11) is given by

Eα,σ,Λ(r eiγ , ψ) =
1
2
‖ �∇r‖2

2 +
1
2
‖r �∇γ‖2

2 +
1
2

〈

ψ
∣
∣
∣ dΓJ

[

Tr,α, yr,γ,α

]

ψ
〉

F
,

(3.20)

where

Tr,α := |k|−1/2

(
2|k|2 + Θr,α Θr,α

Θr,α Θr,α

)

|k|−1/2, (3.21)



2220 V. Bach and A. Hach Ann. Henri Poincaré

with |k| denoting the multiplication operator
[|k|f](�k) := |k|f(�k) (Fourier

multiplier), and Θr,α being a nonnegative, J-invariant, self-adjoint Hilbert–
Schmidt operator, Θr,α = Θ∗

r,α = ΘT
r,α = JΘr,αJ ≥ 0 given by

Θr,α = Φ∗
r,α Φr,α, Φr,α = (r̂∗)PC χσ,Λ, (3.22)

Φr,α(�p, μ ; �k, ν) := α1/2 (2π)−3/2 r̂(�p − �k)
(

P⊥
�k
)

μ,ν
χσ,Λ(�k), (3.23)

where
[

χσ,Λf
]

(�k) := 1[σ ≤ |�k| < Λ] f(�k) is a multiplication operator, and
r̂∗ is the convolution operator [r̂ ∗ f ](�k) =

∫

r̂(�k − �k′) f(�k′) d3k′, where r̂ ≡
F [r] denotes the Fourier transform F [r](�k) := (2π)−3/2

∫

e−ik·x r(x) d3x of r,
normalized as to preserve the L2-scalar product.

Furthermore, yr,γ,α = J [yr,γ,α] ∈ hR is given by

yr,γ,α = |k|−1/2 Φ∗
r,α F [r �∇γ] ⇔

yr,γ,α(�k, ν) :=
3∑

μ=1

∫

|�k|−1/2 Φ∗
r,α

(�k, ν; �p, μ
)F[r ∂μγ

]

(�p) d3p. (3.24)

Proof. We first observe that

α

2

∫
(

r(x) �A(x)
)2

d3x =
3∑

μ=1

∫
α

2

[

a∗(r(x) mμ(x)
)

+ a
(

r(x) mμ(x)
)]2

d3x

=
3∑

μ=1

α

2

∫

A∗
J

(

q
[

r(x) mμ(x)
])

AJ

(

q
[

r(x) mμ(x)
])

d3x

=
1

2
dΓJ

[

|k|−1/2

(
Θr,α Θr,α

Θr,α Θr,α

)

|k|−1/2 , 0

]

, (3.25)

where Θr,α : h → h is the bounded operator given by the integral kernel

|�k|−1/2 Θr,α(�k, ν ; �k′, ν′) |�k|−1/2 :=
3∑

μ=1

∫

α r2(x) mμ,ν(x, �k)mμ,ν′(x, �k′) d3x,

(3.26)

recalling the definition mμ,ν(x, �k) := (2π)−3/2|�k|−1/2χσ,Λ(�k)
(

P⊥
�k
)

μ,ν
e−ik·x

from (2.20). As J(eik·xeν) = eik·xeν , we have that J [r(x)mμ(x)] = r(x)mμ(x)
and hence

Θr,α = J Θr,α = Θr,α J = J Θr,α J. (3.27)

Moreover, using the Plancherel theorem, we have that

Θr,α = Φ∗
r,α Φr,α, (3.28)

where Φr,α = α1/2(2π)−3/2(r̂∗)PCχσ,Λ|�k|−1/2 is defined by the integral kernel

Φr,α(�p, μ ; �k, ν) :=
α1/2

(2π)3/2
r̂(�p − �k)

(

P⊥
�k
)

μ,ν
χσ,Λ(�k), (3.29)
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i.e., r̂∗ is the convolution operator [r̂∗f ](�k) =
∫

r̂(�k− �k′) f(�k′)d3k′, convolving
f with the Fourier transform

F [r](�k) ≡ r̂(�k) :=
∫

e−ik·x r(x)
d3x

(2π)−3/2
(3.30)

of r, normalized as to preserve the L2-scalar product.
Similarly, we obtain

α1/2

∫

r2(x) �∇γ(x) · �A(x) d3x

=
3∑

μ=1

∫

α1/2
{

a∗(r2(x) ∂μγ(x) mμ(x)
)

+ a
(

r2(x) ∂μγ(x) mμ(x)
)}

d3x

=
3∑

μ=1

∫
α1/2

2

{

A∗
J

(

q[r2(x) ∂μγ(x) mμ(x)]
)

+ AJ

(

q[r2(x) �∇γ(x) · �m(x)]
)}

d3x

=
1

2
dΓJ

[

0 , yr,γ,α

]

, (3.31)

where yr,γ,α ∈ h is given as

yr,γ,α(�k, ν) :=
3∑

μ=1

∫

r2(x) ∂μγ(x) α1/2 mμ,ν(x, �k) d3x. (3.32)

Note that Jmμ(x) = mμ(x) implies yr,γ,α = J [yr,γ,α] ∈ hR and the Plancherel
theorem yields yr,γ,α = |k|−1/2 Φ∗

r,αF [r �∇γ], i.e.,

yr,γ,α(�k, ν) :=
3∑

μ=1

∫

|�k|−1/2 Φ∗
r,α

(�k, ν; �p, μ
)F[r ∂μγ

]

(�p) d3p. (3.33)

�

4. Minimization over Photon States

4.1. Weyl Transformations and Positivity of the Electron Wave Function

In this section, we show that the optimal electron wave function is nonnegative.
More precisely, given any normalized complex-valued electron wave function
φ ∈ H1(R3), we show that the Lieb–Loss functional for the electron wave
function |φ| ∈ H1(R3) yields a lower value, if minimized over all photon states.
This is done by a suitable Weyl transformation that eliminates the term in the
Hamiltonian which is linear in the field operators. The proper choice (3.19)
of the antiunitary J is of key importance for the construction of this Weyl
transformation. Equally important is the observation that the energy shift
induced by this Weyl transformation is balanced by the term 1

2‖r �∇γ‖2
2 that

vanishes for real φ. As is already remarked in Step (2) of the sketch of our Proof
of Theorem 1.1 in the introduction, there is an alternative way of showing that
the optimal electron wave function is positive by using that the semigroup
generated by Hα,Λ is positivity improving.

We start with a preparatory lemma whose simple proof is omitted.
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Lemma 4.1. Let κ ∈ B[h] be a bounded operator and δ ∈ R
+. Then,

κ
(

δ2 + κ∗κ
)−1

κ∗ ≤ 1. (4.1)

Lemma 4.2. Let J : h → h be defined by (3.19), r, γ ∈ H1(R3), and Tr,α, Θr,α,
and yr,γ,α ∈ hR as in (3.21)–(3.24). Then, there is a unique ηr,γ ∈ hR such
that

yr,γ,α =
1
2

q∗ Tr,α q(ηr,γ). (4.2)

Moreover, as a quadratic form,

dΓJ

[

Tr,α, yr,γ,α

] ≥ Wηr,γ
dΓJ

[

Tr,α, 0
]

W
∗
ηr,γ

− ‖r �∇γ‖2
2. (4.3)

Proof. We first compute that

q∗ Tr,α q = |k|−1/2 (1 J)
(

2|k|2 + Θr,α Θr,α

Θr,α Θr,α

) (
1
J

)

|k|−1/2

= |k|−1/2
(

2|k|2 + Θr,α + JΘr,α + Θr,αJ + JΘr,αJ
) |k|−1/2, (4.4)

so ηr,γ sought for fulfils

2yr,γ,α = |k|−1/2
(

2|k|2 + Θr,α + JΘr,α + Θr,αJ + JΘr,αJ
) |k|−1/2 ηr,γ .

(4.5)

If J was any general antiunitary map, the determination of ηr,γ from (4.5)
appeared to be fairly complicated, but thanks to our choice (3.19) of J we
have that Θr,α = JΘr,α = Θr,αJ = JΘr,αJ and yr,γ,α = Jyr,γ,α. Therefore,
yr,γ,α is an element of hR which is left invariant by q∗Tr,αq = |k|−1/2

(

2|k|2 +
4Θr,α

)|k|−1/2. Moreover, q∗Tr,αq ≥ 2|k| ≥ 2σ · 1 > 0 is strictly positive and
hence invertible, due to Θr,α ≥ 0. (Here, the infrared cutoff σ > 0 comes in
handy.) It follows that

ηr,γ = |k|1/2
(|k|2 + 2Θr,α

)−1 |k|1/2 yr,γ,α ∈ hR (4.6)

and
〈

ηr,γ

∣
∣ |k|−1/2

(|k|2 + 2Θr,α

) |k|−1/2 ηr,γ

〉

=
〈|k|1/2 yr,γ,α

∣
∣
(|k|2 + 2Θr,α

)−1 |k|1/2 yr,γ,α

〉

=
〈

F [r �∇γ]
∣
∣
∣ Φr,α

(|k|2 + 2Φ∗
r,αΦr,α

)−1 Φ∗
r,α F [r �∇γ]

〉

≤
〈

F [r �∇γ]
∣
∣
∣ F [r �∇γ]

〉

= ‖r �∇γ‖2
2, (4.7)

estimating
(|k|2+2Φ∗

r,αΦr,α

)−1 ≤ (σ2+2Φ∗
r,αΦr,α

)−1 and then using Lemma 4.1.
We obtain the assertion from here by (3.18). �

As a corollary of Lemma 4.2, we now find the following lower bound on
the Lieb–Loss functional defined in (1.4).

Corollary 4.3. Let φ ∈ H1(R3) and ψ ∈ Fph be normalized wave functions.
Then, there exists a unitary Weyl transformation Wφ such that

Eα,Λ

(

φ, ψ
) ≥ Eα,Λ

(|φ|,Wφψ
)

. (4.8)
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As a consequence, it follows that the partial minimization of the Lieb–
Loss functional

Êα,Λ

(

φ
)

:= inf
{

Eα,Λ(φ, ψ)
∣
∣
∣ ψ ∈ Fph, ‖ψ‖ = 1

}

, (4.9)

over photon wave functions [see (1.14)] allows us to restrict the minimization
over electron wave functions to nonnegative functions.

Theorem 4.4. Let J : h → h be defined by (3.19) and suppose that φ ∈ Hel is
normalized and φ ∈ H1(R3). Then,

Êα,Λ

(

φ
) ≥ Êα,Λ

(|φ|) =
1
2

∥
∥ �∇|φ|∥∥2

2
+

1
2

inf
{

σ
(

dΓJ [T|φ|,α, 0]
)}

, (4.10)

where σ(A) ⊆ R denotes the spectrum of a self-adjoint operator A and T|φ| is
as defined in (3.21)–(3.23).

4.2. The Ground State Energy of T|φ|,α

In this section, we show that the infimum of the spectrum of 1
2dΓJ [T|φ|, 0]

equals X(Θ|φ|,α), as defined in (1.19) and (3.21)–(3.23). This fact had already
been observed in [31], and we give an alternative and detailed proof here. More
specifically, we prove the following theorem in this section.

Theorem 4.5. Let J : h → h be defined by (3.19), suppose that φ = |φ| ∈
H1(R3), and let Tφ,α and Θφ,α be given as in (3.21)–(3.24). Then,

inf
{

σ
(

dΓJ [Tφ,α, 0]
)}

= Tr
(√

|k|2 + 2Θφ,α − |k|
)

. (4.11)

Inserting (4.11) into (4.10), we immediately obtain the following Corol-
lary.

Corollary 4.6. Let J : h → h be defined by (3.19) and suppose that φ = |φ| ∈
Hel is normalized and φ ∈ H1(R3). Then

Êα,Λ(φ) =
1
2

∥
∥ �∇φ
∥
∥

2

2
+

1
2
Tr
(√

|k|2 + 2Θφ,α − |k|
)

. (4.12)

where Θφ,α is defined in (3.22)–(3.23).

Proof (Proof of Theorem IV.5). The first step in our proof rests on an obser-
vation made in [4] that given a nonnegative Hamiltonian H representing an
interacting quantum system, it holds true that

inf
ρ∈qfDM

{

Tr(ρ1/2
Hρ1/2)

}

= inf
ρ∈qfDM

{

Tr(ρ1/2
Hρ1/2)

∣
∣ ρ is pure

}

, (4.13)

where qfDM denotes the set of quasifree density matrices. In other words, for
the computation of the Bogoliubov–Hartree–Fock energy of the system, one
may restrict the variation over all quasifree states to pure states. This state-
ment may be viewed as a generalization of Lieb’s variational principle [32]. In
Lemma 4.7, the observation from [4] is applied to the Hamiltonian dΓJ [Tφ,α, 0]
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and yields the statement that its ground state energy is the lowest vacuum ex-
pectation value of all homogeneous Bogoliubov transforms of dΓJ [Tφ,α, 0],

inf
{

σ
(

dΓJ [Tφ,α, 0]
)}

= inf
{〈

Ω
∣
∣UB dΓJ [Tφ,α, 0]U∗

BΩ
〉
∣
∣
∣ B ∈ BogJ [h]

}

,

(4.14)

where BogJ [h] is defined in (4.22).

Next, an application of Lemma 4.8 with a := 2|k|, b := |k|−1/2Θφ,α|k|−1/2,
and d := 0 yields the following lower bound on the vacuum expectation values
on the right of (4.14) in terms of |v|, where v ∈ L2[h] is the lower left matrix
entry of B of the Bogoliubov transformation UB ,

〈

Ω
∣
∣UB dΓJ [Tφ,α, 0]U∗

BΩ
〉

≥ inf
v∈L2[h], v≥0

{

Tr
[

2|k|1/2 v2 |k|1/2 + Θ
1/2
φ,α|k|−1/2(v − √

1 + v2
)2|k|−1/2Θ

1/2
φ,α

]}

.

(4.15)

The infimum on the right side of the lower bound (4.15) is explicitly computed
in Lemma 4.9, using σ ·1 ≤ a := 2|k| ≤ Λ ·1, b := |k|−1/2Θφ,α|k|−1/2 ≥ 0, and
d := 0 again. Consequently,

inf
{〈

Ω
∣
∣UB dΓJ [Tφ,α, 0]U∗

BΩ
〉
∣
∣
∣ B ∈ BogJ [h]

}

≥ Tr
[√

k2 + 2Θφ,α − |k|
]

.

(4.16)

We finally define

B∗ :=
(√

1 + v2∗ −v∗
−v∗

√

1 + v2∗

)

=
1
2

(

y
1/2
∗ + y

−1/2
∗ −y

1/2
∗ + y

−1/2
∗

−y
1/2
∗ + y

−1/2
∗ y

1/2
∗ + y

−1/2
∗

)

,

(4.17)

v∗ :=
1
2
(

y
1/2
∗ − y

−1/2
∗
) ≥ 0, y∗ := |k|−1/2

√

k2 + 2Θφ,α |k|−1/2 ≥ 1,

(4.18)

in accordance with (4.46) and (4.52). Then, by (4.62), Θφ,α ∈ L2[h] implies
that y∗ − 1 ∈ L2[h] which is equivalent to v∗ ∈ L2[h], thanks to (4.59), and
thus 1−y−1

∗ = y∗ −1−4v2
∗ ∈ L2[h]. Moreover, as |k| and Θφ,α are J-invariant,

so are y∗ and hence also v∗ and
√

1 + v2∗ . It follows that B∗ ∈ BogJ [h] is a
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homogeneous Bogoliubov transformation. Finally,

B∗ Tφ,α B∗
∗

= B∗

(
2|k| 0
0 0

)

B∗
∗ + B∗

(|k|−1/2Θφ,α|k|−1/2 |k|−1/2Θφ,α|k|−1/2

|k|−1/2Θφ,α|k|−1/2 |k|−1/2Θφ,α|k|−1/2

)

B∗
∗

=
1
2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(y1/2
∗ + y

−1/2
∗ ) |k| (y1/2

∗ + y
−1/2
∗ ) −(y1/2

∗ + y
−1/2
∗ ) |k| (y1/2

∗ − y
−1/2
∗ )

+2y
−1/2
∗ |k|−1/2Θφ,α|k|−1/2y

−1/2
∗ +2y

−1/2
∗ |k|−1/2Θφ,α|k|−1/2y

−1/2
∗

−(y1/2
∗ − y

−1/2
∗ ) |k| (y1/2

∗ + y
−1/2
∗ ) (y1/2

∗ − y
−1/2
∗ ) |k| (y1/2

∗ − y
−1/2
∗ )

+2y
−1/2
∗ |k|−1/2Θφ,α|k|−1/2y

−1/2
∗ +2y

−1/2
∗ |k|−1/2Θφ,α|k|−1/2y

−1/2
∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(4.19)

so

〈

Ω
∣
∣UB∗ dΓJ [Tφ,α, 0]U∗

B∗Ω
〉

=
〈

Ω
∣
∣dΓJ [B∗Tφ,αB∗

∗ , 0] Ω
〉

=
1

2
Tr
[

(y1/2
∗ − y−1/2

∗ ) |k| (y1/2
∗ − y−1/2

∗ ) + 2y−1/2
∗ |k|−1/2Θφ,α|k|−1/2y−1/2

∗
]

=
1

2
Tr
[

|k|1/2(y∗ + y−1
∗ − 2)|k|1/2 + 2Θ

1/2
φ,α|k|−1/2y−1

∗ |k|−1/2Θ
1/2
φ,α

]

=
1

2
Tr
[√

k2 + 2Θφ,α − |k| + |k|1/2(y−1
∗ − 1)|k|1/2 + 2Θφ,α|k|−1/2y−1

∗ |k|−1/2
]

=
1

2
Tr
[√

k2 + 2Θφ,α − |k| − (k2 + 2Θφ,α

)|k|−1/2y−1
∗ |k|−1/2 − |k|

]

= Tr
[√

k2 + 2Θφ,α − |k|
]

. (4.20)

�

The proof of Theorem 4.5 given rests on Lemmata 4.7–4.10 which we
state and prove below. The first step in our derivation is an observation made
in [4] which may be viewed as a generalization of Lieb’s variational principle
[32].

Lemma 4.7. Let J : h → h be an antiunitary involution and T = T ∗ ∈ B[h⊕ h]
be nonnegative, T ≥ 0, then

inf
{

σ
(

dΓJ[T, 0]
)}

= inf
{〈

Ω
∣
∣UB dΓJ[T, 0]U∗

BΩ
〉
∣
∣
∣ B ∈ BogJ[h]

}

, (4.21)

where

BogJ[h] :=
{

B =
(

U JV J
V JUJ

) ∣
∣
∣
∣

B∗SB = S, Tr(V ∗V ) < ∞
}

(4.22)

denotes the set of generators of homogeneous Bogoliubov transformations.

Proof. Suppose that H ≥ 0 is a nonnegative Hamiltonian on Fph and define
its Bogoliubov–Hartree–Fock energy by

EBHF (H) := inf
{

Tr{ρ1/2
H ρ1/2}

∣
∣
∣ ρ ∈ DM, ρ is quasifree

}

, (4.23)
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where DM :=
{

ρ ∈ B[Fph]
∣
∣ 0 ≤ ρ ≤ Tr{ρ} = 1

}

denotes the set of density
matrices on Fph. In [4], it is shown that the Bogoliubov–Hartree–Fock energy
is already obtained by taking the infimum over all pure quasifree states,

EBHF (H) = inf
{

Tr{ρ1/2
H ρ1/2}

∣
∣
∣ ρ ∈ DM, ρ is quasifree and pure

}

.

(4.24)

Since dΓJ [T|φ|, 0] is quadratic in the field operators, its ground state energy
agrees with its Bogoliubov–Hartree–Fock energy,

inf
{

σ
(

dΓJ[T, 0]
)}

= EBHF

(

dΓJ[T, 0]
)

. (4.25)

On the other hand, the pure quasifree density matrices ρpure ∈ DM are pre-
cisely the rank-one orthogonal projections ρpure = |U∗

BW
∗
ηΩ〉〈U∗

BW
∗
ηΩ| onto

Bogoliubov and Weyl transforms U∗
BW

∗
ηΩ of the vacuum vector Ω, using that,

U
∗
B = USB∗S is a homogeneous Bogoliubov transformation, for B ∈ BogJ[h],

and W
∗
η = W−η is a Weyl transformation, for η ∈ h. Thus, we obtain

inf
{

σ
(

dΓJ[T, 0]
)}

= inf
{〈

Ω
∣
∣Wη UB dΓJ[T, 0]U∗

B W
∗
ηΩ
〉
∣
∣
∣ B ∈ BogJ[h], η ∈ h

}

= inf
{〈

Ω
∣
∣dΓJ

[

BTB∗, − 1
2q∗BTB∗qη

]

Ω
〉

+ 〈η|q∗BTB∗qη〉
∣
∣
∣ B ∈ BogJ[h], η ∈ h

}

, (4.26)

using (3.16) and (3.18). Since
〈

Ω
∣
∣dΓJ

[

BTB∗,− 1
2q∗BTB∗qη

]

Ω
〉

=
〈

Ω
∣
∣dΓJ

[

BTB∗, 0
]

Ω
〉

(4.27)

and

〈η|q∗BTB∗qη〉 ≥ 0, (4.28)

it follows that the infimum on the right side of (4.26) is attained for η = 0.
�

Lemma 4.8. Let j : h → h be an antiunitary involution. Let a ∈ B[h] be a
bounded, b ∈ L2[h] a Hilbert–Schmidt, and d ∈ L1(h) a trace-class operator
such that all three are nonnegative and commute with j, i.e., a = jaj ≥ 0,
b = jbj ≥ 0, d = jdj ≥ 0. Furthermore, let B ∈ Bogj[h], with Bogj[h] as defined
in (4.22). Then,

T =
(

a + b b
b d + b

)

≥ 0, (4.29)

and
〈

Ω
∣
∣UB dΓj[T, 0]U∗

BΩ
〉

≥ inf
{

Tr
[

a v2 + b
(

v −
√

1 + v2
)2 + d (1 + v2)

] ∣
∣
∣ v ≥ 0, Tr(v2) < ∞

}

.

(4.30)
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Proof. First, we note that

if T̃ =
(

ã b̃∗

b̃ d̃

)

, then
〈

Ω
∣
∣dΓj[T̃ , 0]Ω

〉

= Tr(d̃). (4.31)

Next, if B ∈ Bogj[h] is of the form

B =
(

u jvj
v juj

)

, (4.32)

then a simple computation using that j commutes with a, b, and d, shows that

B T B∗ =

⎛

⎜
⎜
⎜
⎝

u(a + b)u∗ + ubjv∗j u(a + b)v∗ + ubju∗j
+jvjbu + jv(d + b)v∗j +jvjbv∗ + jv(d + b)u∗j

v(a + b)u∗ + jujbu∗ v(a + b)v∗ + vbju∗j
+vbjv∗j + ju(d + b)v∗j +jujbv∗ + ju(d + b)u∗j

⎞

⎟
⎟
⎟
⎠

. (4.33)

Using (4.31), this yields
〈

Ω
∣
∣dΓj[B∗TB, 0]Ω

〉

= Tr
[

v(a + b)v∗ + v∗bjuj + ju∗jbv + u(d + b)u∗]

= Tr
[

av∗v + du∗u
]

+ 2ReTr
[

bv∗juj
]

. (4.34)

From the Cauchy–Schwarz inequality for traces, we obtain
∣
∣Tr
[

bv∗juj
]∣
∣
2 ≤ Tr
[

b v∗ x−1 v
]

Tr
[

b ju∗jx juj
]

= Tr
[

b v∗ x−1 v
]

Tr
[

b u∗jx ju
]

,
(4.35)

for any bounded and invertible positive operator x ≥ μ · 1 > 0.
Next, we remark that due to (3.15), we have

u∗ u − v∗ v = juu∗ j − v v∗ = 1, v∗ ju = u∗ j v, ju v∗ = v u∗ j.
(4.36)

For any r > 0, this implies that

(r + vv∗) ju = rju + vu∗jv = ju (r + v∗v), (r + vv∗) v =v (r + v∗v),
(4.37)

which, in turn, gives

(r + vv∗)−1 ju = ju (r + v∗v)−1, (r + vv∗)−1 v =v (r + v∗v)−1. (4.38)

Writing the square root as an integral over resolvents according to A−1/2 =
1
π

∫∞
0

(s + A)−1 ds
s1/2 , (4.38) yields

(r + vv∗)±1/2 ju = ju (r + v∗v)±1/2, (r + vv∗)±1/2 v =v (r + v∗v)±1/2,
(4.39)

for all r > 0. For small 0 < ε < 1, we define

xε := (1 + vv∗)−1/2 (ε + vv∗)1/2 (4.40)

and observe that due to (4.39) and (4.36), we have

u∗jxε ju = u∗j (1 + vv∗)−1/2 (ε + vv∗)1/2 ju = u∗u (1 + v∗v)−1/2 (ε + v∗v)1/2

= (1 + v∗v)1/2 (ε + v∗v)1/2 (4.41)
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and further

v∗ x−1
ε v = v∗ (ε + vv∗)−1/2 (1 + vv∗)1/2 v = v∗v (ε + v∗v)−1/2 (1 + v∗v)1/2

≤ (v∗v)1/2 (1 + v∗v)1/2. (4.42)

Inserting (4.41) and (4.42) into (4.35) and taking the limit ε → 0, we obtain
∣
∣Tr
[

b v∗ juj
]∣
∣ ≤ Tr

[

b± (v∗v)1/2 (1 + v∗v)1/2
]

. (4.43)

Using this estimate and (4.34), we arrive at
〈

Ω
∣
∣dΓj[B∗TB, 0]Ω

〉 ≥ Tr
[

a |v|2 + b
(|v| −
√

1 + |v|2)2 + d(1 + |v|2)
]

, (4.44)

from which the asserted estimate (4.30) is immediate. �

Lemma 4.9. Let j : h → h be an antiunitary involution. Let a ∈ B[h] be a
bounded, b ∈ L2[h] a Hilbert–Schmidt, and d ∈ L1(h) a trace-class operator
such that a = jaj ≥ σ · 1 > 0, for some σ > 0, and b = jbj ≥ 0, d = jdj ≥ 0,
i.e., all three are nonnegative and commute with j. Then,

inf
{

Tr
[

a v2 + b
(

v −
√

1 + v2
)2 + d (1 + v2)

] ∣
∣
∣ v ≥ 0, Tr(v2) < ∞

}

.

=
1
2

Tr
[(√

a + d (a + d + 4b)
√

a + d
)1/2

− a + d
]

. (4.45)

Proof. It is convenient to parametrize v as

v =
1
2
(

y1/2 − y−1/2
)

, (4.46)

where y ≥ 1 is a positive operator defined by (4.46) through functional calcu-
lus. Note in passing that y is uniquely determined by v up to ker(y − 1) and
that y − 1 ∈ L2[h], due to Lemma 4.10 (i). Then,

v2 =
y

4
+

y−1

4
− 1

2
and 1 + v2 =

y

4
+

y−1

4
+

1
2

=
[1
2
(

y1/2 + y−1/2
)]2

.

(4.47)

Hence, we have that
√

1 + v2 =
1
2
(

y1/2 + y−1/2
)

and
(

v −
√

1 + v2
)2 = y−1. (4.48)

Inserting the parameterization (4.46) into the trace in (4.45), we obtain

Tr
[

a v2 + b
(

v −
√

1 + v2
)2 + d (1 + v2)

]

=
1
4

G(y), (4.49)

with

G(y) := Tr
[

m2 y + (m2 + 4b) y−1 + 2(d − a)
]

, (4.50)

m :=
√

a + d ≥ σ1/2 > 0, and y − 1 ∈ L2[h]. Obviously, y �→ G(y) is convex.
We define y∗ ≥ 1 by

y∗ := m−1
(

m (m2 + 4b)m
)1/2

m−1 (4.51)
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and observe that y∗ − 1 ∈ L2[h], by Lemma 4.10 (ii), and that y∗ m2 y∗ =
m2 + 4b which is equivalent to

y−1
∗ (m2 + 4b) y−1

∗ = m2. (4.52)

The latter is the formal condition for stationarity of y �→ G(y). We refrain
from turning this formal into a mathematically rigorous condition by estab-
lishing differentiability of G in a suitable sense. Instead, we simply check by
computation that y∗ is the minimizer of G. Namely, we have that

G(y) − G(y∗) := Tr
[

m2 (y − y∗) + (m2 + 4b)
(

y−1 − y−1
∗
)]

, (4.53)

and the second resolvent equation gives

y−1 − y−1
∗ = −y−1

∗ (y − y∗) y−1
∗ + y−1

∗ (y − y∗) y−1 (y − y∗) y−1
∗ . (4.54)

Thus, (4.52) derives

G(y) − G(y∗) = Tr
[(

m2 − y−1
∗ (m2 + 4b) y−1

∗
)

(y − y∗)

+ y−1/2 (y − y∗) y−1
∗ (m2 + 4b) y−1

∗ (y − y∗) y−1/2
]

= Tr
[

y−1/2 (y − y∗) y−1
∗ (m2 + 4b) y−1

∗ (y − y∗) y−1/2
]

≥ 0.

(4.55)

Finally,

G(y∗) = Tr
[

m2 y∗ + (m2 + 4b) y−1
∗ + 2(d − a)

]

= 2Tr
[

my∗ m + d − a
]

= 2Tr
[(

m (m2 + 4b)m
)1/2 + d − a

]

= 2Tr
[(√

a + d (a + d + 4b)
√

a + d
)1/2 − a + d

]

, (4.56)

arriving at (4.45). �

Lemma 4.10. Let h be a Hilbert space and m, b, y ∈ B[h] be positive bounded
operators such that b ∈ L2[h] is Hilbert–Schmidt, y ≥ 1, and m ≥ σ1/2 · 1, for
some σ > 0. Then, the following assertions hold true.

(i) Define v := 1
2 (y1/2 − y−1/2) > 0. Then v ∈ L2[h] is Hilbert–Schmidt if,

and only if, y − 1 ∈ L2[h] is Hilbert–Schmidt.
(ii) Define y := m−1

[

m(m2 + 4b)m
]1/2

m−1. Then, y ≥ 1 and y − 1 ∈ L2[h]
is Hilbert–Schmidt.

Proof. (i): First 0 < y−1/2 ≤ 1 and thus 1 ≤ y1/2 = y−1/2 + 2v ≤ 1 + 2‖v‖op,
which implies that

1 ≤ y ≤ (1 + 2‖v‖B[h]

)2 · 1. (4.57)

Secondly note that

v2 =
y

4
+

y−1

4
− 1

2
=

1
4y

(y − 1)2, (4.58)
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and taking (4.57) into account, we arrive at (i) because

Tr
[

v2
] ≤ Tr

[

(y − 1)2
] ≤ 4

(

1 + 2‖v‖B[h]

)2 Tr
[

v2
]

. (4.59)

(ii): For y = m−1
[

m(m2 + 4b)m
]1/2

m−1, we trivially have y ≥ 1 since b ≥ 0
and the square root is operator monotone. Moreover, using

A−1/2 =
1
π

∫ ∞

0

(s + A)−1 ds

s1/2
, (4.60)

the second resolvent equation, and Rs := (s + m4)−1 ≤ (s + σ2)−1, we have
that

y − 1 = m−1
[(

m4 + 4mbm
)1/2 − m2

]

m−1

=
1
π

∫ ∞

0

m−1

{
m4 + 4mbm

s + m4 + 4mbm
− m4

s + m4

}

m−1 ds

s1/2

=
1
π

∫ ∞

0

m−1
{(

s + m4
)−1 − (s + m4 + 4mbm

)−1
}

m−1 s1/2 ds

=
4
π

∫ ∞

0

{

Rs bRs − 4Rs bm
(

s + m4 + 4mbm
)−1

mbRs

}

s1/2 ds

≤ 4
π

∫ ∞

0

{

Rs bRs

}

s1/2 ds. (4.61)

Consequently,

Tr
[

(y − 1)2
]

≤ 16
π2

∫ ∞

0

∫ ∞

0

Tr
[√

Rs

√

Rt b
√

Rt Rs

√

Rt b
√

Rt

√

Rs

]√
s
√

t ds dt

≤ 16
π2

∫ ∞

0

∫ ∞

0

Tr
[√

Rs

√

Rt b2
√

Rt

√

Rs

]
√

s ds

s + σ2

√
t dt

t + σ2

≤ 16
π2

(∫ ∞

0

√
s ds

(s + σ2)2

)2

Tr
[

b2
]

=
16

π2 σ2

(∫ ∞

0

√
r ds

(r + 1)4

)2

Tr
[

b2
]

< ∞.

(4.62)

�

5. Localization Estimates

In this section, we turn to the analysis of the effective energy functional

Êα,Λ(φ) =
1
2

∥
∥ �∇φ
∥
∥

2

2
+

1
2
X(2Θφ,α), (5.1)

where φ = |φ| ∈ Hel is normalized and φ ∈ H1(R3), Θφ,α is defined in (3.22)–
(3.23), and

X(A) := Tr
(√

|k|2 + A − |k|
)

, (5.2)
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for positive operators A ≥ 0. Recall that, according to Theorem 4.4 and Corol-
lary 4.6, the Lieb–Loss energy defined in Eqs. (1.3)–(1.4) is given by

ELL(α,Λ) = inf
{Êα,Λ(φ)

∣
∣ φ = |φ| ∈ H1(R3), ‖φ‖2 = 1

}

. (5.3)

Ultimately, we compare Êα,Λ and its infimum ELL(α,Λ) to Fβ(α,Λ) and its
infimum Fβ(α,Λ), respectively, where

Fβ(φ) :=
1
2

∥
∥ �∇φ
∥
∥

2

2
+ β ‖φ‖1, (5.4)

Fβ := inf
{Fβ(φ)

∣
∣ φ = |φ| ∈ H1(R3) ∩ L1(R3), ‖φ‖2 = 1

}

, (5.5)

β(α,Λ) :=

√

4α

9π
Λ3. (5.6)

In the present section, we demonstrate that the minimization in (5.3) may be
restricted to functions supported in the ball B(0, L) = {x ∈ R

3 : |x| < L}
of radius L < ∞, provided L � 1 is sufficiently large. That is, we prove in
Theorem 5.1 that

E
(L)
LL (α,Λ) := inf

{

Êα,Λ(φ)
∣
∣
∣ φ = |φ| ∈ YL, ‖φ‖2 = 1

}

, (5.7)

approximates ELL(α,Λ), as L → ∞, by showing that the error made by this
restriction is of order L−2, as suggested by the IMS localization formula. Here,

YL := H1
(

B(0, L)
) ⊆ H1(R3) ∩ L1(R3) ⊆ H1(R3) =: Y, (5.8)

and we correspondingly approximate Fβ by

F
(L)
β := inf

{Fβ(φ)
∣
∣φ = |φ| ∈ YL, ‖φ‖2 = 1

}

. (5.9)

Theorem 5.1. There exists a universal constant C < ∞ such that for all
α, β, L > 0, σ ≥ 0, and Λ ≥ 1,

E
(L)
LL (α,Λ) − C

L2
≤ ELL(α,Λ) ≤ E

(L)
LL (α,Λ), (5.10)

F
(L)
β − C

L2
≤ Fβ ≤ F

(L)
β , (5.11)

with ELL(α,Λ), F (α,Λ), E
(L)
LL (α,Λ), and F (L)(α,Λ) as in (5.3), (5.5), (5.7),

and (5.9), respectively.

Proof. The inequalities ELL(α,Λ) ≤ E
(L)
LL (α,Λ) and Fβ ≤ F

(L)
β are trivial

consequences of the inclusions YL ⊆ Y and YL ⊆ H1(R3)∩L1(R3), respectively.
For the derivation of the lower bound (5.10) on ELL(α,Λ), we pick a

smooth and compactly supported function η ∈ C∞
0 (R3;R+

0 ), chosen such that
supp(η) ⊆ B(0, 1) and ‖η‖2 = 1. Then, we define

ηL,z(x) := L− 3
2 η
[

L−1(x − z)
]

, (5.12)



2232 V. Bach and A. Hach Ann. Henri Poincaré

for all L > 0, and we observe that ‖ηL,z‖2 = 1 and
∫

η2
L,z(x) d3z = 1. We

further set

ρL(z) := ‖ηL,z φ‖2
2, φL,z(x) :=

{
ηL,z(x) φ(x)√

ρL(z)
if ρL(z) > 0,

0 if ρL(z) = 0,
(5.13)

and observe that ρL is a probability density on R
3. A variant of the IMS

localization formula [13] now yields

‖∇φ‖2
2 =
∫
∥
∥∇(ηL,zφ)

∥
∥

2

2
d3z −

∫

|∇ηL,z|2 d3z

=
∫

‖∇φL,z‖2
2 ρL(z) d3z − ‖∇η‖2

2

L2
. (5.14)

Note that

Φ∗
φ,α Φφ,α =

∫
{

Φ∗
φL,z,α ΦφL,z,α

}

ρL(z) d3z, (5.15)

and since A �→ X(A) is concave according to Lemma 5.3 (ii), we obtain

X
(

Φ∗
φ,α Φφ,α

) ≥
∫

X
(

Φ∗
φL,z,α ΦφL,z,α

)

ρL(z) d3z. (5.16)

Consequently,

Êα,Λ(φ) ≥
∫

Êα,Λ(φL,z) ρL(z) d3z − ‖∇η‖2
2

L2

≥
∫

E
(L)
LL (α,Λ) ρL(z) d3z − ‖∇η‖2

2

L2
= E

(L)
LL (α,Λ) − ‖∇η‖2

2

L2
.

(5.17)

Taking the infimum over φ ∈ H1(R3) concludes the proof of the first inequality
in (5.10). The proof of the first inequality in (5.11) is similar. �

For the proof of Theorem 5.1, we supply various properties of X(A) in
the following two lemmata. To formulate these it is convenient to denote

KA :=
√

k2 + A , (5.18)

so that

X(A) = Tr
[

KA − K0

]

. (5.19)

Since on h, the multiplication operator σ · 1 ≤ |k| ≤ Λ · 1 is bounded and
bounded invertible, we observe that

σ · 1 ≤ K0 ≤ KA ≤ (Λ + ‖A‖B[h]

) · 1. (5.20)

Lemma 5.2. Let A = A∗ ≥ 0 be a bounded self-adjoint operator on h such that
(k2 + A)

1
2 − |k| is trace class. Then,

Tr
[

(k2 + A)
1
2 − |k|] = Tr

[

A
1
2
{

(k2 + A)
1
2 + |k|}−1

A
1
2
]

. (5.21)
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Proof. Using (5.18)–(5.20), we have that

Tr
[

KA − K0

]

=
1

2
Tr
[{

KA − K0

}{

KA + K0

}{

KA + K0

}−1
]

+
1

2
Tr
[{

KA − K0

}{

KA + K0

}−1 {
KA + K0

}]

= Tr
[{

K2
A − K2

0

}{

KA + K0

}−1
]

= Tr
[

A
1
2
{

KA + K0

}−1
A

1
2

]

,

(5.22)

where the finiteness of the left side of (5.22) implies finiteness of all following
lines. �

Lemma 5.3. Let A = A∗, B = B∗ ≥ 0 be two bounded self-adjoint operators
on h such that KA − K0 and KB − K0 are trace class. Then,

(i) X(A) ≤ X(A + B) ≤ X(A) + X(B), (5.23)

(ii) A �→ X(A) is concave. (5.24)

Proof. Statement (i) follows from a simple argument using the operator mono-
tonicity of R+ � λ �→ λ−1/2 and Lemma 5.2, and (ii) is a consequence of the
concavity of R+ � λ �→ √

k2 + λ − |k|, for all k ∈ R
3. �

6. Upper Bound on X(2Θφ,α)

We proceed to deriving an upper bound on E
(L)
LL (α,Λ) defined in (5.7) in terms

of F (L)(α,Λ) given in (5.9). Our derivation uses two essential tools:

(i) The functional calculus for self-adjoint operators described in [1], which
yields a good control on projections onto different momentum shells
emerging from the decomposition χσ,(1+ε)Λ = χσ,Λ + χΛ,(1+ε)Λ, where
ε > 0 and we recall that χσ,Λ = 1[σ ≤ |k| < Λ]. We show that the con-
tribution of χΛ,(1+ε)Λ is negligible, provided ε > 0 is chosen sufficiently
small.

(ii) Inequalities for Schatten-p-norms of operators of the type “f(x)g(−i∇)”,
for 1 ≤ p ≤ 2, in order to estimate the error terms emerging from (i).
More specifically, Birman and Solomyak have shown [10,35] that, for any
1 ≤ p ≤ 2, there exists a universal constant CBS(p) < ∞ such that

‖f(x) g(i∇x)‖Lp[h0] ≤ CBS(p) ‖f‖2;p ‖g‖2;p, (6.1)

provided ‖f‖2;p, ‖g‖2;p < ∞, where

‖f‖2;p :=
(
∑

β∈Z3

‖f · 1Q+β‖p
2

)1/p

(6.2)

and Q = [− 1
2 , 1

2 ]3 ⊆ R
3 is the unit cube centered at the origin.
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Theorem 6.1. There exists a universal constant C < ∞ such that for all α,L >
0, all 0 ≤ σ ≤ 1 ≤ Λ < ∞, all 0 < ε ≤ 1 and all φ = |φ| ∈ YL, the estimate

1
2
X(2Θφ,α) ≤

√

4α

9π

[(

Λ3 − σ3
)

+ 54ε Λ3 + 5σ3/2 Λ3/2
]

‖φ‖1

+
C α1/2(LΛ + 1)3

ε2 L3/2 Λ
‖∇φ‖2 (6.3)

holds true.

Proof. We first apply Lemma 5.2 and the operator monotonicity of A �→ √
A

and A �→ A−1 and observe that

X(A) = Tr
[√

A
(√

k2 + A + |k|)−1 √
A
]

≤ Tr[
√

A]. (6.4)

Secondly, we note that (φ̂∗)∗(φ̂∗) = Fφ2F∗, where F is (componentwise)
Fourier transformation. As is customary, we denote by φ(x) := FφF∗ ≥ 0
the corresponding nonnegative multiplication operator, indicating the change
from momentum to position space by explicitly keeping the argument “x”
for the spatial variable. Using (6.4), the decomposition 1 = χ0,σ + χσ,Λ +
χΛ,(1+ε)Λ + χ(1+ε)Λ, where χr := 1 − χr, and the triangle inequality for the
trace norm, we obtain

X(2Θφ,α) = X(2Φ∗
φ,αΦφ,α) ≤ Tr

[√

2Φ∗
φ,αΦφ,α

]

=
√

2
∥
∥Φφ,α‖L1[h]

=
(2α)1/2

(2π)3/2

∥
∥φ(x)χσ,Λ PC

∥
∥

L1[h]

≤ (2α)1/2

(2π)3/2

(∥
∥χσ,Λ φ(x) χσ,Λ PC

∥
∥

L1[h]
+ 3X1 + 3X2 + 3X3

)

, (6.5)

where
∥
∥PC χσ,Λ φ(x) χσ,Λ PC

∥
∥

L1[h]
=
∥
∥
√

φ(x) χσ,Λ PC

∥
∥

2

L2[h]

= 2
(

Vol[B(0,Λ)] − Vol[B(0, σ)]
)(∫

φ(x) d3x

)

=
8π

3
(

Λ3 − σ3
) ‖φ‖1 (6.6)

is the main term. Note that the factor 2 takes into account that PC is an
orthogonal projection of rank 2 on C⊗R

3. Moreover, we denote by Vol[M ] :=
∫

1M (k) d3 the three-dimensional Lebesgue measure of a measurable set M ⊆
R

3 in (6.6) and henceforth. Furthermore,

X1 :=
∥
∥χ0,σ φ(x) χσ,Λ

∥
∥

L1[h0]
, (6.7)

X2 :=
∥
∥χΛ,(1+ε)Λ φ(x) χσ,Λ

∥
∥

L1[h0]
, (6.8)

X3 :=
∥
∥χ(1+ε)Λ φ(x) χσ,Λ

∥
∥

L1[h0]
(6.9)

are error terms we proceed to estimate next. Before we remark that the Hilbert
space in (6.7)–(6.9) is the space h0 := L2(R3) of complex-valued (scalar)
square-integrable functions, as opposed to the one-photon Hilbert space h of
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square-integrable divergence-free vector fields used before. The factors 3 on
the right side of (6.5) account for the three components of the latter.

Using the trace inequality ‖AB‖L1[h0] ≤ ‖A‖L2[h0]‖B‖L2[h0] and (1+ε)3−
1 ≤ 3ε(1 + ε)2 ≤ 12ε, we obtain

X1 ≤ ∥∥χ0,σ

√

φ(x)
∥
∥

L2[h0]

∥
∥
√

φ(x) χ0,Λ

∥
∥

L2[h0]
≤ 12π

3
Λ3/2 σ3/2 ‖φ‖1, (6.10)

X2 ≤ ∥∥χΛ,(1+ε)Λ

√

φ(x)
∥
∥

L2[h0]

∥
∥
√

φ(x) χ0,Λ

∥
∥

L2[h0]
≤ 144π

3
ε Λ3 ‖φ‖1,

(6.11)

similarly to (6.6).
To estimate X3 we pick a smooth function g̃ ∈ C∞(R; [0, 1]) such that

g̃ ≡ 1 on R
−
0 , g̃′ ≤ 0, and g̃ ≡ 0 on [1,∞). We then define a smooth function

of compact support by

gε(λ) := g̃
(

ε−1(λ − 1)
)

g̃
(

ε−1(−λ − 1)
)

. (6.12)

Note that for ε < 1 and suitable constants C1, C2, . . . < ∞, we have

supp(gε) ⊆: (−2, 2), ‖gε‖∞ = 1 (6.13)

supp
(

g(k)
ε

) ⊆ (−1 − ε, 1) ∪ (1, 1 + ε) ,
∥
∥g(k)

ε

∥
∥

∞ ≤ Ck ε−k, (6.14)

for all k ∈ N. We use the functional calculus developed by Amrein, Boutet de
Monvel, and Georgescu in [1, Thm. 6.1.4]. For any self-adjoint operator A and
any n ∈ N, this functional calculus yields the identity

gε(A) =
n−1∑

k=0

∫ ∞

−∞

g
(k)
ε (λ) dλ

π k!
Im
{

ik(A − λ − i)−1
}

+
∫ 1

0

μn−1 dμ

∫ ∞

−∞

g
(n)
ε (λ) dλ

π (n − 1)!
Im
{

in(A − λ − iμ)−1
}

. (6.15)

We choose n = 3 and A := Λ−2k2 = Λ−2F ◦ (−Δ) ◦ F∗ =: Λ−2(−Δx) and
obtain

gε(A) =
∫ ∞

−∞

[

gε(λ) − 1
2g′′

ε (λ)
] dλ

π
Im
{

(A − λ − i)−1
}

+
∫ ∞

−∞
g′

ε(λ)
dλ

π
Re
{

(A − λ − i)−1
}

−
∫ 1

0

μ2 dμ

∫ ∞

−∞
g′′′

ε (λ)
dλ

2π
Re
{

(A − λ − iμ)−1
}

. (6.16)

We observe that due to the support properties of gε and its derivatives and
the definition of A = Λ−2k2, we have

χσ,Λ = gε(A)χσ,Λ = χσ,Λ gε(A), gε(A)χ(1+ε)Λ = χ(1+ε)Λ gε(A) = 0,
(6.17)
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which implies that

X3 =
∥
∥χ(1+ε)Λ φ(x) χσ,Λ

∥
∥

L1[h0]
=
∥
∥χ(1+ε)Λ φ(x) gε(A) χσ,Λ

∥
∥

L1[h0]

=
∥
∥χ(1+ε)Λ

[

gε(A), φ(x)
]

χσ,Λ

∥
∥

L1[h0]

≤
∫ ∞

−∞

dλ

π

(|gε(λ)| + |g′
ε(λ)| + |g′′

ε (λ)|)
∥
∥
∥

[

R(λ + i), φ(x)
]

χσ,Λ

∥
∥
∥

L1[h0]

+
∫ 1

0

μ2 dμ

∫ ∞

−∞

dλ

2π
|g′′′

ε (λ)|
∥
∥
∥

[

R(λ + iμ), φ(x)
]

χσ,Λ

∥
∥
∥

L1[h0]
, (6.18)

where R(z) :=
(− Λ−2Δx − z

)−1, with z ∈ C\R. Now, note that
[

R(z), φ(x)
]

= Λ−2 R(z) [Δx, φ(x)]R(z)

= Λ−2 R(z)
(∇x · ∇φ(x) + ∇φ(x) · ∇x

)

R(z), (6.19)

and hence
∥
∥
∥

[

R(λ + iμ), φ(x)
]

χσ,Λ

∥
∥
∥

L1[h0]

≤ 2
Λ2

‖∇x R(λ + iμ)‖B[h0] ‖R(λ + iμ)‖B[h0] ‖∇φ(x) χσ,Λ‖L1[h0]

≤ 4
μ2 Λ

‖∇φ(x) χσ,Λ‖L1[h0], (6.20)

using that, for all λ ∈ [−2, 2] and μ ∈ (0, 1),

‖R(λ + iμ)‖B[h0] = sup
r>0

{∣
∣(r/Λ)2 − λ − iμ

∣
∣
−1
}

=
1
μ

, (6.21)

‖∇x R(λ + iμ)‖B[h0] = Λ sup
r>0

{

(r/Λ)
∣
∣(r/Λ)2 − λ − iμ

∣
∣
−1
}

≤ 2Λ
μ

. (6.22)

Inserting (6.20) into (6.18) and additionally taking (6.13)–(6.14), as well as
ε ∈ (0, 1) into account, we arrive at

X3 ≤ C

ε2 Λ
‖∇φ(x) χσ,Λ‖L1[h0], (6.23)

for some universal constant C < ∞. To estimate the trace norm on the right
side of (6.23), we first conjugate the operators by a suitable unitary dilatation,
which implements the change of length scale (x, k) �→ (Lx, k/L) and does not
change the norm, and then apply Inequality (6.1) with p = 1. These steps lead
us to

‖∇φ(x) χσ,Λ(k)‖L1[h0] = ‖∇φ(Lx) χσ,Λ(k/L)‖L1[h0]

= ‖∇φ(Lx) χLσ,LΛ(k)‖L1[h0]

≤ CBS(1) ‖∇φ‖2;1 ‖χLσ,LΛ‖2;1

= CBS(1) ‖∇φ(Lx)‖2

∑

γ∈Z3

√

Vol
[

B(0, LΛ) ∩ (Q + γ)
]

,

(6.24)
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where we use that ∇φ is supported in B(0, L); hence, x �→ ∇φ(Lx) is supported
in B(0, 1) ⊆ Q, and in the sum

∑

β∈Z3 ‖∇φ(Lx)1Q+β‖2 only the term corre-
sponding to β = 0 contributes. Now, Vol[B(0, LΛ)∩(Q+γ)] ≤ Vol[(Q+γ)] = 1
and Vol[B(0, LΛ) ∩ (Q + γ)] ≤ Vol[(Q + γ)] = 0 unless |γ| ≤ LΛ +

√
3 which

implies that

∑

γ∈Z3

√

Vol
[

B(0, LΛ) ∩ (Q + γ)
] ≤
∑

γ∈Z3

1B(0,LΛ+
√

3)(γ)

≤ Vol
[

B
(

0, LΛ + 3
2

√
3
)]

≤ 4π

3
(LΛ + 3)3, (6.25)

using that 3
2

√
3 ≤ 3. Furthermore, ‖∇φ(Lx)‖2 = L−3/2‖∇φ(x)‖2, and thus

‖∇φ(x) χσ,Λ(k)‖L1[h0] ≤ 4π CBS

3L3/2
(LΛ + 3)3 ‖∇φ‖2. (6.26)

Inserting this into (6.23), we finally obtain

X3 ≤ C (LΛ + 1)3

ε2 L3/2 Λ
‖∇φ‖2, (6.27)

for a suitable constant C < ∞. Estimate (6.3) now follows from inserting (6.6),
(6.10), (6.11), and (6.27) into (6.6). �

7. Lower Bound on X(Θφ,α)

In order to complement the upper bound on X(Θφ,α) from Sect. 6 by a cor-
responding lower bound, we first derive a general inequality on X(A) of the
form X(A) ≥ Tr

[

A1/2
] − 2Λ1−p Tr

[

Ap/2
]

, where p is any exponent between
1
2 and 1. By another application of the Birman–Solomyak inequality (6.1), we
then estimate the emerging error term by a multiple of ‖φ‖p

1.
We begin by deriving a general lower bound on X(A) only using that

|k| ≤ Λ · 1 on h.

Lemma 7.1. Let A ≥ 0 be a nonnegative self-adjoint operator on h such that
A1/2 ∈ L[h] is trace-class and assume that 0 < p < 1. Then,

X(A) ≥ Tr
[

A1/2
] − 2Λ1−p Tr

[

Ap/2
]

. (7.1)

Proof. We recall from Lemma 5.2 that

X(A) = Tr
[

A1/2
{

(k2 + A)1/2 + |k|}−1
A1/2
]

= Tr
[

A1/2
{

KA + K0

}−1
A1/2
]

, (7.2)
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with KA :=
√

k2 + A. From the second resolvent identity, we derive
1

KA + K0
=

1
KA

− 1
KA

K0
1

KA + K0

=
1

KA
− 1

KA
K0

1
KA

+
1

KA
K0

1
KA + K0

K0
1

KA

≥ 1
KA

− 1
KA

K0
1

KA
, (7.3)

which implies

X(A) ≥ Tr
[

A1/2 K−1
A A1/2

] − Tr
[

A1/2 K−1
A K0 K−1

A A1/2
]

. (7.4)

Since

K0 = |k| ≤ Λ1−p|k|p ≤ Λ1−pK
p/2
A , (7.5)

and KA ≥ A1/2, we have that

Tr
[

A1/2 K−1
A K0 K−1

A A1/2
] ≤ Λ1−p Tr

[

A1/2 K
−2+(p/2)
A A1/2

]

≤ Λ1−p Tr
[

Ap/2
]

. (7.6)

By operator monotonicity, we further have

A1/2 − A1/2 K−1
A A1/2 ≤ A1/2 − A√

Λ2 + A

=
A1/2

√
Λ2 + A

(√

Λ2 + A − A1/2
)

=
A1/2 Λ2

√
Λ2 + A

(√
Λ2 + A + A1/2

)

≤ Λ2 A1/2

Λ2 + A
≤ Λ2 A1/2

Λ1+p A(1−p)/2
= Λ1−p Ap/2. (7.7)

Inserting (7.6) and (7.7) into (7.4), we arrive at the claim. �

As described above, we now use Lemma 7.1 to derive a lower bound on
X(2Θφ,α).

Theorem 7.2. There exists a universal constant C < ∞ such that, for all
α,L > 0, all 0 ≤ σ ≤ 1 ≤ Λ < ∞, all 0 < ε ≤ 1 and all φ = |φ| ∈ YL,
the estimate

1
2
X(2Θφ,α) ≥

√

4α

9π

(

Λ3 − σ3
) ‖φ‖1 − C α1/4 Λ1/2(LΛ + 1)3

L3/2

√

‖φ‖1 (7.8)

holds true.

Proof. We first use that A �→ X(A) is monotonically increasing. Since

Θφ,α = Φ∗
φ,αΦφ,α =

α

(2π)3
PC χσ,Λ φ(x)2 χσ,Λ PC

≥ α

(2π)3
PC χσ,Λ φ(x)χσ,Λ PC χσ,Λ φ(x)χσ,Λ PC

=
[

α1/2 (2π)−3/2 PC χσ,Λ φ(x)χσ,Λ PC

]2
, (7.9)
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we obtain from Lemma 7.1 with p = 1
2 that

1
2
X(2Θφ,α) ≥ 1

2
X
([

(2α)1/2 (2π)−3/2 PC χσ,Λ φ(x)χσ,Λ PC

]2
)

≥ (2α)1/2

2(2π)3/2
Tr
(

PC χσ,Λ φ(x)χσ,Λ PC

)

− (2α)1/4Λ1/2

(2π)3/4
Tr
(

[PC χσ,Λ φ(x)χσ,Λ PC ]1/2
)

.

≥
√

4α

9π

(

Λ3 − σ3
) ‖φ‖1 − (2α)1/4Λ1/2

(2π)3/4

∥
∥
√

φ(x) χσ,Λ(k)
∥
∥

L1[h0]
.

(7.10)

To estimate the second term on the right side of (7.10), we proceed as in
(6.23)–(6.26). After unitary rescaling (x, k) �→ (Lx, k/L), we apply (6.1) again
and get
∥
∥
√

φ(x)χσ,Λ(k)
∥
∥

L1[h0]
=
∥
∥
√

φ(Lx) χLσ,LΛ(k)
∥
∥

L1[h0]

≤ CBS(1)
∥
∥
√

φ(Lx)
∥
∥

2;1

∥
∥χLσ,LΛ(k)

∥
∥

2;1

≤ 4π CBS(1)
3

(LΛ + 3)3
∥
∥
√

φ(Lx)
∥
∥

2;1
, (7.11)

where the last estimate results from (6.24)–(6.25). Since x �→ φ(Lx) is sup-
ported in B(0, 1) ⊆ Q = [− 1

2 , 1
2 ]3, we further have

∥
∥
√

φ(Lx)
∥
∥

2;1
=
∑

β∈Z3

∥
∥
√

φ(Lx) · 1Q+β

∥
∥

2
=
∥
∥
√

φ(Lx)
∥
∥

2

= ‖φ(Lx)‖1/2
1 = L−3/2 ‖φ‖1/2

1 . (7.12)

Finally, inserting (7.12) into (7.11), we arrive at (7.8). �

8. Asymptotics of the Lieb–Loss Energy

We turn to the proof of the main result of this paper, Theorem 1.1, stated
below again for the reader’s convenience. In our proof, a key role is played
by the scaling relation the effective energy Fβ obeys. Fβ is defined in (5.5)
as the infimum of the functional Fβ > 0 over L2-normalized functions in
H1(R3) ∩ L1(R3). In [24], one of us showed that this infimum is attained for
some φβ and hence is actually a minimum. A major issue in this regard is
non-reflexivity of the L1-space precluding a naive application of the direct
method of the calculus of variations. This was remedied by using the theory
of uniform convex spaces and the Milman–Pettis theorem. Subsequently, an
explicit characterization of the minimizer (up to spherical rearrangement) can
be given in terms of a Bessel function. In particular,

F1 > 0 (8.1)
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is a positive constant, and it is then not difficult to see that Fβ scales as

Fβ = β4/7 F1, (8.2)

for all β > 0.

Theorem 8.1. There exists a universal constant C < ∞ such that, for all α > 0
and Λ ≥ 1, the estimate

−C α
4
49 Λ− 4

49 ≤ ELL(α,Λ)
( 4
9π )2/7 F1 α2/7 Λ12/7

− 1 ≤ C α
4

105 Λ− 4
105 (8.3)

holds true.

Proof. We first take the infrared limit σ → 0. Note that ELL, E
(L)
LL , F , F (L),

X(2Θφ,α), and all error terms are continuous at σ = 0, and we can simply set
σ := 0 everywhere. Then, Theorems 6.1 and 7.2 with p = 1/2 yield

1
2
X(2Θφ,α) −

√

4α

9π
Λ3 ‖φ‖1 ≤C εΛ3 ‖φ‖1 + C α1/2 ε−2 L3/2 Λ2 ‖∇φ‖2,

(8.4)

1
2
X(2Θφ,α) −

√

4α

9π
Λ3 ‖φ‖1 ≥ − C α1/4 L3/2 Λ7/2 ‖φ‖1/2

1 , (8.5)

some constant C1 < ∞ and any φ = |φ| ∈ YL with ‖φ‖2 = 1, provided that
L ≥ Λ−1.

Next, we derive the upper bound in (8.3). From (8.4), we obtain

Êα,Λ(φ) =
1
2
‖∇φ‖2

2 +
1
2
X(2Θφ,α)

≤ 1
2
(1 + δ) ‖∇φ‖2

2 +

√

4α

9π
Λ3 (1 + C2ε) ‖φ‖1 + C2 α δ−1 ε−4 L3 Λ4

≤ (1 + δ)Fβ2(φ) + C2 α δ−1 ε−4 L3 Λ4, (8.6)

where Fβ is defined in (5.4) and

β2 := β0
1 + C2ε

1 + δ
, β0 ≡ β(α,Λ) =

√

4α

9π
Λ3, (8.7)

for some C2 < ∞ and all 0 < δ ≤ 1. Taking the infimum over all φ = |φ| ∈ YL

with ‖φ‖2 = 1 in (8.6), we further have

E
(L)
LL (α,Λ) ≤ (1 + δ)F (L)[β2] + C2 α δ−1 ε−4 L3 Λ4. (8.8)

The localization estimates (5.10)–(5.11) now imply

ELL(α,Λ) ≤ (1 + δ)Fβ2 + C2 α δ−1 ε−4 L3 Λ4 + C3 L−2, (8.9)

for some constant C3 < ∞. From the scaling relation (8.2), we get

(1 + δ)Fβ2 = (1 + δ)β
4/7
2 F1 = (1 + C2ε)4/7 (1 + δ)3/7 β

4/7
0 F1

≤ (1 + C4ε + C4δ)Fβ0 , (8.10)
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for some C4 < ∞, and inserting this into (8.9), we arrive at the intermediate
estimate, stating that there exists a universal constant C5 < ∞, such that

ELL(α,Λ)
Fβ(α,Λ)

− 1 ≤ C5

(

ε + δ + α−2/7 L−2 Λ−12/7

+ α5/7 δ−1 ε−4 L3 Λ16/7
)

(8.11)

holds for all ε, δ ∈ (0, 1], α > 0, Λ ≥ 1, and L > Λ−1. As α enters the right
side of (8.11) only in negative powers, we may assume α ∈ (0, 1] w.l.o.g. To
meet these requirements, we set

ε := δ := αrΛ−s and L := α−tΛu−1 , (8.12)

for r, s, t, u ≥ 0 to be chosen later. Then,

ε + δ + α− 2
7 L−2Λ− 12

7 + α
5
7 δ−1ε−4L3Λ

16
7

= 2αrΛ−s + α2t− 2
7 Λ

2
7 −2u + α

5
7 −5r−3tΛ5s+3u− 5

7 ≤ 4αa/7 Λ−b/7, (8.13)

with

a := min
{

7r, 14t − 2, 5 − 35r − 21t
}

, (8.14)

b := min
{

7s, 14u − 2, 5 − 35s − 21u
}

. (8.15)

We choose r, s, t, u so that all three terms in both (8.14) and (8.15) are equal,
i.e., r := s := 4/105 and t := u := 17/105. This yields a = b = 4/15 and hence
the upper bound

ELL(α,Λ)
Fβ(α,Λ)

− 1 ≤ 4C5 α
4

105 Λ− 4
105 (8.16)

in (8.3).
We similarly proceed for the derivation of the lower bound in (8.3). From

(8.5), we obtain

Êα,Λ(φ) =
1
2
‖∇φ‖2

2 +
1
2
X(2Θφ,α)

≥ 1
2
‖∇φ‖2

2 +

√

4α

9π
Λ3 (1 − δ) ‖φ‖1 − C6 δ−1 L3 Λ

= Fβ3(φ) − C6 δ−1 L3 Λ, (8.17)

for some C2 < ∞ and all 0 < δ ≤ 1, where

β3 := β0 (1 − δ) , β0 ≡ β(α,Λ) =

√

4α

9π
Λ3. (8.18)

Taking the infimum over all φ = |φ| ∈ YL with ‖φ‖2 = 1 in (8.17), we further
have

E
(L)
LL (α,Λ) ≥ F (L)[β3] − C6 δ−1 L3 Λ. (8.19)

The localization estimates (5.10)–(5.11) now imply

ELL(α,Λ) ≥ Fβ3 − C7 L−2 − C6 δ−1 L3 Λ4, (8.20)
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for some constant C7 < ∞. Again invoking the scaling relation (8.2), we get

Fβ3 = β
4/7
3 F1 = (1 − δ)4/7 β

4/7
0 F1 ≥ (1 − δ)Fβ0 , (8.21)

and thus there exists a constant C8 < ∞ such that

ELL(α,Λ)
Fβ(α,Λ)

− 1 ≥ −C8

(

δ + α−2/7 L−2 Λ−12/7 + α−2/7 δ−1 L3 Λ16/7
)

(8.22)

holds for all δ, α ∈ (0, 1], Λ ≥ 1, and L > Λ−1. Again we set

δ := αrΛ−s and L := α−tΛu−1 , (8.23)

for r, s, t, u ≥ 0 to be chosen later and obtain

δ+α− 2
7 L−2Λ− 12

7 + α− 2
7 δ−1L3Λ

16
7

=αrΛ−s + α2t− 2
7 Λ

2
7 −2u + α

5
7 −r−3tΛs+3u− 5

7 ≤ 3αa/7 Λ−b/7, (8.24)

with

a := min
{

7r, 14t − 2, 5 − 7r − 21t
}

, (8.25)

b := min
{

7s, 14u − 2, 5 − 7s − 21u
}

. (8.26)

We choose r, s, t, u so that all three terms in both (8.14) and (8.15) are equal,
i.e., r := s := 4/49 and t := u := 9/49. This yields a = b = 4/7 and hence the
lower bound

ELL(α,Λ)
Fβ(α,Λ)

− 1 ≥ −3C8 α
4
49 Λ− 4

49 (8.27)

in (8.3). �
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