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Escape Rate and Conditional Escape Rate
From a Probabilistic Point of View

C. Davis, N. Haydn and F. Yang

Abstract. We prove that for a sequence of nested sets {Un} with Λ = ∩nUn

a measure zero set, the localized escape rate converges to the extremal
index of Λ, provided that the dynamical system is φ-mixing at polyno-
mial speed. We also establish the general equivalence between the local
escape rate for entry times and the local escape rate for returns. Examples
include a dichotomy for periodic and non-periodic points, Cantor sets on
the interval, and submanifolds of Anosov diffeomorphisms on surfaces.
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1. Introduction

In recent years, there has been an increasing interest in open dynamical sys-
tems, which are dynamical systems with an invariant measure where one places
a trap or hole in the phase space, and looks at the decay rate of the measure
of points that are not caught by the trap up to some time (the survival set).
This rate is known to be related to the rate of the correlations decay for the
system (see [16]). When the correlations decay exponentially fast, the decay
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rate for the measure of the survival set is typically exponential and depends
on the location and size of the trap. We invite the readers to the review article
[5] for a general overview on this topic.

When the decay rate for the measure of the survival set is normalized by
the measure of the trap, one obtains the localized escape rate as the measure of
the trap goes to zero. Such problems are loosely related to the entry times and
return times distribution but this similarity does not allow to deduce limiting
statistics from each other since the limits are taken in different ways, and the
rate of convergence for the entry times to its limiting distribution is usually
insufficient for the study of escape rates.1

In the past, local escape rates have been associated with either metric
holes centered at a point whose radius decreased to zero or, in the presence of
partitions, with cylinder sets which decrease to a single point. In this case, a
dichotomy has been established for many systems which shows the local escape
rate to be equal to one at non-periodic points and equal to the extremal index
at periodic points. See the classical work [8] for conformal attractors, [2,4] for
the transfer operator approach for interval maps, and [14] for a probabilis-
tic approach which applies to systems in higher dimension. This mirrors the
behavior of the limiting return times distributions that are Poisson at non-
periodic points, and Pólya–Aeppli compound Poisson at periodic points in
which case the compounded geometric distribution has the weights given by
the extremal index θ ∈ (0, 1). See [10,12].

In this paper, we will generalize the concept of localized escape rates to
the cases when the limiting set of the shrinking neighborhoods are not any
longer points, periodic or non-periodic, but instead are allowed to be any null
sets.2 One of the key motivations is when the holes are opened around some
lower dimensional submanifold in the phase space. We will use the recent
progress developed in [13] which shows that the limiting return times distri-
bution at null sets is compound Poisson in a more general sense where the
associated parameters form a spectrum that is determined by the limiting
cluster size distribution (for this see below the coefficients αk). Unlike the
singleton case, however, the general relation between local escape rate and
extremal index for null sets has not been discussed before.

We would like to point out that the conventional transfer operator method
studied in [2] following the general setup in [16] (see also the book [19] and
the references therein) heavily relies on the conformal structure and the fact
that in dimension one, the indicator functions of the geometric balls Br(x)

1Since in most situations, the rate of convergence for the entry times statistics |P(τU >
t

μ(U)
) − e−αt| is independent of t (see for example [1,15]; also see [13] where the error is a

linear multiple of t); however, the localized escape rate problem requires one to obtain an
error that is exponentially small in t, with rate higher than α1.
2There have already been some progress on this direction for Markov shifts and iterated
function systems, where the limiting set is assumed to be finite ([19] Assumption (U3),
Section 2.5) and the neighborhoods Un have exponentially small measure ([19] Assumption
(U2*), Section 4.5).
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have bounded BV norm3, uniform in r. This makes it difficult to generalize
the results in [2] to the case where the limiting set Λ is a non-trivial null set,
or to higher dimensional systems (especially those that are invertible, where
the Banach space that the transfer operator acts are quite complicated). Our
approach in this paper uses φ-mixing to avoid those problems. In addition, we
only assume the system to be φ-mixing at polynomial speed (surprisingly, this
is enough to deduce that the escape rate is exponential!) as opposed to [2,16]
where the unperturbed transfer operator needs to have a spectral gap4. This
assumption may still not be optimal. However, we believe that the same results
does not hold for α-mixing systems in general. See the counter examples in [2]
for systems modeled by Young towers with first return map and polynomial
tail, and note that such systems are α-mixing at the same rate.

2. Statement of Results

Throughout this paper, we will assume that (M, T,B, μ) is a measure preserv-
ing system on some compact metric space M, with B the Borel σ-algebra.
Unless otherwise specified, T is assumed to be non-invertible, although our
result also holds in the invertible case, see Remark 2.5 and Theorems 4.12, 5.2
below. Let A be a measurable partition of M (finite or countable). Denote, by
An =

∨n−1
j=0 T−jA, its nth join (in the invertible case, see Remark 2.5). Then

An is a partition of M and its elements are called n-cylinders. We assume that
A is generating, that is

⋂
n An(x) consists of the singletons {x}.

Definition 2.1. (i) The measure μ is left φ-mixing with respect to A if

|μ(A ∩ T−n−kB) − μ(A)μ(B)| ≤ φL(k)μ(A)

for all A ∈ σ(An), n ∈ N and B ∈ σ(
⋃

j≥1 Aj), where φ(k) is a decreasing
function which converges to zero as k → ∞. Here σ(An) is the σ-algebra
generated by n-cylinders.

(ii) The measure μ is right φ-mixing w.r.t. A if

|μ(A ∩ T−n−kB) − μ(A)μ(B)| ≤ φR(k)μ(B)

for all A ∈ σ(An), n ∈ N and B ∈ σ(
⋃

j Aj), where φ(k) ↘ 0.
(iii) The measure μ is ψ-mixing w.r.t. A if

|μ(A ∩ T−n−kB) − μ(A)μ(B)| ≤ ψ(k)μ(A)μ(B)

for all A ∈ σ(An), n ∈ N and B ∈ σ(
⋃

j Aj), where ψ(k) ↘ 0. Clearly
ψ-mixing implies both left and right φ-mixing with φ(k) = ψ(k).

3We note that for piecewise expanding maps on higher dimensions, one could potentially
use the functional space constructed by Saussol [20] which is an analog of the BV space in
one dimension.
4The existence of stochastic processes that are polynomially φ-mixing is proven in [17,
Theorem 2]. However, we do not know if there are any dynamical system examples without
spectral gap (over certain Banach spaces).
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Remark 2.2. If it is clear from context which type of mixing we are referring
to (as is always the case in this paper), then we will suppress the subscripts
R,L.

We write, for any subset U ⊂ M,

τU (x) = min{j ≥ 1 : T j(x) ∈ U}
the first entry time to the set U . Then τU |U is the first return time for points
in U . We can now define the escape rate into U by

ρ(U) = lim
t→∞

1
t
| logP(τU > t)|

whenever the limit exists. It captures the exponential decay rate for the set of
points whose orbits have not visited U before time t. Observe that if U ⊂ U ′

then P(τU ′ > t) ≤ P(τU > t) and consequently ρ(U) ≤ ρ(U ′). We define the
conditional escape rate as

ρU (U) = lim
t→∞

1
t
| logPU (τU > t)|,

where PU is the conditioned measure on U .
We are particularly interested in the asymptotic behavior of ρ(U) along

a sequence of positive measure sets {Un} whose measure goes zero. For
this purpose, we call {Un} a nested sequence of sets if Un+1 ⊂ Un, and if
limn μ(Un) = 0. For the measure zero set Λ = ∩nUn, we define the localized
escape rate at Λ as:

ρ(Λ, {Un}) = lim
n→∞

ρ(Un)
μ(Un)

. (1)

provided that the limit exists. We will show that under certain conditions, the
localized escape rate of Λ exists and does not depend on the choice of Un.

2.1. Local Escape Rate for Unions of Cylinders

First, we consider with the case where each Un is a union of κn-cylinders, for
some non-decreasing sequence of integers {κn}.

We make some assumptions on the sizes of the nested sequence {Un}. For
each n and j ≥ 1, we define Cj(Un) = {A ∈ Aj , A ∩ Un 
= ∅} the collection of
all j-cylinders that have non-empty intersection with Un. Then, we write

U j
n =

⋃

A∈Cj(Un)

A

for the approximation of Un by j-cylinders from outside. For each fixed j,
{U j

n}n is also nested, that is, U j
n+1 ⊂ U j

n. Obviously, we have Un ⊂ U j
n for all

j, and Un = U j
n if j ≥ κn.

Definition 2.3. A nested sequence {Un ∈ Aκn} is called a good neighborhood
system, if:
(1) κn ↗ ∞ and κnμ(Un)ε → 0 for some ε ∈ (0, 1);
(2) there exists C > 0 and p′ > 1 such that μ(U j

n) ≤ μ(Un) + Cj−p′
for all

j < κn.
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2.1.1. Local Escape Rate and the Extremal Index. We make the following
definitions, following [13]

For a positive measure set U ⊂ M, we define the higher-order entry times
recursively:

τ1
U = τU , and τ j

U (x) = τ j−1
U (x) + τU (T τj−1

U (x)).

For simplicity, we write τ0
U = 0 on U .

For a nested sequence {Un}, define

α̂�(K,Un) = μUn
(τ �−1

Un
≤ K), (2)

i.e., α̂�(K,Un) is the conditional probability of having at least (�−1) returns to
Un before time K. We shall assume that the limit α̂�(K) = limn→∞ α̂�(K,Un)
exists for for K ∈ N large enough and every � ≥ 1. By monotonicity the limits

α̂� = lim
K→∞

α̂�(K) (3)

exist as α̂�(K) ≤ α̂�(K ′) ≤ 1 for all K ≤ K ′. Since we put τ0
U = 0, it follows

that α̂1 = 1. We will see later that the existence of the limits defining α̂�

implies the existence of the following limits:

α1 = lim
K→∞

lim
n→∞ μUn

(τUn
> K) = 1 − α̂2. (4)

α1 ∈ [0, 1] is generally known as the extremal index (EI). See the discussion in
Freitas et al. [9].

The next theorem shows that the escape rate is indeed given by the
extremal index.

Theorem A. Assume that T : M → M preserves a probability measure μ that
is right φ-mixing with φ(k) ≤ Ck−p for some C > 0 and p > 1, and {Un} is
a good neighborhood system such that {α̂�} defined in (3) exists, and satisfies∑

� �α̂� < ∞.
Then α1 defined by (4) exists, and the localized escape rate at Λ exists

and satisfies

ρ(Λ, {Un}) = α1.

Remark 2.4. Theorem A has a similar formulation for left φ-mixing systems.
See Remark 4.7 and Theorems 4.12, 5.2 for more detail.

For Gibbs–Markov systems (for the precise definition, see Sect. 3) the
same result is true:

Theorem B. Assume that T : M → M is a Gibbs–Markov system with respect
to the partition A. Let {Un} be a good neighborhood system such that {α̂�}
defined in (3) exists, and satisfies

∑
� �α̂� < ∞.

Then α1 defined by (4) exists. Furthermore, the localized escape rate at
Λ exists and satisfies

ρ(Λ, {Un}) = α1.
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Remark 2.5. If T is invertible, then one has to define the n-join by

An =
n∨

j=−n

T−jA.

In this case it is useful to write, for m,n ∈ Z, An
m :=

∨n
j=m T−jA. In particular

we have An = An
−n. The φ and ψ-mixing properties are defined by the same

formulas. For integers m,m′, n, n′ > 0, if U ∈ An
−m, V ∈ An′

−m′ then for k >

n + m′, we have μ(U ∩ T−kV ) = μ(T−mU ∩ T−k−mV ) where T−mU ∈ Am+n
0 ,

T−k−mV ∈ Ak+m+n′
k+m−m′ . Note that k + m − m′ > n + m > 0, so the estimate

can be treated in the same way as the non-invertible case with only minor
adjustments. However, the approximation U j

n need to be handled with care.
See Remark 4.8 for a potential problem and the treatment.

2.1.2. In the Absence of Short Returns. We will see below that when points
in {Un} do not return to Un “too soon”, then α1 = 1. To formulate this, we
define the period of U as:

π(U) = min{k > 0 : T−kU ∩ U 
= ∅},

and the essential period of U by:

πess(U) = min{k > 0 : μ(T−kU ∩ U) > 0}.

π and πess mark the shortest return of points in U . Note that π(U) ≤ πess(U)
for all measurable U ∈ M, and equality holds if T is continuous, U is open
and μ has full support.

Corollary C. Let (M, T,B, μ) be a measure preserving system. Assume that
{Un} is a good neighborhood system with πess(Un) → ∞, and (T, μ,A) satisfies
one of the following two assumptions:

(1) either μ is right φ-mixing with φ(k) ≤ Ck−p for some p > 1;
(2) or T is Gibbs–Markov;

then the localized escape rate at Λ exists and satisfies

ρ(Λ, {Un}) = 1.

Combining Corollary C with [21, Proposition 6.3], we have:

Corollary D. The conclusion of Corollary C holds if the assumption “πess(Un) →
∞” is replaced by the following assumptions:

(1) T is continuous, Λ = ∩nUn = ∩nUn;
(2) Λ intersects every forward orbit at most once, that is, for every x ∈ Λ we

have Λ ∩ {T k(x) : k ≥ 1} = ∅.

The proof of both corollaries can be found at the end of Sect. 4.2.



Vol. 22 (2021) Escape Rate and Conditional Escape Rate 2201

2.2. From Cylinders to Open Sets: Exceedance Rate for the Extreme Value
Process

Next, we deal with the case where {Un} consists of open sets. For this purpose,
we consider a observable

ϕ : M → R ∪ {+∞}
which is continuous except when ϕ(x) = +∞, such that the maximal value
of ϕ, which could be positive infinite, is achieved on a μ measure zero closed
set Λ. Then we consider the process generated by the dynamics of T and the
observable ϕ :

X0 = ϕ, X1 = ϕ ◦ T, . . . , Xk = ϕ ◦ T k, . . . .

Let {un} be a non-decreasing sequence of real numbers. We will think of un

as a sequence of thresholds, and the event {Xk > un} marks an exceedance
above the threshold un. Also denote by Un the open set

Un := {X0 > un}. (5)

It is clear that {Un} is a nested sequence of sets.
We are interested in the set of points where Xk(x) remains under the

threshold un before time t. For this purpose, we put

Mn = max{Xk : k = 0, . . . , n − 1},

and

ζ(un) = lim
t→∞

1
t
| logP(Mt < un)|.

Finally, define the exceedance rate of ϕ along the thresholds {un} as:

ζ(ϕ, {un}) = lim
n→∞

ζ(un)
μ(Un)

.

We will make the following assumption on the shape of Un. For each
rn > 0, we approximate Un by two open sets (‘o’ and ‘i’ stand for ‘outer’ and
‘inner’):

Uo
n = Brn(Un) =

⋃

x∈Un

Brn(x), and U i
n = Un \ Brn(Un) = Un \

⎛

⎝
⋃

x∈∂Un

Brn(x)

⎞

⎠ .

It is easy to see that

U i
n ⊂ Un and Un ⊂ Uo

n,

The following assumption requires Un to be well approximable by U
i/o
n .

Assumption 1. There exists a positive, decreasing sequence of real numbers
{rn} with rn → 0, such that

μ
(
Uo

n \ U i
n

)
= o(1)μ(Un). (6)

Here o(1) means the term goes to zero under the limit n → ∞.

Theorem E. Assume that
(1) either μ is right φ-mixing with φ(k) ≤ Ck−p, p > 1;
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(2) or (T, μ,A) is a Gibbs–Markov system.
Let ϕ : M → R∪{+∞} be a continuous function achieving its maximum on a
measure zero set Λ. Let {un} be a non-decreasing sequence of real numbers with
un ↗ supϕ, such that the open sets Un defined by (5) satisfy Assumption 1 for
a sequence rn that decreases to 0. Assume {α̂�}, defined by (3), exist and satisfy∑

� �α̂� < ∞. Let κn be the smallest positive integer for which diam Aκn ≤ rn

and assume:
(a) κnμ(Un)ε → 0 for some ε ∈ (0, 1);
(b) Un has small boundary: there exist C > 0 and p′ > 1, such that

μ
(⋃

A∈Aj ,A∩Brn (∂Un) �=∅ A
)

≤ Cj−p′
for all n and j ≤ κn.

Then the exceedance rate of ϕ along {un} exists and satisfies

ζ(ϕ, {un}) = α1.

2.3. Conditional Escape Rate: A General Theorem

Our next theorem deals with the relation between the escape rate and the
conditioned escape rate.

Theorem F. For any measure preserving ergodic system (M, T,B, μ) and any
positive measure set U ∈ M, we have

ρ(U) = ρU (U),

assuming one of them exists and is positive.

Note that this theorem does not rely on the mixing assumption nor any
information on the geometry of U . In particular, if one defines the localized
conditional escape rate at Λ as

ρΛ(Λ, {Un}) = lim
n→∞

ρUn
(Un)

μ(Un)
,

then we immediately have ρ(Λ, {Un}) = ρΛ(Λ, {Un}) − α1 under the assump-
tions of Theorem A or B.

2.4. Escape Rate on Young Towers With First Return Map and Exponential
Tail

Young towers, also known as the Gibbs–Markov–Young structure, is first intro-
duced by Young in [22,23]. Young tower can be viewed as a discrete time
suspension (Ω, T, μ) over a Gibbs–Markov system (Ω̃, T̃ , μ̃), such that the roof
function R (in this case, it is usually call the return time function) is integrable
with respect to the measure μ̃. A dynamical system (M, T ) is modeled by a
Young tower, if there exists a semi-conjugacy Π : Ω → M that is one-to-one
on the base of the tower Ω̃. In this case, we say that the tower is defined using
the first return map, if R(x) = τΠ(Ω̃)(Π(x)) is indeed the first return map on
Π(Ω̃).

To simply notation, we will use the notation � which means that the
inequality holds up to some constant C > 0, uniform in n.
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Theorem G. Assume that T is a C2 map modeled by Young tower defined using
the first return map, such that the return time function R has exponential tail:
There exists λ ∈ (0, 1) such that

μ̃(R > n) � λn.

Let {Un ⊂ Ω̃} be a nested sequence of sets for which the base system
(Ω̃, T̃ , μ̃) satisfies the assumptions of Theorem B in the cylinder case, or The-
orem E in the open set case. Then the localized escape rate at Λ = ∩nUn exists
and satisfies

ρ(Λ, {Un}) = α1.

We would like to remark that similar results for escape rate under sus-
pension have been obtained in [2] and [19] under slightly different settings.

2.5. Organization of the Paper

This paper is organized in the following way. In Sect. 3, we then state some
properties that surround the parameters of very short returns whose presence
is unaffected by the Kac timescale. In Sect. 4,, we then prove the main results
for cylinder approximations of the zero measure target set Λ. One crucial
result here is Lemma 4.6 which yields the extremal index for the near zero time
limiting distribution for entry times (as opposed to return times). Those results
are then used in Sect. 5 to extend them to the case when the approximating
sets are metric neighborhoods. In Sect. 6, we then provide a general argument
which shows that the local escape rate for entry times is the same as the local
escape rate for returns. In Sect. 7, we then show that the local escape rate
persists for the induced map. Section 8 is dedicated to examples.

3. Preliminaries

3.1. Return and Entry Times Along a Nested Sequence of Sets

In this section, we recall the general results in [13] on the number of entries to
an arbitrary null set Λ within a cluster.

Given a sequence of nested sets Un, n = 1, 2, . . . with Un+1 ⊂ Un, ∩nUn =
Λ and μ(Un) → 0, we will fix a large integer K > 0 (which will be sent to
infinity later) and assume that the limit

α̂�(K) = lim
n→∞ μUn

(τ �−1
Un

≤ K)

exists for K sufficiently large and for every � ∈ N. By definition α̂�(K) ≥
α̂�+1(K) for all �, and α̂1(K) = 1 due to our choice of τ0 = 0 on U . Also note
that α̂�(K) is non-decreasing in K for every �. As a result, we have for every
� ≥ 1:

α̂� = lim
K→∞

α̂�(K) exists for every �, and α̂1 = 1, α̂� ≥ α̂�+1. (7)
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Note that in the definition of α̂, the cut-off for the short return time
K does not depend on the set Un. Another way to study the short return
properties for the nested sequence Un is to look at

β̂� = lim
n→∞ μUn

(τ �−1
Un

≤ sn) (8)

for some increasing sequence of integers {sn}, with snμ(Un) → 0 as n → ∞.
This is the approach taken by Freitas et al in [11]. It is proven that for many
systems (including Gibbs–Markov systems and Young towers with polynomial
tails), we have β̂� = α̂�. See [21, Proposition 5.4 and 6.2]

To demonstrate the power of desynchronizing K from n, recall that for
any set U , the essential period of U is given by:

πess(U) = min{k > 0 : μ(T−kU ∩ U) > 0}.

Then the following lemma can be easily verified using the definition of α̂:

Lemma 3.1. Let {Un} be a sequence of nested sets. Assume that πess(Un) → ∞
as n → ∞, then α̂� exists and equals zero for all � ≥ 2.

Proof. For each K, one can take n0 large enough such that πess(Un) > K for
all n > n0. Then for � ≥ 2,

μUn
(τ �−1

Un
≤ K) ≤ μUn

(
K⋃

k=0

T−kUn ∩ Un

)

= 0

since all the intersections have zero measure. �

Note that α̂�(K) is the conditional probability to have at least � − 1
returns in a cluster with length K. If we consider the level set:

α�(K,Un) = μUn
(τ �−1

Un
≤ K < τ �

Un
), (9)

and its limit

α�(K) = lim
n→∞ α�(K,Un),

α� = lim
K→∞

α�(K), (10)

then it is easy to see that

α� = α̂� − α̂�+1, and so α̂� =
∑

j≥�

αj

which, in particular, implies the existence of α�.
Next, following [13] we put for every integer � > 0 and K > 0,

λ�(K,Un) =
P(
∑K

i=1 IUn
◦ f i = �)

P(
∑K

i=1 IUn
◦ f i ≥ 1)

. (11)

In other words, λ�(K,Un) is, conditioned on having an entry to the set Un,
the probability to have precisely � entries in a cluster with length K. The next
theorem provides the relation between α̂� and λ�:
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Theorem 3.2. [13, Theorem 2] Assume that Un is a sequence of nested sets
with μ(Un) → 0. Assume that the limits in (7) exist for K large enough and
every � ≥ 1. Also assume that

∑∞
�=1 �α̂� < ∞.

Then

λ� =
α� − α�+1

α1
,

where α� = α̂� − α̂�+1. In particular, the limit defining λ� exists. Moreover, the
average length of the cluster of entries satisfies

∞∑

�=1

�λ� =
1
α1

.

For more properties on {α̂�}, {α�} and {λ�}, we direct the readers to [13]
and [21, Section 3].

3.2. Gibbs–Markov Systems

A map T : M → M is called Markov if there is a countable measurable
partition A on M with μ(A) > 0 for all A ∈ A, such that for all A ∈ A,
T (A) is injective and can be written as a union of elements in A. Write An =
∨n−1

j=0 T−jA as before, it is also assumed that A is (one-sided) generating.
Fix any λ ∈ (0, 1) and define the metric dλ on M by dλ(x, y) = λs(x,y),

where s(x, y) is the largest positive integer n such that x, y lie in the same n-
cylinder. Define the Jacobian g = JT−1 = dμ

dμ◦T and gk = g · g ◦ T · · · g ◦ T k−1.
The map T is called Gibbs–Markov if it preserves the measure μ, and also

satisfies the following two assumptions:
(i) The big image property: there exists C > 0 such that μ(T (A)) > C for

all A ∈ A.
(ii) Distortion: log g|A is Lipschitz for all A ∈ A.

In view of (i) and (ii), there exists a constant D > 1 such that for all x, y in
the same n-cylinder, we have the following distortion bound:

∣
∣
∣
∣
gn(x)
gn(y)

− 1
∣
∣
∣
∣ ≤ Ddλ(Tnx, Tny),

and the Gibbs property:

D−1 ≤ μ(An(x))
gn(x)

≤ D.

It is well known (see, for example, Lemma 2.4(b) in [18]) that Gibbs–Markov
systems are exponentially φ-mixing, that is, φ(k) � ηk for some η ∈ (0, 1).

4. Escape Rate for Unions of Cylinders

This section contains the Proof of Theorem A, B and Corollary C, D. We will
suppress the dependence of ρ on {Un} and simply write ρ(Λ) for the local
escape rate at Λ.



2206 C. Davis et al. Ann. Henri Poincaré

4.1. The Block Argument

In this section, we will provide a general framework on the escape rate for
polynomially φ-mixing systems. The main lemma, which is Lemma 4.3, allows
us to reduce the escape rate (which is on the points that do not enter U in a
large time-scale) to the probability of having short entries.

First we introduce the following standard result for systems that are
either left or right φ-mixing. The proof can be found in [1,14].

Lemma 4.1. [14, Lemma 4] Assume that μ is either left or right φ-mixing for
the partition A. For U ∈ σ(Aκn), let s, t > 0 and Δ < s

2 then we have

|P(τU > s + t) − P(τU > s)P(τU > t)| ≤ 2(Δμ(U) + φ(Δ − κn))P(τU > t − Δ).

Iterating the previous lemma, we obtain:

Lemma 4.2. Assume that μ is either left or right φ-mixing for the partition A.
Let s > 0 and Δ < s

2 . Define q =
⌊

s
Δ

⌋
, η = q

q+1 , and δ = 2(Δμ(U) + φ(Δ −
κn)). Assume that δη < P(τU > s), then there exists a(q) > 0 such that for
every k ≥ 2 − q−1 that is an integer multiple of q−1, we have

(P(τU > s) − δη)k+a(q) ≤ P(τU > ks) ≤ (P(τU > s) + δη)k−2. (12)

Proof. We follow the proof of Theorem 1 in [14] and use induction. We first
take a(q) > 0 large enough such that

(P(τU > s) − δη)2−q−1+a(q) ≤ P(τU > 3s).

Also note that for k ≤ k′ we have P(τu > k′s) ≤ P(τu > ks). Then for
k ∈ [2 − q−1, 3] that is an integer multiple of q−1, we have

(P(τU > s) − δη)k+a(q) ≤(P(τU > s) − δη)2−q−1+a(q)

≤P(τU > 3s)

≤P(τU > ks). (13)

On the other hand, we have, for k ≤ 3,

P(τU > ks) ≤ P(τU > s) ≤ P(τU > s) + δη ≤ (P(τU > s) + δη)k−2.

Combining with (13), this shows that (12) holds for k ∈ [2 − q−1, 3] that is an
integer multiple of q−1.

For k > 3, we use induction on m = k · q ∈ N:

P(τU > ks)

≤ P(τU > s)P(τU > (k − 1)s) + δP(τU > (k − 1 − q−1)s)

≤ P(τU > s)(P(τU > s) + δη)k−3 + δ(P(τU > s) + δη)k−3−q−1

= (P(τU > s) + δη)k−3−q−1
[P(τU > s)(P(τU > s) + δ)q−1

+ δ]

≤ (P(τU > s) + δη)k−2.
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The second inequality follows from the induction assumption. We justify the
last inequality as follows. By definition of η, we have δ = δηδ

η
q ≤ δη(P(τU >

s) + δη)q−1
. Consider the bracketed term in the forth line:

P(τU > s)(P(τU > s) + δ)q−1
+ δ

=P(τU > s)(P(τU > s) + δ)q−1
+ δη(P(τU > s) + δη)q−1

=(P(τU > s) + δη)1+q−1
.

By induction this completes the proof of the right-hand-side of (12). The proof
of the left-hand-side is largely analogous (with δ replaced by −δ and the direc-
tion of the inequality reversed) and thus omitted. �

The next lemma establishes the relation between the escape rate and the
probability of short entries:

Lemma 4.3. Assume that μ is either left or right φ-mixing for the partition A,
with φ(k) ≤ Ck−p for some p > 0. Let {Un ∈ σ(Aκn)} be a nested sequence of
sets for some κn ↗ ∞. Furthermore, assume that there exists ε ∈ (0, 1), such
that κnμ(Un)ε → 0.

Then we have

ρ(Λ) = lim
n→∞

P(τUn
≤ sn)

snμ(Un)
, (14)

where sn =
⌊
μ(Un)−(1−a)

⌋
for any fixed a > 0 small enough.

Remark 4.4. At first glance, the RHS of (14) is similar to the definition of the
local escape rate in (1). However, since sn � μ(Un)−1 (where the latter is
the average return time given by Kac’s formula), P(τUn

≤ sn) concerns the
probability of short entries to U . A similar observation was made in [2].

Proof. Let {sn}, {Δn} be increasing sequences of positive integers with Δn <
sn/2, whose choice will be specified later. Write qn = � sn/Δn �, ηn = qn

qn+1 and
δn = 2(Δnμ(Un) + φ(Δn − κn)) as before. Our choice of sn and Δn below will
guarantee that δηn

n = o(snμ(Un)), which also implies that δηn
n < P(τUn

> sn).
We again follow largely the Proof of Theorem 1 in [14] and get by

Lemma 4.2
k + a(qn)

ksn
log (P(τUn

> sn) − δηn
n ) ≤ 1

ksn
logP(τUn

> ksn)

≤ k − 2
ksn

log (P(τUn
> sn) + δηn

n ) .

Taking limit as k → ∞ (with n fixed) and note that P(τUn
> sn) = 1−P(τUn

≤
sn), we obtain

ρ(Un) = lim
k→∞

1
ksn

| logP(τUn
> ksn)|

=
1
sn

(
P(τUn

≤ sn) + o(snμ(Un)) + O(δηn
n )
)
. (15)
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Here we used the trivial estimate

P(τUn
≤ sn) ≤ P

⎛

⎝
⋃

1≤k≤sn

T−k(Un)

⎞

⎠ ≤ snμ(Un). (16)

Divide (15) by μ(Un) and let n → ∞, we obtain

ρ(Λ) = lim
n→∞

(
P(τUn

≤ sn)
snμ(Un)

+
δηn
n

snμ(Un)

)

. (17)

It remains to show that the second term converges to zero for some proper
choice of {sn} and Δn. For this purpose, we fix some a ∈ (0, 1), b ∈ (ε, 1) and
choose sn =

⌊
μ(Un)−(1−a)

⌋
, and Δn =

⌊
μ(Un)−b

⌋� κn = o(μ(Un)−ε). Then
we have:

δηn
n

snμ(Un)
�Δηn

n μ(Un)ηn

snμ(Un)
+

φ(Δn − κn)ηn

snμ(Un)
≤Δnμ(Un)ηn−a + Δ−pηn

n μ(Un)−a

≤μ(Un)ηn−a−b + μ(Un)bpηn−a.

In order for both terms to go to zero, we need:
(1) 1 − a > b, which guarantees that sn � Δn, so qn → ∞ and consequently

ηn ↗ 1; then the first term will go to zero;
(2) bp > a, so that the second term goes to zero.

Both requirements are satisfied if we take any b ∈ (ε, 1), then choose 0 < a <
min{1 − b, bp}. Combining this with (17), we conclude that

ρ(Λ) = lim
n→∞

P(τUn
≤ sn)

snμ(Un)
,

as desired. �
In the remaining part of this section, we will prove that the RHS of (14)

coincides with the extreme index defined by (4). But before we move on, let us
state a direct corollary of the previous lemma, which is interesting in its own
right.

Proposition 4.5. Assume that μ is either left or right φ-mixing for the partition
A, with φ(k) ≤ Ck−p for some p > 0. Let {Un ∈ σ(Aκn)} be a nested sequence
of sets for some κn ↗ ∞. Furthermore, assume that there exists ε ∈ (0, 1),
such that κnμ(Un)ε → 0.

Then we have

ρ(Λ) ∈ [0, 1], (18)

provided that the local escape rate at Λ exists.

Proof. The lower bound is clear. For the upper bound, the trivial estimate (16)
yields

P(τUn
≤ sn)

snμ(Un)
≤ snμ(Un)

snμ(Un)
= 1.

�
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4.2. Proof of Theorem A and B

First we prove Theorem A using the following lemma, which is stated for right
φ-mixing systems. The proof can be adapted for left φ-mixing systems as well,
with certain modification on the assumptions of Un (in particular, on how Un

can be approximated by shorter cylinders). See Remark 4.7 below and the
discussion in Sect. 4.3.

Lemma 4.6. Let μ be right φ-mixing for the partition A, with φ(k) ≤ Ck−p

for some p > 1. Assume that {Un} is a good neighborhood system, such that
α̂�(K) exists for K large enough, and

∑
� α̂� < ∞. Then we have

lim
n→∞

P(τUn
≤ sn)

snμ(Un)
= α1

for any increasing sequence {sn} for which snμ(Un) → 0 as n → ∞.

Proof. For an given integer s, write Zs
n =

∑s
j=1 IUn

◦ T j which counts the
number of entries to Un before time s. Let K be a large integer, then by [13]
Lemma 3 for every ε > 0 one has P(τUn

≤ K) = α1Kμ(Un)(1 + O∗(ε)) for all
n large enough, where the notation O∗ means that the implied constant is one
(i.e., x = O∗(ε) if |x| < ε). For simplicity, assume r = sn/K is an integer and
put

Vq = {ZK
n ◦ T qK ≥ 1},

q = 0, 1, . . . , r − 1, and

Dq = {Vq, Z
(r−q−1)K
n ◦ T (q+1)K = 0}.

Then

{Zsn
n ≥ 1} =

r−1⋃

q=0

Dq

is a disjoint union. Let us now estimate

P(Z(r−q−1)K
n ◦ T (q+1)K ≥ 1, Vq)

≤ P(Z(r−q−1)K−2
√

K
n ◦ T (q+1)K+2

√
K ≥ 1, Vq) + 2

√
Kμ(Un)

≤ 2
√

Kμ(Un) + μ(Vq, Z
sn−(q+1)K−2κn
n ◦ T (q+1)K+2κn ≥ 1)x

+
(q+1)K−1∑

j=qK

(q+1)K+2κn∑

i=(q+1)K+2
√

K

μ(T−jUn ∩ T−iUn)

=: I + II + III. (19)

To bound II, note that {Z
sn−(q+1)K−2κn
n ◦ T (q+1)K+2κn ≥ 1} is the event

of having a hit between [(q + 1)K + 2κn, sn]. We cut this interval into tn =⌊
sn−(q+1)K−2κn

K

⌋
≥ 0 (II is void when tn is negative) many blocks with length

K. This allow us to estimate:

II ≤
tn+1∑

j=0

μ(ZK
n ◦ T qK ≥ 1, ZK

n ◦ T (q+1+j)K+2κn ≥ 1)
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=
tn+1∑

j=0

K∑

k=1

μ(T−qK−kUn, ZK
n ◦ T (q+1+j)K+2κn ≥ 1)

≤
tn+1∑

j=0

K∑

k=1

μ(ZK
n ≥ 1)(μ(Un) + φ((j + 1)K + κn − k))

≤
sn+K∑

i=κn

μ(Vq)(μ(Un) + φ(i)),

where we used (tn + 1) many blocks instead of tn to cover the remaining ≤ K
many hits at the end. The third inequality follows from right φ-mixing, and
the last line is due to μ(ZK

n ≥ 1) = μ(Vq).
For the third term in (19), we use right φ-mixing again to get (and recall

that U j
n is the outer approximation of Un by j-cylinders):

III ≤
(q+1)K−1∑

j=qK

(q+1)K+2κn∑

i=(p+1)K+2
√

K

μ(Un ∩ T−(i−j)Un)

≤K

2κn∑

j=2
√

K

μ(U j/2
n ∩ T−jUn)

≤K

2κn∑

j=2
√

K

μ(Un)(μ(U j/2
n ) + φ(j/2))

=O(1)μ(Vq)
2κn∑

j=2
√

K

(μ(U j/2
n ) + φ(j/2)),

where the last equality follows from

μ(Vq) = P(τUn
≤ K) = α1Kμ(Un)(1 + O∗(ε)).

Combining the previous estimates, we get

P(Z(r−q−1)K
n ◦ T (q+1)K ≥ 1, Vq)

≤ P(Z(r−q−1)K−2
√

K
n ◦ T (q+1)K+2

√
K ≥ 1, Vq) + 2

√
Kμ(Un)

≤ 2
√

Kμ(Un) + μ(Vq)
sn+K∑

i=κn

(μ(Un) + φ(i))

+μ(Vq)O(1)
κn∑

j=
√

K

(μ(U j
n) + φ(j))

≤ μ(Vq)F,

where

F =
2√
K

+ (sn + K)μ(Un) + O(1)(φ1(
√

K) +
κn∑

j=
√

K

μ(U i
n))
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and φ1(u) =
∑∞

i=u φ(i) is the tail-sum of φ which by assumption goes to zero
as u goes to infinity.

If n is large enough so that max{snμ(Un), κnμ(Un), φ1(κn)} < ε, then

F ≤ 2ε +
2√
K

+ O(1)

⎛

⎝φ1(
√

K) + κnμ(Un) +
κn∑

i=
√

K

i−p′

⎞

⎠

� ε +
1√
K

+ φ1(
√

K) + K− p′−1
2 ,

where we used the assumption that μ(U i
n) ≤ μ(Un) + Ci−p′

for some p′ > 1.
Consequently

μ(Dq) = μ(Vq) − P(Vq, Z
(r−q−1)K
n ◦ T (q+1)K ≥ 1) = μ(Vq)(1 + O∗(F )),

and since {ZqK
n ≥ 1, Vq} = Vq and μ(Vq) = μ(V0) we get

P(Zsn
n ≥ 1) =

r−1∑

q=0

P(Dq) = rμ(V0)(1 + O∗(F )).

Since by [13] Lemma 3 μ(V0) = α1Kμ(Un)(1 + O∗(ε)), we obtain

P(τUn
≤ sn) = rμ(V0)(1 + O∗(F )) = α1snμ(Un)(1 + O∗(ε + F )).

The statement of the lemma now follows if we let ε → 0 and then K → ∞.
�

Remark 4.7. Similar to the previous lemmas which hold for both left and right
φ-mixing measures, Lemma 4.6 has a similar formulation in the left φ-mixing
case. The estimate of II in (19) is mostly the same (see the proof of Lemma 4.9
below for more detail). However, this would require us to modify the definition
of the approximated sets U i

n as

Ũ i
n = T−(n−i)Ai(Tn−iUn),

with the assumption that the measure of Ũ i
n is small (preferably summable in

i, similar to (2) in Definition 2.3). This is indeed the treatment in [14, Lemma
3] when Λ = {x}. However, such an assumption may not hold when Λ is a
non-singleton null set. The right φ-mixing property avoids this problem.

Remark 4.8. So far we have assumed that T is non-invertible. This is because
in the invertible case, the approximation U j

n and Ũ j
n may become the entire

space. As an example, take M = Ω to be a full, two-sided shift space and T = σ
the left-shift. Let the sets Un be n-approximation of an unstable leaf Γ through
a non-periodic point x ∈ Ω, e.g., Γ = {y ∈ Ω : yi = xi ∀ i ≤ 0}. Obviously
Γ is a null set but in this case we get that Ũ j = Ω the entire space whenever
i < n/2. For a geometric example,let T be an Anosov diffeomorphisms on T

n

with minimal unstable foliations and Λ be the local unstable manifold at some
x ∈ M. Then T jΛ eventually becomes ε-dense in M, and the approximation
Ũ i

n (with respect to a Markov partition A) is the entire space for i small. By
symmetry and Remark 4.8, we see that if Λ is chosen to be a local stable
manifold then U j

n = M for j small.
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On the other hand, in the proof of Lemma 4.6, the approximation U j
n is

only used to control III of (19). Later this observation will allow us to obtain a
result for invertible systems where this term does not appear. See Theorem 4.12
and 5.2 below.

Below we state an alternate version of Lemma 4.6 where the right φ-
mixing assumption is replaced by the Gibbs–Markov property. This allows us
to bypass the issue stated in Remark 4.7 and keep the choice of U i

n.

Lemma 4.9. Let (T, μ,A) be a Gibbs–Markov system. Assume that {Un} is a
good neighborhood system, such that α̂�(K) exists for K large enough, and∑

� α̂� < ∞. Then we have

lim
n→∞

P(τUn
≤ sn)

snμ(Un)
= α1

for any increasing sequence {sn} for which snμ(Un) → 0 as n → ∞.

Proof. Recall that Gibbs–Markov systems are left φ-mixing with exponential
rate. The proof follows the lines of Lemma 4.6 up to Eq. (19), which is now
estimated using the left φ-mixing as:

II = μ(Vq, Z
sn−(q+1)K−2κn
n ◦ T (q+1)K+2κn ≥ 1)

≤
sn∑

i=(q+1)K+2κn

μ(Vq ∩ T−iUn)

≤
sn∑

i=κn

μ(Vq)(μ(Un) + φ(i)).

Note that the proof in this case is much short and the bound is almost the
same as before.

For III, we first split the term into the summation over the intersections
of Un with T iUn:

III ≤
(q+1)K−1∑

j=qK

(q+1)K+2κn∑

i=(p+1)K+2
√

K

μ(Un ∩ T−(i−j)Un)

≤ K

2κn∑

j=2
√

K

μ(Un ∩ T−jUn).

Each term in the summation can be bounded by:

μ(Un ∩ T−jUn) ≤
∑

A∈Cj(Un)

μ(T−jUn ∩ A)

=
∑

A∈Cj(Un)

μ(T−jUn ∩ A)
μ(A)

μ(A)

�
∑

A∈Cj(Un)

μ(T j(T−jUn ∩ A))
μ(T jA)

μ(A)
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�
∑

A∈Cj(Un)

μ(Un)μ(A)

=μ(Un)μ

⎛

⎝
⋃

A∈Cj(Un)

A

⎞

⎠ = μ(Un)μ(U j
n),

where the third and forth inequality follow from the distortion and the big
image property of Gibbs–Markov systems. See [21, Theorem D].

Then

III ≤ c1Kμ(Un)
κn∑

j=2
√

K

μ(U j
n) = O(1)μ(Vp)

2κn∑

j=2
√

K

μ(U j
n),

for some c1 and the rest of the proof is identical to Lemma 4.6. �
Now Theorem A and B are immediate consequences of Lemmas 4.3, 4.6

and 4.9 .

Proof of Corollary C. This corollary directly follows from Lemma 3.1. �
Proof of Corollary D. We need the following proposition from [21]:

Proposition 4.10. [21, Proposition 6.3] Let T be a continuous map on the
compact metric space M, and {Un} a nested sequence of sets such that
∩nUn = ∩nUn. Then π(Un) → ∞ if and only if Λ = ∩nUn intersects every
forward orbit at most once.

Since πess(U) ≥ π(U), we have πess(Un) → ∞. Combined with Corol-
lary C, we obtain Corollary D. �
4.3. Some Remarks on the Extremal Index

In the classic literature (for example, [7,9,11]), the extremal index is defined
as

θ = lim
n→∞ μUn

(τUn
> Kn), (20)

where Kn → ∞ is some increasing sequence of integers. It is shown in [21,
Proposition 5.4] that under the assumption of Theorem B we have

α1 = θ.

It is also straight forward to check that the Proof of Lemmas 4.6 and 4.9
remain true with α1 replaced by θ. We state this as the following proposition:

Proposition 4.11. Assume that one of the following assumptions holds:
(1) either μ is right φ-mixing with φ(k) � k−p, p > 1;
(2) or (T, μ,A) is a Gibbs–Markov system.
Let θ be the extremal index defined by (20) for some sequence {Kn}. Then for
any good neighborhood system {Un} and any increasing sequence {sn} with
snμ(Un) → 0 and sn/Kn → ∞, we have

lim
n→∞

P(τUn
≤ sn)

snμ(Un)
= θ.
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Furthermore, the local escape rate at Λ =
⋂

n Un exists and satisfies

ρ(Λ) = θ.

Note that in the Proof of Lemma 4.6, the bound on II of (19) holds for
both left and right φ-mixing systems, as already demonstrated in Lemma 4.9.
On the other hand, for θ defined by (20), III of (19) does not exist when
Kn > κ2

n. By Remarks 4.7 and 4.8 , we can drop the right φ-mixing and the
Gibbs–Markov assumption, obtaining the following theorem for left φ-mixing
systems that is either invertible or non-invertible:

Theorem 4.12. Assume that T : M → M is a dynamical system, either invert-
ible or non-invertible, and preserves a measure μ that is left φ-mixing with
φ(k) ≤ Ckp for some C > 0 and p > 1. Let {Un ∈ Aκn} be a nested sequence
of sets with κnμ(Un)ε → 0 for some ε ∈ (0, 1).

Assume that θ defined by (20) exists for some sequence {Kn} with Kn >
κ2

n. Then the localized escape rate at Λ exists and satisfies

ρ(Λ) = θ.

5. Escape Rate for Open Sets: An Approximation Argument

First, observe that

{Mt < un} = {τUn
> t}.

As a result, we have

ζ(un) = lim
t→∞

1
t
| logP(Mt < un)| = lim

t→∞
1
t
| logP(τUn

> t)| = ρ(Un),

therefore we have

ζ(ϕ, {un}) = ρ(Λ, {Un}).

The following proposition allows us to replace {Un} by its cylinder-
approximation.

Proposition 5.1. Let {Un}, {Vn} and {Wn} be sequences of nested sets with
Vn ⊂ Un ⊂ Wn for each n, and Λ =

⋂
n Un =

⋂
n Vn = ∩nWn. Assume that

μ(Wn \ Vn) = o(1)μ(Vn), (21)

and ρ(Λ, {Wn}) = ρ(Λ, {Vn}) = α.
Then

ρ(Λ, {Un}) = α.

Proof. Vn ⊂ Un ⊂ Wn implies that τWn
≥ τVn

≥ τUn
and therefore

ρ(Wn) ≥ ρ(Un) ≥ ρ(Vn).

On the other hand, (21) means that μ(Wn)/μ(Vn) → 1. We thus obtain

ρ(Λ, {Wn}) ≥ ρ(Λ, {Un}) ≥ ρ(Λ, {Vn}),

and the proposition follows from the squeeze theorem. �
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Proof of Theorem E. For the sequence {rn} given in Assumption 1, we write
κn for the smallest integer such that diam Aκn ≤ rn. Then consider

Vn = ∪A∈Aκn ,A⊂Un
A, Wn = ∪A∈Aκn ,A∩Un �=∅A.

Clearly we have Vn ⊂ Un ⊂ Wn for each n. Moreover, the choice of κn gives

U i
n ⊂ Vn, Wn ⊂ Uo

n.

Combine this with (6), we have μ(Wn \ Vn) = o(1)μ(Vn).
Let us write α̂∗

� , ∗ = U, V,W for α̂� defined using {Un}, {Vn}, {Wn},
respectively. Then it is proven in [21, Lemma 5.6] that

α̂V
� = α̂U

� = α̂W
� .

In particular,
∑

� �α̂U
� < ∞ implies that the same holds for α̂∗

� , ∗ = V,W , and
the value of α1 defined by {Vn}, {Un}, {Wn} are equal.

It remains to show that {Vn} and {Wn} are good neighborhood systems.
(1) of Definition 2.3 holds due to (a) in Theorem E. For (2) of Definition 2.3,
observe that

μ(V j
n ) = μ

⎛

⎝
⋃

A∈Cj(Vn)

A

⎞

⎠ ≤ μ(Vn) + μ

⎛

⎝
⋃

A∈Aj ,A∩Brn (∂Un)�=∅
A

⎞

⎠ ≤ μ(Vn) + Cj−p′
,

thanks to (b) in Theorem E. A similar argument shows that {Wn} is also a
good neighborhood system.

Now we can apply Theorem A or B on {Vn} and {Wn} to obtain

ρ(Λ, {Wn}) = ρ(Λ, {Vn}) = α1.

It then follows from Proposition 5.1 that ρ(Λ, {Un}) = α1. This concludes the
Proof of Theorem E. �

Similar to Theorem 4.12, when the extremal index θ is defined as

θ = lim
n→∞ μUn

(τUn
> Kn)

for some sequence Kn > κ2
n, the conditions on the right φ-mixing and V j

n can
be dropped. We thus obtain the following version of Theorem 4.12 for open
sets {Un}:

Theorem 5.2. Assume that T : M → M is a dynamical system, either invert-
ible or non-invertible, and preserves a measure μ that is left φ-mixing with
φ(k) ≤ Ckp for some C > 0 and p > 1.

Let ϕ : M → R∪{+∞} be a continuous function achieving its maximum
on a measure zero set Λ. Let {un} be a non-decreasing sequence of real numbers
with un ↗ supϕ, such that the open sets Un defined by (5) satisfy Assumption 1
for a sequence rn that decreases to 0 as n → ∞. Let κn be the smallest positive
integer for which diam Aκn ≤ rn and assume that:

(i) κnμ(Un)ε → 0 for some ε ∈ (0, 1);
(ii) Un has small boundary: there exist C > 0 and p′ > 1, such that

μ
(⋃

A∈Aj ,A∩Brn (∂Un) �=∅ A
)

≤ Cj−p′
for all n and j ≤ κn;

(iii) the extremal index θ defined by (20) exists for some sequence Kn > κ2
n.
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Then the exceedance rate of ϕ along {un} exists and satisfies

ζ(ϕ, {un}) = ρ(Λ, {Un}) = θ.

6. The Conditional Escape Rate

In this section, we will prove Theorem F.
First we establish the following relation between the hitting times and

return times.

Lemma 6.1. For any set U ⊂ M with μ(U) > 0, let Ak := {x ∈ M|τU ≥ k},
and Bk := {x ∈ U |τU ≥ k} = Ak ∩ U. Then we have

μU (Ak)μ(U) = μ(Bk) = μ(Ak) − μ(Ak+1) (22)

Proof. By definition we have Ak+1 ⊂ Ak. Thus, we compute

μ(Ak+1) = μ(∩k
j=1T

−jU c)

= μ(T−1(∩k−1
j=0T−jU c))

= μ(U c ∩k−1
j=1 T−jU c)

= μ(U c ∩ Ak)

= μ(Ak) − μ(U ∩ Ak)

= μ(Ak) − μ(Bk),

where the third equality follows from the invariance of μ. �

Next, we need the following arithmetic lemma on the exponential decay
rate for a sequence of real numbers {an} and its difference sequence {bn =
an − an+1}.

Lemma 6.2. Suppose that {an} is a decreasing sequence of positive real num-
bers with an ↘ 0. Let bn = an −an+1. Suppose, also, that bn is non-increasing.
Then the following statements are equivalent:
(1) limn→∞ − log an

n = ϑ for some ϑ > 0;
(2) limn→∞ − log bn

n = ϑ for some ϑ > 0.

Remark 6.3. Note that there are counter-examples for which the statement of
the lemma fails without the monotonicity assumption on the sequence {bn}.

Proof. First note that since an ↘ 0 we have an =
∑

k≥n bk; therefore (2) =⇒
(1) is obvious. It thus remains to show that (1) =⇒ (2). Let γ > 1 be fixed.
Since by assumption the limit limn→∞ 1

n | log an| = ϑ exists and ϑ > 0, there
is an N so that

∣
∣
∣
∣
log an

n
+ ϑ

∣
∣
∣
∣ < ε ∀n ≥ N,

for some positive ε < (γ − 1)ϑ/4. Hence
∣
∣
∣
∣
log an

n
− log aγn

γn

∣
∣
∣
∣ < 2ε ∀n ≥ N
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which implies

aγn <
(
ane2εn

)γ
<

1
2
an

for all n large enough (assuming ε < ϑ
2 ). Since

an − aγn =
γn−1∑

j=n

bj

we get by monotonicity of the sequence bj

bγn(γ − 1)n ≤ an − aγn ≤ bn(γ − 1)n

and consequently an ≤ 2bn(γ − 1)n. Hence

log bγn

n
+

log(γ − 1)n
n

≤ log an

n
≤ log bn

n
+

log 2(γ − 1)n
n

which in the limit n → ∞ yields

lim sup
n→∞

log bn

n
≤ −ϑ

γ

and

−ϑ ≤ lim inf
n→∞

log bn

n
.

Since this applies to every γ > 1 we obtain that limn→∞ 1
n log bn = −ϑ. �

Proof of Theorem F. Let ak = μ(Ak) = P(τU ≥ k) and bk = μ(U)μ(Bk) =
μ(U)PU (τU ≥ k). Since μ is assumed to be ergodic one has ak ↘ 0. Also note
that bk is non-increasing. Now the theorem follows from Lemma 6.2,

�

7. Escape Rate Under Inducing

In this section, we will state a general theorem for the local escape rate under
inducing. For this purpose, we consider a measure preserving dynamical system
(Ω̃, T̃ , μ̃) with μ̃ being a probability measure. Given a measurable function
R : Ω̃ → Z

+ consider the space Ω = Ω̃ × Z
+/ ∼ with the equivalence relation

∼ given by

(x,R(x)) ∼ (T̃ (x), 0).

Define the (discrete-time) suspension map over Ω̃ with roof function R as the
measurable map T on the space Ω acting by

T (x, j) =
{

(x, j + 1) if j < R(x) − 1,

(T̂ x, 0) if j = R(x) − 1.

We will call Ω a tower over Ω̃ and refer to the set Ωk := {(x, k) : x ∈ Ω̃, k <

R(x)} as the kth floor where Ω̃ can be naturally identified with the 0th floor
called the base of the tower.
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For 0 ≤ k < i, set Ωk,i = {(x, k) : R(x) = i}. The map

Π : (x, k) �→ x

is naturally viewed as a projection from the tower Ω to the base Ω̃ and for any
given set U ⊂ Ω we will write

Ũ = Π(U).

The measure μ̃ can be lifted to a measure μ̂ on Ω by

μ̂(A) =
∞∑

i=1

i−1∑

k=0

μ̃(Π(A ∩ Ωk,i)).

It is easy to verify that μ̂ is T -invariant and if μ̃(R) =
∫

R dμ̃ < ∞ then μ̂ is
a finite measure. In this case, the measure

μ =
μ̂

μ̃(R)

is a T -invariant probability measure on Ω.
We write Ũ = Π(U) ⊂ Ω̃, Λ̃ = ∩nŨn and define ρ̃(Λ̃, {Ũn}) to be the

localized escape rate at Λ̃ for the system (Ω̃, T̃ , μ̃). The following theorem
relates the escape rate of the base system with that of the suspension. A
similar result is obtained for continuous suspensions under the assumption
that R is bounded, see [6].

Theorem 7.1. Let (Ω, T, μ) be a discrete-time suspension over an ergodic mea-
sure preserving system (Ω̃, T̃ , μ̃) with a roof function R satisfying the following
assumptions:

(1) R has exponential tail: there exists C, c > 0 such that μ̃(R > n) ≤ Ce−cn;
(2) exponential large deviation estimate: for every ε > 0 small, there exists

Cε, cε > 0 such that the set

Bε,k =

⎧
⎨

⎩
y ∈ Ω̃ :

∣
∣
∣
∣
∣
∣

1
n

n−1∑

j=0

R(T̃ jy0) − 1
μ(Ω0)

∣
∣
∣
∣
∣
∣
> ε for some n ≥ k

⎫
⎬

⎭
,

satisfies μ̃(Bε,k) ≤ Cεe
−cεk.

Then for every nested sequence {Un}, we have

ρ(Λ, {Un}) = ρ̃(Λ̃, {Ũn}).

Proof. The result of this theorem is in fact hidden in the proof of Theorem 4
of [14] and Theorem 3.2 (1) in [2]. We include the proof here for completeness.

For every y = (x,m) ∈ Ω, we take y0 = x ∈ Ω̃. Then we have

τUn
(y) = −m +

τ̃Ũn
(y0)−1
∑

j=0

R(T̃ j(y0)), (23)
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where τ̃ is the return times defined for the system (Ω̃, T̃ , μ̃). By the Birkhoff
ergodic theorem on (Ω̃, T̃ , μ̃), we see that

1
n

n−1∑

j=0

R(T̃ jy0) →
∫

Ω̃

R(y) dμ̃(y) =
1

μ(Ω0)
,

where we apply the Kac’s formula on the last equality and use the fact that μ
is the lift of μ̃.

On the other hand, since the return time function R has exponential tail,
we get, for each ε > 0 and t large enough,

μ((x,m) : m > εt) � e−cεt.

To simplify notation, we introduce the set (n is fixed)

At =

⎧
⎨

⎩
y = (x,m) : m < εt,

τ̃Ũn
(y0)−1
∑

j=0

R(T̃ j(y0)) > (1 + ε)t

⎫
⎬

⎭
∩ Bc

ε,k.

Combine (23) with the previous estimates on Bε,k, for k = t(1 + ε) we get
∣
∣μ(τŨn

> t) − μ(At)
∣
∣ � e−cεt + e−cε(1+ε)t. (24)

Note that At contains the set

A−
t =

{

y : m < εt, τ̃Ũn
(y0) >

(1 + ε)t
μ−1(Ω0) − ε

}

,

and is contained in

A+
t =

{

y : m < εt, τ̃Ũn
(y0) >

(1 + ε)t
μ−1(Ω0) + ε

}

.

Now we are left to estimate μ(A±
t ). Since μ is the lift of μ̃, we have

μ(A±
t ) =

1
μ̃(R)

∞∑

j=0

min(εt,Rj)∑

i=0

μ̃(T−iA±
t ∩ Ω0,i)

=μ(Ω0)(1 + O(εt))μ̃(Ã±
t ), (25)

where

Ã±
t =

{

y0 ∈ Ω0 : τ̃Ũn
(y0) >

(1 + ε)t
μ−1(Ω0) ± ε

}

.

Let α = ρ̃(Λ̃, {Ũn}). Then we have (recall that μ̃(Ũn)μ(Ω0) = μ(Un))

lim
n→∞ lim

t→∞
1

tμ(Un)
| log μ̃(Ã±

t )| = α
(1 + ε)

1 ± εμ(Ω0)
.

By (25), we get that

lim
n→∞ lim

t→∞
1

tμ(Un)
| log μ(Ã±

t )| = α
(1 + ε)

1 ± εμ(Ω0)
.

For each ε > 0 we can take n0 large enough, such that for n > n0 :

α
1 + ε

1 ± εμ(Ω0)
μ(Un) < min{cε, cε(1 + ε)}.
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It then follows that the right-hand-side of (24) is of order o(μ(A±
t )). We thus

obtain

ρ(Λ, {Un}) = lim
n→∞ lim

t→∞
1

tμ(Un)
| log μ(τUn

> t)| ∈
(

α
(1 + ε)

1 + εμ(Ω0)
, α

(1 + ε)

1 − εμ(Ω0)

)

for every ε > 0. This shows that ρ(Λ, {Un}) = α = ρ̃(Λ̃, {Ũn}). �

Proof of Theorem G. Young towers can be seen as discrete-time suspension
over Gibbs–Markov maps. Moreover, the exponential tail of μ(R > n) implies
the exponential large deviation estimate (see for example [2] Appendix B).
Therefore, Theorem G immediately follows from Theorems B, E and 7.1. �

8. Examples

8.1. Periodic and Non-periodic Points Dichotomy

First we consider the case where Λ = {x} is a singleton, and Un = Bδn
(x) is a

sequence of balls shrinking to x. Alternatively one could take ϕ(y) = g(d(y, x))
for some function g(x) : R → R ∪ {+∞} achieving its maximum at 0 (for
example, g(y) = − log y) and let un ↗ ∞ be a sequence of threshold tending
to infinity. Then Un = {y : ϕ(y) > un} is a sequence of balls with diameter
shrinking to zero.

This situation has been dealt with in [2] for certain interval maps, and in
[14] for maps that are polynomially φ-mixing. A dichotomy is obtained: when
x is non-periodic the local escape rate is 1; when x is periodic then ρ(x) = 1−θ
where

θ = θ(x) = lim
n→∞

μ(Un ∩ T−mUn)
μ(Un)

, (26)

where m is the period of x. When μ is an equilibrium state for some potential
function h(x) with zero pressure, one has θ = eSmh(x) where Sm is the Birkhoff
sum. See [2].

Note that if x is non-periodic then one naturally deduces that π(Un) ↗ ∞
(see for example [14, Lemma 1]). When x is periodic, in [13, Section 8.3] it
is shown that α̂� = θl−1 is a geometric distribution. In particular, one has∑

� �α̂� < ∞ and α1 = 1 − θ. This leads to the following theorem:

Theorem 8.1. Assume that
(1) either μ is right φ-mixing with φ(k) ≤ Ck−p, p > 1;
(2) or (T, μ,A) is a Gibbs–Markov system.
Assume that 0 < rn < δn satisfies

μ(Bδn+rn
(x) \ Bδn−rn

(x)) = o(1)μ(Bδn
(x)).

Write κn for the smallest positive integer with diam Aκn ≤ rn. We assume
that:
(a) κnμ(Un)ε → 0 for some ε ∈ (0, 1);
(b) Un has small boundary: there exists C > 0 and p′ > 1, such that

μ
(⋃

A∈Aj ,A∩Brn (∂Un) �=∅ A
)

≤ Cj−p′
for all n and j ≤ κn.
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(c) when x is periodic with period m, θ defined by (26) exists.
Then we have

ρ({x}, {Bδn
(x)}) = α1 =

{
1 if x is non-periodic
1 − θ if x is periodic

.

This theorem improves [14, Theorem 2] by dropping the assumption θ <
1/2. Also note that such results can be generalized to interval maps which can
be modeled by Young towers using Theorem G.

8.2. Cantor Sets for Interval Expanding Maps

For simplicity, below we will only consider the Cantor ternary set. However,
the argument below can be adapted to a large family of dynamically defined
Cantor set discussed in [11] with only minor modification.

Consider the uniformly expanding map T (x) = 3x mod 1 defined on the
unit interval [0, 1]. We take Λ to be the ternary Cantor set on [0, 1], and define
recursively: U0 = [0, 1]; Un+1 is obtained by removing the middle third of each
connected component of Un. Then we have ∩nUn = Λ.

Theorem 8.2. For the uniformly expanding map T (x) = 3x mod 1 on [0, 1],
the Cantor ternary set Λ and the nested sets {Un}, we have

ρ(Λ, {Un}) =
1
3
.

Proof. Let A = {[0, 1/3), [1/3, 2/3), [2/3, 1]} be a Markov partition of T , with
respect to which the Lebesgue measure μ is exponentially ψ-mixing. Below we
will verify the assumptions of Proposition 4.11.

It is easy to see that Un ∈ An, i.e., κn = n. On the other hand, μ(Un) =
2n/3n which shows that item (1) of Definition 2.3 is satisfied for any ε ∈ (0, 1).
For item (2), note that U j

n = Uj which implies that

μ(U j
n) ≤ μ(Un) + μ(Uj) = μ(Un) +

(
2
3

)j

.

We conclude that {Un} is a good neighborhood system.
The extremal index can be found as follows. Let us write Un =

⋃
|α|=n Jα

where the disjoint union is over all n-words α = α1α2 . . . αn ∈ {0, 2}n and

Jα =
n∑

j=1

αj

3j
+ 3−nI,

where I = [0, 1] is the unit interval. The length |Jα| is equal to 3−n. For j < n

T−jJα =
⋃

β∈{0,1,2}j

Jβα

(disjoint union), thus

Un ∩ T−jUn =
⋃

α∈{0,2}n

⋃

β∈{0,2}j

Jβα
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and therefore Un ∩ T−jUn = Un+j . Consequently,

{τUn
≤ K} ∩ Un = Un ∩

K⋃

j=1

T−jUn = Un+1.

Since μ(Un+j) =
(

2
3

)j
μ(Un) this implies that α̂2(K,Un) = μ(Un+1)

μ(Un) = 2
3 and

therefore α1 = 1
3 .

This result was recently shown in [11, Theorem 3.3] in more generality.
By Proposition 4.11, we conclude that ρ(Λ, {Un}) = 1/3. �

8.3. Submanifolds of Anosov Maps

In this section, we consider the case where Λ is a submanifold for some Anosov
map T . More importantly, we will show how our results can be applied to those
cases where the extremal index θ is defined using time cut-off Kn that depends
on Un [see (20)].

Let T =
(

2 1
1 1

)

be an Anosov system on T
2 and μ be the Lebesgue

measure. It is well known that μ is exponentially ψ-mixing with respect to its
Markov partition A. Also denote by λ > 1 the eigenvalue of T . Following [3]
we take Λ to be a line segment with finite length l(Λ). We will lift Λ to Λ̂ ⊂ R

2

and parametrize Λ̂ by p1 + tv for some p1 ∈ R
2 and t ∈ [0, l(Λ)]. Write p2 for

the other end point of Λ̂, that is, p2 = p1 + l(Λ)v.
Consider the function ϕΛ(y) = − log d(x,Λ) which achieves its maximum

(+∞) on Λ. Write v∗, ∗ = s, u for the unit vector along the stable and unstable
direction, respectively. Then we have:

Theorem 8.3. For the sequence {un = log n},
(1) if Λ is not aligned with the stable direction vs or the unstable direction

vu then ζ(ϕΛ, {un}) = 1;
(2) if Λ is aligned with the unstable direction but {p1 + tvu, t ∈ R} has no

periodic point, then ζ(ϕΛ, {un}) = 1;
(3) if Λ is aligned with the stable direction but {p1 + tvs, t ∈ R} has no

periodic point, then ζ(ϕΛ, {un}) = 1;
(4) Λ is aligned with v∗, ∗ = s, u and L contains a periodic point with prime

period q, then ζ(ϕΛ, {un}) = 1 − λ−q;
(5) Λ is aligned with the unstable direction vu, Λ has no periodic points but

{p1+tvu, t ∈ R} contains a periodic point of prime period q; if Λ∩T−qΛ =
∅ then ζ(ϕΛ, {un}) = 1; if Λ∩T−qΛ 
= ∅ then ζ(ϕΛ, {un}) = (1−λ−q) |p2|

l(Λ) ;
(6) Λ is aligned with the stable direction vu, Λ has no periodic points but

{p1+tvu, t ∈ R} contains a periodic point of prime period q; if Λ∩T−qΛ =
∅ then ζ(ϕΛ, {un}) = 1; if Λ∩T−qΛ 
= ∅ then ζ(ϕΛ, {un}) = (1−λ−q) |p2|

l(Λ) ;

Proof. We will only prove case (1), in which we will need the result of [3,
Theorem 2.1 (1)]. The other cases use similar arguments and correspond to
case (2) to (6) of [3, Theorem 2.1].

Below we verify the assumptions of Theorem 5.2.
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Put δn = e−un . Then we see that Un = {y : ϕΛ(y) > un} = Bδn
(Λ). Since

μ is the Lebesgue measure, it is straightforward to verify that Assumption 1
is satisfied with rn = δ2

n = e−2un . See [3, Figure 1].
By the hyperbolicity of T , there exists C > 0 such that diam An < Cλ−n.

This invites us to take

κn =
⌊

ln C + 2un

ln λ

⌋

+ 1 = O(log n)

which guarantees that diamAκn < rn. On the other hand, μ(Un) �
e−un l(Λ) = O(1/n), so item (i) of Theorem 5.2 is satisfied for any ε ∈ (0, 1).

To prove (ii), we write εj = diam Aj , and note that if A ∈ Aj has non-
empty intersection with Brn

(∂Un), then A ⊂ Brn+εj
(∂Un). In particular,

μ

⎛

⎝
⋃

A∈Aj ,A∩Brn (∂Un) �=∅
A

⎞

⎠ ≤ μ(Brn+εj
(∂Un))

=O(rn + εj) = O(e−2un) + O(λ−j).

Recall that j ≤ κn = O(un), we see that the right-hand side is exponentially
small in j.

We are left with the extremal index θ defined by (20). For this purpose,
we choose Kn = (log n)5 � κ2

n. Now we estimate:

μUn
(τUn

≤ Kn) ≤ 1
μ(Un)

(log n)5∑

j=1

μ(Un ∩ T−jUn)

�n

(log n)5∑

j=1

μ(Un ∩ T−jUn)

= o(1)

where the last inequality follows from [3, Section 3.3, page 16]. This shows
that

θ = lim
n

μUn
(τUn

> Kn) = 1 − lim
n

μUn
(τUn

≤ Kn) = 1,

finishing the proof of (iii) of Theorem 5.2. We conclude that

ζ(ϕ, {log n}) = θ = 1.

�
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