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On a Class of Quasilinear Equations
Involving Critical Exponential Growth and
Concave Terms in R

N

Jefferson Abrantes Santos and Uberlandio B. Severo

Abstract. In this work, we establish the existence and multiplicity of
nonzero and non-negative solutions for a class of quasilinear elliptic equa-
tions, whose nonlinearity is allowed to enjoy the critical exponential growth
with respect to a version of the Trudinger–Moser inequality, and it can
also contain concave terms in R

N (N ≥ 2). When N = 2 or N = 3, this
equation is motivated for a physics application in fluid mechanics. In or-
der to obtain our results, we combine variational arguments in a suitable
subspace of a Orlicz–Sobolev space with a version of the Trudinger–Moser
inequality and Ekeland variational principle. In a particular case, we show
that the solution is a positive ground state.
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1. Introduction and Main Results

In this paper, we deal with existence and multiplicity of nonzero solutions for
quasilinear elliptic equations of the form

− ΔΦu + V (x)Φ′(|u|) u

|u| = h(x, u) in R
N , (1.1)

where ΔΦu = div (Φ′(|∇u|)∇u/|∇u|), N ≥ 2, V : RN → R is non-negative and
locally bounded potential, h : RN ×R → R is a continuous function satisfying
appropriate conditions and Φ : R → R+ is a N–function satisfying some
conditions which will be described later. For the definition and informations
about N–functions, see Sect. 2. Equation (1.1) appears in several physical

Research partially supported by CNPq-Brazil Grant Casadinho/Procad 552.464/2011-2.
Research partially supported by CNPq Grant 310747/2019-8 and Grant 2019/0014
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contexts. As observed in [23] (and references [6–8] therein), equations of type
(1.1) are related to concrete examples from fluid mechanics and plasticity
theory. If Ω is a domain of RN , with N = 2 or N = 3, and

Φ(t) = |t|N + N

∫ |t|

0

sN−1arcsinhαsds, (1.2)

α ∈ (0, N − 1), the slow steady-state motion of a fluid of Prandtl–Eyring type
in Ω can be modeled by the following set of equations⎧⎨

⎩
div (Φ′(|Du|)Du/|Du|) + (potential term) = 0 in Ω
divu = 0 in Ω
u = 0 on ∂Ω,

where u : Ω → R
N denotes the velocity field of a incompressible fluid and

Du := 1
2 (∇u + ∇u⊥) is the symmetric gradient of u (for more details see

[8,22]).
In the literature, equations of type (1.1) in all RN were studied by various

authors; we can cite for instance [1,2,11,13,24,33] and references therein. In
[13, Theorem 1.3], the author proves a version of the Moser–Trudinger inequal-
ity for Orlicz–Sobolev embedding into exponential and multiple exponential
spaces on unbounded domains in R

N ,1 N ≥ 2, by assuming that Φ : R → R+

is a C1-function fulfilling the following hypotheses:

(Φ1) There exists C ≥ 1 such that tN/C ≤ Φ(t) ≤ CtN for all t ∈ [0, 1/C);

(Φ2) lim
t→+∞

Φ(t)
tN logα t

= 1, for some α ∈ [0, N − 1).

As an application of the inequality and considering a third hypothesis on Φ [see
condition (1.7) in [13]] he shows that (1.1) has a nonzero solution by assuming
that the nonlinearity h(x, t) has critical exponential growth with respect to this
version of the Moser–Trudinger inequality and others appropriate assumptions.
In [11], under the same conditions the author considers the non-homogeneous
case and shows the existence of two distinct solutions.

In this paper, we are going to assume only the conditions (Φ1) and (Φ2).
Next, let us make some comments about these hypotheses. As a consequence
of (Φ1), it follows that

lim inf
t→0+

Φ(2t)
Φ(t)

≥ 2N

C2
.

Moreover, by (Φ2) we have

lim
t→+∞

Φ(2t)
Φ(t)

= 2N .

Thus, there exists K ≥ 2N such that Φ(2t) ≤ KΦ(t) for all t ≥ 0, that is, Φ
satisfies Δ2-condition. Moreover, since Φ is convex we reach

(K − 1)Φ(t) ≥ Φ(2t) − Φ(t) ≥ Φ′(t)t

1A version for bounded domains can be found for instance in [15,25].
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and therefore

cα := sup
t>0

Φ′(t)t
Φ(t)

≤ K − 1. (1.3)

On the other hand, given any t0 > 0 by the mean value theorem there exists
s ∈ (0, t0) verifying Φ(t0) = Φ′(s)t0 and since Φ′(t) is non-decreasing for t > 0
it follows that Φ(t0) ≤ Φ′(t0)t0 and thus

1 ≤ mα := inf
t>0

Φ′(t)t
Φ(t)

. (1.4)

It is not difficult to verify that by (Φ1) and (Φ2) we must have mα > 1 (if
mα = 1 we get a contradiction). Moreover, by deriving Φ(t)/tcα we have that
(1.3) implies that Φ(t)/tcα is non-increasing for t > 0. Similarly, from (1.4) we
deduce that Φ(t)/tmα is non-decreasing for t > 0. Hence,

Φ(1)tcα ≤ Φ(t) ≤ Φ(1)tmα , ∀ t ∈ [0, 1].

Combining these inequalities with condition (Φ1), for all t ∈ [0, 1/C) we reach

Φ(1)tcα ≤ Φ(t) ≤ CtN and
1
C

tN ≤ Φ(t) ≤ Φ(1)tmα ,

which imply that mα ≤ N ≤ cα.
We observe that the function Φ : R → R+, defined in (1.2), is a C1-

function satisfying conditions (Φ1) and (Φ2), and it is not difficult to verify
that in this case mα = N and cα = N + α.

When α = 0, Φ(t) = |t|N satisfies conditions (Φ1) and (Φ2) (in this case
mα = cα = N) and therefore (1.1) becomes a elliptic equation involving the
N -Laplacian operator, namely,

−ΔNu + V (x)|u|N−2u = ĥ(x, u) in R
N ,

where ĥ = h/N . This problem, with ĥ(x, u) having critical exponential growth
with respect to the Trudinger–Moser inequality, has been intensively investi-
gated by many authors, see for example [16–21,26,28,30]. Motivated by theses
aspects and papers [11,13], our main objective in the present paper is to obtain
the existence and multiplicity of nonzero and non-negative solutions for the
following class of equations:

− ΔΦu + V (x)Φ′(|u|) u

|u| = f(x, u) + λg(x, u) in R
N , (1.5)

where λ ≥ 0 is a parameter and f, g : RN × R → R are continuous functions
satisfying suitable conditions. Our intention is also to improve and complement
some of the results cited above.

As in [11,13] we consider the maximal growth on the nonlinear term
f(x, t) which allows us to treat Eq. (1.5) variationally in an appropriate sub-
space of W 1,Φ(RN ). We shall impose on g(x, t) a growth of sublinear type. Here,
W 1,Φ(RN ) is the Orlicz–Sobolev space that consists of functions in LΦ(RN )
(the Orlicz space associated to the N–function Φ) such that its weak deriva-
tives exist and belong to LΦ(RN ). We regard W 1,Φ(RN ) endowed with the
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norm

‖u‖1,Φ = |∇u|Φ + |u|Φ,

where | · |Φ denotes the Luxemburg norm associated to LΦ(RN ). It is known
that the Lorentz–Zygmund space LN,N,γ(RN ), γ = α/N , reproduces (up to
equivalent norms) the Orlicz spaces LΦ(RN ) (see [7,29]). Thus, W 1,Φ(RN ) is
equivalent to W 1LN,N,γ(RN ).

Throughout this paper, we assumed that f : RN × R → R+ is contin-
uous and behaves like exp(b|t|γ) as t → +∞, more precisely, we suppose the
following growth condition on the non-linearity f(x, t):
(f1) there exist constants C > 0 and b > 0 such that

f(x, t) ≤ CtN−1 + C [exp(btγ) − SN,α(btγ)]

for all t ≥ 0 and x ∈ R
N , where γ = N/(N − 1 − α) and

SN,α(btγ) =
∑

0≤j< N
γ

(btγ)j

j!
.

The main features of this class of problems, considered in this paper, are that
it is defined in the whole R

N , involves critical exponential growth (according
to Lemma 3.3) and the non-homogenous generalized N -Laplacian operator.
We will show that the energy functional associated to the problem verifies
the Palais–Smale compactness condition in certain energy levels. By applying
minimax methods combined with minimization arguments and the Ekeland
variational principle, we obtain multiplicity of weak solutions for Eq. (1.5) in
the subspace X ⊂ W 1,Φ(RN ), given by

X :=
{

u ∈ W 1,Φ(RN );
∫
RN

V (x)Φ(u)dx < ∞
}

.

We say that u : RN → R is a weak solution of the Eq. (1.5) if u ∈ X and it
holds ∫

RN

[
Φ′(|∇u|) ∇u

|∇u|∇v + V (x)Φ′(|u|) u

|u|v
]

dx

−
∫
RN

f(x, u)vdx − λ

∫
RN

g(x, u)vdx = 0,

for all v ∈ X. With respect to the potential V (x), we require the following
conditions:
(V1) V ∈ L∞

loc(R
N ) and there exists V0 > 0 such that V (x) ≥ V0 for almost

every x ∈ R
N ;

(V2) the function x �→ Φ̃
(

1
V (x)1/cα

)
belongs to L1(RN ), where Φ̃ is the con-

jugate N -function of Φ;
Here, we can assume without loss of generality that V0 ≤ 1. We emphasize
that condition (V2) is a generalization of the hypothesis∫

RN

1
V (x)1/(N−1)

dx < ∞,
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in the case Φ(t) = |t|N . This assumption was already considered in various
papers dealing with the N -Laplacian operator, see for instance [19,26,34].

Since Φ satisfies Δ2-condition, it is not difficult to see that X is a reflexive
Banach space when endowed with the norm

‖u‖ = |∇u|Φ + |u|Φ,V ,

where | · |Φ,V denotes the Luxemburg norm with relation to the measure dμ =
V (x)dx. For more details, see Sect. 2 and [5,32]. Condition (V1) implies that
the embedding X ↪→ W 1,Φ(RN ) is continuous. Moreover, under condition (V2),
we shall prove that the embedding X ↪→ Ls(RN ) is compact for all 1 ≤ s < ∞
(see Proposition 3.2).

Besides the condition (f1) on the non-linearity f(x, t), we consider the
following assumptions:
(f2) there exists σ > cα verifying

σF (x, t) ≤ f(x, t)t, ∀ t ≥ 0 and x ∈ R
N ,

where F (x, t) :=
∫ t

0
f(x, s)ds;

(f3) there exist θ > mα and μ > 0 such that

F (x, t) ≥ μtθ,∀ t ∈ [0, 1] and x ∈ R
N .

We observe that for each x ∈ R
N , deriving with respect to t the quotient

F (x, t)/tσ we deduce from (f2) that F (x, t)/tσ is non-decreasing for t > 0.
Thus, by (f1) we get

F (x, t) ≤ F (x, 1)tσ ≤ C1t
σ ∀ t ∈ [0, 1] and x ∈ R

N .

Consequently, in view of (Φ1), F (x, t)/Φ(t) ≤ C1Ctσ−N for all t ∈ (0, 1/C)
and therefore we obtain

lim
t→0+

F (x, t)
Φ(t)

= 0, uniformly in x ∈ R
N . (1.6)

Assumption (f3) is used to estimate the minimax level associated to the energy
functional. Note that we require this condition only for t ∈ [0, 1].

With respect to the non-linearity g : RN × R+ → R+, we assume that g
is continuous and satisfies the condition
(g1) there exist C1 > 0 and q ∈ (1,mα) such that g(x, t) ≤ C1t

q−1, for all
t ≥ 0 and x ∈ R

N .
Notice that if mα = 2 then g(x, t) has sublinear growth. This is the case

when α = 0, N = 2 and Φ(t) = t2 because mα = cα = 2. From this and since
mα ≤ N , we can interpret condition (g1) as a generalization of the sublinear
growth for this class of problems.

We emphasize that elliptic problems in bounded domains involving con-
cave and convex terms have been studied extensively after the initial work
of Ambrosetti–Brezis–Cerami [3] and little has been addressed for this type
of problems in all RN . We are only aware of the works [6,9,14,16,27] which
studied existence and multiplicity of solutions in R

N for some semilinear and
quasilinear equations related to problem (1.5). So, one of our intentions in this
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paper was to consider non-linearities involving critical exponential growth and
concave terms.

Now, we are ready to present our main results:

Theorem 1.1. Assume that Φ is a N−function verifying (Φ1)−(Φ2). Moreover,
suppose that (V1) − (V2), (g1), (f1) − (f3) are satisfied and, in (f3),

μ ≥ max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ1,

⎡
⎢⎢⎣

|B1| θ−mα

mα

(
μ1mα

θ

) θ
θ−mα

(
σ−cα

σ

)
ξ0

(
K

1/γ
N,α

b1/γ

)
⎤
⎥⎥⎦

θ−mα
mα

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=: μ∗,

where KN,α = B1/BNω
γ/N
N−1, B = 1 − α/(N − 1), ωN−1 is the measure of the

unit sphere in R
N , ξ0(t) = min{tmα , tcα} for t ≥ 0 and

μ1 :=
Φ(1)|B1|(1 + ‖V ‖L∞(B1))

|B1/2| .

Then, there exists λ∗ > 0 such that Eq. (1.5) has a nonzero and non-negative
solution uλ for all λ ∈ [0, λ∗]. Furthermore, if uλ ∈ C1(RN ) then uλ(x) > 0
for all x ∈ R

N .

When λ = 0, the solution obtained in Theorem 1.1 is a positive ground
state, as the next result shows.

Theorem 1.2. Under the assumptions of Theorem 1.1, if we suppose in addi-
tion that λ = 0, Φ′(t)/tcα−1 is non-increasing for t > 0 and, for each x ∈ R

N ,
f(x, t)/tcα−1 is increasing for t > 0, then the solution obtained in Theorem 1.1
is a ground state. Furthermore, if this solution belongs to C1(RN ) then it is
positive in all RN .

Notice that Φ(t) = |t|N satisfies the above monotonicity condition since
cα = N in this case. Moreover, if Φ′(t) is differentiable and Φ′′(t)t ≤ (cα −
1)Φ′(t) for t > 0, then Φ′(t)/tcα−1 is non-increasing for t > 0.

If we consider an additional hypothesis on g(x, t), we are able to prove
that problem (1.5) has a second nonzero solution.

Theorem 1.3. In addition to the assumptions of Theorem 1.1, suppose that
g(x, t) satisfies the condition
(g2) there exist constants β1 > 0, q1 ∈ (1,mα) and t1 > 0 such that for all

(x, t) ∈ R
N × [0, t1]

g(x, t) ≥ β1t
q1−1.

Then, for all λ > 0, problem (1.5) has a nonzero and non-negative solution vλ

which is different of uλ when λ ∈ (0, λ∗).

Here we improve and complement some of the works cited above. We
treat a class of potentials which are not necessary coercive and we obtain, when
λ = 0, a positive ground state solution. As far as we know, there are no papers
which deal with Eq. (1.5) in the Orlicz context, where the potential V (x) has
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these features and the non-linearities have critical exponentiall growth and
involve concave terms. It is worthwhile to mention that the presence of the
concave term brings additional difficulties to the problem, since the geometric
structure of the associated functional becomes more delicate. Besides, to prove
the existence of nonzero solution, we do not assume the conditions (1.7), (1.12),
(1.13), (1.16) and (1.17) in [13] (see also similar assumptions in [11]). We also
mention that we do not impose hypothesis on F (x, t) at the origin (t = 0) and
we do not assume the condition

∃ M > 0, t0 > 0 such that F (x, t) ≤ Mf(x, t), ∀ t ≥ t0,

which is often used in semilinear and quasilinear problems involving exponen-
tial critical growth. In this direction, our paper improves and complements the
works [11,13,16–20,26,28,34], which shows that our work is new even in the
case Φ(t) = |t|N .

Example 1.4. Notice that, for 0 ≤ α < N − 1, the hypotheses of Theorem 1.3
are for example satisfied by Φ(t), V (x), f(x, t) and g(x, t) given by:

(i) Φ0(t) = |t|N + N
∫ |t|
0

sN−1arcsinhαs ds;
(ii) It is not difficult to see that the conjugate N -function Φ̃0 of Φ0 satis-

fies Φ̃0(t) ≤ Φ̃0(1)t(N+α)/(N+α−1) for all t ∈ [0, 1]. Thus, an example of
potential is given by

V (x) =

{
2, for |x| ≤ 1,

1 + |x|τ , for |x| ≥ 2,

with τ > N(N + α − 1);
(iii) f(x, t) = ∂F (x, t)/∂t with F (x, t) = μl(x)tp exp(btγ), where μ ≥ μ∗,

p > cα, b > 0, γ = N/(N − 1−α) and l ∈ C(RN , [1, 2]) is such that l ≡ 2
if |x| ≤ 1 and l ≡ 1 if |x| ≥ 2;

(iv) g(x, t) = tq−1, t ≥ 0 and q ∈ (1,mα).

Example 1.5. Another example of g(x, t) satisfying conditions (g1)−(g2) which
is not a pure power like above is given as follows. For t1 = 1 and 1 < q ≤ q1 <
mα, we define

g(x, t) =

⎧⎨
⎩

1
2
a(x)

(
tq1−1 + tq−1

) [
1 + cos

(π

2
t
)]

, for (x, t) ∈ R
N × [0, 1],

a(x) (1 + sin(πt))q−1
, for (x, t) ∈ R

N × [1,+∞),

where a : RN → R is a continuous function satisfying

0 < inf
x∈RN

a(x) ≤ sup
x∈RN

a(x) < ∞.

Indeed, to show this fact just to observe that the inequalities 1+cos(πt/2) ≥ 1
and tq−1 ≥ tq1−1 hold for t ∈ [0, 1]. Moreover, 1 ≤ tq−1 and sin(πt) ≤ πt hold
for t ≥ 1.
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Remark 1.6. We emphasize that the approach used in this paper can be adapted
with slight modifications to deal with non-homogeneous equations and to ob-
tain similar results as in [17,19,26,34]. Furthermore, our approach works if we
impose a more general condition than (Φ2), namely,

lim
t→+∞

Φ(t)

tN
(∏l−1

j=1 logα
[j](t)

)
logα

[l](t)
= 1, l ∈ N and α ∈ [0, N − 1),

where log[k](t) = log(log[k−1](t)) and log[1](t) = log(t), which was considered
in [11–13]. For the sake of simplicity, we prefer to treat only the case l = 1.

This paper is organized as follows: in Sect. 2, we present some preliminary
results about Orlicz spaces which are used in the work. In Sect. 3, we establish
the variational framework for our problem and we obtain some embedding
results involving our working space. Section 4 shows that the energy functional
has the geometric structure of the Mountain Pass Theorem, and in Sect. 5
we prove that this functional satisfies the Palais–Smale condition in certain
energy levels. Section 6 is devoted to the proof of Theorem 1.1, and in Sect. 7
we prove Theorem 1.2. Finally, by applying minimization arguments we obtain
Theorem 1.3 in Sect. 8.

Throughout this paper, W 1,N (RN ) denotes the Sobolev space endowed
with the norm

‖u‖1,N =
∫
RN

(|∇u|N + |u|N )dx, u ∈ W 1,N (RN ).

We use |·|p to denote the norm of the Lebesgue space Lp(RN ), 1 ≤ p ≤ ∞. The
symbols C,Ci, i = 0, 1, 2, . . . will denote different (possibly) positive constants.
We denote by Br the ball centered at the origin with radius r > 0 and |D| the
Lebesgue measure of a mensurable set of RN .

2. Preliminaries

In order to facilitate the understanding of the paper, in this section we present
briefly some results about Orlicz spaces. For the proofs and more details see,
for instance [5,32].

A function A : R → [0,+∞) is called N−function if it is convex, even,
A(t) = 0 if and only if t = 0, A(t)/t → 0 as t → 0 and A(t)/t → +∞ as
t → +∞. In particular, we have A′(0) = 0 and if A is differentiable then A′(t)
is non-decreasing for t ≥ 0, which implies that A(t) is increasing for t > 0. For
a N−function A and an open set Ω ⊂ R

N , the Orlicz class is the set defined
by

KA,μ(Ω) =
{

u : Ω → R; u is measurable and
∫

Ω

A(|u(x)|) dμ < ∞
}

.

If μ is the Lebesgue measure, then we denote KA,μ(Ω) by KA(Ω). The linear
space LA,μ(Ω) generated by KA,μ(Ω) is called Orlicz space. When A satisfies
the Δ2-condition, namely, there exists a constant k > 0 such that
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A(2t) ≤ kA(t), ∀ t ≥ 0,

the Orlicz class KA,μ(Ω) is a linear space, and hence equal to LA,μ(Ω). We
consider the following norm (called of Luxemburg’s norm) on LA,μ(Ω):

|u|A,Ω = inf
{

λ > 0;
∫

Ω

A

( |u(x)|
λ

)
dμ ≤ 1

}
.

It can be shown that (LA,μ(Ω), | · |A,Ω) is a Banach space (see [32]). In the
case Ω = R

N , we denote | · |A,RN by | · |A. The complement N−function of A
is defined by

Ã(t) = sup
s>0

{ts − A(s)} .

It is not difficult to verify that ˜̃A = A. In the spaces LA,μ(Ω) and LÃ,μ(Ω), an
extension of the Hölder inequality holds, namely,∣∣∣∣

∫
Ω

u(x)v(x) dμ

∣∣∣∣ ≤ 2|u|A,Ω|v|Ã,Ω, ∀u ∈ LA,μ(Ω), v ∈ LÃ,μ(Ω). (2.1)

As a consequence, for every ũ ∈ LÃ,μ(Ω) there corresponds a continuous linear
functional fũ ∈ (LA,μ(Ω))

′
given by fũ(v) =

∫
Ω

ũ(x)v(x) dμ, v ∈ LA,μ(Ω).
Thus, we can define

‖ũ‖Ã,Ω = sup
|v|A,Ω≤1

∫
Ω

ũ(x)v(x) dμ

and ‖ · ‖Ã,Ω is called the Orlicz norm on the space LÃ,μ(Ω). Similarly, we can
define the Orlicz norm ‖ · ‖A,Ω on LA,μ(Ω). The norms | · |A,Ω and ‖ · ‖A,Ω are
equivalent and satisfy the inequalities

|u|A,Ω ≤ ‖u‖A,Ω ≤ 2|u|A,Ω.

We define the Orlicz–Sobolev space W 1,A(Ω) as follows

W 1,A(Ω) = {u : Ω → R : u is measurable and u, |∇u| ∈ LA(Ω)}
equipped with the norm

‖u‖W 1,A(Ω) := |u|A,Ω + |∇u|A,Ω,

where ∇u is the gradient of u and we are using its Euclidean norm in R
N . An

important property is that if A and Ã verify the Δ2-condition, then the spaces
LA(Ω) and W 1,A(Ω) are reflexive, separable and

(LA(Ω), | · |A,Ω)
′
=

(
LÃ(Ω), ‖ · ‖Ã,Ω

)
and

(
LÃ(Ω), | · |Ã,Ω

)′

= (LA(Ω), ‖ · ‖A,Ω) .

Next, we consider a lemma due to Fukagai, Ito and Narukawa (see [24, Lemma
2.1]) which will be used in our arguments.
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Lemma 2.1. Suppose that A is a differentiable N−function satisfying

m ≤ A′(t)t
A(t)

≤ M, ∀ t > 0, (2.2)

for some M ≥ m > 0. Defining, for t ≥ 0, ξ0(t) = min{tm, tM} and ξ1(t) =
max{tm, tM}, one has

ξ0(ρ)A(t) ≤ A(ρt) ≤ ξ1(ρ)A(t) for ρ, t ≥ 0

and

ξ0(|u|A) ≤
∫

Ω

A(|u|) dμ ≤ ξ1(|u|A) for u ∈ LA,μ(Ω).

Remark 2.2. By virtue of Lemma 2.1 with m > 1, if A satisfies Δ2-condition
then Φ̃ also satisfies Δ2-condition (see [24, Lemma 2.7]). Therefore, it can be
shown that

un → 0 in LΦ,μ(RN ) ⇐⇒
∫
RN

Φ(|un|) dμ → 0

and (un) is bounded in LΦ,μ(RN ) if and only if (
∫
RN Φ(|un|)dμ) is bounded.

Moreover, as cited above
(
LΦ,μ(RN ), | · |Φ

)
is a separable and reflexive Ba-

nach space as well as
(
W 1,Φ(RN ), | · |1,Φ

)
. As we saw in the Introduction, our

N−function Φ satisfies Δ2-condition and assumption (2.2) with m = mα and
M = cα.

3. Variational Framework

In order to apply variational methods, as seen in the Introduction, we consider
the following linear subspace of W 1,Φ(RN )

X =
{

u ∈ W 1,Φ(RN );
∫
RN

V (x)Φ(|u|)dx < ∞
}

which is a separable and reflexive Banach space with the norm ‖u‖ := |∇u|Φ +
|u|Φ,V (see Remark 2.2), where

|u|Φ,V = inf
{

λ > 0;
∫
RN

V (x)Φ
( |u|

λ

)
dx ≤ 1

}

and

|∇u|Φ = inf
{

λ > 0;
∫
RN

Φ
( |∇u|

λ

)
dx ≤ 1

}
.

Moreover, we can see that C∞
0 (RN ) is dense in X. The next lemma presents

some embeddings which will be used in our arguments.

Lemma 3.1. If (Φ1)−(Φ2) and (V1) are satisfied, then the following embeddings
are continuous:
(a) LΦ(RN ) ↪→ LN (RN );
(b) W 1,Φ(RN ) ↪→ W 1,N (RN );
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(c) X ↪→ W 1,Φ(RN );
(d) X ↪→ LΦ(RN ) and X ↪→ Lr(RN ) for any r ∈ [N,∞).

Proof. We observe that by (Φ1) − (Φ2) there exists C1 > 0 such that tN ≤
C1Φ(t) for all t ≥ 0. Thus, if un → 0 in LΦ(RN ) then∫

RN

|un|Ndx ≤ C1

∫
RN

Φ(|un|)dx → 0

and item (a) is proved. Item (b) is a immediate consequence of (a). To prove
(c), just see that∫

RN

Φ(|u|)dx ≤ 1
V0

∫
RN

V (x)Φ(|u|)dx < ∞

for u ∈ X and the proof of item d) follows directly from b), c) and by the
continuous embedding from W 1,N (RN ) into Lr(RN ) for any r ∈ [N,∞). �

Now, we prove a result of compact embedding, which will be crucial in
the sequel.

Proposition 3.2. Under conditions (V1) − (V2) and (Φ1) − (Φ2), the space X
is compactly immersed into Ls(RN ) for all 1 ≤ s < ∞.

Proof. Given v ∈ X, in view of (V1) and by Lemma 2.1 we have
∫
RN

Φ(|v|V 1/cα)dx =

∫
{x; V0≤V (x)<1}

Φ(|v|V 1/cα)dx +

∫
{x; V (x)≥1}

Φ(|v|V 1/cα)dx

≤ 1

V0

∫
{x; V0≤V (x)<1}

V (x)Φ(|v|)dx +

∫
{x; V (x)≥1}

V (x)Φ(|v|)dx

≤ 1

V0

∫
RN

V (x)Φ(|v|)dx < ∞,

(3.1)
where we have used that Φ is increasing in [0,+∞). Thus, vV 1/cα ∈ LΦ(RN )
and by (V2) and Hölder inequality (2.1) we obtain

∫
RN

|v|dx =
∫
RN

V (x)1/cα

V (x)1/cα
|v|dx ≤ 2|V −1/cα |Φ̃|vV 1/cα |Φ, (3.2)

which shows that v ∈ L1(RN ). Moreover, if vn → 0 in X then
∫
RN V (x)Φ(|vn|)dx

→ 0. Hence, by using (3.1) we conclude that
∫
RN Φ(|vn|V 1/cα)dx → 0 and this

proves that |vnV 1/cα |Φ → 0. Therefore, by (3.2) it follows that
∫
RN |vn|dx → 0

and the embedding X ↪→ L1(RN ) is continuous. By the interpolation inequal-
ity in the Lebesgue spaces and according to item d) of Lemma 3.1, we conclude
that the embedding X ↪→ Ls(RN ) is continuous for any s ∈ [1,∞).

Next, we show that X ↪→ L1(RN ) is compact. Let (vn) be a bounded
sequence in X. According to the norm in X, (|vn|Φ,V ) is bounded in R and
by using Remark 2.2 it follows that (

∫
RN V (x)Φ(|vn|)dx) is also bounded.

Thus, from estimate (3.1) (
∫
RN Φ(|vn|V 1/cα)dx) is bounded. Applying again

Remark 2.2, we deduce that there exists C > 0 such that |V 1/cαvn|Φ ≤ C for
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all n ∈ N. Since X is reflexive, up to a subsequence, vn ⇀ v in X. For each
ε > 0, by (V2) there exists R0 > 0 sufficiently large such that

|V −1/cα |Φ̃,Bc
R0

<
ε

4(C + |V 1/cαv|Φ)
,

where we have used that
∫

Bc
R

Φ̃ (V −cα) dx → 0 as R → ∞. Thus, by the Hölder
inequality∫

Bc
R0

|vn − v|dx ≤ 2|V −1/cα |Φ̃,Bc
R0

|V 1/cα(vn − v)|Φ

<
ε

2(C + |V 1/cαv|Φ)
(C + |V 1/cαv|Φ) =

ε

2
.

(3.3)

On the other hand, since the embedding X ↪→ W 1,N (RN ) is continuous and
W 1,N (RN ) ↪→ L1(BR0) is compact, there exists n0 ∈ N such that∫

BR0

|vn − v|dx <
ε

2
, ∀ n > n0. (3.4)

From (3.3) to (3.4), one has
∫
RN |vn − v|dx < ε for all n > n0, which shows

that vn → v in L1(RN ). Now, for s > 1 we have |vn − v|s+1 is bounded and
by the interpolation inequality, for some t ∈ (0, 1) we obtain

|vn − v|s ≤ |vn − v|t1|vn − v|1−t
s+1 ≤ C|vn − v|t1 → 0,

which implies that the embedding X ↪→ Ls(RN ) is compact for all 1 ≤ s < ∞
and the proof is complete. �

The next lemma presents a version of the Trudinger–Moser inequality for
functions in W 1,Φ(RN ), which was proved by Cerný in [13]. It is necessary to
use variational methods to find solutions for problem (1.5) with non-linearities
f(x, t) satisfying the condition growth (f1).

Lemma 3.3. If N ≥ 2, K > 0, α ∈ [0, N − 1), Φ is a N−function verifying
(Φ1) − (Φ2) and u ∈ W 1,Φ(RN ), then∫

RN

[exp(K|u|γ) − SN,α(K|u|γ)] dx < ∞.

Furthermore, if |∇u|Φ ≤ 1, |u|Φ ≤ M < ∞ and K < KN,α, then there exists
a constant C = C(N,α,M,Φ,K) > 0, which depends only N,α,M,Φ and K
such that ∫

RN

[exp(K|u|γ) − SN,α(K|u|γ)] dx ≤ C,

where KN,α = B1/BNω
γ/N
N−1, B = 1 − α/(N − 1) and ωN−1 is the measure of

the unit sphere in R
N .

To finalize this section, we get two technique lemmas that will be neces-
sary to show the regularity of the energy functional associated to our problem.

Lemma 3.4. For each p ≥ 1, there exists C = C(p) > 0 such that

[exp(t) − SN,α(t)]p ≤ C [exp(pt) − SN,α(pt)] , ∀ t ≥ 0.
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Proof. It suffices to proof that the limits

lim
t→0

[exp(t) − SN,α(t)]p

[exp(pt) − SN,α(pt)]
and lim

t→+∞
[exp(t) − SN,α(t)]p

[exp(pt) − SN,α(pt)]

are finite, which is a direct consequence of the L’Hospital Rule. �

Lemma 3.5. Let (un) be a sequence in W 1,Φ(RN ) strongly convergent. Then
there exist a subsequence (unk

) of (un) and v ∈ W 1,Φ(RN ) such that unk
(x) ≤

v(x) almost everywhere in x ∈ R
N .

Proof. The arguments used to show this lemma follow the same lines of the
proof of Proposition 1 of [19] with slight modifications and we omit the proof.

�

The energy functional associated to Problem (1.5) is given by

Jλ(u) =
∫
RN

[Φ(|∇u|) + V (x)Φ(|u|)]dx −
∫
RN

F (x, u)dx − λ

∫
RN

G(x, u)dx.

Notice that by (f1), (g1), Lemma 3.3, Proposition 3.2 and Lemma 3.5, Jλ

is well defined on X and moreover by using standard computations (see [13,
Proposition 4.1]), we can see that Jλ ∈ C1(X,R) and its derivative is given
by

〈J ′
λ(u), v〉 =

∫
RN

[
Φ′(|∇u|) ∇u

|∇u|∇v + V (x)Φ′(|u|) u

|u|v
]

dx −
∫
RN

f(x, u)vdx

− λ

∫
RN

g(x, u)vdx,

for u, v ∈ X. Consequently, critical points of Jλ are precisely the weak solutions
of (1.5).

4. Mountain Pass Structure

In order to get Theorem 1.1, we shall use the Mountain Pass Theorem due to
Ambrosetti and Rabinowitz [4]:

Theorem 4.1. Let X be a Banach space and J ∈ C1(X;R) with J(0) = 0.
Suppose that there exist ρ, τ > 0 and e ∈ X, with ‖e‖ > ρ, such that

inf
‖u‖=ρ

J(u) ≥ τ and J(e) ≤ 0. (4.1)

Then, J possesses a Palais–Smale sequence at level c characterized as

c := inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) ≥ τ,

where Γ = {γ ∈ C([0, 1];X) : γ(0) = 0 and γ(1) = e}. Moreover, if J satisfies
the Palais-Smale condition at level c then J has a critical point u0 such that
J(u0) = c.



14 J. A. Santos, U. B. Severo Ann. Henri Poincaré

The number c is called Mountain Pass Level or Minimax Level of the
functional Φ.

In the sequel, we show that, for λ > 0 small, the functional Jλ has the
Mountain Pass Geometry, condition (4.1) above. This is proved in the next
lemmas.

Lemma 4.2. Assume (f1), (f2) and (g1). Then, there exist λ0, ρ0, τ0 > 0 such
that, for all λ ∈ [0, λ0]

Jλ(u) ≥ τ0, ∀ ‖u‖ = ρ0.

Proof. Given ε ∈ (0, V0), by virtue of (1.6) there exists δ > 0 verifying

F (x, t) ≤ εΦ(t), ∀ |t| ≤ δ and x ∈ R
N .

On the other hand, by using (f1) and taking p > cα we have

F (x, t) ≤ C|t|p[exp(b|t|γ) − SN,α(b|t|γ)], ∀ |t| > δ and x ∈ R
N ,

for some C = C(δ, p) > 0. Therefore,

F (x, t) ≤ εΦ(t) + C|t|p[exp(b|t|γ) − SN,α(b|t|γ)], ∀ t ≥ 0 and x ∈ R
N .
(4.2)

According to (V1), (g1), Eq. (4.2), Hölder inequality, Lemma 3.4 and Proposi-
tion 3.2, we reach

Jλ(u) ≥
(

1 − ε

V0

) ∫
RN

[Φ(|∇u|) + V (x)Φ(u)]dx

− C1

{∫
RN

[exp(2b|u|γ) − SN,α(2b|u|γ)]dx

} 1
2

|u|p2p − λC2|u|qq

≥
(

V0 − ε

V0

) ∫
RN

[Φ(|∇u|) + V (x)Φ(|u|)]dx

− C3

{∫
RN

[
exp

(
2b|∇u|γΦ

( |u|
|∇u|Φ

)γ)

−SN,α

(
2b|∇u|γΦ

( |u|
|∇u|Φ

)γ)]
dx

} 1
2

‖u‖p

− λC4‖u‖q.

Now, if ρ > 0 is such that 2bργ < KN,α then for ‖u‖ = ρ we obtain 2b|∇u|γΦ ≤
2bργ < KN,α. Thus, by Lemma 3.3
{∫

RN

[
exp

(
2b|∇u|γΦ

( |u|
|∇u|Φ

)γ)
− SN,α

(
2b|∇u|γΦ

( |u|
|∇u|Φ

)γ)]
dx

} 1
2

≤ C.

Consequently, for ‖u‖ = ρ with ρ ≤ 1, 2bργ < KN,α, ε = V0/2 and by
Remark 2.2 we get

Jλ(u) ≥ 1
2

(
|∇u|cα

Φ + |u|cα

Φ,V

)
− C5ρ

p − λC4ρ
q

≥ 1
2
2(1−cα)ρcα − C5ρ

p − λC4ρ
q

= ρcα
(
2−cα − C5ρ

p−cα
) − λC4ρ

q.
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Moreover, choosing ρ = ρ0 > 0 so that 2−cα −C5ρ
p−cα

0 =: β0 > 0, we conclude

Jλ(u) ≥ τ0, ∀ λ ∈ [0, λ0] and ‖u‖ = ρ0,

where λ0 = β0ρ
cα−q
0 /(2C4) and τ0 = β0ρ

cα
0 /2 > 0. �

Lemma 4.3. There exists v0 ∈ X with ‖v0‖ > ρ0 such that Jλ(v0) < 0.

Proof. Let u0 ∈ X \{0} be such that u0 ≥ 0 and has compact support. Setting
K = supp(u0), by (f2) we know that there exist C1, C2 > 0 such that

F (x, t) ≥ C1t
σ − C2, ∀ t ≥ 0 and x ∈ K.

Consequently, for t > 1 and using Lemma 2.1, we obtain

Jλ(tu0) ≤ ξ1(t)
∫
RN

[Φ(|∇u0|) + V (x)Φ(u0)]dx − c1t
σ

∫
K

|u0|σdx + c2|K|
= C0t

cα − C3t
σ + C4 −→ −∞ as t → +∞,

since σ > cα and C3 > 0. Taking v0 := t0u0, with t0 large enough, the proof
is finished. �

5. On Palais–Smale Sequences

First we recall that (un) ⊂ X is a Palais–Smale ((PS)c for short) sequence at
level c ∈ R for the functional Jλ if Jλ(un) → c and J ′

λ(un) → 0 in the dual
space X ′. We say that Jλ satisfies the (PS)c condition if any (PS)c sequence
has a convergent subsequence. In this section, our main objective is to prove
the (PS)c condition for Jλ with c in a convenient interval.

Lemma 5.1. If (un) ⊂ X is a (PS)c sequence associated to Jλ, then (un) is
bounded in X for all λ ∈ [0, λ0].

Proof. By condition (f2), (g1) and since Φ′(t)t ≤ cαΦ(t), we have

Jλ(un) − 1
σ

〈J ′
λ(un), un〉 ≥

(
1 − cα

σ

) ∫
RN

[Φ(|∇un|) + V (x)Φ(|un|)]dx

− λC1

∫
RN

|un|qdx.

(5.1)

On the other hand,

Jλ(un) − 1
σ

〈J ′
λ(un), un〉 ≤ c + on(1) + on(1)‖un‖. (5.2)

Combining (5.1) and (5.2), using the continuous embedding X ↪→ Lq(RN ) and
Lemma 2.1, we obtain

c + on(1) + on(1)‖un‖ + λC2‖un‖q ≥
(

σ − cα

σ

)
[ξ0(|∇un|Φ) + ξ0(|un|Φ,V )]

(5.3)
Now, we argue by contradiction. Suppose that, up to a subsequence, ‖un‖ →
∞. We have three possibilities to consider:

(i) |∇un|Φ → ∞ and (|un|Φ,V ) is bounded;
(ii) (|∇un|Φ) is bounded and |un|Φ,V → ∞;
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(iii) |∇un|Φ → ∞ and |un|Φ,V → ∞.
If item (i) holds then there exists n1 ∈ N such that |∇un|Φ > 1 for all n > n1.
Thus, by the definition of ξ0 and inequality (5.3) we get

c+on(1)+on(1)|∇un|Φ+2q−1λ0C2 (|∇un|qΦ + Cq
3 ) ≥

(σ − cα

σ

)
|∇un|mα

Φ , ∀ n > n1,

(5.4)
where |un|Φ,V ≤ C3. Dividing this estimate by |∇un|mα

Φ and since mα > q > 1
we get a contradiction doing n → ∞. Thus, (i) does not happen. Similarly, we
can show that items (ii) and (iii) do not happen as well. Therefore, (un) must
be bounded in X and the proof is finalized. �

Remark 5.2. We observe by the previous proof that the boundedness of the
sequence (un) is uniform in λ ∈ [0, λ0] according to estimate (5.4).

Corollary 5.3. If (un) ⊂ X is a (PS)c sequence for Jλ, then there exists C1 >
0, independent of λ, such that

ξ0(|∇un|Φ) ≤
(

σ

σ − cα

)
c + λC1 + on(1), ∀ λ ∈ [0, λ0].

Proof. By Lemma 5.1 and Remark 5.2, ‖un‖ ≤ C for all n ∈ N, where C does
not depend on λ. Hence, as a direct consequence of (5.3) we have the desired
result. �

Before to show that Jλ satisfies the Palais–Smale condition in a conve-
nient interval, we shall need of the following convergence result:

Lemma 5.4. Let (un) be a Palais–Smale sequence for the functional Jλ at any
level c ∈ R such that

c <

(
σ − cα

σ

)
ξ0

(
K

1/γ
N,α

b1/γ

)
.

Then, there exists λ1 > 0 such that for each λ ∈ [0, λ1] we obtain uλ ∈ X
verifying ∫

RN

f(x, un)(un − uλ)dx → 0.

Proof. By Corollary 5.3, for some C1 > 0 independent of λ, we have

ξ0(|∇un|Φ) ≤
(

σ

σ − cα

)
c + λC1 + on(1), ∀ λ ∈ [0, λ0].

Thus, since ξ0(t) is increasing for t ≥ 0 and σc/(σ − cα) + λC1 + on(1) →
σc/(σ − cα) as λ → 0+ and n → ∞, we can obtain 0 < λ∗ ≤ λ0 and n1 ∈ N

such that

|∇un|Φ ≤ K
1/γ
N,α

b1/γ
− δ, ∀ λ ∈ [0, λ∗], ∀ n > n1,

for some δ > 0 sufficiently small. Choosing still r > 1 close to 1, we obtain

rb|∇un|γΦ ≤ KN,α − δ1, ∀ λ ∈ [0, λ∗], ∀ n > n1, (5.5)
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for some appropriate δ1 > 0. Now, by Lemma 5.1, up to a subsequence,
un ⇀ uλ ∈ X for each λ ∈ [0, λ1]. By assumption (f1), Hölder inequality
and Lemma 3.4, it follows that∣∣∣

∫
RN

f(x, un)(un − uλ)dx
∣∣∣

≤ C

∫
RN

|un|N−1|un − uλ|dx + C

∫
RN

[exp(b|un|γ) − SN,α(b|un|γ)]|
un − uλ|dx

≤ C|un|N−1
N |un − uλ|N + C1

(∫
RN

[exp(rb|un|γ) − SN,α(rb|un|γ)]dx

) 1
r

|un − uλ|r′ .

Since the embedding X ↪→ Ls(RN ) is compact for s ≥ 1, we have |un|NN |un −
uλ|N → 0 and |un − uλ|r′ → 0. Hence, to finalize the proof, we have to show
that

sup
n∈N

∫
RN

[exp(rb|un|γ) − SN,α(rb|un|γ)]dx < ∞.

Indeed, we can write this integral as∫
RN

[
exp

(
rb|∇un|γΦ

( |un|
|∇un|Φ

)γ)
− SN,α

(
rb|∇un|γΦ

( |un|
|∇un|Φ

)γ)]
dx

and by (5.5) we have rb|∇un|γΦ < KN,α − δ1 < KN,α. Therefore, invoking
Lemma 3.3 we conclude that the above supreme is finite and the proof is
complete. �
Lemma 5.5. For each λ ∈ [0, λ1], the funcional Jλ satisfies the (PS)c condition
for all

c <

(
σ − cα

σ

)
ξ0

(
K

1/γ
N,α

b1/γ

)
. (5.6)

Proof. Let (un) be in X such that Jλ(un) → c and J ′
λ(un) → 0 in X ′ with

c satisfying (5.6). By Lemma 5.1, (un) is bounded in X and therefore, up to
a subsequence, un ⇀ uλ in X. Since the functional I(u) :=

∫
RN [Φ(|∇u|) +

V (x)Φ(|u|)]dx is convex, we get
∫
RN

[Φ(|∇uλ|) + V (x)Φ(|uλ|)]dx −
∫
RN

[Φ(|∇un|) + V (x)Φ(|un|)]dx

≥
∫
RN

Φ′(|∇un|) ∇un

|∇un| (∇uλ − ∇un)dx

+

∫
RN

V (x)Φ′(|un|) un

|un| (uλ − un)dx

= 〈J ′
λ(un), uλ − un〉 +

∫
RN

f(x, un)(uλ − un)dx

+ λ

∫
RN

g(x, un)(uλ − un)dx.

(5.7)
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According to Lemma 5.4, we know that
∫
RN f(x, un)(uλ − un)dx → 0. More-

over, by condition (g1), Hölder inequality and compact embedding X ↪→
Lq(RN ) it follows that

∣∣∣∣
∫
RN

g(x, un)(uλ − un)dx

∣∣∣∣ ≤ C1|un|q−1
q |uλ − un|q → 0.

Thus, by (5.7) one has
∫
RN

[Φ(|∇uλ|) + V (x)Φ(|uλ|)]dx ≥
∫
RN

[Φ(|∇un|) + V (x)Φ(|un|)]dx + on(1)

and consequently

lim sup
n→∞

∫
RN

[Φ(|∇un|) + V (x)Φ(|un|)]dx ≤
∫
RN

[Φ(|∇uλ|) + V (x)Φ(|uλ|)]dx.

(5.8)
Since I1(u) :=

∫
RN Φ(|∇u|)dx is continuous and convex on X, the weak con-

vergence un ⇀ uλ in X implies that
∫
RN

Φ(|∇uλ|)dx ≤ lim inf
n→∞

∫
RN

Φ(|∇un|)dx. (5.9)

Similarly, one has
∫
RN

V (x)Φ(|uλ|)dx ≤ lim inf
n→∞

∫
RN

V (x)Φ(|un|)dx. (5.10)

By virtue of (5.8), we must have the equality in (5.9) and (5.10). Hence, up to
subsequences,

∫
RN

Φ(|∇un|)dx →
∫
RN

Φ(|∇uλ|)dx

and
∫
RN

V (x)Φ(|un|)dx →
∫
RN

V (x)Φ(|uλ|)dx.

Now, arguing as in [13, Lemma 6.2] we can see that, up to a subsequence,
∇un → ∇u almost everywhere in R

N . Thus, since Φ is convex and Φ(|∇un −
∇uλ|) is bounded in L1(RN ), by using the Brezis–Lieb Lemma (see [10, Thereom
2]), we conclude

∫
RN

Φ(|∇un − ∇uλ|)dx → 0 and
∫
RN

V (x)Φ(|un − uλ|)dx → 0.

According to Remark 2.2 it follows that ‖un − uλ‖ = |∇un − ∇uλ|Φ + |un −
uλ|Φ,V → 0 and the proof is finalized. �
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6. Proof of Theorem 1.1

In order to apply Theorem 4.1 to find a nonzero critical for Jλ, we need to
estimate the minimax level cλ of Jλ where

cλ := inf
γ∈Γλ

max
0≤t≤1

Jλ (γ(t)) and Γλ

:= {γ ∈ C([0, 1];X); γ(0) = 0 and Jλ(γ(1)) < 0} .

First, we are going consider a function ϕ0 ∈ C∞
0 (RN ) given by ϕ0(x) = 1 if

|x| ≤ 1/2, ϕ0(x) = 0 if |x| ≥ 1, 0 ≤ ϕ0(x) ≤ 1 for all x ∈ R
N and |∇ϕ0(x)| ≤ 1

for all x ∈ R
N . Introducing the number

μ1 :=
Φ(1)|B1|(1 + ‖V ‖L∞(B1))

|B1/2| ,

by (f4) we infer that if μ ≥ μ1 then

Jλ(ϕ0) ≤
∫

B1

[Φ(|∇ϕ0|) + V (x)Φ(|ϕ0|)]dx − μ1

∫
B1

|ϕ0|θdx

< Φ(1)|B1|(1 + ‖V ‖L∞(B1)) − μ1|B1/2|
= 0.

In particular, ∫
B1

[Φ(|∇ϕ0|) + V (x)Φ(|ϕ0|)]dx < μ1

∫
B1

|ϕ0|θdx. (6.1)

Lemma 6.1. (Minimax Estimate) If condition (f4) holds with

μ ≥ max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ1,

⎡
⎢⎢⎣

|B1| θ−mα

mα

(
μ1mα

θ

) θ
θ−mα

(
σ−cα

σ

)
ξ0

(
K

1/γ
N,α

b1/γ

)
⎤
⎥⎥⎦

θ−mα
mα

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=: μ∗, (6.2)

then

cλ <

(
σ − cα

σ

)
ξ0

(
K

1/γ
N,α

b1/γ

)
, ∀ λ ∈ [0, λ0].

Proof. For λ ∈ [0, λ0], Lemmas 4.2 and 4.3 imply that cλ > 0 and by definition
of cλ, (f4) and (6.1) one has

cλ ≤ max
t∈[0,1]

Jλ(tϕ0)

≤ max
t∈[0,1]

[
tmα

∫
B1

[Φ(|∇ϕ0|) + V (x)Φ(|ϕ0|)]dx − μtθ
∫

B1

|ϕ0|θdx

]

≤ max
t≥0

[
μ1t

mα − μtθ
] ∫

B1

|ϕ0|θdx.

A straightforward calculation shows that

max
t≥0

[
μ1t

mα − μtθ
]

=
1

μ
mα

θ−mα

θ − mα

mα

(μ1mα

θ

) θ
θ−mα

.
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and therefore

cλ <
|B1|

μ
mα

θ−mα

θ − mα

mα

(μ1mα

θ

) θ
θ−mα

.

Thus, by using (6.2) we reach the estimate

cλ <

(
σ − cα

σ

)
ξ0

(
K

1/γ
N,α

b1/γ

)
, ∀ λ ∈ [0, λ0].

and the proof is finalized. �

Finalizing the proof of Theorem 1.1: According to Lemmas 5.5 and 6.1 , Jλ

satisfies (PS)cλ
condition. Moreover, Jλ has the Mountain Pass Geometry for

λ ∈ [0, λ∗], invoking Mountain Pass Theorem we conclude that there exists a
nonzero critical uλ ∈ X such that Jλ(uλ) = cλ. Now, since J ′

λ(uλ).(−u−
λ ) = 0

and
∫
RN f(x, uλ)(−u−

λ )dx =
∫
RN g(x, uλ)(−u−

λ )dx = 0, we get

0 =
∫
RN

[
Φ′(|∇uλ|) |∇u−

λ |2
|∇uλ| + V (x)Φ′(|uλ|) (u−

λ )2

|uλ|
]

dx

≥ mα min{1, V0}
∫
RN

[
Φ(|∇uλ|) |∇u−

λ |2
|∇uλ|2 + Φ(|uλ|) (u−

λ )2

u2
λ

]
dx

= mα min{1, V0}
∫
RN

[
Φ(|∇u−

λ |) + Φ(|u−
λ |)] dx,

which implies that u−
λ = 0 and therefore uλ = u+

λ ≥ 0.
Next, supposing that uλ ∈ C1(RN ) we are going to prove that uλ(x) > 0

for all x ∈ R
N . Suppose by contradiction that there exists y ∈ R

N such that
uλ(y) = 0 and consider an arbitrary ball BR(y). By virtue of (f1), in the ball
BR(y) we obtain (in the distribution sense) that

div
(

Φ′(|∇uλ|) ∇uλ

|∇uλ|
)

= V (x)Φ′(|uλ|) uλ

|uλ| − f(x, uλ) − λg(x, uλ)

≤ M1Φ′(|uλ|),
where M1 = supx∈BR(y) V (x). For t > 0, we define Â(t) = Φ′(t)/t and f̂(t) =
M1Φ′(t). Since Φ is a N−function of class C1 fulfilling condition (Φ1) and
the property 1 < mα ≤ Φ′(t)t/Φ(t) ≤ cα, it is not difficult to verify that the
hypotheses of Theorem 1 (Strong Maximum Principle) in [31] are satisfied for
Â(t) and f̂(t). Hence, uλ ≡ 0 in BR(y) which is an absurd since BR(y) is
arbitrary. Therefore, we have uλ(x) > 0 for all x ∈ R

N and this completes the
proof of Theorem 1.1.

7. Proof of Theorem 1.2

In this section, we present the proof of Theorem 1.2. For λ = 0, let us to denote
the functional Jλ by J and the Mountain Pass Level cλ by c. Setting

S = {u ∈ X\{0} : J ′(u) = 0} and m = inf
u∈S

J(u),
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since the solution u0 obtained in Theorem 1.1 satisfies J(u0) = c, it is enough
to prove that c ≤ m. Let u ∈ S and define h : (0,∞) → R by h(t) = J(tu).
We have that h is differentiable and

h′(t) = J ′(tu)u =
∫
RN

Φ′(t|∇u|)|∇u|dx +
∫
RN

V (x)Φ′(t|u|)|u|dx

−
∫
RN

f(x, tu)udx, ∀ t > 0.

On the other hand, the equality J ′(u)u = 0 implies that

tcα−1

∫
RN

Φ′(|∇u|)|∇u|dx + tcα−1

∫
RN

V (x)Φ′(|u|)|u|dx=tcα−1

∫
RN

f(x, u)udx.

Therefore, we can write h′(t) of the form

h′(t) = tcα−1

∫
RN

[
Φ′(t|∇u|)

(t|∇u|)cα−1
− Φ′(|∇u|)

|∇u|cα−1

]
|∇u|cαdx

+ tcα−1

∫
RN

V (x)
[

Φ′(t|u|)
(t|u|)cα−1

− Φ′(|u|)
|u|cα−1

]
|u|cαdx

+ tcα−1

∫
RN

[
f(x, |u|)
|u|cα−1

− f(x, t|u|)
(t|u|)cα−1

]
|u|cαdx ∀ t > 0.

Using that Φ′(t)/tcα−1 is non-increasing for t > 0, f(x, t)/tcα−1 is increasing
for t > 0, and since h′(1) = 0, we conclude that h′(t) > 0 for 0 < t < 1 and
h′(t) < 0 for t > 1. Hence,

J(u) = max
t≥0

J(tu).

Now, defining g : [0, 1] → X, g(t) = tt0u, where t0 is such that J(t0u) < 0, we
have g ∈ Γ := {γ ∈ C([0, 1],X) : γ(0) = 0 and J(γ(1)) < 0} and therefore

c ≤ max
t∈[0,1]

J(g(t)) ≤ max
t≥0

J(tu) = J(u).

Since u ∈ S is arbitrary, c ≤ m and this shows that u0 is a non-negative ground
state. The positivity of u0 was proved in Theorem 1.1.

8. Proof of Theorem 1.3

In this section, by considering the additional hypothesis (g2) on g(x, s) and
the Ekeland variational principle, we show that problem (1.5) has a second
solution. Firstly, we will need of the following lemma:

Lemma 8.1. There exists ϕ ∈ X such that Jλ(tϕ) < 0 for t > 0 sufficiently
small.
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Proof. Let ϕ ∈ C∞
0 (RN )\{0} be such that 0 ≤ ϕ(x) ≤ t1 for all x ∈ R

N . By
condition (g2) and Remark 2.2, for 0 < t < 1, we have

Jλ(tϕ) ≤ ξ1(t)
∫
RN

[Φ(|∇ϕ|) + V (x)Φ(|ϕ|)]dx − λ

∫
RN

G(x, tϕ)dx

≤ tmα

∫
RN

[Φ(|∇ϕ|) + V (x)Φ(|ϕ|)]dx − λβ1t
q1

∫
supp(ϕ)

ϕq1dx

= tmα

(∫
RN

[Φ(|∇ϕ|)+V (x)Φ(|ϕ|)]dx−λβ1t
q1−mα

∫
supp(ϕ)

ϕq1dx

)
<0,

for t > 0 sufficiently small, where we have used that q1 < mα and 0 ≤ tϕ(x) ≤
t1 for all 0 < t < 1 and x ∈ R

N . �

Proposition 8.2. Suppose that (g2) is satisfied. For each λ > 0, problem (1.5)
has a solution vλ ∈ X such that Jλ(vλ) < 0.

Proof. Fixed λ > 0, we can take ρ > 0 such that

ρ <
K

1/γ
N,α

b1/γ
.

By the Ekeland variational principle, there exists (vn) ⊂ Bρ(0) satisfying
Jλ(vn) → mλ and J ′

λ(vn) → 0 in X ′, where

mλ = inf
u∈Bρ(0)

Jλ(u),

which is negative by Lemma 8.1. Since (vn) is bounded in X, there exists
vλ ∈ X such that vn ⇀ vλ in X. Now, by using the same arguments as in the
proof of Lemma 5.5, we can see that vn → vλ in X. Therefore,

Jλ(vλ) = mλ = min
u∈Bρ(0)

Jλ(u)

and consequently vλ is a critical point of Jλ with negative energy. Analogously
to the proof of Theorem 1.1, vλ is also non-negative. �

The proof of Theorem 1.3 is now an immediate consequence of Proposi-
tion 8.2 and Theorem 1.1 since

Jλ(uλ) = cλ > 0 > Jλ(vλ), ∀ λ ∈ (0, λ∗).

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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