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Abstract. We prove that the only asymptotically flat spacetimes with a
suitably regular event horizon, in a generalised Majumdar–Papapetrou
class of solutions to higher-dimensional Einstein–Maxwell theory, are the
standard multi-black holes. The proof involves a careful analysis of the
near-horizon geometry and an extension of the positive mass theorem
to Riemannian manifolds with conical singularities. This completes the
classification of asymptotically flat, static, extreme black hole solutions
in this theory.

The Majumdar–Papapetrou solution to Einstein–Maxwell theory repre-
sents the static equilibrium of an arbitrary number of charged black holes
whose mutual electric repulsion exactly balances their gravitational attrac-
tion [1]. This remarkable configuration was later understood to arise as a su-
persymmetric solution to N = 2 supergravity, i.e., it saturates the BPS bound
and admits Killing spinors [2]. More recently, it has been shown that it is in
fact the only family of BPS black holes in this theory [3].

In higher dimensions, Einstein–Maxwell theory is not a consistent trunca-
tion of a supergravity theory. Nevertheless, asymptotically flat static solutions
to the Einstein–Maxwell equations obey a BPS-like inequality M ≥ |Q| in all
dimensions n ≥ 4, where M is the ADM mass and Q is the Maxwell charge
(in suitable units) [4,5]. The M > |Q| case has been fully solved by gener-
alising the ingenious method of Bunting and Masood-ul-Alam [6] to higher-
dimensions, proving that the unique non-trivial regular solution is the non-
extreme Reissner-Nordström black hole [5,7].

In this note, we consider the extreme case M = |Q|, which implies the
solution takes a “generalised” Majumdar–Papapetrou form [5],

g = −H−2dt2 + H
2

n−3 hABdxAdxB , F = −dH−1 ∧ dt , (1)

where ξ = ∂t is the static Killing field and (xA) are coordinates on the orthogo-
nal hypersurface Σ. Here (Σ, h) is an (n−1)-dimensional Ricci-flat Riemannian
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manifold that is asymptotically flat with zero ADM mass, and the function H
is harmonic on (Σ, h). For n = 4, the space (Σ, h) is trivially flat; however, in
higher dimensions this need not be the case. We will perform a global anal-
ysis of this family of spacetimes for all dimensions n ≥ 4 and determine the
constraints imposed by the existence of a suitably regular event horizon.

The higher-dimensional generalisation of the Majumdar–Papapetrou met-
rics was first found by Myers [8] in the case (Σ, h) is euclidean space. Heuristic
arguments, analogous to those originally employed by Hartle and Hawking in
four dimensions [1], suggest that the only suitably regular solutions are the
standard “multi-centre” solutions given by [8],

H = 1 +
N∑

I=1

qI

rn−3
I

, (2)

where rI = |x−pI | is the euclidean distance from each centre pI ∈ R
n−1. In four

dimensions, Hartle and Hawking demonstrated that these centres correspond
to regular event horizons, and these spacetimes can be analytically extended
through these horizons [1]. Curiously, in higher dimensions n > 4, the solutions
with multiple horizon components (N > 1) do not have smooth horizons and
analytic extensions do not exist in general [9]. In particular, if n = 5 the metric
at the horizon is generically C2 and the Maxwell field is C0, whereas if n > 5
the metric is generically C1 at the horizon and the Maxwell field is C0 [10–13].
Therefore, as we explain below, we will allow for this lower differentiability in
our analysis.

For dimension n = 4, it has been proven that the only asymptotically
flat regular black hole solutions in the Majumdar–Papapetrou class are the
standard multi-black holes [14], i.e., the harmonic function must take the multi-
centre form (2). The proof requires detailed use of the near-horizon geometry.
In this note, we show that a similar result holds in all dimensions: any suitably
regular asymptotically flat black hole solution in the generalised Majumdar–
Papapetrou class (1) must have (i) a base (Σ, h) isometric to euclidean space
(minus a point for each horizon) and (ii) a harmonic function H of multi-centre
type (2). Interestingly, the proof of (i) requires a mild extension of the positive
mass theorem to manifolds with conical singularities. (We present this in the
Appendix, as it may be of independent interest.)

More precisely, our main result is summarised in the following theorem:

Theorem 1. Let (M, g, F ) be a static, asymptotically flat, extreme solution to
the n ≥ 4 dimensional Einstein–Maxwell equations such that:

1. The static Killing field ξ is strictly timelike in the domain of outer com-
munication 〈〈M〉〉 and null on the event horizon (and hence tangent to
the null generators).

2. (g, F ) are smooth (C∞) in 〈〈M〉〉, whereas at the horizon:
(a) g is C1

(b) F is C0 and the electric field ιξF is C1

(c) (g, F ) and derived-quantities are smooth in tangential directions.
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3. Each component of the horizon admits a smooth cross section, i.e., an
(n−2)-dimensional spacelike submanifold transverse to ξ, with an induced
metric that is not Ricci-flat.

Then, (〈〈M〉〉, g, F ) is a Majumdar–Papapetrou solution (1) where the base
(Σ, h) is isometric to euclidean space with the points pI=1,...,N ∈ R

n−1 removed
(each corresponding to a horizon component) and the harmonic function is of
multi-centre form (2) with poles pI .

Before presenting our proof, it is helpful to make a few remarks to explain
the rationale behind our assumptions. In fact, assumption 1 has been proven for
asymptotically flat, static, spacetimes with a globally hyperbolic 〈〈M〉〉 under
certain global assumptions [15]. The regularity assumption 2 is required in
order to capture the differentiability properties of the known multi-black hole
solutions discussed above (assumption 2(c) is made for simplicity and could
be relaxed). Finally, assumption 3 together with our regularity assumption 2,
allows one to introduce a precise notion of a near-horizon geometry [16] that
is also compatible with the black hole horizon topology theorems [17], which
is crucial for deriving the geometry of (Σ, h) near a horizon (assumption 2(b)
concerning the electric field is required to control the subleading terms). We
will now present a proof of the above theorem.

Proof. As mentioned above, any asymptotically flat static solution to the
Einstein–Maxwell equations that is extreme (in the sense M = |Q|) must be a
Majumdar–Papapetrou solution (1) [5]. We first record a number of spacetime
invariants for this class which will be important in our analysis:

|ξ|2 = −H−2, ιξF = dH−1 , (3)

dξ = 2H−1F . (4)

The minimal regularity for the static Killing field ξ compatible with the as-
sumption that g is C1 at the horizon is that ξ is also C1 at the horizon. Then,
from (3) and assumptions 1 and 2, we deduce that the function H−1 is positive
and smooth in 〈〈M〉〉, and that H−1 vanishes precisely at the event horizon
and is C1 at the horizon. It follows that

d|ξ|2 = −dH−2 = −2H−1dH−1 = 0 (5)

on the event horizon, i.e., it is a degenerate Killing horizon of ξ.
Next we perform a careful near-horizon analysis. This is facilitated by

assumption 3 which asserts that each component of the horizon admits a cross
section S. Then, the spacetime in a neighbourhood of a connected component
of such a horizon can be written in Gaussian null coordinates (xμ) = (v, λ, ya)
(see e.g., [16]),

g = −λ2fdv2 + 2dvdλ + 2λhadvdya + γabdyadyb , (6)

where ξ = ∂v, (ya) are coordinates on S, and λ is an affine parameter for
null geodesics transverse to the horizon synchronised so λ = 0 on the horizon.
Usually, the metric components are assumed to be smooth at and away from
the horizon leading to the above form. Under our regularity assumptions, the
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metric still takes the above form except now f, ha are C0 and γab is C1 at
the horizon, with all components being smooth away from the horizon. We
emphasise that gvv has a double zero at the horizon due to the fact that H−1

is C1 and vanishes at λ = 0, together with gvv = −H−2.1

On the other hand, the minimal requirement for existence of the near-
horizon limit—defined by performing the diffeomorphism (v, λ, ya) �→
(v/ε, ελ, ya) and taking the limit ε → 0—is that f, ha, γab are all C0 at the
horizon. Therefore, our assumptions still guarantee the existence of a near-
horizon limit of the metric. The resulting near-horizon geometry takes the
same form as (6) with f, ha, γab replaced by their values at λ = 0, which in
general we denote by f̊ ≡ f |λ=0 etc. Note that our assumptions imply that the
near-horizon geometry itself is smooth, i.e., the data f̊ , h̊a, γ̊ab are a smooth
function, 1-form and Riemannian metric on S.

We now consider the Maxwell field. Normally, smoothness (or at least
C2) of the solution is used to show that the near-horizon limit of the Maxwell
field exists (in Gaussian null coordinates this requires Fva = O(λ) and the rest
of the components O(1) near λ = 0 [16]). However, given our lower regularity
assumptions, it is not clear that a near-horizon limit of the Maxwell field exists
in general. For the Majumdar–Papapetrou class of solutions, the invariants (3)
imply

H−1 = λ
√

f , (7)

and Fvμ = (ιξF )μ = ∂μ(λ
√

f), where f must be positive for small λ > 0 (to
ensure ξ is timelike just outside the horizon). Furthermore, using ξμdxμ =
dλ + λhadya − λ2fdv, we find that (4) gives

F = −d(
√

fλdv) +
1

2
√

fλ
d(λhadya) . (8)

In particular, the (λa) component of (8) gives ∂λ(λha) = 2
√

fFλaλ, which
together with our assumption that F, f, ha are C0 at the horizon, implies we
can write ha = λka where ka is C0 at the horizon, i.e., h̊a = ha|λ=0 = 0 and
ha is C1 at the horizon.

It can be shown that staticity of (6), i.e., that ξ is hypersurface orthogo-
nal, is equivalent to the following conditions [18],

∂af = ∂λ(λf)ha − λf∂λha, (9)
∂[ahb] = h[a∂λ(λhb]) . (10)

Using the above results, (9) can be written as ∂af = λva where va:=ka∂λ(λf)−
f∂λha is C0 at the horizon. Evaluating this at λ = 0, we immediately deduce
that f0:=f̊ is a constant on S, which must be nonnegative (since ξ is timelike
for λ > 0). Furthermore, it also follows that ∂af is C1 at the horizon.

We are now in a position to consider the near-horizon limit of the Maxwell
field. It is clear that the first term in (8) has a well-defined near-horizon limit.
For the second term, we can write Fab = ∂[ahb]/(2

√
f) = λ2k[aF|λ|b], where in

1 Thus, even though we assumed the metric is C1 at the horizon, we deduce that |ξ|2 is in
fact C2 at the horizon.



Vol. 22 (2021) All Higher-Dimensional Majumdar–Papapetrou 2441

the second equality we have used the staticity condition (10) and the explicit
expression for Fλa given earlier. Therefore, since by assumption Fλa is C0 at
the horizon, it now follows that the near-horizon limit of the Maxwell field (8)
is simply2

FNH = −d(
√

f0λdv) . (11)

Thus, despite our low regularity assumptions, the near-horizon limit of the
Maxwell field still exists, and we have a standard smooth near-horizon solution
to the Einstein–Maxwell equations. Assumption 3 requires that the constant
f0 is positive, since if f0 = 0 the near-horizon Maxwell field vanishes and the
horizon metric γ̊ab is Ricci-flat.

Even though we assumed that F is C0 at the horizon, the above analysis
shows that the tangential components of the electric field (ιξF )a = ∂a(λ

√
f)

are C1 at the horizon (in fact C2). Therefore, since assumption 2(b) asserts
the full electric field ιξF is C1, this reduces to requiring that the transverse
component (ιξF )λ = ∂λ(λ

√
f) is C1 at the horizon. It then follows that f is

C1 at the horizon. In particular, this guarantees the existence of a well-defined
first-order correction to the near-horizon geometry as in [19,20], which will be
helpful below.

The above near-horizon analysis shows that, under our assumptions, the
spacetime metric in a neighbourhood of a connected component of the horizon
takes the form (6) where f, ha, γab are C1 at the horizon, fλ=0 = f0 is a
positive constant and ha = λka for some ka which is C0. The orbit space
metric is defined wherever ξ is timelike and is given by qμν :=gμν − ξμξν/|ξ|2.
Therefore, using (6), we find that for λ > 0,

q =
1

fλ2
(dλ + λ2kadya)2 + γabdyadyb . (12)

Observe that the horizon λ = 0 is an infinite proper distance from any point,
i.e., the orbit space (Σ, q) is complete and a degenerate horizon corresponds
to an asymptotic end even under our weak differentiability assumptions.3

On the other hand, the orbit space metric for (1) is simply q = H
2

n−3 h.
Comparing this to the general near-horizon orbit space metric (12), we deduce
that the base metric h of (1) (which is invariantly defined where ξ is timelike)
near each component of the horizon can be written as

h = α−2fα−1[dρ + αρn−2kadya]2 + fαρ2γabdyadyb , (13)

where ρ:=λ
1

n−3 for λ > 0, α:=1/(n − 3) and

f = f0 + O(ρn−3), γab = γ̊ab + O(ρn−3), ka = O(1) , (14)

2This argument is valid even if f̊ = 0, in which case Fλa|λ=0 = limλ→0 ka/
√

f is finite.
3It is of course well known that for a degenerate C2 Killing horizon (Σ, q) is a complete
manifold such that any connected component of a degenerate horizon corresponds to an
asymptotically cylindrical end (see e.g., [21,22]).
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as ρ → 0. The order of the subleading terms is fixed by the fact that f, ha, γab

are C1 at the horizon (as functions of λ). In terms of the new coordinate

H =
1√

fρn−3
. (15)

To analyse the geometry of (Σ, h) as ρ → 0 it is convenient to adapt the near-
horizon limit to this setting. Thus consider the diffeomorphism ϕε : (ρ, ya) �→
(ερ, ya) and define hε = ε−2ϕ∗

εh. Then we find that as ε → 0 the 1-parameter
family of metrics hε → h0, where

h0 = α−2fα−1
0

(
dρ2 + ρ2σab(y)dyadyb

)
(16)

is a cone metric of the compact space (S, σ) defined by the horizon geometry

γ̊abdyadyb = α−2f−1
0 σabdyadyb . (17)

Then, since hε is Ricci-flat, it must be that h0 is a Ricci-flat cone metric. It
follows that σ is an Einstein metric on S normalised so Ric(σ) = (n − 3)σ.
Defining Hε = εn−3ϕ∗

εH and using (15) we find that Hε → H0 = 1/(
√

f0ρ
n−3)

is automatically harmonic in the cone metric (16). Thus no further conditions
on the near-horizon geometry occur for this class of solutions (1).4

To summarise, we have found that the near-horizon geometry must be a
direct product of AdS2 and an Einstein space (S, σ) normalised as above,

gNH = −f0λ
2dv2 + 2dvdλ + (n − 3)2f−1

0 σabdyadyb , (18)

with Maxwell field (11). This in itself is a non-trivial result. In general, the
classification of static near-horizon geometries in higher dimensions is an open
problem, and one can have non-trivial solutions which are warped products of
AdS2 and non-Einstein metrics γ̊ab [23]. Thus we have found that constraints
arising from the Majumdar–Papapetrou solution rule out the possibility of
non-trivial near-horizon geometries.5 In particular, for n = 4 the space (S, σ)
must be isometric to the unit round S2, whereas for n = 5 it must be locally
isometric to the unit round S3. However, for n > 5 the horizon (S, σ) need
not be a space form, although Myers’s theorem shows that it must be compact
with a finite fundamental group. It is interesting to note that our near-horizon
analysis did not assume compactness of S as is often done, but instead this is
an output of our analysis.

Importantly, equations (13), (14) and (16) also show that any connected
component of a horizon corresponds to a conically singular end of (Σ, h). That
is, there is an end E diffeomorphic to (0, ρ0)×S with a metric which approaches
a cone metric, i.e.,

|h − h0|h0 = O(ρδ) (19)

as ρ → 0 for some δ > 0, where h0 is the cone metric (16) of a compact
Riemannian manifold (S, σ), | · |h0 is the norm defined by h0 and ρ ∈ (0, ρ0).

4Alternatively, (11) and the near-horizon Einstein equation [16] imply (17) where Ric(σ) =
(n − 3)σ.
5This was not properly taken into account in previous attempts at classifying static extreme
black holes [24,25].
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Specifically, our near-horizon analysis (14) shows that δ = n − 3, and also
|∇̊sh|h0 = O(ρδ−s) for 1 ≤ s ≤ n − 3 where ∇̊ is the metric connection of h0.

Now, we also know that (Σ, h) is Ricci-flat and asymptotically flat with
zero mass. For complete Riemannian manifolds, the positive mass theorem
would immediately imply (Σ, h) must be isometric to euclidean space [26,27].
However, the conically singular end implies that (Σ, h) is not complete and
therefore the standard positive mass theorem cannot be applied.

Now suppose that (Σ, h) is flat. Then, it follows that hε and hence h0 are
also flat metrics. The latter condition is equivalent to (S, σ) being a maximally
symmetric space with positive curvature Riem(σ)abcd = σacσbd −σadσbc. Thus
(S, σ) is isometric to a quotient of the unit round sphere Sn−2/Γ where Γ is a
discrete subgroup of O(n− 1). This implies that the end E is diffeomorphic to
R

n−1/Γ − {p}, where p ∈ R
n−1 is a fixed point of Γ that corresponds to the

conically singular end. Thus, supposing we have N conically singular ends cor-
responding to p1, . . . , pN ∈ R

n−1, we deduce that (Σ̂ = Σ ∪ {p1, . . . , pN}, h),
is a flat orbifold. By a generalisation of the Cartan–Hadamard theorem for
orbifolds [28], it follows that (Σ̂, h) must be isometric to a global quotient of
euclidean space. However, as (Σ̂, h) is also asymptotically flat, this quotient
must be trivial and hence (Σ̂, h) is isometric to euclidean space. Thus, we de-
duce that (Σ, h) must be isometric to euclidean space with N points removed,
that is, Σ ∼= R

n−1 −{p1, . . . , pN} and h = δ is the euclidean metric. It also fol-
lows that (S, σ) is isometric to the unit round sphere for each conically singular
end.

Let (xi) be cartesian coordinates on R
n−1 and p ∈ R

n−1 correspond to a
horizon component. The coordinate change (xi) �→ (ρ, ya) maps the euclidean
metric to the general form for the base metric near the horizon (13) if and
only if

∂ρx
i∂ρx

i = α−2fα−1, ∂ρx
i∂axi = α−1fα−1ρn−2ka,

∂axi∂bx
i = ρ2fαγab + ρ2(n−2)fα−1kakb . (20)

In particular, this implies that ∂ρx
i = O(1) and ∂axi = O(ρ) as ρ → 0 and

hence

xi − pi = O(ρ) . (21)

We may now determine the precise singular structure of H at a horizon. Using
(15) and (21), we find that as x → p, or equivalently as ρ → 0,

|x − p|n−3H =
1√
f

( |x − p|
ρ

)n−3

= O(1) . (22)

Recall the harmonic function H must be smooth in 〈〈M〉〉 and singular at the
horizon. Therefore, in cartesian coordinates H must have an isolated singular-
ity at x = p. Hence (22) shows that H has a pole of order n−3 at x = p. From
the standard theory of harmonic functions in euclidean space, we deduce that

H =
q0

|x − p|n−3
+ K (23)
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where q0 is constant and K is a harmonic function smooth in a neighbourhood
of x = p.

We may now use this to derive global constraints on the spacetime via
elementary arguments. Above we have shown that any connected component of
a horizon corresponds to a pole of H of order n−3 and H is smooth elsewhere.
Thus, if the horizon has N -connected components corresponding to the points
x = pI , I = 1, . . . , N , we can write

H =
N∑

I=1

qI

rn−3
I

+ H̃ , (24)

where qI are constants, rI = |x − pI | and H̃ is a harmonic function which is
smooth everywhere on R

n−1. Furthermore, asymptotic flatness requires H → 1
as r → ∞. Therefore H̃ is a bounded regular harmonic function on R

n−1 and
hence must be a constant. The constant is fixed by the asymptotics to be
H̃ = 1, and hence, we arrive at the general solution (2) corresponding to the
standard multi-black hole solution. This completes the proof in the case (Σ, h)
is flat.

To complete the proof, it remains to establish that (Σ, h) must be flat.
As discussed above, this would follow from a generalisation of the rigidity part
of the positive mass theorem to conically singular manifolds. In fact, for our
purposes we only need the rigidity part of the following generalisation of a
simpler version of the positive mass theorem [26,27]: Any asymptotically flat
Riemannian manifold (Σ, h) with conical singularities and Ric(h) ≥ 0, must
have ADM mass m ≥ 0 and m = 0 if and only if (Σ, h) is flat.6 We sketch a
proof of this in the Appendix. Thus applying this to our case we deduce that
(Σ, h) is flat, which completes the proof. �

We close with a few remarks. The above analysis also classifies asymp-
totically flat, static, supersymmetric black holes in five-dimensional minimal
supergravity. This is because these must also take the form (1) with (Σ, h)
hyper-Kähler (and hence Ricci-flat) [29]. In this case, a different uniqueness
proof has been previously given for supersymmetric (not necessarily static)
black holes with a locally S3 horizon, by assuming the supersymmetric Killing
field is strictly timelike outside the black hole [30]. In this context, the con-
ical singularity in the base is an ADE singularity which may be resolved to
yield a complete asymptotically flat hyper-Kähler base which therefore must
be R

4 (thus avoiding the need to invoke the positive mass theorem). Our result
also complements the recent classification of supersymmetric black holes with
biaxial symmetry in five-dimensional minimal supergravity [31]. It would be
interesting to complete the classification of supersymmetric black holes in this
theory.

6This theorem is only valid for “point-like” conical singularities as above. For higher-
dimensional conical singularities it can be false, e.g., the Eguchi–Hanson metric with angles
identified so that it is asymptotically euclidean gives a non-trivial zero-mass Ricci-flat metric
with a conical singularity over a bolt.
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This work may be viewed as an analogue of the static black hole unique-
ness proof of Bunting and Masood-ul-Alam [6] for extreme black holes. Their
method involves gluing two conformally rescaled copies of the orthogonal spa-
tial hypersurface along the inner boundaries corresponding to the horizon,
resulting in an asymptotically flat zero-mass complete surface with nonnega-
tive scalar curvature, which by the positive mass theorem must be isometric to
euclidean space. For extreme black holes, we found this method does not work.
Instead, a horizon manifests itself as a conical singularity of the asymptotically
flat zero-mass Ricci-flat manifold (Σ, h) (rather than a boundary) and a mild
generalisation of the positive mass theorem to accommodate such singularities
is sufficient to establish it is flat. It would be interesting to apply this theo-
rem to prove similar uniqueness results in other theories which support static
extreme black holes and branes.
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1. A Positive mass on manifolds with conical singularities

Here we prove a generalisation of a simple version of the positive mass theorem
due to Witten [26] and Bartnik [27] to allow for conically singular ends, that
was invoked in the main text. First, we recall the definitions of asymptotically
flat and conically singular ends for a d ≥ 3-dimensional Riemannian manifold
(Σ, h).

By definition [27], an asymptotically flat end E∞ of (Σ, h) is an end that
is diffeomorphic to R

d\B with B a closed ball, where

hij = δij + O(r−τ ) , ∂khij = O(r−τ−1) , (25)

http://creativecommons.org/licenses/by/4.0/
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as r =
√

xixi → ∞, (xi) are cartesian coordinates on E∞ defined by the
diffeomorphism and τ > 0 is the decay rate. The ADM mass is

m:= lim
r→∞ cd

∫

Sr

(∂jgji − ∂igjj)dSi , (26)

where Sr is the sphere of constant r in E∞, cd an irrelevant positive constant
and the decay rate τ > (d − 2)/2 is required for m to be well-defined [27].

On the other hand, we define a conically singular end E0 of (Σ, h) as
follows: E0 is diffeomorphic to C = (0, ρ0) × S where ρ0 > 0, (S, σ) is a
compact Riemannian manifold,

|h − h0|h0 = O(ρδ) , |∇̊h|h0 = O(ρδ−1) , (27)

as ρ → 0, the decay rate δ > 0, the norm | · |h0 and connection ∇̊ are with
respect to the cone metric h0 = dρ2 + ρ2σabdyadyb on C, and the coordinates
(ρ, ya) are defined by the diffeomorphism such that ρ ∈ (0, ρ0). (This is similar
to other definitions of conical singularities [32,33].)

We are now ready to state our result.

Theorem 2. Let (Σ, h) be a d ≥ 3-dimensional asymptotically flat Riemannian
manifold with conical singularities. If Ric(h) ≥ 0, then the ADM mass m ≥ 0
and m = 0 occurs iff (Σ, h) is flat.

Proof. For simplicity of notation, we will assume (Σ, h) has one asymptoti-
cally flat end E∞ and one conically singular end E0, although the arguments
below generalise to multiple ends straightforwardly. Thus, we assume there is
a compact manifold K such that Σ − K = E∞ ∪ E0.

We follow closely the proof for the standard case where (Σ, h) is a com-
plete manifold [26,27]. Thus suppose zi are globally defined harmonic functions
on (Σ, h) such that on the asymptotically flat and conically singular ends,

∂s(zi − xi) = O(r1−τ−s) , as r → ∞ , (28)

|∇̊s(zi − pi)|h0 = O(ρς−s) , as ρ → 0 , (29)

respectively, for 0 ≤ s ≤ 2 where the decay rate ς > 0 is to be chosen at our
convenience. In the absence of the conically singular end, the proof that such
harmonic functions exist was given by Bartnik [27]. In particular, these provide
a set of cartesian coordinates at infinity known as harmonic coordinates.

In the presence of a conically singular end, we may construct such har-
monic coordinates as follows. Let yi be harmonic coordinates on E∞ (guar-
anteed to exist by [27]) and extend these to C∞(Σ) such that on E0 they
are constants pi. Define f i:= − Δyi, where ∇ and Δ = ∇A∇A is the metric
connection and Laplacian of h. Clearly f i vanishes identically on the ends and
hence has compact support on Σ. Now consider the elliptic problem on Σ:

Δvi = f i, ∂svi = O(r−τ−s), |∇̊svi|h0 = O(ρς−s) , (30)

where f i is fixed as above. By the maximum principle, a solution vi to this
system is unique since vi → 0 in both ends. Then, defining zi:=yi + vi gives a
set of harmonic functions on Σ which obey the decay rates (28) and (29) (the
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former follows from ∂s(yi − xi) = O(r1−τ−s) [27]). To establish existence of a
Green’s function for this problem rigorously, one could presumably adapt the
arguments in [27], perhaps using the theory for the Laplacian on manifolds
with admissible metrics (which include both asymptotically flat and conically
singular ends) [34]. We will not pursue this here.

Now, define the 1-forms Ki = dzi which, in view of the zi being harmonic,
must obey the Bochner identity

Δ|Ki|2 = 2|∇Ki|2 + 2Ric(Ki,Ki) (31)

for each i = 1, . . . , d. Integrate this over Σ to deduce

lim
r→∞

∫

Sr

∂j |Ki|2dSj − lim
ρ→0

∫

Sρ

∂n|Ki|2dvol = 2

∫

Σ

[|∇Ki|2 + Ric(Ki, Ki)
]
dvol ≥ 0 ,

(32)

where Sρ is a surface of constant ρ in E0 and n is the unit-normal to Sρ. An
important property of harmonic coordinates is that in terms of them the ADM
mass simplifies to

m = −cd

2

∫

S∞
∂jgiidSj =

d∑

i=1

cd

2

∫

S∞
∂j |Ki|2dSj , (33)

where to obtain the second equality we have used the fact that in the harmonic
coordinates (zi) we have |Ki|2 = gii (no sum). On the other hand, for the
integral near the conical singularity we find that (29) and (27) imply,

Iρ:=
∫

Sρ

∂n|Ki|2dvol = O(ρ2ς+d−4) . (34)

To see this first note that |Iρ| ≤ |∂nG|maxvol(Sρ) where we have set G:=|Ki|2.
Now, writing G = G0 + (G − G0) where G0:=|Ki|2h0

we have the bound
|∂nG| ≤ |∇̊G0|h0 + |∇̊(G − G0)|h0 . The first term is bounded by |∇̊G0|h0 ≤
2|∇̊∇̊zi|h0 |∇̊zi|h0 = O(ρ2ς−3) using (29), whereas the second term

|∇̊(G − G0)|h0 ≤ 2|h − h0|h0 |∇̊∇̊zi|h0 |∇̊zi|h0 + |∇̊(h − h0)|h0 |∇̊zi|2h0
= O(ρ2ς−3+δ)

(35)

using (29) and (27). Thus, since δ > 0, we deduce that |∂nG| = O(ρ2ς−3),
which together with the fact that vol(Sρ) = O(ρd−1), gives the result (34).

Therefore, (34) vanishes as ρ → 0 provided 2ς + d − 4 > 0. For d ≥ 4,
this is trivially satisfied since ς > 0, whereas for d = 3 this can be ensured by
taking ς > (d − 2)/2. Thus, summing (32) over i = 1, . . . , d, we deduce that
m ≥ 0 with equality iff ∇Ki = 0 for all i = 1, . . . , d. If m = 0, the Ki are
parallel 1-forms that form an orthonormal basis at infinity, which implies the
Ki are a global parallel orthonormal frame and hence (Σ, h) is flat. �
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