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2-Group Symmetries of 6D Little String
Theories and T-Duality

Michele Del Zotto and Kantaro Ohmori

Abstract. We determine the 2-group structure constants for all the six-
dimensional little string theories (LSTs) geometrically engineered in F-
theory without frozen singularities. We use this result as a consistency
check for T-duality: the 2-groups of a pair of T-dual LSTs have to match.
When the T-duality involves a discrete symmetry twist, the 2-group used
in the matching is modified. We demonstrate the matching of the 2-groups
in several examples.
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1. Introduction

In the past few years, we have made lots of progresses about six-dimensional
supersymmetric systems decoupled from gravity. Such theories can have either
16 or 8 conserved supercharges, corresponding to (2, 0) and (1, 1), or (1, 0)
supersymmetry, respectively. In 6D, there are two types of UV behaviors: su-
perconformal field theories (SCFTs) and little string theories (LSTs). This
was conjectured based upon gauge anomaly cancellation reading between the
lines of [1], and can be argued for using geometric engineering techniques in
F-theory [2]. The hallmark of these models is given by the presence of strings
among their excitations [3,4]. SCFTs are characterized by the fact that such
strings become all tensionless at the conformal point. LSTs instead have an
intrinsic built-in string tension, which entails these systems have T-duality and
hence are not ordinary six-dimensional local quantum field theories [5].1 Fa-
mous examples of the above are obtained by carefully decoupling gravity from
the worldvolume theories of stacks of NS5s, respectively, in IIA, IIB, and het-
erotic superstrings [5,7]. Some other early foundational works on the subject
include [8–14] (see also [15] for a review).

One of the salient features of LSTs that gives a new window into their in-
teresting exotic dynamics is that they can enjoy a 2-group global symmetry[16].2

A 2-group global symmetry [22,23] is a mixture of a 0-form (i.e., ordinary)
global symmetry and a 1-form global symmetry (in the language of [24], see
also [25]). In particular, such 2-group global symmetry in a LST always con-
tains a universal subfactor of the form

2Gκ̂P ,κ̂R
=

(

P(0) × SU(2)(0)R

)

×κ̂P ,κ̂R
U(1)(1)LST , (1.1)

where P(0) is the 6D Poincaré 0-form symmetry group, SU(2)(0)R is the global
N = (1, 0) R-symmetry of the theory, while U(1)(1)LST is the 1-form symme-
try associated with little string (LS) charge [16]. Here, κ̂P and κ̂R are the
2-group structure constants, that determine the mixture between higher-form
global symmetries of different dimensionalities. In particular, the invariant
background curvature 3-form H

(3)
LST satisfies a modified Bianchi identity in-

volving the background instanton densities consisting of P(0) ×SU(2)R back-
grounds and the constants κ̂P and κ̂R (see (3.3)). These quantities have been
computed recently for 6D (1,1) LSTs and for the 6D (1,0) LSTs on NS5 branes
of the Heterotic Spin(32)/Z2 [16].

The main purpose of this short note is to explore the 2-group symmetries
of all the examples of LSTs constructed via F-theory in [2], building upon the
classification of 6D SCFTs [26,27].3. Our results can be summarized in the
following

1 A generalization of QFT that can describe LSTs is proposed in [6].
2 We refer our readers to the important foundational papers [17–21] where the crucial
interplay among the Green–Schwarz mechanism and 2-groups (and string 2-Lie algebras)
was originally derived.
3 See also [28–30].
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Claims
• There is a simple formula to compute the structure constants for the

2-group symmetry of all six-dimensional LSTs;4

• The structure constant for the mixture of the one-form symmetry and
the R-symmetry is always nonzero (for an interacting unitary LST);

• The 2-groups should be the same between T-dual pairs of LSTs, provided
the T-duality does not involve twists;

• For twisted T-dualities (i.e., T-dualities which involve symmetry twists),
a slightly more complicated relation exists.5

We substantiate the claims above by exhibiting several non-trivial examples be-
low. As these examples demonstrate, the 2-group structure can provide a useful
consistency check for T-dualities among 6D LSTs, which is a useful criterion
to exploit in the context of the explosion of 5d dualities among distinct five-
dimensional gauge theory phases [31–33] and their applications to the physics
of LSTs.6 The latter was the main motivation for us to publish this study.

The structure of this letter is as follows. In Sect. 2, we give a short concise
review of the geometric engineering of LSTs in F-theory to fix notations and
conventions. Along the way, we also begin exploring the geometric engineering
counterpart of the field theoretical results of [16], in particular we find the
origin of U(1)(1)LST within the defect group of the corresponding LST. In Sect. 3
the formulas for κ̂P and κ̂R are given. In Sect. 4, several examples are discussed
of T-dual pairs of LSTs both with 16 and 8 supercharges. In all cases, we find
consistency. In Sect. 5, we discuss a constraint on endpoints for T-dual pairs
which arises from κ̂P . In Sect. 6, the 2-group structure constant matching
is generalized to twisted T-dualities and examples with 16 supercharges are
demonstrated.
Disclaimer To keep this paper short, we are not pedagogical: this will benefit
the experts, but might make this paper hard to read for a novice. We refer the
latter to the first few sections of [35] or to the review [36] for the necessary
background about geometric engineering 6D theories in F-theory, as well as
to the paper [16] for a beautiful discussion of 2-groups in the context of 6D
theories.

2. LST from F-theory: A Lightning Review

In this section, to fix notation and conventions, we briefly review some aspects
of the geometric engineering of (isolated) 6D LSTs in F-theory [2] that are

4 Equation (3.6).
5 Notice that it is possible that the T-dual of an untwisted LST is a twisted LST. For
example, the T-dual of the 6D N = (1, 1) supersymmetric Yang–Mills LST with a non-
simply laced gauge group is a twisted compactification of a 6D N = (2, 0) LST. See Sects.
4.1 and 6.
6 See the IAS seminar Geometry and 5d N=1 QFT by Lakshya Bhardwaj, which is available
online at the https://video.ias.edu/HET/2020/0330-LakshyaBhardwaj where such applica-
tions were announced [34].

https://video.ias.edu/HET/2020/0330-LakshyaBhardwaj
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relevant for our discussion below.7 The F-theory geometric engineering involves
a 3-CY which is an elliptic fibration over a two complex-dimensional non-
compact Kähler surface S. The case in which the 3-CY is a general genus-one
fibration is relevant for twisted compactifications: the 6D F-theory dynamics
is captured by the Jacobian of the genus-one fibration, inequivalent genus-one
fibration with the same Jacobian corresponds to different twists of the 6D
theory down to 5d.8

The strings of the 6D theory arise from D3 branes wrapping the com-
pact curves in the base, and the lattice Λ ≡ H2(S,Z) is identified with the
string charge lattice of the theory. The lattice Λ is canonically equipped with
a quadratic intersection pairing

( · , · ) : H2(S,Z) × H2(S,Z) → Z (2.1)

which is negative definite in the case of SCFTs and semi-negative definite
in the case of LST. Indeed, the former case, by the Artin–Grauert criterion,
corresponds to the fact that all the compact curves in the base are shrinkable;
in the latter case, on the contrary, the surface S is ruled and has a unique
homology class of self-intersection zero, which is therefore not shrinkable: its
volume defines a scale for this geometry, that is identified with the LST scale.
We denote the corresponding curve Σ0. Wrapping Σ0 with a D3 brane one
obtains the BPS little string of the model. Choosing a basis of generators ΣI

for H2(S,Z), the negative of the intersection paring

ηIJ ≡ −(ΣI ,ΣJ ) I, J = 1, . . . , r + 1 (2.2)

is identified with the Dirac pairing among BPS strings. The integer r is the
rank of the corresponding 6D theory, i.e., the dimension of the corresponding
tensor branch. The unit little string charge Δ0 ∈ Λ is given by the collection
of (positive) integers NI such that

Σ0 =
r+1
∑

I=1

NIΣI gcd(N1, . . . , Nr+1) = 1 Δ0 = (N1, . . . , Nr+1) (2.3)

and by construction it corresponds to the (unique) primitive eigenvector of
ηIJ in Λ with zero eigenvalue [2].

In geometric engineering, the vacuum expectation values of the scalar
components in the 6D tensor multiplets are identified with the volumes of the
curves ΣI :

〈ΦI〉 ∼ vol(ΣI). (2.4)

7 Throughout this note for simplicity, we will assume the backgrounds do not involve O7+

planes, which would require a slightly different formulation of the theory [30]. Our methods
can be generalized to that class and it would be interesting to do so.
8 A Jacobian fibration on the base S is equivalent to the axio-dilaton background of type IIB
string on the base. The choice of a particular 3-CY realizing the given Jacobian corresponds
to an additional structure, i.e., the twist on S1, in the F-theory/M-theory T-duality [37,38].
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In particular, for a little string theory there is a constraint on the vevs of tensor
multiplets scalars

Ms
2 = vol(Σ0) =

r+1
∑

I=1

NI vol(ΣI) =
r+1
∑

I=1

NI 〈ΦI〉 . (2.5)

The matrix ηIJ also encodes the positive semi-definite kinetic matrix for the
tensor multiples on the tensor branch of a LST. We denote b

(2)
I the dynamical

self-dual 2-form fields on the tensor branch. The linear combination

B
(2)
LST ≡

r+1
∑

I=1

NI b
(2)
I (2.6)

is therefore non-dynamical and it corresponds to the superpartner of the scalar
in (2.5): this is the background 2-form tensor field for the U(1)(1)LST higher-form
symmetry.9

Defect group for LSTs At this point, it is also nice to remark that by an
appropriate generalization of the familiar ’t Hooft screening argument, all 6D
LSTs have a 2-form factor of the defect group of the form [39,40]

D
(2) = Z ⊕

p
⊕

j=1

Zmj
(2.7)

where the integers mj > 1 are determined considering the Smith normal form
of ηIJ [39–46]. Notice that the first factor is the term corresponding to the zero
eigenvalue giving the LS charge: as remarked in [45] whenever the defect group
has a factor Z in dimension d, we expect to obtain a U(1)(d−1) higher-form
symmetry.10 For the theories, we are considering in this paper d = 2 and we
obtain precisely the U(1)(1)LST higher-form symmetry we encountered above.

Remark. In this note, we are interested only in the fate of the 2-group struc-
ture constants under T-duality. The remaining factors of the defect group are
slightly more subtle to analyze because
(a) upon circle reduction (and twist) factors in D

(2) can also mix with factors
in D

(1) (associated with the global form of the gauge group of the 6D LST)
in non-trivial ways, and

(b) if the reduction involves a twist, the corresponding discrete 0-form sym-
metry can act on the lattice Λ and can have a non-trivial interplay with
D

(2).
We plan to address these phenomena in more detail in future work [47].

9 If the LST is obtained as the worldvolume theory on NS5 branes decoupled from the

gravity sector, this background U(1)
(1)
LST is literally the NSNS B-field in the decoupled

gravity supermultiplet, and the corresponding little string is the fundamental string of the
ambient string theory.
10 If we had a Z

(d) symmetry, the background of it would be a Z-valued d-cocycle H(d).
However, it is natural to expect that such a background should actually be realized as the
background field strength H(d) = dB(d−1) with a U(1)(d−1) background B, in a continuum
QFT.
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Table 1. Dual Coxeter numbers

g su(k) so(k) sp(k) e6 e7 e8 g2 f4

h∨ k k − 2 k + 1 12 18 30 4 9

3. 2-Group Structure Constants and the LS Charge

In this section, we derive general formulas for the 2-group structure constants
κ̂P and κ̂R and we discuss several applications to untwisted T-dual pairs.

Whenever one of the curves in the F-theory base is a part of the dis-
criminant locus of the elliptic fibration, there is a corresponding non-abelian
gauge group for which the strings are BPS instantons. In such a case, the cor-
responding tensor multiplet has a Green–Schwarz coupling, necessary for the
cancellation of the gauge anomaly. In fact, all tensor multiplets can be given
GS couplings involving background gauge fields for the Poincaré symmetry as
well as for the other global symmetries of the theory (see, e.g., [48–50]). As we
shall see below, in the case of LSTs, the fact that each dynamical tensor field
has such Green–Schwarz coupling generates an interplay among backgrounds
for the fields entering in the anomaly polynomial and the 2-form background
field for the U(1)(1)LST higher-form symmetry. This is the origin of the 2-group
symmetry for LSTs [16].

Recall that the dynamical two-form fields b
(2)
I have a Green-Schwartz

coupling of the form [49]

ηIJ

∫

b
(2)
I ∧ X(4)

J . (3.1)

Here, the 4-form X(4)
J can be determined field theoretically for all those tensors

that are involved in the cancellation of gauge anomaly. This is always the case
for tensors with pairing ηII ≥ 3. The only tensors that are not paired to
gauge groups in the F-theory construction must have ηII = 1 or 2. We assume
that in the former case the corresponding model is an E-string, in the latter
the N = (2, 0) theory of type a1. As we have discussed above, we are not
considering a frozen F-theory geometry. With these assumptions, the GS term
ηIJX(4)

J for gravity and R-symmetry background fields is [49,51,52] (see also
[16])

ηIJX(4)
J = h∨

gI
c2(R) +

1
4
(ηII − 2)p1(TM6), (3.2)

where h∨
gI

is the dual Coxeter number of the gauge group gI coupled with the
I-th tensor multiplet, and we normalize h∨

∅
to 1 for the cases ηII = 1, 2.11 The

index I in ηII should not be summed.

11 These two cases in facts are better thought of as having gauge algebras sp0 and su1,
respectively, which indeed have h∨ = 1 [35] by continuation. We will use both notations
interchangeably below.
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The 2-group structure constants for the LST are captured by the modified
Bianchi identity12 for the 2-form background field of U(1)(1)LST [16]

1
2π

dH
(3)
LST ≡ κ̂Rc2(R) − κ̂P

4
p1(TM6). (3.3)

In the presence of GS couplings, all the tensor fields have modified Bianchi
identities of the form

1
2π

dH
(3)
I = ηIJX(4)

J = h∨
gI

c2(R) +
1
4
(ηII − 2)p1(TM6) (3.4)

Now from (2.6)

H
(3)
LST =

r+1
∑

I=1

NI H
(3)
I (3.5)

Therefore, combining (3.3) with (3.4) and (3.5) we obtain

κ̂R =
∑r+1

I=1 NIh
∨
gI

κ̂P = −
∑r+1

I=1 NI(ηII − 2) (3.6)

thus determining the universal 2-group structure constant for all 6D LSTs
from F-theory constructed in [2].

Remark. 1. We stress that by including the other global symmetry back-
ground gauge fields in ηIJX(4)

J computing the structure constants for the
other factors of the 2-group associated with background fields for the
other global symmetries is straightforward by the same method.

2. For the theories with r = 0, the method here is not strictly speaking
applicable, but in the absence of paired tensors the same formula can be
derived from the mixed anomaly [16].

3. By anomaly inflow from 6D to 2D [51,52], the modified Bianchi (3.4)
induces the ’t Hooft anomaly on the little string. κ̂R and κ̂P are the ’t
Hooft anomalies of SU(2)R and SO(4) symmetries on the worldsheet.
What is special to the little string is that its charge is not gauged, and
therefore the little string worldsheet theory and its anomaly in a LST
can be directly compared with that of a candidate T-dual LST.

4. 2-Groups and T-Duality

Here, we see examples of calculations of the structure constants for a few
theories, and we apply these as a consistency check for T-dualities: the 2-group
structure constants have to match for T-dual pairs of LSTs. This is simply
the natural generalization of symmetry matching we do to check a proposed
duality. Combined with the obvious conditions that the 5D rank (i.e., the sum
of the 6D rank and the ranks of the gauge groups in the tensor branch EFT)

12 We have normalized our characteristic classes with the opposite conventions of [16]—
compare our equation 3.3 with their (1.18).
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should match between a T-dual pair, the 2-group structure constants provides
a strict condition for a pair of LSTs to be T-dual.

4.1. T-Duality from Geometric Engineering

Before diving into examples, let us review (and slightly extend) the geometric
version of LST T-duality in F-theory [2]. We define a pair of 6D LSTs T and ̂T
to be T-dual if their (untwisted) circle compactifications give rise to the same
5d KK theory. We define a pair of 6D LSTs T and ̂T to be twisted T-dual if
they become equivalent 5d KK theories upon compactification on a circle in
which at least one of the two theories is twisted by the action of a (possibly
discrete) symmetry. An analogous effect is well known in the full heterotic
string theory [53,54]. The twisted T-dualities of 6D LSTs are a rather less
understood phenomenon.

Let us denote the local 3-CY we are considering X . As we have reviewed
in Sect. 2, the 6D physics is fully determined by the F-theory of the Jacobian,
which we denote F/JX , where JX is an elliptic fibration over the base S. We
denote the corresponding 6D theory TF/JX . Upon circle compactification, we
obtain a 5d KK theory TM/X . Geometry seems to suggest there are two cases
to be considered

• Case 1 X is elliptically fibered over the base S and thus JX � X : in
this case, the theory TM/X is just the circle reduction of TF/JX at finite
radius by the usual M-theory/F-theory T-duality [55];

• Case 2 X is a genus-one fibration over the base S: in this case, the theory
TM/X is a twisted circle compactification of TF/JX [38].

LST T-dualities from geometry [2]. The physics of TM/X is such that the 3-
CY X and its resolutions correspond to a given chamber on the 5d Coulomb
branch.13 Other chambers are realized by flopping X → X μ , where we have
denoted with X μ the 3-CY obtained from X by a sequence of flop transitions
μ. If the 3-CY X μ admits an inequivalent genus-one fibration, over a different
base ̂S it will give rise to an inequivalent Jacobian ̂JX μ and therefore to a
different 6D theory TF/ ̂JXμ

obtained from the F-theory of ̂JX μ .

Remark. Notice that in the above discussion μ could also be the identity (cor-
responding to no flops): if that is the case X itself admits two inequivalent
genus-one fibrations. This is often the case for LSTs of type K (in the termi-
nology, we introduce in Sect. 5) and many examples studied in [2] are of this
type—see also [57].
Now we can distinguish between the two cases
(a) T-duality If X and X μ have inequivalent elliptic fibrations, we have a

T-duality between the LSTs TF/JX and TF/ ̂JXμ

(b) Twisted T-duality If X and X μ have inequivalent genus-one fibrations of
which at least one is not elliptic, we have a twisted T-duality between
the LSTs TF/JX and TF/ ̂JXμ

13 See, e.g., section 3 of [56] for a review of the geometric engineering dictionary in M-theory.
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Not many examples are known of twisted T-dualities: we discuss some for the
case of LSTs with 16 supercharges in Sect. 6.

4.2. N = (2, 0) and its T-Dual N = (1, 1)

The N = (2, 0) LST of type g ∈ ADE is T-dual to the LST which is the
UV completion of the 6D N = (1, 1) pure SYM gauge theory with simply
laced gauge algebra g.14 For the N = (2, 0) case, the string Dirac pairing is
identical to the Cartan matrix of the corresponding affine Lie algebra g(1). The
LS charge coincides with the minimal imaginary root of g(1), in other words it
is given by

NI = dI (4.1)

where dI are the Dynkin (co)marks for the algebra g (dI for the affine nodes is
understood to be 1). The self-intersection number ηII is 2 for all I. Therefore,
we obtain

κ̂R(type gN = (2, 0) LST) =
∑

I

dIh
∨
∅

= h∨
g (4.2)

κ̂P (type gN = (2, 0) LST) = 0. (4.3)

On the other hand, from the mixed anomaly argument of [16], the structure
constants for the 2-group symmetry of the N = (1, 1) LST of type g are

κ̂R(type gN = (1, 1) LST) = h∨
g (4.4)

κ̂P (type gN = (1, 1) LST) = 0. (4.5)

Clearly, we have a match. Notice that this equality is valid because the 2-group
symmetry of the N = (2, 0) LST has a non-trivial structure constant κR even
though the theory does not have any gauge field on its tensor branch.

4.3. LST for M5 Branes Along S1 × C
2/Γ and Their T-Duals

As a first (1, 0) example, we consider slight variation on the theme in the
previous example. Let us consider the LST living on a stack of K M5 branes
with transverse space S1×C

2/Γ in M-theory. The latter is realized in F-theory
by a geometry of the form

gΓ gΓ · · · gΓ

// 2 2 · · · 2 //
(4.6)

where the symbol // indicates that the K curves in the base form a closed loop.
The LST which is T-dual to (4.6) is geometrically engineered with a collection
of -2 curves intersecting along an affine g

(1)
Γ diagram, with fiber IdI K , where

dI are the corresponding Dynkin labels for each node.
Whenever Γ �= ZN , the above geometry is still singular, and the gener-

alized quiver contains minimal (gΓ, gΓ) conformal matter [58] at each collision
of -2 curves. For all the above geometries κ̂P = 0, while κ̂R is non-trivial.

14 There are 6D N = (1, 1) pure SYM gauge theories with non-simply laced gauge algebras
g ∈ BCFG as well. The T-duals for this class of LSTs are slightly more subtle and are
discussed in detail in Sect. 6.
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The case Γ is a cyclic subgroup of SU(2) Let us consider the example Γ =
ZN . In that case, the LS charge is (1, 1, 1, . . . , 1) and the corresponding gauge
groups are simply suN , therefore

κ̂R = KN. (4.7)

The symmetry of this formula is not a coincidence, and it is indeed expected: in
this case T-duality is precisely swapping the fiber with the base of the fibration
in the F-theory geometry

suN suN · · · suN

// 21 22 · · · 2K //
T←→ suK suK · · · suK

// 21 22 · · · 2N //
.

(4.8)

A third T-dual has been proposed in [59] for this class of models, that has an
F-theory realization

suNK/� suNK/� · · · suNK/�

// 21 22 · · · 2� //
(4.9)

where � = gcd(N,K). It is straightforward to check that also this model share
the same 2-group structure constants, which gives a further consistency check
to the proposal of [59].
The case Γ is a binary dihedral subgroup of SU(2) If we take Γ to be the
binary dihedral group of order 8, we have gΓ = so8, and the corresponding
resolved base is

so8 sp0 so8 sp0 · · · so8 sp0

// 41 11 42 12 · · · 4K 1K //
(4.10)

where the elementary cell 4, 1 repeats K times. For this theory, the LS charge
is (1,2,1,2,. . . ,1,2) and we have

κ̂P = 0 κ̂R = 8K. (4.11)

The corresponding T-dual LST in this case is given by a base that consists
of -2 curves intersecting along an affine d

(1)
4 diagram, all supporting a fiber

which is of IdI K type where dI are the Dynkin labels for d
(1)
4 . The latter also

coincide with the corresponding LS charge (1, 1, 1, 1, 2), and therefore

κ̂R = K + K + K + K + 2 · 2K = 8K (4.12)

as expected. For a general binary dihedral group, we obtain gΓ = so2n and the
corresponding resolved base is

so2n spn−4 so2n spn−4 · · · so2n spn−4

// 41 11 42 12 · · · 4K 1K //
.

(4.13)

The LS charge is the same as the structure of the BPS string lattice is unal-
tered. Therefore, we obtain

κ̂P = 0 κ̂R = 4(n − 2)K. (4.14)

In addition, the 5D rank r5D of the theory is

r5D = 2K − 1 + Kn + K(n − 4) = K(2n − 2) − 1. (4.15)
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The T-dual configuration is a collection of -2 curves arranged along an affine
d
(1)
n diagram, with fibers of IdI K type where dI are the Dynkin labels for d(1)

n .
The latter has rank

r5D = n + 4(K − 1) + (n − 3)(2K − 1) = K(2n − 2) − 1. (4.16)

The LS charge in this case is (1, 1, 1, 1, 2, . . . , 2), where 1’s are for the edge
nodes and 2’s are for the middle nodes, and the structure constants clearly
match.

Remark. One might wonder whether there is a third T-dual, as it seems to
be the case when Γ is cyclic. One can immediately see that there can be no
non-trivial T-dualities among the class of theories described by (4.13) from
the constrains r5D and κ̂R. However, when K = 1, the N = (2, 0) and (1, 1)
LSTs of type so(4n − 6) have the same r5D and κ̂R as the theory (4.13). It is
interesting to determine whether these LSTs are actually T-dual to each other
or not.

The case Γ is an exotic discrete subgroup of SU(2) We can also consider more
exotic examples, for instance, for Γ the binary tetrahedral discrete subgroup
of SU(2), we have gΓ = e6 and the corresponding resolved base is

sp0 su3 sp0 e6 sp0 su3 sp0 e6 · · · sp0 su3 sp0 e6
// 11 31 11 61 12 32 12 62 · · · 1K 3K 1K 6K //

.

(4.17)

The associated LS charge is (3, 2, 3, 1 · · · , 3, 2, 3, 1) and

κ̂P = 0 κ̂R = 24K (4.18)

are the 2-group structure constants from our formula. The corresponding T-
dual LST in this case is given by a base that consists of -2 curves intersecting
along an affine e

(1)
6 diagram, all supporting a fiber which is of IdI K type

where dI are the Dynkin labels for e
(1)
6 . The latter also coincide with the

corresponding LS charge (1, 1, 1, 2, 2, 2, 3), and therefore

κ̂R = K + K + K + 2 · 2K + 2 · 2K + 2 · 2K + 3 · 3K = 24K (4.19)

as expected.

4.4. Heterotic Instantons Probing a C
2/Zk Singularity

Let us consider another simple N = (1, 0) example, which is given by a stack
of N heterotic E8 × E8 NS5 branes probing the C

2/Zk singularity. The tensor
branch geometry is 15

∅ ∅ su(2) su(3) · · · su(k) · · · su(k) su(k − 1) · · · su(2) ∅ ∅

1 2 2 2 · · · 2 · · · 2 2 · · · 2 2 1
,

(4.20)

15 The tensor branch of the LST is hard to see in the heterotic string frame, but it becomes
evident in the heterotic M-theory frame and its reduction to superstrings of Type I’.
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where the total number of the nodes (including the LST scale) is N + 1 and
(for the sake of notational simplicity) we assume N + 1 > 2k + 1. The LS
charge for this geometry is (1, 1, 1, . . . , 1). The structure constants are

κR = (2 + k(k + 1) + (N + 1 − (2k + 2))k) = 2 − k2 + kN (4.21)

κ = 2. (4.22)

The dimension of the Coulomb branch after circle compactification to 5d is

r5d =
∑

i

(rank(gi) + 1) − 1 = 1 − k2 + kN. (4.23)

The T-duality is the well known

E8 × E8
T←→ Spin(32)/Z2

heterotic T-duality from [9]. The tensor branch structure of N Spin(32)/Z2

instantons probing the Ak−1 singularity is, when k is even,

sp(N) su(2N − 8) su(2N − 16) · · · su(2N − 4k + 8) sp(N − 2k)
1 2 2 · · · 2 1 .

(4.24)
as a first check, the 5d rank is

r5d =
1
2

(

4N − 4k + 8
)(4k

8

)

+ N + N − 2k − 1 = kN − k2 + 1. (4.25)

the structure constants are

κR = 2 − k2 + kN (4.26)

κ = 2. (4.27)

however, in those examples, we have only su and sp groups which have the
property

h∨
g = rank(g) + 1 . (4.28)

Combined with the fact that the LS charge null vector NI = 1 ∀I, the matching
of r5d implies the matching of κ̂R, therefore the structure constant does not
give an additional constraint in this case.

4.5. Heterotic Instantons Probing an E6 Singularity

As a more non-trivial example, we consider N heterotic instantons probing an
E6 (binary tetrahedral) singularity. The tensor branch EFT of both cases is
studied in [9] and expected to be T-dual to each other. The E8 × E8 side is,
for N = 11, [9,58]

su2 g2 f4 su3 e6 su3 e6 su3 f4 g2 su2

1 2 2 3 1 5 1 3 1 6 1 3 1 6 1 3 1 5 1 3 2 2 1
.

(4.29)
Here, accounting for N is slightly more complicated due to brane fractional-
ization. One trick is to find the E-string LST with largest rank into which
this theory has a Higgs branch flow. For the case at hand, there is a tensor
subbranch, where the theory looks like
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su2 g2 f4 e6 e6 f4 g2 su2

1 2 2 2 2 2 2 2 2 2 2 1 (4.30)

and from this configuration the theory can flow into the E-string LST with
N = 11. For general N ≥ 10, the theory should have a tensor subbranch with
effective description

su2 g2 f4 e6 · · · e6 f4 g2 su2

1 2 2 2 2 2 · · · 2 2 2 2 2 1 , (4.31)

and the full tensor branch structure can be obtained by the blow-up method
in [26]. The 5d rank is

r5d = 12N − 78. (4.32)
The LS charge for (4.29) is

(1, 1, 1, 1, 2, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 2, 1, 1, 1, 1). (4.33)

For higher N , the pattern 1, 3, 2, 3 in the middle repeats accordingly. We get

κ̂R = 24N − 166, (4.34)

κ̂P = 2. (4.35)

The Spin(32)/Z2 side is, from [9],

sp(N) so(4N − 16) sp(3N − 24) su(4N − 32) su(2N − 16)
1 4 1 2 2 , (4.36)

when q ≥ 8. The 5d rank of this theory is

r5d = 4 + N + 2N − 8 + 3N − 24 + 4N − 33 + 2N − 17 = 12N − 78, (4.37)

which is the same as (4.37). The LS charge is (1,1,3,2,1), and the structure
constants are

κ̂R = (N + 1) + (4N − 18) + 3(3N − 23) + 2(4N − 32) + (2N − 16)
= 24N − 166

κ̂P = 2,

(4.38)

which are consistent with the E8 × E8 side, as expected.

5. An Endpoint Constraint for T-Duality from κ̂P

Our reader might have noticed that while κ̂R can take various values, κ̂P take
only the values 0 or 2 in all the above examples. This is actually generally
true, at least for the LST constructible in the F-theory without O7+. In [2]
is found that the endpoint configuration (which is the base after successively
shrinking all (-1) curves) for an LST of this kind is either a rational curve with
self-intersection number 0, or one of the fibers in the Kodaira classification.
Let us call an LST with the former endpoint an LST of type O, while an LST
with the latter endpoint (any out of the Kodaira classification) an LST of type
K. Since the equation for κ̂P in (3.6) has a geometric meaning on the base of
F-theory and it is actually an invariant under the blowing-up/down procedure,
we can compute the Poincaré 2-group structure constant at the endpoint using
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equation (3.6) for the endpoint. See Appendix A for the proof. For all the type
O LSTs, we have that η(endpoint) = 0 while the LS charge is 1. Therefore,

κ̂P (all LST of type O) = 2. (5.1)

On the contrary, for all LSTs of type K, the endpoints are such that the
diagonal components ηII(endpoint) always equal 2. Therefore, we conclude

κ̂P (all LST of type K) = 0. (5.2)

An immediate consequence is that the type is a T-duality invariant: an LST
of type K must be T-dual to another LST of type K, and an LST of type O
must be T-dual to another LST of type O.16

Remark. The D
(2) factor of the defect group of this geometry is a blow-up

invariant as well [41]. Therefore, it depends only on the possible endpoints.
We have

D
(2) =

{

ZLST for all LSTs of type O
ZLST ⊕ Z(GK) for all LSTs of type K

(5.3)

where for a given Kodaira type K we denote GK the universal cover group
corresponding to its split form. For example, if the Kodaira type is I∗

2n+1, we
have GI∗

2n+1
= Spin(2n + 9) and D

(2) = ZLST ⊕ Z4.
This prescription has to be modified for LSTs constructed from config-

urations with O7+ [39,40], but we will not consider examples of that sort in
this note.

6. Twisted T-Dualities and 2-Group Structure

In this section, begin a study of the behavior of 2-groups upon twisted T-
dualities for 6D LSTs. We focus on LSTs with 16 supercharges as motivating
examples. The formalism we develop here extends to the case of LSTs with 8
supercharges.

6.1. A Motivating Example

In Sect. 4.2, we saw that the N = (1, 1) LST of type g, which is the UV
completion of the N = (1, 1) SYM, is T-dual to N = (2, 0) LST of same type,
when g is one of Ak, Dk and E6,7,8. While in the N = (1, 1) side, we can
consider a non-simply laced gauge group, in the N = (2, 0) side the type is
restricted to ADE. Therefore, we expect the T-duality for a non-simply laced
type should involve a discrete symmetry twist along S1 on N = (2, 0) side.

The above expectation is confirmed by the geometric version of LST T-
duality in F-theory along the lines we discussed in Sect. 4.1. The 6D (1, 1) LSTs
with non-simply laced gauge groups are of type K, with an F-theory base that

16 It is interesting to observe that for those LSTs that admit a brane engineering within

M-theory, the 2-group Poincaré structure constant coincides with the number of M9s: κ̂P =
#M9. This gives an M-theory explanation of the two values we observe for this quantity—
we thank Guglielmo Lockhart for this remark. Moreover, we believe that κ̂P = 1 can be
realized for twistings identifying the two M9 branes.
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contains a genus-one curve, i.e., the I0 Kodaira fiber. Since the gauge groups
are non-simply laced, the corresponding gauge fibers are non-split according
to the Tate algorithm [60] (see also [61]). Because of the monodromies in the
non-split fibers, swapping the I0 base with the fiber of the fibration in the
non-simply laced case one must obtain a genus-one fibration with non-trivial
multisections of order equal to the order of the outer automorphism folding.
Therefore, geometry predicts we obtain a twisted compactification of a 6D
(2, 0) LST on S1 where the outer automorphism twist of the corresponding
affine Dynkin diagram is acting as a permutation symmetry on the tensor
multiplets, along the lines discussed in section 3.3 of [38].

To test such a twisted T-duality using the method in this paper requires
understanding the behavior of the 2-group symmetry upon twisting by the ac-
tion of a discrete symmetry acting on the string charge lattice non-trivially. The
full 2-group associated with the resulting 5d KK theory is much more compli-
cated than the mere (continuous) 6D 2-group, even restricting our attention
to the 5d KK 2-group corresponding to the universal subgroup 2Gκ̂P ,κ̂R

of
equation (1.1) which is the focus of this note. However, the latter is mapped
to a well-defined subgroup of the 5d KK 2-group: in the following section, we
compute the structure constants for such subgroup. This requires developing
the formalism slightly, to which we now turn.

6.2. Twisting and 2-Group Structure Constants

Let us consider a general LST compactified on S1 with twist, and denote
the group generated by the twist PT . As illustrated in [38,62], the effect of
PT can be read off from the tensor branch EFT, and in general, it acts as a
combination of permutations of the tensor multiplets and outer automorphisms
of the gauge groups and the flavor groups. An interesting effect on the 2-group
symmetry occurs when PT involves a permutation of the tensor multiplets
b
(2)
I . To understand this effect, it is necessary to discuss the map of the 6D

BPS strings to the BPS strings and particles of the 5d KK theory.
Mapping 6D BPS strings to the twisted 5d KK theory Let us denote with [I]
the PT -orbit of tensor nodes including the node I, and with orb(PT ) the set
of such PT -orbits. The 6D BPS strings of the 6D theory give rise to

• BPS strings of the 5d KK theory Since only PT -invariant combinations of
tensor multiplets survive the twisting, the 6D string charges are mapped
to only | orb(PT )| integer string charges in the 5d theory. Strings whose
charges belong to the same PT -orbit are identified. Label the tensor mul-
tiples consistently with our choice of basis for the string charge lattice
around (2.2) (in such a way that NI is the charge measured by the I-th
tensor). A bound state of 6D BPS strings with charge

Δ = (N1, . . . , Nr+1) ,
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corresponding to NJ D3 branes wrapping the curve ΣJ , maps to a bound
state of 5d BPS strings with charge

PPT
Δ =

(

N twist
[I]

)

[I]∈orb(PT )
N twist

[I] ≡
∑

I∈[I]

NI . (6.1)

• BPS particles of the 5d KK theory Wrapping a BPS string on the KK S1

gives rise to a 5d BPS particle. In the untwisted case, this establishes an
embedding of the 6D string charge lattice into the 5d KK theory particle
charge lattice. In the twisted case, instead, not all possible strings can
be wrapped on the KK S1 consistently: because of the action of PT on
the strings, only bound states of 6D BPS strings that are left invariant
by the action of PT can wrap the KK S1 in this case (this is an effect
similar to twisted sectors in orbifold CFTs). This implies that the string
charges of such states occur in closed orbits of PT and are therefore also
parametrized by | orb(PT )| integers. We define the charge of such BPS
particles

γPT =
(

Qwrap
[I]

)

[I]∈orb(PT )
(6.2)

normalized so that the particle coming from the minimal set of strings
belonging to [I] has charge Qwrap

[I] = 1.

In this section, we focus on the subsector of the BPS spectrum of the PT -
twisted 5d KK theory generated by the two kinds of BPS excitations above.
In five-dimensional theories, strings and particles can be mutually non-local,
and this is indeed the case for the subsector of interest, which follows by

Mapping 6D Dirac pairing to the twisted 5d KK theory and U(1)(1) symmetry
The 6D Dirac paring among BPS strings induces a non-trivial Dirac pairing
between the BPS strings and particles we have discussed above:

〈γPT , PPT
Δ〉D =

∑

[I],[J]∈orb(PT )

Qwrap
[I] η

[I][J]
PT

N twist
[J] :=

∑

I,[J]

Qwrap
I ηIJN twist

[J] ,

(6.3)
where Qwrap

I is the same integer for all I ∈ [I] by construction.17 In other
words, the pairing matrix η

[I][J]
PT

, whose size is the number of PT -orbits, is

η
[I][J]
PT

=
∑

I∈[I]

ηIJ ′
for an arbitrary J ′ ∈ [J ], (6.4)

which was also introduced in [38]. Note that (6.4) is no longer symmetric as it
is a pairing between objects of different dimensionalities.

17 We have a sum over I ∈ [I] because the particle of type [I] consists of all the strings of
type I ∈ [I], as explained above.
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Now we can consider the defect group of the twisted 5d KK theory
obtained from ηPT

. In particular, we have a U(1)(1) form symmetry cor-
responding to the string with the minimal nonzero string charge ΔPT

0 =
(NPT

[I] )[I]∈orb(PT ) satisfying
∑

[J]∈orb(PT )

η
[I][J]
PT

NPT

[J] = 0, (6.5)

that is the primitive right-null-vector of ηPT
.

The 2-group structure constants of the twisted KK theory The 2-group struc-
ture constants κ̂PT

R and κ̂PT

P for the twisted compactified theory can be ob-
tained by just replacing the untwisted LS charge Δ0 by ΔPT

0 in equation (3.6)

κ̂PT

R =
∑

[I]∈orb(PT )

NPT

[I] h∨
gI

κ̂PT

P = −
∑

[I]∈orb(PT )

NPT

[I] (ηII − 2). (6.6)

Twisting and fractionalization Note that the charge of untwisted LS in the
compactified theory, PPT

Δ0, is also a right-null-vector, and thus it is propor-
tional to ΔPT

0 up to an integer constant F :

PPT
Δ0 = FΔPT

0 . (6.7)

F being greater than one means that the twisted theory has a fractional little
string with fractionality F . Correspondingly, the 2-group structure constants
for twisted and untwisted cases are also related by the fractionality index F :18

κ̂R,P = F κ̂PT

R,P . (6.8)

If two LSTs LST1 and LST2 are dual to each other with twist PT 1 and
PT 2, respectively, the 2-group structure constant should match:

κ̂
LST1,PT 1
R,P = κ̂

LST2,PT 2
R,P . (6.9)

The fractionality constant F for each twist does not have to match: T-duality
does not preserve twisting.

6.3. Twisted T-Duality and Non-simply Laced 6D (1, 1) LSTs

Coming back to our motivating example. On the gauge theory side, the com-
putation of the structure constants is identical, whether the gauge group is
simply laced or not. The result is

κ̂R(type gN = (1, 1) LST) = h∨
g (6.10)

κ̂P (type gN = (1, 1) LST) = 0. (6.11)

In the case of the N = (2, 0) LST, the untwisted Dirac paring η is the affine
Cartan matrix. The twisting with a permutation symmetry of the affine Dynkin
diagram results in ηPT , which is the (symmetrizable) Cartan matrix for the

18 This fractionalization and the rescaling of the 2-group structure constant should be a

consequence of the detailed structure of the symmetry in the 6D LST. If the symmetry in

6D is the direct product of PT and the continuous 2-group, such a rescale does not happen.
Therefore, we expect PT , continuous 2-group, and other discrete (higher form) symmetries
to form a more general higher group.
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affine Dynkin diagram obtained by the folding of the original affine diagram.
For the relation between the diagrams and foldings, see, e.g., [63]. A natural
guess is that the T-dual of the N = (2, 0) LST of type gA with a twist PT

is the N = (1, 1) LST of type gB when the folded affine diagram is that
of the untwisted (but not-necessary simply laced) gB affine algebra.19 In the
following, we see that this conjecture is consistent with the constraint (6.9) in
some examples.
The case of gB = g2. We have that the 6D SYM structure constant is (see
Table 1)

κ̂R = h∨
g2

= 4. (6.12)

We claim that the LST is a twisted T-dual to the (2,0) e6 LST. Indeed, the
collection of curves for the (2,0) e6 LST is organized along an affine e(1)6 Dynkin
diagram

27

23

25 22 21 24 26 (6.13)

and the folding here is the Z3 action corresponding to the center Z(E6) = Z3

which has orbits

(21), (22, 23, 24), (25, 26, 27). (6.14)

The corresponding twisted Dirac pairing is
⎛

⎝

2 −1 0
−3 2 −1
0 −1 2

⎞

⎠ (6.15)

corresponding to the folding

e
(1)
6

PT
(3)

−−−−→ g
(1)
2 . (6.16)

The LS charge Δ0 = (3, 2, 2, 2, 1, 1, 1) is mapped by such folding to PPT
Δ0 =

(3, 6, 3) and we have fractional little string with charge ΔPT
(3)

0 = 1
3PPT

Δ0 =
(1, 2, 1). Since the corresponding N = (2, 0) model does not have any gauge
groups, the corresponding structure constant κ̂PT

(3)

R is (1 + 2 + 1) = 4, which
matches with the N = (1, 1) side.
The case of gB = f4. We have that the 6D SYM structure constant is (see
Table 1)

κ̂R = h∨
f4 = 9. (6.17)

19 When the folded affine diagram is of twisted type, we expect the N = (1, 1) would involve

an outer automorphism twist on the gauge group. In addition, when the N = (1, 1) side is of
sp type, there is the discrete theta ambiguity. It would be interesting to study these points.
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We claim that the latter is a twisted T-dual to the (2,0) e7 LST. Indeed, the
collection of curves for the (2,0) e7 LST is organized along an affine e(1)7 Dynkin
diagram, and the folding here is the outer automorphism twist

e
(1)
7

PT
(2)

−−−−→ f
(1)
4 . (6.18)

The LS charge Δ0 = (4, 3, 3, 2, 2, 2, 1, 1) is mapped by such folding to (4, 6, 4,
2, 2), which is divisible by 2. Since the corresponding model does not have any
gauge groups, the corresponding structure constant κ̂PT

(2)

R is (4 + 6 + 4 + 2 +
2)/2 = 9, which is consistent with N = (1, 1) side.

Remark. The case of twisted T-duals for 6D LSTs with 8 supercharges is much
richer and unexplored.20 The constraint (6.9) should be exploited to study the
space of twisted T-dual LSTs.
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A. Proof that κ̂P is invariant under blow-ups

Let us relabel the curves from 0 to r in such a way that the curve to be
blown down is the curve number 0. We will assume to have an LS charge
Δ0 = (N0, N1, . . . , Nr) with gcd(N0, . . . , Nr) = 1. Let us denote

� = gcd(N1, . . . , Nr).

20 Some exploratory studies of related backgrounds in F-theory have appeared in [64–67].
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We have that η00 = 1. In the argument below, for the sake of simplicity, we
will assume that η0J is either 0 or −1. For LSTs of sufficiently high rank,
this is not a restriction, but there are few exceptional cases that violates this
assumption in very low ranks. We will comment about them at the end of the
argument. With our assumptions, the Dirac pairing for the blown down curve
configuration is simply

η̂IJ = ηIJ − η0Iη0J (A.1)

where, slightly abusing notation, the indexes of η̂IJ run from 1 to r. The LS
charge for ηIJ is such that ηIJNJ = 0 which entails that

N0 = −
r

∑

J=1

η0JNJ (A.2)

Therefore,

0 =
r

∑

J=0

ηIJNJ = ηI0N0 +
r

∑

J=1

ηIJNJ

= −ηI0
r

∑

J=1

η0JNJ +
r

∑

J=1

ηIJNJ

=
r

∑

J=1

(ηIJ − η0Iη0J)NJ

=
r

∑

J=1

η̂IJNJ .

(A.3)

We can take ̂Δ0 = (N1, . . . , Nr) as the LS charge for the blown down config-
uration provided � = 1. Assume that that is not the case, then by (A.2) we
have that N0 should be divisible by � as well, but this is in contradiction with
the fact that gcd(N0, . . . , Nr) = 1.

Now we have that from equation (3.6)

κ̂P =

r
∑

I=0

NI(η
II − 2) = −N0 +

r
∑

I=1

NI(η
II − 2)

=

r
∑

J=1

η0JNJ +

r
∑

I=1

NI(η
II − 2)

= −
r

∑

J=1

η0Jη0JNJ +

r
∑

I=1

NI(η
II − 2) (by our assumption on η0J)

=

r
∑

I=1

NI(η
II − η0Iη0I − 2) =

r
∑

I=1

NI(η̂
II − 2) = κ̂P

∣

∣

∣

blow-down
.

(A.4)

Thus, establishing that κ̂P = κ̂P

∣

∣

∣

blow-down
for all LSTs that satisfy our as-

sumptions. By recursively applying the above, we conclude that κ̂P can be
computed from the endpoint configuration.
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Let’s consider the exceptional LSTs that are such that η00 = 1 and there
is an I such that η0I �= 0, 1. In fact, there is a single such case (without O7+),
whose base is

η =
(

4 −2
−2 1

)

obtained by blowing up the a Kodaira node I0 at the node. The latter is type
K. The uniqueness can be understood from the classification of endpoints. It
is easy to see that this model has LS charge Δ0 = 1, 2 and therefore κ̂P = 0.
Again, it is invariant with respect to blow-down as expected.
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