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Invariant Measure for Stochastic
Schrödinger Equations

T. Benoist, M. Fraas, Y. Pautrat and C. Pellegrini

Abstract. Quantum trajectories are Markov processes that describe the
time evolution of a quantum system undergoing continuous indirect mea-
surement. Mathematically, they are defined as solutions of the so-called
Stochastic Schrödinger Equations, which are nonlinear stochastic differ-
ential equations driven by Poisson and Wiener processes. This paper is
devoted to the study of the invariant measures of quantum trajectories.
Particularly, we prove that the invariant measure is unique under an
ergodicity condition on the mean time evolution, and a “purification”
condition on the generator of the evolution. We further show that quan-
tum trajectories converge in law exponentially fast toward this invariant
measure. We illustrate our results with examples where we can derive
explicit expressions for the invariant measure.
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1. Introduction

Under a Markov approximation, the evolution of an open quantum system S
in interaction with an environment E is described by the Gorini–Kossakowski–
Sudarshan–Lindblad Master (GKSL) equation [23,30]. More precisely, assum-
ing that the system is described by the Hilbert space C

k, the set of its states
is defined as the set Dk of density matrices, i.e., positive semidefinite matrices
with trace one:

Dk = {ρ ∈ Mk(C) s.t. ρ ≥ 0, tr ρ = 1}.

The evolution t ∈ R+ �→ ρ̄t ∈ Dk of states of the system is then determined
by the GKSL equation (also called quantum master equation):

dρ̄t = L(ρ̄t) dt, ρ̄0 ∈ Dk, (1.1)

where L is a linear operator on Mk(C) of the form

L : ρ �→ −i[H, ρ] +
∑

i∈I

(
ViρV ∗

i − 1
2{V ∗

i Vi, ρ})
, (1.2)

with I a finite set, H ∈ Mk(C) self-adjoint, and Vi ∈ Mk(C) for each i ∈ I
([·, ·] and {·, ·} are, respectively, the commutator and anticommutator). Such
an L is called a Lindblad operator.

Since L is linear, t �→ ρ̄t is given by ρ̄t = etL(ρ̄0). The flow is therefore a
semigroup (etL)t, which consists of completely positive, trace-preserving maps
(see [38]). In particular, L is the generator of a semigroup of contractions, thus
spec L ⊂ {λ ∈ C s.t. Re λ ≤ 0}. Since etL is trace preserving, 0 ∈ specL.
The following assumption is equivalent to the simplicity of the eigenvalue 0
[38, Proposition 7.6]:

(L-erg): There exists a unique nonzero minimal orthogonal projection π such
that L(πMk(C)π) ⊂ πMk(C)π.

Assumption (L-erg) implies directly that there exists a unique ρinv ∈ Dk such
that Lρinv = 0. Moreover, one can show that (L-erg) implies the existence of
λ > 0 such that for any ρ ∈ Dk, etL(ρ) = ρinv + O(e−λt) (see [38, Proposition
7.5]).

The above framework generalizes that of continuous-time Markov semi-
groups on a finite number of sites: density matrices ρ over Ck generalize prob-
ability distributions over k classical states, while Lindbladians L generalize
generators of Markov jump processes. In Sect. 6.4, we show how a classical
finite-state Markov jump process can be encoded in the present formalism.

The family (ρ̄t)t describes the reduced evolution of the system S when
coupled to an environment E in a conservative manner. This evolution can
be derived by considering the full Hamiltonian of S + E in relevant limiting
regimes, e.g., the weak coupling or fast repeated interactions regimes, and trac-
ing out the environment degrees of freedom (see [17,18] and [1], respectively).
It can also be described by a stochastic unraveling, i.e., a stochastic process
(ρt)t with values in Dk such that the expectation ρt of ρt satisfies (1.1); this
method was developed in [4–6]. One possible choice of a stochastic unraveling
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is described by the following stochastic differential equation (SDE), called a
stochastic master equation:

dρt =L(ρt−) dt

+
∑

i∈Ib

(
Liρt− + ρt−L∗

i − tr
(
ρt−(Li + L∗

i )
)
ρt−

)
dBi(t)

+
∑

j∈Ip

( Cjρt−C∗
j

tr(Cjρt−C∗
j )

− ρt−
)(

dNj(t) − tr(Cjρt−C∗
j ) dt

)
,

(1.3)

where

• I = Ib ∪ Ip is a partition of I such that Li = Vi for i ∈ Ib and Cj = Vj

for j ∈ Ip,
• each Bi is a Brownian motion,
• each Nj is a Poisson process of intensity t �→ ∫ t

0
tr(Cjρs−C∗

j )ds.

Remark 1. The processes
(
Bj(t)

)
t
and

(
Nj(t) − ∫ t

0
tr(Cjρs−C∗

j )ds
)

t
are actu-

ally martingales. Then, assuming that (1.3) accepts a solution, it is easy to
check that for any t ≥ 0, the expectation of ρt is equal to ρ̄t whenever ρ0 = ρ̄0.

Proper definitions of these Poisson processes and proofs of existence and
uniqueness of the solution to (1.3) can be found in [5,6,33–35]. A solution (ρt)t

of Equation (1.3) is called a quantum trajectory.
Equations of form (1.3) are used to model experiments in quantum optics

(photodetection, heterodyne or homodyne interferometry), particularly for
measurement and control (see [15,24,37]). They were also introduced as sto-
chastic collapse models (see [19,22]) and as numerical tools to compute ρt

(see [16]). Here, we are interested in the fact that they model the evolution of
the system S when continuous measurements are done on the environment E .
This can be shown starting from quantum stochastic differential equations
using quantum filtering [3,10,13,21,25]. An approach using the notion of a
priori and a posteriori states has been also developed using “classical” sto-
chastic calculus (see the reference book by Barchielli and Gregoratti [5], and
references therein). Continuous-time limits of discrete-time models can also be
considered, see [33–35].

Equation (1.3) has the property that if ρ0 is an extreme point of Dk,
then ρt is almost surely an extreme point of Dk for any t ∈ R+. Since we
will extensively use this property, let us make it explicit. The extreme points
of Dk are the rank 1 orthogonal projectors of Ck; for any x ∈ C

k\{0}, let x̂
be its equivalence class in PCk, the projective space of Ck. For x̂ ∈ PCk, let
πx̂ be the orthogonal projector onto Cx. Then, x̂ ∈ PCk �→ πx̂ is a bijective
map from PCk to the set of extreme points. Assume now that ρ0 = πx̂0 for
some x̂0 ∈ PCk. Then, it is easy to check that ρt = πx̂t

almost surely for
any t ∈ R+, with t �→ xt the unique solution to the following SDE, called a
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stochastic Schrödinger equation:
dxt = D(xt−)xt− dt

+
∑

i∈Ib

(
Li − 1

2vi(t−) Id
)
xt− dBi(t)

+
∑

j∈Ip

( Cj√
nj(t−)

− Id
)
xt− dNj(t),

(1.4)

for x0 ∈ x̂0 of norm 1, where the operator D(xt−) is defined as

D(xt−) = −(
iH +

1
2

∑

i∈Ib

L∗
i Li +

1
2

∑

j∈Ip

C∗
j Cj

)

+
1
2

∑

i∈Ib

vi(t−)
(
Li − 1

4 vi(t−) Id
)

+
1
2

∑

j∈Ip

nj(t−),

with

vi(t−) = 〈xt−, (Li + L∗
i )xt−〉, nj(t−) = 〈xt−, C∗

j Cjxt−〉 = ‖Cjxt−‖2.
The brackets 〈·, ·〉 denote the scalar product in C

k. Without possible confusion,
a solution (xt)t will be also called a quantum trajectory. Remark that ‖x0‖ = 1
implies ‖xt‖ = 1 almost surely for any t ∈ R+; remark also that the numerical
computation of ρt involves only multiplications of matrices with vectors and
not multiplications of matrices. (This is the motivation for the use of quantum
trajectories as numerical tools mentioned above.)

In the physics literature, extreme points of Dk are called pure states.
In particular, the preceding paragraph shows that the evolution dictated by
Eq. (1.3) preserves pure states. It actually has also the property that quan-
tum trajectories (solution of (1.3)) tend to “purify.” This has been formalized
by Maassen and Kümmerer in [31] for discrete-time quantum trajectories and
extended to the continuous-time case by Barchielli and Paganoni in [7]. Purifi-
cation is related to the following assumption (here, A ∝ B means there exists
λ ∈ C such that A = λB or λA = B. Particularly, we allow for λ = 0).

(Pur): Any nonzero orthogonal projector π such that for all i ∈ Ib, π(Li +
L∗

i )π ∝ π and for all j ∈ Ip, πC∗
j Cjπ ∝ π has rank 1.

As shown in [7], (Pur) implies that for any ρ0 ∈ Dk

lim
t→∞ inf

ŷ∈PCk
‖ρt − πŷ‖ = 0 almost surely. (1.5)

The main goal of this article is to show how the exponential convergence
of the solution (ρt)t of Eq. (1.1), induced by (L-erg), translates for its stochas-
tic unraveling (ρt)t solution of Eq. (1.3). We prove uniqueness of the invariant
measure for continuous-time quantum trajectories assuming both (L-erg) and
(Pur). From (1.5), under these assumptions, the invariant measure will be con-
centrated on pure states, so we only need to prove uniqueness of the invariant
measure for (x̂t)t equivalence class of (xt)t solution of (1.4) (since PCk is com-
pact and the involved process is Feller, the existence of an invariant measure is
obvious). The difficulty of this proof lies in the failure of usual techniques like
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ϕ-irreducibility. Note that this question has already been partially addressed
in the literature: essentially, only diffusive equations have been considered,
i.e., equations for which Eq. (1.3) or (1.4) contains no jump term (in our nota-
tion, Ip = ∅). The results of [7] were, to our knowledge, the most advanced
ones so far. In that article, algebraic conditions on the vector fields describ-
ing the stochastic differential equation are imposed to obtain the uniqueness
of the invariant measure. This allows the authors to apply directly standard
results from the analysis of stochastic differential equations. Unfortunately,
their assumptions are hard to check for a given family of matrices (Li)i∈Ib

.
The main result of the present paper is the following theorem.

Theorem 1.1. Assume that (Pur) and (L-erg) hold. Then, the Markov process
(x̂t)t has a unique invariant probability measure μinv, and there exist C > 0
and λ > 0 such that for any initial distribution μ of x̂0 over PCk, for all t ≥ 0,
the distribution μt of x̂t satisfies

W1(μt, μinv) ≤ Ce−λt

where W1 is the Wasserstein distance of order 1.

This theorem is more general than previous similar results in differ-
ent ways. First, we consider stochastic Schrödinger equations involving both
Poisson and Wiener processes. Second, our assumptions are standard for
quantum trajectories and are easy to check for a given family of operators(
H, (Li)i∈Ib

, (Cj)j∈Ip

)
. Last, we prove an exponential convergence toward the

invariant measure. As a by-product, we also provide a simple proof of the
purification expressed in Eq. (1.5) (see Proposition 2.5). To complete the pic-
ture, assuming only (Pur), we show that (L-erg) is necessary. We also provide
a complete characterization of the set of invariant measures of (x̂t) whenever
(L-erg) does not hold (see Proposition 4.2). Arguments in Sects. 3 and 4 are
adaptations of [11], where similar results for discrete-time quantum trajectories
are considered.

The paper is structured as follows. In Sect. 2, we give a precise description
of the model of quantum trajectories with a proper definition of the underlying
probability space. In particular, we introduce a new martingale which is central
to our proofs. In Sect. 3, we prove Theorem 1.1. In Sect. 4, we derive the full
set of invariant measures assuming only (Pur). In Sect. 5, we show that (Pur)
is not necessary even if (L-erg) holds. In Sect. 6, we provide some examples
of explicit invariant measures. In Sect. 6.4, we provide an encoding of any
classical finite-state Markov jump process into a stochastic master equation.

2. Construction of the Model

2.1. Construction of Quantum Trajectories

In this section, we fix the notations and introduce the probability space we
use to study (x̂t)t. First, for an element x �= 0 of Ck, and for an operator A
with Ax �= 0, we denote

A · x̂ = Âx.
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We consider the following distance on PCk:

d(x̂, ŷ) =
√

1 − |〈x, y〉|2 , (2.1)

for all x̂, ŷ ∈ PCk, where x and y are norm 1 representatives of x̂ and ŷ,
respectively. We equip PCk with the associated Borel σ-algebra denoted by B.

Now we introduce a stochastic process with values in Mk(C). Let(
Ω, (Ft)t,P

)
be a filtered probability space with standard Brownian motions

Wi for i ∈ Ib, and standard Poisson processes Nj for j ∈ Ip, such that the full
family

(
Wi, Nj ; i ∈ Ib, j ∈ Ip

)
is independent. The filtration (Ft)t is assumed

to satisfy the standard conditions, and we denote F∞ by F and the processes(
Wi(t)

)
t

and
(
Nj(t) − t

)
t

are (Ft)t-martingales under P. We denote by E the
expectation with respect to P.

On
(
Ω, (Ft)t,P

)
, for s ∈ R+, let (Ss

t )t∈[s,∞) be the solution to the follow-
ing SDE:

dSs
t =

(
K + #Ip

2 Id
)
Ss

t− dt

+
∑

i∈Ib

LiS
s
t− dWi(t) +

∑

j∈Ip

(Cj − Id)Ss
t− dNj(t), Ss

s = Id (2.2)

(#Ip is the cardinal of Ip), where

K = −iH − 1
2

( ∑

i∈Ib

L∗
i Li +

∑

j∈Ip

C∗
j Cj

)
.

Since standard Cauchy–Lipschitz conditions are fulfilled, the SDE defining
(Ss

t )t has indeed a unique (strong) solution. We denote St := S0
t . Note that

for s fixed the process (Ss
t )t is independent of Fs, and we have that for all

0 ≤ r ≤ s ≤ t

Ss
t Sr

s = Sr
t .

In addition, for any ρ ∈ Dk, let (Zρ
t )t be the positive real-valued process

defined by

Zρ
t = tr(S∗

t Stρ),

and let (ρt)t be the Dk-valued process defined by

ρt =
StρS∗

t

tr(StρS∗
t )

if Zρ
t �= 0, taking an arbitrarily fixed value whenever Zρ

t = 0 (this value will
always appear with probability zero in the sequel).

The following results on the properties of (Zρ
t )t were proven in [6]. We

give short proofs adapted to our restricted setting where the Hilbert space is
finite-dimensional, and I = Ib ∪ Ip is a finite set.

Lemma 2.1. For any ρ ∈ Dk, the stochastic process (Zρ
t )t is the unique solution

of the SDE

dZρ
t = Zρ

t−
( ∑

i∈Ib

tr
(
(Li + L∗

i )ρt−
)
dWi(t)
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+
∑

j∈Ip

(
tr(C∗

j Cjρt−) − 1
)(

dNj(t) − dt
))

, Zρ
0 = 1.

Moreover, (Zρ
t )t is a nonnegative martingale under P.

Proof. The fact that (Zρ
t )t verifies the given SDE is a direct application of the

Itô formula. Since (ρt)t takes its values in the compact space Dk, that SDE
verifies standard Cauchy–Lipschitz conditions, ensuring the uniqueness of the
solution. Since the processes

(
Wi(t)

)
t

and
(
Nj(t) − t

)
t

are P-martingales, it
follows that (Zρ

t )t is a P-local martingale. Since tr(C∗
j Cjρ) ≥ 0 for any j ∈ Ip

and ρ ∈ Dk, and (ρt)t takes value in the compact space Dk, it follows from
[27, Theorem 12] that (Zρ

t )t∈[0,T ] is a P-nonnegative martingale for all T . �

For any ρ ∈ Dk, we define a probability P
ρ
t on (Ω,Ft):

dPρ
t = Zρ

t dP|Ft
. (2.3)

Since (Zρ
t )t is a P-martingale from Lemma 2.1, the family (Pρ

t )t is consistent,
that is, Pρ

t (E) = P
ρ
s(E) for t ≥ s and E ∈ Fs. Kolmogorov’s extension theorem

defines a unique probability on (Ω,F∞), which we denote by P
ρ. We will denote

by E
ρ the expectation with respect to P

ρ.
The following proposition makes explicit the relationship between P and

P
ρ. It follows from a direct application of Girsanov’s change of measure the-

orem (see [26, Theorems III.3.24 and III.5.19]). For all i ∈ Ib and t ∈ R+,
let

Bρ
i (t) = Wi(t) −

∫ t

0

tr
(
(Li + L∗

i )ρs−
)
ds.

Proposition 2.2. Let ρ ∈ Dk. Then, with respect to P
ρ, the processes {Bρ

i }i∈Ib

are independent Wiener processes and the processes {Nj}j∈Ip
are point pro-

cesses of respective stochastic intensity {t �→ tr(C∗
j Cjρt−)}j∈Ip

.

The process (ρt)t considered under P
ρ models the evolution of a Markov

open quantum system subject to indirect measurements. We refer the reader
to [5,14,15] and references therein for a more detailed discussion of this inter-
pretation.

From Itô calculus, (ρt)t is solution of the SDE

dρt = L(ρt−)dt

+
∑

i∈Ib

(
Liρt− + ρt−L∗

i − tr
(
ρt−(Li + L∗

i )
)
ρt−

)
dBρ

i (t)

+
∑

j∈Ip

( Cjρt−C∗
j

tr(Cjρt−C∗
j )

− ρt−
)(

dNj(t) − tr(Cjρt−C∗
j ) dt

)
.

(2.4)

Proposition 2.2 then implies that with respect to P
ρ, the process (ρt)t is indeed

the unique solution of (1.3) with ρ0 = ρ. Similarly, if ρ0 = πx̂ for some x̂ ∈ PCk,
then with respect to P

πx̂ , the process
(

Stx
‖Stx‖

)
t

is the solution of (1.4) with x

any norm 1 representative of x̂.
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Remark also that for any ρ ∈ Dk, using (2.3), one has from Remark 1

E(StρS∗
t ) = E(ρtZ

ρ
t ) = E

ρ(ρt) = etL(ρ). (2.5)

Our strategy of proof is based on the study of the joint distribution of
St and a random initial state x̂. To this end, we consider the product space
Ω × PCk equipped with the filtration (Ft ⊗ B)t and the full σ-algebra F ⊗ B.
For any probability measure μ on PCk, and for all E ∈ F and A ∈ B, let

Qμ(E × A) =
∫

P
πx̂(E)1x̂∈A dμ(x̂).

We will denote by Eμ the expectation with respect to Qμ. Note that dPπx̂
t =

‖Stx‖2 dP for any x̂ ∈ PCk, so that P
πx̂({Stx = 0}) = 0 for all x ∈ x̂.

Therefore,

Qμ

({Stx = 0}) = 0

and there exists a process (x̂t)t for which

x̂t = St · x

holds almost surely. It has the same distribution as the image by the map
x �→ x̂ of the solution (xt)t to (1.4) with x0 ∈ x̂, ‖x0‖ = 1.

The following proposition shows that the laws of any F-measurable ran-
dom variables are given by a marginal of Qμ. For a probability measure μ on
PCk, we define

ρμ := Eμ(πx̂).

Proposition 2.3. Let μ be a probability measure on PCk, then ρμ ∈ Dk and for
any E ∈ F ,

Qμ(E × PCk) = P
ρμ(E).

Proof. The fact that ρμ ∈ Dk follows from the positivity and linearity of the
expectation. Concerning the second part, let t ≥ 0 and E ∈ Ft, then

Qμ(E × PCk) =
∫

P
πx̂(E) dμ(x) =

∫ ∫

E

tr(S∗
t Stπx̂) dPdμ(x).

Fubini’s Theorem implies

Qμ(E × PCk) =
∫

E

tr(S∗
t Stρμ) dP =

∫

E

Z
ρμ

t dP = P
ρμ

t (E).

The uniqueness of the extended measure in Kolmogorov’s extension theorem
yields the proposition. �

Remark 2. Any F-measurable random variables X can be extended canoni-
cally to a F ⊗B-measurable random variables setting X(ω, x̂) = X(ω). Propo-
sition 2.3 then implies that the distribution of a F-measurable random variable
under Qμ depends on μ only through ρμ. The central idea of our proof is that
assumption (Pur) will allow us to find a F-measurable process approximating
(x̂t)t. The F-measurability of the process will then imply that it inherits some
ergodicity properties from assumption (L-erg).
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Remark 3. If μinv is an invariant measure for the Markov chain (x̂t)t, then
with the above notation, ρμinv is an invariant state for (etL)t. In particular, if
(L-erg) holds then ρμinv = ρinv. This follows from the identities

etL(ρμinv) =
∫

etL(πx̂) dμinv =
∫

Stπx̂S∗
t dPdμinv(x̂) =

∫
πx̂ dμinv(x̂) = ρμinv

where the second identity uses (2.5).

2.2. Key Martingale

The following process is the key to construct a F-measurable process approx-
imating (x̂t)t. For any t ≥ 0, let

Mt =
S∗

t St

tr(S∗
t St)

, (2.6)

whenever tr(S∗
t St) �= 0, and give Mt a fixed arbitrary value whenever

tr(S∗
t St) = 0. Since, by definition, for any ρ ∈ Dk, Pρ

({tr S∗
t St = 0}) = 0,

the arbitrary definition of Mt on this set of vanishing probability is irrelevant.
It turns out that with respect to P

Id/k, (Mt)t is a martingale. For convenience,
we write P

ch = P
Id/k and similarly for any other ρ-dependent object, whenever

ρ = Id/k.

Theorem 2.4. With respect to P
ch, the stochastic process (Mt)t is a bounded

martingale. Therefore, it converges P
ch-almost surely and in L1 to a random

variable M∞. Moreover, for any ρ ∈ Dk,

dPρ = k tr(ρM∞) dPch,

and (Mt)t converges almost surely and in L1 to M∞ with respect to P
ρ.

Proof. Expressing (St)t in terms of Bch
i for i ∈ Ib, we have that

dSt =
(
K + #Ip

2 Id +
∑

i∈Ib

tr
(
S∗

t−(Li + L∗
i )St−

)

tr(S∗
t−St−)

Li

)
St− dt

+
∑

i∈Ib

LiSt− dBch
i (t) +

∑

j∈Ip

(Cj − Id)St− dNj(t).

Recall that the distributions of the Bch
i and Nj under Pch are given by Propo-

sition 2.2.
Since tr(S∗

t St) is P
ch-almost surely nonzero, we can define Rt by Rt =

St/
√

tr(S∗
t St) almost surely for P

ch, and therefore for P
ρ and Qμ. The Itô

formula implies

dMt =
∑

i∈Ib

(
R∗

t−(Li + L∗
i )Rt− − Mt− tr

(
R∗

t−(Li + L∗
i )Rt−

))
dBch

i (t)

+
∑

j∈Ip

( R∗
t−C∗

j CjRt−
tr(R∗

t−C∗
j CjRt−)

− Mt−
)(

dNj(t) − tr(R∗
t−C∗

j CjRt−) dt
)
.

Hence, with respect to P
ch, (Mt)t is a local martingale. By definition, it is

positive-semidefinite, and is also bounded since tr(Mt) = 1 almost surely. Thus,
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(Mt)t is a martingale and standard theorems of convergence for martingales
imply the convergence almost surely and in L1.

By direct computation, we get dPρ|Ft
= k tr(ρMt) dPch|Ft

. The L1 con-
vergence of (Mt)t with respect to P

ch then implies dPρ = k tr(ρM∞) dPch.
Finally, the inequality tr(AB) ≤ ‖A‖ tr(B) for any two positive semidefinite
matrices implies P

ρ ≤ k P
ch, which yields the L1 and almost sure convergence

with respect to P
ρ. �

Now we are in the position to show that under the assumption (Pur)
the limit M∞ is a rank 1 projector. To this end, let us introduce the polar
decomposition of (St)t: there exists a process (Ut)t with values in the set of
k × k unitary matrices such that for all t ≥ 0

St =
√

tr(S∗
t St) UtM

1/2
t .

Proposition 2.5. Assume that (Pur) holds. Then, for any ρ ∈ Dk, Pρ-almost
surely, the random variable M∞ is a rank 1 orthogonal projector on C

k.

Proof. First, since P
ρ is absolutely continuous with respect to P

ch, proving the
result with ρ = Id/k is sufficient. To achieve this, remark that the P

ch-almost
sure convergence of (Mt)t and the P

ch-almost sure bound supt≥0 ‖Mt‖ ≤ 1
imply the convergence of Ech(M2

t ). Now recall that Rt = St/
√

tr(S∗
t St). The

Itô isometry implies

E
ch(M2

t ) =M2
0 +

∑

i∈Ib

∫ t

0

E
ch

(
R∗

s(Li + L∗
i )Rs − Ms tr

(
R∗

s(Li + L∗
i )Rs

))2

ds

+
∑

j∈Ip

∫ t

0

E
ch

(( R∗
sC

∗
j CjRs

tr(R∗
sC

∗
j CjRs)

− Ms

)2

tr(R∗
sC

∗
j CjRs)

)
ds.

Therefore, the convergence of Ech(M2
t ) to E

ch(M2
∞) implies that

∫ ∞

0

E
ch

(
R∗

s(Li + L∗
i )Rs − Ms tr

(
R∗

s(Li + L∗
i )Rs

))2

ds < ∞

for all i ∈ Ib and
∫ ∞

0

E
ch

(( R∗
sC

∗
j CjRs

tr(R∗
sC

∗
j CjRs)

− Ms

)2

tr(R∗
sC

∗
j CjRs)

)
ds < ∞

for all j ∈ Ip. Since the integrands are nonnegative, their inferior limits at
infinity are 0. Hence, there exists an unbounded increasing sequence (tn)n

such that for any i ∈ Ib,

lim
n

E
ch

(
R∗

tn
(Li + L∗

i )Rtn
− Mtn

tr
(
R∗

tn
(Li + L∗

i )Rtn

))
= 0

and for any j ∈ Ip,

lim
n

E
ch

(( R∗
tn

C∗
j CjRtn

tr(R∗
tn

C∗
j CjRtn

)
− Mtn

)2

tr(R∗
tn

C∗
j CjRtn

)
)

= 0.
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Since convergence in L1 implies the almost sure convergence of a subsequence,
there exists an unbounded increasing sequence, which we denote also by (tn)n,
such that P

ch-almost surely,

lim
n→∞

(
R∗

tn
(Li + L∗

i )Rtn
− Mtn

tr(R∗
tn

(Li + L∗
i )Rtn

)
)

= 0

and

lim
n→∞

(( R∗
tn

C∗
j CjRtn

tr(R∗
tn

C∗
j CjRtn

)
− Mtn

)2

tr(R∗
tn

C∗
j CjRtn

)
)

= 0

for all i ∈ Ib and j ∈ Ip.
Now and for the rest of this paragraph, fix a realization (i.e., an element

of Ω) such that (Mtn
)n converges to M∞. The polar decomposition of Rt is

Rt = Ut

√
Mt. Since the set of k × k unitary matrices is compact, there exists

a subsequence (sn)n of (tn)n such that (Usn
)n converges to U∞. We therefore

have
√

M∞U∗
∞(Li + L∗

i )U∞
√

M∞ − M∞ tr(M∞U∗
∞(Li + L∗

i )U∞) = 0

and
√

M∞U∗
∞C∗

j CjU∞
√

M∞ − M∞ tr(M∞U∗
∞C∗

j CjU∞) = 0,

for all i ∈ Ib and j ∈ Ip. Denoting P∞ the orthogonal projector onto the range
of M∞, it follows that there exist real numbers (αi)i∈Ib

and (βj)j∈Ip
such that

U∞P∞U∗
∞(Li + L∗

i )U∞P∞U∗
∞ = αiU∞P∞U∗

∞

and

U∞P∞U∗
∞C∗

j CjU∞P∞U∗
∞ = βjU∞P∞U∗

∞.

Assumption (Pur) implies that the orthogonal projector U∞P∞U∗
∞ has rank

1, thus so does P∞. Since tr(M∞) = 1, M∞ is a rank 1 orthogonal projector.
Since (Mtn

)n converges P
ch-almost surely, the above paragraph and the

absolute continuity of Pρ with respect to P
ch show that M∞ is Pρ-almost surely

a rank one orthogonal projector. �

3. Invariant Measure and Exponential Convergence in
Wasserstein Distance

This section is devoted to the main result of the paper, which concerns the
exponential convergence to the invariant measure for the Markov process (x̂t)t.
We first show a convergence result for F-measurable random variables. The
following theorem is a transcription of [38, Proposition 7.5].

Theorem 3.1. Assume that (L-erg) holds. Then, there exist two constants C >
0 and λ > 0 such that for any ρ ∈ Dk and any t ≥ 0,

∥∥etL(ρ) − ρinv
∥∥ ≤ Ce−λt
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Our next proposition requires the introduction of a shift semigroup. From
now on, we assume that

(
Ω, (Ft)t,P

)
is a canonical realization of the processes

Wi and Nj , in particular Ω is a subset of (RIb∪Ip)R+ . We can then define for
every t ≥ 0 the map θt on Ω by

(
θtω

)
(s) = ω(s + t) − ω(t).

From the previous theorem, we deduce the following proposition for F-
measurable random variables.

Proposition 3.2. Assume (L-erg) holds. Then, there exist two constants C > 0
and λ > 0 such that for any F-measurable, essentially bounded function f :
Ω �→ C with essential bound ‖f‖∞, any t ≥ 0 and any ρ ∈ Dk,∣∣Eρ(f ◦ θt) − E

ρinv(f)
∣∣ ≤ ‖f‖∞Ce−λt. (3.1)

Proof. Recall that by definition P is the law of processes with independent
increments. It follows that if g is Ft-measurable and h is F-measurable, E(h ◦
θtg) = E(h ◦ θt)E(g). Then, by definition of Pρ,

E
ρ(f ◦ θt) = E(f ◦ θtZρ

t+s).

Since Zρ
t+s = tr(St ∗

t+sS
t
t+sStρS∗

t ) where S∗
t ρSt is Ft-measurable and St ∗

t+sS
t
t+s =

S∗
sSs ◦ θt by (2.2)

E
ρ(f ◦ θt) = E

(
f ◦ θt tr

(
St ∗

t+sS
t
t+sE(StρS∗

t )
))

.

Then, relation (2.5), the θ-invariance of P, and the definition of the measures
P

ρ yield

E
ρ(f ◦ θt) = E

ρ̄t(f)

with ρ̄t = etL(ρ). It follows from Theorem 2.4 that

E
ρ(f ◦ θt) − E

ρinv(f) = E
ch

(
f tr

(
M∞(etL(ρ) − ρinv)

))
.

For any matrix A, denoting ‖A‖1 its trace norm,
∣∣ tr(M∞A)

∣∣ ≤ ‖A‖1. There-
fore,

∣∣Eρ(f ◦ θt) − E
ρinv(f)

∣∣ ≤ ‖f‖∞‖etL(ρ) − ρinv‖1.
Theorem 3.1 then yields the proposition. �

The main strategy to show Theorem 1.1 is to construct a F-measurable
process (ŷt)t approximating the process (x̂t)t. Let (ẑt)t be the maximum like-
lihood process:

ẑt = argmax
x̂∈PCk

‖Stx‖ (3.2)

where x is a norm 1 representative of x̂. If the largest eigenvalue of S∗
t St is not

simple, the choice of ẑt may not be unique. However, we can always choose
an appropriate ẑt in an (Ft)t-adapted way. If (Pur) holds, Proposition 2.5
ensures that the definition of ẑt is almost surely unambiguous for large enough
t: it is the equivalence class of eigenvectors of Mt corresponding to its largest
eigenvalue.
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Let now (ŷt)t be the evolution of this maximum likelihood estimate:

ŷt = St · ẑt. (3.3)

We shall also use the notation ẑs
t+s := ẑt ◦ θs and ŷs

t+s := ŷt ◦ θs, that is,
processes defined in the same fashion but substituting Ss

t+s for St. It is worth
noticing that these processes are all F-measurable.

Our proof that (ŷt)t is an exponentially good approximation of (x̂t)t relies
in part on the use of the exterior product of Ck. We recall briefly the relevant
definitions: for x1, x2 ∈ C

k, we denote by x1 ∧x2 the alternating bilinear form

x1 ∧ x2 : (y1, y2) �→ det
(〈x1, y1〉 〈x1, y2〉

〈x2, y1〉 〈x2, y2〉
)

.

Then, the set of all x1∧x2 is a generating family for the set ∧2
C

k of alternating
bilinear forms on C

k. We equip it with a complex inner product by

〈x1 ∧ x2, y1 ∧ y2〉 = det
(〈x1, y1〉 〈x1, y2〉

〈x2, y1〉 〈x2, y2〉
)

,

and denote by ‖x1 ∧ x2‖ the associated norm (there should be no confusion
with the norm on vectors). It is immediate to verify that our metric d(·, ·) on
PCk satisfies

d(x̂, ŷ) =
‖x ∧ y‖
‖x‖‖y‖ . (3.4)

For A ∈ Mk(C), we write ∧2A for the operator on ∧2
C

k defined by
( ∧2 A

)
(x1 ∧ x2) = Ax1 ∧ Ax2. (3.5)

It follows that ∧2(AB) = ∧2A ∧2 B, so that ‖ ∧2 (AB)‖ ≤ ‖ ∧2 A‖‖ ∧2 B‖.
There exists a useful relationship between the operator norm on ∧2Mk(C) and
singular values of matrices. From, e.g., Chapter XVI of [32],

‖ ∧2 A‖ = a1(A) a2(A), (3.6)

where a1(A) ≥ a2(A) are the two first singular values of A, i.e., the square
roots of eigenvalues of A∗A. We recall that the operator norm is defined such
that ‖A‖ := a1(A).

The exponential decrease of d(x̂t, ŷt) is derived from the exponential
decay of the following function:

f : t �→ E
(‖ ∧2 St‖

)
.

Lemma 3.3. Assume that (Pur) holds. Then, there exist two constants C > 0
and λ > 0 such that for all t ≥ 0

f(t) ≤ Ce−λt

Proof. First, we show that f converges to zero as t grows to ∞. To this end
recall that Rt = St/

√
kZch

t , so that

E
(‖ ∧2 St‖

)
= E

ch
(
k‖ ∧2 Rt‖

)
.
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Furthermore, since R∗
t Rt = Mt, we have from Theorem 2.4 and Proposition 2.5

that

lim
t→∞ ‖ ∧2 Rt‖ = lim

t→∞ a1(Rt) a2(Rt) = 0.

Indeed, since a1(Rt) and a2(Rt) are the largest two eigenvalues of
√

Mt, the fact
that it converges to a rank 1 projector implies that a1(Rt) converges to 1 and
a2(Rt) to zero. The inequality ‖St‖2 ≤ tr(S∗

t St) implies ‖ ∧2 Rt‖ ≤ 1 almost
surely. Then, Lebesgue’s dominated convergence theorem yields limt→∞ f(t) =
0.

Second, we show f is submultiplicative. By the semigroup property,
St+s = Ss

t+sSs for all t, s ≥ 0. Using that the norm is submultiplicative,
for any t, s ≥ 0,

‖ ∧2 St+s‖ ≤ ‖ ∧2 Ss
t+s‖‖ ∧2 Ss‖

Since P has independent increments, ‖∧2Ss
t+s‖ = ‖∧2St‖◦θs is Fs-independent

and ‖ ∧2 Ss‖ is Fs-measurable,

E
(‖ ∧2 St+s‖

) ≤ E
(‖ ∧2 Ss

t+s‖
)
E

(‖ ∧2 Ss‖
)

The measure P being shift-invariant,

E
(‖ ∧2 St+s‖

) ≤ E
(‖ ∧2 St‖

)
E

(‖ ∧2 Ss‖
)

which yields that f is submultiplicative.
Since f is measurable, submultiplicative and 0 ≤ f(t) ≤ k for all t,

Fekete’s subadditive lemma ensures that there exists λ ∈ (−∞,∞] such that

lim
t→∞

1
t

log f(t) = inf
1
t

log f(t) = −λ.

Since f converges toward 0, this λ belongs to (0,∞]. This yields the lemma.
�

Proposition 3.4. Assume that (Pur) holds. Then, there exist two constants C >
0 and λ > 0 such that for any s, t ∈ R+ and for any probability measure μ on
(PCk,B),

Eμ

(
d(x̂t+s, ŷ

s
t+s)

) ≤ Ce−tλ. (3.7)

Proof. Recall that Eμ is the expectation with respect to Qμ. Using the Markov
property, we have

Eμ

(
d(x̂t+s, ŷ

s
t+s)

)
= Eμs

(
d
(
x̂t, ŷt)

)
(3.8)

with μs the distribution of x̂s conditioned on x̂0 ∼ μ. Then, it is sufficient to
prove the proposition for s = 0. For any t ≥ 0, using the fact that ‖Stzt‖ = ‖St‖
for zt a norm 1 representative of ẑt,

d(x̂t, ŷt) =
‖xt ∧ yt‖
‖xt‖‖yt‖ =

‖Stx0 ∧ Stzt‖
‖Stx0‖‖Stzt‖ ≤ ‖ ∧2 St‖

‖Stx0‖‖St‖ ≤ ‖ ∧2 St‖
‖Stx0‖2

Using this inequality and the fact that dQμ|Ft⊗B = ‖Stx0‖2 dPdμ(x̂0),

Eμ

(
d(x̂t, ŷt)

) ≤
∫

E
(‖ ∧2 St‖

)
dμ(x̂0) ≤ f(t).
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Finally, Lemma 3.3 yields the proposition. �
We turn to the proof of our main theorem, Theorem 1.1. The speed of

convergence is expressed in terms of the Wasserstein distance W1. Let us recall
the definition of this distance for compact metric spaces: for X a compact
metric space equipped with its Borel σ-algebra, the Wasserstein distance of
order 1 between two probability measures σ and τ on X can be defined using
the Kantorovich–Rubinstein duality Theorem as

W1(σ, τ) = sup
f∈Lip1(X)

∣∣∣
∫

X

f dσ −
∫

X

f dτ
∣∣∣,

where Lip1(X) = {f : X → R s.t. |f(x)−f(y)| ≤ d(x, y)} is the set of Lipschitz
continuous functions with constant 1, and d is the metric on X. Here, we use
this for X = PCk and d defined in (2.1) (see also (3.4)).

We recall our main theorem before proving it.

Theorem 3.5. Assume that (Pur) and (L-erg) hold. Then, the Markov process
(x̂t)t has a unique invariant probability measure μinv, and there exist C > 0
and λ > 0 such that for any initial distribution μ of x̂0 over PCk, for all t ≥ 0,
the distribution μt of x̂t satisfies

W1(μt, μinv) ≤ Ce−λt

where W1 is the Wasserstein distance of order 1.

Proof. Let f ∈ Lip1(PCk). From the definition of Wasserstein distance, we
can restrict ourselves to functions f that vanish at some point. Remark that
since supx̂,ŷ∈PCk d(x̂, ŷ) = 1, restricting to this set of functions implies ‖f‖∞ ≤
1. Let μinv be an invariant probability measure for (x̂t)t. We will prove the
exponential convergence of (μt)t toward μinv for any initial μ0, and that will
imply that (x̂t)t accepts a unique invariant probability measure. Let t ≥ 0,
and recall that ŷ

t/2
t = ŷt/2 ◦ θt/2. We have

Eμ

(
f(x̂t)

) − Eμinv

(
f(x̂t)

)
= Eμ

(
f(x̂t)

) − Eμ

(
f(ŷt/2

t )
)

+ Eμinv

(
f(ŷt/2

t )
) − Eμinv

(
f(x̂t)

)

+ Eμ

(
f(ŷt/2

t )
) − Eμinv

(
f(ŷt/2

t )
)

≤ Eμ

(
d(x̂t, ŷ

t/2
t )

)
+ Eμinv

(
d(x̂t, ŷ

t/2
t )

)
(3.9)

+ Eμ

(
f(ŷt/2

t )
) − Eμinv

(
f(ŷt/2

t )
)
. (3.10)

The two terms on the right-hand side of line (3.9) are bounded using Propo-
sition 3.4. Using Proposition 2.3, the difference on line (3.10) satisfies

Eμ

(
f(ŷt/2

t )
) − Eμinv

(
f(ŷt/2

t )
)

= E
ρμ

(
f(ŷt/2

t )
) − E

ρinv
(
f(ŷt/2

t )
)
.

Then, bounding the right-hand side using Proposition 3.2, it follows there exist
C > 0 and λ > 0 such that∣∣∣Eμ

(
f(x̂t)

) − Eμinv

(
f(x̂t)

)∣∣∣ ≤ 3Ce−λt/2.

Adapting the two constants yields the theorem. �
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4. Set of Invariant Measures Under (Pur)

The results and proofs of this section are a direct translation of [11, Appendix
B]. We reproduce the proofs for the reader’s convenience.

Whenever (L-erg) does not hold, dim kerL > 1 and the semigroup (etL)t

accepts more than one fixed point in Dk. The convex set of invariant states
can be explicitly classified given the matrices (Li)i∈Ib

and (Cj)j∈Ib
. Following

[9, Theorem 7] (alternatively see Theorem 7.2 and Proposition 7.6 in [38], and
[36]), there exists a decomposition

C
k � C

n1 ⊕ · · · ⊕ C
nd ⊕ C

D, k = n1 + . . . + nd + D

with the following properties:
(1) The range of any invariant states is a subspace of V = C

n1 ⊕ · · · ⊕C
nd ⊕

{0};
(2) The restriction of the operators Li and Cj to C

n1 ⊕ · · · ⊕ C
nd is block-

diagonal, with
Li = L1,i ⊕ · · · ⊕ Ld,i, i ∈ Ib,

Cj = C1,j ⊕ · · · ⊕ Cd,j , j ∈ Ip;
(4.1)

(3) For each � = 1, . . . , d, there are a decomposition C
n� = C

k� ⊗ C
m� , n� =

k�×m�, a unitary matrix U� on C
n� and matrices {L̂�,i}i∈Ib

and {Ĉ�,j}j∈Ip

on C
k� such that

L�,i = U�(L̂�,i ⊗ IdCm� )U∗
� , i ∈ Ib,

C�,j = U�(Ĉ�,j ⊗ IdCm� )U∗
� , j ∈ Ip;

(4.2)

(4) There exists a positive definite matrix ρ� on C
k� such that

0 ⊕ · · · ⊕ U�(ρ� ⊗ IdCm� )U∗
� ⊕ · · · ⊕ 0 (4.3)

is a fixed point of (etL)t.
Then, the set of fixed points for (etL) is

U1

(
ρ1 ⊗ Mm1(C)

)
U∗
1 ⊕ . . . ⊕ Ud

(
ρd ⊗ Mmd

(C)
)
U∗

d ⊕ 0MD(C).

The decomposition simplifies under the purification assumption.

Proposition 4.1. Assume that (Pur) holds. Then, there exist a set {ρ�}d
�=1 of

positive definite matrices and an integer D such that the set of fixed points of
(etL)t is

Cρ1 ⊕ · · · ⊕ Cρd ⊕ 0MD(C).

Proof. The statement follows from the discussion preceding the proposition
if we show that (Pur) implies m1 = . . . = md = 1. Assume that one of
the m�, e.g., m1, is greater than 1. Let x be a norm 1 vector in C

k1 . Then,
π = U1(πx̂ ⊗ ICm1 )U∗

1 ⊕ 0⊕· · ·⊕ 0 is an orthogonal projection of rank m1 > 1,
and

π(Li + L∗
i )π = ‖(L1,i + L∗

1,i)x‖2 π and

π(C∗
j Cj)π = ‖C∗

1,jC1,jx‖2 π for all i ∈ Ib, j ∈ Ip,
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and this contradicts (Pur). �

It is clear from Proposition 4.1 that to each extremal fixed point 0⊕· · ·⊕
ρ� ⊕ · · · ⊕ 0 corresponds a unique invariant measure μ� supported on its range
ran ρ�. The converse is the subject of the next proposition.

Proposition 4.2. Assume (Pur) holds. Then, any invariant probability measure
of (x̂t)t is a convex combination of the measures μ�, � = 1, . . . , d.

Proof. Let μ be an invariant probability measure for (x̂t)t and f be a contin-
uous function on PCk. Proposition 3.4 implies that

∫
f dμ = Eμ

(
f(x̂0)

)
= Eμ

(
f(x̂t)

)
= lim

t→∞Eμ

(
f(ŷt)

)
.

Since (ŷt)t is F-measurable, Proposition 2.3 implies
∫

f dμ = limt→∞ E
ρμ

(
f(ŷt)

)
,

and by Remark 3, ρμ ∈ Dk is a fixed point of (etL)t. Proposition 4.1 ensures
that there exist nonnegative numbers p1, . . . , pd summing up to one such that
ρμ = p1 ρ1 ⊕ · · · ⊕ pd ρd ⊕ 0MD(C). From the definition of Pρμ ,

P
ρμ = p1 P

ρ1 + · · · + pd P
ρd

with the abuse of notation ρ� := 0 ⊕ · · · ⊕ ρ� ⊕ · · · ⊕ 0, so that
∫

f dμ = lim
t→∞ p1 E

ρ1
(
f(ŷt)

)
+ · · · + pd E

ρd
(
f(ŷt)

)
.

The same argument gives
∫

f dμ� = limt→∞ E
ρ�

(
f(ŷt)

)
, and we have μ =

p1 μ1 + . . . + pd μd. �

5. (Pur) is Not Necessary for Purification

As shown by the following example, the condition (Pur) is sufficient but not
necessary for (1.5) to hold.

Let k = 3 and fix an orthonormal basis {e1, e2, e3} of C3. Let Ib = {0, 1},
Ip = {2}, u = (e1 + e2 + e3)/

√
3 and v = (e1 + e3)/

√
2. Let

H = 0, V0 = L0 = e1u
∗, V1 = L1 = 2vv∗ + e2e

∗
2, V2 = C2 = ue∗

1.(5.1)

Proposition 5.1. Let L be the Lindblad operator given by (1.2) with H, V1, V2,
V3 defined in (5.1). Then, (L-erg) holds and the unique invariant state ρinv is
positive definite.

Proof. Using [38, Proposition 7.6], it is sufficient to prove that if π is a non-null
orthogonal projector such that (Id−π)L0π = (Id−π)L1π = (Id−π)C2π = 0,
then π = Id. Assume rank π < 3. Since π ∈ M3(C), there exist x̂ ∈ PC3

such that either π = πx̂ or π = Id − πx̂. If the first alternative holds, (Id −
π)L0π = (Id − π)L1π = (Id − π)C2π = 0 implies x̂ is the equivalence class
of a common eigenvector of L0, L1 and C2. If the second alternative holds, x̂
is the equivalence class of a common eigenvector of L∗

0, L∗
1 and C∗

2 . The only
common eigenvectors of L0 and C2 or L∗

0 and C∗
2 are elements of C(e2 − e3).

Since L1 is self-adjoint, and this eigenspace is not an eigenspace of L1, the
proposition holds. �
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In the orthonormal basis {e1, e2, e3},

L∗
0 + L0 =

1√
3

⎛

⎝
2 1 1
1 0 0
1 0 0

⎞

⎠ , L∗
1 + L1 = 2

⎛

⎝
1 0 1
0 1 0
1 0 1

⎞

⎠ and C∗
2C2 =

⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ .

Taking π the orthogonal projector onto the subspace spanned by {e2, e3}, it
follows that (Pur) does not hold. Yet we have the following proposition.

Proposition 5.2. Consider the family of processes (ρt)t defined by (1.3) with
H, L0, L1, C2 defined in (5.1). Then, for any ρ ∈ Dk,

lim
t→∞ inf

ŷ∈PCk
‖ρt − πŷ‖ = 0 P

ρ-almost surely.

Proof. Proposition 5.1 implies that ρinv, the unique element of Dk invariant
by (etL)t is positive definite. Then, tr(C∗

2C2ρinv) > 0. The results of [29] thus
ensure that for any ρ ∈ Dk,

lim
t→∞ N2(t)/t = tr(C∗

2C2 ρinv), P
ρ-almost surely.

Let T = inf{t ≥ 0 : N2(t) ≥ 1}. Then, Pρ(T < ∞) = 1 and from the definition
of C2,

ρT = πû and ρt = πST
t ·û for any t ≥ T.

Hence, inf ŷ∈PCk ‖ρt − πŷ‖ = 0 for any t ≥ T and P
ρ(T < ∞) = 1 yield the

proposition. �

Corollary 5.3. Consider the process (x̂t)t defined by (1.4) with H, L0, L1, C2

defined in (5.1). Then, (x̂t)t accepts a unique invariant probability measure
μinv and there exist C > 0 and λ > 0 such that for any initial distribution μ
of x̂0 over PC3, for all t ≥ 0, the distribution μt of x̂t satisfies

W1(μt, μinv) ≤ Ce−λt.

Proof. It is a direct adaptation of our proof of Theorem 1.1. Indeed, Theo-
rem 1.1 holds if one substitutes the conclusion of Proposition 2.5 for (Pur).
Taking ρ0 = Id/3 in the latter proposition yields ρt = StS

∗
t

tr(StS∗
t )

and Mt =
S∗

t St

tr(StS∗
t )

. Therefore, ρt and Mt are unitarily equivalent. Following the argu-
ments and notation of the proof of Proposition 5.2, we see that P

ch-almost
surely, MT has rank one, and so does any Mt for t ≥ T . Hence, the conclusion
of Proposition 2.5 holds and the corollary is proven. �

Following the proofs of the discrete-time results of [11], we can prove that
the implication in Proposition 2.5 is an equivalence if (Pur) is replaced by

(NSC-Pur): Any nonzero orthogonal projector π that satisfies πS∗
t Stπ ∝ π

P-almost surely for any t ≥ 0 has rank one.

Alas, in practice, such a condition is hard to check.
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6. Examples

In the following examples, k = 2. We recall the definition of the Pauli matrices:

σx :=
(

0 1
1 0

)
, σy :=

(
0 −i
i 0

)
and σz :=

(
1 0
0 −1

)
.

A standard orthonormal basis of M2(C) equipped with the Hilbert–Schmidt
inner product is

(
1√
2
Id, 1√

2
σx, 1√

2
σy, 1√

2
σz

)
.

In the basis of Pauli matrices, one can write in a unique way any projection
πx̂ as

πx̂ = 1
2

(
Id + Xσx + Yσy + Zσz

)

where

X = tr(πx̂σx), Y = tr(πx̂σy), Z = tr(πx̂σz).

We denote, in particular, by Xt,Yt,Zt, respectively, the coordinates associated
with πx̂t

.

6.1. Unitarily Perturbed Non-Demolition Diffusive Measurement

Our first example consists of a 1
2 -spin (or qbit) in a magnetic field oriented

along the y-axis and subject to indirect non demolition measurement along the
z-axis. It is a typical quantum optics experimental situation (see, for example,
[20]). In terms of the parameters defining the related quantum trajectories,
we get H = σy, Ib = {0}, Ip = ∅ and L0 =

√
γ σz with γ > 0. Then, (πx̂t

)t

conditioned on x̂0 is the solution of

dπx̂t
=

( − i[σy, πx̂t
] + γ(σzπx̂t

σz − πx̂t
)
)
dt

+
√

γ
(
σzπx̂t

+ πx̂t
σz − 2 tr(σzπx̂t

)πx̂t

)
dBt. (6.1)

For this quantum trajectory, it is immediate to verify (Pur), and solving L(ρ) =
0 shows that ρinv = 1

2 Id is the unique invariant state, so that (L-erg) holds.
Hence, by Theorem 1.1 (x̂t)t has a unique invariant measure. In the following,
we derive an explicit expression for this invariant measure.

The next lemma allows us to restrict the state space.

Lemma 6.1. If μ(Y0 = 0) = 1, then Qμ(Yt = 0) = 1 for all t in R.

Proof. From equation (6.1), (Yt)t is the solution of dYt = −2Yt(γ dt −√
γ Zt dBt). It is therefore a Doléans-Dade exponential:

Yt = Y0 e−2γt exp
( − 2γ

∫ t

0

Z2
s ds + 2

√
γ

∫ t

0

Zs dBs

)

and the conclusion follows. �
Now we prove that the invariant measure admits a rotational symmetry.

Lemma 6.2. Assume that the distribution μ of x̂0 is invariant with respect to
the mapping x̂ �→ σy ·x̂. Then, μt is invariant with respect to the same mapping.
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Proof. Since σy is unitary and self-adjoint, we have πσy·x̂ = σyπx̂σy. Since
σyσz = −σzσy, it follows from (6.1) that

d(σyπx̂t
σy) =

( − i[σy, σyπx̂t
σy] + γ(σzσyπx̂t

σyσz − σyπx̂t
σy)

)
dt

− √
γ
(
σzσyπx̂t

σy + σyπx̂t
σyσz − 2 tr(σzσyπx̂t

σy)σyπx̂t
σy

)
dBt.

Then, it follows from σy · x̂0 ∼ x̂0 and (Bt)t ∼ (−Bt)t that (x̂t)t and (σy · x̂t)t

are both weak solutions to the same SDE with the same initial condition. Since
this SDE has a unique solution, they have the same distributions. �
Proposition 6.3. Let (x̂t)t be the process defined by (6.1). Then, its unique
invariant measure is the normalized image measure by

ι : θ �→ 1
2

(
Id + sin θ σx + cos θ σz

)
(6.2)

of the measure τ(θ) dθ on (−π, π] with

τ(θ) =
∫ π

θ

exp
cot x − cot θ

γ

sin x

sin3 θ
dx

for θ ∈ [0, π] and τ(θ) = τ(θ + π) for θ ∈ (−π, 0].

Proof. The convergence results in Theorem 1.1 and Lemma 6.1 imply that the
invariant measure μinv is the image by ι of a probability measure τ on (−π, π].
Let (θt)t be the solution of

dθt = 2(1 − γ cos θt sin θt) dt − 2
√

γ sin θt dBt (6.3)

with initial condition θ0. Remark that (θt)t is 2π-periodic with respect to its
initial condition, namely (θt + 2π)t is solution of (6.3) with initial condition
θ0 + 2π. Now, using the Itô formula,

(cos θt, sin θt)t ∼ (
tr(πx̂t

σz), tr(πx̂t
σx)

)
t

for (πx̂t
)t solution of (6.1) with initial condition x̂0 = 1

2

(
Id + sin θ0 σx +

cos θ0 σz

)
. Hence,

(
ι(θt)

)
t
has the same distribution as (x̂t)t. Therefore, τ is an

invariant measure for the diffusion defined by (6.3); in addition, Theorem 1.1
shows that this invariant measure is unique, and Lemma 6.2 shows that it is
π-periodic. Following standard methods (see [28]), one shows that the restric-
tion of τ to [0, π) has a density of the form τ(θ) = C1τ1(θ) + C2τ2(θ) with
C1, C2 ∈ R and

τ1(θ) =

∫ π

θ
sin x exp( 1

γ cot x) dx

sin3 θ exp( 1
γ cot θ)

, τ2(θ) =
1

sin3 θ exp( 1
γ cot θ)

.

Now, straightforward analysis shows that
∫ π

0
τ1(θ) dθ < ∞ while

∫ π

0
τ2(θ) dθ =

∞. Therefore, τ is proportional to τ1 and the result follows. �
Remark 4. For γ → ∞, the invariant measure μinv in Proposition 6.3 is a
Dirac measure at 0 and π. To describe the scaling for γ large, we embed τ(θ)
into L1(R) by defining it to be zero outside the region (−π, π]. Then, on the
positive half line, in the L1 norm,

lim
γ→∞

1
2γ3

τ

(
θ

γ

)
=

1
θ3

exp
(

−1
θ

)
.
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Figure 1. Restriction to [0, π] of the density of the invariant
probability distribution in Example 6.1

Hence, for large γ, the stationary probability distribution has two peaks of
width (of order) 1/γ located 1/γ radians clockwise from the limit points 0 and
π. Furthermore, the probability to find the particle around the limit points is
exponentially suppressed.

The strong noise limit, γ → ∞, was recently studied in various models [2,
8,12]. This is the first model that allows for an explicit calculation of the shape
of the stationary probability measure. The density of the invariant probability
distribution is plotted in Fig. 1 for three values of γ, and for θ ∈ [0, π].

6.2. Thermal Qubit, Diffusive Case

The following second example corresponds to the evolution of a qubit interact-
ing weakly with the electromagnetic field at a fixed temperature. The emission
and absorption of photons by the qubit are stimulated by a resonant coher-
ent field (laser). In the limit of a strong stimulating laser, the measurement
of emitted photons results in a diffusive signal whose drift depends on the
instantaneous average value of the raising and lowering operators of the qubit
(see [37, §4.4] for a more detailed physical derivation). We obtain an ana-
lytically solvable model if we assume that the unitary rotation of the qubit
is compensated for and thus frozen. In terms of the parameters defining the
related quantum trajectories, we get H = 0, I = Ib = {0, 1}, L0 =

√
a σ+ and

L1 =
√

b σ− with a, b ∈ R+\{0} and σ± = 1
2 (σx ± iσy), so that σ+ =

(
0 1
0 0

)

and σ− =
(

0 0
1 0

)
.
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The stochastic master equation satisfied by πx̂t
is

dπx̂t
= a

(
σ+πx̂t

σ− − 1
4

(
(Id − σz)πx̂t

+ πx̂t
(Id − σz)

))
dt

+ b
(
σ−πx̂t

σ+ − 1
4

(
(Id + σz)πx̂t

+ πx̂t
(Id + σz)

))
dt

+
√

a
(
σ+πx̂t

+ πx̂t
σ− − tr(σxπx̂t

)πx̂t

)
dB0(t)

+
√

b
(
σ−πx̂t

+ πx̂t
σ+ − tr(σxπx̂t

)πx̂t

)
dB1(t)

(6.4)

Again it is immediate to verify (Pur), and solving for L(ρ) = 0 shows that
(L-erg) holds.

Lemma 6.4. If μ(Y0 = 0) = 1 then Qμ(Yt = 0) = 1 for all t in R.

Proof. From (6.4), (Xt)t and (Yt)t satisfy

dYt = −Yt

(
1
2 (a + b) dt + Xt

(√
a dB0(t) +

√
b dB1(t)

))
.

Therefore, if one defines

Mt = exp
(

− 1
2

∫ t

0

(a + b)X 2
s ds −

∫ t

0

Xs

(√
a dB0(s) +

√
b dB1(s)

))

then one has Yt = Y0 e− 1
2 (a+b)tMt, and this proves Lemma 6.4. �

Proposition 6.5. Let (x̂t)t be the process defined by (6.4). Then, its unique
invariant measure is the normalized image measure by ι (defined by (6.2)) of
the measure τ(θ) dθ on (−π, π] with

τ(θ) =
eςz arctan

(
ς(cos θ−z)

)

(
cos2 θ + 1 − 2z cos θ)

)3/2
,

with z = a−b
a+b and ς = a+b

2
√

ab
.

Proof. As in the proof of Proposition 6.3, Theorem 1.1 and Lemma 6.4 imply
that the invariant measure μinv is the image by ι of a probability measure τ

on (−π, π]. Let (θt)t be the solution of

dθt =
(
(b − a) sin θt + 1

2 (a + b) cos θt sin θt

)
dt

+
√

a (cos θt − 1) dB0(t) +
√

b (cos θt + 1) dB1(t). (6.5)

The Itô formula implies once again

(cos θt, sin θt) ∼ (
tr(πx̂t

σz), tr(πx̂t
σx)

)
t

for (πx̂t
)t solution of (6.4) with initial condition x̂0 = 1

2

(
Id + sin θ0 σx +

cos θ0 σz

)
. Hence,

(
ι(θt)

)
has the same distribution as (x̂t). As in the proof

of Proposition 6.3, standard techniques show that the unique invariant distri-
bution for (6.5) has density proportional to the function τ above. �

The density of the invariant probability distribution for three values of
the pair (a, b) is plotted in Fig. 2.
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Figure 2. Density of the invariant probability distribution
for Example 6.2

6.3. Thermal Qubit, Jump Case

Our third example is the second one where the stimulating coherent field has
relatively small amplitude and is filtered out. Then, the signal is composed
only of the photons absorbed or emitted by the qubit. The resulting trajectory
involves only jumps related to these events. The parameters defining the model
are then H = 0, Ib = ∅ and Ip = {0, 1}, C0 =

√
a σ+ and C1 =

√
b σ− with

a, b ∈ R+\{0}.
The process (πx̂t

)t is solution of

dπx̂t
=a

(
σ+πx̂t−σ− − 1

4

(
(Id − σz)πx̂t− + πx̂t−(Id − σz)

))
dt

+ b
(
σ−πx̂t−σ+ − 1

4

(
(Id + σz)πx̂t− + πx̂t−(Id + σz)

))
dt

+
( σ+πx̂t−σ−

tr(σ−σ+πx̂t−)
− πx̂t−

)(
dN0(t) − a tr(σ−σ+πx̂t−)dt

)

+
( σ−πx̂t−σ+

tr(σ+σ−πx̂t−)
− πx̂t−

)(
dN1(t) − b tr(σ+σ−πx̂t−)dt

)

(6.6)

where N0 and N1 are Poisson processes of stochastic intensities

t �→
∫ t

0

a tr(σ−σ+πx̂s−) ds and t �→
∫ t

0

b tr(σ+σ−πx̂s−) ds.

Assumptions (Pur) and (L-erg) hold as in Example 6.2.

Proposition 6.6. Let {e1, e2} denote the canonical basis of C2. The invariant
measure for Equation (6.6) is

μinv =
a

a + b
δπê1

+
b

a + b
δπê2
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Proof. It is enough to check from (6.6) that, if x̂0 is either ê1 or ê2, then (πx̂t
)t

is a jump process on (πê1 , πê2) with intensity b for the jumps from πê1 to πê2

and intensity a for the reverse jumps. �

6.4. Finite State Space Markov Process Embedding

In this last example, we show how we can recover all the usual continuous-time
Markov chains using special quantum trajectories.

Let {e�}k
�=1 be an orthonormal basis of C

k, and (Xt)t a {e1, . . . , ek}-
valued Markov process with generator Q (we recall that Q is a k × k real
matrix such that E(〈v,Xt〉|X0) = 〈v, etQX0〉 for any vector v ∈ C

k). Let H be
diagonal in the basis {e�}k

�=1, let Ib = ∅ and Ip = {(i, j); i �= j in 1, . . . , k} and
for any (i, j) ∈ Ip let Ci,j =

√
Qi,j eje

∗
i .

Proposition 6.7. Let (x̂t)t be the quantum trajectory defined by Equation (1.4)
and the above parameters. Then, assumption (Pur) holds. In addition,
(i) Let T = inf

{
t ≥ 0 : x̂t ∈ {ê1, . . . , êk}}

. If for all i there exists j with
Qi,j > 0, then for any probability measure μ over PCk, Pμ(T < ∞) = 1.

(ii) Conditionally on x̂0 ∈ {ê�}k
�=1, the process (x̂t)t has the same distribution

as the image by x �→ x̂ of (Xt)t.
(iii) The assumption (L-erg) holds if and only if (Xt)t accepts a unique invari-

ant measure. In that case, the unique invariant measure νinv for (x̂t)t is
the image by x �→ x̂ of the unique invariant measure for (Xt)t.

Proof. Note first that any C∗
i,jCi,j = Qi,j eie

∗
i , so that (Pur) holds trivially.

To prove (i), let T1 = inf{t > 0; ∃(i, j) ∈ Ip such that Ni,j(t) > 0}.
Remark that because tr(Ci,jπx̂s−C∗

i,j) = Qi,j |〈ei, xs−〉|2, the sum
∑

i,j Ni,j of
independent Poisson processes has intensity

∑

i,j

∫ t

0

Qi,j |〈ei, xs−〉|2 ds ≥ t min
i

Qi

where Qi =
∑

j Qi,j is positive by assumption, so that T1 is almost surely
finite. Now consider the almost surely unique (i, j) in Ip such that Ni,j(T1) >

0; necessarily tr(Ci,jπx̂t−C∗
i,j) > 0, and then

Ci,jπx̂t−C∗
i,j

tr(Ci,jπx̂t− C∗
i,j)

= πêj
, so that

T ≤ T1. This proves (i).
Now, to prove (ii), remark that Eq. (1.3) can be rewritten in the form

dπx̂t
=

∑

(i,j)∈Ip

(
tr(Ci,jπx̂t−C∗

i,j)πx̂t− − 1
2
{C∗

i,jCi,j , πx̂t−})
dt

+
∑

(i,j)∈Ip

( Ci,jπx̂t−C∗
i,j

tr(Ci,jπx̂t−C∗
i,j)

− πx̂t−

)
dNi,j(t).

Let T1 be defined as above; then, for t < T1 the process (πx̂t
)t satisfies

πx̂t
= πx̂0 +

∑

(i,j)∈Ip

∫ t

0

(
tr(Ci,jπx̂s−C∗

i,j)πx̂s− − 1
2
{C∗

i,jCi,j , πx̂s−})
ds.

(6.7)
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Starting with an initial condition x̂0 ∈ {ê�}k
�=1, one proves easily that the

integrand is zero, which means that πx̂t
= πx̂0 for t < T1. This shows in

addition that for t < T1, the intensity of Ni,j is
∫ t

0

tr(Ci,jπx̂s−C∗
i,j) ds =

{
Qi,j t if x0 = ei

0 otherwise.

Therefore, conditionally on x0 = ei, T1 = inf{t > 0; ∃j �= i such that Ni,j(t) >
0} and there exists an almost surely unique j such that Ni,j(T1) > 0. One then
has

πx̂T1
=

Ci,jπx̂T1−C∗
i,j

tr(Ci,jπx̂T1−C∗
i,j)

= πêj
.

This shows that for t ∈ [0, T1] the process (x̂t)t has the same distribution as
the process of equivalence classes of Xt. This extends to all t by the Markov
property of the Poisson processes. This proves (ii).

Points (i) and (ii) show that for t > T1, the process (x̂t)t has the same
distribution as (Xt)t with initial condition XT1 satisfying X̂T1 = x̂T1 . There-
fore, any invariant measure for (x̂t)t is the image by x �→ x̂ of an invariant
measure for (Xt)t. Theorem 1.1 and Sect. 4 show that (x̂t)t admits at least
one invariant measure and that the invariant measure is unique if and only if
(L-erg) holds. This implies that (Xt)t has a unique invariant measure if and
only if (L-erg) holds. �
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