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Racah Problems for the Oscillator Algebra,
the Lie Algebra sln, and Multivariate
Krawtchouk Polynomials
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Abstract. The oscillator Racah algebra Rn(h) is realized by the inter-
mediate Casimir operators arising in the multifold tensor product of the
oscillator algebra h. An embedding of the Lie algebra sln−1 into Rn(h)
is presented. It relates the representation theory of the two algebras. We
establish the connection between recoupling coefficients for h and ma-
trix elements of sln-representations which are both expressed in terms of
multivariate Krawtchouk polynomials of Griffiths type.
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1. Introduction

This paper studies the oscillator Racah algebra Rn(h) viewed as the central-
izer of the diagonal action of the oscillator algebra h [45] in the n-fold tensor
product of its universal algebra. We shall find that it admits an embedding of
sln−1. Building upon that result, we shall connect the facts that the multivari-
ate Krawtchouk polynomials of Griffiths arise as 3(n−1)j symbols of h as well
as matrix elements of the restriction to the group O(n + 1) of the symmetric
representations of SU(n + 1).

There is growing interest in Racah algebras. These are, in particular,
identified in the framework of Racah problems where one looks at the re-
couplings of tensor products of certain Lie algebras. We shall denote by n
the number of factors. The cases with n = 3 for the Lie algebra su(2) (or
su(1, 1)), the quantum algebra Uq(sl2) and the Lie superalgebra osp(1|2) have
first been examined. They have led, respectively, to the (universal versions of
the) Racah algebra R(3) [21,23,28] the Askey–Wilson algebra AW(3) [29,32]
and the Bannai-Ito algebra BI(3) [22]. In this picture, where there is an implicit
map from the abstract Racah algebra onto the centralizer of the diagonal ac-
tion of say, su(2), Uq(sl2) or osp(1|2) on their triple product, the images of the
three generators of the Racah algebra are expressed in terms of the interme-
diate Casimir elements. The representations of these algebras encompass the
bispectral properties of the orthogonal polynomials bearing the same name
that are essentially the Racah or 6j-coefficients of the corresponding algebras
whose triple tensor products are considered. In fact this is how the AW(3)
was first identified [52] through its realization in terms of the recurrence and
q-difference operators of the Askey–Wilson polynomials. These Racah algebras
have arisen in numerous contexts. They have appeared as symmetry algebras
of superintegrable models [12,24], are featuring centrally in aspects of algebraic
combinatorics [48] and are related to the Leonard pairs [47]. They have been re-
lated to double affine Hecke algebras (DAHA) [40,41,46] and degenerate cases
[25]. Algebras over three strands such as the Temperley–Lieb or Brauer ones
that arise in Schur–Weyl duality have been shown to be quotients of Racah
algebras [6,8]. Isomorphisms with certain Kauffman-Skein algebras have been
established [4,5]. Howe duality could be used to relate different presentations
[18–20]. Truncated reflection algebras attached to Uq(ŝl2), to the loop algebra
or to the Yangian of sl2 have also been found [2,3,9] to lead to AW(3) or
Racah algebras. Finally, the description of the Bannai-Ito and Askey–Wilson
algebras has been cast recently in the framework of the universal R-matrix
[7,10]. This offers sufficient cause already to warrant the exploration of the
Racah algebra associated with the oscillator algebra.

The study of Racah algebras as centralizers of n-fold tensor products with
n larger than 3 has been pursued [11,13,14,43]. The recoupling coefficients in
these instances are orthogonal polynomials in many variables. In the case of the
generalized Racah algebra for example, bases for representations are obtained
by diagonalizing the generators of different maximal Abelian subalgebras [13]
and the connection coefficients between two such bases are given in terms of
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multivariate Racah polynomials of the Tratnik type [15,27,49]. Given that the
Racah polynomials sit at the top of the finite part of the q = 1 Askey scheme
[37,38], these Tratnik polynomials provide, through specializations and limits,
multivariable extensions of all the finite families of orthogonal polynomials in
parallel with what occurs in the univariate situation.

We shall here examine the oscillator Racah algebra Rn(h) for arbitrary n
thereby exploring the structure that encodes the properties of the 3nj-symbols
of the oscillator algebra h. As will be seen, these are given in terms of multivari-
ate Krawtchouk polynomials. Historically, the 3j- and 6j-coefficients were ob-
tained in [36,50] and found to be given both in terms of univariate Krawtchouk
polynomials. Looking at the 9j-symbols of h, Zhedanov made the observation
[53] that these involve polynomials in two variables orthogonal with respect
to the trinomial distribution and depending on one more parameter than the
Tratnik ones. We shall indicate below how this generalizes.

Regarding multivariate Krawtchouk polynomials, it is worth recalling and
clarifying the following points. Polynomials in n variables that are orthogonal
with respect to the multinomial distribution were introduced by Griffiths in
1971 using a generating function [30]; these polynomials involve 1

2n(n − 1)
parameters. For a review see [16]. The specialization to the Krawtchouk fam-
ily of the Racah polynomials in n variables introduced by Tratnik in 1991
and mentioned before yields polynomials also orthogonal with respect to the
multinomial distribution but depending in this case on n parameters only (in
addition to the maximal degree N) [27]. These two sets are hence not the same
and their relation remained unclear for some time largely because of their in-
tricate parametrizations. The bivariate Krawtchouk polynomials of Griffiths
were rediscovered in 2008 in connection with a probabilistic model and as lim-
its of the 9j-symbols of su(2) [31]; they were called Rahman polynomials for
a while. Slightly before, Mizukawa and Tanaka [42] have related the Griffiths
polynomials to character algebras and provided an explicit formula in terms
of Gel’fand-Aomoto hypergeometric series.

Of special relevance to the present article is the group theoretical inter-
pretation of the multivariable Krawtchouk polynomials of Griffiths that was
given by Genest et al. [26] where they observe that these polynomials arise in
the matrix elements of the representations of the orthogonal group O(n + 1)
that act on the energy eigenspaces of the isotropic (n + 1)-dimensional har-
monic oscillator. In other words, they have shown that the matrix elements of
the restriction to O(n+1) of the symmetric representations of SU(n+1) are ex-
pressed in terms of the Krawtchouk polynomials of Griffiths; the parameters of
the polynomials are thus interpreted as the 1

2n(n−1) parameters, for instance
the Euler angles, that specify rotations in (n + 1) dimensions. This cogent
picture has allowed for a complete characterization on algebraic grounds of
the Griffiths polynomials (recurrence relations, difference equations, generat-
ing function, etc.) using the covariance properties of the oscillator creation and
annihilation operators under O(n+1). Furthermore, this approach clarified the
connection between the Griffiths and Tratnik classes of Krawtchouk polyno-
mials by making explicit that the latter is simply a special case of the former.
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For example, in the bivariate case (n = 3), while the Griffiths polynomials
with three parameters correspond to a general rotation in three dimensions,
the Tratnik ones with 2 parameters, arise from rotations that are only prod-
ucts of two planar rotations about perpendicular axes. Related to this group
theoretical interpretation is the work of Iliev and Terwilliger [33,34] (see also
[44]) where the Krawtchouk polynomials appear as overlap coefficients between
basis elements for two modules of sln+1(C) with the basis elements for the rep-
resentation spaces defined as eigenvectors of two Cartan subalgebras related
by an anti-automorphism specified by the parameters.

The embedding of sln−1 into Rn(h) that we shall construct will provide,
besides its intrinsic algebraic interest, a connection between these two mani-
festations of the multivariate Krawtchouk polynomials of Griffiths in matrix
elements of representations and in recoupling coefficients.

The paper is organized as follows. In Sect. 2 we introduce the Racah
algebra for the oscillator algebra. We also exhibit some properties and find a
number of commutation relations that are needed to prove the main theorem of
this paper given in the following section. In Sect. 3 we show how to embed the
special linear Lie algebra sln−1 into the Racah algebra for the oscillator alge-
bra. We then study Abelian subalgebras of the Racah algebra for the oscillator
algebra related to Cartan algebras of the special linear algebra. These are called
labeling Abelian algebras and will be the main tool for Sect. 4. In this sec-
tion we connect the representation theories of sln−1 and of the Racah algebra
for the oscillator algebra. We show how multivariate Krawtchouk polynomials
both of Tratnik type and of Griffiths type appear as overlap coefficients be-
tween bases of irreducible representations diagonalized by the labeling Abelian
algebras. We focus briefly on the relation with the 6j- and 9j-symbols. We fin-
ish this section by constructing for a number of overlaps an isomorphism of
sln−1 and the corresponding rotation matrix. We explain the link of these rota-
tion matrices with the multivariate Krawtchouk polynomials of Griffiths type.
A brief conclusion follows. “Appendix A” records for reference how the over-
laps between representation eigenbases associated with equivalent sl2 Cartan
generators are obtained in terms of univariate Krawtchouk polynomials.

2. The Oscillator Algebra h and the Racah Algebra

The oscillator algebra h is the Lie algebra generated by four elements A±, A0

and a central element a with following defining relations:

[A−, A+] = a, [A0, A±] = ±A±. (1)

The Casimir element Q is contained in the universal enveloping algebra U(h)
and is given by:

Q := aA0 − A+A−. (2)
We define the elements of U(h)⊗n for 1 ≤ k ≤ n

A0,k := 1⊗(k−1) ⊗ A0 ⊗ 1⊗(n−k), (3)

A±,k := 1⊗(k−1) ⊗ A± ⊗ 1⊗(n−k), (4)
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ak := 1⊗(k−1) ⊗ a ⊗ 1⊗(n−k). (5)

and for any non-empty subset K ⊂ [n] := {1, . . . , n}
A0,K :=

∑

k∈K

A0,k, A±,K :=
∑

k∈K

A±,k, aK :=
∑

k∈K

ak. (6)

We denote the Lie algebra (isomorphic to h) generated by the operators A0,K ,
A±,K and aK by hK . The Casimir element of this algebra is QK :

QK := aKA0,K − A+,KA−,K . (7)

The operators QK will define the algebra of interest of this article.

Definition 2.1. We define the oscillator Racah algebra Rn(h) to be the subalge-
bra of U(h)⊗n generated by the elements of the set {QK |K ⊂ [n] and K �= ∅}.

Example 2.2. The easiest non-trivial example is given for n = 3. Then a gen-
erator is constructed for every non-empty K ∈ [3] = {1, 2, 3}. The set of
generators are given by

{Q1, Q2, Q3, Q12, Q13, Q23, Q123}.

Proposition 2.3. The following relations hold in U(h)⊗n, for any non-empty
K ⊂ [n]:

[QK , A0,[n]] = 0, [QK , A±,[n]] = 0, [QK , a[n]] = 0.

Then Rn(h) generates a subalgebra of the centralizer of the oscillator algebra
h[n] in U(h)⊗n.

We wish to find the defining commutation relations obeyed by the gen-
erators QK of Rn(h). First we want to point out this lemma:

Lemma 2.4. Let {Kp}p=1...k be a set of k disjoint subsets of [n]. Define KB :=
∪q∈BKq with B ⊂ [k]. Consider the following map

θ : Rk(h) → Rn(h) : QB 
→ QKB
.

This is an injective morphism. We denote its image by RK1,...,Kk

k (h). This
algebra is isomorphic to Rk(h).

Example 2.5. Consider a partition of the set {1, 2, 3, 4}. For example take K1 =
{1}, K2 = {2, 4} and K3 = {3}. Then we have the following injective morphism
of R3(h) into R4(h):

θ(Q1) = QK1 = Q1, θ(Q12) = QK1K2 = Q124,

θ(Q2) = QK2 = Q24, θ(Q13) = QK1K3 = Q13,

θ(Q3) = QK3 = Q3, θ(Q23) = QK2K3 = Q234,

θ(Q123) = QK1K2K3 = Q1234.

Here we introduced the shortened notation KL := K ∪ L for sets K and L.
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Proof. We repeat the strategy in [13, section 4.2] and generalize to the n-fold
tensor product space. In formulas (6) we constructed an algebra hK isomorphic
to h inside U(h)⊗n acting on the components of the tensor product whose
indices are in K. Consider the subalgebra of U(h)⊗n generated by the union
of hKp

, p = 1 . . . k. The following two algebras are isomorphic:

U(h)⊗k ∼= 〈 hKp
〉p∈[k].

The isomorphism is defined on the generators of U(h)⊗k by Θ : 1⊗(p−1) ⊗
X ⊗ 1⊗(k−p) → XKp

where X is one of the generators A±, A0 or a of h. This
also defines the injection Θ : U(h)⊗k → U(h)⊗n by the same map. Inside the
algebra U(h)⊗k we find Rk(h) generated by the operators QB := Qi1i2...il with
B ⊂ [k]. Their images under Θ are QKB

:= QKi1Ki2 ...Kil
. Hence, the operators

QKB
with B ⊂ [k] generate an algebra isomorphic to Rk(h) inside U(h)⊗n.

Moreover, the operators QKB
with B ⊂ [k] are elements of Rn(h). Restricting

the domain of Θ to Rk(h) and the codomain to Rn(h) gives the map θ as
defined in the statement of the lemma.

U(h)⊗k Θ
↪→ U(h)⊗n

∪ ∪
Rk(h) θ

↪→ Rn(h)

�

Using the strategy of this proof, we can always replace indices by sets in
any relation given. For example, consider the following relation:

Q123 = Q12 + Q13 + Q23 − Q1 − Q2 − Q3.

This can be found by straightforward calculation. Using Lemma 2.4 we auto-
matically have for three disjoint sets K, L and M

QKLM = QKL + QKM + QLM − QK − QL − QM . (8)

This gives us a number of linear dependencies between the generators QA.
From these dependencies one can prove the following:

Lemma 2.6. For any set K ⊂ [n], it holds that

QK =
∑

{i,j}⊂K

Qij − (|K| − 2)
∑

i∈K

Qi.

By Lemma 2.6 it suffices to find the commutation relations of the gener-
ating set {Qij}.

We also have the following lemma:

Lemma 2.7. If either K ⊂ L or L ⊂ K or K ∩ L = ∅ then QK and QL

commute.

Proof. By construction, we know that [Q1, Q2] = 0 and [Q1, Q12] = 0. Replac-
ing the indices by sets by Lemma 2.4 concludes the proof. �
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In particular, the elements Q[n] and Qi are central in Rn(h). This also
means that [Qij , Qlk] = 0 if {i, j} = {l, k} or {i, j} ∩ {l, k} = ∅. The operators
Qij and Qlk do not commute if only if they have exactly one index in common.
Investigation by computer shows that it is not possible to write [Qij , Qjk] as
a linear combination of the generators QK .

The set of commutators {[Qij , Qjk]} is also not linear independent. First
we have by Lemma 2.7

0 = [Qij , Qijk]

= [Qij , Qij + Qik + Qjk − Qi − Qj − Qk]

= [Qij , Qjk] + [Qij , Qik]. (9)

In the second line we used formula (8). We conclude that [Qij , Qjk] = [Qik, Qij ].
Similarly, one can show that [Qjk, Qij ] = [Qik, Qjk] by considering [Qjk, Qijk]
or, equivalently, switching the indices i ↔ k. We conclude for all i, j, k in [n]:

[Qij , Qjk] = [Qjk, Qik] = [Qik, Qij ]. (10)

Remark 2.8. From Lemma 2.7 and relation (9) we see that

[Qij , Qkl] = 0 if i, j, k and l are distinct

[Qij , Qjk + Qik] = 0 if i, j, k are distinct

The operators Qij realize the Drinfeld–Kohno relations, see [1]. Similarly, as in
[13,35], the operators Qij realize additional relations which we compute below.

Remember that the elements ai for i = 1 . . . n as defined in formula (5)
are n different central operators in the algebra U(h)⊗n. A tedious computation
shows that the following linear relation also holds:

ai[Qjk, Qkl] = aj [Qik, Qkl] − ak[Qij , Qjl] + al[Qij , Qjk]. (11)

All double commutators are obtained from the following two expressions
by switching indices, from the properties of the commutator, and from relation
10:

[[Qij , Qjk], Qij ] = ak(ai − aj)Qij − ai(ai + aj)Qjk + aj(ai + aj)Qik

− (aj + ak)(ai + aj)Qi + (ai + ak)(ai + aj)Qj + (a2
i − a2

j )Qk,
(12)

[[Qij , Qjk], Qkl] = aial(Qjk − Qj − Qk) − ajal(Qik − Qi − Qk)

− aiak(Qjl − Qj − Ql) + ajak(Qil − Qi − Ql). (13)

It follows that the generators also satisfy the following relations for all i, j and
k in [n]:

[[[Qij , [Qij , [Qij , Qjk]]] = (ai + aj)2[Qij , Qjk]. (14)
Observe that relation (14) is the Dolan–Grady relation up to central elements
as defined in [17].

Let us generate an algebra from the set {QK | ∅ �= K ⊂ [n]} using the
Lie bracket instead of the ordinary multiplication on U(h)⊗n. Denote it by
Rn(h, []). From the relations above we conclude that Rn(h, []) is generated
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as a vector space by the operators QK and their commutators [QK , QL] over
the field R(a1, . . . , an). We perform some reductions. First the Qi and Qij

generate all QK by Lemma 2.6. The commutators [Qij , Qjk] can be written
as a linear combination of [Q1j , Qjk] by formula (11). By formula (9) we have
[Q1j , Qjk] = [Q1k, Qkj ], so we require that j < k. It follows then that as a
vector space Rn(h, []) is generated by the following set:

{Qi | i ∈ [n]} ∪ {Qij | 1 ≤ i < j ≤ n} ∪ {[Q1j , Qjk] | 1 < j < k ≤ n}. (15)

We will prove later on that this is a basis for Rn(h, []) as a vector space over the
field R(a1, . . . , an). Moreover, we will prove that the set of equalities (12), (13)
and (11) together with Lemma 2.7 and Lemma 2.6 exhausts all commutation
relations of Rn(h, []).

3. Embedding of sln−1 into Rn(h)

In this section we study the relationship between the special linear Lie algebra
sln−1 and Rn(h). The Lie algebra sln−1 is generated by the following set of
elements: {ekk+1, ek+1k, hk | 1 ≤ k ≤ n − 2}. By applying Serre’s theorem on
sln−1 we are guaranteed of a full set of relations which we give here. To this
end we introduce the Cartan matrix:

Aij =

⎧
⎪⎨

⎪⎩

2 if i = j

−1 if j = i ± 1
0 if |j − i| > 1

.

Here are the Chevalley–Serre relations:

[hi, hj ] = 0, (16)

[eii+1, ej+1j ] = δijhi, (17)

[hi, ejj+1] = Aijejj+1, [hi, ej+1j ] = −Aijej+1j , (18)

ad(eii+1)1−Aij (ejj+1) = 0, if i �= j (19)

ad(ei+1i)1−Aij (ej+1j) = 0. if i �= j (20)

The operator ad is the adjoint action: ad(x)(y) := [x, y]. The set {hk | 1 ≤ k ≤
n − 2} generates the Cartan algebra of sln−1. When we consider the sl2 case,
there are three generators {e12, e21, h1} with following relations:

[e12, e21] = h1, [h1, e12] = 2e12, [h1, e21] = −2e21. (21)

From the Chevalley–Serre relations we see that every triple {eii+1, ei+1i, hi}
generates a copy of sl2.

3.1. Embedding of sl2 into R3(h)
Consider the algebra R3(h) and consider the adjoint action of Q12 on R3(h).
We want to find its eigenspaces. The eigenspace with eigenvalue 0 is a five-
dimensional space generated by the central elements {Q1, Q2, Q3, Q123} and
the operator Q12. The eigenvectors with nonzero eigenvalue are

e12 := λ1([Q12, [Q12, Q23]] + (a1 + a2)[Q12, Q23]),
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e21 := λ1([Q12, [Q12, Q23]] − (a1 + a2)[Q12, Q23]). (22)

We introduce the number

λ1 =
1√

4a1a2a3(a1 + a2)2(a1 + a2 + a3)
.

One checks easily using relation (14) that:

[Q12, e12] = (a1 + a2)e12,

[Q12, e21] = −(a1 + a2)e21. (23)

We also define the following operator

h1 :=
2Q12

a1 + a2
− Q123

a1 + a2 + a3
− Q1

a1
− Q2

a2
+

Q3

a3
. (24)

We have the following proposition:

Proposition 3.1. The operators e12, e21 and h1 satisfy the commutation rela-
tions of sl2.

[e12, e21] = h1, [h1, e12] = 2e12, [h1, e21] = −2e21

Proof. One checks this through straightforward calculation. �

By Proposition 3.1 we have a map of sl2 into R3(h). Because sl2 is simple,
the kernel of this map is either trivial or equal to the whole algebra sl2. Clearly,
e12, e21 and h1 are different from 0, so the kernel must be trivial. This map
must therefore be injective, and we have indeed an embedding of sl2 into R3(h).

3.2. Embedding of sl3 into R4(h)

Consider the algebra R4(h). We want to find the common eigenvectors of Q12

and Q123. By Lemma 2.7 the operators e12, e21 and h1 commute with Q123

and are therefore eigenvectors of both Q12 and Q123. We can find another
set of eigenvectors using Lemma 2.4. Consider the operators e12, e21 and h1

expressed in the operators Q12, Q23 and a12 and replace the indices as follows
by Lemma 2.4: 1 → {1, 2}, 2 → 3 and 3 → 4. We find the following operators:

e23 := λ2([Q123, [Q123, Q34]] + (a1 + a2 + a3)[Q123, Q34]),

e32 := λ2([Q123, [Q123, Q34]] − (a1 + a2 + a3)[Q123, Q34]),

h2 :=
2Q123

a1 + a2 + a3
− Q1234

a1 + a2 + a3 + a4
− Q12

a1 + a2
− Q3

a3
+

Q4

a4
.

The number λ2 is given by

λ2 =
1√

4(a1 + a2)a3a4(a1 + a2 + a3)2(a1 + a2 + a3 + a4)
.

By Lemma 2.7 the operators e23, e32 and h2 commute with Q12. They are also
eigenvectors of Q123 by formula 23:

[Q123, e23] = (a1 + a2 + a3)e23,

[Q123, e32] = −(a1 + a2 + a3)e32. (25)
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The operators e23, e32 and h2 satisfy the sl2 relations:

[e23, e32] = h2, [h2, e23] = 2e23, [h2, e32] = −2e32.

We have the following claim:

Proposition 3.2. The operators {e12, e21, e23, e32, h1, h2} satisfy the commuta-
tion relations of sl3.

Proof. We already know that both {e12, e21, h1} and {e23, e32, h2} satisfy the
sl2 relations. It is also easy to show by Lemma 2.7 that

[h1, h2] = 0.

By straightforward calculation

[e12, e32] = 0,

[e21, e23] = 0.

By now we verified relations (16) and (17). By explicit calculation using the
definition of h1 and h2 and formula (23) and (25):

[h1, e23] =
[
− Q123

a1 + a2 + a3
, e23

]
= −e23,

[h1, e32] =
[
− Q123

a1 + a2 + a3
, e32

]
= e32,

[h2, e12] =
[
− Q12

a1 + a2
, e12

]
= −e12,

[h2, e21] =
[
− Q12

a1 + a2
, e21

]
= e21.

Relation (18) is also satisfied. We only need to check (19) and (20):

[e12, [e12, e23]] = 0,

[e23, [e23, e12]] = 0,

[e21, [e21, e32]] = 0,

[e32, [e32, e21]] = 0.

This is done by straightforward computation. By Serre’s theorem, these are a
complete set of defining relations and this concludes the proof. �

By Proposition 3.2 we have a map of sl3 into R4(h). Because sl3 is simple,
the kernel of this map is either trivial or equal to the whole algebra sl3. The
generators we used in Proposition 3.2 are different from 0. This map must
therefore be injective, and we have indeed an embedding of sl3 into R4(h).

3.3. Embedding of sln−1 into Rn(h)

As in the previous two sections we construct common eigenvectors for the
adjoint action of the Abelian subalgebra Y = {Q[k] | 2 ≤ k ≤ n − 1}. Observe
that by formula (6) we have aB =

∑
i∈B ai. To construct the eigenvectors we

use Lemma 2.4 in the following way: Take e12, e21 and h1 given by formulas
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(22) and (24) and replace 1 by [k], 2 by k + 1 and 3 by k + 2. We obtain the
following elements:

ekk+1 := λk([Q[k+1], [Q[k+1], Qk+1k+2]] + a[k+1][Q[k+1], Qk+1k+2]),

ek+1k := λk([Q[k+1], [Q[k+1], Qk+1k+2]] − a[k+1][Q[k+1], Qk+1k+2]),

hk :=
2Q[k+1]

a[k+1]
− Q[k+2]

a[k+2]
− Q[k]

a[k]
− Qk+1

ak+1
+

Qk+2

ak+2
.

We introduced the element

λk =
1√

4a[k]ak+1ak+2a2
[k+1]a[k+2]

.

We check that these operators are indeed eigenvectors of the Abelian algebra
Y. By Lemma 2.7 the operator Q[l] commutes with ekk+1 and ek+1k if l �= k+1
and with hk for all k. If l = k + 1 we have

[Q[k+1],ekk+1]

= λk([Q[k+1], [Q[k+1], [Q[k+1], Qk+1k+2]]] + a[k+1][Q[k+1], [Q[k+1], Qk+1k+2]])

= λk(a2
[k][Q[k+1], Qk+1k+2] + a[k+1][Q[k+1], [Q[k+1], Qk+1k+2]])

= a[k]ekk+1.

We used formula (14). Similarly, one can show that [Q[k+1], ek+1k] = −a[k]ek+1k.
We are now ready to prove the following theorem.

Theorem 3.3. The set of operators {eii+1, eii+1, hi|i ∈ [n − 1]} ⊂ Rn(h) gen-
erate an algebra isomorphic to sln−1 for the Lie bracket.

Proof. We prove this statement by induction. The cases n = 2 and n = 3
have already been obtained in Propositions 3.1 and 3.2. Now assume that
{eii+1, eii+1, hi|i ∈ [n − 2]} generates sln−2. To go to sln−1, we add three
new operators: en−2n−1, en−1n−2 and hn−2. We introduce a morphism using
Lemma 2.4:

σ : Rn−1(h) → Rn(h)

by mapping the indices 1 → {1, 2} and i → i + 1 for every i > 1. One should
notice that σ(ek−1k) = ekk+1, σ(ekk−1) = ek+1k and σ(hk−1) = hk. It maps
sln−2 as a subalgebra of Rn−1(h) into Rn(h). We will use this map a few times.

We check the relations of sln using Serre’s theorem. By Lemma 2.4 and
Proposition 3.1 we know that ekk+1, ek+1k and hk generate a sl2 algebra for
every k:

[hk, ekk+1] = 2ekk+1,

[hk, ek+1k] = −2ek+1k,

[ekk+1, ek+1k] = hk.

We also have by Lemma 2.7:

[hk, hl] = 0.
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Relation (16) is satisfied, so the set {hk | k = 1 . . . n − 1} plays the role Cartan
algebra of sln−1. The following relation we need to check is [ekk+1, el+1l] = 0 if
l �= k. If l /∈ {k−1, k, k+1} this is true by Lemma 2.7. Otherwise, set l = k+1.
Then we can use the map σ:

[ekk+1, ek+2k+1] = σ([ek−1k, ek+1k]) = σ(0) = 0.

Here we used the relations of the algebra sln−2. The proof for l = k − 1
is analogous. Relation (17) is satisfied. The next commutators we need to
calculate are [hk, ejj+1] and [hk, ej+1j ]:

[hk, ejj+1] =
[
2Q[k+1]

a[k+1]
− Q[k+2]

a[k+2]
− Q[k]

a[k]
, ejj+1

]

= 2δk,jejj+1 − δk+2,j+1ejj+1 − δk,j+1ejj+1,

[hk, ej+1j ] =
[
2Q[k+1]

a[k+1]
− Q[k+2]

a[k+2]
− Q[k]

a[k]
, ej+1j

]

= −2δk,jej+1j + δk+2,j+1ej+1j + δk,j+1ej+1j .

If k /∈ {j − 1, j, j + 1} then [hk, ejj+1] = 0 and [hk, ej+1j ] = 0. Otherwise, we
have

[hj−1, ejj+1] = −ejj+1,

[hj+1, ejj+1] = −ejj+1,

[hj−1, ej+1j ] = ej+1j ,

[hj+1, ej+1j ] = ej+1j .

We have verified relation (18). Finally, we need to check the relations (19) and
(20). Specifically, we need to check the following:

[ejj+1, ekk+1] = 0, if k /∈ {j − 1, j + 1}, (26)

[ej+1j , ek+1k] = 0, if k /∈ {j − 1, j + 1}, (27)

[ejj+1, [ejj+1, ekk+1]] = 0, if k ∈ {j − 1, j + 1}, (28)

[ej+1j , [ej+1j , ek+1k]] = 0, if k ∈ {j − 1, j + 1}. (29)

The relations (26) and (27) follow by Lemma 2.7. The relations (28) and (29)
can be proven as follows.

[ejj+1, [ejj+1, ekk+1]] = σ([ej−1j , [ej−1j , ek−1k]]) = σ(0) = 0,

[ej+1j , [ej+1j , ek+1k]] = σ([ejj−1, [ejj−1, ekk−1]]) = σ(0) = 0.

Here we used the sln−2 relations. We have shown that the algebra generated
by {eii+1, eii+1, hi|i ∈ [n − 1]} is homomorphic to sln−1. To show that it is
in fact isomorphic we need to prove that the map from sln−1 into Rn(h) is
injective. This is seen by the same argument as before based on the simplicity
of sln−1 and thus we have an embedding �

We state the following corollary.
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Corollary 3.4. As Lie algebras over the field K := R(a1, . . . , an) we have the
following isomorphism:

Rn(h, []) ∼= sln−1 ⊕ K
n+1.

Proof. The set (15) generates Rn(h, []) as a vector space over K := R(a1, . . . , an)
but we do not know yet if this is a basis. We have n+1 central elements, n(n−1)

2

elements of the form Qij and (n−1)(n−2)
2 elements of the form [Q1j , Qjk]. We

have therefore

dim(Rn(h, [])) ≤ n + 1 +
n(n − 1)

2
+

(n − 1)(n − 2)
2

= n2 − n + 1. (30)

By Theorem 3.3 we know there exists a subalgebra of Rn(h, []) isomorphic with
sln−1. Denote this Lie algebra by s. The dimension of s equals (n − 1)2 − 1.
We add to this algebra s the vector space generated by the central elements

Z := 〈{Qi | i ∈ [n]} ∪ {Q[n]}〉.
First notice that s ∩ Z = {0}. The algebra s is simple, so it does not contain
central elements. Second we see that {Qi | i ∈ [n]} ∪ {Q[n]} is a basis for Z.
If this was not the case, we could find a linear combination of the central
elements equal to 0. We show that this is not possible. The Qi are linearly
independent by construction. Assume we have the linear combination:

Q[n] =
n∑

i=1

λiQi.

Act with μ∗ ⊗ ⊗n−1
i=1 1 and take the commutator with Q23. We find

0 = [Q23, Q[n+1]] =

[
Q23, λ1Q12 +

n∑

i=2

λiQi+1

]

= λ1[Q23, Q12].

The element [Q23, Q12] does not equal 0, so λ1 = 0. Similarly, one can show
that all λi = 0 concluding that {Qi | i ∈ [n]} ∪ {Q[n]} is indeed a basis for Z.
The dimension of Z equals n + 1. We have

s ⊕ Z ⊂ Rn(h, []).

From this it follows that

n2 − n + 1 = dim(s ⊕ Z) ≤ dim(Rn(h, [])).

We already have an upper bound by inequality (30). Therefore it follows that
dim(Rn(h, [])) = n2 − n + 1 and hence

Rn(h, []) = s ⊕ Z ∼= sln−1 ⊕ K
n+1.

This concludes the proof. �
Theorem 3.3 and Corollary 3.4 both follow from the set of equations

calculated in Sect. 2. As a consequence of the isomorphism found in Corollary
3.4 we give an alternative definition of Rn(h, []). It is the algebra defined over
R(a1, . . . , an) with generators Qi and Qij satisfying the set of equalities (11),
(12) and (13), together with Lemma 2.7 and Lemma 2.6.
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3.4. Labeling Abelian Algebras

In the proof of Theorem 3.3 the elements of the Cartan algebra of sln−1 are
linear combinations of the central elements and {Q[k] | 2 ≤ k ≤ n − 1}. It is
possible to construct different Cartan algebras if one starts from a different
set of generators.

Definition 3.5. A set of non-empty subsets of [n] A is a maximal
non-intersecting/ nested set if it satisfies the following properties:

• Every pair of sets in A is either disjoint or one is included in the other.
• Maximality: It is not possible to add another subset of [n] to A without

contradicting the first property.

By Lemma 2.7 the corresponding generators QA with A ∈ A will be a set
of commuting operators. To each maximally non-intersecting/nested set A we
can associate a graph TA. Let every vertex of the graph represent a set in A.
There is an edge between two vertices A and B if either set is included in the
other but there is no third set C ∈ A such that A ⊂ C ⊂ B or B ⊂ C ⊂ A.

Lemma 3.6. The graph TA related to the maximal non-intersecting/nested set
A is a perfect binary tree.

Proof. The set [n] is always included in A by maximality. The set [n] includes
every set in A and will be the root of the tree. The sets with one element
are also included in A by maximality. They are either completely included
or disjoint with every set in A. These sets do not have any proper subsets,
so they cannot have any children and are therefore leaves of the tree. Every
other vertex has two children. Assume this is not the case. Let A have exactly
one child B. Then we can add A\B to A contradicting the maximality of A.
Assume A has more than two children. Let B1, B2 and B3 three sets that are
children of A. We can add the set B1 ∪ B2 to A contradicting the maximality
of A. This concludes the proof. �

We have n indices, so we have n leaves. A perfect binary tree with n
leaves has n−2 interior vertices. The generators related to the interior vertices
constitute an Abelian algebra with n − 2 generators.

Definition 3.7. Let A be a maximally non-intersecting/nested set of [n]. Then
we define the labeling Abelian algebra associated with A to be:

YA = {QA |A ∈ A and 1 < |A| < n}.

We exclude the elements Qi and Q[n] as they are central. For each max-
imally non-intersecting/nested set A we have constructed a tree TA and an
algebra YA. Often we will represent the algebra YA by the tree TA. These trees
are similar to the coupling trees introduced in [51]. Labeling Abelian algebras
are Gaudin subalgebras when Rn(h) is viewed as a Kohno–Drinfeld algebra.

Example 3.8. Consider R3(h). We have three indices 1, 2 and 3. This gives us
three possible trees and therefore three different labeling Abelian algebras:
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1

12

123

2 3

YA = {Q12}
1

23

123

2 3

YA = {Q23}
1

13

123

3 2

YA = {Q13}

Example 3.9. Consider R4(h). We have four indices 1, 2, 3 and 4, so we have
trees with four leaves. We consider two examples:

1

12

123

2 3

1234

4

YA = {Q12, Q123}
1

12 34

2 3

1234

4

YA = {Q12, Q34}

We are now in a position to explain the relation between these labeling
Abelian algebras and the Cartan algebra of sln−1 inside Rn(h). Assume we
have fixed a labeling Abelian algebra YA. For every set A ∈ A that is not the
root or a leaf, we will construct three generators eA, fA and hA. To do this,
consider the tree TA. Focus on the subtree consisting of the vertex related to
the set A: The children of A which we will call K and L, the parent B of A
and the child of B differing from A denoted by M . We have two possibilities:

K

A

B

L M M

A

B

K L

We define eA and fA as follows:

eA := λA([QA, [QA, QLM ]] + aA[QA, QLM ]),

fA := λA([QA, [QA, QLM ]] − aA[QA, QLM ]). (31)

with

λA =
1√

4aKaLaMa2
AaB

.

Observe that it is possible to replace QLM by QKM in the definitions of eA and
fA leading to different but equally correct expressions for eA and fA. To avoid
this ambiguity we always choose L to be the right child of A and M the child of
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B different from A. This, however, fixes an ordering of the leaves. Otherwise,
it is not possible to speak of a left and right child. Together with the Cartan
elements hA = [eA, fA], the set {eA, fA, hA} generates the Lie algebra sln−1.
This can be proven by repeating the arguments in Theorem 3.3. The maximally
non-intersecting/nested set used in Theorem 3.3 is {[k] | 1 < k < n}. To find
the relation between the Cartan algebra {hA |A ∈ A and 1 < |A| < n} and
the labeling Abelian algebra YA we consider explicitly hA:

hA =
2QA

aA
− QB

aB
− QK

aK
− QL

aL
+

QM

aM
.

Every Cartan element can be written as a linear combination of elements of
the labeling Abelian algebra YA and central elements Qi and Q[n].

In the next section we will study the representation theory behind Rn(h)
and its relation to the Lie algebra sln−1. The relation between Cartan algebras
and labeling Abelian algebras will play an important role there.

4. Connection Between Recoupling Coefficients for h and
sln−1-Representations

Assume we have a finite dimensional irreducible representation V of Rn(h).
Because of Corollary 3.4 this is also an irreducible representation for sln−1. In
this section we study bases diagonalized by different labeling Abelian algebras
or equivalently Cartan algebras of sln−1 and their connection coefficients. We
first study the rank one case.

4.1. sl2 and the Krawtchouk Polynomials

Consider the following two Abelian algebras of R3(h):

1

12

123

2 3

YA1 = {Q12}
1

23

123

2 3

YA2 = {Q23}
Let {ψk} be an eigenbasis of Q12 and {φs} be an eigenbasis of Q23. The indices
k and s run from 0 to N with dim(V ) = N +1. We are interested in the overlap
coefficients Bks between these bases:

φs =
N∑

k=0

Bskψk. (32)

To study these overlap coefficients we construct the Lie algebra sl2 inside
R3(h). Corresponding to YA1 , we have the following generators. See also for-
mula (22):

e := λ([Q12, [Q12, Q23]] + a12[Q12, Q23]),
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f := λ([Q12, [Q12, Q23]] − a12[Q12, Q23]),

h :=
2Q12

a12
− Q123

a123
− Q1

a1
− Q2

a2
+

Q3

a3

with λ =
√

4a1a2a3a2
12a123

−1
. The sl2 Lie algebra related to YA2 is given by

replacing indices (1 → 2 → 3 → 1) in e, f and h given above. We denote these
elements by ẽ, f̃ and h̃. The elements h and h̃ diagonalize the bases {ψk} and
{φs} respectively.

hψk = μkψk, h̃φs = νsφs.

The map .̃ is an automorphism of sl2, so we can write h̃ as a linear combination
of h, e and f .

h̃ = Rhh + Ree + Rff

with

Rh = −a1a2 − a1a3 + a2
2 + a2a3

a12a23
,

Re = Rf = 2
√

a1a2a3a123

a12a23
.

Observe that ReRf +R2
h = 1. It is a classical result that the overlap coefficients

between two bases related by an inner automorphism of sl2 are univariate
Krawtchouk polynomials [26,39]. We have therefore relegated the calculations
to “Appendix A.” This is the result:

Bsk ∼ Kk

(
νs + N

2
;
1 − Rh

2
, N

)
.

The Krawtchouk polynomials depend on 2 values: Rh and N . The number N
is by definition equal to dim(V ) − 1. The dimension of an irreducible repre-
sentation of sl2 can be found by considering its Casimir:

C :=
h2

2
+ ef + fe

=
1
2

(
Q1

a1
+

Q2

a2
+

Q3

a3
− Q123

a123

)(
Q1

a1
+

Q2

a2
+

Q3

a3
− Q123

a123
− 2

)
. (33)

If we act with the Casimir on ψk, we find:

Cψk =
N2 + 2N

2
ψk.

From the action of the Casimir C of sl2 or equivalently the central elements Q1,
Q2, Q3 and Q123, we are able to discern the dimension of the representation
and hence the number N . For the remainder of the article we will write the
dependence on Rh and C explicitly: Bsk(Rh, C).
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4.2. sln−1 and the Multivariate Krawtchouk Polynomials

Let YA1 and YA2 be two labeling Abelian algebras of Rn(h). Additionally, we
demand that A1 and A2 differ only by one element:

A1\A2 = {G1}, A2\A1 = {G2}.

Let {ψ�k} be diagonalized by the labeling Abelian algebra YA1 and {ψ�s} be
diagonalized by the labeling Abelian algebra YA2 . Let A1 = {Ai | i = 1 . . . n −
2}, then we have

QAi
ψ�k = μAi

ki
ψ�k.

For a specific index j it must be that Aj = G1. We want to find the overlap
coefficients between the bases {ψ�k} and {φ�s}.

φ�s =
∑

�k
B�s�kψ�k.

The basis vector φ�s is a common eigenvector of the operators QAi
, i �= j with

eigenvalues μAi
si

. The basis {ψ�k} also consists of eigenvectors of the operators
QAi

, i �= j. The vector φ�s must therefore be written as a linear combination
of common eigenvectors of QAi

, i �= j with the same eigenvalues μAi
si

, i �= j. It
follows that B�s�k = 0 if ki �= si for some i �= j. The overlap coefficient can be
written as

B�s�k = Bsjkj

∏

i�=j

δsiki

where δsiki
is the Kronecker delta. To find Bsjkj

consider the common eigenspace
T = {v ∈ V |QAi

v = μAi
si

v for all i �= j}. Both QG1 and QG2 commute with
each QAi

, so they preserve the common eigenspace T . In fact QG1 and QG2

lie in an algebra isomorphic to R3(h) that preserves T . Let K = G1\G2,
L = G1 ∩ G2 and M = G2\G1. By Lemma 2.4 the algebra RK,L,M

3 (h) gener-
ated by {QK , QL, QM , QKL, QLM , QKLM} is isomorphic to R3(h). It preserves
T as each generator commutes with QAi

with i �= j. In fact the sets K, L,
M and K ∪ L ∪ M are in A1 ∩ A2. We conclude that T is a representation of
R3(h) with one basis {ψ�k} ∩ T diagonalized by QG1 and the other {φ�s} ∩ T
by QG2 . We are basically in the situation discussed in the previous paragraph
and represented by the following two trees:

K

G1

KLM

L M K

G2

KLM

L M

This means that the overlap coefficients are given by

Bsjkj
= Bsjkj

(RK,L,M
h , CK,L,M ).
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The elements RK,L,M
h and CK,L,M are obtained by using the isomorphism

between R3(h) and RK,L,M
3 (h) obtained by replacing the indices 1, 2 and 3 by

K, L and M :

RK,L,M
h = −aKaL − aKaM + a2

L + aLaM

aKLaLM
,

CK,L,M =
1

2

(
QK

aK
+

QL

aL
+

QM

aM
− QKLM

aKLM

) (
QK

aK
+

QL

aL
+

QM

aM
− QKLM

aKLM
− 2

)
.

We have shown that the overlap coefficients between two bases diagonal-
ized by labeling Abelian algebras differing by one generator are Krawtchouk
polynomials. Let us remove the condition that the labeling Abelian algebras
need to differ by one generator. Then, the strategy to find the overlap co-
efficients is to find a series of intermediate bases in such a way that each
intermediate basis differs by one generator from the next intermediate basis.
For example take the labeling Abelian algebras 〈Q12, Q34〉 and 〈Q13, Q24〉 in
R4(h). Then we can find a series of intermediate bases:

〈Q12, Q34〉 → 〈Q12, Q123〉 → 〈Q13, Q123〉 → 〈Q13, Q24〉.
Each step gives us Krawtchouk polynomials as overlaps. More specifically let
{ψ1

k1k2
}, {ψ2

k1l2
}, {ψ3

s1l2
} and {φs1s2} be the bases diagonalized by each step

in this chain. Then the overlap coefficients become:

φs1s2 =
∑

l2

Bs2l2(R
13,2,4
h , C13,2,4)ψ3

s1l2

=
∑

l2k1

Bs2l2(R
13,2,4
h , C13,2,4)Bs1k1(R

1,2,3
h , C1,2,3)ψ2

k1l2

=
∑

l2k1k2

Bs2l2(R
13,2,4
h , C13,2,4)Bs1k1(R

1,2,3
h , C1,2,3)Bl2k2(R

4,3,12
h , C4,3,12)ψ1

k1k2 .

Here we conclude that the overlap coefficients are

B�s�k =
∑

l2

Bs2l2(R
13,2,4
h , C13,2,4)Bs1k1(R

1,2,3
h , C1,2,3)Bl2k2(R

4,3,12
h , C4,3,12).

(34)
This gives us a method to calculate connection coefficients between any pair
of bases diagonalized by labeling Abelian algebras. We do need to check if
there is always a path between two labeling Abelian algebras. To this end we
introduce the recoupling graph of Rn(h). Let every labeling Abelian algebra
be represented by a vertex. Two vertices are connected by an edge if they differ
only by one generator.

Proposition 4.1. The recoupling graph of Rn(h) is connected and its diameter
is bounded by (n−1)(n−2)

2 .

Proof. We use an argument applied on the binary trees related to labeling
Abelian algebras. On these trees we have two operations:

• A twist: interchanging two children (and their descendant trees) of a
vertex. This does not change the labeling Abelian algebra, so on the
connection graph we stay on the same vertex.
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A B

→
B A

• A swap: Moving a vertex’ child to the other edge. This changes the label-
ing Abelian algebra by one generator. On the connection graph, we move
along an edge to a new vertex.

→

Because twisting does not change the labeling Abelian algebra, you stay on the
same vertex of the connection graph. Every swap on the other hand is related
to a step on the connection graph. The proof of connectedness in (n−2)(n−1)

2
steps uses induction:

Let n = 3 and take any two trees with three leaves. It is easy to see that
it takes a single swap combined with a number of twists to get from one tree
to the other.

Assume we have proved it for n− 1. We take two trees with n leaves. We
call these trees the initial tree and final tree. In the initial tree there is at least
one vertex whose children are leaves. Assume these leaves are labeled a and
b. Remove those leaves and give the parent vertex the label a. We now have
a tree with n − 1 labeled leaves. We removed the label b. Remove this label b
also from the final tree together with its parent. The final tree now also has
n − 1 labeled leaves. By induction it takes (n−2)(n−3)

2 swaps and a number of
twists to change the initial tree to the final tree. Add the leaf with label b and
its parent again to the final tree where it was removed. In the initial tree we
add two leaves to the leaf with label a. We remove this label a and add label a
and b to the leaves. Only leaf b is in the wrong place. There are at most n − 2
vertices in between leaf b and were it needs to be in the final tree. It requires
n − 2 swaps and a number of twists to move leaf b into the right position. The
total swaps used to change the initial tree into the final tree is

(n − 2)(n − 3)
2

+ n − 2 =
(n − 1)(n − 2)

2
.

�

Remark 4.2. This proof also works for the higher rank Racah algebra for
su(1, 1) as in [13] effectively generalizing the connection graph and the proof
of connectedness of the connection graph in [13].

We want to conclude this section with a special pair of labeling Abelian
algebras of Y1 = {Q[k] | 2 ≤ k ≤ n − 1} and Yn−1 = {Q[2...k] | 3 ≤ k ≤ n}.
Observe that Yn−1 can be obtained by from Y1 by cyclically permuting the
indices i → i + 1 and n → 1. We can find a path between these two algebras
as follows. Define

Yl := {Q[k] | l + 1 ≤ k ≤ n − 1} ∪ {Q[2...k] | 3 ≤ k ≤ l + 1}.
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These are labeling Abelian algebra with Yl−1\Yl = Q[l] and Yl\Yl−1 = Q[2...l+1].
If we determine the overlap associated with each step, we find the following
connection coefficients:

B�s�k =
n−1∏

l=2

Bslkl
(R1,[2...l],l+1

h , C1,[2...l],l+1).

These are the multivariate Krawtchouk polynomials of Tratnik type. They
depend on n − 2 parameters R

1,[2...l],l+1
h . They are constructed in the same

way as the multivariate Racah polynomials were constructed as connections
coefficients between labeling Abelian algebras for the Racah algebra in [13].
The number of parameters follows from the number of steps we needed to
move through the connection graph. By Proposition 4.1 we know that we can
find paths up to (n−1)(n−2)

2 steps. Further in the paper we will show how to
get the multivariate Krawtchouk polynomials of Griffiths type depending on
(n−1)(n−2)

2 parameters.

4.3. 6j- and 9j-Symbols

The 6j-, 9j- and in general the 3nj-symbols for the oscillator algebra h can be
cast into the framework presented in this article as they are specific overlaps
between recoupled bases. Consider the 6j-symbols. Given the algebra h⊕h⊕h,
the 6j-symbols or Racah coefficients are the connection coefficients for coupling
the first two oscillator algebras and the last two:

(h ⊕ h) ⊕ h → h ⊕ (h ⊕ h).

In our framework this is equivalent with finding the overlap between the bases
diagonalized by Q12 and Q23. The 6j-symbols are therefore up to a normaliza-
tion equal to Bsk(Rh, C). One could ask where the 6 j’s of the 6j-symbols are.
The indices s and k are related to the eigenvalues of Q12 and Q23, so they are
related to j12 and j23. The number Rh is independent of the representation
used. The remaining four j’s are hidden in the Casimir C. According to for-
mula (2) the Casimir depends on Q1, Q2, Q3 and Q123 giving the remaining
j1, j2, j3 and j123.

A similar analysis can be given for the 9j-symbols. The 9j-symbols were
already identified as bivariate Krawtchouk polynomials in [53]. They are ob-
tained by considering the algebra h⊕h⊕h⊕h and the following two bases: the
first basis is obtained by coupling first factor with the second and the third
with the fourth. The second basis is obtained by coupling the first factor with
the third and the second with the fourth. That is

(1 ⊕ 2) ⊕ (3 ⊕ 4) → (1 ⊕ 3) ⊕ (2 ⊕ 4).

In our framework this is equivalent with finding the overlap coefficients between
the bases diagonalized by 〈Q12, Q34〉 and 〈Q13, Q24〉. We already calculated the
connection coefficients in formula (34). We repeat the solution here:

B�s�k =
∑

l2

Bs2l2(R
13,2,4
h , C13,2,4)Bs1k1(R

1,2,3
h , C1,2,3)Bl2k2(R

4,3,12
h , C4,3,12).
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These numbers are multivariate Krawtchouk polynomials depending on three
parameter R13,2,4

h ,R1,2,3
h and R4,3,12

h . These numbers B�s�k are up to normaliza-
tion equal to the 9j-symbols. The 9 j’s are found in the following way: �s and �k
are related to the eigenvalues of {Q12, Q34} and {Q13, Q24}, respectively. The
others are found by considering the three Casimir elements appearing in the
formula. We can add the following generators:

{Q1, Q2, Q3, Q4, Q123, Q1234}.

This gives a total of 10 numbers. This is one too many. The summation runs
over l1 which appears not only as an index but also in C1,2,3. This number,
which is related to the eigenvalues of Q123, can be considered as being summed
away. This leaves us with 9 generators related to the 9 j’s in the 9j-symbols.
A similar analysis can be done for any 3nj-symbol.

4.4. Automorphisms of Rn(h) and sln−1

For each labeling Abelian algebra of Rn(h), we are able to construct a set of
operators that generate sln−1. By Corollary 3.4 these sets of operators must
generate the same algebra. This leads to automorphisms of sln−1. In this sec-
tion we will give a few examples. Additionally, we will give the group element
of Lie group SOn−1 corresponding to each automorphism.

Example 4.3. Take the algebra R3(h) and construct sl2 from the labeling
Abelian algebra {Q12}: As per formula (31):

e := λ([Q12, [Q12, Q23]] + a12[Q12, Q23]),

f := λ([Q12, [Q12, Q23]] − a12[Q12, Q23]),

h := [e, f ].

Consider the permutation (1 ↔ 2). This can be represented by a twist of two
branches of our tree as in Proposition 4.1:

1

12

123

2 3

→

2

12

123

1 3

Keeping in mind that [Q12, Q13] = −[Q12, Q23] by formula (9), the images of
the generators under this permutation are h̃ = h, ẽ = −e and f̃ = −f . The
automorphism of SL2 is constructed as follows. Let

U

(
h
2 f
e −h

2

)
U−1 =

(
h̃
2 f̃

ẽ − h̃
2

)
. (35)

We want to solve for U with U ∈ SL2. Conjugation by U is the related auto-
morphism of SL2. In this case

U(12) =
(

1 0
0 −1

)
.
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Example 4.4. Next we construct sl2 from the labeling Abelian algebra {Q23}.
We are constructing an isomorphism corresponding to these two trees:

1

12

123

2 3

→

1

23

123

2 3

This is a swap as in Proposition 4.1. We obtain the second set of generators
by permuting the permutation (1 → 2 → 3 → 1). The transformed generators
h̃, ẽ and f̃ are linear combinations of the original generators h, e and f :

h̃ = 2
√

a1a2a3a123

a12a23
(e + f) +

a1a2 + a2a3 + a2
2 − a1a3

a12a23
h,

ẽ =
a1a3

a12a23
e − a2a123

a12a23
f −

√
a1a2a3a123

a12a23
h,

f̃ = − a1a3

a12a23
e +

a2a123

a12a23
f −

√
a1a2a3a123

a12a23
h.

This set of equalities gives an automorphism of sl2. We find the corresponding
group element of SO2 by solving the following matrix equation:

U

(
h
2 f
e −h

2

)
U−1 =

(
h̃
2 f̃

ẽ − h̃
2

)
. (36)

Solving for U gives

U(123) =

⎛

⎝

√
a1a3

a12a23
−

√
a2a123
a12a23√

a2a123
a12a23

√
a1a3

a12a23

⎞

⎠ .

A straightforward calculation shows that U(123) is indeed an orthogonal matrix.
It represents a rotation with angle θ1,2,3 defined by

cos(θ1,2,3) =
√

a1a3

a12a23
.

Example 4.5. Consider in the algebra R4(h) the Lie algebra sl3 constructed
from the labeling Abelian algebra {Q12, Q123}.

e12 := λ1([Q12, [Q12, Q23]] + a12[Q12, Q23]),

e21 := λ1([Q12, [Q12, Q23]] − a12[Q12, Q23]),

h1 := [e12, e21],

e23 := λ2([Q123, [Q123, Q34]] + a123[Q123, Q34]),

e32 := λ2([Q123, [Q123, Q34]] − a123[Q123, Q34]),

h2 := [e23, e32],

e13 := [e12, e23],
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e31 := [e32, e21].

When performing the permutation (1 → 2 → 3 → 1) we find new generators.
These generators are eigenvectors of the labeling Abelian algebra {Q23, Q123}.
We will not explicitly express the new generators as linear combinations but
we will give U ∈ SL3. To find U we solve the following equation

U

⎛

⎝
2h1+h2

3 e21 e31

e12
−h1+h2

3 e32

e13 e23
−h1−2h2

3

⎞

⎠ U−1 =

⎛

⎜⎝

2h̃1+h̃2
3 ẽ21 ẽ31

ẽ12
−h̃1+h̃2

3 ẽ32

ẽ13 ẽ23
−h̃1−2h̃2

3

⎞

⎟⎠ . (37)

For the given permutation, we find

U(123) =

⎛

⎜⎜⎝

√
a1a3

a12a23
−

√
a2a123
a12a23

0
√

a2a123
a12a23

√
a1a3

a12a23
0

0 0 1

⎞

⎟⎟⎠ .

The 2×2 in the upper right corner is exactly U(123) in the n = 2 case. If U(123)

acts on a three-dimensional space it represents a planar rotation over an angle
θ1,2,3. We will denote this matrix alternatively by Rx1x2(θ1,2,3) := U(123). The
x1x2 index represents the plane that is being rotated. This overlap can be
represented by a swap as in Proposition 4.1:

1

12

123

2 3

1234

4

YA = {Q12, Q123}

−→

1

23

123

2 3

1234

4

YA = {Q23, Q123}

Example 4.6. Consider in the algebra R4(h) again the Lie algebra sl3 con-
structed from the labeling Abelian algebra Y1 := {Q12, Q123}. The second
labeling Abelian algebra we consider is Y2 := {Q12, Q34}. As before we can
represent this overlap by a swap as in Proposition 4.1.

1

12

123

2 3

1234

4

YA = {Q12, Q123}

−→

1

12 34

2 3

1234

4

YA = {Q12, Q34}
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The generators corresponding to the second labeling Abelian algebra are:

ẽ12 := λ12([Q12, [Q12, Q234]] + a12[Q12, Q234]),

ẽ21 := λ12([Q12, [Q12, Q234]] − a12[Q12, Q234]),

h̃1 := [e12, e21],

ẽ23 := λ34([Q34, [Q34, Q124]] + a34[Q34, Q124]),

ẽ32 := λ34([Q34, [Q34, Q124]] − a34[Q34, Q124]),

h̃2 := [e23, e32],

ẽ13 := [e12, e23],

ẽ31 := [e32, e21].

Solving equation (37) results in

UY1Y2 :=

⎛

⎜⎜⎝

1 0 0
0

√
a3a1234
a123a34

−
√

a4a12
a123a34

0
√

a4a12
a123a34

√
a3a1234
a123a34

⎞

⎟⎟⎠ .

This is again an orthogonal matrix. Similarly, to the previous example one can
see that the lower-right 2 × 2 matrix is a rotation matrix. The matrix UY1Y2

represents a planar rotation matrix over an angle π/2−θ12,3,4 but in a different
plane. We denote this matrix by

Rx2x3(θ12,3,4 − π/2).

Given two labeling Abelian algebras, we are able to construct an isomor-
phism of sl3 and its corresponding rotation matrix. The previous examples
show that if one labeling Abelian algebra is obtained by performing a swap
on the other, the resulting rotation matrices are planar. Twists on the other
hand give reflections. This leads to an alternative way to construct the rota-
tion matrix of an isomorphism related to two labeling Abelian algebras. We
choose a path in the connection graph between the vertices related to the la-
beling Abelian algebras. Every step along the path in the connection graph
can be represented by a swap as in Proposition 4.1. Each of these swaps leads
to a planar rotation. The final rotation matrix will be the product of each pla-
nar rotation found along the path. For example, consider these two labeling
Abelian algebras: 〈Q12, Q34〉 and 〈Q13, Q24〉. The intermediate bases are the
following:

〈Q12, Q34〉 → 〈Q12, Q123〉 → 〈Q13, Q123〉 → 〈Q13, Q24〉.
For each step we construct the corresponding rotation matrix. This results in

R := Rx2x3(π/2 − θ12,3,4)Rx1x2(−θ1,2,3)Rx2x3(θ13,2,4 − π/2).

It is known that every rotation matrix R ∈ SO3 can be written as the following
product of planar rotations:

Rx2x3(θ1)Rx1x2(θ2)Rx2x3(θ3).
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The angles θ1, θ2 and θ3 are the so-called Euler angles. By choosing the right
path through the connection graph it is possible to give the decomposition
of the rotation matrix in planar matrices. The Euler angles also show up
in the overlap coefficients between the given bases. The overlap coefficients
(34) are multivariate Krawtchouk polynomials of Griffiths type depending on
three parameters R13,2,4

h , R1,2,3
h and R4,3,12

h . The relationship between these
parameters and the angles is the following:

RK,L,M
h = cos(2θK,L,M ).

This relation between multivariate Krawtchouk polynomials and rotations had
been discussed earlier in [26].

We generalize the previous analysis to any n. To any pair of labeling
Abelian algebras we are able to construct overlap coefficients and an isomor-
phism of sln−1 represented by a rotation matrix in SOn−1. Any rotation matrix
in SOn−1 can be written as the product of (n−1)(n−2)

2 planar rotations. In the
same way the overlap coefficients are multivariable Krawtchouk polynomials of
Griffiths type depending on (n−1)(n−2)

2 parameters. By Proposition 4.1 it takes
at most (n−1)(n−2)

2 steps through the connection graph. Each step provides us
with a parameter and a planar rotation matrix leading to the right number of
parameters and planar rotations. We will showcase this with an example that
also shows the link with Krawtchouk polynomials of Tratnik type:

Example 4.7. Consider the labeling Abelian algebras

Yinitial := {Q[k] | 1 < k < n}, Yfinal := {Q[k...n] | 1 < k < n}.

Between these two labeling Abelian algebras, it will take (n−1)(n−2)
2 steps to

find the overlap.
Step 1 Replace Q12 by Q23 in Yinitial. The overlap coefficients are univariate
Krawtchouk polynomials:

Bs1
1s2

1
(R1,2,3

h , C1,2,3).

The vector index s1 labels the basis diagonalized by Yinitial. The index s2

labels the basis diagonalized by the new labeling Abelian algebra. The related
rotation matrix is given by

Rx1x2(θ1,2,3).

Step 2 We perform two steps: Replace Q123 by Q234 and then Q23 by Q34. The
overlap coefficients are bivariate Krawtchouk polynomials of Tratnik type:

Bs2
1s3

1
(R1,23,4

h , C1,23,4)Bs2
2s3

2
(R2,3,4

h , C2,3,4).

The related rotation matrix is given by

Rx1x2(θ2,3,4)Rx2x3(θ1,23,4).

Step k − 1 Consider the first k − 1 elements in the labeling Abelian algebra:

{Qk−1k, Q[k−2...k], . . . , Q[2...k], Q[k]}.
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We perform k − 1 steps. Replace Q[k] by Q[2...k+1]. Next replace Q[2...k] by
Q[3...k+1] and so on until Qk−1k is replaced by Qkk+1. These k − 1 steps lead
to overlap coefficients that are a product of k −1 univariate Krawtchouk poly-
nomials. These are more specifically multivariate Krawtchouk polynomials of
Tratnik type:

k−1∏

l=1

Bsk−1
l sk

l
(Rl,[l+1...k],k+1

h , Cl,[l+1...k],k+1).

The related rotation matrix is given by
k−1∏

l=1

Rxk−lxk+1−l
(θl,[l+1...k],k+1).

Combining all n−2 steps we come to the conclusion that the overlap coefficients
are given by

B�s1 �sn−1 =
n−2∑

m=2

∑

sm
l

n−1∏

k=2

k−1∏

l=1

Bsk−1
l sk

l
(Rl,[l+1...k],k+1

h , Cl,[l+1...k],k+1).

The overlap coefficients are multivariate Krawtchouk polynomials of Griffiths
type which are themselves a sum of products of Krawtchouk polynomials of
Tratnik type. The overlap coefficients depend on (n−1)(n−2)

2 parameters of the
form R

l,[l+1...k],k+1
h . The corresponding rotation matrix is given by a product

of (n−1)(n−2)
2 rotation matrices.

n−1∏

k=2

k−1∏

l=1

Rxk+1−lxk−l
(θl,[l+1...k],k+1)

Remark 4.8. Going through the connection graph gives the full decomposition
into Euler angles. It should be noted however that the (n−1)(n−2)

2 parameters
θl,[l+1...k],k+1 are not independent as they depend themselves on the n structure
constants ai. The matrices corresponding to isomorphisms between copies of
sln−1 constructed by considering labeling Abelian algebras only form a strict
subset of SOn−1 when n > 4.

5. Conclusion

We introduced the oscillator Racah algebra Rn(h). We have shown how to
embed sln−1 into the algebra Rn(h). This connects the representation theory
for both algebras. In finite irreducible representations we considered bases
diagonalized by labeling Abelian algebras of Rn(h). The overlap coefficients
between a pair of bases are shown to be multivariate Krawtchouk polynomials
of Tratnik or Griffiths type. Isomorphisms of sln−1 related to pairs of labeling
Abelian algebras and their corresponding Lie group elements were constructed
and their link to the overlap coefficients is explained. This has provided an
explanation as to why the recoupling coefficients of the oscillator algebra and
the matrix elements of the restrictions to O(n−1) of symmetric representations
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of SL(n − 1) are generically given in terms of the multivariate Krawtchouk
polynomials of Griffiths.
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Appendix A: Calculation of overlap coefficients

Let V be a finite-dimensional representation of sl2 and .̃ an automorphism of
sl2. The element h is a Cartan generator of sl2. Let {ψk} be an eigenbasis of
h and {φs} be an eigenbasis for h̃. The indices k and s run from 0 to N with
dim(V ) = N + 1. We are interested in the overlap coefficients Bks between
these bases:

φs =
N∑

k=0

Bskψk.

hψk = μkψk h̃φs = νsφs. (38)

The algebra sl2 has algebra relations [h, e] = 2e and [h, f ] = −2f with e the
raising operator and f the lowering operator on {ψk}:

eψk = ekk+1ψk+1 fψk = fkk−1ψk−1

and μk = μ0 + 2k. From the algebra relation [e, f ] = h it follows that

fkk−1ek−1k − ekk+1fk+1k = μk.

Let Ak := ekk−1fk−1k. Then, we have

Ak − Ak+1 = 2k + μ0.

From this we find

Ak = −k(k − 1) − μ0k − Ω

with Ω ∈ R. We express h̃ as a linear combination of h, e and f .

h̃ = Rhh + Ree + Rff
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with ReRf + R2
h = 1. We have set up everything we need to find the overlap

coefficients. Let the operator h̃ act on both sides of equality (38).

h̃ψs =
N∑

k=0

Bsk(Rhh + Ree + Rff)ψk.

This gives

νsφs =
N∑

k=0

Bsk(Rhμkψk + Reekk+1ψk+1 + Rffkk−1ψk−1).

We expand the left-hand side into the basis ψk and we gather the terms on
the right-hand side:

N∑

k=0

νsBskψk =
N∑

k=0

(BskRhμk + Bsk−1Reek−1k + Bsk+1Rffk+1k)ψk.

From this we find the recurrence relation

νsBsk = Bsk+1Rffk+1k + BskRhμk + Bsk−1Reek−1k.

We want to recognize this recurrence relation as one of the family of orthogonal
polynomials. Let

B̃ks =

(
k∏

t=2

ftt−1Rf

)
Bsk

to find

νsB̃sk = B̃sk+1 + RhμkB̃sk + ReRfek−1kfk−1kB̃sk−1.

We write the coefficients as polynomials in x = νs:

xB̃k(x) = B̃k+1(x) + RhμkB̃k(x) + ReRfAkB̃k−1(x). (39)

We want to compare this with the recurrence relation of the normalized
Krawtchouk polynomials as defined in [38]:

xpn(x) = pn+1 + (n(1 − 2r) + rN)pn(x) + r(1 − r)n(N + 1 − n)pn−1(x)

with n = 0, 1, . . . , N . Let x = αy + β and introduce qn(y) = pn(αy + β)/αn.
The polynomial qn(x) satisfies the following recurrence relation:

yqn(y) = qn+1 +
n(1 − 2r) + rN − β

α
qn(y) +

r(1 − r)n(N + 1 − n)
α2

qn−1(y).

We retrieve Eq. (39) if we set

α =
1
2
, r =

1 − Rh

2
, β =

N

2
, k = n, Ω = 0, μ0 = −N.

We explicitly write down the polynomials B̃k(x).

B̃k(x) = 2kpk

(
x + N

2

)

= (−N)k(1 − Rh)kKk

(
x + N

2
;
1 − Rh

2
, N

)
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= (−N)k(1 − Rh)k
2F1

(
−k,−x+N

2−N

∣∣ 2
1 − Rh

)
.

The overlap coefficients are the Krawtchouk polynomials Kk(x) (defined in
the last line of the equation above) up to a normalization factor.

Bsk =

(
k∏

t=2

ftt−1Rf

)
(−N)k(1 − Rh)kKk

(
νs + N

2
;
1 − Rh

2
, N

)
.
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