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General Toeplitz Matrices Subject
to Gaussian Perturbations

Johannes Sjöstrand and Martin Vogel

Abstract. We study the spectra of general N ×N Toeplitz matrices given
by symbols in the Wiener Algebra perturbed by small complex Gaussian
random matrices, in the regime N � 1. We prove an asymptotic formula
for the number of eigenvalues of the perturbed matrix in smooth domains.
We show that these eigenvalues follow a Weyl law with probability sub-
exponentially close to 1, as N � 1, in particular that most eigenvalues
of the perturbed Toeplitz matrix are close to the curve in the complex
plane given by the symbol of the unperturbed Toeplitz matrix.
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1. Introduction and main result

Let aν ∈ C, for ν ∈ Z and assume that

|aν | ≤ O(1)m(ν), (1.1)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-020-00970-w&domain=pdf
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where m : Z →]0,+∞[ satisfies

(1 + |ν|)m(ν) ∈ �1, (1.2)

and
m(−ν) = m(ν), ∀ν ∈ Z. (1.3)

Let

p(τ) =
+∞∑

−∞
aντν , (1.4)

act on complex valued functions on Z. Here τ denotes translation by 1 unit
to the right: τu(j) = u(j − 1), j ∈ Z. By (1.2) we know that p(τ) = O(1) :
�2(Z) → �2(Z). Indeed, for the corresponding operator norm, we have

‖p(τ)‖ ≤
∑

|aj |‖τ j‖ = ‖a‖�1 ≤ O(1)‖m‖�1 . (1.5)

From the identity, τ(eikξ) = e−iξeikξ, we define the symbol of p(τ) by

p(e−iξ) =
∞∑

−∞
aνe−iνξ. (1.6)

It is an element of the Wiener algebra [4] and by (1.2) in C1(S1).
We are interested in the Toeplitz matrix

PN
def= 1[0,N [p(τ)1[0,N [, (1.7)

acting on CN � �2([0, N [), for 1 	 N < ∞. Furthermore, we frequently
identify �2([0, N [) with the space �2[0,N [(Z) of functions u ∈ �2(Z) with support
in [0, N [.

The spectra of such Toeplitz matrices have been studied thoroughly,
see [4] for an overview. Let P∞ denote p(τ) as an operator �2(Z) → �2(Z).
It is a normal operator and by Fourier series expansions, we see that the spec-
trum of P∞ is given by

σ(P∞) = p(S1). (1.8)
The restriction PN = P∞|�2(N) of P∞ to �2(N) is in general no longer normal,
except for specific choices of the coefficients aν . The essential spectrum of the
Toeplitz operator PN is given by p(S1) and we have pointspectrum in all loops
of p(S1) with nonzero winding number, i.e.,

σ(PN) = p(S1) ∪ {z ∈ C; indp(S1)(z) �= 0}. (1.9)

By a result of Krein [4, Theorem 1.15], the winding number of p(S1) around
the point z �∈ p(S1) is related to the Fredholm index of PN − z: Ind(PN − z) =
−indp(S1)(z).

The spectrum of the Toeplitz matrix PN is contained in a small neigh-
borhood of the spectrum of PN. More precisely, for every ε > 0,

σ(PN ) ⊂ σ(PN) + D(0, ε) (1.10)

for N > 0 sufficiently large, where D(z, r) denotes the open disc of radius r,
centered at z. Moreover, the limit of σ(PN ) as N → ∞ is contained in a union
of analytic arcs inside σ(PN), see [4, Theorem 5.28].
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We show in Theorem 1.1 that after adding a small random perturbation
to PN , most of its eigenvalues will be close to the curve p(S1) with probability
very close to 1. See Fig. 1 for a numerical illustration.

1.1. Small Gaussian perturbation

Consider the random matrix

Qω
def= Qω(N) def= (qj,k(ω))1≤j,k≤N (1.11)

with complex Gaussian law

(Qω)∗(dP) = π−N2
e−‖Q‖2

HSL(dQ),

where L denotes the Lebesgue measure on CN×N . The entries qj,k of Qω are
independent and identically distributed complex Gaussian random variables
with expectation 0, and variance 1, i.e., qj,k∼NC(0,1).

We recall that the probability distribution of a complex Gaussian random
variable α ∼ NC(0, 1) is given by

α∗(dP) = π−1e−|α|2L(dα),

where L(dα) denotes the Lebesgue measure on C. If E denotes the expectation
with respect to the probability measure P, then

E[α] = 0, E[|α|2] = 1.

We are interested in studying the spectrum of the random perturbations of
the matrix P 0

N = PN :

P δ
N

def= P 0
N + δQω, 0 ≤ δ 	 1. (1.12)

1.2. Eigenvalue asymptotics in smooth domains

Let Ω � C be an open simply connected set with smooth boundary ∂Ω, which
is independent of N , satisfying
(1) ∂Ω intersects p(S1) in at most finitely many points;
(2) p(S1) does not self-intersect at these points of intersection;
(3) these points of intersection are non-critical, i.e.,

dp �= 0 on p−1(∂Ω ∩ p(S1));

(4) ∂Ω and p(S1) are transversal at every point of the intersection.

Theorem 1.1. Let p be as in (1.6) and let P δ
N be as in (1.12). Let Ω be as

above, satisfying conditions (1)–(4), pick a δ0 ∈]0, 1[ and let δ1 > 3. If

e−Nδ0 ≤ δ 	 N−δ1 , (1.13)

then there exists εN = o(1), as N → ∞, such that
∣∣∣∣∣#(σ(P δ

N ) ∩ Ω) − N

2π

∫

S1∩ p−1(Ω)

LS1(dθ)

∣∣∣∣∣ ≤ εNN, (1.14)

with probability
≥ 1 − e−Nδ0

. (1.15)
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Figure 1. The left-hand side shows the spectrum of the per-
turbed Toeplitz matrix with symbol defined in (1.16), (1.17)
and the right-hand side shows the spectrum of the perturbed
Toeplitz matrix with symbol defined in (1.18), (1.17). The red
line shows the symbol curve p(S1)

In (1.14), we view p as a map from S1 to C. Theorem 1.1 shows that
most eigenvalues of P δ

N can be found close to the curve p(S1) with probability
subexponentially close to 1. This is illustrated in Fig. 1 for two different sym-
bols. The left-hand side of Fig. 1 shows the spectrum of a perturbed Toeplitz
matrix with N = 2000 and δ = 10−14, given by the symbol p = p0 + p1 where

p0(1/ζ) = −ζ−4 − (3+2i)ζ−3 + iζ−2 +ζ−1 +10ζ +(3+ i)ζ2 +4ζ3 + iζ4 (1.16)

and
p1(1/ζ) =

∑

ν∈Z

aνζν , a0 = 0, a−ν = 0.7|ν|−5+i|ν|−9, aν = −2iν−5+0.5ν−9 ν ∈ N.

(1.17)
The red line shows the curve p(S1). The right-hand side of Fig. 1 similarly
shows the spectrum of the perturbed Toeplitz matrix given by p = p0 + p1

where p1 is as above and

p0(1/ζ) = −4ζ1 − 2iζ2 + 2iζ−1 − ζ−2 + 2ζ−3. (1.18)

In our previous work [15], we studied Toeplitz matrices with a finite number
of bands, given by symbols of the form

p(τ) =
N+∑

j=−N−

ajτ
j , a−N− , a−N−+1, . . . , aN+ ∈ C, a±N± �= 0. (1.19)

In this case, the symbols are analytic functions on S1 and we are able to provide
in [15, Theorem 2.1] a version of Theorem 1.1 with a much sharper remainder
estimate. See also [13,14], concerning the special cases of large Jordan block
matrices p(τ) = τ−1 and large bi-diagonal matrices p(τ) = aτ +bτ−1, a, b ∈ C.
However, Fig. 1 suggests that one could hope for a better remainder estimate
in Theorem 1.1 as well.
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Theorems 1.1 and 1.2 can be extended to allow for coupling constants
with δ1 > 1/2. Furthermore, one can allow for much more general pertur-
bations, for example perturbations given by random matrices whose entries
are iid copies of a centered random variables with bounded fourth moment.
However, both extensions require some extra work which we will present in a
follow-up paper.

1.3. Convergence of the empirical measure and related results

An alternative way to study the limiting distribution of the eigenvalues of P δ
N ,

up to errors of o(N), is to study the empirical measure of eigenvalues, defined
by

ξN
def=

1
N

∑

λ∈Spec(P δ
N )

δλ (1.20)

where the eigenvalues are counted including multiplicity and δλ denotes the
Dirac measure at λ ∈ C. For any positive monotonically increasing function φ
on the positive reals and random variable X, Markov’s inequality states that
P[|X| ≥ ε] ≤ φ(ε)−1E[φ(|X|)], assuming that the last quantity is finite. Using
φ(x) = ex/C , x ≥ 0, with a sufficiently large C > 0, yields that for C1 > 0
large enough

P[‖Qω‖HS ≤ C1N ] ≥ 1 − e−N2
. (1.21)

If δ ≤ N−1, then (1.5) and the Borel–Cantelli Theorem shows that, almost
surely, ξN has compact support for N > 0 sufficiently large.

We will show that, almost surely, ξN converges weakly to the push-
forward of the uniform measure on S1 by the symbol p.

Theorem 1.2. Let δ0 ∈]0, 1[, let δ1 > 3 and let p be as in (1.4). If (1.13) holds,
i.e.,

e−Nδ0 ≤ δ 	 N−δ1

then, almost surely,

ξN ⇀ p∗

(
1
2π

LS1

)
, N → ∞, (1.22)

weakly, where LS1 denotes the Lebesgue measure on S1.

This result generalizes [15, Corollary 2.2] from the case of Toeplitz ma-
trices with a finite number of bands to the general case (1.4).

Similar results to Theorem 1.2 have been proven in various settings. In [2,
3], the authors consider the special case of band Toeplitz matrices, i.e. PN with
p as in (1.19). In this case, they show that the convergence (1.22) holds weakly
in probability for a coupling constant δ = N−γ , with γ > 1/2. Furthermore,
they prove a version of this theorem for Toeplitz matrices with non-constant
coefficients in the bands, see [2, Theorem 1.3, Theorem 4.1]. They follow a
different approach than we do: They compute directly the log |det MN − z|
by relating it to log |det MN (z)|, where MN (z) is a truncation of MN − z,
where the smallest singular values of MN − z have been excluded. The level of
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truncation, however, depends on the strength of the coupling constant and it
necessitates a very detailed analysis of the small singular values of MN − z.

In the earlier work [9], the authors prove that the convergence (1.22) holds
weakly in probability for the Jordan bloc matrix PN with p(τ) = τ−1 (1.4)
and a perturbation given by a complex Gaussian random matrix whose entries
are independent complex Gaussian random variables whose variances vanish
(not necessarily at the same speed) polynomially fast, with minimal decay of
order N−1/2+. See also [6] for a related result.

In [20], using a replacement principle developed in [18], it was shown that
the result of [9] holds for perturbations given by complex random matrices
whose entries are independent and identically distributed random complex
random variables with expectation 0 and variance 1 and a coupling constant
δ = N−γ , with γ > 2.

1.4. Notation

We will frequently use the following notation: When we write a 	 b, we
mean that Ca ≤ b for some sufficiently large constant C > 0. The notation
f = O(N) means that there exists a constant C > 0 (independent of N) such
that |f | ≤ CN . When we want to emphasize that the constant C > 0 depends
on some parameter k, then we write Ck, or with the above notation Ok(N).

2. The unperturbed operator

We are interested in the Toeplitz matrix

PN = 1[0,N [p(τ)1[0,N [ : �2([0, N [) → �2([0, N [) (2.1)

for 1 	 N < ∞, see also (1.7). Here we identify �2([0, N [) with the space
�2[0,N [(Z) of functions u ∈ �2(Z) with support in [0, N [. Sometimes we write
PN = P[0,N [ and identify PN with PI = 1Ip(τ)1I where I = IN is any interval
in Z of “length” |I| = #I = N .

Let PN = P[0,+∞[ and let P
Z/ÑZ

denote P = p(τ), acting on �2(Z/ÑZ)

which we identify with the space of Ñ -periodic functions on Z. Here Ñ ≥ 1.
Using the discrete Fourier transform, we see that

σ(P
Z/ÑZ

) = p(S
Ñ

), (2.2)

where S
Ñ

is the dual of Z/ÑZ and given by

S
Ñ

= {eik2π/Ñ ; 0 ≤ k < Ñ}.

Let
pN (τ) =

∑

|ν|≤N

aντν =
∑

ν∈Z

aN
ν τν , aN

ν = 1[−N,N ](ν)aν . (2.3)

and notice that
PN = 1[0,N [ pN (τ)1[0,N [. (2.4)
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We now consider [0, N [ as an interval IN in Z/ÑZ, Ñ = N + M , where
M ∈ {1, 2, ..} will be fixed and independent of N . The matrix of PN , indexed
over IN × IN is then given by

PN (j, k) = aN
j̃−k̃

, j, k ∈ IN ⊂ Z/ÑZ, (2.5)

where j̃, k̃ ∈ Z are the preimages of j, k under the projection Z → Z/ÑZ that
belong to the interval [0, N [⊂ Z.

Let P̃N be given by the formula (2.4), with the difference that we now
view τ as a translation on �2(Z/ÑZ):

P̃N = 1IN
pN (τ)1IN

. (2.6)

The matrix of P̃N is given by

P̃N (j, k) =
∑

ν∈Z,

ν≡j−k mod ÑZ

aN
ν , j, k ∈ IN . (2.7)

Alternatively, if we let j̃, k̃ be the preimages in [0, N [ of j, k ∈ IN , then

P̃N (j, k) =
∑

ĵ∈Z; ĵ≡j̃ mod ÑZ

aN
ĵ−k̃

. (2.8)

Recall that the terms in (2.7), (2.8) with |ν| > N or |̂j − k̃| > N do vanish.
This implies that with j̃, k̃ as in (2.8),

P̃N (j, k) − PN (j, k) = aN
j̃−Ñ−k̃

+ aN
j̃+Ñ−k̃

. (2.9)

Here

j̃ − Ñ ∈ [0, N [−Ñ = [−Ñ ,N − Ñ [= [−N − M,−M [,

j̃ + Ñ ∈ [0, N [+Ñ = [Ñ ,N + Ñ [= [N + M, 2N + M [.

Since k̃ ∈ [0, N [, we have for the first term in (2.9) that |̃j − Ñ − k̃| = k̃ +M +
(N − j̃) with nonnegative terms in the last sum. Similarly for the second term
in (2.9), we have |̃j + Ñ − k̃| = j̃ + M + (N − k̃) where the terms in the last
sum are all ≥ 0.

It follows that the trace class norm of PN − P̃N is bounded from above
by ∑

j<−M, k≥0

|aj−k| +
∑

j≥N+M, k<N

|aj−k|

=
∑

k≥0, j≤−M

|aj−k| +
∑

k≤0, j≥M

|aj−k|

≤ 2C
∞∑

k=0

∞∑

j=0

m(M + k + j) = 2C
∞∑

k=0

(k + 1)m(M + k)

= 2C
∞∑

k=M

(k + 1 − M)m(k).
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By (1.2), it follows that

‖PN − P̃N‖tr ≤ 2C

+∞∑

k=M

(k + 1 − M)m(k) → 0, M → ∞, (2.10)

uniformly with respect to N . Here ‖A‖tr = tr(A∗A)1/2 denotes the Schatten
1-norm for a trace class operator A.

Remark 2.1. To illustrate the difference between PN and P̃N let N � 1, M > 0
and consider the example of p(τ) = τn, so an = 1, for some fixed n ∈ N, and
aν = 0 for ν �= n. Since PN (j, k) = aN

j̃−k̃
, we see that

PN (j, k) =

{
1, j̃ = n + k̃

0, else.

In other words PN = (J∗)n where J denotes the N × N Jordan block ma-
trix. The matrix elements of P̃N on the other hand are given by P̃N (j, k) =
aN

j̃−Ñ−k̃
+ aN

j̃−k̃
+ aN

j̃+Ñ−k̃
, so

P̃N (j, k) =

⎧
⎪⎨

⎪⎩

1, j̃ = n + k̃

1, j̃ = n + k̃ − (N + M)
0, else.

So P̃N = PN + J (N+M−n), when n ≥ M , otherwise P̃N = PN .

3. A Grushin problem for PN − z

Let K � C be an open relatively compact set and let z ∈ K. Consider

J = [−M, 0[, IN = [0, N [ (3.1)

as subsets of Z/(N + M)Z so that

J ∪ IN = Z/(N + M)Z =: ZN+M

is a partition. Recall (2.3), (2.6) and consider

pN (τ) − z : �2(ZN+M ) → �2(ZN+M )

and write this operator as a 2 × 2 matrix

pN − z =
(

P̃N − z R−
R+ R+−(z)

)
, (3.2)

induced by the orthogonal decomposition

�2(ZN+M ) = �2(IN ) ⊕ �2(J). (3.3)

The operator pN (τ) is normal and we know by (2.2) that its spectrum is

σ(pN (τ)) = pN (SN+M ). (3.4)

Replacing P̃N in (3.2) by PN (2.4), we put

PN (z) =
(

PN − z R−
R+ R+−(z)

)
. (3.5)
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Then, by (2.10),

‖PN (z) − (pN − z)‖tr ≤ 2C
+∞∑

k=M

(k + 1 − M)m(k) =: ε(M). (3.6)

If ε(M) < dist (z, pN (SN+M )) =: dN (z), then PN (z) is bijective and

‖PN (z)−1‖ ≤ 1
dN (z) − ε(M)

. (3.7)

Write,
PN (z) = pN (τ) − z + PN (z) − (pN (τ) − z)

= (pN (τ) − z)
(
1 + (pN (τ) − z)−1(PN (z) − (pN (τ) − z))

)
.

Here,
∣∣ det

(
1 + (pN (τ) − z)−1(PN (z) − (pN (τ) − z))

)∣∣

≤ exp ‖(pN (τ) − z)−1(PN (z) − (pN (τ) − z))‖tr

≤ exp(ε(M)/dN (z)),
so

|det PN (z)| ≤ |det(pN (τ) − z)| eε(M)/dN (z). (3.8)
Similarly from

pN (τ) − z = PN (z) + pN (τ) − z − PN (z)

= PN (z)
(
1 + PN (z)−1(pN (τ) − z − PN (z)

)
,

we get

|det(pN (τ) − z)| ≤ |det PN (z)|e
ε(M)

dN (z)−ε(M) . (3.9)
In analogy with (3.5), we write

PN (z)−1 = EN (z) =
(

EN EN
+

EN
− EN

−+

)
: �2(IN ) ⊕ �2(J) → �2(IN ) ⊕ �2(J), (3.10)

where J , IN were defined in (3.1), still viewed as intervals in ZN+M . From
(3.7), we get for the respective operator norms:

‖EN‖, ‖EN
+ ‖, ‖EN

− ‖, ‖EN
−+‖ ≤ (dN (z) − ε(M))−1. (3.11)

4. Second Grushin problem

We begin with a result, which is a generalization of [16, Proposition 3.4] to
the case where R+− �= 0.

Proposition 4.1. Let H1,H2,H±,S± be Banach spaces. If

P =
(

P R−
R+ R+−

)
: H1 × H− → H2 × H+ (4.1)

is bijective with bounded inverse

E =
(

E E+

E− E−+

)
: H2 × H+ → H1 × H−,
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and if

S =
(

E−+ S−
S+ 0

)
: H+ × S− → H− × S+ (4.2)

is bijective with bounded inverse

F =
(

F F+

F− F−+

)
: H− × S+ → H+ × S−,

then

T =
(

P R−S−
S+R+ S+R+−S−

)
=:

(
P T−
T+ T+−

)
: H1 × S− → H2 × S+ (4.3)

is bijective with bounded inverse

G =
(

G G+

G− G−+

)
=

(
E − E+FE− E+F+

F−E− −F−+

)
: H2 × S+ → H1 × S−. (4.4)

Proof. We can essentially follow the proof of [16, Proposition 3.4]. We need to
solve {

Pu + R−S−u− = v

S+R+u + S+R+−S−u− = v+.
(4.5)

Putting ṽ+ = R+u + R+−S−u−, the first equation is equivalent to
{

Pu + R−S−u− = v

R+u + R+−S−u− = ṽ+,
i.e. P

(
u

S−u−

)
=

(
v
ṽ+

)
,

and hence to {
u = Ev + E+ṽ+

S−u− = E−v + E−+ṽ+.
(4.6)

Therefore, we can replace u by ṽ+ and (4.5) is equivalent to
(

E−+ S−
S+ 0

)(
ṽ+

−u−

)
=

(
−E−v

v+

)
(4.7)

which can be solved by F . Hence, (4.7) is equivalent to
{

ṽ+ = −FE−v + F+v+

−u− = −F−E−v + F−+v+,

and (4.6) gives the unique solution of (4.5)
{

u = (E − E+FE−)v + E+F+v+

u− = F−E−v − F−+v+.
�
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4.1. Grushin problem for E−+(z)

We want to apply Proposition 4.1 to P = P(z) = PN (z) in (3.5) with the
inverse E = EN (z) in (3.10), where we sometimes drop the index N . We begin
by constructing an invertible Grushin problem for E−+:

Let 0 ≤ t1 ≤ · · · ≤ tM denote the singular values of E−+(z). Let
e1, . . . , eM denote an orthonormal basis of eigenvectors of E∗

−+E−+ asso-
ciated to the eigenvalues t21 ≤ · · · ≤ t2M . Since E−+ is a square matrix,
we have that dim N (E−+(z)) = dim N (E∗

−+(z))1. Using the spectral de-
composition �2(J) = N (E∗

−+E−+) ⊕⊥ R(E∗
−+E−+) together with the fact

that N (E∗
−+E−+) = N (E−+) and R(E∗

−+) = N (E−+)⊥, it follows that
R(E∗

−+) = R(E∗
−+E−+). Similarly, we get that R(E−+) = R(E−+E∗

−+). One
then easily checks that E−+ : R(E∗

−+E−+) → R(E−+E∗
−+) is a bijection.

Similarly, E∗
−+ : R(E−+E∗

−+) → R(E∗
−+E−+) is a bijection. Let f1, . . . , fM0

denote an orthonormal basis of N (E∗
−+(z)) and set

fj = t−1
j E−+ej , j = M0 + 1, . . . , M.

Then, f1, . . . , fM is an orthonormal basis of �2(J) comprised of eigenfunctions
of E−+E∗

−+ associated with the eigenvalues t21 ≤ · · · ≤ t2M . In particular,
σ(E−+E∗

−+) = σ(E∗
−+E−+) and

E−+ej = tjfj , E∗
−+fj = tjej , j = 1, . . . , M. (4.8)

Let 0 ≤ t1 ≤ ... ≤ tk be the singular values of E−+(z) in the interval [0, τ ]
for τ > 0 small. Let S+, S− ⊂ �2(J) be the corresponding (sums of) spec-
tral subspaces for E∗

−+E−+ and E−+E∗
−+, respectively, corresponding to the

eigenvalues t21 ≤ t22 ≤ ... ≤ t2k in [0, τ2]. Using (4.8), we see that the restrictions
(denoted by the same symbols)

E−+ : S+ → S−, E∗
−+ : S− → S+,

have norms ≤ τ . Also,

E−+ : S⊥
+ → S⊥

− , E∗
−+ : S⊥

− → S⊥
+ (4.9)

are bijective with inverses of norm ≤ 1/τ .
Let S+ be the orthogonal projection onto S+, viewed as an operator

�2(J) → S+, whose adjoint is the inclusion map S+ → �2(J). Let S− : S− →
�2(J) be the inclusion map. Let S be the operator in (4.2) with H± = �2(J),
corresponding to the problem

{
E−+g + S−g− = h ∈ �2(J),
S+g = h+ ∈ S+,

(4.10)

for the unknowns g ∈ �2(J), g− ∈ S−. Using the orthogonal decompositions,

�2(J) = S⊥
+ ⊕ S+, �2(J) = S⊥

− ⊕ S−,

1Here N (A) and R(A) denote the null space and the range of a linear operator A.
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we write g =
∑k

1 gjej + g⊥ and h =
∑k

1 hjfj + h⊥. Then, (4.10) is equivalent
to ⎧

⎪⎨

⎪⎩

g⊥ = (E−+)−1h⊥
(

gj

gj
−

)
=

(
0 1
1 −tj

) (
hj

hj
+

)
, j = 1, . . . , M,

where we also used that g− =
∑k

1 gj
−fj and h+ =

∑k
1 hj

+ej . It follows that
{

g = (E−+)−1h⊥ +
∑k

1 hj
+ej

g− =
∑k

1 hjfj −
∑k

1 tjh
j
+fj .

(4.11)

Hence, the unique solution to (4.10) is given by
(

g
g−

)
= F

(
h

h+

)
=

(
F F+

F− F−+

) (
h
h+

)
, (4.12)

where
F = E−1

−+ΠS⊥
−

, F+ = S∗
+,

F− = S∗
−, F−+ = −E−+|S+

: S+ → S−.
(4.13)

Here ΠB denotes the orthogonal projection onto the subspace B of A, viewed
as a self-adjoint operator A → A. Notice that F = ΠS⊥

+
F and that

F−+ = −
k∑

1

tjfj ◦ e∗
j , i.e. F−+u = −

k∑

1

tj(u|ej)fj . (4.14)

Using as well (4.9), we have

‖F‖ ≤ 1/τ, ‖F+‖, ‖F−‖ ≤ 1, ‖F−+‖ ≤ τ. (4.15)

4.2. Composing the Grushin problems

From now on we assume that

0 < α 	 1, ε(M) ≤ α/2, (4.16)

and the estimates below will be uniformly valid for z ∈ K \ γα, N � 1, where
K is some fixed relatively compact open set in C and

γα = {z ∈ C; dist (z, γ) ≤ α}, γ = p(S1). (4.17)

We apply Proposition 4.1 to PN in (3.5) with the inverse EN in (3.10), and to
S defined in (4.10) with inverse in F in (4.12). Let z ∈ K\γα, then

TN =
(

PN − z R−S−
S+R+ S+R+−S−

)
=

(
PN − z T−

T+ T+−

)
: L2(IN )×S− → L2(IN )×S+,

(4.18)
defined as in (4.3), is bijective with the bounded inverse

GN =
(

GN GN
+

GN
− GN

−+

)
=

(
EN − EN

+ FEN
− EN

+ F+

F−EN
− −F−+

)
. (4.19)

Since S± have norms ≤ 1, we get

‖T±‖ ≤ ‖R±‖ = O(1), (4.20)



Vol. 22 (2021) General Toeplitz Matrices Subject 61

uniformly in N , α and z ∈ K. Also, since the norms of EN , EN
+ , EN

− are ≤ 2/α
(uniformly as N → ∞) by (3.11), we get from (4.4), (4.15), that

‖GN‖ ≤ 2
α

+
4

τα2
, ‖GN

−+‖ ≤ τ, ‖GN
±‖ ≤ 2

α
. (4.21)

Proposition 4.2. Let K � C be an open relatively compact set, let z ∈ K\γα,
and let τ > 0 be as in the definition of the Grushin problem (4.10). Then, for
τ > 0 small enough, depending only on K, we have that GN

+ is injective and
GN

− is surjective. Moreover, there exists a constant C > 0, depending only on
K, such that for all z ∈ K\γα the singular values s+

j of GN
+ , and s−

j of (GN
− )∗

satisfy
1
C

≤ s±
j ≤ 2

α
, 1 ≤ j ≤ k(z) = rank(GN

± ). (4.22)

Proof. To ease the notation we will omit the sub/superscript N . We begin
with the injectivity of G+. From

(
P − z T−
T+ T+−

)(
G G+

G− G−+

)
= 1, (4.23)

we have T+G+ + T+−G−+ = 1 which we write T+G+ = 1 − T+−G−+. Here

‖T+−G−+‖ ≤ ‖R+−‖τ = O(τ),

where we used that ‖R+−‖ ≤ ‖p(τ) − z‖ = O(1)‖m‖�1 , thus the error term
above only depends on K. Choosing τ > 0 small enough, depending on K but
not on N , we get that ‖T+−G+−‖ ≤ 1/2. Then, 1 − T+−G−+ is bijective with
‖(1 − T+−G−+)−1‖ ≤ 2 and G+ has the left inverse

(1 − T+−G−+)−1T+ (4.24)

of norm ≤ 2‖R+‖ = O(1), depending only on K.
Now we turn to the surjectivity of G−. From

(
G G+

G− G−+

)(
P − z T−
T+ T+−

)
= 1,

we get
(

(P − z)∗ T ∗
+

T ∗
− T ∗

+−

)(
G∗ G∗

−
G∗

+ G∗
−+

)
= 1,

and as above we then see that G∗
− has the left inverse (1 − T ∗

+−G∗
−+)−1T ∗

−.
Hence, G− has the right inverse

T−(1 − G−+T+−)−1, (4.25)

of norm ≤ 2‖R−‖ = O(1), depending only on K.
The lower bound on the singular values follows from the estimates on the

left inverses of G+ and G∗
−, and the upper bound follows from (4.21). �
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5. Determinants

We continue working under the assumptions (4.16), (4.17). Additionally, we
fix τ > 0 sufficiently small (depending only on the fixed relatively compact
set K � C) so that ‖T+−G−+‖, ‖G−+T+−‖ (both = O(τ)) are ≤ 1/2, which
implies that G+ is injective and G+ is surjective, see Proposition 4.2. Here,
we sometimes drop the sub-/superscript N .

From now on, we will work with z ∈ K\γα. The constructions and esti-
mates in Sect. 3 are then uniform in z for N � 1 and the same holds for those
in Sect. 4.

Remark 5.1. To get the o(N) error term in Theorem 1.1, we will take α > 0
arbitrarily small, and M > 1 large enough (but fixed) so that ε(M) ≤ α/2,
see (2.10) as well as N > 1 sufficiently large. In the following, the error terms
will typically depend on α, although we will not always denote this explicitly,
however, they will be uniform in N > 1 and in z ∈ K\γα.

5.1. The unperturbed operator

For z ∈ K \ γα, we have dN (z) ≥ α and (3.8), (3.9) give

|det PN (z)| ≤ eε(M)/α|det(pN (τ) − z)|, (5.1)

|det(pN (τ) − z)| ≤ e2ε(M)/α|det PN (z)|, (5.2)

where we also used that

ε(M)
dN (z) − ε(M)

≤ ε(M)
α − ε(M)

≤ 2ε(M)
α

,

by the second inequality in (4.16). Recall here that pN (τ) acts on �2(Z/ÑZ),
Ñ = N + M .

By the Schur complement formula, we have

det(PN − z) = det PN (z) detE−+(z),

det(PN − z) = det TN (z) det G−+(z),
(5.3)

so
det TN

det PN
=

det E−+

det G−+
. (5.4)

Recall from Sect. 4.1 that the singular values of E−+ are denoted by 0 ≤
t1 ≤ t2 ≤ · · · ≤ tM and that those of G−+ are t1, ..., tk, where k = k(z,N) is
determined by the condition tk ≤ τ < tk+1. Thus

∣∣∣∣
det E−+

det G−+

∣∣∣∣ =
M∏

k+1

tj

and we get (since τ 	 1)

τM ≤
∣∣∣∣
det E−+

det G−+

∣∣∣∣ ≤
(

2
α

)M

.
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Since τ > 0 is small, but fixed depending only on K, we have uniformly for
z ∈ K \ γα, N � 1:

|ln |det E−+| − ln |det G−+|| ≤ O(1) (5.5)

and by (5.4)
|ln |det TN | − ln |det PN || ≤ O(1). (5.6)

From (5.1), (5.2), we get

|ln |det PN | − ln |det(pN (τ) − z)|| ≤ O(1), (5.7)

hence
|ln |det TN | − ln |det(pN (τ) − z)|| ≤ O(1). (5.8)

5.2. The perturbed operator

We next extend the estimates to the case of a perturbed operator

P δ
N = PN + δQ, (5.9)

where Q : �2(IN ) → �2(IN ) satisfies

δ‖Q‖ 	 1. (5.10)

Proposition 5.2. Let K � C be an open relatively compact set and suppose that
(4.16) hold. Recall (4.17) and (3.5), if δ‖Q‖α−1 	 1, then for all z ∈ K\γα

Pδ
N =

(
P δ

N − z R−
R+ R+−(z)

)
= P +

(
δQ 0
0 0

)
, (5.11)

is bijective with bounded inverse

Eδ
N =

(
Eδ Eδ

+

Eδ
− Eδ

+−

)
. (5.12)

Recall (4.18), if δ‖Q‖α−2 	 1, then for all z ∈ K\γα

T δ
N =

(
P δ

N − z T−
T+ T+−

)
= TN +

(
δQ 0
0 0

)
. (5.13)

is bijective with bounded inverse

Gδ
N =

(
Gδ Gδ

+

Gδ
− Gδ

+−

)
, (5.14)

with
Gδ

−+(z) = G−+ − G−δQ(1 + GδQ)−1G+. (5.15)
Moreover, ‖Eδ

N‖ ≤ 4/α, ‖Gδ
N‖ ≤ O(α−2), uniformly in z ∈ K\γα and N > 1.

Proof. We sometimes drop the subscript N . By (3.10),

PδE = 1 +
(

δQE δQE+

0 0

)
.

By (3.11), it follows that ‖E‖ ≤ 2/α, so if δ‖Q‖α−1 	 1, then by Neumann
series argument, the above is invertible and

E
(

1 +
(

δQE δQE+

0 0

))−1

(5.16)
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is a right inverse of Pδ, of norm ≤ 2‖E‖ ≤ 4/α. Since Pδ is Fredholm of index
0, this is also a left inverse.

The proof for T δ
N is similar, using that ‖G‖ = O(α−2) by (4.21), since

τ > 0 is fixed. Finally, the expression (5.15) follows easily from expanding
(5.16). �

We drop the subscript N until further notice. By (5.13), we have

‖T − T δ‖tr ≤ δ‖Q‖tr. (5.17)

Recall from the text after (2.10) the definition of the Schatten norm ‖ · ‖tr.
Write,

T δ = T (1 − T −1(T − T δ)),

where
‖T −1(T − T δ)‖tr ≤ O(δ)‖Q‖tr. (5.18)

Here, we used that ‖T −1‖ = ‖G‖ = O(1), by (4.21) and the fact that τ > 0
is fixed. We recall that the estimates here depend on α, yet are uniform in
z ∈ K\γα and N > 1. It follows that

|det(1 − T −1(T − T δ))| ≤ exp ‖T −1(T − T δ)‖tr ≤ exp(O(δ)‖Q‖tr),

and
|det Tδ| = |det T ||det(1 − T −1(T − T δ))|

≤ exp(O(δ)‖Q‖tr)|det T |.
(5.19)

Similarly from the identity

T = T δ(1 − T −1
δ (T δ − T )),

(putting δ as a subscript whenever convenient), we get

|det T | ≤ exp(O(δ)‖Q‖tr)|det T δ|, (5.20)

thus
|ln |det Tδ| − ln |T || ≤ O(δ)‖Q‖tr. (5.21)

Assume that (uniformly in N > 1 and independently of α)

δ‖Q‖tr ≤ O(1) (5.22)

and recall (5.8). Then,

|ln |det Tδ| − ln |det(pN (τ) − z)|| ≤ O(1). (5.23)

Notice that the error term depends on α. Using also the general identity (cf.
(5.3)),

det(P δ
N − z) = det T δ(z) det Gδ

−+(z), (5.24)

we get

ln |det(P δ
N − z)| = ln |det(pN (τ) − z)| + ln |det Gδ

−+| + O(1), (5.25)

uniformly for z ∈ K \ γα, N � 1.
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6. Lower bounds with probability close to 1

We now adapt the discussion in [15, Section 5] to T δ. Let

P δ
N = PN + δQω, Qω = (qj,k(ω))1≤j,k≤N , (6.1)

where 0 ≤ δ 	 1 and qj,k(ω) ∼ N (0, 1) are independent normalized complex
Gaussian random variables. Recall from (1.21) that

P[‖Qω‖HS ≤ C1N ] ≥ 1 − e−N2
, (6.2)

for some universal constant C1 > 0. In the following, we restrict the attention
to the case when

‖Qω‖HS ≤ C1N, (6.3)
and (as before) z ∈ K \ γα, N � 1. We assume that

δ 	 N−3/2. (6.4)

Then,

δ‖Q‖tr ≤ δN1/2‖Q‖HS ≤ δC1N
3/2 	 1,

and the estimates of the previous sections apply.
Let QC1N be the set of matrices satisfying (6.3). As in [15, Section 5.3],

we study the map (5.15), i.e.,

QC1N � Q �→ Gδ
−+(z) = G−+ − G−δQ(1 + GδQ)−1G+

= G−+ − δG−(Q + T (z,Q))G+,
(6.5)

where

T (z,Q) =
∞∑

1

(−δ)nQ(GQ)n, (6.6)

and notice first that by (4.21)

‖T‖HS ≤ O(δα−2N2). (6.7)

We strengthen the assumption (6.4) to

δ 	 N−2α2. (6.8)

At the end of Sect. 4, we have established the uniform injectivity and surjec-
tivity respectively for G+ and G−. This means that the singular values s±

j of
G± for 1 ≤ j ≤ k(z) = rank (G−) = rank (G+) satisfy

1
C

≤ s±
j ≤ 2

α
(6.9)

This corresponds to [15, (5.27)] and the subsequent discussion there carries
over to the present situation with the obvious modifications. Similarly to [15,
(5.42)], we strengthen the assumption on δ to

δ 	 N−3α2 (6.10)

Notice that assumption (6.10) is stronger than the assumptions on δ in Propo-
sition 5.2. The same reasoning as in [15, Section 5.3] leads to the following
adaptation of Proposition 5.3 in [15]:
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Proposition 6.1. Let K ⊂ C be compact, 0 < α 	 1 and choose M so that
ε(M) ≤ α/2. Let δ satisfy (6.10). Then, the second Grushin problem with ma-
trix T δ is well posed with a bounded inverse Gδ introduced in Proposition 5.2.
The following holds uniformly for z ∈ K \ γα, N � 1:

There exist positive constants C0, C2 such that

P
(
ln |det Gδ

−+(z)|2 ≥ −t and ‖Q‖HS ≤ C1N
)

≥ 1 − e−N2 − C2δ
−Me−t/2,

when

t ≥ C0 − 2M ln δ, 0 < δ 	 N−3α2.

7. Counting eigenvalues in smooth domains

In this section, we will prove Theorem 1.1. We will begin with a brief outline
of the key steps:

We wish to count the zeros of the holomorphic function u(z) = det(P δ
N −

z), which depends on the large parameter N > 0, in smooth domains Ω � C
as in Theorem 1.1.

1. We work in some sufficiently large but fixed compact set K � C con-
taining Ω. In Sect. 7.1, we begin by showing that u(z) satisfies with probability
close to 1 an upper bound of the form

ln |u(z)| ≤ N(φ(z) + ε), (7.1)

for z ∈ K. Here, 0 < ε 	 1 and φ(z) is some suitable continuous subharmonic
function. Next, we will show that u(z) satisfies for any fixed point z0 in K\Γα

a lower bound of the form

ln |u(z0)| ≥ N(φ(z0) − ε) (7.2)

with probability close to 1. Here, Γα denotes the set γα suitably enlarged to
be a compact set with smooth boundary, see Fig. 2 for an illustration. The
function φ will be constructed in the following way : Outside Γα we set φ(z) to
be ln |det(pN (τ) − z)|, which in view of (5.25) and Proposition 6.1 yields the
estimates (7.1), (7.2) outside Γα. Inside Γα, we set φ to be the solution to the
Dirichlet problem for the Laplace operator on Γα with boundary conditions
φ �∂Γα

= ln |det(pN (τ) − z)| �∂Γα
. Since ln |u(z)| is subharmonic we have that

the bound (7.1) holds in all of K.
2. In Sect. 7.2, we will use (7.1), (7.2) and [12, Theorem 1.1] (see also [13,

Chapter 12]) to estimate the number of zeros of u in Ω and thus the number
of eigenvalues of P δ

N in Ω, i.e.,

#(σ(P δ
N ) ∩ Ω) = #(u−1(0) ∩ Ω) ∼ N

2π

∫

Ω

ΔφL(dz), (7.3)

see (7.22).
3. In Sect. 7.3, we study the measure Δφ by analyzing the Poisson and

Green kernel of Γα. We will use this analysis to give precise error estimates on



Vol. 22 (2021) General Toeplitz Matrices Subject 67

the asymptotics (7.3) and we will show that N
2π Δφ integrated over Ω is, up to

a small error, given by the number of eigenvalues λj of pN (τ) (3.4) in Ω, i.e.,

N

2π

∫

Ω

ΔφL(dz) = #{λj ∈ Ω} + O(αN),

see (7.53). This, in combination with (7.3), see (7.22), will let us conclude
Theorem 1.1.

7.1. Estimates on the log-determinant

We work under the assumptions of Proposition 6.1 and from now on we assume
that δ satisfies (1.13), i.e.,

e−Nδ0 ≤ δ 	 N−δ1 , (7.4)

for some fixed δ0 ∈]0, 1[ and δ1 > 3. Notice that (6.10) holds for N > 1
sufficiently large (depending on α). Then with probability ≥ 1 − e−N2

, we
have Gδ

−+(z) = O(1) for every z ∈ K \ γα, hence by (5.25)

ln |det(P δ
N − z)| ≤ ln |det(pN (τ) − z)| + O(1). (7.5)

On the other hand, by (5.25) and Proposition 6.1, we have for every z ∈ K \γα

that
ln |det(P δ

N − z)| ≥ ln |det(pN (τ) − z)| − t

2
− O(1) (7.6)

with probability
≥ 1 − e−N2 − C2δ

−Me−t/2, (7.7)
when

t ≥ C0 − 2M ln δ. (7.8)
Next we enlarge γα to Γα, away from a neighborhood of the region ∂Ω ∩ γ,
so that Γα has a smooth boundary. More precisely, let g ∈ C∞(C;R) be a
boundary defining function of Ω, so that g(z) < 0 for z ∈ Ω and dg �= 0 on
∂Ω. Then, for C > 0 sufficiently large and α > 0 sufficiently small, we define

Γ0
α

def= γα ∪ {z ∈ C; g(z) < −1/C} ∪ {z ∈ C; g(z) > 1/C and |z| ≤ C}, (7.9)

Notice that due to the assumption that the intersection of ∂Ω with γ is
transversal, the boundary of Γ0

α may be only Lipschitz near the intersection
points

{z0, . . . , zq} = ∂γα ∩ ∂G, where G
def= {z ∈ C; |g(z)| ≤ 1/C}.

By the assumptions on Ω, we have that q < ∞. Away from these points, we
have that ∂Γ0

α is smooth. To remedy this lack of regularity, we will slightly
deform Γ0

α in an α-neighborhood of these points.
Pick z0 ∈ ∂γα∩∂G. Since ∂γα∩D(z0, α) and ∂G∩D(z0, α) are transversal

to each other, it follows that there exists new affine coordinates z̃ = U(z −z0),
R2 � C � z = (z1, z2) being the old coordinates, where U is orthogonal, and
smooth functions f1, f2 independent of α, such that γα ∩ D(z0, α) takes the
form

A = {z ∈ D(z0, α); z̃2 ≤ f2(z̃1), |z̃1| < α, ‖z̃‖ < α},
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and that (C\G̊) ∩ D(z0, α) takes the form

B = {z ∈ D(z0, α); z̃2 ≤ f1(z̃1), |z̃1| < α, ‖z̃‖ < α}.

Here, f1, respectively f2, is (after translation and rotation) a smooth local
parametrization of ∂G, resp. ∂γα, near z0. Moreover, f2(0) = f1(0) and the
transversality assumption yields that z̃1 = 0 is the only point in the interval
] − α, α[ where f2(z̃1) = f1(z̃1).

Then, Γ0
α ∩ D(z0, α) takes the form

A ∪ B = {z ∈ D(z0, α); z̃2 ≤ max{f1(z̃1), f2(z̃1)}, |z̃1| < α, ‖z̃‖ < α}.

Continuing, let χ ∈ C∞
c (R; [0, 1]) so that χ = 1 on [−1/4, 1/4] and χ = 0

outside ] − 1/2, 1/2[, and let C > 0 be sufficiently large. Set

f(t) =
(

1 − χ

(
t

α

))
max{f1(t), f2(t)} + χ

(
t

α

)
α

C
, t ∈] − α, α[,

which is a smooth function. Then, let Γ1
α be equal to Γ0

α outside D(z0, α), and
equal to

{z ∈ D(z0, α); z̃2 ≤ f(z̃1), |z̃1| < α, ‖z̃‖ < α},

inside D(z0, α). Summing up, we have that the boundary of Γ1
α is smooth at

z0 and Γ0
α ⊂ Γ1

α.
Next, we perform the same procedure for Γ1

α at the point z1 and obtain
Γ2

α whose boundary is smooth at z0 and z1 and which contains Γ1
α. Continuing

in this way until zq, and defining

Γα
def= Γq

α, (7.10)

we have that Γα has a smooth boundary and it contains Γ0
α (7.9), and thus

γα. Figure 2 presents an illustration of this “fattening” of γα.

Remark 7.1. Notice that the deformation of the boundary of Γ0
α (7.9) has been

done in such a way that the rescaled domain 1
αΓα has a smooth boundary which

can be locally parametrized by a smooth function f with ∂βf = O(1), β ∈ N,
uniformly in α.

Continuing, we define φ(z) = φN (z) by requiring that

Nφ(z) = ln |det(pN (τ) − z)| on K \ Γα, (7.11)

and
φ(z) is continuous in K and harmonic in

◦
Γα (7.12)

Here we assume that K is large enough to contain a neighborhood of Γα.
Choose

t = N ε0 , (7.13)
for some fixed ε0 ∈]0, 1[ with δ0 < ε0, see (7.4), (1.13). Then,

C2δ
−Me−t/2 = exp (lnC2 − M ln δ − N ε0/2) ,

and we require from δ that

ln C2 − M ln δ − N ε0/2 ≤ −N ε0/4,
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Figure 2. Left-hand side shows the curve γ surrounded by
the tube γα and the domain Ω (dashed line) where we are
counting the eigenvalues of P δ

N . The right-hand side shows
the same picture with γα enlarged to Γα = Γext

α ∪ Γint
α ∪

Γ1,α ∪ Γ2,α, i.e., the whole gray area. The decomposition into
an “exterior” part, an “interior” part and into the thin tubes
Γj,α connecting exterior and interior will play a role in the
proof of Lemma 7.3

i.e.,

ln δ ≥ ln C2

M
− N ε0

4M
.

This is fulfilled if N � 1 and

ln δ ≥ −N ε0

5M
,

i.e.,

δ ≥ exp
(

− 1
5M

N ε0

)
(7.14)

and (7.13), (7.14) imply (7.8) when N � 1. Notice that (7.4) implies (7.14)
for N � 1.

Combining (7.6), (7.11), (7.13) and (7.14), we get for each z ∈ K \ Γα

that
ln |det(P δ

N − z)| ≥ N(φ(z) − ε1), (7.15)
with probability

≥ 1 − e−N2 − e−Nε0/4 (7.16)
where

ε1 = N ε0−1. (7.17)
Here and in the following, we assume that N ≥ N(α,K) sufficiently large.
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On the other hand, with probability ≥ 1 − e−N2
, we have by (7.5)

ln |det(P δ
N − z)| ≤ N(φ(z) + ε1) (7.18)

for all z ∈ K \ Γα. Then, since the left- hand side in (7.18) is subharmonic
and the right-hand side is harmonic in Γα, we see that (7.18) remains valid
also in Γα and hence in all of K.

7.2. Counting zeros of holomorphic functions with exponential growth

Let Ω � C be as in Theorem 1.1, so that ∂Ω intersects γ at finitely many
points z̃1, ..., z̃k0 which are not critical values of p and where the intersection
is transversal. Choose z1, ..., zL ∈ ∂Ω \ Γα such that with r0 = C0α, C0 � 1,
we have

r0

4
≤ |zj+1 − zj | ≤ r0

2
(7.19)

where the zj are distributed along the boundary in the positively oriented
sense and with the cyclic convention that zL+1 = z1. Notice that L = O(1/α).
Then,

∂Ω ⊂
L⋃

1

D(zj , r0/2)

and we can arrange so that zj �∈ Γα and even so that

dist (zj ,Γα) ≥ α, (7.20)

for α > 0 sufficiently small.
Choose K above so that Ω � K. Combining (7.18) and (7.15), we have

that det(P δ
N − z) satisfies the upper bound (7.18) for all z ∈ K and the lower

bound (7.15) for z = z1, . . . , zL with probability

≥ 1 − O(α−1)(e−N2
+ e−Nε0/4). (7.21)

Since φ is continuous and subharmonic, we can apply [12, Theorem 1.1] (see
also [13, Chapter 12]) to the holomorphic function det(P δ

N − z) and get
∣∣∣∣#(σ(P δ

N ) ∩ Ω) − N

2π

∫

Ω

ΔφL(dz)
∣∣∣∣ ≤ O(N)

×
(

Lε1 +
∫

∂Ω+D(0,r0)

ΔφL(dz) +
L∑

1

∫

D(zj ,r0)

Δφ(z)
∣∣∣∣ln

|z − zj |
r0

∣∣∣∣ L(dz)

)

(7.22)

with probability (7.21).
Recall that L = O(1/α) (hence O(1) for every fixed α). Δφ is supported

in Γα and the number of discs D(zj , r0) that intersect Γα is ≤ O(1) uniformly
with respect to α. Also ln(|z − zj |/r0) = O(1) on the intersection of each such
disc with Γα. Since ε1 = N ε0−1, we get from (7.22):
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∣∣∣∣#(σ(P δ
N ) ∩ Ω) − N

2π

∫

Ω

ΔφL(dz)
∣∣∣∣

≤ O(N)

(
Oα(N ε0−1) +

∫

(γ∩∂Ω)+D(0,2r0)

Δφ(z)L(dz)

)
. (7.23)

7.3. Analysis of the measure Δφ

By (3.4), we have that

ln |det(pN (τ) − z)| =
N+M∑

1

ln |z − λj |, (7.24)

where

λj = p

(
exp

2πij

N + M

)
, 1 ≤ j ≤ N + M,

and this expression is equal to Nφ(z) in K \ Γα.
Define

ψ(z) = φ(z) − 1
N

N+M∑

1

ln |z − λj |, (7.25)

so that ψ is continuous away from the λj ∈ γ,

ψ(z) = 0 in C \ Γα, (7.26)
ψ �∂Γα

= 0, (7.27)

Δψ = −2π

N

N+M∑

1

δλj
in

◦
Γα . (7.28)

It follows that in Γα:

ψ(z) = −2π

N

N+M∑

1

GΓα
(z, λj), (7.29)

where GΓα
is the Green kernel for Γα.

φ is harmonic away from ∂Γα, so for φ as a distribution on C, we have
supp Δφ ⊂ ∂Γα. Now ψ − φ is harmonic near ∂Γα, so Δψ = Δφ near ∂Γα. In
the interior of Γα we have (7.28) and in order to compute Δψ globally, we let
v ∈ C∞

0 (C) and apply Green’s formula to get

〈Δψ, v〉 = 〈ψ,Δv〉 =
∫

Γα

ψΔvL(dz)

=
∫

Γα

ΔψvL(dz) +
∫

∂Γα

ψ∂νv|dz| −
∫

∂Γα

∂νψv|dz|.

Here ν is the exterior unit normal and in the last term, it is understood that
we apply ∂ν to the restriction of ψ to

◦
Γα then take the boundary limit. (7.27),

(7.28) and (7.29) imply that in the sense of distributions on C,

Δψ = −2π

N

N+M∑

1

δλj
+

2π

N
∂ν

(
N+M∑

1

GΓα
(·, λj)

)
L∂Γα

(dz) (7.30)
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where L∂Γα
denotes the (Lebesgue) arc length measure supported on ∂Γα.

By the preceding discussion, we conclude that

Δφ =
2π

N

(
N+M∑

1

∂νGγα
(·, λj)L∂Γα

(dz)

)
. (7.31)

Each term in the sum is a nonnegative measure of mass 1:
∫

∂νG(z, λj)L∂Γα
(dz) = 1. (7.32)

Before continuing, we will present two technical lemmas.

Lemma 7.2. Let X � C be an open relatively compact, simply connected do-
main with smooth boundary. Let u ∈ C∞(X) with u�∂X= 0. Let z0 ∈ ∂X and
let W̃ � W � C be two open relatively compact small complex neighborhoods
of z0, so that the closure of W̃ is contained in W . If u is harmonic in X ∩ W ,
then for any s ∈ N

‖u‖
Hs(X∩W̃ )

≤ O
s,W̃

(1)‖u‖H0(X∩W ). (7.33)

Here Hs are the standard Sobolev spaces.

Proof. The proof is standard, and we present it here for the reader’s conve-
nience.

1. Let W1 � W � C be two open relatively compact small complex
neighborhoods of z0, so that the closure of W1 is contained in W . Let χ ∈
C∞

c (C; [0, 1]) be so that χ = 1 on W1 and suppχ ⊂ W . Integration by parts
then yields that

∫

X∩W

|χ∇u|2dx =
∫

X∩W

χ∇u · (∇(χu) − u ∇χ)dx

= −
∫

X∩W

χu∇(χ∇u) + χu ∇u · ∇χ)dx

= −2
∫

X∩W

χu ∇u · ∇χdx.

In the last equality, we used as well that u is harmonic in X ∩ W . By the
Cauchy–Schwarz inequality

‖χ∇u‖2
L2(X∩W ) ≤ O(1)‖χ∇u‖L2(X∩W )‖u‖L2(X∩W ),

which implies that

‖χ∇u‖L2(X∩W ) ≤ O(1)‖u‖L2(X∩W ).

Hence,
‖u‖H1(X∩W1) ≤ O(1)‖u‖L2(X∩W ). (7.34)

2. Since W is small, we may pass to new local coordinates y, and we can suppose
that z0 = 0 and that locally ∂X = {y2 = 0}. If φ is a local diffeomorphism
realizing this change of variables, then the Laplacian can be formally written
in the new coordinates as

L
def= t((φ′)−1∇y) · ((φ′)−1∇y), with Δx = (φ−1)∗ ◦ Δ ◦ φ∗. (7.35)
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Here, L is an elliptic second-order differential operator, and φ′ is the Jacobian
map associated with the diffeomorphism φ.

Working from now on in these new coordinates, we proceed by an induc-
tion argument: suppose that

‖u‖Hs+1(X∩W1) ≤ O(1)‖u‖HsX∩W ). (7.36)

holds for some s ∈ N. Here we write as well W,W1 for the respective sets in
the new coordinates to ease notation. We want to show that we then also have

‖u‖Hs+2(X∩W2) ≤ O(1)‖u‖Hs+1X∩W1). (7.37)

where W2 � W1 is a slightly smaller neighborhood of z0 = 0, whose closure is
contained inside W1.

Let χ ∈ C∞
c (C; [0, 1]) be so that χ = 1 on W2 and suppχ ⊂ W1. Let

∂t,ju(y) := t−1(u(y + tej)−u(y), where x ∈ C � R2 and e1, e2 is the standard
orthonormal basis of R2. Then, by the hypothesis (7.36) applied to ∂t,jχu, for
|t| 	 1, we get

‖∂t,1χu‖Hs+1(X∩W1) ≤ O(1)‖∂t,1χu‖Hs(X∩W )

≤ O(1)‖χ∂t,1u‖Hs(X∩W ) + O(1)‖[∂t,1, χ]u‖Hs(X∩W )

≤ O(1)‖u‖Hs+1(X∩W1) + O(1)‖u‖Hs(X∩W1),

uniformly in |t| 	 1. In the last inequality, we used as well that χ∂t,1u and
[∂t,1, χ]u = (∂t,1χ)u(· + te1) are supported in W1 for |t| 	 1. Performing the
limit t → 0, we get

‖∂y1χu‖Hs+1(X∩W1) ≤ O(1)‖u‖Hs+1X∩W1). (7.38)

Thus, for j = 1, 2, we have that

‖∂y1∂yj
χu‖Hs(X∩W1) ≤ O(1)‖∂y1u‖Hs+1(X∩W1) ≤ O(1)‖u‖Hs+1(X∩W1).

(7.39)
By (7.35), it follows that there exists some smooth function a �= 0, such that

∂2
y2

χu =
1
a
Lχu − L̃χu, (7.40)

where L̃ is a second-order differential operator with smooth coefficients and
which does not contain the derivative ∂2

y2
. Since u is harmonic in X ∩ W , it

follows that Lχu = [L,χ]u. Since [L,χ] is a differential operator of order 1, it
follows from (7.40) and (7.39) that

‖∂y2χu‖Hs+1(X∩W1) ≤ O(1)
2∑

1

‖∂yj
∂y2χu‖Hs(X∩W1) ≤ O(1)‖u‖Hs+1(X∩W1).

(7.41)
In combination with (7.38), this yields

‖u‖Hs+2(X∩W2) ≤ ‖χu‖Hs+2(X∩W1) ≤ O(1)‖u‖Hs+1X∩W1). (7.42)

Thus, by choosing a decreasing sequence of nested compact neighborhoods of
z0, say W̃ = Ws+1 � Ws · · · � W0 = W , we may iterate the estimate (7.36),
which then in combination with (7.34) yields (7.33). �



74 J. Sjöstrand, M. Vogel Ann. Henri Poincaré

Lemma 7.3. There exists a C > 0 independent of α > 0, such that for any
1 ≤ j ≤ N + M

|∂νGΓα
(z, λj)| ≤ 1

α
e− |z−λj |

Cα , (7.43)

for z ∈ ∂Γα ∩ neigh (γ ∩ ∂Ω), λj ∈ Γα, |z − λj | ≥ α/C. (7.43) also holds when
z ∈ ∂Γα, λj ∈ Γα, |z − λj | ≥ α/C and (z, λj) ∈ (Ω × (C \ Ω)) ∪ ((C \ Ω) × Ω).

Proof. 1. By scaling of the harmonic function GΓα
(·, λj) by a factor 1/α, it

suffices to show that
|GΓα

(z, λj)| ≤ e− |z−λj |
Cα , (7.44)

for (z, λj) as after (7.43) with the difference that z now varies in Γα instead
of ∂Γα.

To see this, recall from the construction of Γα after (7.8) that dist(∂Γα, λj)
≥ α and fix a point z0 ∈ ∂Γα, let C1 > 0 be sufficiently large so that for any
z ∈ D(z0, α/C1) ∩ Γα we have that (z, λj) satisfies the conditions after (7.43)
with z varying in D(z0, α/C1) ∩ Γα instead of ∂Γα.

Let u(z) := Gγα
(αz, λj), z ∈ 1

αΓα, be the scaled function, and recall
Remark 7.1. Let χ ∈ C∞

c (C; [0, 1]) be so that χ = 1 on D(z0/α, 1/(4C1)),
suppχ ⊂ D(z0/α, 1/2C1) =: W ′ and ∂β = O(1), uniformly in α for any
β ∈ N2. Moreover, put W = D(z0/α, 1/C1).

Then, χu ∈ Hs(Γα ∩ W ′) for any s > 0. We can find an extension
v ∈ Hs(R2) of χu so that ‖v‖Hs ≤ O(1)‖χu‖Hs(Γα∩W ′). Using the Fourier
transform, we see that for s > 2 and for z ∈ D(z0/α, 1/(4C1))

|∇v(z)| ≤ O(1)‖|ξ|v̂‖L2 ≤ O(1)‖|ξ|〈ξ〉−s‖L2‖v‖Hs ≤ O(1)‖χu‖Hs(Γα∩W ′).
(7.45)

By Lemma 7.2 and (7.44), we see that

|∂νv(z)| ≤ O(1)‖u‖L∞(Γα∩W ) ≤ O(1) e− |z−λj/α|
C , (7.46)

and
|α(∂νGΓα

)(αz, λj)| ≤ O(1) e− |z−λj/α|
C , (7.47)

which implies (7.44) after rescaling and potentially slightly increasing the con-
stant C > 0.

2. We decompose Γα as Γint ∪Γext ∪Γ1,α ∪ ...∪ΓT,α, where Γint and Γext

are the enlarged parts of Γα with Γint ⊂ Ω, Γext ⊂ C \ Ω and Γ1,α, ...,ΓT,α

are the regular parts of width 2α, corresponding to the segments of γ, that
intersect ∂Ω transversally, see Fig. 2 for an illustration. Here, T is the number
of intersections of γ with ∂Ω, notice that T is finite and independent of N,α.

For simplicity, we assume that Γint and Γext are connected and that each
segment Γk,α links Γint to Γext and crosses ∂Ω once. We may think of Γα as a
graph with the vertices Γint, Γext and with Γk,α as the edges.

Let first λj belong to Γint. We apply the first estimate in Proposition 2.2
in [12] or equivalently Proposition 12.2.2 in [13] and see that −GΓα

(z, λj) ≤
O(1) for z ∈ Γα, |z − λj | ≥ 1/O(1). Here and in the following the constants
O(1) are independent of j and α. Furthermore, the notation 1/O(1) means
1/C for some sufficiently large constant C > 0.
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Possibly, after cutting away a piece of Γk,α and adding it to Γint, we
may assume that −GΓα

(z, λj) ≤ O(1) in Γk,α. Consider one of the Γk,α as a
finite band with the two ends given by the closure of the set of z ∈ ∂Γk,α with
dist (z, ∂Γα) < α. Let GΓk,α

denote the Green kernel of Γk,α. Then, the second
estimate in the quoted proposition applies and we find

−GΓk,α
(x, y) ≤ O(1)e−|x−y|/(α O(1)), when x, y ∈ Γk,α, |x − y| ≥ α/O(1).

Let

u = χGΓα
(·, λj)�Γk,α

,

where χ ∈ C∞(Γk,α; [0, 1]) vanishes near the ends of Γk,α, is equal to 1
away from an α-neighborhood of these end points and with the property that
∇χ = O(1/α), ∇2χ = O(1/α2). Then, u|∂Γk,α

= 0 and Δu = O(α−2) is
supported in an α-neighborhood of the union of the two ends and hence of
uniformly bounded L1-norm. Now we apply the second estimate in the quoted
proposition to u =

∫
GΓk,α

(·, y)Δu(y)L(dy) and we see that

GΓα
(·, λj) = O(e−1/(α O(1))). (7.48)

in {x ∈ Γk,α; dist (x, ∂Ω∩Γk,α) ≤ 1/O(1)}. Here, we also recall that λj ∈ γ �
Γ̊α. Varying k, we get (7.48) in {x ∈ Γα; dist (x, ∂Ω ∩ Γ) ≤ 1/O(1)}. Applying
the maximum principle to the harmonic function GΓα

(·, λj)�(C\Ω)∩Γα
, we see

that (7.48) holds uniformly in (C \ Ω) ∩ Γα.
Similarly, we have (7.48) uniformly in

{x ∈ Γα; dist (x, ∂Ω ∩ γ) ≤ 1/O(1)} ∪ (Ω ∩ Γα),

when λj ∈ Γext and we have shown (7.44), (7.43) when λj ∈ Γint ∪ Γext.
Similarly, we have (7.43) when λj ∈ γk,α is close to one of the ends.

It remains to treat the case when λj ∈ γk,α is at distance ≥ 1/O(1) from
the ends of γk,α. Defining u = χGΓα

(·, λj)�γk,α
as before we now have

Δu = [Δ, χ]GΓα(·,λj) + δλj
,

where the first term in the right-hand side has its support in an α-neighborhood
of the union of the ends and is O(1) in L1. By the second part of the quoted
proposition, we have

u(x) = O(1) exp
(

− 1
O(1)α

min (dist (x, ends (γk,α)), |x − λj |)
)

, (7.49)

away from an α-neighborhood of ends (γk,α) ∪ {λj}. Here ends (γk,α) denotes
the union of the two ends of γk,α. Since u is harmonic away from λj and from
α-neighborhoods of the ends, we get from (7.49) that
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∇u(x) = O
(

1
α

)
exp

(
− 1

O(1)α
min (dist (x, ends (γk,α)), |x − λj |)

)
, (7.50)

which gives (7.43) near ∂Ω ∩ γ. By using the maximum principle as be-
fore, we can extend the validity of (7.43) to all of ∂Γα \ D(λj , α/O(1)).
�

Continuing, notice that by (3.4), (7.24)

#{σ(PS
Ñ

) ∩ η} = #{Ŝ
Ñ

∩ p−1
N (η)}, Ñ = N + M, (7.51)

for η ⊂ γ. Since two consecutive points of Ŝ
Ñ

differ by an angle of 2π/Ñ and
by the assumptions (1)-(4) prior to Theorem 1.1, we get that

#{λj ; dist (λj , ∂Ω ∩ γ) < 4r0} = O(αN)

and also

#{λj ; dist (λj , ∂Ω ∩ γ) ∈ [2kr0, 2k+1r0[} = O(α2kN), k = 2, 3, ...

From (7.43) and (7.31), we get

N

2π

∫

(∂Ω∩γ)+D(0,2r0)

ΔφL(dz) =
∑

j

∫

((∂Ω∩γ)+D(0,2r0))∩∂Γα

∂νGΓα
(z, λj)L(dz)

= O(αN) +

∞∑

k=2

∑

λj ;

dist (λj ,∂Ω∩γ)∈[2kr0,2k+1r0[

e−2k/O(1)

= O(1)

(
αN +

∞∑

k=2

e−2k/O(1)α2kN

)

= O(αN) + O(1)Nα

∫ ∞

0

e−t/O(1)dt

= O(αN).

(7.52)
Combining (7.32) and (7.43), we get when dist (λj , ∂Ω ∩ γ) ≥ 2r0:

∫

∂Γα∩Ω

∂νGγα(z, λj)L∂Γα
(dz) =

{
1 + O(1)e−dist (λj ,∂Ω∩γ)/O(α), when λj ∈ Ω,

O(1)e−dist (λj ,∂Ω∩γ)/O(α), when λj �∈ Ω.
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We now get

N

2π

∫

Ω

ΔφL(dz) =
∑

j; dist (λj ,γ∩∂Ω)≤4r0

∫

∂Γα∩Ω

∂νGΓα
(z, λj)L∂Γα

(dz)

+
∞∑

k=2

∑

λj∈Ω,

dist (λj,γ∩∂Ω)∈[2kr0,2k+1r0[

∫

∂Γα∩Ω

∂νGΓα
(z, λj)L∂γα

(dz)

+
∞∑

k=2

∑

λj∈C\Ω,

dist (λj,γ∩∂Ω)∈[2kr0,2k+1r0[

∫

∂Γα∩Ω

∂νGΓα
(z, λj)L∂γα

(dz)

=O(αN) +
∞∑

k=2

∑

λj∈Ω,

dist (λj,γ∩∂Ω)∈[2kr0,2k+1r0[

(1 + O(1)e−2k/O(1))

+
∞∑

k=2

∑

λj∈C\Ω,

dist (λj,γ∩∂Ω)∈[2kr0,2k+1r0[

O(1)e−2k/O(1)

= #{λj ∈ Ω} + O(αN).
(7.53)

Thus, (7.23) gives

#(σ(P δ
N ) ∩ Ω) = #({λj} ∩ Ω) + O(αN) + Oα(N ε0)

=
N

2π

(∫

S1∩p−1(Ω)

LS1(dθ)

)
+ O(αN) + Oα(N ε0) + o(N),

(7.54)
with a probability as in (7.21) which is bounded from below by the probabil-
ity (1.15) for N > 1 sufficiently large. Here and in the next formula, we view
pN and p as maps from S1 to C. In the second equality, we used that by (7.51)

#({λj} ∩ Ω) =
Ñ

2π

∫

S1∩p−1
N (Ω)

LS1(dθ) + O(1)

=
N

2π

∫

S1∩p−1
N (Ω)

LS1(dθ) + O(M)

=
N

2π

∫

S1∩p−1(Ω)

LS1(dθ) + o(N),

(7.55)

where we used that pN → p uniformly on S1 and where the measure LS1(dθ)
in the integral denotes the Lebesgue measure on S1.

Theorem 1.1 follows by taking α > 0 in (7.54) arbitrarily small and N > 1
sufficiently large.
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8. Convergence of the empirical measure

In this section, we present a proof of Theorem 1.2 following the strategy of [15,
Section 7.3]. An alternative, and perhaps more direct way, to conclude the weak
convergence of the empirical measure from a counting theorem as Theorem 1.2,
is presented in [15, Section 7.1].

Recall the definition of the empirical measure ξN (1.20). By (1.21), (1.5)
combined with a Borel Cantelli argument, it follows that almost surely

suppξN ⊂ D(0, ‖p‖L∞(S1) + 1) def= K ⊂ D(0, ‖p‖L∞(S1) + 2) def= K ′ (8.1)

for N sufficiently large. For p as in (1.4), put

ξ = p∗

(
1
2π

LS1

)
(8.2)

which has compact support,

suppξ = p(S1) ⊂ K. (8.3)

Here, 1
2π LS1 denotes the normalized Lebesgue measure on S1.

We recall [15, Theorem 7.1]:

Theorem 8.1. Let K,K ′ � C be open relatively compact sets with K ⊂ K ′,
and let {μn}n∈N ∈ P(C) be as sequence of random measures so that almost
surely

suppμn ⊂ K for n sufficiently large.
Suppose that for a.e. z ∈ K ′ almost surely

Uμn
(z) → Uμ(z), n → ∞,

where μ ∈ P(C) is some probability measure with suppμ ⊂ K. Then, almost
surely,

μn ⇀ μ, n → ∞, weakly.

This theorem is a modification of a classical result which allows to de-
duce the weak convergence of measures from the point-wise convergence of the
associated Logarithmic potentials, see for instance [17, Theorem 2.8.3] or [1].

In view of Theorem 8.1, it remains to show that for almost every z ∈ K ′

we have that UξN
(z) → Uξ(z) almost surely, where

UξN
(z) = −

∫
log |z − x|ξN (dx), Uξ(z) = −

∫
log |z − x|ξ(dx).

For z /∈ σ(P δ
N )

UξN
(z) = − 1

N
log |det(P δ

N − z)|. (8.4)

For any z ∈ C the set Σz = {Q ∈ CN×N ; det(PN + δQ−z) = 0} has Lebesgue
measure 0, since CN×N � Q �→ det(P δ

N − z) is analytic and not constantly 0.
Thus, μN (Σz) = 0, where μN is the Gaussian measure given in after (1.11),
and for every z ∈ C (8.4) holds almost surely.

Let δ satisfy (1.13) for some fixed δ0 ∈]0, 1[ and δ1 > 3. Pick a ε0 ∈]δ0, 1[.
Let z ∈ K ′\p(S1). Recall (4.17). For α > 0 sufficiently small, we have that
z ∈ K ′\γα.
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Put t = Nε0 as in (7.13), which together with (7.14) implies (7.8) when
N � 1. Since (1.13) implies (7.14), it follows by combining (7.14), (7.5), (7.6)
and (7.7) that

∣∣∣∣
1
N

log |det(P δ
N − z)| − φ(z)

∣∣∣∣ ≤ O(Nε0−1). (8.5)

with probability ≥ 1− e−N2 − e−Nε0/4
. Here, φ(z) := N−1 ln |det(pN (τ)− z)|,

since z /∈ γα.
Using a Riemann sum argument and the fact that pN → p uniformly on

S1, we have that

|φ(z) + Uξ(z)| −→ 0, as N → ∞. (8.6)

Thus, by (8.5), (8.6), we have for any z ∈ K ′\p(S1) that

|UξN
(z) − Uξ(z)| = o(1) (8.7)

with probability ≥ 1−e−N2−e−Nε0/4
. By the Borel–Cantelli theorem, if follows

that for every z ∈ K ′\p(S1)

UξN
(z) −→ Uξ(z), as N → ∞, almost surely, (8.8)

which by Theorem 8.1 concludes the proof of Theorem 1.2.
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