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Abstract. The purpose of this paper is twofold. In one direction, we
extend the spectral method for random piecewise expanding and hyper-
bolic (Anosov) dynamics developed by the first author et al. to estab-
lish quenched versions of the large deviation principle, central limit theo-
rem and the local central limit theorem for vector-valued observables. We
stress that the previous works considered exclusively the case of scalar-
valued observables. In another direction, we show that this method can
be used to establish a variety of new limit laws (either for scalar or vector-
valued observables) that have not been discussed previously in the liter-
ature for the classes of dynamics we consider. More precisely, we estab-
lish the moderate deviations principle, concentration inequalities, Berry–
Esseen estimates as well as Edgeworth and large deviation expansions.
Although our techniques rely on the approach developed in the previous
works of the first author et al., we emphasize that our arguments require
several nontrivial adjustments as well as new ideas.
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1. Introduction

The so-called spectral method represents a powerful approach for establish-
ing limit theorems. It has been introduced by Nagaev [40,41] in the context of
Markov chains and by Guivarc’h and Hardy [27] as well as Rousseau-Egele [45]
for the deterministic dynamical systems. We refer to [33] for a detailed presen-
tation of this method. In the case of deterministic dynamics, we have a map T
on the state space X which preserves a probability measure μ on X. Then, for
a suitable class of observables g, we want to obtain limit laws for the process
(g◦Tn)n∈N. In other words, we wish to study the distribution of Birkhoff sums

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-020-00965-7&domain=pdf
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Sng =
∑n−1

i=0 g◦T i, n ∈ N. Let L be the transfer operator (acting on a suitable
Banach space B) associated with T and for each complex parameter θ, let Lθ

be the so-called twisted transfer operator given by Lθf = L(eθg · f), f ∈ B.
The core of the spectral method consists of the following steps:

• rewriting the characteristic function of Sng in terms of the powers of the
twisted transfer operators Lθ;

• applying the classical Kato’s perturbation theory to show that for θ suf-
ficiently close to 0, Lθ inherits nice spectral properties from L. More
precisely, usually one works under assumptions which ensure that L is a
quasi-compact operator of spectral radius 1 with the property that 1 is
the only eigenvalue on the unit circle with multiplicity one (and with the
eigenspace essentially corresponding to μ). Then, for θ sufficiently close
to 0, Lθ is again a quasi-compact operator with an isolated eigenvalue
of multiplicity one such that both the eigenvalue and the corresponding
eigenspace (as well as other related objects) depend analytically on θ.

This method has been used to establish a variety of limit laws for broad
classes of chaotic deterministic systems exhibiting some degree of hyperbol-
icity. Indeed, it has been used to establish large deviation principles [33,44],
central limit theorems [3,11,33,45], Berry–Esseen bounds [23,27], local central
limit theorems [23,33,45] as well as the almost sure invariance principle [25].
We refer to the excellent survey paper [26] for more details and further refer-
ences.

Very recently, the spectral method was extended to broad classes of ran-
dom dynamical systems. More precisely, the first author et al. adapted the
spectral method in order to obtain several quenched limit theorems for ran-
dom piecewise expanding as well as random hyperbolic dynamics [15,17]. In
particular, they proved the first version of the quenched local central limit in
the context of random dynamics. A similar task was independently accom-
plished for random distance expanding dynamics by the second author and
Kifer [31]. We stress that the study of the statistical properties of the ran-
dom or time-dependent dynamical systems was initiated by Bakhtin [7,8] and
Kifer [34,35] using different techniques from those in [15,17] (and the present
paper). Indeed, the methods in [7,8] rely on the use of real Birkhoff cones (and
share some similarities with the approach in [31]) although Bakhtin does not
discuss the local central limit theorem and the dynamics he considered does
not allow the presence of singularities. Moreover, his results do not include
the large deviations principles obtained in [15,17]. On the other hand, all the
results in [35] rely on the martingale method which although also very power-
ful, cannot, for example, be used to obtain a local central limit theorem.

Let us now briefly discuss the main ideas from [15,17,31]. Instead of a
single map as in the deterministic setting, we now have a collection of maps
(Tω)ω∈Ω acting on a state space X, where (Ω,F ,P) is a probability space. We
consider random compositions of the form

T (n)
ω = Tσn−1ω ◦ · · · ◦ Tω for ω ∈ Ω and n ∈ N,
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where σ : Ω → Ω is an invertible P-preserving transformation. Under appropri-
ate conditions, there exists a unique family of probability measures (μω)ω∈Ω

on X such that T ∗
ωμω = μσω for P-a.e. ω ∈ Ω. Then, for a suitable class of

observables g : Ω × X → R, we wish to establish limit laws for the process
(gσnω ◦ T

(n)
ω )n∈N with respect to μω, where gω := g(ω, ·), ω ∈ Ω. Let Lω

denote the transfer operator associated with Tω (acting on a suitable Banach
space B). In a similar manner to that in the deterministic case, for each θ ∈ C

and ω ∈ Ω we consider the twisted transfer operator Lθ
ω on B defined by

Lθ
ωf = L(eθg(ω,·)f), f ∈ B. Then, the arguments in [15,17] proceed as follows:
• we represent the characteristic functions of the random Birkhoff sums

Sng(ω, ·) =
n−1∑

i=0

gσiω(T (i)
ω (·))

in terms of twisted transfer operators;
• in the language of the multiplicative ergodic theory, for θ sufficiently close

to 0, the twisted cocycle (Lθ
ω)ω∈Ω is quasi-compact, its largest Lyapunov

exponents has multiplicity one (i.e., the associated Oseledets subspace is
one dimensional) and similarly to the deterministic case all these objects
exhibit sufficiently regular behavior with respect to θ.

Although Lyapunov exponents and associated Oseledets subspaces precisely
represent a nonautonomous analogous of eigenvalues and eigenspaces, we
emphasize that the methods in [15,17] require a highly nontrivial adjustments
of the classical spectral method for deterministic dynamics.

The goal of the present paper is twofold. In one direction, we wish to
extend the main results from [15,17] by establishing quenched versions of the
large deviations principle, central limit theorem and the local central limit for
vector-valued observables. We stress that in [15,17] the authors dealt only with
scalar-valued observables. Although in order to accomplish this we heavily rely
on the previous work, we stress that the treatment of vector-valued observables
requires several changes of nontrivial nature when compared to the previous
papers.

In another direction, we show that the spectral method developed
in [15,17] can be used to establish a variety of new limit laws (either for
scalar or vector-valued observables) that have not been considered previously
in the literature (at least for the classes of dynamics that are considered in
the present paper). Indeed, we here for the first time discuss a moderate devi-
ations principle, Berry–Esseen bounds, concentration inequalities, Edgeworth
and certain large deviations expansions for random piecewise expanding and
hyperbolic dynamics. We emphasize that each of these results requires nontriv-
ial adaptation of the techniques developed in [15,17]. We in particularly stress
that similarly to [15,17], none of our results require any mixing assumptions
for the base map σ.

Finally, we would like to briefly mention some of other works devoted
to statistical properties of random dynamical systems. We particularly men-
tion the works of Ayyer, Liverani and Stenlund [3] as well as Aimino, Nicol



3872 D. Dragičević and Y. Hafouta Ann. Henri Poincaré

and Vaienti [1] that preceded [15]. They also discuss limit laws for random
toral automorphisms and random piecewise expanding maps, respectively, but
under a restrictive assumption that the base space (Ω, σ) is a Bernoulli shift.
Furthermore, we mention the recent interesting papers by Bahsoun and col-
laborators [2,4,5] as well as Su [47] concerned with the decay of correlation
and limit laws for systems which can be modeled by random Young towers.
Further relevant contributions to the study of statistical properties of random
or time-dependent dynamics have been established by Nándori, Szász, and
Varjú [42], Nicol, Török and Vaienti [43], Hella and Stenlund [32], Leppänen
and Stenlund [36,37] as well as the second author [29,30]. We also refer the
readers to corresponding results for inhomogeneous Markov chains, including
ones arising as almost sure realizations of Markov chains in random (dynam-
ical) environments due to Dolgopyat and Sarig [14] and Kifer and the second
author [31].

2. Preliminaries

In this section, we recall basic notions and results from the multiplicative
ergodic theory which will be used in the subsequent sections. The material is
essentially taken from [15], but we include it for readers’ convenience.

2.1. Multiplicative Ergodic Theorem

In this subsection, we recall the recently established versions of the multiplica-
tive ergodic theorem which can be applied to the study of cocycles of transfer
operators and will play an important role in the present paper. We begin by
recalling some basic notions.

A tuple R = (Ω,F ,P, σ,B,L) will be called a linear cocycle, or simply
a cocycle, if σ is an invertible ergodic measure-preserving transformation on a
probability space (Ω,F ,P), (B, ‖·‖) is a Banach space and L : Ω → L(B) is a
family of bounded linear operators such that log+ ‖L(ω)‖ ∈ L1(P). Sometimes,
we will also use L to refer to the full cocycle R. In order to obtain sufficient
measurability conditions, we assume the following:
(C0) Ω is a Borel subset of a separable, complete metric space, σ is a homeo-

morphism and L is either P−continuous (that is, L is continuous on each
of countably many Borel sets whose union is Ω) or strongly measurable
(that is, the map ω �→ Lωf is measurable for each f ∈ B) and B is
separable.

For each ω ∈ Ω and n ≥ 0, let L(n)
ω be the linear operator given by

L(n)
ω := Lσn−1ω ◦ · · · ◦ Lσω ◦ Lω.

Condition (C0) implies that the map ω �→ log ‖L(n)
ω ‖ is measurable for each n ∈

N. Thus, Kingman’s sub-additive ergodic theorem ensures that the following
limits exist and coincide for P-a.e. ω ∈ Ω:

Λ(R) := lim
n→∞

1
n

log ‖L(n)
ω ‖
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κ(R) := lim
n→∞

1
n

log ic(L(n)
ω ),

where

ic(A) := inf
{

r > 0 : A(BB) can be covered with finitely many balls of radius r
}

,

and BB is the unit ball of B. The cocycle R is called quasi-compact if Λ(R) >
κ(R). The quantity Λ(R) is called the top Lyapunov exponent of the cocycle
and generalizes the notion of (logarithm of) spectral radius of a linear operator.
Furthermore, κ(R) generalizes the notion of essential spectral radius to the
context of cocycles.

Remark 2.1. We refer to [15, Lemma 2.1] for useful criteria which can be used
to verify that the cocycle is quasi-compact.

A spectral-type decomposition for quasi-compact cocycles can be obtained
via the following multiplicative ergodic theorem.

Theorem 2.2. (Multiplicative ergodic theorem, MET [10,21,22]). Let R =
(Ω,F ,P, σ,B,L) be a quasi-compact cocycle and suppose that condition (C0)
holds. Then, there exist 1 ≤ l ≤ ∞ and a sequence of exceptional Lyapunov
exponents

Λ(R) = λ1 > λ2 > · · · > λl > κ(R) (if 1 ≤ l < ∞)

or

Λ(R) = λ1 > λ2 > · · · and lim
n→∞ λn = κ(R) (if l = ∞),

and for P-a.e. ω ∈ Ω, there exists a unique splitting (called the Oseledets
splitting) of B into closed subspaces

B = V (ω) ⊕
l⊕

j=1

Yj(ω), (1)

depending measurably on ω and such that:
(I) For each 1 ≤ j ≤ l, Yj(ω) is finite-dimensional (mj := dim Yj(ω) < ∞),

Yj is equivariant, i.e., LωYj(ω) = Yj(σω) and for every y ∈ Yj(ω)\{0},
lim

n→∞
1
n

log ‖L(n)
ω y‖ = λj .

(Throughout this paper, we will also refer to Y1(ω) as simply Y (ω) or
Yω.)

(II) V is equivariant, i.e., LωV (ω) ⊆ V (σω) and for every v ∈ V (ω),

lim
n→∞

1
n

log ‖L(n)
ω v‖ ≤ κ(R).

The adjoint cocycle associated with R is the cocycle R∗ := (Ω,
F ,P, σ−1,B∗,L∗), where (L∗)ω := (Lσ−1ω)∗. In a slight abuse of notation
which should not cause confusion, we will often write L∗

ω instead of (L∗)ω, so
L∗

ω will denote the operator adjoint to Lσ−1ω.
The following two results are taken from [15].
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Corollary 2.3. Under the assumptions of Theorem 2.2, the adjoint cocycle R∗

has a unique, measurable, equivariant Oseledets splitting

B∗ = V ∗(ω) ⊕
l⊕

j=1

Y ∗
j (ω), (2)

with the same exceptional Lyapunov exponents λj and multiplicities mj as R.

Let the simplified Oseledets decomposition for the cocycle L (resp. L∗)
be

B = Y (ω) ⊕ H(ω) (resp. B∗ = Y ∗(ω) ⊕ H∗(ω)), (3)
where Y (ω) (resp. Y ∗(ω)) is the top Oseledets subspace for L (resp. L∗) and
H(ω) (resp. H∗(ω)) is a direct sum of all other Oseledets subspaces.

For a subspace S ⊂ B, we set S◦ = {φ ∈ B∗ : φ(f) = 0 for every f ∈ S}
and similarly for a subspace S∗ ⊂ B∗ we define (S∗)◦ = {f ∈ B : φ(f) =
0 for every φ ∈ S∗}.

Lemma 2.4. (Relation between Oseledets splittings of R and R∗). The follow-
ing relations hold for P-a.e. ω ∈ Ω:

H∗(ω) = Y (ω)◦ and H(ω) = Y ∗(ω)◦. (4)

3. Piecewise Expanding Dynamics

In this section, we introduce the class of random piecewise expanding dynamics
we plan to study (which is the same as considered in [15]). We then proceed by
introducing a class of vector-valued observables to which our limit theorems
will apply. Furthermore, for θ ∈ C

d, we introduce the corresponding twisted
cocycle of transfer operators (Lθ

ω)ω∈Ω . Finally, we study the regularity (with
respect to θ) of the largest Lyapunov exponent and the corresponding top
Oseledets space of the cocycle (Lθ

ω)ω∈Ω. Our arguments in this section follow
closely the approach developed in [15]. We refer as much as possible to [15], dis-
cussing in detail only the arguments which require substantial changes (when
compared to [15]).

3.1. Notions of Variation

Let (X,G) be a measurable space endowed with a probability measure m and
a notion of a variation var : L1(X,m) → [0,∞] which satisfies the following
conditions:
(V1) var(th) = |t| var(h);
(V2) var(g + h) ≤ var(g) + var(h);
(V3) ‖h‖L∞ ≤ Cvar(‖h‖1 + var(h)) for some constant 1 ≤ Cvar < ∞;
(V4) for any C > 0, the set {h : X → R : ‖h‖1 + var(h) ≤ C} is L1(m)-

compact;
(V5) var(1X) < ∞, where 1X denotes the function equal to 1 on X;
(V6) {h : X → R+ : ‖h‖1 = 1 and var(h) < ∞} is L1(m)-dense in {h : X →

R+ : ‖h‖1 = 1}.
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(V7) for any f ∈ L1(X,m) such that ess inf f > 0, we have var(1/f) ≤
var(f)

(ess inf f)2 .
(V8) var(fg) ≤ ‖f‖L∞ · var(g) + ‖g‖L∞ · var(f).
(V9) for M > 0, f : X → BRd(0,M) measurable and every C1 func-

tion h : BRd(0,M) → C, we have var(h ◦ f) ≤ sup{‖Dh(P )‖ : P ∈
BRd(0,M)} · var(f). Here, BRd(0,M) denotes the closed ball in R

d cen-
tered in 0 with radius M .

We define

B := BV = BV (X,m) = {g ∈ L1(X,m) : var(g) < ∞}.

Then, B is a Banach space with respect to the norm

‖g‖B = ‖g‖1 + var(g).

From now on, in this section, we will use B to denote a Banach space of this
type, and ‖g‖B, or simply ‖g‖ will denote the corresponding norm.

We note that examples of this notion correspond to the case where X
is a subset of Rn. In the one-dimensional case, we use the classical notion of
variation given by

var(g) = inf
h=g(mod m)

sup
0=s0<s1<···<sn=1

n∑

k=1

|h(sk) − h(sk−1)| (5)

for which it is well known that properties (V1)–(V9) hold. On the other hand,
in the multidimensional case (see [46]), we let m = Leb and define

var(f) = sup
0<ε≤ε0

1
εα

∫

Rd

osc(f,Bε(x))) dx, (6)

where

osc(f,Bε(x)) = ess supx1,x2∈Bε(x)|f(x1) − f(x2)|
and where ess sup is taken with respect to product measure m×m. It has been
discussed in [15] that in this case, var(·) again satisfies properties (V1)–(V9).

In another direction, by taking var(·) to be a Hölder constant and X to be
a compact metric space, our framework also includes distance expanding maps
considered in [31,38] which are nonsingular with respect to a given measure
m. (In particular, we consider the case of identical fiber spaces Xω = X.)

3.2. A Cocycles of Transfer Operators

Let (Ω,F ,P, σ) be as in Sect. 2.1, and X and B as in Sect. 3.1. Let Tω : X → X,
ω ∈ Ω be a collection of nonsingular transformations (i.e., m ◦ T−1

ω  m for
each ω) acting on X. The associated skew product transformation τ : Ω×X →
Ω × X is defined by

τ(ω, x) = (σ(ω), Tω(x)), ω ∈ Ω, x ∈ X. (7)

Each transformation Tω induces the corresponding transfer operator Lω acting
on L1(X,m) and defined by the following duality relation

∫

X

(Lωφ)ψ dm =
∫

X

φ(ψ ◦ Tω) dm, φ ∈ L1(X,m), ψ ∈ L∞(X,m).
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For each n ∈ N and ω ∈ Ω, set

T (n)
ω = Tσn−1ω ◦ · · · ◦ Tω and L(n)

ω = Lσn−1ω ◦ · · · ◦ Lω.

Definition 3.1. (Admissible cocycle). We call the transfer operator cocycle R =
(Ω,F ,P, σ,B,L) admissible if the following conditions hold:

(C1) R is P-continuous (i.e., L is continuous in ω on each of countably many
Borel sets whose union is Ω);

(C2) there exists K > 0 such that

‖Lωf‖B ≤ K‖f‖B, for every f ∈ B and P-a.e. ω ∈ Ω.

(C3) there exist N ∈ N and measurable αN , βN : Ω → (0,∞), with∫
Ω

log αN (ω) dP(ω) < 0, such that for every f ∈ B and P-a.e. ω ∈ Ω,

‖L(N)
ω f‖B ≤ αN (ω)‖f‖B + βN (ω)‖f‖1.

(C4) there exist K ′, λ > 0 such that for every n ≥ 0, f ∈ B such that
∫

f dm =
0 and P-a.e. ω ∈ Ω.

‖L(n)
ω (f)‖B ≤ K ′e−λn‖f‖B.

(C5) there exist N ∈ N, c > 0 such that for each a > 0 and any sufficiently
large n ∈ N,

ess inf L(Nn)
ω f ≥ c‖f‖1, for every f ∈ Ca and P-a.e. ω ∈ Ω,

where Ca := {f ∈ B : f ≥ 0 and var(f) ≤ a
∫

f dm}.

Remark 3.2. We note that we have imposed condition (C1) since in this setting
B is not separable.

Remark 3.3. We refer to [15, Sect. 2.3.1] for explicit examples of admissible
cocycles of transfer operators associated with piecewise expanding maps both
in dimension 1 and in higher dimensions.

The following result is established in [15, Lemma 2.9].

Lemma 3.4. An admissible cocycle of transfer operators R = (Ω,F ,P, σ,B,L)
is quasi-compact. Furthermore, the top Oseledets space is one dimensional.
That is, dim Y (ω) = 1 for P-a.e. ω ∈ Ω.

The following result established in [15, Lemma 2.10] shows that in this
context, the top Oseledets space is spanned by the unique random abso-
lutely continuous invariant measure (a.c.i.m. for short). We recall that random
a.c.i.m. is a measurable map v0 : Ω × X → R

+ such that for P-a.e. ω ∈ Ω,
v0

ω := v0(ω, ·) ∈ B,
∫

v0
ω(x)dm = 1 and

Lωv0
ω = v0

σω, for P-a.e. ω ∈ Ω. (8)

Lemma 3.5. (Existence and uniqueness of a random acim). Let R =
(Ω,F ,P, σ,B,L) be an admissible cocycle of transfer operators. Then, there
exists a unique random absolutely continuous invariant measure for R.
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For an admissible transfer operator cocycle R, we let μ be the invariant
probability measure given by

μ(A × B) =
∫

A×B

v0(ω, x) d(P × m)(ω, x), for A ∈ F and B ∈ G, (9)

where v0 is the unique random a.c.i.m. for R and G is the Borel σ-algebra
of X. We note that μ is τ -invariant, because of (8). Furthermore, for each
G ∈ L1(Ω × X,μ) we have that

∫

Ω×X

Gdμ =
∫

Ω

∫

X

G(ω, x) dμω(x) dP(ω),

where μω is a measure on X given by dμω = v0(ω, ·)dm.
Let us recall the following result established in [15, Lemma 2.11].

Lemma 3.6. The unique random a.c.i.m. v0 of an admissible cocycle of transfer
operators satiesfies the following:

1.
ess supω∈Ω‖v0

ω‖B < ∞; (10)

2. there exists c > 0 such that

ess inf v0
ω(·) ≥ c, for P-a.e. ω ∈ Ω; (11)

3. there exists K > 0 and ρ ∈ (0, 1) such that
∣
∣
∣
∣

∫

X

L(n)
ω (fv0ω)h dm −

∫

X

f dμω ·
∫

X

h dμσnω

∣
∣
∣
∣ ≤ Kρn‖h‖L∞ · ‖f‖B, (12)

for n ≥ 0, h ∈ L∞(X,m), f ∈ B and P-a.e. ω ∈ Ω.

3.3. The Observable

Let us now introduce a class of observables to which our limit theorems will
apply (although in some cases we will require additional assumptions).

Definition 3.7. (Observable). An observable is a measurable map g : Ω × X →
R

d, g = (g1, . . . , gd) satisfying the following properties:

• Regularity:

‖g(ω, x)‖L∞(Ω×X) =: M < ∞ and ess supω∈Ω var(gω) < ∞, (13)

where gω = g(ω, ·) and var(gω) := max1≤i≤d var(gi
ω), ω ∈ Ω.

• Fiberwise centering:
∫

X

gi(ω, x) dμω(x) =

∫

X

gi(ω, x)v0
ω(x) dm(x) = 0 for P-a.e. ω ∈ Ω, 1 ≤ i ≤ d,

(14)
where v0 is the density of the unique random a.c.i.m., satisfying (8).

Remark 3.8. The class of observables considered in [15] are scalar-valued, i.e.,
correspond to the case when d = 1.
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We also introduce the corresponding random Birkhoff sums. More pre-
cisely, for n ∈ N and (ω, x) ∈ Ω × X, set

Sng(ω, x) :=
n−1∑

i=0

g(σiω, T (i)
ω (x)).

3.4. Basic Properties of Twisted Transfer Operator Cocycles

Throughout this section, R = (Ω,F ,P, σ,B,L) will denote an admissible trans-
fer operator cocycle. Furthermore, by x · y we will denote the scalar product
of x, y ∈ C

d and |x| will denote the norm of x.
For an observable g as in Definition 3.7 and θ ∈ C

d, the twisted trans-
fer operator cocycle (or simply a twisted cocycle) Rθ is defined as Rθ =
(Ω,F ,P, σ,B,Lθ), where for each ω ∈ Ω, we define

Lθ
ω(f) = Lω(eθ·g(ω,·)f), f ∈ B. (15)

For convenience of notation, we will also use Lθ to denote the cocycle Rθ. For
each θ ∈ C

d, set Λ(θ) := Λ(Rθ) and

Lθ, (n)
ω = Lθ

σn−1ω ◦ · · · ◦ Lθ
ω, for ω ∈ Ω and n ∈ N.

Lemma 3.9. For P-a.e. ω ∈ Ω and θ ∈ C
d,

var(eθ·g(ω,·)) ≤ |θ|e|θ|M var(g(ω, ·)).
Proof. The conclusion of the lemma follows directly from (V 9) applied for
f = g(ω, ·) and h given by h(z) = eθ·z by taking into account (13). �

Lemma 3.10. There exists a continuous function K : Cd → (0,∞) such that

‖Lθ
ωh‖B ≤ K(θ)‖h‖B, for h ∈ B, θ ∈ C and P-a.e. ω ∈ Ω. (16)

Proof. It follows from (13) that for any h ∈ B, |eθ·g(ω,·)h|1 ≤ e|θ|M |h|1. Fur-
thermore, (V8) implies that

var(eθ·g(ω,·)h) ≤ ‖eθ·g(ω,·)‖L∞ · var(h) + var(eθ·g(ω,·)) · ‖h‖L∞ ,

which together with (V3) and Lemma 3.9 yields that

‖eθ·g(ω,·)h‖B = var(eθ·g(ω,·)h) + |eθ·g(ω,·)h|1
≤ e|θ|M‖h‖B + +|θ|e|θ|M ess supω∈Ω var(g(ω, ·))‖h‖L∞

≤ (e|θ|M + Cvar|θ|e|θ|M ess supω∈Ω var(g(ω, ·)))‖h‖B.

Thus, from (C2) we conclude that (16) holds with

K(θ) = K
(
e|θ|M + Cvar|θ|e|θ|M ess supω∈Ω var(g(ω, ·))

)
.

�

Lemma 3.11. The following statements hold:
1. for every φ ∈ B∗, f ∈ B, ω ∈ Ω, θ ∈ C

d and n ∈ N we have that

Lθ,(n)
ω (f) = L(n)

ω (eθ·Sng(ω,·)f), and Lθ∗,(n)
ω (φ) = eθ·Sng(ω,·)L∗(n)

ω (φ), (17)

where (eθ·Sng(ω,·)φ)(f) := φ(eθ·Sng(ω,·)f);
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2. for every f ∈ B, ω ∈ Ω and n ∈ N we have that
∫

X

Lθ, (n)
ω (f) dm =

∫

X

eθ·Sng(ω,·)f dm. (18)

Proof. We establish the first identity in (17) by induction on n. The case n = 1
follows from the definition of Lθ

ω. We recall that for every f, f̃ ∈ B,

L(n)
ω ((f̃ ◦ T (n)

ω ) · f) = f̃ · L(n)
ω (f). (19)

Let us assume that the claim holds for some n. Then, using (19) we have that

L(n+1)
ω (eθ·Sn+1g(ω,·)f) = Lσnω

(L(n)
ω (eθ·g(σnω,·)◦T (n)

ω eθ·Sng(ω,·)f)
)

= Lσnω

(
eθ·g(σnω,·)L(n)

ω (eθ·Sng(ω,·)f)
)

= Lθ
σnωLθ,(n)

ω (f) = Lθ,(n+1)
ω (f).

The second identity in (17) follows directly from duality. Finally, (18) follows
by integrating the first equality in (17). �

3.5. An Auxiliary Existence and Regularity Result

We now recall the construction of Banach spaces introduced in [15] that play
an important role in the spectral analysis of the twisted cocycle.

Let S ′ denote the set of all measurable functions V : Ω × X → C such
that:

• for P-a.e. ω ∈ Ω, we have that V(ω, ·) ∈ B;
•

ess supω∈Ω‖V(ω, ·)‖B < ∞;

Then, S ′ is a Banach space with respect to the norm

‖V‖∞ := ess supω∈Ω‖V(ω, ·)‖B.

Furthermore, let S consist of all V ∈ S ′ such that for P-a.e. ω ∈ Ω,
∫

X

V(ω, ·) dm = 0.

Then, S is a closed subspace of S ′ and therefore also a Banach space.
For θ ∈ C

d and W ∈ S, set

F (θ,W)(ω, ·) =
Lθ

σ−1ω(W(σ−1ω, ·) + v0
σ−1ω(·))

∫ Lθ
σ−1ω(W(σ−1ω, ·) + v0

σ−1ω(·))dm
− W(ω, ·) − v0

ω(·). (20)

Lemma 3.12. There exist ε, R > 0 such that F : D → S is a well-defined ana-
lytic map on D := {θ ∈ C

d : |θ| < ε} × BS(0, R), where BS(0, R) denotes the
ball of radius R in S centered at 0.

Proof. Let G : BCd(0, 1) × S → S ′ and H : BCd(0, 1) × S → L∞(Ω) be defined
by (73), where BCd(0, 1) denotes the unit ball in C

d. It follows from (10) and
Lemma 3.10 that G and H are well defined. Furthermore, by arguing as in [17,
Lemma 5.1] we have that G and H are analytic.
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Moreover, since H(0, 0)(ω) = 1 for ω ∈ Ω, we have that

|H(θ,W)(ω)| ≥ 1 − |H(0, 0)(ω) − H(θ,W)(ω)| ≥ 1 − ‖H(0, 0) − H(θ,W)‖L∞ ,
(21)

for P-a.e. ω ∈ Ω. Hence, the continuity of H implies that ‖H(0, 0) −
H(θ,W)‖L∞ ≤ 1/2 for all (θ,W) in a neighborhood of (0, 0) ∈ C

d × S. We
observe that it follows from (21) that in such neighborhood,

ess infω|H(θ,W)(ω)| ≥ 1/2.

The above inequality together with (10) yields the desired conclusion. �

The proof of the following result follows closely the proof of [15,
Lemma 3.5].

Lemma 3.13. Let D = {θ ∈ C
d : |θ| < ε} × BS(0, R) be as in Lemma 3.12.

Then, by shrinking ε > 0 if necessary, we have that there exists O : {θ ∈ C
d :

|θ| < ε} → S analytic in θ such that

F (θ,O(θ)) = 0. (22)

Proof. We notice that F (0, 0) = 0. Moreover, Proposition 6.4 implies that

(Dd+1F (0, 0)X )(ω, ·) = Lσ−1ω(X (σ−1ω, ·)) − X (ω, ·) for ω ∈ Ω and X ∈ S,

where Dd+1F denotes the derivative of F with respect to W. We now prove
that Dd+1F (0, 0) is bijective operator.

For injectivity, we have that if Dd+1F (0, 0)X = 0 for some nonzero
X ∈ S, then LωXω = Xσω for P-a.e. ω ∈ Ω. Notice that Xω /∈ 〈v0

ω〉 because∫ Xω(·)dm = 0 and Xω �= 0. Hence, this yields a contradiction with the one
dimensionality of the top Oseledets space of the cocycle L, given by Lemma 3.4.
Therefore, Dd+1F (0, 0) is injective. To prove surjectivity, take X ∈ S and let

X̃ (ω, ·) := −
∞∑

j=0

L(j)
σ−jωX (σ−jω, ·). (23)

It follows from (C4) that X̃ ∈ S and it is easy to verify that Dd+1F (0, 0)X̃ = X .
Thus, Dd+1F (0, 0) is surjective.

Combining the previous arguments, we conclude that Dd+1F (0, 0) is
bijective. The conclusion of the lemma now follows directly from the implicit
complex analytic implicit function theorem in Banach spaces (see, for instance,
the appendix in [49]). �

3.6. On the Top Lyapunov Exponent for the Twisted Cocycle

Let Λ(θ) be the largest Lyapunov exponent associated with the twisted cocycle
Lθ. Let 0 < ε < 1 and O(θ) be as in Lemma 3.13. Let

vθ
ω(·) := v0

ω(·) + O(θ)(ω, ·). (24)

We notice that
∫

vθ
ω(·) dm = 1 and by Lemma 3.13, θ �→ vθ is analytic. Let us

define
Λ̂(θ) :=

∫

Ω

log
∣
∣
∣

∫

X

eθ·g(ω,x)vθ
ω(x) dm(x)

∣
∣
∣ dP(ω), (25)
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and

λθ
ω :=

∫

X

eθ·g(ω,x)vθ
ω(x) dm(x) =

∫

X

Lθ
ωvθ

ω(x) dm(x), (26)

where the last identity follows from (18).
The proof of the following result is identical to the proof of [15,

Lemma 3.8].

Lemma 3.14. For every θ ∈ BCd(0, ε) := {θ ∈ C : |θ| < ε}, Λ̂(θ) ≤ Λ(θ).

The proof of the following result can be established by repeating the
arguments in the proof of [15, Lemma 3.9].

Lemma 3.15. We have that Λ̂ is differentiable on a neighborhood of 0, and for
each i ∈ {1, . . . , d}, we have that

DiΛ̂(θ) = �
( ∫

Ω

λθ
ω(

∫
X

gi(ω, ·)eθ·g(ω,·)vθ
ω(·) dm +

∫
X

eθ·g(ω,·)(DiO(θ))ω(·) dm)

|λθ
ω|2 dP(ω)

)

,

where �(z) denotes the real part of a complex number z and z the complex
conjugate of z. Here, Di denotes the derivative with respect to θi, where θ =
(θ1, . . . , θd).

Lemma 3.16. For i ∈ {1, . . . , d}, we have that DiΛ̂(0) = 0.

Proof. Since λ0
ω = 1, it follows from the previous lemma that

DiΛ̂(0) = �
( ∫

Ω

∫

X

(
gi(ω, ·)v0

ω(·) + (DiO(0))ω(·)) dm dP(ω)

)

. (27)

On the other hand, it follows from the implicit function theorem that

DiO(0) = −Dd+1F (0, 0)−1(DiF (0, 0)).

It was proved in Lemma 3.13 that Dd+1F (0, 0) : S → S is bijective. Thus,
Dd+1F (0, 0)−1 : S → S and therefore DiO(0) ∈ S which implies that

∫

X

DiO(0)ω dm = 0 for P-a.e. ω ∈ Ω. (28)

The conclusion of the lemma now follows directly from (14), (27)
and (28). �

The proofs of the following two results are identical to the proofs of [15,
Theorem 3.12] and [15, Corollary 3.14], respectively.

Theorem 3.17. (Quasi-compactness of twisted cocycles, θ near 0). Assume that
the cocycle R = (Ω,F ,P, σ,B,L) is admissible. For θ ∈ C

d sufficiently close to
0, we have that the twisted cocycle Lθ is quasi-compact. Furthermore, for such
θ, the top Oseledets space of Lθ is one dimensional. That is, dim Y θ(ω) = 1
for P-a.e. ω ∈ Ω.

Lemma 3.18. For θ ∈ C
d near 0, we have that Λ(θ) = Λ̂(θ). In particular,

Λ(θ) is differentiable near 0 and DiΛ(0) = 0, for every i ∈ {1, . . . , d}.
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By arguing as in the proof of [18, Proposition 2], we have that there exists
a positive semi-definite d × d matrix Σ2 such that for P-a.e. ω ∈ Ω, we have
that

Σ2 = lim
n→∞

1
n

Covω(Sng(ω, ·)), (29)

where Covω denotes the e covariance with respect to the probability measure
μω. Moreover, the entries Σ2

ij of Σ2 are given by

Σ2
ij =

∫

Ω×X

gi(ω, x)gj(ω, x) dμ(ω, x) +
∞∑

n=1

∫

Ω×X

gi(ω, x)gj(τn(ω, x)) dμ(ω, x)

+
∞∑

n=1

∫

Ω×X

gj(ω, x)gi(τn(ω, x)) dμ(ω, x). (30)

We also recall that Σ2 is positive definite if and only if g does not satisfy that

v · g = r − r ◦ τ μ-a.e.,

for all v ∈ R
d, v �= 0 and some r ∈ L2

μ(Ω × X).

Lemma 3.19. We have that Λ is of class C2 on a neighborhood of 0 and
D2Λ(0) = Σ2, where D2Λ(0) denotes the Hessian of Λ in 0.

Proof. By repeating the arguments in the proof of [15, Lemma 3.15], one can
show that Λ is of class C2 and that

DijΛ(θ) = �
( ∫

Ω

(
Dijλ

θ
ω

λθ
ω

− Diλ
θ
ωDjλ

θ
ω

(λθ
ω)2

)

dP(ω)
)

,

where Diλ
θ
ω denotes the derivative of θ �→ λθ

ω with respect to θi and Dijλ
θ
ω is

the derivative of θ �→ Djλ
θ
ω with respect to θi. Moreover, using (26), the same

arguments as in the proof of [15, Lemma 3.15] yield that

Diλ
θ
ω =

∫

X

(gi(ω, x)eθ·g(ω,x)vθ
ω(x) + eθ·g(ω,x)(DiO(θ))ω(x)) dm(x)

and

Dijλ
θ
ω =

∫

X

(gi(ω, x)gj(ω, x)eθ·g(ω,x)vθ
ω(x) + gj(ω, x)eθ·g(ω,x)(DiO(θ))ω(x)) dm(x)

+

∫

X

(gi(ω, x)eθ·g(ω,x)(DjO(θ))ω(x) + eθ·g(ω,x)(DijO(θ))ω(x)) dm(x).

Since DijO(0) ∈ S for i, j ∈ {1, . . . , d}, we have that
∫

X

(DijO(0))ω dm = 0, for P-a.e. ω ∈ Ω and i, j ∈ {1, . . . , d}. (31)

From (14) and (28), we conclude that Diλ
θ
ω|θ=0 = 0 and

Dijλ
θ
ω|θ=0 =

∫

X

gi(ω, x)gj(ω, x) dμω(x)

+
∫

X

(gj(ω, x)(DiO(0))ω(x) + gi(ω, x)(DjO(0))ω(x)) dm(x).
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Hence,

DijΛ(0) = �
( ∫

Ω×X

gi(ω, x)gj(ω, x) dμ(ω, x)

+
∫

Ω

∫

X

gj(ω, x)(DiO(0))ω(x) dm(x) dP(ω)

+
∫

Ω

∫

X

gi(ω, x)(DjO(0))ω(x) dm(x) dP(ω)
)

.

On the other hand, by the implicit function theorem, we have that

DiO(0)ω = −(Dd+1F (0, 0)−1(DiF (0, 0)))ω.

Furthermore, (23) implies that

(Dd+1F (0, 0)−1W)ω = −
∞∑

n=0

L(n)
σ−nω(Wσ−nω),

for each W ∈ S. Hence, it follows from Proposition 6.4 that

DiO(0)ω =
∞∑

n=1

L(n)
σ−nω(gi(σ−nω, ·)v0

σ−nω(·)).

Consequently, since σ preserves P, we have that
∫

Ω

∫

gj(ω, x)(DiO(0))ω(x) dm(x) dP(ω)

=
∞∑

n=1

∫

Ω

∫

X

gj(ω, x)L(n)
σ−nω(gi(σ−nω, ·)v0

σ−nω) dm(x) dP(ω)

=
∞∑

n=1

∫

Ω

∫

X

gj(ω, T
(n)
σ−nωx)gi(σ−nω, x) dμσ−nω(x) dP(ω)

=
∞∑

n=1

∫

Ω

∫

X

gj(σnω, T (n)
ω x)gi(ω, x) dμω(x) dP(ω)

=
∞∑

n=1

∫

Ω×X

gi(ω, x)gj(τn(ω, x)) dμ(ω, x).

Thus, DijΛ(0) = Σ2
ij and the conclusion of the lemma follows. �

4. Limit Theorems

In this section, we establish the main results of our paper. More precisely, we
prove a number of limit laws for a broad classes of random piecewise dynamics
and for vector-valued observables. In particular, we prove the large deviations
principle, central limit theorem and the local limit theorem, thus extending
the main results in [15] from scalar to vector-valued observables. In addition,
we prove a number of additional limit laws that have not been discussed ear-
lier. Namely, we establish the moderate deviations principle, concentration



3884 D. Dragičević and Y. Hafouta Ann. Henri Poincaré

inequalities, self-normalized Berry–Esseen bounds as well as Edgeworth and
large deviations (LD) expansions.

4.1. Choice of Bases for Top Oseledets Spaces Y θ
ω and Y ∗θ

ω

We recall that Y θ
ω and Y ∗θ

ω are top Oseledets subspaces for twisted and adjoint
twisted cocycle, Lθ and Lθ∗, respectively. The Oseledets decomposition for
these cocycles can be written in the form

B = Y θ
ω ⊕ Hθ

ω and B∗ = Y ∗ θ
ω ⊕ H∗ θ

ω , (32)

where Hθ
ω = V θ(ω) ⊕ ⊕lθ

j=2 Y θ
j (ω) is the equivariant complement to Y θ

ω :=
Y θ
1 (ω), and H∗ θ

ω is defined similarly. Furthermore, Lemma 2.4 shows that the
following duality relations hold:

ψ(y) = 0 whenever y ∈ Y θ
ω and ψ ∈ H∗ θ

ω , and

φ(f) = 0 whenever φ ∈ Y ∗ θ
ω and f ∈ Hθ

ω. (33)

Let us fix convenient choices for elements of the one-dimensional top
Oseledets spaces Y θ

ω and Y ∗ θ
ω , for θ ∈ C

d close to 0. Let vθ
ω ∈ Y θ

ω be as in (24),
so that

∫
vθ

ω(·)dm = 1. We recall that

Lθ
ωvθ

ω = λθ
ωvθ

σω for P-a.e. ω ∈ Ω,

where

λθ
ω =

∫

eθ·g(ω,·)vθ
ω dm(x).

Let us fix φθ
ω ∈ Y ∗ θ

ω so that φθ
ω(vθ

ω) = 1. We note that this selection is possible
and unique, because of (33). Moreover, as in [15] we easily conclude that

(Lθ
ω)∗φθ

σω = λθ
ωφθ

ω, for P-a.e. ω ∈ Ω.

4.2. Large Deviations Properties

The proof of the following result is identical to the proof of [15, Lemma 4.2].

Lemma 4.1. Let θ ∈ C
d be sufficiently close to 0, so that the results of Sect. 4.1

apply. Let f ∈ B be such that f /∈ Hθ
ω, i.e., φθ

ω(f) �= 0. Then,

lim
n→∞

1
n

log
∣
∣
∣

∫

eθ·Sng(ω,·)f dm
∣
∣
∣ = Λ(θ) for P-a.e. ω ∈ Ω.

Next, suppose that Σ2 is positive definite and let B ⊂ R
d be a closed ball

around the origin so that D2Λ(t) is positive definite for any t ∈ B and set

Λ∗(x) = sup
t∈B

(t · x − Λ(t)) .

Observe that the existence of B follows from Lemma 3.19. By combining
Lemma 4.1 with Theorem 6.7, we obtain the following local large deviations
principle.

Theorem 4.2. For P-a.e. ω ∈ Ω, we have:
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(i) for any closed set A ⊂ R
d,

lim sup
n→∞

1
n

log μω({Sng(ω, ·)/n ∈ A}) ≤ − inf
x∈A

Λ∗(x);

(ii) there exists a closed ball B0 around the origin (which does not depend on
ω) so that for any open subset A of B0 we have

lim inf
n→∞

1
n

log μω({Sng(ω, ·)/n ∈ A}) ≥ − inf
x∈A

Λ∗(x).

Remark 4.3. In the scalar case, for P-a.e. ω ∈ Ω and for any sufficiently small
ε > 0, we have (see [33, Lemma XIII.2]) that

lim
n→∞

1
n

log μω({x : Sng(ω, x) > nε}) = −Λ∗(ε).

The above conclusion was already obtained in [15, Theorem A].
In the multidimensional case, we can apply [48, Theorem 3.2] and con-

clude that for any box A around the origin with a sufficiently small diameter,

lim
n→∞

1
n

log μω({Sng(ω, ·)/n /∈ A}) = − inf
a∈∂A

Λ∗(a).

We also refer the reader to [48, Theorem 3.1] which, in particular, deals with
the asymptotic behavior of probabilities of the form μω({Sng(ω, ·)/n ∈ C}),
where C is a cone with a nonempty interior.

Next, we establish the following (optimal) global moderate deviations
principle. Let (an)n be a sequence in R such that limn→∞ an√

n
= ∞ and

limn→∞ an

n = 0.

Theorem 4.4. For P-a.e. ω ∈ Ω and any θ ∈ R
d, we have that

lim
n→∞

1
a2

n/n
logE[eθ·Sng(ω,·)/cn ] =

1
2
θTΣ2θ,

where cn = n/an. Consequently, when Σ2 is positive definite, we have that:
(i) for any closed set A ⊂ R

d,

lim sup
n→∞

1
a2

n/n
log μω({Sng(ω, ·)/an ∈ A}) ≤ −1

2
inf
x∈A

xTΣ−2x;

(ii) for any open set A ⊂ R
d, we have

lim inf
n→∞

1
a2

n/n
log μω({Sng(ω, ·)/an ∈ A}) ≥ −1

2
inf
x∈A

xTΣ−2x,

where Σ−2 denotes the inverse of Σ2.

Proof. Let Πω(θ) be an analytic branch of log λθ
ω around 0 so that Πω(0) = 0

and |Πω(θ)| ≤ c for some c > 0. Note that it is indeed possible to construct
such functions Πω in a deterministic neighborhood of 0 since λ0

ω = 1 and
θ → λθ

ω are analytic functions which are uniformly bounded around the origin.
Set Πω,n(θ) =

∑n−1
j=0 Πσjω(θ). Then ∇Πω(0) = ∇λθ

ω|θ=0 = 0 (see the proof of
Lemma 3.19) and hence

∇Πω,n(0) = 0. (34)
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By applying Lθ,(n)
ω to the identity v0

ω = φθ
ω(v0

ω)vθ
ω + (v0

ω − φθ
ω(v0

ω)vθ
ω) and

integrating with respect to m, we obtain that
∫

X

eθ·Sng(ω,·)dμω =
∫

X

Lθ,(n)
ω v0

ω dm = φθ
ω(v0

ω)eΠω,n(θ)

+
∫

X

Lθ,(n)
ω (v0

ω − φθ
ω(v0

ω)vθ
ω)dm. (35)

By Lemma 4.7, the second term in the above right-hand side is O(rn) uniformly
in ω and θ (around the origin), for some 0 < r < 1. Using the Cauchy integral
formula, we get that

∣
∣D2Πω,n(0) − Covμω

(Sng(ω, ·))∣∣ ≤ C, (36)

where C is some constant which does not depend on ω and n. In the deriva-
tion of (36), we have also used that the function θ → φθ

ω(v0
ω) is analytic and

uniformly bounded in ω, which can be proved as in [15, Appendix C], using
again the complex analytic implicit function theorem.

Next, let θ ∈ R
d and set θn = θ/cn, where cn = n/an and (an)n is

the sequence from the statement of the theorem. Then, limn→∞ cn = ∞ and
limn→∞ c2n/n = 0. Set Σ2

ω,n = Covμω
(Sng(ω, ·)). By (36), when n is sufficiently

large, we can write

Πω,n(θn) =
1
2
θTn Σ2

ω,nθn + O(|θn|2) + O(n|θn|3).
Therefore,

lim
n→∞

c2n
n

Πω,n(θn) =
1
2
θTΣ2θ.

This together with (35) implies that

lim
n→∞

c2n
n

logE[eθ·Sng(ω,·)/cn ] = lim
n→∞

c2n
n

Πω,n(θn) =
1
2
θTΣ2θ.

The upper and lower large deviations bounds follow now from the Gartner–
Ellis theorem (see [12, Theorem 2.3.6]). �

Theorems 4.2 and 4.4 deal with the asymptotic behavior of probabilities
of rare events on an exponential scale. We will also obtain more explicit (but
not tight) exponential upper bounds.

Proposition 4.5. There exist constants c1, c2 > 0 such that for P-a.e. ω ∈ Ω,
for any ε > 0 and n ∈ N we have

μω({x ∈ X : |Sng(ω, x)| ≥ εn + c1}) ≤ 2de−c2ε2n.

Proof. It is sufficient to establish the desired conclusion in the case when g is
real-valued. Then, by [18, (51)] there is a reverse martingale Mn = X1+...+Xn

(which depends on ω) with the following properties:
• there exists c > 0 independent on ω such that ‖Xi‖L∞(m) ≤ c;
• there exists C > 0 independent on n and ω such that

sup
n

‖Sng(ω, ·) − Mn(·)‖L∞(m) ≤ C. (37)
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The proof of the proposition is completed now using the Chernoff bounding
method. More precisely, by applying the Azuma–Hoeffding inequality with the
martingale differences Yk = Xn−k we get that for any λ > 0,

Eω[eλMn ] ≤ eλ2c2n.

Therefore, by the Markov inequality we have that

μω({Mn ≥ εn}) = μω({eλMn ≥ eλεn}) ≤ en(λ2c2−λε).

By taking λ = ε
2c2 , we obtain that μω({Mn ≥ εn}) ≤ e− ε2

4c2
n. Furthermore,

by replacing Mn with −Mn we derive that

μω({|Mn| ≥ εn}) ≤ 2e− ε2

4c2
n.

The proof of the proposition is completed using (37). �
Remark 4.6. We remark that we can get upper bounds on the constants c and
C appearing in the above proof, and so we can express c1 and c2 in terms of
the parameters appearing in (V1)–(V8) and (C1)–(C5).

4.3. Central Limit Theorem

We need the following lemma.

Lemma 4.7. There exist C > 0 and 0 < r < 1 such that for every θ ∈ C
d

sufficiently close to 0, every n ∈ N and P-a.e. ω ∈ Ω, we have
∣
∣
∣

∫

Lθ,(n)
ω (v0

ω − φθ
ω(v0

ω)vθ
ω) dm

∣
∣
∣ ≤ Crn|θ|. (38)

Proof. The lemma now follows since the left-hand side is O(rn) uniformly in
ω and θ (around the origin), it is analytic in θ and it vanishes at θ = 0 (and
therefore, by the Cauchy integral formula its derivative is of order O(rn) as
well). �
Theorem 4.8. Assume the transfer operator cocycle R is admissible, and the
observable g satisfies conditions (13) and (14). Assume also that the asymp-
totic covariance matrix Σ2 is positive definite. Then, for every bounded and
continuous function φ : Rd → R and P-a.e. ω ∈ Ω, we have

lim
n→∞

∫

φ

(
Sng(ω, x)√

n

)

dμω(x) =
∫

φ dN (0, Σ2).

Proof. It follows from Levy’s continuity theorem that it is sufficient to prove
that, for every t ∈ R

d,

lim
n→∞

∫

e
itT Sng(ω,·)√

n
t dμω = e− 1

2 tTΣ2t for P-a.e. ω ∈ Ω,

where tT denotes the transpose of t. Substituting θ = t/
√

n in (35) and taking
into account that limθ→0 φθ

ω(v0
ω) = φ0

ω(v0
ω) = 1, we conclude that it is sufficient

to prove that

lim
n→∞

n−1∑

j=0

log λ
it√
n

σjω = −1
2
tTΣ2t, for P-a.e. ω ∈ Ω. (39)
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We recall that λθ
ω = H(θ,O(θ))(σω), where H is again given by (73). We

define H̃ on a neighborhood of 0 ∈ C
d with values in L∞(Ω) by

H̃(θ)(ω) = log H(θ,O(θ))(ω), ω ∈ Ω.

Observe that H̃(0)(ω) = 0 for P-a.e. ω ∈ Ω and that in the notations of the
proof of Theorem 4.4 we have H̃(θ)(ω) = Πσ−1ω(θ). Therefore, as at the begin-
ning of the proof of Theorem 4.4 we find that H̃ is analytic on a neighborhood
of 0. Furthermore, by proceeding as in the proof of [15, Lemma 4.5] we find
that

DiH̃(θ)(ω) =
1

H(θ,O(θ))(ω)
[DiH(θ,O(θ))(ω) + (Dd+1H(θ,O(θ))DiO(θ))(ω)].

In particular, using Lemmas 6.1 and 6.3 we obtain that

DiH̃(0)(ω) =
∫

gi(σ−1ω, ·)v0
σ−1ω dm +

∫

(DiO(0))σ−1ω dm.

Thus, it follows from (14) and (28) that DiH̃(0)(ω) = 0 for i ∈ {1, . . . , d} and
for P-a.e. ω ∈ Ω.

Moreover, by taking into account that Dd+1,d+1H vanishes, we have that

DjiH̃(θ)(ω)

=
−Ei(ω)Ej(ω)

[H(θ,O(θ))(ω)]2

+
1

H(θ,O(θ))(ω)
[DjiH(θ,O(θ))(ω) + (Dd+1,iH(θ,O(θ))DjO(θ))(ω)]

+
1

H(θ,O(θ))(ω)
[(Dj,d+1H(θ,O(θ))DiO(θ))(ω)

+ (Dd+1H(θ,O(θ))DjiO(θ))(ω)],

where

Ei(ω) = DiH(θ,O(θ))(ω) + (Dd+1H(θ,O(θ))DiO(θ))(ω).

By applying Lemma 6.6 and using (31), we find that

DjiH̃(0)(ω) =
∫ (

gi(σ−1ω, ·)gj(σ−1ω, ·)v0
σ−1ω + gi(σ−1ω, ·)(DjO(0))σ−1ω

+gj(σ−1ω, ·)(DiO(0))σ−1ω

)
dm.

Developing H̃ in a Taylor series around 0, we have that

H̃(θ)(ω) = log H(θ,O(θ))(ω) =
1
2
θTD2H̃(0)(ω)θ + R(θ)(ω),

where R denotes the remainder. Therefore,

log H

(
it√
n

,O(
it√
n

)
)

(σj+1ω) = − 1
2n

tTD2H̃(0)(σj+1ω)t + R(it/
√

n)(σj+1ω),
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which implies that
n−1∑

j=0

log H

(
it√
n

,O(
it√
n

)
)

(σj+1ω)

= −1
2

· 1
n

n−1∑

j=0

tTD2H̃(0)(σj+1ω)t +
n−1∑

j=0

R(it/
√

n)(σj+1ω). (40)

By Birkhoff’s ergodic theorem, we have that

lim
n→∞

1
n

n−1∑

j=0

tTD2H̃(0)(σj+1ω)t = lim
n→∞

1
n

n−1∑

j=0

d∑

k,l=1

tkDklH̃(0)(σj+1ω)tl

=
d∑

k,l=1

tkD2Λ(0)tl

= tTΣ2t,

for P-a.e. ω ∈ Ω, where we have used the penultimate equality in the Proof of
Lemma 3.19. Furthermore, since H̃(θ) are analytic in θ and uniformly bounded
in ω we have that when |t/√

n| is sufficiently small then |R(it/
√

n)(ω)| ≤
C|t/√

n|3, where C > 0 is some constant which does not depend on ω and n,
and hence

lim
n→∞

n−1∑

j=0

R(it/
√

n)(σj+1ω) = 0, for P-a.e. ω ∈ Ω.

Thus, (40) implies that

lim
n→∞

n−1∑

j=0

log H

(
it√
n

,O(
it√
n

)
)

(σj+1ω) = −1
2
tTΣ2t for P-a.e. ω ∈ Ω,

and therefore (39) holds. This completes the proof of the theorem. �

4.4. Berry–Esseen Bounds

In this subsection, we restrict to the case when d = 1, i.e., we consider real-
valued observables. In this case, Σ2 is a nonnegative number and in fact,

Σ2 =
∫

Ω×X

g(ω, x)2 dμ(ω, x) + 2
∞∑

n=1

∫

Ω×X

g(ω, x)g(τn(ω, x)) dμ(ω, x).

In this section, we assume that Σ2 > 0 which means that g is not an L2(μ)
coboundary with respect to the skew product τ (see [16, Proposition 3]). For
ω ∈ Ω and n ∈ N, set

αω,n :=

{∑n−1
j=0 H̃ ′′(0)(σj+1ω) if

∑n−1
j=0 H̃ ′′(0)(σj+1ω) �= 0;

nΣ2 if
∑n−1

j=0 H̃ ′′(0)(σj+1ω) = 0,

where H̃ is introduced in the previous subsection. Then,

lim
n→∞

αω,n

n
= Σ2, for P-a.e. ω ∈ Ω. (41)
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Take now ω ∈ Ω such that (41) holds. Set

an :=
αω,n

n
and rn =

√
an,

for n ∈ N. Observe that an and rn depend on ω but in order to simplify the
notation, we will not make this explicit. Taking θ = tn−1/2/rn in (35), we have
that

∫

X

e
it Sng(ω,·)

rn
√

n dμω = φ
it

rn
√

n
ω (v0

ω)
n−1∏

j=0

λ
it

rn
√

n

σjω

+
∫

X

L
it

rn
√

n
,(n)

ω (v0
ω − φ

it
rn

√
n

ω (v0
ω)v

it
rn

√
n

ω ) dm.

Hence,
∣
∣
∣
∣

∫

X

e
it Sng(ω,·)

rn
√

n dμω − e− 1
2 t2

∣
∣
∣
∣ ≤

∣
∣
∣
∣φ

it
rn

√
n

ω (v0
ω)

n−1∏

j=0

λ
it

rn
√

n

σjω − e− 1
2 t2

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

X

L
it

rn
√

n
,(n)

ω (v0
ω − φ

it
rn

√
n

ω (v0
ω)v

it
rn

√
n

ω ) dm

∣
∣
∣
∣.

Observe that
∣
∣
∣
∣φ

it
rn

√
n

ω (v0
ω)

n−1∏

j=0

λ
it

rn
√

n

σjω − e− 1
2 t2

∣
∣
∣
∣ ≤ |φ

it
rn

√
n

ω (v0
ω) − 1| ·

∣
∣
∣
∣

n−1∏

j=0

λ
it

rn
√

n

σjω

∣
∣
∣
∣

+
∣
∣
∣
∣

n−1∏

j=0

λ
it

rn
√

n

σjω − e− 1
2 t2

∣
∣
∣
∣

=: I1 + I2.

By [15, Lemma 4.6], we have that
∣
∣
∣
∣

n−1∏

j=0

λ
it

rn
√

n

σjω

∣
∣
∣
∣ ≤ e− Σ2

8 r−2
n t2 ,

for each n ∈ N sufficiently large and t such that | t
rn

√
n
| is sufficiently small.

Moreover, using the analyticity of the map θ �→ φθ (which as we already
commented can be obtained by repeating the arguments in [15, Appendix C])
and the fact1 that d

dθφθ
ω|θ=0(v0

ω) = 0, there exists A > 0 (independent on ω
and n) such that

|φ
it

rn
√

n
ω (v0

ω) − 1| = |φ
it

rn
√

n
ω (v0

ω) − φ0
ω(v0

ω)| ≤ At2r−2
n n−1, (42)

whenever | t
rn

√
n
| is sufficiently small. Consequently, for n sufficiently large and

if | t
rn

√
n
| is sufficiently small,

I1 ≤ At2r−2
n n−1e− Σ2

8 r−2
n t2 .

1This is obtained by differentiating the identity 1 = φθ
ω(vθ

ω) with respect to θ and evaluating
at θ = 0.
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On the other hand, we have that

I2 =
∣
∣
∣
∣

n−1∏

j=0

λ
it

rn
√

n

σjω − e− 1
2 t2

∣
∣
∣
∣

=
∣
∣
∣
∣e

∑n−1
j=0 log λ

it
rn

√
n

σjω − e− 1
2 t2

∣
∣
∣
∣

= e− 1
2 t2

∣
∣
∣
∣ exp

( n−1∑

j=0

log λ
it

rn
√

n

σjω +
1
2
t2

)

− 1
∣
∣
∣
∣.

Observe that for n sufficiently large,
n−1∑

j=0

log λ
it

rn
√

n

σjω =
n−1∑

j=0

H̃(
it

rn
√

n
)(σj+1ω)

=
n−1∑

j=0

(
−t2H̃ ′′(0)(σj+1ω)

2nr2n
+ R(

it

rn
√

n
)(σj+1ω)

)

= − t2

2
+

n−1∑

j=0

R(
it

rn
√

n
)(σj+1ω),

and therefore,
n−1∑

j=0

log λ
it

rn
√

n

σjω +
t2

2
=

n−1∑

j=0

R(
it

rn
√

n
)(σj+1ω).

Using that R( it
rn

√
n
) = H̃′′′(pt)

3! ( it
rn

√
n
)3, for some pt between 0 and it

rn
√

n
, we

conclude that there exists M > 0 such that
∣
∣
∣
∣

n−1∑

j=0

log λ
it

rn
√

n

σjω +
t2

2

∣
∣
∣
∣ ≤ nM | it

rn
√

n
|3 =

M |t|3
r3n

√
n

.

Since |ez − 1| ≤ 2|z| whenever |z| is sufficiently small, we conclude that

I2 ≤ 2Me− t2
2 |t|3r−3

n n−1/2.

Observe that Lemma 4.7 implies that
∣
∣
∣
∣

∫

X

L
it

rn
√

n
,(n)

ω (v0
ω − φ

it
rn

√
n

ω (v0
ω)v

it
rn

√
n

ω ) dm

∣
∣
∣
∣ ≤ C

rn|t|
rn

√
n

,

for some C > 0 and whenever | t
rn

√
n
| is sufficiently small.

Let Fn : R → R be a distribution function of Sng(ω,·)
rn

√
n

= Sng(ω,·)√
αω,n

. Further-
more, let F : R → R be a distribution function of N (0, 1). Then, it follows
from Berry–Esseen inequality that

sup
x∈R

|Fn(x)−F (x)| ≤ 2
π

∫ T

0

∣
∣
∣
∣
μω(e

itSng(ω,·)
rn

√
n ) − e− 1

2 t2

t

∣
∣
∣
∣ dt+

24
πT

sup
x∈R

|F ′(x)|, (43)
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for any T > 0. It follows from the estimates we established that there exists
ρ > 0 such that

∫ ρrn
√

n

0

∣
∣
∣
∣
μω(e

itSng(ω,·)
rn

√
n ) − e− 1

2 t2

t

∣
∣
∣
∣ dt ≤ Ar−2

n n−1

∫ ∞

0

te− Σ2
8 r−2

n t2 dt

+ 2Mr−3
n n− 1

2

∫ ∞

0

t2e− t2
2 dt

+ Cρrn,

for sufficiently large n. Since

sup
n

∫ ∞

0

te− Σ2
8 r−2

n t2 dt < ∞ and
∫ ∞

0

t2e− t2
2 dt < ∞,

we conclude that
sup
x∈R

|Fn(x) − F (x)| ≤ R(ω)n− 1
2 , (44)

for some random variable R.
Next, notice that in the notations of the proof of Theorem 4.4 we have

αω,n = Π ′′
ω,n(0).

Set σ2
ω,n = varμω

(
Sng(ω, ·)). Then by (36) we have

|σ2
ω,n − αω,n| ≤ C,

where C is some constant which does not depend on n. Since α− 1
2 − σ− 1

2 =
σ−α√

ασ(
√

α+
√

σ)
for any nonzero α and σ, taking into account (13) we have

∣
∣Sng(ω, ·)/√αω,n − Sng(ω, ·)/σω,n

∣
∣ ≤ C1n

− 1
2

for some constant C1 which does not depend on n. By applying [28, Lemma 3.3]
with a = ∞, we conclude from (44) that the following self-normalized version
of the Berry–Esseen theorem holds true:

sup
x∈R

|F̄n(x) − F (x)| ≤ R1(ω)n− 1
2 (45)

for some random variable R1, where F̄n is a distribution function of Sng(ω,·)
σω,n

.

Remark 4.9. We stress that analogous result (using different techniques) for
random expanding dynamics was obtained in [31, Theorem 7.1.1]. In Theo-
rem 4.13, we will give a somewhat different proof of (45), as well as prove
certain Edgeworth expansions of order one.

4.5. Local Limit Theorem

Theorem 4.10. Suppose that Σ2 is positive definite and that for any compact
set J ⊂ R

d\{0} there exist ρ ∈ (0, 1) and a random variable C : Ω → (0,∞)
such that

‖Lit,(n)
ω ‖ ≤ C(ω)ρn, for P-a.e. ω ∈ Ω, t ∈ J and n ∈ N. (46)
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Then, for P-a.e. ω ∈ Ω we have that

lim
n→∞ sup

s∈Rd

∣
∣
∣
∣|Σ|nd/2μω(s + Sng(ω, ·) ∈ J) − 1

(2π)d/2
e− 1

2n sTΣ−2s|J |
∣
∣
∣
∣ = 0,

where |Σ| =
√

det Σ2, Σ−2 is the inverse of Σ2 and |J | denotes the volume of
J .

Proof. The proof is analogous to the proof of [15, Theorem C]. Using the
density argument (analogous to that in [39]), it is sufficient to show that

sup
s∈Rd

∣
∣
∣
∣|Σ|nd/2

∫

h(s + Sng(ω, ·)) dμω − 1
(2π)d/2

e− 1
2n sTΣ−2s

∫

Rd

h(u) du

∣
∣
∣
∣ → 0,

(47)
when n → ∞ for every h ∈ L1(Rd) whose Fourier transform ĥ has compact
support. By using the inversion formula

h(x) =
1

(2π)d

∫

Rd

ĥ(t)eit·x dt,

and Fubini’s theorem, we have that

|Σ|nd/2

∫

h(s + Sng(ω, ·)) dμω =
|Σ|nd/2

(2π)d

∫ ∫

Rd

ĥ(t)eit·(s+Sng(ω,·)) dt dμω

=
|Σ|nd/2

(2π)d

∫

Rd

eit·sĥ(t)
∫

eit·Sng(ω,·) dμω dt

=
|Σ|nd/2

(2π)d

∫

Rd

eit·sĥ(t)
∫

eit·Sng(ω,·)v0
ω dm dt

=
|Σ|nd/2

(2π)d

∫

Rd

eit·sĥ(t)
∫

Lit,(n)
ω v0

ω dm dt

=
|Σ|

(2π)d

∫

Rd

e
it·s√

n ĥ

(
t√
n

) ∫

L
it√
n

,(n)
ω v0

ω dm dt.

Recalling that the Fourier transform of f(x) = e− 1
2xTΣ2x is given by f̂(t) =

(2π)d/2

|Σ| e− 1
2 tTΣ−2t, we have that

1
(2π)d/2

e− 1
2n sTΣ−2s

∫

Rd

h(u) du =
ĥ(0)

(2π)d/2
e− 1

2n sTΣ−2s

=
ĥ(0)|Σ|
(2π)d

f̂(−s/
√

n)

=
ĥ(0)|Σ|
(2π)d

∫

Rd

e
it·s√

n · e− 1
2 tTΣ2t dt.

Therefore, in order to complete the proof of the theorem we need to show that

sup
s∈Rd

∣
∣
∣
∣

|Σ|
(2π)d

∫

Rd

e
it·s√

n ĥ

(
t√
n

) ∫

L
it√
n

,(n)
ω v0

ω dm dt − ĥ(0)|Σ|
(2π)d

∫

Rd

e
it·s√

n · e− 1
2

tTΣ2t dt

∣
∣
∣
∣ → 0,
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when n → ∞ for P-a.e. ω ∈ Ω. Choose δ > 0 such that the support of ĥ is
contained in {t ∈ R

d : |t| ≤ δ}. Then, for any δ̃ ∈ (0, δ), we have that

|Σ|
(2π)d

∫

R

e
it·s√

n ĥ

(
t√
n

) ∫

L
it√
n

,(n)

ω v0
ω dm dt − ĥ(0)|Σ|

(2π)d

∫

R

e
it·s√

n · e− 1
2 tTΣ2t dt

=
|Σ|

(2π)d

∫

|t|<δ̃
√

n

e
it·s√

n

(
ĥ

(
t√
n

) n−1∏

j=0

λ
it√
n

σjω
− ĥ(0)e− 1

2 tTΣ2t
)

dt

+
|Σ|

(2π)d

∫

|t|<δ̃
√

n

e
it·s√

n ĥ

(
t√
n

) ∫ n−1∏

j=0

λ
it√
n

σjω

(
φ

it√
n

ω (v0
ω)v

it√
n

σnω − 1
)

dm dt

+
|Σ|nd/2

(2π)d

∫

|t|<δ̃

eit·sĥ(t)

∫

Lit,(n)
ω (v0

ω − φit
ω (v0

ω)vit
ω ) dm dt

+
|Σ|nd/2

(2π)d

∫

δ̃≤|t|<δ

eit·sĥ(t)

∫

Lit,(n)
ω v0

ω dm dt

− |Σ|
(2π)d

ĥ(0)

∫

|t|≥δ̃
√

n

e
it·s√

n · e− 1
2 tTΣ2t dt =: (I) + (II) + (III) + (IV ) + (V ).

One can now proceed as in the proof of [15, Theorem C] and show that each
of the terms (I)–(V ) converges to zero as n → ∞. For the convenience of the
reader, we give here complete arguments for terms (I) (which is most involved)
and (IV ) (since this is the only part of the proof that requires (46)). �

Control of (I). We claim that for P-a.e. ω ∈ Ω,

lim
n→∞ sup

s∈Rd

∣
∣
∣
∣

∫

|t|<δ̃
√

n

e
it·s√

n

(
ĥ

(
t√
n

) n−1∏

j=0

λ
it√
n

σjω − ĥ(0)e− 1
2 tTΣ2t

)
dt

∣
∣
∣
∣ = 0.

Observe that

sup
s∈Rd

∣
∣
∣
∣

∫

|t|<δ̃
√

n

e
it·s√

n

(
ĥ

(
t√
n

) n−1∏

j=0

λ
it√
n

σjω − ĥ(0)e− 1
2 tTΣ2t

)
dt

∣
∣
∣
∣

≤
∫

|t|<δ̃
√

n

∣
∣
∣
∣ĥ

(
t√
n

) n−1∏

j=0

λ
it√
n

σjω − ĥ(0)e− 1
2 tTΣ2t

∣
∣
∣
∣ dt.

It follows from the continuity of ĥ and (39) that for P-a.e. ω ∈ Ω and every t,

ĥ

(
t√
n

) n−1∏

j=0

λ
it√
n

σjω − ĥ(0)e− 1
2 tTΣ2t → 0, when n → ∞. (48)

The desired conclusion will follow from the dominated convergence theorem
once we establish the following lemma.

Lemma 4.11. For δ̃ > 0 sufficiently small, there exists n0 ∈ N such that for all
n ≥ n0 and t such that |t| < δ̃

√
n,

∣
∣
∣
∣

n−1∏

j=0

λ
it√
n

σjω

∣
∣
∣
∣ ≤ e− 1

8 tTΣ2t.
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Proof of the lemma. We will use the same notation as in the proof of Theo-
rem 4.8. We have that

∣
∣
∣
∣

n−1∏

j=0

λ
it√
n

σjω

∣
∣
∣
∣ = e− 1

2n 
(
∑n−1

j=0 tTD2H̃′′(0)(σj+1ω)t) · e
(
∑n−1

j=0 R(it/
√

n)(σj+1ω)).

In the proof of Theorem 4.8, we have shown that

1
n

n−1∑

j=0

D2H̃(0)(σj+1ω) → Σ2 for P-a.e. ω ∈ Ω.

Therefore, for P-a.e. ω ∈ Ω there exists n0 = n0(ω) ∈ N such that

e− 1
2n 
(

∑n−1
j=0 tTD2H̃′′(0)(σj+1ω)t) ≤ e− 1

4 tTΣ2t, for n ≥ n0 and t ∈ R
d.

Finally, recall that |R(it/
√

n)(ω)| ≤ C|t/√
n|3, where C > 0 is some constant

which does not depend on ω and n when |t/√n| is small enough. Therefore, if
|t| ≤ √

nδ̃ and δ̃ is small enough, we have

e
(
∑n−1

j=0 R(it/
√

n)(σj+1ω)) ≤ eC|t|3n− 1
2 ≤ e− 1

8 tTΣ2t.

Here, we have used that |t|3n−1/2 ≤ δ̃|t|2 and that tTΣ2t ≥ a|t|2 for some
a > 0 and all t ∈ R

d. The conclusion of the lemma follows directly from the
last two estimates. �

Control of (IV). By (46),

sup
s∈Rd

|Σ|nd/2

(2π)d

∣
∣
∣
∣

∫

δ̃≤|t|≤δ

eit·sĥ(t)
∫

Lit,(n)
ω v0

ω dm dt

∣
∣
∣
∣

≤ CVδ,δ̃

|Σ|nd/2

(2π)d
‖ĥ‖L∞ · ρn · ‖v0‖∞ → 0,

when n → ∞ by (10) and the fact that ĥ is continuous. Here, Vδ,δ′ denotes the
volume of {t ∈ R

d : δ̃ ≤ |t| ≤ δ}. �
Let us now discuss conditions under which (46) holds.

Lemma 4.12. Assume that:

1. F is a Borel σ-algebra on Ω;
2. σ has a periodic point ω0 (whose period is denoted by n0), and σ is con-

tinuous at each point that belongs to the orbit of ω0;
3. P(U) > 0 for any open set U that intersects the orbit of ω0;
4. for any compact set J ⊂ R

d, the family of maps ω → Lit
ω , t ∈ J is

uniformly continuous at the orbit points of ω0;
5. for any t �= 0, the spectral radius of Lit,(n0)

ω0 is smaller than 1;
6. for any compact set J ⊂ R

d, there exists a constant B(J) > 0 such that

sup
t∈J

sup
n≥1

‖Lit,(n)
ω ‖ ≤ B(J). (49)
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Then, for any compact J ⊂ R
d\{0} there exist a random variable C : Ω →

(0,∞) and a constant d = d(J) > 0 such that for P-a.e. ω ∈ Ω and for any
n ≥ 1, we have that

sup
t∈J

‖Lit,(n)
ω ‖ ≤ C(ω)e−nd.

The proof of Lemma 4.12 is identical to the proof of [31, Lemma 2.10.4].
We also refer the readers to the arguments in proof of Lemma 4.17. Condition
(49) is satisfied for the distance expanding maps considered in [31, Chapter
5] (assuming they are nonsingular). Indeed, the proof of the Lasota–Yorke
inequality (see [31, Lemma 5.6.1]) proceeds similarly for vectors z ∈ C

d instead
of complex numbers. Therefore, there exists a constant C > 0 so that P -almost
surely, for any t ∈ R

d and n ≥ 1 we have

‖Lit,(n)
ω ‖ ≤ C(1 + |t|) sup |L(n)

ω 1|
where 1 is the function which takes the constant value 1. Note that in the
circumstances of [31], var(·) = vα(·) is the Hölder constant corresponding to
some exponent α ∈ (0, 1]. In particular, B contains only Hölder continuous
functions and the norm ‖·‖B is equivalent to the norm ‖g‖α = vα(g) + sup |g|.
Therefore, by (C4) for P -almost any ω we have

sup |L(n)
ω 1| = ‖L(n)

ω 1‖L∞ ≤ C

for some C which does not depend on ω and n and hence (49) holds true.

4.6. Edgeworth and LD Expansions

Let us restrict ourselves again to the scalar case d = 1. Our main result here
is the following Edgeworth expansion of order 1.

Theorem 4.13. Suppose that Σ2 > 0.
(i) The following self-normalized version of the Berry–Esseen theorem holds

true:
sup
t∈R

|μω({Sng(ω, ·) ≤ tσn}) − Φ(t)| ≤ Rωn− 1
2 , (50)

for some random variable Rω, where Φ(t) is the standard normal distri-
bution function and σ2

n = σ2
ω,n = Varμω

(Sng(ω, ·)).
(ii) Assume, in addition, that for any compact set J ⊂ R\{0} we have

lim
n→∞ n1/2

∣
∣
∣
∣

∫

J

∫

X

e
it√
n

Sng(ω,x)dμω(x)dt

∣
∣
∣
∣ = 0, P -a.s. (51)

Let Aω,n be a function whose derivative’s Fourier transform is e− 1
2 t2(1+

Pω,n(t)), where

Pω,n(t) = −1
2
Π ′′

ω,n(0)
(

t

σn

)2

+
1
2
t2 − i

6
Π ′′′

ω,n(0)
(

t

σn

)3

.

Then,

lim
n→∞

√
n sup

t∈R

|μω({Sng(ω, ·) ≤ tσn}) − Aω,n(t)| = 0.
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Before proving Theorem 4.13, let us introduce some additional notation
and make some observations. It is clear that A′

ω,n has the form A′
ω,n(t) =

Qω,n(t)e− 1
2 t2 where Qω,n(t) is a polynomial of degree 3. In fact, if we set

an,ω = 1
2

(
1 − Π ′′

ω,n(0)/σ2
n

)
and bω,n = 1

6Π ′′′
ω,n(0)/σ3

n, we have that
√

2πQω,n(t) = 1 + aω,n + 3bω,nt − aω,nt2 − bω,nt3. (52)

By (36), we have aω,n = O(1/n), while bω,n = O(1/
√

n) (since |Π ′′′
ω,n(0)| ≤

cn). Set ϕ(t) = 1√
2π

e− 1
2 t2 and uω,n = Π(3)

ω,n(0)

σ2
n

, which converges to

Σ−2
∫

Π
(3)
ω (0)dP (ω) as n → ∞. Using the above formula of Qω,n together

with aω,n = O(1/n), we conclude that

lim
n→∞

√
n sup

t∈R

∣
∣μω({Sng(ω, ·) ≤ tσn}) − Φ(t) − uω,nσ−1

n (t2 − 1)ϕ(t)
∣
∣ = 0.

Remark 4.14. We remark that in the deterministic case (i.e., when Ω is a sin-
gleton), we have aω,n = 0 and Π ′′′

ω,n(0) = nκ3 for some κ3 which does not
depend on n. Therefore, uω,n = κ3Σ

−2 and we recover the order one deter-
ministic Edgeworth expansion that was established in [19]. It seems unlikely
that we can get the same results in the random case since this would imply
that

∣
∣
∣
∣Π

(3)
ω,n(0)/n −

∫

Π(3)
ω (0)dP (ω)

∣
∣
∣
∣ = o(n− 1

2 ).

The term Π
(3)
ω,n(0)/n is an ergodic average, but such fast rate of convergence

in the strong law of large number is not even true in general for sums of
independent and identically distributed random variables. However, we note
that under certain mixing assumptions for the base map σ, the rate of order
n− 1

2 lnn was obtained in [29] (see also [32]).

Remark 4.15. We note that condition (51) holds whenever (46) is satisfied.

Proof of Theorem 4.13. The purpose of the following arguments is to prove the
second statement of Theorem 4.13, and the proof of the first statement (the
self-normalized Berry–Esseen theorem) is a by-product of these arguments. In
particular, we will be using Taylor polynomials of order three of the function
Πω,n(·), but it order to prove the self-normalized Berry–Esseen theorem, we
could have used only second-order approximations.

Let t ∈ R. Then, by (35) and Lemma 4.7 when tn = t/σn is sufficiently
small, uniformly in ω we have

∫

eitn·Sng(ω,·)dμω = φitn
ω (v0

ω)eΠω,n(itn) + |tn|O(rn). (53)

As in (42), since φ0
ω(v0

ω) = 1 and the derivative of z → φz
ω(v0

ω) vanishes at
z = 0, we have

|φitn
ω (v0

ω) − 1| ≤ Ct2n.
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Using Lemma 4.11 and that σn ∼ n
1
2 Σ, we conclude that when n is sufficiently

large and tn = t/σn is sufficiently small,
∣
∣
∣
∣

∫

eitn·Sng(ω,·)dμω − eΠω,n(itn)

∣
∣
∣
∣ ≤ C

(
t2ne−ct2 + |tn|rn

)
, (54)

where c, C > 0 are some constant. Next, by considering the function g(t) = ezt,
where z is a fixed complex number, we derive that

|ez − 1 − z| ≤ |z|2emax{0,
(z)}. (55)

Since σn ∼ n
1
2 Σ, Lemma 4.11 together with the fact that Σ > 0 yields that

�(Πω,n(itn)) ≤ −ct2 when |tn| is sufficiently small and n is large enough,
where c > 0 is a constant which does not depend on ω, t and n. (We can clearly
assume that c < 1

2 .) It follows that max{0,�(t2/2 + Πω,n(itn))} ≤ ( 12 − c)t2.
Applying (55) with z = t2/2+Πω,n(itn) yields that when n is sufficiently large
and |tn| is sufficiently small,
∣
∣
∣
∣e

Πω,n(itn) − e− 1
2

t2

(1 + Πω,n(itn) +
1

2
t2)

∣
∣
∣
∣ = e− 1

2
t2 |ez−1−z| ≤ e−ct2

∣
∣
∣
∣Πω,n(itn) +

1

2
t2

∣
∣
∣
∣

2

.

(56)
Next, using the formula for Taylor reminder of order 3, we have that

|Πω,n(itn) +
1
2
t2 − Pω,n(t)| ≤ Cnt4n. (57)

Observe also that

Pω,n(t) =
1
2
t2

(
1 − Π ′′

ω,n(0)/σ2
n

) − Π ′′′
ω,n(0)t3/σ3

n.

The second term on the right-hand side is O(|t|3)n− 1
2 , while by (36) the first

term is O(t2/σ2
n) = O(t2)/n. We conclude that

∣
∣
∣
∣Πω,n(itn) +

1
2
t2

∣
∣
∣
∣ ≤ C max(t2, |t|3)n− 1

2 (58)

and hence
∣
∣
∣
∣e

Πω,n(itn) − e− 1
2

t2

(1 + Πω,n(itn) +
1

2
t2)

∣
∣
∣
∣ = e− 1

2
t2 |ez − 1 − z| ≤ Ce−ct2

max(t4, t6)/n.

(59)
From (57) and (59), we conclude that

∣
∣
∣eΠω,n(itn) − e− 1

2 t2(1 + Pω,n(t))
∣
∣
∣ ≤ C ′′e−ct2 max(t4, t6)/n. (60)

Finally, using the Berry–Esseen inequality we derive that

sup
t∈R

|μω({Sng(ω, ·) ≤ tσn}) − Aω,n(t)|

≤
∫ T

0

∣
∣
∣
∣
μω(e

it·Sng(ω,·)
σn ) − e− 1

2 t2(1 + Pω,n(t))
t

∣
∣
∣
∣ dt + C/T, (61)

where C is some constant. We have used here the fact that the derivative of
Aω,n is bounded by some constants (since the coefficients of the polynomial
Pω,n are bounded in ω and n). In order to establish the first assertion of the
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theorem, we choose T of the form T = δ0
√

n, where δ0 > 0 is sufficiently small.
Indeed, observe that the above estimates imply that

sup
t∈R

|μω({Sng(ω, ·) ≤ tσn}) − Aω,n(t)| = O(n− 1
2 ).

Set ϕ(t) = 1√
2π

e− 1
2 t2 . Integrating both sides of the equation A′

ω,n(t) =

Qω,n(t)e− 1
2 t2 , where Qω,n satisfies (52) and using that aω,n = O(1/n), we

conclude that

sup
t∈R

∣
∣μω({Sng(ω, ·) ≤ tσn}) − Φ(t) − uω,nσ−1

n (t2 − 1)ϕ(t)
∣
∣ = O(n− 1

2 ). (62)

Recall that uω,n = Π(3)
ω,n(0)

σ2
n

, which converges to Σ−2
∫

Π
(3)
ω (0)dP (ω) as n → ∞,

and in particular, it is bounded. Therefore, supt∈R |uω,nσ−1
n (t2 − 1)ϕ(t)| =

O(n− 1
2 ), which together with (62) yields (50).
Next, in order to prove the second item, fix some ε > 0 and choose T of

the form C/T = εn− 1
2 . We then have that

∫ T

0

∣
∣
∣
∣
μω(e

it·Sng(ω,·)
σn ) − e− 1

2 t2(1 + Pω,n(t))
t

∣
∣
∣
∣ dt + C/T

≤
∫ δ0

√
n

0

∣
∣
∣
∣
μω(e

it·Sng(ω,·)
σn ) − e− 1

2 t2(1 + Pω,n(t))
t

∣
∣
∣
∣ dt

+
∫

δ0
√

n≤|t|≤ C
ε

√
n

∣
∣
∣
∣
μω(e

it·Sng(ω,·)
σn ) − e− 1

2 t2(1 + Pω,n(t))
t

∣
∣
∣
∣ dt + εn− 1

2 .

Using (60), we see that the first integral on the above right-hand side is of
order O(n−1), while the second integral is o(n− 1

2 ) by (51). �

Remark 4.16. In [29], expansions of order larger than 1 were obtained for
some classes of interval maps under the assumption that the modulus of the
characteristic function ϕn(t) of Sng(ω, ·) does not exceed n−r1 when |t| ∈
[K,nr2 ], where K, r1, r2 are some constants. Of course, under such conditions
we can obtain higher-order expansions also in our setup, but since we do not
have examples under which this condition holds true (expect from the example
covered in [29]), the proof (which is very close to [29]) is omitted.

4.6.1. Some Asymptotic Expansions for Large Deviations. In this section, we
again consider the scalar case when d = 1. We will also assume that there exist
constants C1, C2, r > 0 so that for P-a.e. ω ∈ Ω, z ∈ C with |z| ≤ r and a
sufficiently large n ∈ N we have

C1 ≤ ‖Lz,(n)
ω ‖/|λz,(n)

ω | ≤ C2, (63)

where λ
z,(n)
ω =

∏n−1
i=0 λz

σiω. Moreover, we assume that there exists a constant
C > 0 such that for P-a.e. ω ∈ Ω and for any t, s ∈ R, we have that

sup
n∈N

‖Lθ+is,(n)
ω ‖/‖Lθ,(n)

ω ‖ ≤ C(1 + |θ| + |s|). (64)
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These conditions are satisfied in the setup of [31, Chapter 5]. (The second
condition follows from the arguments in the Lasota–Yorke inequality which
was proved in [31, Lemma 5.6.1].)

Our results in this subsection will rely on the following lemma.

Lemma 4.17. Suppose that:
1. F is the Borel σ-algebra on Ω;
2. σ has a periodic point ω0 (whose period is denoted by n0), and σ is con-

tinuous at each point that belongs to the orbit of ω0;
3. P(U) > 0 for any open set U that intersects the orbit of ω0;
4. for any compact set K ⊂ R, the family of maps ω → Lz

ω, z ∈ K is
uniformly continuous at the orbit points of ω0;

5. for any sufficiently small θ and s �= 0, the spectral radius of Lθ+is,(n0)
ω0 is

smaller than the spectral radius of Lθ,(n0)
ω0 .

Then, there exists r > 0 with the following property: for P-a.e. ω and for any
compact set J ⊂ R\{0} there exist constants CJ(ω) and cJ(ω) > 0 so that for
any sufficiently large n, θ ∈ [−r, r] and s ∈ J we have

‖Lθ+is,(n)
ω ‖ ≤ CJ(ω)e−cJ (ω)n‖Lθ,(n)

ω ‖
Proof. Denote by r(z), z ∈ C the spectral radius of the deterministic transfer
operator Rz := Lz,(n0)

ω0 . Let J ⊂ R\{0} be a compact set. Since Rz is contin-
uous in z and r(θ) is continuous around the origin, there exist δ, d0 > 0 which
depend on J so that for any θ ∈ [−r, r], s ∈ J and d ≥ d0 we have

‖Rd
θ+is‖ ≤ (1 − δ)dr(θ)d.

Observe that we have also taken into account the last assumption in the state-
ment of the lemma. Note that a deterministic version of (63) holds true with
the operators Rz and thus there is a constant C > 0 such that

‖Rd
θ‖ ≥ Cr(θ)d

for any θ ∈ [−r, r]. Let K ⊂ R be a bounded closed interval around the origin
which contains J . Fix some d > d0 and let ε ∈ (0, 1/2) and ω1 ∈ Ω be so that

‖Lθ+is,(dn0)
ω1

− Lθ+is,(dn0)
ω0

‖ = ‖Lθ+is,(dn0)
ω1

− Rd
θ+is‖ < εmin{r(θ)d, 1}, (65)

for any θ ∈ [−r, r] and s ∈ K. By (63), we have

0 < C1 ≤ ‖Lθ,(n)
ω ‖/|λθ,(n)

ω | ≤ C2 < ∞, (66)

for some constants C1 and C2 which do not depend on ω and n. Therefore, if
ε is small enough, then

1/|λθ,(dn0)
ω1

| ≤ C/(‖Rd
θ‖ − ε min{r(θ)d, 1}) ≤ C ′/(r(θ)d − ε min{r(θ)d, 1}),

(67)
for some constants C,C ′ > 0. We conclude that

‖Lθ+is,(dn0)
ω1

‖/|λθ,(dn0)
ω1

| ≤ C
ε min{r(θ)d, 1} + (1 − δ)dr(θ)d

r(θ)d − ε min{r(θ)d, 1} ≤ C ′′(ε+(1−δ)d),

(68)
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where C ′′ > 0 is another constant. By (64), we have that

ess supω∈Ω sup
s∈J,θ∈[−r,r],n∈N

‖Lθ+is,(n)
ω ‖/‖Lθ,(n)

ω ‖ ≤ BJ < ∞, (69)

for some constant BJ which depends only on J . Fixing a sufficiently large d
and then a sufficiently small ε, we conclude that for any θ ∈ [−r, r], s ∈ J and
n, we have that

‖Lθ+is,(n)
ω Lθ+is,(dn0)

ω1 ‖
|λθ,(n)

ω λ
θ,(dn0)
ω1 |

≤ C2C
′′BJ(ε + (1 − δ)d) <

1
2
.

Indeed,

‖Lθ+is,(n)
ω Lθ+is,(dn0)

ω1
‖ ≤ ‖Lθ+is,n

ω ‖·‖Lθ+is,(dn0)
ω1

‖
≤ BJ‖Lθ,(n)

ω ‖·|λθ,(dn0)
ω1

|C ′′(ε + (1 − δ)d)

≤ BJC2|λθ,(n)
ω | · |λθ,(dn0)

ω1
|C ′′(ε + (1 − δ)d),

where in the first inequality we have used the submultiplicativity of operator
norm, in the second we have used (68) and (69) and in the third one we have
used (66).

Finally, because of the fifth condition in the statement of the lemma and
since r(θ) is continuous in θ (around the origin), when r is small enough we
have that (65) holds true for any ω1 ∈ U , θ ∈ [−r0, r0] and s ∈ K and, where
U is a sufficiently small open neighborhood of the periodic point ω0 and r0
depends only on the function r(θ). By ergodicity of σ, for P-a.e. ω ∈ Ω we have
an infinite strictly increasing sequence an = an(ω) of visiting times to U so that
an/n converges to 1/P (U) as n → ∞. Thus, by considering the subsequence
bn = andn0(ω) we can write Lθ+is,(n)

ω as composition of blocks of the form
Lθ+is,(m)

ω′ Lθ+is,(dn0)
ω1 (and perhaps a single block of the form Lθ+is,(m)

ω′′ ), where
m ≥ 0 and ω1 ∈ U . The number of blocks is approximately nP (U)/dn0 (i.e.,
when divided by n it converges to P (U)/dn0 as n → ∞). Therefore,

‖Lθ+is,(n)
ω ‖ ≤ CJ (ω)|λθ,n

ω |2−nP (U)/2dn0 ,

which together with (66) completes the proof of the lemma. �

Our main result here is the following theorem.

Theorem 4.18. Suppose that the conclusion of Lemma 4.17 holds true and that
Σ2 > 0. Then, for any sufficiently small a > 0 and for P-a.e. ω ∈ Ω we have

μω({x : Sng(ω, x) ≥ an}) · enIω,n(a) =
φ

θω,n,a
ω (v0

ω)
√

I ′′
ω,n(a)

θω,n,a

√
2πn

(1 + o(1)).

Here,

Iω,n(a) = sup
t∈[0,r]

(t · a − Πω,n(t)/n) = θω,n,a − Πω,n(θω,n,a)/n,

where r > 0 is any sufficiently small number.
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Remark 4.19. Set

I(a) = sup
t∈[0,r]

(t · a − Λ(t)) = θa − Λ(θa).

Then,

lim
n→∞ Iω,n(a) = I(a) and lim

n→∞ θω,n,a = θa.

Furthermore, we have that limn→∞ I ′′
ω,n(a) = I ′′(a) (using the duality of

Fenchel–Legendre transforms).

Proof. The proof follows the general scheme used in the proof of [20, Theorem
2.2] together with arguments similar to the ones in the proof of Theorem 4.13.
Therefore, we will only provide a sketch of the arguments. Let a be sufficiently
small. Denote by Fω

n the distribution of Sng(ω, ·) and set

dF̃ω,n(x) =
(
eθω,n,ax/λθω,n,a,(n)

ω

)
dFω,n(x).

Note that dF̃ω,n is a finite measure, which in general is not a probability
measure. Set Gω,n(x) = F̃ω,n((−∞, x

√
n+an]). Arguing as in the proof of [20,

Theorem 2.3] (and using the consequence of Lemma 4.17), it is enough to
show that the nonnormalized distribution functions Gω,n admit Edgeworth
expansions of order 1 (see Lemmas 3.2 and 3.3 in [20]). Observe that (when
|s| is sufficiently small),

Ĝω,n(s
√

n) = (e−isna/λθω,n,a,(n)
ω )

∫

e(θω,n,a+is)Sng(ω,·)dφ0
ω

= μ̄ω,n(s)φθω,n,a+is
ω (v0

ω) + δω,n(s), (70)

where

μ̄ω,n(s) = e−iasnλθω,n,a+is,(n)
ω /λθω,n,a,(n)

ω

= eΠω,n(θω,n,a+is)−Πω,n(θω,n,a)−ians

= eΠω,n(θω,n,a+is)−Πω,n(θω,n,a)−iΠ′
ω,n(0)s,

and δω,n(z) is an holomorphic function of z such that uniformly in ω, we have
δω,n(z) = O(rn) for some r ∈ (0, 1) (and hence all of the derivatives of δω,n at
zero are at most of the same order). By arguing as in the proof of Theorem
4.13, we obtain Edgeworth expansions of order 1 for Gω,n. �

5. Hyperbolic Dynamics

The purpose of this section is to briefly discuss and indicate that almost all of
our main results can be extended to the class of random hyperbolic dynamics
introduced in [17, Sect. 2]. We stress that the spectral approach developed
in [15] for the random piecewise expanding dynamics has been extended to the
random hyperbolic case in [17] for the real-valued observables. By combining
techniques developed in the present paper together with those in [17], we can
now treat the case of vector-valued observables. In addition, we are not only
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able to provide the versions of the results in [17, Sects. 7 and 8] for vector-
valued observables but we can also establish versions of almost all other results
covered in the present paper (that have not been established previously even
for real-valued observables).

Let X be a finite-dimensional C∞ compact connected Riemannian man-
ifold. Furthermore, let T be a topologically transitive Anosov diffeomorphism
of class Cr+1 for r > 2. As before, let (Ω,F ,P) be a probability space such
that Ω is a Borel subset of a separable, complete metric space. Furthermore,
let σ : Ω → Ω be a homeomorphism. As in [17, Sect. 3], we now build a cocycle
(Tω)ω∈Ω such that all Tω’s are Anosov diffeomorphisms that belong to a suffi-
ciently small neighborhood of T in the Cr+1 topology on X. Furthermore, we
require that ω → Tω is measurable. Let Lω be the transfer operator associated
with Tω. It was verified in [17, Sect. 3] that conditions (C0) and (C2)–(C4)
hold, with:

• B = (B, ‖·‖1,1) is the space B1,1 which belongs to the class of anisotropic
Banach spaces introduced by Gouëzel and Liverani [24]. We stress that in
this setting, the second alternative in (CO) holds. Namely, B is separable
and the cocycle of transfer operators is strongly measurable;

• (C3) holds with constant αN and βN .
We recall that elements of B are distributions of order 1. By h(ϕ), we will
denote the action of h ∈ B on a test function ϕ. We note that in this setting,
it was proved in [17, Lemma 3.5. and Proposition 3.6] that the version of
Lemma 3.4 holds true. Moreover, one can show (see [17, Proposition 3.3. and
Proposition 3.6]) that the top Oseledets space Y (ω) is spanned by a Borel
probability measure μω on X.

We now consider a suitable class of observables. Let us fix a measurable
map g : Ω × X → R

d such that:
• g(ω, ·) ∈ Cr and ess supω∈Ω‖g(ω, ·)‖Cr < ∞;
• for P-a.e. ω ∈ Ω and 1 ≤ i ≤ d,

∫

X

gi(ω, ·) dμω = 0.

We recall (see [17, p. 634]) that for h ∈ B and g ∈ Cr(X,C), we can define
g · h ∈ B. Furthermore, the action of g · h as a distribution is given by

(g · h)(ϕ) = h(gϕ), ϕ ∈ C1(X,C).

This enables us to introduce twisted transfer operators. Indeed, for θ ∈ C
d we

introduce Lθ
ω : B → B by

Lθ
ωh = Lω(eθ·g(ω,·) · h), h ∈ B.

By arguing as in the proof of [17, Proposition 4.3], one can establish the version
of Lemma 3.10 in this setting.

Let us now introduce appropriate versions of spaces S and S ′ from
Sect. 3.5 in the present context. Let S ′ denote the space of all measurable
maps V : Ω → B such that

‖V‖∞ := ess supω∈Ω‖V(ω)‖1,1 < ∞.
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Then, (S ′, ‖·‖∞) is a Banach space. Let S consist of all V ∈ S ′ with the
property that V(ω)(1) = 0 for P-a.e. ω ∈ Ω, where 1 denotes the observable
taking the value 1 at all points. Then, S is a closed subspace of S ′ (see [17,
p. 641]).

For θ ∈ C
d and W ∈ S, set

F (θ,W)(ω) =
Lθ

σ−1ω(W(σ−1ω) + μσ−1ω)
Lθ

σ−1ω(W(σ−1ω) + μσ−1ω)(1)
− W(ω) − μω, ω ∈ Ω.

By arguing as in the proofs of Lemma 3.12 and [17, Lemma 5.3], we find that
F is a well-defined analytic map on D = {θ ∈ C

d : |θ| ≤ ε} × BS(0, R) for
some ε, R > 0, where BS(0, R) denotes the open ball in S of radius R centered
at the origin.

The following is a version of Lemma 3.13 in the present setting.

Lemma 5.1. By shrinking ε > 0 if necessary, we have that there exists O : {θ ∈
C

d : |θ| < ε} → S analytic in θ such that

F (θ,O(θ)) = 0. (71)

Proof. We first note that (see [17, p. 636]) that there exists D,λ > 0 such
that

‖L(n)
ω h‖1,1 ≤ De−λn‖h‖1,1, for h ∈ B, h(1) = 0 and n ∈ N.

Moreover, the same arguments as in the proof of Proposition 6.4 (see also [17,
Proposition 5.4]) yield that

(Dd+1F (0, 0)W)(ω) = Lσ−1ωW(σ−1ω) − W(ω), for ω ∈ Ω and W ∈ S.

Now by arguing exactly as in the proof of Lemma 3.13, we conclude that
Dd+1F (0, 0) is invertible and thus the desired conclusion follows from the
implicit function theorem. �

Let Λ(θ) be the largest Lyapunov exponent associated with the twisted
cocycle Lθ = (Lθ

ω)ω∈Ω. Let

μθ
ω := μω + O(θ)(ω), for θ ∈ C

d, |θ| < ε.

Observe that μθ
ω(1) = 1 and by the previous lemma, θ �→ μθ

ω is analytic. Let
us define

Λ̂(θ) :=
∫

Ω

log
∣
∣
∣μθ

ω(eθ·g(ω,x))
∣
∣
∣ dP(ω),

and

λθ
ω := μθ

ω(eθ·g(ω,x)) = (Lθ
ωμθ

ω)(1).

The proof of the following result is analogous to the proof of [17, Lemma 6.1]
(see also the Lemmas in Sect. 3.6).

Lemma 5.2. 1. For every θ ∈ BCd(0, ε) := {θ ∈ C : |θ| < ε}, we have
Λ̂(θ) ≤ Λ(θ).
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2. Λ̂ is differentiable on a neighborhood of 0, and for each i ∈ {1, . . . , d}, we
have that

DiΛ̂(θ) = �
(∫

Ω

λθ
ω(μθ

ω(gi(ω, ·)eθ·g(ω,·)) + (DiO(θ))(ω)(eθ·g(ω,·)))
|λθ

ω|2 dP(ω)

)

,

where Di denotes the derivative with respect to ith component of θ.
3. For i ∈ {1, . . . , d}, we have that DiΛ̂(0) = 0.

Lemma 5.3. 1. For θ ∈ C
d sufficiently close to 0, the twisted cocycle Lθ =

(Lθ
ω)ω∈Ω is quasi-compact. Furthermore, the top Oseledets space of Lθ is

one dimensional.
2. The map θ �→ Λ(θ) is differentiable near 0 and DiΛ(0) = 0 for i ∈

{1, . . . , d}.
Proof. The quasi-compactness of Lθ for θ close to 0, as well as one dimension-
ality of the associated top Oseledets space, can be obtained by repeating the
arguments in the proof of [15, Theorem 3.12] (which require the Lasota–Yorke
inequalities obtained in [18, Lemma 3]). Furthermore, the same argument as
in the proof of [15, Corollary 3.14] implies that Λ and Λ̂ coincide on a neigh-
borhood of 0, which gives the second statement of the lemma. �

By [18, Proposition 2], we have that there exists a positive semi-definite
d × d matrix Σ2 such that for P-a.e. ω ∈ Ω, (29) holds. Furthermore, the
elements of Σ2 are given by (30).

The following is a version of Lemma 3.19 in the present context.

Lemma 5.4. We have that Λ is of class C2 on a neighborhood of 0 and
D2Λ(0) = Σ2, where D2Λ(0) denotes the Hessian of Λ in 0.

Proof. The proof is completely analogous to that of Lemma 3.19 and thus we
only point out the small adjustments that need to be made. Namely, in the
present context we have that

Diλ
θ
ω = μθ

ω(gi(ω, ·)eθ·g(ω,·)) + DiO(θ)(ω)(eθ·g(ω,·)),

and

Dijλ
θ
ω = μθ

ω(gi(ω, ·)gj(ω, x)eθ·g(ω,·)) + DiO(θ)(ω)(gj(ω, ·)eθ·g(ω,·))

+ DjO(θ)(ω)(gi(ω, ·)eθ·g(ω,·)) + DijO(θ)(ω)(eθ·g(ω,·)),

for 1 ≤ i, j ≤ d. Due to the centering condition for g and the fact that DiO(0) ∈
S, we have that Diλ

θ
ω|θ=0 = 0 for 1 ≤ i ≤ d. In addition, since DijO(0) ∈ S,

we have that

Dijλ
θ
ω|θ=0 = μω(gi(ω, ·)gj(ω, ·)) + DiO(0)(ω)(gj(ω, ·)) + DjO(0)(ω)(gi(ω, ·)),

and therefore,

DijΛ(0) = �
( ∫

Ω×X

gi(ω, x)gj(ω, x) dμ(ω, x) +
∫

Ω

DiO(0)(ω)(gj(ω, ·)) dP(ω)

+
∫

Ω

DjO(0)(ω)(gi(ω, ·)) dP(ω)
)

,
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for 1 ≤ i, j ≤ d. The rest of the proof proceeds exactly as the proof of
Lemma 3.19, by taking into account that

DiO(0)(ω) =
∞∑

n=1

L(n)
σ−nω(gi(σ−nω, ·) · μσ−nω), 1 ≤ i ≤ d.

�

Now the choice for the bases for top Oseledets spaces Y θ
ω and Y ∗θ

ω can be
made as in Sect. 4.1.

5.1. Limit Theorems

In the preceding discussion, we have established all preparatory material (anal-
ogous to that for piecewise expanding case) for limit theorems in the context
of random hyperbolic dynamics. The following is a version of Lemma 4.1 in the
present context. The proof is again the same as the proof of [15, Lemma 4.2]
(and relies only on the Oseledets decomposition). We sketch it for readers’
convenience.

Lemma 5.5. Let θ ∈ C
d be sufficiently close to 0. Furthermore, let h ∈ B be

such that φθ
ω(h) �= 0. Then,

lim
n→∞

1
n

log
∣
∣
∣h(eθ·Sng(ω,·))

∣
∣
∣ = Λ(θ) for P-a.e. ω ∈ Ω.

Proof. We use the notation of Sect. 4.1 adapted to the present setting. Given
h ∈ B, we write h = φθ

ω(h)μθ
ω + hθ

ω, where hθ
ω ∈ Hθ

ω. Then,

Lθ,(n)
ω h =

(
n−1∏

i=0

λθ
σiω

)

φθ
ω(h)μθ

σn−1ω + Lθ,(n)
ω hθ

ω.

By the multiplicative ergodic theorem, we have for P-a.e. ω ∈ Ω that

lim
n→∞

1
n

log ‖Lθ,(n)
ω |Hθ

ω
‖ < Λ(θ). (72)

Thus, we have that for P-a.e. ω ∈ Ω (since φθ
ω(h) �= 0),

lim
n→∞

1

n
log

∣
∣
∣h(eθ·Sng(ω,·))

∣
∣
∣ = lim

n→∞
1

n
log

∣
∣
∣Lθ,(n)

ω h(1)
∣
∣
∣

= max

{

lim
n→∞

1

n

n−1∑

i=0

log |λθ
σiω|, lim

n→∞
1

n
log |Lθ,(n)

ω hθ
ω(1)|

}

= Λ(θ),

where in the last step we have used (72) and the equality

Λ(θ) = lim
n→∞

1
n

lim
n→∞‖Lθ,(n)

ω μθ
ω‖1,1 = lim

n→∞
1
n

n−1∑

i=0

log |λθ
σiω|.

�

The previous lemma readily implies the version of Theorem 4.2 in the
present context. Moreover, we have the following version of Theorem 4.4.
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Theorem 5.6. Let (an)n be a sequence in R such that limn→∞ an√
n

= ∞ and
limn→∞ an

n = 0. Then, for P-a.e. ω ∈ Ω and any θ ∈ R
d, we have that

lim
n→∞

1
a2

n/n
logE[eθ·Sng(ω,·)/cn ] =

1
2
θTΣ2θ,

where cn = n/an. Consequently, when Σ2 is positive definite, we have that:
(i) for any closed set A ⊂ R

d,

lim sup
n→∞

1
a2

n/n
log μω({Sng(ω, ·)/an ∈ A}) ≤ −1

2
inf
x∈A

xTΣ−2x;

(ii) for any open set A ⊂ R
d we have

lim inf
n→∞

1
a2

n/n
log μω({Sng(ω, ·)/an ∈ A}) ≥ −1

2
inf
x∈A

xTΣ−2x,

where Σ−2 denotes the inverse of Σ2.

Proof. The proof proceeds exactly as the proof of Theorem 4.4 by replac-
ing (35) with
∫

X

eθ·Sng(ω,·)dμω = Lθ,(n)
ω μω(1) = φθ

ω(μω)eΠω,n(θ) + Lθ,(n)
ω (μω − φθ

ω(μω)μθ
ω)(1).

�

One can now establish the Berry–Esseen theorem, Edgeworth expansions,
local CLT and large and moderate deviations exactly as in the case of random
piecewise expanding dynamics with almost identical proofs. We remark that
Lemma 4.12 holds true for general cocycles Lit

ω acting on a Banach space
(see [31, Lemma 2.10.4]). We also note that (49) holds true in our case without
any additional assumptions. Indeed, this follows exactly as in the scalar case
[17, Lemma 9.3] (see the arguments in the proof of [18, Lemma 4]).

Regarding the exponential concentration inequalities, in the present set-
ting we are currently not able to obtain the version of Proposition 4.5. The
reason is that the proof of Proposition 4.5 relies on the martingale approach.
Currently there exists only one paper (namely [13]) that explores the martin-
gale method in the context of anisotropic Banach spaces adapted to hyperbolic
dynamics. However, it is restricted to the case of deterministic dynamics and it
is not clear if the techniques can be extended to the case of random dynamics.
The other limit theorem which we cannot obtain for random Anosov maps is
the large deviations type expansions (Theorem 4.18). The issue here is that,
in contrary to the case of expanding maps, it is not clear to us when the
additional assumption (64) holds true.

Remark 5.7. We emphasize that it was convenient for us to use the class of
anisotropic Banach spaces introduced in [24], since we could refer to the pre-
vious work in [17,18]. In principle, one could use any class of separable (in the
nonseparable case, we would need to restrict to the first alternative in (C0))
anisotropic Banach spaces which are stable under small perturbations: The
anisotropic Banach spaces associated with two Anosov diffeomorphisms T and



3908 D. Dragičević and Y. Hafouta Ann. Henri Poincaré

T ′ coincide if T and T ′ are sufficiently close. We refer to [9] for an excellent
survey on anisotropic Banach spaces for hyperbolic dynamics and to [6] for yet
another interesting class of spaces recently introduced.
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6. Appendix

We define G : BCd(0, 1) × S → S ′ and H : BCd(0, 1) × S → L∞(Ω) by

G(θ,W)ω = Lθ
σ−1ω(Wσ−1ω + v0

σ−1ω)

and H(θ,W)(ω) =
∫

Lθ
σ−1ω(Wσ−1ω + v0

σ−1ω) dm. (73)

Writing θ = (θ1, . . . , θd), by DiG we will denote the partial derivative of G
with respect to θi for 1 ≤ i ≤ d. Furthermore, Dd+1G will denote the partial
derivative of G with respect to W. Analogous notation will be used when G is
replaced with H.

Lemma 6.1. For (θ,W) ∈ BCd(0, 1) × S, we have that

(Dd+1G(θ,W)H)ω = Lθ
σ−1ωHσ−1ω, for H ∈ S and ω ∈ Ω.

Furthermore, for (θ,W) ∈ BCd(0, 1) × S, we have that

(Dd+1H(θ,W)H)(ω) =
∫

Lθ
σ−1ωHσ−1ω dm, for H ∈ S and ω ∈ Ω.

Proof. The desired formulas follow directly from the simple observation that
G and H are affine in W. �

The proof of the following result is similar to the proof of [15, Lemma B.6].

Lemma 6.2. For (θ,W) ∈ BCd(0, 1) × S and 1 ≤ i ≤ d, we have that

(DiG(θ,W))ω = Lσ−1ω

(
gi(σ−1ω, ·)eθ·g(σ−1ω,·)(Wσ−1ω + v0

σ−1ω)
)

, (74)

for ω ∈ Ω.

Proof. Let us denote the right-hand side in (74) by (L(θ,W))ω. Furthermore,
let {e1, . . . , en} be the canonical base of Cd. Observe that
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(G(θ + tei,W) − G(θ,W) − tL(θ,W))ω

= Lσ−1ω((e(θ+tei)·g(σ−1ω,·) − eθ·g(σ−1ω,·)

− tgi(σ−1ω, ·)eθ·g(σ−1ω,·))(Wσ−1ω + v0
σ−1ω)),

and therefore

‖(G(θ + t, W) − G(θ, W) − tL(θ, W))ω‖B

≤ K‖(e(θ+tei)·g(σ−1ω,·) − eθ·g(σ−1ω,·) − tgi(σ−1ω, ·)eθ·g(σ−1ω,·))(Wσ−1ω + v0
σ−1ω)‖B

= K var
(
(e(θ+tei)·g(σ−1ω,·) − eθ·g(σ−1ω,·) − tgi(σ−1ω, ·)eθg(σ−1ω,·))(Wσ−1ω + v0

σ−1ω)
)

+ K‖(e(θ+tei)·g(σ−1ω,·) − eθ·g(σ−1ω,·) − tgi(σ−1ω, ·)eθ·g(σ−1ω,·))(Wσ−1ω + v0
σ−1ω)‖1.

By applying Taylor’s reminder theorem for the map z �→ ezgi(σ−1ω,x), we obtain
that

‖etgi(σ−1ω,·) − 1 − tgi(σ−1ω, ·)‖L∞ ≤ 1
2
M2eM |t|2,

and thus

‖(e(θ+tei)·g(σ−1ω,·) − eθ·g(σ−1ω,·) − tgi(σ−1ω, ·)eθ·g(σ−1ω,·)‖L∞ ≤ 1
2
M2e2M |t|2.

Moreover, by applying (V9) for f = gi(σ−1ω, ·) and h(z) = etz − 1 − tz, we
conclude that for some C > 0 independent on ω and t,

var(etgi(σ−1ω,·) − 1 − tgi(σ−1ω, ·)) ≤ C|t|2.
Hence,

var((e(θ+tei)·g(σ−1ω,·) − eθ·g(σ−1ω,·) − tgi(σ−1ω, ·)eθ·g(σ−1ω,·)) ≤ C ′|t|2,
for some C ′ > 0. Now, one can easily conclude that

1
|t| ‖G(θ + tei,W) − G(θ,W) − tL(θ,W)‖∞ → 0 as t → 0,

which yields (74). �

The following lemma can be obtained by the same reasoning as the pre-
vious one.

Lemma 6.3. For (θ,W) ∈ BCd(0, 1) × S and 1 ≤ i ≤ d, we have that

(DiH(θ,W))(ω) =
∫

gi(σ−1ω, ·)eθ·g(σ−1ω,·)(Wσ−1ω + v0
σ−1ω) dm, (75)

for ω ∈ Ω.

As a direct consequence of previous lemmas, we obtain the following
result.

Proposition 6.4. Let F (θ,W) be defined by (20). For (θ,W) in a neighborhood
(0, 0) ∈ C

d × S, we have that
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(Dd+1F (θ,W)H)ω =
1

H(θ,W)(ω)
Lθ

σ−1ωHσ−1ω

−
∫ Lθ

σ−1ωHσ−1ω dm

[H(θ,W)(ω)]2
G(θ,W)ω − Hω,

for ω ∈ Ω and H ∈ S and

(DiF (θ, W))ω =
1

H(θ, W)(ω)
Lσ−1ω(gi(σ−1ω, ·)eθ·g(σ−1ω,·)(Wσ−1ω + v0

σ−1ω))

−
∫

gi(σ−1ω, ·)eθ·g(σ−1ω,·)(Wσ−1ω + v0
σ−1ω) dm

[H(θ, W)(ω)]2
Lθ

σ−1ω(Wσ−1ω + v0
σ−1ω),

for ω ∈ Ω and 1 ≤ i ≤ d.

Lemma 6.5. We have that Dd+1,d+1G = 0 and Dd+1,d+1H = 0.

Proof. The desired conclusion follows directly from Lemma 6.1. �

The proof of the following lemma can be obtained by repeating the argu-
ments from [15, Appendix B.2].

Lemma 6.6. For (θ,W) ∈ BCd(0, 1) × S and i, j ∈ {1, . . . , d}, we have that

(DjiG(θ,W))ω = Lσ−1ω(gi(σ−1ω, ·)gj(σ−1ω, ·)eθ·g(σ−1ω,·)(Wσ−1ω + v0
σ−1ω)),

and

(DjiH(θ,W))(ω) =
∫

gi(σ−1ω, ·)gj(σ−1ω, ·)eθ·g(σ−1ω,·)(Wσ−1ω + v0
σ−1ω) dm,

for ω ∈ Ω. Moreover, for j ∈ {1, . . . , d} we have that

(Dj,d+1G(θ,W)H)ω = Lσ−1ω(gj(σ−1ω, ·)eθ·g(σ−1ω,·)Hσ−1ω)
for H ∈ S and ω ∈ Ω,

and

(Dj,d+1H(θ,W)H)(ω) =
∫

gj(σ−1ω, ·)eθ·g(σ−1ω,·)Hσ−1ω dm

for H ∈ S and ω ∈ Ω,

Finally, for i ∈ {1, . . . , d} we have that

(Dd+1,iG(θ,W)H)ω = Lσ−1ω(gi(σ−1ω, ·)eθ·g(σ−1ω,·)Hσ−1ω)
for H ∈ S and ω ∈ Ω,

and

(Dd+1,iH(θ,W)H)(ω) =
∫

gi(σ−1ω, ·)eθ·g(σ−1ω,·)Hσ−1ω dm

for H ∈ S and ω ∈ Ω.
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6.1. A Local Version of the Gärtner–Ellis Theorem

Let d ≥ 1 be an integer and let Sn be a sequence of Rd-valued random vectors
satisfying the following condition:

Assumption 1. There exists an open set U ⊂ R
d around the origin so that for

any t ∈ U the limit

Λ(t) := lim
n→∞

1
n

logE[et·Sn ]

exists. Moreover, the function t �→ Λ(t) is of class C2 on U , the Hessian of Λ
is positive definite at t = 0 and ∇Λ(0) = 0.

Next, let B ⊂ R
d be a closed ball around the origin so D2Λ(t) is positive

definite for any t ∈ B, where D2Λ(t) denotes the Hessian of Λ in t. Consider
the function Λ∗ : Rd → R given by

Λ∗(x) = sup
t∈B

(t · x − Λ(t)) .

Then, Λ∗ is a continuous convex function. (Continuity follows from compact-
ness of B). By taking t = 0, we see that Λ∗(x) ≥ 0. By considering the point
t = δx/|x|, for some sufficiently small δ > 0 (which depends only on B) and
taking into account that Λ is bounded we see that

Λ∗(x) ≥ δ|x| − C → ∞ as |x| → ∞.

In particular, using the terminology in [12], we have that Λ∗ is a good-rate
function.

Our main result here is the following theorem.

Theorem 6.7. (i) For any closed set A ⊂ R
d, we have

lim sup
n→∞

1
n

logP(Sn/n ∈ A) ≤ − inf
x∈A

Λ∗(x).

(ii) There exists a closed ball B0 around the origin so that for any open subset
A of B0 we have

lim inf
n→∞

1
n

logP(Sn/n ∈ A) ≥ − inf
x∈A

Λ∗(x).

Remark 6.8. The proof of the theorem is a modification of the proof of The-
orem 2.3.6 in [12]. We do not consider this theorem as a new result, but we
have not managed to find a formulation of it in the literature. For readers’
convenience, we include here a complete proof.

Proof of Theorem 6.7. Set S̄n = 1
nSn. Let us start by establishing the upper

bound. For any x ∈ R
d, choose t(x) ∈ B such that

Λ∗(x) = x · t(x) − Λ(t(x)).

Let A be a compact subset of Rd and take an arbitrary ε > 0. For any x ∈ A,
let Bx,ε be a ball around x of radius ε. Then,

P(S̄n ∈ Bx,ε) = E[I(S̄n ∈ Bx,ε)] ≤ E[en(S̄n·t(x)−infy∈Bx,ε y·t(x))].
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Observe that

x · t(x) − inf
y∈Bx,ε

y · t(x) = sup
y∈Bx,ε

(
x · t(x) − y · t(x)

) ≤ εR

where R = supt∈B |t|. We conclude that

lim sup
n→∞

1
n

logP(S̄n ∈ Bx,ε) ≤ εR − (
x · t(x) − Λ(t(x))

)
= εR − Λ∗(x).

Since A is compact, we can cover it with N balls Bxi,ε, i ∈ {1, 2, . . . , N} for
some N ∈ N and x1, . . . , xN ∈ A. Then, we have that

logP(S̄n ∈ A) ≤ log N + max
i

logP(S̄n ∈ Bxi,ε)

and hence

lim sup
n→∞

1
n

logP(S̄n ∈ A) ≤ Rε − min
i

Λ∗(xi).

Since Λ∗ is continuous, passing to the limit when ε → 0, we obtain that
mini Λ∗(xi) converges to infx∈A Λ∗(x), which completes the proof of the upper
bound for compact sets. In general (see [12, Lemma 1.2.8]), in order to prove
the upper bound for closed sets, it is enough to prove it for compact sets and
to show that the sequence μn of the laws of S̄n is exponentially tight, i.e., that
for any M > 0 there is a compact set KM such that

lim sup
n→∞

1
n

log μn(Rd\KM ) < −M. (76)

Let 1 ≤ j ≤ d, ρ > 0 and denote by S̄n,j the j-th coordinate of S̄n,j . Denote
also by ej the standard j-th unit vector. Let t > 0 be sufficiently small so that
tej ∈ U . Then, by the Markov inequality,

P(S̄n,j ≥ ρ) ≤ P(etSn,j ≥ entρ) ≤ e−tρn
E[etSn,j ].

Therefore,

lim sup
n→∞

1
n

logP(S̄n,j ≥ ρ) ≤ Λ(tej) − tρ → −∞ as ρ → ∞.

Similarly,

lim
ρ→∞ lim sup

n→∞
1
n

logP(S̄n,j ≤ −ρ) = −∞,

and thus (76) follows.
In order to establish the lower bound, we will first observe that by the

open mapping theorem, we have the function ∇Λ maps the interior Bo of
B onto an open set V . Therefore, there exists an open set V around the
origin such that for any y ∈ V , there exists a unique η = η(y) ∈ Bo so that
y = ∇Λ(η). Since D2Λ is positive definite on Bo, we derive that

Λ∗(y) = y · η − Λ(η). (77)

Next, notice that for the lower bound to hold true for open subsets of V ,
it is enough to show that for any y ∈ V , we have

lim
δ→0

lim inf
n→∞

1
n

logP(S̄n ∈ By,δ) ≥ −Λ∗(y).
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Let y ∈ V and write y = ∇Λ(η). We will make now an exponential change of
measure: consider the probability measures μ̃n given by

dμ̃n

dμn
(z) = exp(nη · z − Λn(η))

where μn is the law of S̄n and Λn(η) = logE[eη·Sn ]. Let Z̄n be a random vector
distributed according to μ̃n and set Zn = nZ̄n. Then,

1
n

log μn(By,δ) =
1
n

logE[eη·Sn ] − η · y +
1
n

log
∫

z∈By,δ

enη·(y−z)dμ̃n(z)

≥ 1
n

logE[eη·Sn ] − η · y − |η|δ +
1
n

log μ̃n(By,δ)

and therefore,

lim
δ→0

lim inf
n→∞

1
n

log μn(By,δ) ≥ Λ(η) − η · y + lim
δ→0

lim inf
n→∞

1
n

log μ̃n(By,δ)

≥ −Λ∗(y) + lim
δ→0

lim inf
n→∞

1
n

log μ̃n(By,δ).

The proof of the lower bound will be complete once we show that for any
δ > 0,

lim
δ→0

lim inf
n→∞

1
n

log μ̃n(By,δ) = 0. (78)

Define Tn = Zn − ny. Then, for any t ∈ Uη := U − {η} we have

Λ(t) := lim
n→∞

1
n

logE[et·Tn ] = Λ(t + η) − Λ(η) − t · y.

Observe next that Λ satisfies all the conditions in Assumption 1 with Uη in
place of U . Therefore, setting

Λ∗(x) := sup
t∈Bη

(
x · t − Λ(t)

)
= Λ∗(x + y) + Λ(η) − (x + y) · η, (79)

using the already established large deviations upper bound, we obtain that

lim sup
n→∞

1
n

log μ̃n(Rd\By,δ)

= lim sup
n→∞

1
n

logP(|Tn/n| ≥ δ) ≤ − inf
|z|≥δ

Λ∗(z) = −Λ∗(z0),

for z0 such that |z0| ≥ δ (observe that the existence of z0 follows from
lim|z|→∞ Λ∗(z) = ∞). We claim that Λ∗(z0) > 0. Using this, we obtain that

lim sup
n→∞

1
n

log μ̃n(Rd\By,δ) < 0,

for any δ > 0. Hence, μ̃n(Rd\By,δ) → 0 and therefore μ̃n(By,δ) → 1 for every
δ > 0 which clearly implies (78).

Let us now show that Λ∗(z0) > 0. Assume the contrary, i.e., that
Λ∗(z0) = 0. Then, by (79) we have

Λ∗(y + z0) = sup
t∈B

(
t · (y + z0) − Λ(t)

)
= η · (y + z0) − Λ(η). (80)
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This means that the supremum in (80) is actually maximum and it is achieved
at t = η and so y = ∇Λ(η) = y + z0 which is a contraction since z0 �= 0. �

Remark 6.9. It is clear from the proof of Theorem 6.7 that if for some positive
sequence (εn)n so that limn→∞ εn = 0 the limit

Λ(t) := lim
n→∞ εn logE[et·Sn ]

exists in some neighborhood U of the origin, and satisfies all the other condi-
tions required in Assumption 1, then:

(i) For any closed set A ⊂ R
d, we have

lim sup
n→∞

εn logP(εnSn ∈ A) ≤ − inf
x∈A

Λ∗(x).

(ii) There exists a closed ball B0 around the origin so that for any open subset
A of B0 we have

lim inf
n→∞ εn logP(εnSn ∈ A) ≥ − inf

x∈A
Λ∗(x).
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