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Abstract. Polynomial ensembles are a sub-class of probability measures
within determinantal point processes. Examples include products of inde-
pendent random matrices, with applications to Lyapunov exponents, and
random matrices with an external field, that may serve as schematic mod-
els of quantum field theories with temperature. We first analyse expec-
tation values of ratios of an equal number of characteristic polynomials
in general polynomial ensembles. Using Schur polynomials, we show that
polynomial ensembles constitute Giambelli compatible point processes,
leading to a determinant formula for such ratios as in classical ensembles
of random matrices. In the second part, we introduce invertible poly-
nomial ensembles given, e.g. by random matrices with an external field.
Expectation values of arbitrary ratios of characteristic polynomials are
expressed in terms of multiple contour integrals. This generalises previ-
ous findings by Fyodorov, Grela, and Strahov. for a single ratio in the
context of eigenvector statistics in the complex Ginibre ensemble.

1. Introduction

In this paper, we study correlation functions of characteristic polynomials in
a sub-class of determinantal random point processes. They are called poly-
nomial ensembles [39] and belong to biorthogonal ensembles in the sense of
Borodin [10]. Polynomial ensembles are characterised by the fact that one of
the two determinants in the joint density of points is given by a Vandermonde
determinant, while the other one is kept general. Thus they are generalising
the classical ensembles of Gaussian random matrices [41]. Polynomial ensem-
bles appear in various contexts as the joint distribution of eigenvalues (or
singular values) of random matrices, see [3,14,19,20,27]. They enjoy many
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invariance properties on the level of joint density, kernel and bi-orthogonal
functions [35,38] and provide examples for realisations of multiple orthogonal
polynomials, see e.g. [8,20,39] and Muttalib–Borodin ensembles [10,42].

Random matrices enjoy many different applications in physics and beyond,
see [2] and references therein. Polynomial ensembles in particular are relevant
in the following contexts: Ensembles with an external field have been intro-
duced as a tool to count intersection numbers of moduli spaces on Riemann
surfaces [16]. In the application to the quantum field theory of the strong inter-
actions, quantum chromodynamics (QCD), they have been used as a schematic
model to study the influence of temperature in the chiral phase transition [29].
Detailed computations of Dirac operator eigenvalues [28,45] within this class
of models have been restricted to supersymmetric techniques so far, that can
now be addressed in the framework of biorthogonal ensembles.

Recently, sums and products of random matrices have been shown to lead
to polynomial ensembles [3,18,36]—see [4] for a review. This has important
consequences for the spectrum of Lyapunov exponents, relating this multiplica-
tive process to the additive process of Dyson’s Brownian motion [6]. Last but
not least polynomial ensembles of Pólya type have led to a deeper understand-
ing of the relation between singular values and complex eigenvalues [34,35],
where a bijection between the respective point processes was constructed.

In this paper, we consider expectation values of products and ratios of
characteristic polynomials within the class of polynomial ensembles. While
these can be used to generate multi-point resolvents and thus arbitrary k-
point density correlation functions, as well as the kernel of bi-orthogonal poly-
nomials, they are of interest in their own right as well. Examples for applica-
tions are the partition function of QCD with an arbitrary number of fermionic
flavours [46]. In mathematics, the Montgomery conjecture in conjunction with
moments of the Riemann zeta-functions has lead to important insights [32],
where moments and correlations of characteristic polynomials relevant for more
general L-functions were computed.

Mathematical properties of ratios of characteristic polynomials have equal-
ly received attention, and we will not be able to give full justice to the existing
literature. Based on earlier works such as [7,22], the determinantal structure
of the expectation value of ratios of characteristic polynomials in orthogonal
polynomial ensembles was expressed in several equivalent forms, given in terms
of orthogonal polynomials, their Cauchy transform or their respective kernels.
This structure was generalised for products of characteristic polynomials in [1],
as well as to all symmetry classes [33]. The universality of such ratios has been
studied in several works [13,47] and in particular its relation to the sine- and
Airy-kernel [11]. New critical behaviours have been found from such ensembles
as well [15] and their universality was discussed in [9].

Moving to polynomial ensembles, expectation values of products are easy
to evaluate by including them into the Vandermonde determinant, just as
for orthogonal polynomial ensembles. Determinantal formulas for expectation
values of characteristic polynomials and their inverse have been derived, see
e.g. [8,19,21]. A duality in the number of products and matrix dimension,
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which is well known for the classical ensembles, holds also in this external field
model [17]. The kernel for general polynomial ensembles has been expressed
in terms of the residue of a single ratio of characteristic polynomials in [19],
see also [11,26]. Most recently the study of eigenvector statistics of random
matrices has seen a revival, and also in this context expectation values of ratios
of characteristic polynomials in polynomial ensembles arise [23,24]. This has
been one of the starting points of the present work.

The outline of the paper is as follows. In Sect. 2, we introduce polyno-
mial ensembles, provide several examples, and state the main results of the
present paper. In particular, Theorem 2.2 says that any polynomial ensemble
is a Giambelli compatible point process in the sense of Borodin, Olshanski, and
Strahov [12]. This leads to Theorem 2.3, expressing the expectation value of
the ratio of an equal number of characteristic polynomials as a determinant
of a single ratio, generalising [7, Theorem 3.3] to polynomial ensembles. In
Sect. 2.3, we introduce a more restricted class of polynomial ensembles which
we call invertible. Here, we give a nested multiple complex contour integral
representation for general ratios of characteristic polynomials in Theorem 2.9.
The number of integrals only depends on the number of characteristic polyno-
mials, but not on the number of points N of the point process. This generalises
the results of [24, Theorem 5.1] to rectangular random matrices, in the pres-
ence of an arbitrary number of characteristic polynomials. Several examples
are given that belong to the class of invertible polynomial ensembles, including
the external field models. Sections 3 and 4 are devoted to the proofs of the
results stated in Sect. 2. Section 5 contains some special cases and comparison
with the work by Fyodorov, Grela, and Strahov [24]. Finally, Appendix A col-
lects properties of the Vandermonde determinant, when adding or removing
factors.

2. Definitions and Statement of Results

2.1. Polynomial Ensembles

We introduce polynomial ensembles following [39]. They are defined by the
probability density function on In, where I ⊆ R is an interval. The probability
density function is given by

P(x1, . . . , xN ) =
1

ZN
ΔN (x1, . . . , xN ) det[ϕl(xk)]Nk,l=1 , (2.1)

where ΔN (x1, . . . , xN ) =
∏

1≤i<j≤N (xi − xj) = det
[
xN−j

i

]N

i,j=1
is the Van-

dermonde determinant of N variables. The ϕ1, . . . , ϕN
are certain integrable

real-valued functions on I, such that the normalisation constant ZN

ZN =

(
N∏

n=1

∫

I

dxn

)

ΔN (x1, . . . , xN ) det[ϕl(xk)]Nk,l=1

= N !(−1)N(N−1)/2 det[G] , (2.2)
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exists and is nonzero. The constant ZN is also called partition function in the
physics literature. Polynomial ensembles are formed by eigenvalues (or singular
values) of certain N × N random matrices H, see examples below. Here, the
matrix G = (gk,l)N

k,l=1 is the invertible generalised moment matrix with entries

gk,l =
∫

I

dxxk−1ϕl(x) . (2.3)

The second equality in (2.2) follows using (A.1) and the Andréiéf integral
formula,

(
N∏

n=1

∫

I

dxn

)

det[ψl(xk)]Nk,l=1 det[φl(xk)]Nk,l=1

= N ! det
[∫

I

dxψk(x)φl(x)
]N

k,l=1

, (2.4)

valid for any two sets of integrable functions ψk and φl. We will now give some
explicit realisations of polynomial ensembles in terms of random matrices.
The simplest example for a polynomial ensembles is given by the eigenvalues
of N × N complex Hermitian random matrices H from the Gaussian Unitary
Ensembles (GUE), defined by the probability measure

PGUE(H)dH = cN exp[−Tr [H2]]dH , cN = 2
N(N−1)

2 π− N2
2 . (2.5)

The probability density function of the real eigenvalues x1, . . . , xN of H reads
[41]

PGUE(x1, . . . , xN ) =
1

ZGUE
N

ΔN (x1, . . . , xN )2 exp

⎡

⎣−
N∑

j=1

x2
j

⎤

⎦ . (2.6)

This is a polynomial ensemble where the resulting ϕ-functions, ϕk(x)
= xN−ke−x2

, are obtained after multiplying the exponential factors into one
of the Vandermonde determinants. Note that the GUE is an orthogonal poly-
nomial ensemble.

The GUE with an external source or field [14,27] contains an additional
constant, deterministic Hermitian matrix A of size N × N that we choose to
be diagonal here, A = diag(a1, . . . , aN ) with aj ∈ R for j = 1, . . . , N , without
loss of generality. It will constitute our first main example and is defined by
the probability measure

Pext1(H)dH = cN exp[−Tr [(H − A)2]]dH , (2.7)

with the probability density function

Pext1(x1, . . . , xN ) =
1

Zext1
N

ΔN (x1, . . . , xN ) det
[
exp[−(xj − ak)2]

]N
j,k=1

.

(2.8)
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The resulting ϕk(x) = e−(x−ak)
2

follows from the Harish-Chandra–Itzykson–
Zuber integral [30,31] and from multiplying the Gaussian term inside the deter-
minant. We refer to [14] for the derivation. Notice that the second determinant
in (2.8) cannot be reduced to a Vandermonde determinant in general.

Our second main example is the chiral GUE with an external source, cf.
[19]. It is defined in terms of a complex non-Hermitian N×(N+ν)-dimensional
random matrix X and a deterministic matrix A of equal size, with ν ≥ 0.
Again without loss of generality, we can choose AA† = diag(a1, . . . , aN ), with
elements aj ∈ R+ for j = 1, . . . , N . The ensemble is defined by

Pext2(X)dx = ĉN exp
[−Tr [(X − A)(X† − A†)

]
dx, ĉN = cNπ−N(N+ν).

(2.9)
At vanishing A, it reduces to the chiral GUE also called complex Wishart
or Laguerre unitary ensemble. The probability density function of the real
positive eigenvalues x1, . . . , xN of XX† reads,

Pext2(x1, . . . , xN )

=
1

Zext2
N

ΔN (x1, . . . , xN ) det
[
x

ν/2
j e−(xj+ak)Iν

(
2
√

akxj

)]N

j,k=1
.

(2.10)

The modified Bessel function of second kind ϕk(x) = xν/2e−(x+ak)Iν(2
√

akx),
follows from the Berezin–Karpelevich integral formula, cf. [44]. In principle,
we may also allow the parameter ν > −1 to take real values.

In the application to QCD at finite temperature, typically the density
(2.9) is endowed with Nf extra terms, P (X) → P (X)

∏Nf

f=1 det[XX†+m2
f11N ],

with mf=1,...,Nf
∈ R, that correspond to Nf Fermion flavours with masses mf ,

see e.g. [45] which also motivates the present study. We would like to mention
that the expectation value of the ratio of two characteristic polynomials studied
in [24] follows from the above ensemble, when setting ν = 0 and letting mf → 0
for all f = 1, . . . , Nf . This leads to a polynomial ensemble with ϕk(x) =
xLe−(x+ak)I0(2

√
akx) of [24], with L = Nf .

Further examples have been given already in the introduction, including
the singular values of products of independent random matrices, see [4] for
a review, where ϕk(x) is given by a special function, the Mejier G-function,
and more generally Polyá ensembles [34,35]. Notice that when also the Van-
dermonde determinant in (2.1) is replaced by a general determinant, as in
the Andréiéf integration formula (2.4), we are back to biorthogonal ensembles
[10]—an explicit example can be found in [5]. For this class, our methods below
will not apply in general.

2.2. Polynomials Ensembles as Giambelli Compatible Point Processes

In this section, we adopt notation and definitions from Macdonald [40]. Let
Λ be the algebra of symmetric functions. The Schur functions sλ indexed by
Young diagrams λ form an orthonormal basis in Λ. Recall that Young diagrams
can be written in the Frobenius notation, namely

λ = (p1, . . . , pd|q1, . . . , qd) ,
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where d equals the number of boxes on the diagonal of λ, pj with j = 1, . . . , d
denotes the number of boxes in the jth row of λ to the right of the diagonal,
and ql with l = 1, . . . , d denotes the number of boxes in the lth column of λ
below the diagonal. The Schur functions satisfy the Giambelli formula:

s(p1,...,pd|q1,...,qd) = det
[
s(pi|qj)

]d
i,j=1

. (2.11)

The Schur polynomial sλ (x1, . . . , xN ) is the specialisation of sλ to the variables
x1, . . ., xN . The Schur polynomial sλ (x1, . . . , xN ) corresponding to the Young
diagram λ with l(λ) ≤ N rows of lengths λ1 ≥ · · · ≥ λl(λ) > 0 can be defined
by

sλ(x1, . . . , xN ) =
1

ΔN (x1, . . . , xN )
det
[
x

λj+N−j
i

]N

i,j=1
. (2.12)

If l(λ) > N , then sλ(x1, . . . , xN ) ≡ 0 (by definition).
The Giambelli compatible point processes form a class of point processes

whose different probabilistic quantities of interest can be studied using the
Schur symmetric functions. This class of point processes was introduced in
Borodin, Olshanski, and Strahov [12] to prove determinantal identities for
averages of analogs of characteristic polynomials for ensembles originating from
Random Matrix Theory, the theory of random partitions, and from represen-
tation theory of the infinite symmetric group. In the context of random point
processes formed by N -point random configurations on a subset of R, the
Giambelli compatible point processes can be defined as follows.

Definition 2.1. Assume that a point process is formed by an N -point configu-
ration (x1, . . . , xN ) on I ⊆ R. If the Giambelli formula

s(p1,...,pd|q1,...,qd)(x1, . . . , xN ) = det
[
s(pi|qj)(x1, . . . , xN )

]d
i,j=1

(2.13)

(valid for the Schur polynomial sλ(x1, . . . , xN ) parameterised by an arbitrary
Young diagram λ (p1, . . . , pd|q1, . . . , qd)) can be extended to averages, i.e.

E
[
s(p1,...,pd|q1,...,qd)(x1, . . . , xN )

]
= det

[
E
[
s(pi|qj)(x1, . . . , xN )

]]d
i,j=1

, (2.14)

then the random point process is called Giambelli compatible point process.

In the present paper, we show that the polynomial ensembles intro-
duced in Sect. 2.1 can be understood as Giambelli compatible point processes.
Namely, the following Theorem holds true.

Theorem 2.2. Any polynomial ensemble in the sense of Sect. 2.1 is a Giambelli
compatible point process.

As it is explained in Borodin, Olshanski, and Strahov [12], the Giambelli
compatibility of point processes implies determinantal formulas for averages
of ratios of characteristic polynomials. Namely, we obtain

Theorem 2.3. Assume that x1, . . . , xN form a polynomial ensemble. Let u1, . . . ,
uM ∈ C\R and z1, . . . , zM ∈ C for any M ∈ N be pairwise distinct variables.
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Then

E

[
M∏

m=1

DN (zm)
DN (um)

]

=

[

det
(

1
ui − zj

)M

i,j=1

]−1

det
[

1
ui − zj

E

(
DN (zj)
DN (ui)

)]M

i,j=1

,

(2.15)
where DN (z) =

∏N
n=1(z−xn) denotes the characteristic polynomial associated

with the random variables x1, . . ., xN .

2.3. Averages of Arbitrary Ratios of Characteristic Polynomials in Invertible
Ensembles

In this section, we present our results for arbitrary ratios of characteristic
polynomials,

E

[∏M
m=1 DN (zm)
∏L

l=1 DN (yl)

]

, (2.16)

allowing the number of characteristic polynomials in the numerator M and
denominator, L ≤ N , to differ. As before we will assume the parameters
y1, . . . , yL ∈ C\R and z1, . . . , zM ∈ C to be pairwise distinct. We will not
consider the most general polynomial ensembles (2.1) here, but consider func-
tions ϕj(x) that satisfy certain conditions to be specified below.

Definition 2.4. Consider a polynomial ensemble defined by the probability den-
sity function (2.1). Assume that ϕl(x) = ϕ(al, x) for l = 1, . . . , N , (where
a1, . . . , aN are real parameters) is analytic in both arguments and that there
exists a family {πk}∞

k=0 of monic polynomials such that each polynomial πk of
degree k can be represented as

πk(a) =
∫

I

dxxkϕ(a, x), k = 0, 1, . . . . (2.17)

In addition, assume that Eq. (2.17) is invertible, i.e. there exists a function
F : I ′ × C → C such that

zk =
∫

I′
dsF (s, z)πk(s), k = 0, 1, . . . , (2.18)

where I ′ is a certain contour in the complex plane. Then, we will refer to such
a polynomial ensemble as an invertible ensemble.

Remark 2.5. Condition (2.17) together with (2.2) immediately implies that for
invertible polynomial ensembles the normalising partition function simplifies
as follows:

ZN = N !ΔN (a1, . . . , aN ). (2.19)

Here, we use that in (A.1) the determinant of monomials equals that of arbi-
trary monic polynomials.

We will now present two examples for polynomial ensembles of invertible
type according to Definition 2.4 and comment on the general class of such
ensembles.
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Example 2.6. Our first example is given by the GUE with external field (2.8).
Here, the eigenvalues take real values, I = R, and the functions ϕl(x) can be
chosen as

ϕl(x) = ϕ(al, x) =
e−(x−al)

2

√
π

, (2.20)

which are analytic. From [25, 8.951], we know the following representation of
the standard Hermite polynomials Hn(t) of degree n,

Hn(t) =
(2i)n

√
π

∫ ∞

−∞
dxe−(x+it)2xn , (2.21)

that can be made monic as follows, 2−nHn(x) = xn + O(xn−2). This leads to
the integral

(2i)−nHn(ia) =
1√
π

∫ ∞

−∞
dssne−(s−a)2 , (2.22)

from which we can read off

πk(a) =
∫ ∞

−∞
dxxk e−(x−a)2

√
π

, (2.23)

with πk(a) = (2i)−kHk(ia), for k = 0, 1, . . ., which is again monic. Thus con-
dition (2.17) is satisfied.

For the second condition (2.18), we use the integral [25, 7.374.6]

yn =
1√
π

∫ ∞

−∞
dx 2−nHn(x)e−(x−y)2 . (2.24)

Renaming y = iz and x = is we obtain

zk =
∫

I′
dsF (s, z)πk(s) , for k = 0, 1, . . . (2.25)

with I ′ = iR and F (s, z) = i√
π
e(s−z)2 .

Remark 2.7. Example 2.6 is the simplest case of a much wider class of poly-
nomial ensembles of Pólya type convolved with fixed matrices, as introduced
in [37, Theorem II.3]. Such polynomials ensembles are generalising the form
(2.20) to

ϕ(al, x) = f(x − al) , (2.26)
such that f is (N − 1)-times differentiable on R,

analytic on C, and the moments of its derivatives exist,1
∣
∣
∣
∣

∫ ∞

−∞
dxxk ∂jf(x)

∂xj

∣
∣
∣
∣ < ∞ , ∀k, j = 0, 1, . . . , N − 1. (2.27)

It immediately follows that its generalised moment matrix leads to polyno-
mials, upon shifting the integration variable, and thus (2.17) is satisfied. It is
not too difficult to show using Fourier transformation of f that also condition
(2.18) of Definition 2.4 is satisfied and thus these ensembles are invertible.

1The unconvoluted polynomial ensemble has ϕj(x) = ∂jf(x)/∂xj .
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Example 2.8. Our second example is the chiral GUE with external field (2.10)
having I = R+ and functions ϕl(x) can be chosen as

ϕl(x) = ϕ(al, x) =
(

x

al

)ν/2

e−(x+al)Iν(2
√

alx) , (2.28)

which is analytic, with the al positive real numbers. The following integral is
known, see e.g. [25, 6.631.10] after analytic continuation,

∫ ∞

0

xn+ ν
2 e−xIν(2

√
ax)dx = n!aν/2eaLν

n (−a) . (2.29)

Here, Lν
n(y) is the standard generalised Laguerre polynomial of degree n, which

is made monic as follows, n!Lν
n(−x) = xn +O(xn−1). Then, the first condition

(2.17) is satisfied,

πk(a) =
∫ ∞

0

dxxk
(x

a

) ν
2

e−(x+a)Iν(2
√

ax), (2.30)

with πk(a) = k!Lν
k(−a) for k = 0, 1, . . . .

For the second condition (2.18), we consider the following integral, see
[25, 7.421.6], which is also called Hankel transform,

∫ ∞

0

dttν/2e−tn!Lν
n(t)Jν

(
2
√

zt
)

= znzν/2e−z. (2.31)

Bringing factors on the other side and making the substitution t = −s to make
the same monic polynomials n!Lν

n(−s) as above appear in the integrand, we
obtain after using Iν(x) = i−νJν(ix)

zk =
∫

I′
dsF (s, z)πk(s) , for k = 0, 1, . . . (2.32)

with F (s, z) = (−1)ν
(

s
z

)ν/2
es+zIν (2

√
zs) and I ′ = R−.

Now we state the second main result of the present paper which gives
a formula for averages of products and ratios of characteristic polynomials in
the case of invertible ensembles.

Theorem 2.9. Consider a polynomial ensemble (2.1) formed by x1, . . ., xN ,
and assume that this ensemble is invertible in the sense of Definition 2.4.
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Then we have for L ≤ N

E

[∏M
m=1 DN (zm)
∏L

l=1 DN (yl)

]

=
(−1)

L(L−1)
2

L!ΔM (z1, . . . , zM )

⎡

⎣
M∏

j=1

∫

I′
dsjF (sj , zj)

N∏

n=1

(sj − an)

⎤

⎦ΔM (s1, . . . , sM )

×
[

L∏

l=1

∫

I

dvl

(
vl

yl

)N−L ∏M
m=1(zm − vl)
∏L

j=1(yj − vl)

]

ΔL(v1, . . . , vL)

×
[

L∏

l=1

∮

Cl

dul

2πi

1
∏N

n=1(ul − an)

ϕ(ul, vl)
∏M

j=1(sj − ul)

]

ΔL(u1, . . . , uL) ,

(2.33)
where DN (z) =

∏N
n=1(z−xn) denotes the characteristic polynomial associated

with the random variables x1, . . ., xN , the parameters y1, . . . , yL ∈ C\R and
z1, . . . , zM ∈ C are pairwise distinct, and all contours Cl with l = 1, . . . , N
encircle the points a1, . . . , aN counter-clockwise.

We note that Theorem 2.9 generalises Theorem 5.1 in [24] for the ratio
of two characteristic polynomials, derived for the polynomial ensemble with
ϕ(a, x) = xLe−xI0(2

√
ax), to general ratios in invertible polynomial ensembles.

Clearly, it is well suited for the asymptotic analysis when N → ∞ as the
number of integrations does not depend on N .

2.4. A Formula for the Correlation Kernel for Invertible Ensembles

It is well known that each polynomial ensemble is a determinantal process. For
invertible polynomial ensembles (see Definition 2.4), Theorem 2.9 enables us
to deduce a double contour integration formula for the correlation kernel.

Proposition 2.10. Consider an invertible polynomial ensemble, i.e. a polyno-
mial ensemble defined by (2.1), where the functions ϕl(x) = ϕ(al, x) satisfy the
conditions specified in Definition 2.4. The correlation kernel KN (x, y) of this
ensemble can be written as

KN (x, y) =
1

2πi

∫

I′

dsF (s, x)
N∏

n=1

(s − an)
∮

C

du
ϕ(u, y)

(s − u)
∏N

n=1 (u − an)
, (2.34)

where C encircles the points a1, . . ., aN counter-clockwise, and where ϕ(u, y)
and F (s, x) are defined by Eqs. (2.17) and (2.18) correspondingly.
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Proof. We use the following fact valid for any polynomial ensemble formed by
x1, . . ., xN on I ⊆ R, see Ref. [19].2 Assume that

E

(
N∏

k=1

x − xk

z − xk

)

=
∫

I

dv
x − v

z − v
ΦN (x, v), (2.35)

where the function v → ΦN (x, v) is analytic for all v ∈ I. Then the correlation
kernel of the determinantal process formed by x1, . . . , xN is given by

KN (x, y) = ΦN (x, y).

In our case, Theorem 2.9 gives

E

(
N∏

k=1

x − xk

z − xk

)

=
1

2πi

∫

I

dv
(v

z

)N−1 x − v

z − v

×
⎡

⎣
∫

I′

dsF (s, x)
N∏

n=1

(s − an)
∮

C

du
ϕ(u, v)

(s − u)
∏N

n=1 (u − an)

⎤

⎦ ,

(2.36)

which leads to the formula for the correlation kernel in the statement of the
Proposition. �

3. Proof of Theorem 2.2

Let x1, . . ., xN form a polynomial ensemble on IN , where I ⊆ R. The proba-
bility density function of this ensemble is defined by Eq. (2.1). Denote by s̃λ

the expectation of the Schur polynomial sλ (x1, . . . , xN ) with respect to this
ensemble,

s̃λ = E (sλ (x1, . . . , xN )) . (3.1)
Our aim is to show that s̃λ satisfies the Giambelli formula, i.e.

s̃λ = det
[
s̃(pi|qj)

]d
i,j=1

, (3.2)

where λ is an arbitrary Young diagram, λ = (p1, . . . , pd|q1, . . . , qd) in the Frobe-
nius coordinates. According to Definition 2.1, this will mean that the polyno-
mial ensemble under considerations is a Giambelli compatible point process.

The proof of Eq. (3.2) below is based on the following general fact due
to Macdonald, see Macdonald [40], Example I.3.21.

Proposition 3.1. Let {hr,s} with integer r ∈ Z and non-negative integer s ∈ N

be a collection of commuting indeterminates such that we have

∀s ∈ N : h0,s = 1 and ∀r < 0 hr,s = 0 , (3.3)

and set
s̃λ = det [hλi−i+j,j−1]

k
i,j=1 , (3.4)

2Because we take the residue of the right hand side at z = y, any ratio f(v)/f(z) can
be multiplied under the integral for regular functions f , without changing the value of the
kernel.
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where k is any number such that k ≥ l(λ). Then we have

s̃λ = det
[
s̃(pi|qj)

]d
i,j=1

, (3.5)

where λ is an arbitrary Young diagram, λ = (p1, . . . , pd|q1, . . . , qd) in the Frobe-
nius coordinates.

Clearly, in order to apply Proposition 3.1 to s̃λ defined by Eq. (3.1) we
need to construct a collection of indeterminates {hr,s} such that

E (sλ (x1, . . . , xN )) = det [hλi−i+j,j−1]
k
i,j=1 (3.6)

will hold true for an arbitrary Young diagram λ, for an arbitrary k ≥ l(λ) and
such that condition (3.3) will be satisfied.

By Andréiéf’s integration formula (2.4) and the expression for the nor-
malisation constant ZN (2.2), we can write

E [sλ(x1, . . . , xN )] =
det
[∫

I
dxxλi+N−iϕj(x)

]N
i,j=1

det
[∫

I
dxxN−iϕj(x)

]N
i,j=1

, (3.7)

where we used (A.1) and Eq. (2.12). Notice that at this point it matters that we
consider polynomial ensembles and not more general bi-orthogonal ensembles.
In the latter case, the Vandermonde determinant in the denominator of the
Schur function (2.12) would not cancel, the Andréiéf formula would not apply,
and we would not know how to compute such expectation values. Set

An,m =
∫

I

dxxnϕm(x); n = 0, 1, . . . ; m = 1, . . . , N, (3.8)

and denote by Q = (Qi,j)
N
i,j=1 the inverse3 of G̃ = (g̃i,j)

N
i,j=1, where g̃i,j =

∫
I
dxxN−iϕj(x). With this notation we can rewrite Eq. (3.7) as

E (sλ(x1, . . . , xN )) = det

[
N∑

ν=1

Aλi+N−i,νQν,j

]N

i,j=1

. (3.9)

Since Q is the inverse of G̃, we have

N∑

j=1

g̃i,jQj,k = δi,k, 1 ≤ i, k ≤ N, (3.10)

or
N∑

j=1

AN−i,jQj,k = δi,k, 1 ≤ i, k ≤ N. (3.11)

The following Proposition will imply Theorem 2.2.

3Notice that due to (2.3) we have det[G] = (−1)N(N−1)/2 det[G̃].
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Proposition 3.2. Let {hr,s}, with integer r ∈ Z and non-negative integer s ∈
Z≥0, be a collection of indeterminates defined by

hr,s ≡

⎧
⎪⎨

⎪⎩

∑N
ν=1 AN+r−s−1,νQν,s+1, s ∈ {0, 1, . . . , N − 1}, r ≥ 0,

δr,0, s ≥ N, r ≥ 0,

0, s ≥ 0, r < 0.
(3.12)

The collection of indeterminates {hr,s} satisfies condition (3.3). Moreover, with
this collection of indeterminates, {hr,s} formula (3.6) holds true for an arbi-
trary Young diagram λ, and for an arbitrary k ≥ l(λ).

Proof. We divide the proof of into several steps. First, the collection of inde-
terminates {hr,s} defined by (3.12) is shown to satisfy condition (3.3). Next,
we prove that Eq. (3.6) holds true for an arbitrary Young diagram λ, and for
an arbitrary k ≥ l(λ).

Step 1. First, we want to show that

det [hλi−i+j,j−1]
k
i,j=1 = det [hλi−i+j,j−1]

l(λ)
i,j=1 , (3.13)

for any k ≥ l(λ).
Let λ be an arbitrary Young diagram and assume that k > l(λ). Consider

the diagonal entries of the k × k matrix

(hλi−i+j,j−1)
k
i,j=1

for i = j ∈ {l(λ)+1, . . . , k}. By definition of the hr,s these entries are all equal
to 1, since λi = 0 for i ∈ {l(λ)+1, . . . , k} implying h0,s = 1 by condition (3.3).
For r < 0, we have hr,s = 0 (see Eq. (3.12)) and the matrix (hλi−i+j,j−1)

k
i,j=1

has the form
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝


 . . . 
 | 
 . . . . . . . . . 

...

. . .
... | ...

. . . . . . . . .
...


 . . . 
 | 
 . . . . . . . . . 

−− −− −− −− −− −− −− −− −−
0 . . . 0 | 1 
 . . . . . . 

...

... | 0 1 
 . . . 

...

. . .
... | ...

. . . . . . . . .
...

...
... | ...

. . . . . . 

0 . . . 0 | 0 . . . . . . 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where the first row from the top with zeros has the label l(λ) + 1, and the
first column from the left with ones has the label l(λ)+ 1. The determinant of
such a block matrix reduces to the product of the determinants of the blocks,
which gives relation (3.13).

Step 2. Assume now that l(λ) > N . Then it trivially holds that

E (sλ(x1, . . . , xN )) = 0 ,
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by the very definition of the Schur polynomials. Here, we would like to show
that it equally holds that

det [hλi−i+j,j−1]
l(λ)
i,j=1 = 0 ,

if l(λ) > N .
We have hr,s = δr,0 for s ≥ N and r ≥ 0. This implies that the matrix

(hλi−i+j,j−1)
l(λ)
i,j=1, which we can write out as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

hλ1,0 
 . . . 
 | hλ1+N,N . . . . . . hλ1−1+l(λ),l(λ)−1


 hλ2,1
. . .

... | ...
...

...
. . . . . . 
 | ...

...

 . . . 
 hλN ,N−1 | hλN+1,N . . . . . . hλN −N+l(λ),l(λ)−1

−− −− −− −− −− −− −− −− −−

 . . . . . . 
 | hλN+1,N . . . . . . hλN+1−N−1+l(λ),l(λ)−1

...
... | 


. . .
...

...
... | ...

. . . . . .
...


 . . . . . . 
 | 
 . . . 
 hλl(λ),l(λ)−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

has the form
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

hλ1,0 
 . . . 
 | 0 . . . . . . 0


 hλ2,1
. . .

... | ...
...

...
. . . . . . 
 | ...

...

 . . . 
 hλN ,N−1 | 0 . . . . . . 0

−− −− −− −− −− −− −− −− −−

 . . . . . . 
 | 0 . . . . . . 0
...

... | 

. . .

...
...

... | ...
. . . . . .

...

 . . . . . . 
 | 
 . . . 
 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Thus, we can again apply the formula for determinants of block matrices to
obtain

det [hλi−i+j,j−1]
l(λ)
i,j=1 = det [hλi−i+j,j−1]

N
i,j=1 · 0 = 0 ,

which is true for any l(λ) > N and therefore condition (3.6) is satisfied in this
case.

Step 3. Now we wish to prove that

N∑

ν=1

AN−i+λi,νQν,j = hλi−i+j,j−1 (3.14)

is valid for any Young diagram with l(λ) ≤ N , and for 1 ≤ i, j ≤ N . Assume
that λi − i + j ≥ 0. Then (3.14) turns into the first equation in (3.12) with
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r = λi − i + j, s = j − 1. Assume that λi − i + j < 0, then i − λi > j. Clearly,
i − λi ∈ {1, . . . , N} in this case, and we have

N∑

ν=1

AN−i+λi,νQν,j = δi−λi,j = 0,

where we have used Eq. (3.11). Also, if λi − i + j < 0, and 1 ≤ i, j ≤ N , then
hλi−i+j,j−1 = 0 as it follows from Eq. (3.12). We conclude that (3.14) holds
true for λi − i + j < 0 as well.

Finally, the results obtained in Step 1-Step 3 together with formula (3.9)
give the desired formula (3.6). �

4. Proof of Theorem 2.9

Denoting by SK the symmetric group of a set of K variables with its elements
being the permutations of these, we will utilise the following Lemma that was
proven in [22].

Lemma 4.1. Let L be an integer with 1 ≤ L ≤ N , and let x1, . . . , xN and
y1, . . . , yL denote two sets of parameters that are pairwise distinct. Then the
following identity holds

L∏

l=1

yN−L
l

∏N
n=1(yl − xn)

=
∑

σ∈SN /(SN−L×SL)

ΔL(xσ(1), . . . , xσ(L))

×
ΔN−L(xσ(L+1), . . . , xσ(N))

∏L
n=1 xN−L

σ(n)

ΔN (xσ(1), . . . , xσ(N))
∏L

n,l=1(yl − xσ(n))

(4.1)

on the coset of the permutation group.

As shown in [22], this follows from the Cauchy–Littlewood formula and
the determinantal formula for the Schur polynomials (2.12). We can use this
identity to reduce the number of variables in the inverse characteristic poly-
nomials from N to L. Applied to the averages of products and ratios of char-
acteristic polynomials, we obtain

E

[∏M
m=1 DN (zm)
∏L

l=1 DN (yl)

]

=
N !

(N − L)!L!ZN

[
N∏

n=1

∫

I

dxn

M∏

m=1

(zm − xn)

]

det[ϕl(xk)]Nk,l=1

×
∏L

k=1

(
xk

yk

)N−L

∏L
n,l=1(yl − xn)

ΔL(x1, . . . , xL)ΔN−L(xL+1, . . . , xN ) , (4.2)

where we used the fact that each term in the sum over permutations gives the
same contribution to the expectation. Hence, we can undo the permutations
under the sum by a change of variables and replace the sum over SN/(SN−L ×
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SL) by the cardinality of the coset space N !/(N − L)!L!. Next, we expand the
determinant over the det [ϕl(xk)]Nk,l=1 and then separate the integration over
the first L variables xl=1,...,L and the following N − L variables xn=L+1,...,N ,
by also splitting the characteristic polynomials accordingly. This gives

E

[∏M
m=1 DN (zm)
∏L

l=1 DN (yl)

]

=
N !

(N − L)!L!ZN

∑

σ∈SN

sgn (σ)

×
[

L∏

l=1

∫

I

dxl ϕσ(l)(xl)
xN−L

l

yN−L
l

∏M
m=1(zm − xl)
∏L

j=1(yj − xl)

]

ΔL(x1, . . . , xL)

×
[

N∏

k=L+1

∫

I

dxk ϕσ(k)(xk)
M∏

m=1

(zm − xk)

]

ΔN−L(xL+1, . . . , xN ) .

(4.3)
Because we are aiming at an expression that will be amenable to taking the
large-N limit, we now focus on the integrals over N −L variables in the second
line, which we denote by J . Here, we make use of one of the properties of
the Vandermonde determinant, namely the absorption of the M characteristic
polynomials in J into a larger Vandermonde determinant, see (A.2), to write

J =

[
N∏

k=L+1

∫

I

dxk ϕσ(k)(xk)

]
ΔN−L+M (z1, . . . , zM , xL+1, . . . , xN )

ΔM (z1, . . . , zM )
.

We use the representation (A.1), pull the integrations
∫

I
dxk ϕσ(k)(xk) into

the corresponding columns, and use definition (2.3) of the generalised moment
matrix to obtain

J =
1

ΔM (z1, . . . , zM )

×

∣
∣
∣
∣
∣
∣
∣
∣
∣

zN+M−L−1
1 . . . zN+M−L−1

M gN+M−L,σ(L+1) . . . gN+M−L,σ(N)

...
...

...
...

...
...

z1 . . . zM g2,σ(L+1) . . . g2,σ(N)

1 . . . 1 g1,σ(L+1) . . . g1,σ(N)

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Property (2.17) of invertible polynomial ensembles enables us to rewrite J as

J =
1

ΔM (z1, . . . , zM )

×

∣
∣
∣
∣
∣
∣
∣
∣
∣

zN+M−L−1
1 . . . zN+M−L−1

M πN+M−L−1(aσ(L+1)) . . . πN+M−L−1(aσ(N))
...

...
...

...
...

...
z1 . . . zM π1(aσ(L+1)) . . . π1(aσ(N))
1 . . . 1 π0(aσ(L+1)) . . . π0(aσ(N))

∣
∣
∣
∣
∣
∣
∣
∣
∣

.
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Property (2.18) allows us to replace again the determinant of monic polyno-
mials by a Vandermonde determinant of size N − L + M to obtain

J =
ΔN−L(aσ(L+1), . . . , aσ(N))

ΔM (z1, . . . , zM )

×
⎡

⎣
M∏

j=1

∫

I′
dtjF (tj , zj)

N∏

n=L+1

(tj − aσ(n))

⎤

⎦ΔM (t1, . . . , tM ).

Let us come back to the expectation value of characteristic polynomials in the
form (4.3) and insert what we have derived for J above. This gives

E

[∏M
m=1 DN (zm)
∏L

l=1 DN (yl)

]

=
N !

(N − L)!L!ZNΔM (z1, . . . , zM )

×
⎡

⎣
M∏

j=1

∫

I′
dtjF (tj , zj)

N∏

n=1

(tj − an)

⎤

⎦ΔM (t1, . . . , tM )

×
[

L∏

l=1

∫

I

dxl

(
xl

yl

)N−L ∏M
m=1(zm − xl)
∏L

j=1(yj − xl)

]

ΔL(x1, . . . , xL)

×
∑

σ∈SN

sgn (σ)ΔN−L(aσ(L+1), . . . , aσ(N))
L∏

l=1

ϕ(aσ(l), xl)
∏M

j=1(tj − aσ(l))
.(4.4)

The integrals are now put into a form to apply the following Lemma that will
allow us to simplify (and eventually get rid of) the sum over permutations.

Lemma 4.2. Let SN denote the permutation group of {1, . . . , N}, and let SL

be the subgroup of SN realised as the permutation group of the first L elements
{1, . . . , L}. Also, let SN−L be the subgroup of SN realised as the permutation
group of the remaining N − L elements {L + 1, . . . , N}. Assume that F is a
complex valued function on SN which satisfies the condition F (σh) = F (σ) for
each σ ∈ SN , and each h ∈ SL × SN−L. Then we have
∑

σ∈SN

F (σ) = (N − L)!L!
∑

1≤l1<···<lL≤N

F
((

l1, . . . , lL, 1, . . . , ľ1, . . . , ľL . . . , N
))

,

(4.5)

where (i1, . . . , iN ) is a one-line notation for the permutation
(

1 2 . . . N
i1 i2 . . . iN

)

,

and notation ľp means that lp is removed from the list.

Proof. Recall that if G is a finite group, and H is its subgroup, then there
are transversal elements t1, . . . , tk ∈ G for the left cosets of H such that G =
t1H�· · ·�tkH, where � denotes disjoint union. It follows that if F is a function
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on G with the property F (gh) = F (g) for any g ∈ G, and any h ∈ H, then

∑

g∈G

F (g) = |H|
k∑

i=1

F (ti) , (4.6)

where |H| denotes the number of elements in H. In our situation G = SN , H =
SL×SN−L, and each transversal element can be represented as a permutation

(
l1, . . . , lL, 1, . . . , ľ1, . . . , ľL . . . , N

)
,

written in one-line notation, where 1 ≤ l1 < · · · < lL ≤ N . Moreover, each
collection of numbers l1, . . ., lL satisfying the condition 1 ≤ l1 < · · · < lL ≤ N
gives a transversal element for the left cosets of H = SL × SN−L in G = SN .
We conclude that Eq. (4.6) is reduced to Eq. (4.5). �

Assume that Φ(x1, . . . , xL) is antisymmetric under permutations σ of its
L variable, i.e.

Φ(xσ(1), . . . , xσ(L)) = sgn (σ)Φ(x1, . . . , xL),

and that L ≤ N . Let F be the function on SN defined by

F (σ) = sgn (σ)ΔN−L(aσ(L+1), . . . , aσ(N))

×
[

L∏

k=1

∫

I

dxkf(aσ(k), xk)

]

Φ(x1, . . . , xL) ,

where f is a function of two variables. Clearly, F satisfies the condition F (σh) =
F (σ) for each σ ∈ SN , and each h ∈ SL ×SN−L. Application of Lemma 4.2 to
this function gives
∑

σ∈SN

F (σ) = (N − L)!L!
∑

1≤l1<···<lL≤N

sgn
((

l1, . . . , lL, 1, . . . , ľ1, . . . , ľL . . . , N
))

× Δ(l1,...,lL)
N−L (a1, . . . , aN )

[
L∏

k=1

∫

I

dxkf(alk , xk)

]

Φ(x1, . . . , xL) ,

where the reduced Vandermonde determinant is defined in (A.6). Taking into
account that

sgn
((

l1, . . . , lL, 1, . . . , ľ1, . . . , ľL . . . , N
))

= (−1)l1+···+lL− L(L+1)
2 , (4.7)

we obtain the formula

∑

σ∈SN

sgn (σ)ΔN−L(aσ(L+1), . . . , aσ(N))

[
L∏

k=1

∫

I

dxkf(aσ(k), xk)

]

Φ(x1, . . . , xL)

= (N − L)!L!
∑

1≤l1<···<lL≤N

(−1)l1+···+lL− L(L+1)
2 Δ(l1,...,lL)

N−L (a1, . . . , aN )

×
[

L∏

k=1

∫

I

dxkf(alk , xk)

]

Φ(x1, . . . , xL) ,

(4.8)
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valid for any antisymmetric function Φ(xσ(1), . . . , xσ(L)), and for any function
f(x, y) such that the integrals in the equation above exist.

Formula (4.8) enables us to rewrite Eq. (4.4) as

E

[∏M
m=1 DN (zm)
∏L

l=1 DN (yl)

]

=
N !

ZNΔM (z1, . . . , zM )

⎡

⎣
M∏

j=1

∫

I′
dtjF (tj , zj)

N∏

n=1

(tj − an)

⎤

⎦ΔM (t1, . . . , tM )

×
[

L∏

l=1

∫

I

dxl

(
xl

yl

)N−L ∏M
m=1(zm − xl)
∏L

j=1(yj − xl)

]

ΔL(x1, . . . , xL)

×
∑

1≤l1<···<lL≤N

(−1)l1+···+lL− L(L+1)
2 Δ(l1,...,lL)

N−L (a1, . . . , aN )

×
L∏

i=1

ϕ(ali , xi)
∏M

j=1(tj − alj )
.

(4.9)
We note that due to (A.7) it holds

Δ(l1,...,lL)
N−L (a1, . . . , aN )
ΔN (a1, . . . , aN )

=
(−1)l1+···+lL−LΔL (al1 , . . . , alL)
∏N

n=1
n�=l1

(al1 − an) . . .
∏N

n=1
n�=lL

(alL − an)
. (4.10)

In addition, we apply (2.19) to eliminate ZN , cancel signs, and see that the
strict ordering of the indices l1 < l2 < · · · < lL can be relaxed,

L!
∑

1≤l1<···<lL≤N

→
N∑

l1=1

· · ·
N∑

lL=1

.

Finally, we see that the sum in formula (4.9) can be written as contour inte-
grals, because of the formula

1
2πi

∮

C

du
f(u)

∏N
n=1(u − an)

=
N∑

l=1

f(al)
∏N

n=1
n�=l

(al − an)
, (4.11)

where the contour C encircles the points a1, . . . , aN counter-clockwise. The
leads to the formula in the statement of Theorem 2.9. �

5. Special Cases

In Proposition 2.10, we have used Eq. (2.33) in the case M = L = 1. Another
case of interest is that corresponding to products of characteristic polynomials.
In this case L = 0, and we obtain that only the first set of integrals remains
in (2.33), i.e.

E

[
M∏

m=1

DN (zm)

]

=
det[Bi(zj)]Mi,j=1

ΔM (z1, . . . , zM )
, (5.1)
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where

Bi(z) =
∫

I′
dsF (s, z) sM−i

N∏

n=1

(s − an) , (5.2)

after pulling the M integrations over the sj ’s into the Vandermonde deter-
minant of size M . This result also could have been directly computed using
Lemma A.2.

As a final special case of interest, we look at the ratio of M + 1 charac-
teristic polynomials over a single one at L = 1. This object is needed in the
application to finite temperature QCD, cf. [45]. Theorem 2.9 gives

E

[∏M+1
m=1 DN (zm)

DN (y)

]

=
1

ΔM+1(z1, . . . , zM+1)

×
⎛

⎝
M+1∏

j=1

∫

I′
dsjF (sj , zj)

N∏

n=1

(sj − an)

⎞

⎠ΔM+1(s1, . . . , sM+1)

×
∫

I

dv

(
v

y

)N−1 ∏M+1
m=1 (zm − v)

(y − v)

×
∮

C

du

2πi

1
∏N

n=1(u − an)

ϕ(u, v)
∏M+1

j=1 (sj − u)
. (5.3)

Following [19], we may use the Lagrange extrapolation formula

1
∏M+1

j=1 (u − sj)
=

M+1∑

m=1

1
u − sm

M+1∏

j=1
j �=m

1
sm − sj

, (5.4)

to rewrite
1

∏M+1
j=1 (sj − u)

ΔM+1(s1, . . . , sM+1) =

(−1)M+1
M+1∑

m=1

(−1)m−1

u − sm
Δ(m)

M (s1, . . . , sM+1) . (5.5)

This leads to the following rewriting of (5.3)

E

[∏M+1
m=1 DN (zm)

DN (y)

]

=
(−1)M

ΔM+1(z1, . . . , zM+1)

∫

I

dv

(
v

y

)N−1

×
∏M+1

m=1 (zm − v)
(y − v)

∮

C

du

2πi

ϕ(u, v)
∏N

n=1(u − an)



Vol. 21 (2020) Averages of Characteristic Polynomials in Polynomial 3993

×
M+1∑

m=1

(−1)m

⎛

⎝
M+1∏

j=1

∫

I′
dsjF (sj , zj)

N∏

n=1

(sj − an)

⎞

⎠

× 1
u − sm

Δ(m)
M (s1, . . . , sM+1)

=
(−1)M

ΔM+1(z1, . . . , zM+1)

∫

I

dv

(
v

y

)N−1

×
∏M+1

m=1 (zm − v)
(y − v)

∮

C

du

2πi

ϕ(u, v)
∏N

n=1(u − an)

×det

⎡

⎢
⎢
⎢
⎣

A(z1, u) . . . A(zM+1, u)
B1(z1) . . . B1(zM+1)

... . . .
...

BM (z1) . . . BM (zM+1)

⎤

⎥
⎥
⎥
⎦

, (5.6)

where we have defined

A(z, u) =
∫

I′
dsF (s, z)

−1
u − s

N∏

n=1

(s − an) . (5.7)

In the second step in (5.6), we have first pulled all the s-integrals except the
one over sm into the Vandermonde determinant Δ(m)

M (s1, . . . , sM+1), leading to
a determinant of size M with matrix elements Bi(zj) (5.2). We then recognise
that the sum is a Laplace expansion of a determinant of size M +1 with respect
to the first row, containing the matrix elements A(zj , u) (5.7). This reveals the
determinantal form of the corresponding kernel.

Fyodorov, Grela, and Strahov [24] considered the probability density
defined by4

PL
N (x1, . . . , xN ) =

1
ZL

N

ΔN (x1, . . . , xN ) det
[
xL

k e−(xk+al)I0 (2
√

alxk)
]N

k,l=1

(5.8)
on R

N
+ . Note that this polynomial ensemble is invertible only for L = 0 as it

follows from Eqs. (2.30) and (2.32). However, computations of different aver-
ages with respect to PL

N can be reduced to those with respect to PL=0
N , i.e.

with respect to an invertible ensemble. Indeed, we have

EP L
N

(f (x1, . . . , xN )) =
EP L=0

N

(
f (x1, . . . , xN )

∏L
l=1 DN (zl)

)

EP L=0
N

(∏L
l=1 DN (zl)

)

∣
∣
∣
∣
z1,...,zL=0

(5.9)
for any function f (x1, . . . , xN ) such that the expectations in the formula above
exist. In particular, we can reproduce the results of [24] for the expectation
value of a single characteristic polynomial, its inverse or a single ratio. Without
going much into detail, we need two ingredients for this check. First, in order to

4We use a different convention than [24] where the factor e−al is part of the normalisation,
cf. (2.10).
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perform the limit of vanishing arguments in Eq. (5.9), it is useful to antisym-
metrise the product of the first L functions F (tj , zj) using the Vandermonde
determinant ΔL+1(t1, . . . , tL+1) in (2.33). We are then led to consider

lim
z1,...,zL→0

det [I0(2
√

zitj)]
L
i,j=1

ΔL(z1, . . . , zL)
= lim

z→0
det

[
tj−1
i

(j − 1)!
Ij−1(2

√
zti)√

zti
j−1

]L

i,j=1

=
(−1)L(L−1)/2

∏L
j=1(j − 1)!2

ΔL(t1, . . . , tL) , (5.10)

after first taking the limit of degenerate arguments, which is then sent to
zero. Obviously, we first separate the remaining non-vanishing argument zL+1

from the Vandermonde determinant by ΔL(z1, . . . , zL)
∏L

l=1(zl − zL+1) =
ΔL+1(z1, . . . , zL+1).

Second, we need an equivalent formulation of Propositions 3.1 and 3.5
employed in [24], which are due to [19,21], respectively.5

Proposition 5.1.

EP

[
1

DN (y)

]

=
1

det G

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

g1,1 . . . g1,N

...
. . . . . .

gN−1,1 . . . gN−1,N
∫∞
0

duϕ1(u)
y−u

(
u
y

)N−1

. . .
∫∞
0

duϕN (u)
y−u

(
u
y

)N−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
∫ ∞

0

du

y − u

(
u

y

)N−1 N∑

j=1

cN,jϕj(u) , (5.11)

where C is the inverse of the N ×N moment matrix G, and ci,j are the matrix
elements of CT .

Proof. Eqs. (5.11) were stated in [24] following [19,21], without the factors
of (u/y)N−1. The equivalence of the two statements can be seen as follows.
Expanding the geometric series inside the determinant without these factors,
we have

1
det G

∣
∣
∣
∣
∣
∣
∣
∣
∣

g1,1 . . . g1,N

...
. . .

...
gN−1,1 . . . gN−1,N∫∞

0
duϕ1(u)

∑∞
j=0

uj

yJ+1 . . .
∫∞
0

duϕN (u)
∑∞

j=0
uj

yJ+1

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

g1,1 . . . g1,N

...
. . .

...
gN−1,1 . . . gN−1,N∑∞
j=N

gj,1
yJ+1 . . .

∑∞
j=N

gj,N

yJ+1

∣
∣
∣
∣
∣
∣
∣
∣
∣

det[ci,j ]Ni,j=1 .

If we perform the integrals in the last row, we obtain infinite series over gen-
eralised moment matrices gk,l, the first N − 1 of which can be removed by

5Notice the different convention for ΔN used in [19,21,24].
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subtraction of the upper N − 1 rows. Rewriting the last row as integrals and
resumming the series, we arrive at the first line of (5.11).

The second line in (5.11) is obtained as follows. Using that det[ci,j ]Ni,j=1 =
1/ZN and then multiplying the matrix C with the matrix inside the determi-
nant from the right, this leads to an identity matrix, except for the last row,
as C is the inverse of the finite, N ×N dimensional matrix. Laplace expanding
with respect to the last column leads to the desired result. �

Employing Proposition 5.1 in [24], it is not difficult to see that from our
Theorem 2.9 together with (5.10) we obtain an equivalent form of [24, Theorem
4.1] for a single characteristic polynomial, [24, Theorem 3.4] for its inverse and
[24, Theorem 5.1] for a single ratio.
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Appendix A. Properties of Vandermonde Determinants

In this appendix, we first define the Vandermonde determinant in various
equivalent ways. We then collect several of its properties when extending
the number of variables by multiplication, and when reducing it by division
through the corresponding factors.

Definition A.1. The Vandermonde determinant of N pairwise distinct vari-
ables x1, . . . , xN is denoted by ΔN (x1, . . . , xN ) and can be represented in the
following equivalent ways:

ΔN (x1, . . . , xN ) = det
[
xN−i

j

]N
i,j=1

=
∏

1≤i<j≤N

(xi − xj) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

xN−1
1 . . . xN−1

N
...

...
...

x1 . . . xN

1 . . . 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

= (−1)N(N−1)/2 det
[
xi−1

j

]N
i,j=1

.

(A.1)
For N = 1 it follows that Δ1(x1) = 1, and we also formally define Δ0 = 1 in
the absence of parameters.

The Vandermonde determinant can be extended from N to N + M vari-
ables in the following way, when multiplied by M characteristic polynomials.

Lemma A.2. The following extension formula holds for a Vandermonde deter-
minant of size N . Let the M parameters {z1, . . . , zM} be pairwise distinct.
Then it holds that

M∏

m=1

N∏

n=1

(xn − zm)ΔN (x1, . . . , xN ) =
ΔN+M (x1, . . . , xN , z1, . . . , zM )

ΔM (z1, . . . , zM )
.

(A.2)

Proof. We proceed by induction over M . Defining z1 ≡ xN+1, the M = 1 case
can seen from inserting the definition (A.1) in product form

N∏

n=1

(xn − z1)Δ(x1, . . . , xN ) =
N∏

n=1

(xn − xN+1)
∏

1≤i<j≤N

(xi − xj)

=
∏

1≤i<j≤N+1

(xi − xj)

= ΔN+1(x1, . . . , xN , z1) .

(A.3)
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We now assume that Eq. (A.2) is valid for any M . The induction step M →
M + 1 is straightforward:

M+1∏

m=1

N∏

n=1

(xn − zm)ΔN (x1, . . . , xN )

=
N∏

n=1

(xn − zM+1)
ΔN+M (x1, . . . , xN , z1, . . . , zM )

ΔM (z1, . . . , zM )

=
ΔN+M+1(x1, . . . , xN , z1, . . . , zM+1)

ΔM+1(z1, . . . , zM+1)
.

(A.4)

Using the induction assumption, multiplying by a factor of unity
∏M

l=1(zl−zM+1)∏M
l=1(zl−zM+1)

and using the definition (A.1) in product form, the formula (A.2) for M + 1
follows. �

For extended Vandermonde determinants, it holds that

ΔN+M (x1, . . . , xN , z1, . . . , zM ) = (−1)NMΔN+M (z1, . . . , zM , x1, . . . , xN ) ,
(A.5)

by permuting rows in the determinant form in (A.1).

Let us introduce a notation for the Vandermonde determinant with a
reduced number of indices. For L ≤ N ordered indices l1, . . . , lL, we define the
reduced Vandermonde determinant of size N − L by

Δ(l1,...,lL)
N−L (x1, . . . , xN ) ≡ ΔN−L(x1, . . . , xl1−1, xl1+1, . . . , xlL−1, xlL+1, . . . , xN ) ,

(A.6)
where the parameters xj with j = l1, . . . , lL are absent. From Definition A.1,
we obtain that for L = N both sides are equal to unity. We obtain the reduced
Vandermonde by the following formula.

Lemma A.3. For N ≥ L, the Vandermonde determinant of size N−L obtained
by removing the variables xlj , with 1 ≤ l1 < · · · < lL ≤ N , from the variables
x1, . . . , xN can be obtained via

Δ(l1,...,lL)
N−L (x1, . . . , xN ) =

L∏

j=1

(−1)N−lj
ΔN (x1, . . . , xN )ΔL(xl1 , . . . , xlL)

∏L
j=1

∏N
n=1
n�=lj

(xn − xlj )
.

(A.7)
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Proof. The proof is again done by induction. For L = 1, we have for the
right-hand side of (A.7)6

(−1)N−l1
ΔN (x1, . . . , xN )
∏N

n=1
n�=l1

(xn − xl1)

=
l1−1∏

n=1

1
(xn − xl1)

N∏

n=l1+1

−1
(xn − xl1)

∏

1≤i<j≤N

(xi − xj)

=
∏

1≤i<j≤N
i,j �=l1

(xi − xj) = Δ(l1)
N−1(x1, . . . , xN ) .

(A.8)

For the induction step, we assume that (A.7) holds for any N > L ≥ 1. From
the definition of the reduced Vandermonde (A.6) as a product, it is not difficult
to see that

Δ(l1,...,lL)
N−L (x1, . . . , xN )

= (−1)N−lL+1

N∏

n=1
n�=l1...,lL+1

(xn − xlL+1) Δ(l1,...,lL+1)
N−L−1 (x1, . . . , xN )

=
N∏

n=1
n�=lL+1

(xn − xlL+1)
(−1)N−lL+1

∏L
j=1(xlj − xlL+1)

Δ(l1,...,lL+1)
N−L−1 (x1, . . . , xN ) .

(A.9)

Using the induction assumption for the left-hand side and solving this equation
for the reduced Vandermonde determinant of size N −L−1 on the right hand
side, we obtain

Δ(l1,...,lL+1)
N−(L+1) (x1, . . . , xN )

=
(−1)N−lL+1

∏L
j=1(xlj − xlL+1)

∏N
1=n�=lL+1

(xn − xlL+1)

ΔN (x1, . . . , xN )ΔL(xl1 , . . . , xlL)
∏L

j=1(−1)N−lj
∏N

n=1
n�=lj

(xn − xlj )

=
L+1∏

j=1

(−1)N−lj
ΔN (x1, . . . , xN )ΔL+1(xl1 , . . . , xlL+1)

∏L+1
j=1

∏N
n=1
n�=lj

(xn − xlj )
,

(A.10)

which finishes the proof. �

References

[1] Akemann, G., Vernizzi, G.: Characteristic polynomials of complex random
matrix models. Nucl. Phys. B 660, 532–556 (2003). arXiv:hep-th/0212051

[2] Akemann, G., Baik, J., Di Francesco, P. (eds.): The Oxford Handbook of Ran-
dom Matrix Theory. Oxford University Press, Oxford (2011)

6In our conventions empty products equal to unity.

http://arxiv.org/abs/hep-th/0212051


Vol. 21 (2020) Averages of Characteristic Polynomials in Polynomial 3999

[3] Akemann, G., Kieburg, M., Wei, L.: Singular value correlation functions for
products of Wishart random matrices. J. Phys. A Math. Theor. 46, 275205
(2013). arXiv:1303.5694

[4] Akemann, G., Ipsen, J.R.: Recent exact and asymptotic results for products of
independent random matrices. Acta Physica Polonica B 46, 1747–1784 (2015).
arXiv:1502.01667

[5] Akemann, G., Strahov, E.: Dropping the independence: singular values for prod-
ucts of two coupled random matrices. Commun. Math. Phys. 345, 101–140
(2016). arXiv:1504.02047

[6] Akemann, G., Burda, Z., Kieburg, M.: From integrable to chaotic systems: uni-
versal local statistics of Lyapunov exponents. Europhys. Lett. 126, 40001 (2019).
arXiv:1809.05905

[7] Baik, J., Deift, P., Strahov, E.: Products and ratios of characteristic polyno-
mials of random Hermitian matrices. J. Math. Phys. 44, 3657–3670 (2003).
arXiv:math-ph/0304016

[8] Bleher, P.M., Kuijlaars, A.B.J.: Random matrices with external source and
multiple orthogonal polynomials. Int. Math. Res. Not. 2004, 109–129 (2004).
arXiv:math-ph/0307055

[9] Bleher, P.M., Kuijlaars, A.B.J.: Large n limit of Gaussian random matrices with
external source. Part III: double scaling limit. Commun. Math. Phys. 270, 481–
517 (2007). arXiv:math-ph/0602064

[10] Borodin, A.: Biorthogonal ensembles. Nucl. Phys. B 536, 704–732 (1998).
arXiv:math/9804027

[11] Borodin, A., Strahov, E.: Averages of characteristic polynomials in ran-
dom matrix theory. Commun. Pure Appl. Math. 59, 161–253 (2006).
arXiv:math-ph/0407065

[12] Borodin, A., Olshanski, G., Strahov, E.: Giambelli compatible point processes.
Adv. Appl. Math. 37, 209–248 (2006). arXiv:math-ph/0505021

[13] Breuer, J., Strahov, E.: A universality theorem for ratios of random characteristic
polynomials. J. Approx. Theo. 164, 803–814 (2012). arXiv:1201.0473
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[16] Brézin, E., Hikami, S.: Intersection numbers of Riemann surfaces from Gaussian
matrix models. JHEP 0710, 096 (2007). arXiv:0709.3378
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