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Abstract. Integrability condition of Hamiltonian perturbations of inte-
grable Hamiltonian PDEs of hydrodynamic type up to the second-order
approximation is considered. Under a nondegeneracy assumption, we show
that the Hamiltonian perturbation at the first-order approximation is in-
tegrable if and only if it is trivial, and that under a further assumption,
the Hamiltonian perturbation at the second-order approximation is inte-
grable if and only if it is quasi-trivial.
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1. Introduction and the Statements of the Results

Let M be an n-dimensional complex manifold. Consider the following system
of Hamiltonian PDEs of hydrodynamic type:

∂t

(
vα

)
= ηαβ∂x

(
δH0

δvβ(x)

)
, v = (v1, . . . , vn) ∈ M, x ∈ S1, t ∈ R , (1.1)

where (ηαβ) is a given symmetric invertible constant matrix, H0 :=
∫

S1 h0(v) dx

is a given local functional (called the Hamiltonian), and δ/δvβ(x) denotes the
variational derivative. Here and below, free Greek indices take the integer val-
ues 1, . . . , n, and the Einstein summation convention is assumed for repeated
Greek indices with one-up and one-down; the matrix (ηαβ) and its inverse (ηαβ)
are used to raise and lower Greek indices, e.g., vα := ηαβvβ . The Hamiltonian
density h0(v) is assumed to be a holomorphic function of v. More explicitly,
Eq. (1.1) have the form:

∂t

(
vα

)
= Aα

γ (v) vγ
x , where Aα

γ (v) := ηαβ ∂2h0(v)
∂vβ∂vγ

.

Basic assumption: (Aα
γ (v)) has pairwise distinct eigenvalues λ1(v), . . . , λn(v)

on an open dense subset U of M .
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Let us perform a change of variables (v1, . . . , vn) → (R1, . . . , Rn) with
non-degenerate Jacobian locally on U . We call R1, . . . , Rn a complete set of
Riemann invariants, if evolutions along R1, . . . , Rn are all diagonal, namely,

∂t(Ri) = Vi(R) ∂x(Ri) , i = 1, . . . , n , (1.2)

where Vi’s are some functions of R = (R1, . . . , Rn). Below, free Latin indices
take the integer values 1, . . . , n unless otherwise indicated. Clearly, Eq. (1.2)
imply that the gradients of Riemann invariants are eigenvectors of (Aα

β ), namely,

Aα
β Ri,α = λi Ri,β , Vi = λi (1.3)

with Ri,α := ∂α(Ri). Similar notations like Ri,j := ∂j(Ri), Ri,jk := ∂j∂k(Ri),
. . . will also be used. Here and below, ∂α := ∂vα , ∂i := ∂Ri

.
It was proven by Tsarev [23] that the integrability of Eq. (1.1) is equiv-

alent to the existence of complete Riemann invariants. Here, “integrability”
means existence of sufficiently many conservation laws/infinitesimal symme-
tries (See Definition 2.2). It was shown by B. Dubrovin [10,11] that existence of
a complete set of Riemann invariants is equivalent to vanishing of the following
Haantjes tensor:

Hαβγ :=
(
AαρσAβφAγψ + AβρσAγφAαψ + AγρσAαφAβψ

)
Aρ

ν δσνψφ , (1.4)

where Aαβγ := ∂α∂β∂γ(h0) and δαβγφ := ηαγηβφ − ηαφηβγ . Note that Hαβγ

automatically vanishes if the signature ε(α, β, γ) = 0; so for n = 1 or for n = 2,
the system (1.1) is always integrable.

We proceed to the study of Hamiltonian perturbations [4,5,9–11,16,18]
of (1.1)

∂t(vα) = ηαβ∂x

(
δH

δvβ(x)

)
, x ∈ S1 , t ∈ R , v = (v1, . . . , vn) ∈ M .

(1.5)
Here, H :=

∫
S1 h dx =

∑∞
j=0 εjHj with Hj :=

∫
S1 hj(v, v1, v2, . . . , vj) dx is the

Hamiltonian, and hj are differential polynomials of v satisfying the following
homogeneity condition:

j∑


=1

� vα



∂hj

∂vα



= j hj , j ≥ 0 . (1.6)

We recall that the variational derivative reads

δH

δvβ(x)
=

∞∑


=0

(−∂x)


(
∂h

∂vβ



)
.

In the above formulae, vα

 := ∂


x(vα), � ≥ 0, and we recall that a differential
polynomial of v is a polynomial of v1, v2, . . . whose coefficients are holomorphic
functions of v. The ring of differential polynomials of v is denoted by Av. We
remark that according to [4,14–16,18] the Hamiltonian system (1.5) that we
are considering is general. Note that the Hamiltonian operator ηαβ∂x defines
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a Poisson bracket { , } on the space of local functionals F :=
{∫

S1 f dx | f ∈
Av[[ε]]

}
, { , } : F × F → F , by

{F,G} :=
∫

S1

δF

δvα(x)
ηαβ∂x

(
δG

δvβ(x)

)
dx , ∀ F,G ∈ F . (1.7)

It is helpful to view vα(x) as a “local functional” vα(x) =
∫

S1 vα(y) δ(y−x) dy,
called the coordinate functional. Then, one can write Eq. (1.5) in the form

∂t(vα) =
{
vα(x) , H

}
.

Clearly, a system of Hamiltonian PDEs of hydrodynamic type (1.1) can be
obtained from (1.5) simply by taking the dispersionless limit: ε → 0.

The perturbed system (1.5) is called integrable if its dispersionless limit is
integrable and each conservation law of (1.1) can be extended to a conservation
law of (1.5). In this paper, we start with a system of integrable Hamiltonian
PDEs of hydrodynamic type, and study the conditions such that the perturba-
tion (1.5) is integrable up to the second-order approximation.

Theorem 1.1. Assume that the matrix (Aα
β ) associated with (1.1) has distinct

eigenvalues λ1, . . . , λn on an open dense subset U ⊂ M . Assume that (1.1) is
integrable and denote by R =

(
R1, . . . , Rn

)
the associated complete Riemann

invariants. A Hamiltonian perturbation of (1.1) of the form H = H0 + εH1 +
O(ε2) with H0 =

∫
S1 h(v) dx, H1 =

∫
S1

∑n
i=1 pi(R)Rix dx is integrable at the

first-order approximation iff either of the following is true:
(i) it is trivial;
(ii) the following equations hold true for pi:

ωij,k − ωik,j = aij ωik + aji ωjk − aik ωij − aki ωkj , ∀ ε(i, j, k) = ±1 .
(1.8)

Here, aij and ωij are defined by

aij :=
λi,j

λi − λj
, ωij :=

pi,j − pj,i

λi − λj
, ∀ i �= j . (1.9)

In the above statement, we recall that a Hamiltonian perturbation is called
trivial if it is Miura equivalent to its dispersionless limit; for more details about
triviality, see Sect. 2. Due to Theorem 1.1, to study the integrable Hamilton-
ian perturbation (1.5) of an integrable PDE of hydrodynamic type (1.1) up
to the second-order approximation, it suffices to consider the case with van-
ishing H1. Here, it should also be noted that the basic assumption proposed
in the beginning of the paper has been assumed as it is written again in the
statement.

Theorem 1.2. Assume that the matrix (Aα
β ) associated with (1.1) has distinct

eigenvalues λ1, . . . , λn on an open dense subset U ⊂ M and that λi,i(v) �= 0
for v ∈ U . Assume that (1.1) is integrable and denote by R =

(
R1, . . . , Rn

)
the

associated complete Riemann invariants. A Hamiltonian perturbation of (1.1)
of the form

H = H0 + ε2 H2 + O(ε3) (1.10)
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with H0 =
∫

S1 h0(u) dx, H2 =
∫

S1

∑n
i,j=1 dij(R)RixRjx dx (dij = dji) is

O(ε2)-integrable iff either of the followings is true:
(i) it is quasi-trivial;
(ii) there exist functions Ci(Ri), i = 1, . . . , n such that

dii = −Ci(Ri)λi,i , (1.11)
(

dij

λi − λj

)

, k

+
(

djk

λj − λk

)

, i

+
(

dki

λk − λi

)

, j

= 0 , ∀ ε(i, j, k) = ±1 .

(1.12)

For the meaning of quasi-triviality, see Sects. 2 and 3 . Note that an equivalent
description of (1.11)–(1.12) is that the density h2 can be written in the form

h2 = −
n∑

i=1

Ci(Ri)λi,i Ri
2
x +

1
2

∑

i�=j

(λi − λj) sij Rix Rjx , (1.13)

where sij := φi,j − φj,i for some functions φi(R).
For the cases n = 1, 2, Theorems 1.1 and 1.2 agree with the results of

[20] and [9].
The paper is organized as follows. In Sect. 2, we review some terminologies

about Hamiltonian PDEs. In Sect. 3, we study integrability of (1.5) up to
the second-order approximation. An example of non-integrable perturbation
is given in Sect. 4.

2. Preliminaries

In this section, we will recall several terminologies in the theory of Hamiltonian
perturbations; more terminologies can be found in, e.g., [6–8,10,12,16,22,23].

Definition 2.1. A local functional F0 =
∫

S1 f0(v) dx is called a conserved quan-
tity of (1.1) if

dF0

dt
= 0 . (2.1)

Here, the density f0(v) is a given holomorphic function of v.

We also often call a conserved quantity a conservation law. Note that for
simplicity we will exclude the degenerate ones with f0(v) ≡ const from con-
servation laws.

Since (1.1) is a Hamiltonian system, Eq. (2.1) can be written equivalently
as {

H0, F0

}
= 0 , (2.2)

where { , } denotes the Poisson bracket defined in (1.7). (This is straightfor-
ward to verify.) According to Noether’s theorem, (2.1) is also equivalent to the
statement that the following Hamiltonian flow generated by F0

vα
s := {vα(x), F0}
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commutes with (1.1). Let (Mαβ) denote the Hessian of f , i.e., Mαβ := ∂α∂β(f).
Equation (2.1) then reads

Aα
γ Mγ

β = Mα
γ Aγ

β . (2.3)

Definition 2.2. The PDE system (1.1) is called integrable if it possesses an
infinite family of conserved quantities parametrized by n arbitrary functions
of one variable.

A necessary and sufficient condition for integrability of (1.1) is the vanish-
ing of the Haantjes tensor Hαβγ (1.4) as recalled already in the introduction.
We will assume that (1.1) is integrable and study its perturbations. Recall
that vanishing of the Haantjes tensor ensures the existence of a complete set
of Riemann invariants {R1, . . . , Rn}. We have

Aα
β Ri,α = λi Ri,β , (2.4)

Mα
β Ri,α = μi Ri,β . (2.5)

Here, μi are eigenvalues of (Mα
β ). For a generic conserved quantity F0, the

eigenvalues μ1, . . . , μn on the U are also pairwise distinct. In terms of λi, μi,
the flow commutativity is equivalent to

aij = bij , ∀ i �= j , (2.6)

where

aij :=
λi,j

λi − λj
, bij :=

μi,j

μi − μj
. (2.7)

The compatibility condition

μi,jk = μi,kj , ∀ ε(i, j, k) = ±1

for Eq. (2.6) reads as follows

(μi −μk)(aij,k −aik,j) − (μj −μk)(aij,k +aijajk +aikakj −aijaik) = 0 . (2.8)

Definition 2.2 requires that equation (2.8) is true for infinitely many F0

parametrized by n arbitrary functions of one variable. So the coefficients of
μi − μk and of μj − μk must vanish:

aij,k − aik,j = 0 , ∀ ε(i, j, k) = ±1 , (2.9)

aij,k + aijajk + aikakj − aijaik = 0 , ∀ ε(i, j, k) = ±1 . (2.10)

Note that (2.10) is implied by Eqs. (2.9) and (2.7).

Definition 2.3. A local functional F :=
∑∞

j=0 εjFj is called a conserved quan-
tity of (1.5), if

dF

dt
= 0 . (2.11)

Here, Fj =
∫

S1 fj(v, v1, . . . , vj) dx, j ≥ 0 with fj being differential polynomials
of v homogeneous of degree j.
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Conserved quantities (or say conservation laws) considered in this paper are
always of the form as in Definition 2.3.

Equation (2.11) can be equivalently written as

{H,F} = 0 ,

which is recast into an infinite sequence of equations

{H0, F0} = 0 ,

{H0, F1} + {H1, F0} = 0 ,

{H0, F2} + {H1, F1} + {H2, F0} = 0 ,

etc.

Definition 2.4. A Hamiltonian perturbation (1.5) is called integrable if its dis-
persionless limit (1.1) is integrable and generic conservation laws of (1.1) can
be extended to those of (1.5). For N ≥ 1, (1.5) is called O(εN )-integrable if its
dispersionless limit (1.1) is integrable and every generic conservation law F0

of (1.1) can be extended to a local functional F , s.t.

{H,F} = O(εN+1). (2.12)

One important tool of studying Hamiltonian perturbations is to use
Miura-type and quasi-Miura transformations [16]. Recall that a Miura-type
transformation near identity is given by an invertible map of the form

v 	→ w , wα :=
∞∑

j=0

εj Wα
j (v, v1, . . . , v
) , Wα

0 = vα , (2.13)

where Wα
j , j ≥ 0 are differential polynomials of v homogeneous of degree j

with respect to the degree assignments deg vα

 = �, � ≥ 1. A Miura-type

transformation is called canonical if there exists a local functional K, such
that

wα = vα + ε
{
vα(x),K

}
+

ε2

2!
{{

vα(x),K
}
,K

}
+ · · · (2.14)

where K =
∑∞

j=0 εjKj . Two Hamiltonian perturbations of the same form (1.5)
are called equivalent if they are related via a canonical Miura-type transfor-
mation. A Hamiltonian perturbation (1.5) is called trivial if it is equivalent
to (1.1).

A map of the form (2.13) is called a quasi-Miura transformation, if
Wα


 , � ≥ 1 are allowed to have rational and logarithmic dependence in vx.
The Hamiltonian perturbation (1.5) is called quasi-trivial or possessing quasi-
triviality, if it is related via a canonical quasi-Miura transformation to (1.1). We
recall that many interesting nonlinear PDE systems possess quasi-triviality; for
example, it was shown in [12] that if (1.5) is bihamiltonian then it is quasi-
trivial. The precise definition used in this paper for quasi-Miura transformation
will be given in the next section.
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3. Proofs of Theorems 1.1 and 1.2

In this section, we study integrability of the Hamiltonian system (1.5) up to
the second-order approximation, and prove Theorems 1.1 and 1.2 .

Assume that (1.1) is integrable.
We start with the first-order approximation. Let us first look at the in-

tegrability condition of the O(ε1)-approximation. Denote

H = H0 + εH1 + O(ε2) (3.1)

with H1 =
∫

S1 p̃α(u)uα
x dx =

∑n
i=1

∫
S1 pi(R)Rix dx. Here, the functions pα

and pi are assumed to satisfy p̃α =
∑n

i=1 piRi,α.

Proof of Theorem 1.1. Denote by θ̃αβ the exterior differential of the 1-form
p̃αduα

θ̃αβ = p̃α,β − p̃β,α . (3.2)
In the coordinate chart of the Riemann invariants R1, . . . , Rn, we have

θij = ∂iu
α θ̃αβ ∂ju

β = pi,j − pj,i .

The O(ε1)-integrability says any local functional F0 =
∫

S1 f(u) dx satisfying

{H0, F0} = 0

can be extended to a local functional

F = F0 + ε F1 + O(ε2) ,

such that
{H,F} = O(ε2). (3.3)

Here, the local function F1 is of the form

F1 =
∫

S1
q̃α(u)uα

x dx =
n∑

i=1

∫

S1
qi(R)Rix dx . (3.4)

Eq. (3.3) reads as follows

{H0, F1} + {H1, F0} = 0 ,

which is equivalent to

θ̃αγMγ
β + θ̃βγMγ

α = Θ̃αγAγ
β + Θ̃βγAγ

α (3.5)

or, in the coordinate system of the Riemann invariants, to
θij

λi − λj
=

Θij

μi − μj
, ∀ i �= j. (3.6)

Here, Θ̃αβ := q̃α,β − q̃β,α, Θij := qi,j −qj,i. The compatibility condition of (3.6)
is given by

Θij,k + Θjk,i + Θki,j = 0 , ∀ ε(i, j, k) = ±1. (3.7)

Introduce the notations

ωij =
θij

λi − λj
, i �= j . (3.8)
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Then, Eq. (3.7) imply

∂k [ωij (μi − μj) ] + ∂i [ωjk (μj − μk) ] + ∂j [ωki (μk − μi) ] = 0 ,

∀ ε(i, j, k) = ±1 ,

i.e.,

ωij,k (μi − μj) + ωij (μi,k − μj,k) + cyclic = 0 , ∀ ε(i, j, k) = ±1 . (3.9)

Substituting Eqs. (2.6), (2.7) in Eq. (3.9), we obtain

ωij,k (μi − μj) + ωij (aik(μi − μk) − ajk(μj − μk)) + cyclic = 0 , (3.10)

from which we obtain that for any pairwise distinct i, j, k,

(μi − μk)
(
ωij,k + ωij aik − ωjk aji + ωjk aki − ωki,j − ωki aij

)

+ (μj − μk)
(−ωij,k − ωij ajk + ωjk,i + ωjk aji − ωki akj + ωki aij

)
= 0 .
(3.11)

As a result, we conclude that

ωij,k + ωij aik − ωjk aji + ωjk aki − ωki,j − ωki aij = 0 , ∀ ε(i, j, k) = ±1 ,
(3.12)

− ωij,k − ωij ajk + ωjk,i + ωjk aji − ωki akj + ωki aij = 0 , ∀ ε(i, j, k) = ±1 .
(3.13)

This arguments above can be reversed to get (3.7). We therefore conclude that
integrability at the first order of approximation is equivalent to (1.8). �

Let us now consider the condition of (quasi-)triviality at the first order
of approximation. The Hamiltonian perturbation (3.1) is quasi-trivial at the
first-order approximation, if there exists a local functional

K0 =
∫

S1
k0(v) dx

such that
{H0,K0} = H1 . (3.14)

Clearly, quasi-triviality at the first-order approximation is the same as triviality
at the first-order approximation. Equation (3.14) is equivalent to the existence
of a function ψ satisfying

p̃α =
∂k0
∂uγ

Aγ
α +

∂ψ

∂uα
. (3.15)

Eliminating ψ in the above equation we find the following equivalent equation
to (3.14):

θ̃αβ =
∂2k0

∂uβ∂uγ
Aγ

α − ∂2k0
∂uα∂uγ

Aγ
β . (3.16)

In the coordinate chart of Riemann invariants, Eqs. (3.15) and (3.16) become

pi = λi k0,i + ψ,i , (3.17)
θij

λi − λj
= k0,ij + aij k0,i + aji k0,j , i �= j . (3.18)
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The compatibility condition of Eq. (3.18) is given by

∂kk0,ij = ∂jk0,ik , ∀ ε(i, j, k) = ±1,

which yields

∂k

(
θij

λi − λj
−aij k0,i −aji k0,j

)
= ∂j

(
θik

λi − λk
−aik k0,i −aki k0,k

)
. (3.19)

Substituting Eq. (3.18) into (3.19), we find

ωij,k − aij ωik − aji ωjk − k0,i aij,k + k0,j(ajiajk − aji,k)

+ k0,k(akiaij + akjaji)

= ωik,j − aik ωij − aki ωkj − k0,i aik,j + k0,k(akiakj − aki,j)

+ k0,j(ajiaik + ajkaki) . (3.20)

Finally substituting Eqs. (2.9) and (2.10) into (3.20), we have

ωij,k − aij ωik − aji ωjk = ωik,j − aik ωij − aki ωkj , ∀ ε(i, j, k) = ±1 .
(3.21)

The procedure can again be reversed. So we proved the equivalence between
(1.8) and triviality at the first-order approximation. The theorem is proved. �

We proceed with the second-order approximation. Let

H = H0 + εH1 + ε2 H2 + O(ε3) (3.22)

be a Hamiltonian perturbation of (1.1) with

H2 =
∫

S1
d̃αβ(v) vα

x vβ
x dx =

∫

S1

n∑

i,j=1

dijRixRjx dx (3.23)

and
d̃αβ = d̃βα , dij = dji := d̃αβ vα

, i vβ
, j . (3.24)

Assume as always that (1.1) is integrable, and assume that (3.22) is O(ε1)-
integrable. According to Theorem 1.1, there exists a canonical Miura-type
transformation reducing H1 to the zero functional. So the assumption that
H1 = 0 used in (1.10) in the statement of Theorem 1.1 does not lose generality
as we already pointed it out in the Introduction.

Proof of Theorem 1.2. The proof will be given with the following order: firstly,
we show that O(ε2)-integrability implies (1.11)–(1.12); secondly, we show that
(1.11)–(1.12) is equivalent to quasi-triviality at the second-order approxima-
tion; thirdly, we show that quasi-triviality implies O(ε2)-integrability.

Assume that (3.22) with H1 = 0 is O(ε2)-integrable. This means that,
for a generic conservation law F0 of (1.1), there exists a local functional of the
form

F2 =
∫

S1
D̃αβ(u)uα

x uβ
x dx =

n∑

i,j=1

∫

S1
Dij(R)RixRjx dx (3.25)

such that
{H0, F2} + {H2, F0} = 0 . (3.26)
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Note that equation (3.26) implies

Mρ
σ d̃ρβ − Mρ

β d̃ρσ = Aρ
σ D̃ρβ − Aρ

β D̃ρσ , (3.27)

Mρ
γ d̃ρσ,β + Mρ

σ d̃ρβ,γ + Mρ
β d̃ργ,σ − Mρ

σγ d̃ρβ − Mρ
σβ d̃ργ

− Mρ
βγ d̃ρσ

− Mρ
σ d̃βγ,ρ − Mρ

β d̃σγ,ρ − Mρ
γ d̃σβ,ρ

= (M ↔ A, d ↔ D) . (3.28)

In the coordinate system of the complete Riemann invariants, (3.27) and (3.28)
become

Dij

μi − μj
=

dij

λi − λj
, ∀ i �= j, (3.29)

λi,lDij + λj,iDjl + λi,jDil + (λi − λl)Dlj,i

+ (λj − λl)Dli,j + (λl − λj)Dij,l

= μi,l dij + μj,i djl + μi,j dil + (μi − μl) dlj,i + (μj − μl) dli,j

+ (μl − μj) dij,l , ∀ i, j, l . (3.30)

Here, in the derivation of (3.30), we have used (3.29).
Taking j = l = i in (3.30), we obtain

λi,i Dii = μi,i dii . (3.31)

By assumption, in the subset U of M , λi satisfy λi,i �= 0. Thus, there exist
functions Ci(R) such that

Dii = −Ci(R)μi,i , dii = −Ci(R)λi,i . (3.32)

Taking l = j and i �= j in (3.30), we find

λj,iDjj + (λi − λj)Djj,i = μj,i djj + (μj − μi) djj,i , ∀ j �= i. (3.33)

Substituting (3.32) into (3.33) and using (2.9) we obtain

Cj,i

(
(λi − λj)μj,j − (μi − μj)λj,j

)
= 0 , ∀ j �= i , (3.34)

which implies

Cj,i = 0 , ∀ j �= i ,

i.e.,

Cj(R) = Cj(Rj) .

Taking l = i and j �= i in (3.30) and using (3.31),(3.33), we find

λi,iDij + (λi − λj)Dij,i = μi,i dij + (μi − μj) dij,i . (3.35)

Taking j = i and l �= i in (3.30) and using (3.33), we find

λi,iDli + (λi − λl)Dli,i = μi,i dli + (μi − μl) dli,i , (3.36)

which coincides with (3.35). It is straightforward to check that (3.29) and (2.9)
imply (3.35). So (3.35) does not give new constraints to dij , i �= j.

Now we use (3.30) with ε(i, j, l) = ±1. First, by (3.29) it is convenient to
write

Dij = sij(μi − μj) , dij = sij(λi − λj) , i �= j , (3.37)
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where sij are some anti-symmetric fields. Substituting (3.37) in (3.30) and
using (2.9), we obtain

(slj,i+sji,l+sil,j) ((λi − λl)(μj − μl) − (λj − λl)(μi − μl)) = 0 , ∀ ε(i, j, l) = ±1 .
(3.38)

Hence,
slj,i + sji,l + sil,j = 0 , ∀ ε(i, j, l) = ±1 . (3.39)

This proves (1.11)–(1.12).
We now consider the condition of quasi-triviality for (3.22) with H1 = 0.

Such a perturbation is called quasi-trivial if there exists a local functional K
of the form

K = εK1 + O(ε2), K1 =
∫

S1
k1(u;ux) dx, (3.40)

such that
H0 + ε {H0,K} = H . (3.41)

Here, k1 is also required to satisfy the following homogeneity condition:
∑

r≥1

r uα
r

∂

∂uα
r

(
∂k1
∂uβ

− ∂x

(
∂k1

∂uβ
x

))
=

∂k1
∂uβ

− ∂x

(
∂k1

∂uβ
x

)
. (3.42)

(The above (3.40)–(3.42) is the precise definition used in this paper for quasi-
triviality at the second-order approximation.)

Equation (3.42) is equivalent to the following linear PDE system:

uα
x k1,uα

x uβ
xuγ

x
+ k1,uβ

xuγ
x

= 0 , (3.43)

uα
x k1,uα

x uβ − uα
xuγ

x k1,uγuα
x uβ

x
− k1,uβ = 0 . (3.44)

From Eq. (3.41), we obtain

{H0,K1} = H2 ,

which is equivalent to

δ

δuρ(x)

(
H2 +

∫

S1

δK1

δuα(x)
Aα

γ uγ
x dx

)
= 0 . (3.45)

Eq. (3.45) read more explicitly as follows:
2∑

j=0

(−1)j∂j
x

∂

∂uρ
j

[
d̃αβ uα

x uβ
x + Aα

γ uγ
x

(
∂k1
∂uα

− ∂x

( ∂k1
∂uα

x

))]
= 0 . (3.46)

Comparing the coefficients of uσ
xxx of both sides of Eq. (3.46) gives

Aα
ρ k1,uα

x uσ
x

= Aα
σ k1,uα

x uρ
x
. (3.47)

In terms of the Riemann invariants, Eq. (3.47) read
∑

i�=j

k1,RixRjx
Ri,σ Rj,ρ (λj − λi) = 0 ,

which imply
k1,RixRjx

= 0 , ∀ i �= j . (3.48)
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Lemma 3.1. Up to a total x-derivative, k1 must have the form

k1 =
n∑

i=1

Ci(R1, . . . , Rn)Rix log Rix −Ci(R1, ..., Rn)Rix + φi(R1, . . . , Rn)Rix

(3.49)
for some Ci, φi. Moreover, if k1 has the form (3.49) then it satisfies (3.43),
(3.44), (3.47).

Proof. Eq. (3.48) imply that k1 must have the variable separation form

k1 =
n∑

i=1

Bi(R1, . . . , Rn;Rix) . (3.50)

Noting that

k1,uα
x

=
n∑

i=1

k1,Rix
Ri,α ,

k1,uα
x uβ

x
=

n∑

i,j=1

k1,RixRjx
Ri,αRj,β ,

k1,uα
x uβ

xuγ
x

=
n∑

i,j,k=1

k1,RixRjxRkx
Ri,αRj,βRk,γ

and substituting Eq. (3.50) into Eq. (3.43), we obtain

Rix Bi,RixRixRix
+ 2Bi,RixRix

= 0 .

If follows that

Bi = Ei(R) + φi(R)Rix + Ci(R)Rix log Rix − Ci(R)Rix (3.51)

for some functions Ci, φi, Ei. Finally, noticing that

k1,uβ =
n∑

i=1

(
k1,Ri

Ri,β + k1,Rix
Ri,βσuσ

x

)
,

k1,uα
x uβ =

n∑

i,j=1

(
k1,RixRj

Rj,β + k1,RixRjx
Rj,βσuσ

x

)
Ri,α +

n∑

i=1

k1,Rix
Ri,αβ ,

k1,uα
x uβ

xuγ =
n∑

i,j,k=1

(
k1,RixRjxRk

Rk,γ + k1,RixRjxRkx
Rk,γσuσ

x

)
Ri,αRj,β

+
n∑

i,j=1

k1,RixRjx

(
Ri,αγRj,β + Ri,αRj,βγ

)
,

and substituting (3.50), (3.51) into (3.44), we obtain

∂β

( n∑

i=1

Ei(R)
)

= 0 , (3.52)

which finishes the proof. �
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Now collect the terms of (3.46) containing uβ
xxuσ

xx:

uβ
xx uσ

xx

(
Aα

ρ

∂3k1

∂uα
x∂uβ

x∂uσ
x

+Aα
β

∂3k1
∂uα

x∂uρ
x∂uσ

x

−2Aα
σ

∂3k1

∂uα
x∂uβ

x∂uρ
x

)
= 0 . (3.53)

Lemma 3.2. If k1 satisfies (3.48), then it automatically satisfies (3.53).

Proof. We have

LHS of (3.53)

= uβ
xx uσ

xx

n∑

i,j,l=1

k1,RixRj x
Rlx

Rl,α

(
Aα

ρ Ri,βRj,σ + Aα
βRi,ρRj,σ − 2Aα

σRi,βRj,ρ

)

= uβ
xx uσ

xx

n∑

i=1

k1,RixRixRix
Ri,α

(
Aα

ρ Ri,βRi,σ + Aα
βRi,ρRi,σ − 2Aα

σRi,βRi,ρ

)

= uβ
xx uσ

xx

n∑

i=1

k1,RixRixRix
λi (Ri,ρRi,βRi,σ + Ri,βRi,ρRi,σ − 2Ri,σRi,βRi,ρ)

= 0 .

The lemma is proved. �

Comparing the coefficients of uβ
xx of the both sides of (3.46) yields

2Aα
ρ k1,uα

x uβ
xuγ uγ

x − Aα
β k1,uα

x uρ
xuγ uγ

x − 3Aα
βγk1,uα

x uρ
x
uγ

x − Aα
γε k1,uα

x uρ
xuβ

x
uε

xuγ
x

+ Aα
β

(
k1,uα

x uρ − k1,uαuρ
x

)
+ Aα

ρ

(
k1,uα

x uβ − k1,uαuβ
x

) − 2 d̃ρβ = 0 .

(3.54)

Substituting (3.49) into (3.54), we obtain the following lemma.

Lemma 3.3. The functions Ci must satisfy

Ci,j = 0 , ∀ i �= j. (3.55)

Proof. Noting that

k1,Rix
= Ci log Rix + φi ,

k1,RixRj
= Ci,j log Rix + φi,j ,

k1,RixRjx
= Ci δij Ri

−1
x ,

we find that the only possible terms containing log Rix in Eq. (3.54) are

Aα
ρ

(
k1,uα

x uβ − k1,uαuβ
x

)
, Aα

β

(
k1,uα

x uρ − k1,uαuρ
x

)
.

If follows that
∑n

i,j=1 Ci,j(λi − λj)
(
Ri,βRj,ρ + Ri,ρRj,β

)
log Rix = 0, which

yields
∑

j �=i

Ci,j(λi − λj)
(
Ri,βRj,ρ + Ri,ρRj,β

)
= 0 .

This gives (3.55). The lemma is proved. �
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Lemma 3.4. The d̃αβ must have the form

d̃αβ = − 1
2

n∑

i=1

Ci(Ri) (λi,α Ri,β + λi,β Ri,α) +
1
2

∑

i�=j

sij (λi − λj)Ri,αRj,β ,

(3.56)
where sij = φi,j − φj,i for some functions φi.

Proof. Using Eq. (3.54), we obtain

2 d̃αβ uα
x uβ

x = − 2
n∑

i=1

Ci(Ri)λix Rix +
n∑

i,j=1

sij (λi − λj)Rix Rjx . (3.57)

The lemma is proved. �

Let us further show that the expression (3.56) is equivalent to the expres-
sion (1.13) (therefore is also equivalent to (1.11)–(1.12)). Indeed, in the coor-
dinate chart of the complete Riemann invariants, (3.56) becomes

dij = −1
2

(
Ci(Ri)λi,j + Cj(Rj)λj,i

)
+

1
2

n∑

i�=j

sij (λi − λj) , (3.58)

where sij = φi,j − φj,i for some functions φi. It then suffices to show that
− 1

2

(
Ci(Ri)λi,j + Cj(Rj)λj,i

)
, ∀ i �= j can be absorbed into the term

1
2

∑n
i�=j sij (λi − λj). This is true because

∂k

(
Ci(Ri)λi,j + Cj(Rj)λj,i

λi − λj

)
+ ∂i

(
Cj(Rj)λj,k + Ck(Rk)λk,j

λj − λk

)

+ ∂j

(
Ck(Rk)λk,i + Ci(Ri)λi,k

λk − λi

)
= 0 , ∀ ε(i, j, k) = ±1 . (3.59)

Finally, let us check that equalities (3.46) hold true if d̃αβ and k1 are
given by (3.56) and (3.49). Collecting the rest terms of both sides of (3.46),
we find that it suffices to show

− (
d̃αβ,ρu

β
xuα

x − 2 d̃ρβ,γuγ
xuβ

x

)

= Aα
γ uγ

x

(
k1,uαuρ − uσ

x k1,uσuαuρ
x

) − Aα
ρ uγ

x

(
k1,uγuα − uσ

x k1,uσuγuα
x

)

− Aα
γβε uε

xuβ
xuγ

x k1,uα
x uρ

x
+ Aα

γσuσ
xuγ

x

(
k1,uα

x uρ − k1,uαuρ
x

− uβ
x k1,uβuα

x uρ
x

)
,

(3.60)

where Aα
γβε := ηαδ ∂δ∂γ∂β∂ε(h). Indeed, the contribution of φi-terms is just

a result of canonical Miura-type transformation and note that Eq. (3.46) de-
pend on k1 linearly, so we can assume φi = 0, i = 1, . . . , n. Then, by straight-
forward calculations, we find that the both sides of Eq. (3.60) are equal to
− ∑n

i=1 Ci(Ri)
(
λi,βδRi,ρ + λi,ρRi,βδ

)
uβ

xuδ
x.

Hence, we have proved that the Hamiltonian perturbation (3.22) is quasi-
trivial at the second-order approximation iff d̃αβ has the form (1.13).

We proceed with proving that quasi-triviality at the second-order approx-
imation implies O(ε2)-integrability. We have shown that there exist functions
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Ci(Ri) and φi(R) such that Eqs. (3.56) hold true. And the quasi-triviality is
generated by εK1 + O(ε2) :

K1 =
∫

S1

n∑

i=1

Ci(Ri)Rix log Rix−Ci(Ri)Rix+φi(R1, . . . , Rn)Rix dx. (3.61)

For a generic conservation law F0 =
∫

S1 f0(v) dx of (1.1), denote by μ1, . . . , μn

the distinct eigenvalues of the Hessian (Mα
β ) of f0. The calculations above can

be applied to F0, which give

F2 := {F0,K1} =
∫

S1

(
−

n∑

i=1

Ci(Ri)μixRix +
1
2

∑

i�=j

(μi−μj) sij RixRjx

)
dx .

(3.62)
Then, using the Jacobi identity, we obtain {H0, F2} + {H2, F0} = 0. Hence,
we have proved the O(ε2)-integrability.

The theorem is proved. �

4. Example

The two component irrotational water wave equations in 1 + 1 dimensions
[1,25] are given by

∫ ∞

−∞
e−ikxdx

{
i ηt cosh [k ε (1 + μ η)] − qx

ε
sinh [k ε (1 + μ η)]

}
= 0 , (4.1)

qt + η +
μ

2
q2x =

με2

2
(η + μ qxηx)2

1 + μ2ε2η2
x

+
σε2ηxx

(1 + μ2ε2η2
x)3/2

. (4.2)

Here, μ and σ are constants. For simplicity, we will only consider the case
σ ≡ 0. Denote r = 1 + μ η, v = μ qx. Then, we can rewrite (4.1)–(4.2) as the
perturbation of a system of Hamiltonian PDEs of hydrodynamic type:

rt = (1 + Q)−1
∞∑

j=1

(−1)jε2j−2

(2j − 1)!
∂2j−1

x (r2j−1v), (4.3)

vt = −rx − vvx +
ε2

2
∂x

(
v rx + (1 + Q)−1

∑∞
j=1

(−1)jε2j−2

(2j−1)! ∂2j−1
x (r2j−1v)

1 + ε2r2x

)

,

(4.4)

where Q is an operator defined by Q :=
∑∞

j=1
(−1)jε2j

(2j)! ∂2j
x ◦r2j . The dispersion-

less limit of (4.3)–(4.4) was studied by Whitham [24] and is integrable. Now
we look at the second-order approximation of (4.3)–(4.4):

rt = − (rv)x + ε2
(
−r2rxvx − 1

3
r3vxx

)

x
+ O(ε4) , (4.5)

vt = − rx − vvx + ε2
(1

2
r2v2

x

)

x
+ O(ε4) . (4.6)
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This approximation has the Hamiltonian structure:

(rt, vt)T =
(

0 ∂x

∂x 0

) (
δH

δr(x)
,

δH

δv(x)

)T

, (4.7)

H = H0 + ε2 H2 + O(ε3), (4.8)

H0 = −
∫

S1

1
2
rv2 +

r2

2
dx , H2 =

∫

S1

1
6
r3v2

x dx . (4.9)

Proposition 4.1. The system (4.3)–(4.4) is not integrable in the sense of Defi-
nition 2.2.

Proof. The Riemann invariants are R1 = v/2 +
√

r, R2 = v/2 − √
r. And the

eigenvalues are

λ1 = −v − √
r = −3

2
R1 − 1

2
R2, λ2 = −v +

√
r = −1

2
R1 − 3

2
R2. (4.10)

This gives λ1,1 = λ2,2 = −3/2. According to Theorem 1.2, the perturba-
tion (4.8) is quasi-trivial at the second-order approximation iff the following
equation has a solution:

− (
(R1 − R2)(φ1,2 − φ2,1)

)
R1xR2x

+
3
2

C1(R1)R1
2
x +

3
2

C2(R2)R2
2
x =

(R1 − R2)6

384
(R1x + R2x)2.

However, the solution set to this equation is empty as the coefficients of
R1

2
x on the both sides already produce a contradiction. The proposition is

proved. �

Let us provide additional but more straightforward evidence supporting
the already proved statement of Proposition 4.1. It is easy to verify that up
to the second-order approximations, system (4.3)–(4.4) has four linearly inde-
pendent conservation laws:

∫

S1
r dx,

∫

S1
v dx,

∫

S1
rv dx, −H.

We will show these form all possible conservation laws in all-order for (4.3)–
(4.4). (They are actually indeed conservation laws all-order, but we do not
prove this in the present paper; instead we refer to [1,3,25].) The precise
statement that we will now prove is that only the following four conservation
laws of the dispersionless limit of (4.3)–(4.4)

∫

S1
r dx,

∫

S1
v dx,

∫

S1
rv dx,

∫

S1

1
2
rv2 +

r2

2
dx (4.11)

can be extended to conservation laws at the second-order approximation for
(4.3)–(4.4). To see this, denote u1 = r, u2 = v, and let

F = F0 + ε2F2 + O(ε3) =
∫

S1
f(u) dx + ε2

∫

S1
Dαβ(u)uα

xuβ
x + O(ε3)
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be a conserved quantity of (4.3)–(4.4) at the second-order approximation.
Then, we have

fvv = r frr, (4.12)

μ1 = frv − √
r frr, μ2 = frv +

√
r frr, (4.13)

d11 = d22 =
1

384
(r1 − r2)2, (4.14)

D11 = −∂R1(μ1)
576

(r1 − r2)6, D22 = −∂R2(μ2)
576

(r1 − r2)6. (4.15)

Substituting these equations in (3.33) and using (4.12), we find frrv = 0. It
yields five solutions:

f = r, f = v, f = rv, f =
1
2
rv2 +

1
2
r2, f =

v2

2
+ r log r. (4.16)

However, through one by one verifications, only the first four can be (and are
indeed) extended to the second-order approximation.
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