Ann. Henri Poincaré 21 (2020), 3919–3937 -c 2020 Springer Nature Switzerland AG 1424-0637/20/123919-19 *published online* October 7, 2020 published online October 1, 2020
https://doi.org/10.1007/s00023-020-00962-w **Annales Henri Poincaré**

Hamiltonian Perturbations at the Second-Order Approximation

Di Yang

Abstract. Integrability condition of Hamiltonian perturbations of integrable Hamiltonian PDEs of hydrodynamic type up to the second-order approximation is considered. Under a nondegeneracy assumption, we show that the Hamiltonian perturbation at the first-order approximation is integrable if and only if it is trivial, and that under a further assumption, the Hamiltonian perturbation at the second-order approximation is integrable if and only if it is quasi-trivial.

Mathematics Subject Classification. 37K10, 37J30, 35Q53, 37L50.

1. Introduction and the Statements of the Results

Let M be an *n*-dimensional complex manifold. Consider the following system of Hamiltonian PDEs of hydrodynamic type:

$$
\partial_t \left(v^{\alpha} \right) \ = \ \eta^{\alpha \beta} \partial_x \left(\frac{\delta H_0}{\delta v^{\beta}(x)} \right), \qquad v = \left(v^1, \dots, v^n \right) \in M, \ x \in S^1, \ t \in \mathbb{R}, \ (1.1)
$$

where $(\eta^{\alpha\beta})$ is a given symmetric invertible constant matrix, $H_0 := \int_{S^1} h_0(v) \, dx$ is a given local functional (called the Hamiltonian), and $\delta/\delta v^{\beta}(x)$ denotes the variational derivative. Here and below, free Greek indices take the integer values $1, \ldots, n$, and the Einstein summation convention is assumed for repeated Greek indices with one-up and one-down; the matrix $(\eta^{\alpha\beta})$ and its inverse $(\eta_{\alpha\beta})$ are used to raise and lower Greek indices, e.g., $v_{\alpha} := \eta_{\alpha\beta}v^{\beta}$. The Hamiltonian density $h_0(v)$ is assumed to be a holomorphic function of v. More explicitly, Eq. (1.1) have the form:

$$
\partial_t \big(v^\alpha \big) \; = \; A^\alpha_\gamma(v) \, v^\gamma_x \, , \quad \text{where $A^\alpha_\gamma(v) \, := \, \eta^{\alpha\beta} \frac{\partial^2 h_0(v)}{\partial v^\beta \partial v^\gamma} \, .$}
$$

Basic assumption: $(A^{\alpha}_{\gamma}(v))$ has pairwise distinct eigenvalues $\lambda_1(v), \ldots, \lambda_n(v)$ on an open dense subset U of M .

Let us perform a change of variables $(v^1, \ldots, v^n) \rightarrow (R_1, \ldots, R_n)$ with non-degenerate Jacobian locally on U. We call R_1, \ldots, R_n a complete set of Riemann invariants, if evolutions along R_1, \ldots, R_n are all diagonal, namely,

$$
\partial_t(R_i) = V_i(R)\,\partial_x(R_i)\,, \qquad i = 1,\ldots,n\,,\tag{1.2}
$$

where V_i 's are some functions of $R = (R_1, \ldots, R_n)$. Below, free Latin indices take the integer values $1, \ldots, n$ unless otherwise indicated. Clearly, Eq. [\(1.2\)](#page-1-0) imply that the gradients of Riemann invariants are eigenvectors of (A^{α}_{β}) , namely,

$$
A^{\alpha}_{\beta} R_{i,\alpha} = \lambda_i R_{i,\beta}, \qquad V_i = \lambda_i \tag{1.3}
$$

with $R_{i,\alpha} := \partial_{\alpha}(R_i)$. Similar notations like $R_{i,j} := \partial_i(R_i)$, $R_{i,jk} := \partial_i \partial_k(R_i)$, ... will also be used. Here and below, $\partial_{\alpha} := \partial_{v^{\alpha}}, \partial_{i} := \partial_{R_{i}}$.

It was proven by Tsarev $[23]$ $[23]$ that the integrability of Eq. (1.1) is equivalent to the existence of complete Riemann invariants. Here, "integrability" means existence of sufficiently many conservation laws/infinitesimal symmetries (See Definition [2.2\)](#page-4-0). It was shown by B. Dubrovin [\[10](#page-17-0)[,11](#page-17-1)] that existence of a complete set of Riemann invariants is equivalent to *vanishing* of the following Haantjes tensor:

$$
H_{\alpha\beta\gamma} := (A_{\alpha\rho\sigma} A_{\beta\phi} A_{\gamma\psi} + A_{\beta\rho\sigma} A_{\gamma\phi} A_{\alpha\psi} + A_{\gamma\rho\sigma} A_{\alpha\phi} A_{\beta\psi}) A_{\nu}^{\rho} \delta^{\sigma\nu\psi\phi}, \quad (1.4)
$$

where $A_{\alpha\beta\gamma} := \partial_{\alpha}\partial_{\beta}\partial_{\gamma}(h_0)$ and $\delta^{\alpha\beta\gamma\phi} := \eta^{\alpha\gamma}\eta^{\beta\phi} - \eta^{\alpha\phi}\eta^{\beta\gamma}$. Note that $H_{\alpha\beta\gamma}$ automatically vanishes if the signature $\varepsilon(\alpha, \beta, \gamma) = 0$; so for $n = 1$ or for $n = 2$, the system [\(1.1\)](#page-0-0) is always integrable.

We proceed to the study of Hamiltonian perturbations $[4,5,9-11,16,18]$ $[4,5,9-11,16,18]$ $[4,5,9-11,16,18]$ $[4,5,9-11,16,18]$ $[4,5,9-11,16,18]$ $[4,5,9-11,16,18]$ of [\(1.1\)](#page-0-0)

$$
\partial_t(v^{\alpha}) = \eta^{\alpha\beta} \partial_x \left(\frac{\delta H}{\delta v^{\beta}(x)} \right), \qquad x \in S^1, \ t \in \mathbb{R}, \ v = (v^1, \dots, v^n) \in M. \tag{1.5}
$$

Here, $H := \int_{S^1} h \, dx = \sum_{j=0}^{\infty} e^j H_j$ with $H_j := \int_{S^1} h_j(v, v_1, v_2, \dots, v_j) \, dx$ is the Hamiltonian, and h_i are differential polynomials of v satisfying the following homogeneity condition:

$$
\sum_{\ell=1}^{j} \ell \, v_{\ell}^{\alpha} \frac{\partial h_{j}}{\partial v_{\ell}^{\alpha}} = j \, h_{j} \,, \quad j \ge 0 \,. \tag{1.6}
$$

We recall that the variational derivative reads

$$
\frac{\delta H}{\delta v^{\beta}(x)} = \sum_{\ell=0}^{\infty} (-\partial_x)^{\ell} \left(\frac{\partial h}{\partial v_{\ell}^{\beta}} \right).
$$

In the above formulae, $v_\ell^\alpha := \partial_x^\ell(v^\alpha)$, $\ell \geq 0$, and we recall that a differential polynomial of v is a polynomial of v_1, v_2, \ldots whose coefficients are holomorphic functions of v. The ring of differential polynomials of v is denoted by \mathcal{A}_v . We remark that according to $[4,14-16,18]$ $[4,14-16,18]$ $[4,14-16,18]$ $[4,14-16,18]$ the Hamiltonian system (1.5) that we are considering is general. Note that the Hamiltonian operator $\eta^{\alpha\beta}\partial_x$ defines a Poisson bracket $\{ , \}$ on the space of local functionals $\mathcal{F} := \{ \int_{S^1} f \, dx \, | \, f \in$ $\mathcal{A}_{v}[[\epsilon]]\},\{\ ,\ :\mathcal{F}\times\mathcal{F}\to\mathcal{F},\,$ by

$$
\{F, G\} := \int_{S^1} \frac{\delta F}{\delta v^\alpha(x)} \eta^{\alpha \beta} \partial_x \left(\frac{\delta G}{\delta v^\beta(x)} \right) dx, \qquad \forall \ F, G \in \mathcal{F}.
$$
 (1.7)

It is helpful to view $v^{\alpha}(x)$ as a "local functional" $v^{\alpha}(x) = \int_{S^1} v^{\alpha}(y) \delta(y-x) dy$, called the coordinate functional. Then, one can write Eq. (1.5) in the form

$$
\partial_t(v^{\alpha}) \ = \ \big\{v^{\alpha}(x) \, , \, H\big\} \, .
$$

Clearly, a system of Hamiltonian PDEs of hydrodynamic type [\(1.1\)](#page-0-0) can be obtained from [\(1.5\)](#page-1-1) simply by taking the dispersionless limit: $\epsilon \to 0$.

The perturbed system [\(1.5\)](#page-1-1) is called *integrable* if its dispersionless limit is integrable and each conservation law of [\(1.1\)](#page-0-0) can be extended to a conservation law of [\(1.5\)](#page-1-1). In this paper, we start with a system of *integrable Hamiltonian PDEs of hydrodynamic type*, and study the conditions such that the perturbation [\(1.5\)](#page-1-1) is integrable up to the second-order approximation.

Theorem 1.1. *Assume that the matrix* (A_{β}^{α}) *associated with* [\(1.1\)](#page-0-0) *has distinct eigenvalues* $\lambda_1, \ldots, \lambda_n$ *on an open dense subset* $U \subset M$ *. Assume that* [\(1.1\)](#page-0-0) *is* $integrable$ and denote by $R = (R_1, \ldots, R_n)$ the associated complete Riemann *invariants.* A Hamiltonian perturbation of (1.1) of the form $H = H_0 + \epsilon H_1 +$ $\mathcal{O}(\epsilon^2)$ with $H_0 = \int_{S^1} h(v) \,dx$, $H_1 = \int_{S^1} \sum_{i=1}^n p_i(R) R_{ix} dx$ is integrable at the *first-order approximation iff either of the following is true:*

- (i) *it is trivial;*
- (ii) the following equations hold true for p_i :

$$
\omega_{ij,k} - \omega_{ik,j} = a_{ij}\omega_{ik} + a_{ji}\omega_{jk} - a_{ik}\omega_{ij} - a_{ki}\omega_{kj}, \quad \forall \varepsilon(i,j,k) = \pm 1.
$$
\n(1.8)

Here, a_{ij} *and* ω_{ij} *are defined by*

$$
a_{ij} := \frac{\lambda_{i,j}}{\lambda_i - \lambda_j}, \quad \omega_{ij} := \frac{p_{i,j} - p_{j,i}}{\lambda_i - \lambda_j}, \qquad \forall \ i \neq j. \tag{1.9}
$$

In the above statement, we recall that a Hamiltonian perturbation is called trivial if it is Miura equivalent to its dispersionless limit; for more details about triviality, see Sect. [2.](#page-3-0) Due to Theorem [1.1,](#page-2-0) to study the integrable Hamiltonian perturbation [\(1.5\)](#page-1-1) of an integrable PDE of hydrodynamic type [\(1.1\)](#page-0-0) up to the second-order approximation, it suffices to consider the case with vanishing H_1 . Here, it should also be noted that the basic assumption proposed in the beginning of the paper has been assumed as it is written again in the statement.

Theorem 1.2. *Assume that the matrix* (A_{β}^{α}) *associated with* [\(1.1\)](#page-0-0) *has distinct eigenvalues* $\lambda_1, \ldots, \lambda_n$ *on an open dense subset* $U \subset M$ *and that* $\lambda_{i,i}(v) \neq 0$ $for v \in U$. Assume that [\(1.1\)](#page-0-0) is integrable and denote by $R = (R_1, \ldots, R_n)$ the *associated complete Riemann invariants. A Hamiltonian perturbation of [\(1.1\)](#page-0-0) of the form*

$$
H = H_0 + \epsilon^2 H_2 + \mathcal{O}(\epsilon^3) \tag{1.10}
$$

with $H_0 = \int_{S^1} h_0(u) dx$, $H_2 = \int_{S^1} \sum_{i,j=1}^n d_{ij}(R) R_{ix} R_{jx} dx$ $(d_{ij} = d_{ji})$ *is* $\mathcal{O}(\epsilon^2)$ -integrable iff either of the followings is true:

- (i) *it is quasi-trivial;*
- (ii) *there exist functions* $C_i(R_i)$ *,* $i = 1, \ldots, n$ *such that*

$$
d_{ii} = -C_i(R_i)\lambda_{i,i},
$$
\n
$$
\left(\frac{d_{ij}}{\lambda_i - \lambda_j}\right)_{,k} + \left(\frac{d_{jk}}{\lambda_j - \lambda_k}\right)_{,i} + \left(\frac{d_{ki}}{\lambda_k - \lambda_i}\right)_{,j} = 0, \quad \forall \ \varepsilon(i,j,k) = \pm 1.
$$
\n(1.12)

For the meaning of quasi-triviality, see Sects. [2](#page-3-0) and [3](#page-6-0) . Note that an equivalent description of (1.11) – (1.12) is that the density h_2 can be written in the form

$$
h_2 = -\sum_{i=1}^{n} C_i(R_i) \lambda_{i,i} R_{ix}^2 + \frac{1}{2} \sum_{i \neq j} (\lambda_i - \lambda_j) s_{ij} R_{ix} R_{jx}, \qquad (1.13)
$$

where $s_{ij} := \phi_{i,j} - \phi_{j,i}$ for some functions $\phi_i(R)$.

For the cases $n = 1, 2$, Theorems [1.1](#page-2-0) and [1.2](#page-2-1) agree with the results of [\[20\]](#page-17-7) and [\[9](#page-17-3)].

The paper is organized as follows. In Sect. [2,](#page-3-0) we review some terminologies about Hamiltonian PDEs. In Sect. [3,](#page-6-0) we study integrability of [\(1.5\)](#page-1-1) up to the second-order approximation. An example of non-integrable perturbation is given in Sect. [4.](#page-14-0)

2. Preliminaries

In this section, we will recall several terminologies in the theory of Hamiltonian perturbations; more terminologies can be found in, e.g., [\[6](#page-17-8)[–8](#page-17-9)[,10](#page-17-0),[12,](#page-17-10)[16](#page-17-4)[,22](#page-17-11),[23\]](#page-18-0).

Definition 2.1. A local functional $F_0 = \int_{S^1} f_0(v) dx$ is called a *conserved quantity* of [\(1.1\)](#page-0-0) if

$$
\frac{dF_0}{dt} = 0.\t(2.1)
$$

Here, the density $f_0(v)$ is a given holomorphic function of v.

We also often call a conserved quantity a conservation law. Note that for simplicity we will exclude the degenerate ones with $f_0(v) \equiv \text{const}$ from conservation laws.

Since (1.1) is a Hamiltonian system, Eq. (2.1) can be written equivalently as

$$
\{H_0, F_0\} = 0, \tag{2.2}
$$

where $\{ , \}$ denotes the Poisson bracket defined in (1.7) . (This is straightforward to verify.) According to Noether's theorem, [\(2.1\)](#page-3-3) is also equivalent to the statement that the following Hamiltonian flow generated by F_0

$$
v^\alpha_s\,:=\,\{v^\alpha(x),F_0\}
$$

commutes with [\(1.1\)](#page-0-0). Let $(M_{\alpha\beta})$ denote the Hessian of f, i.e., $M_{\alpha\beta} := \partial_{\alpha}\partial_{\beta}(f)$. Equation (2.1) then reads

$$
A^{\alpha}_{\gamma} M^{\gamma}_{\beta} = M^{\alpha}_{\gamma} A^{\gamma}_{\beta}.
$$
 (2.3)

Definition 2.2. The PDE system (1.1) is called integrable if it possesses an infinite family of conserved quantities parametrized by n arbitrary functions of one variable.

A necessary and sufficient condition for integrability of (1.1) is the vanishing of the Haantjes tensor $H_{\alpha\beta\gamma}$ [\(1.4\)](#page-1-2) as recalled already in the introduction. We will assume that [\(1.1\)](#page-0-0) is integrable and study its perturbations. Recall that vanishing of the Haantjes tensor ensures the existence of a complete set of Riemann invariants $\{R_1,\ldots,R_n\}$. We have

$$
A^{\alpha}_{\beta} R_{i,\alpha} = \lambda_i R_{i,\beta}, \qquad (2.4)
$$

$$
M^{\alpha}_{\beta} R_{i,\alpha} = \mu_i R_{i,\beta}.
$$
 (2.5)

Here, μ_i are eigenvalues of (M^{α}_{β}) . For a generic conserved quantity F_0 , the eigenvalues μ_1, \ldots, μ_n on the U are also pairwise distinct. In terms of λ_i, μ_i , the flow commutativity is equivalent to

$$
a_{ij} = b_{ij}, \qquad \forall i \neq j,
$$
\n
$$
(2.6)
$$

where

$$
a_{ij} := \frac{\lambda_{i,j}}{\lambda_i - \lambda_j}, \qquad b_{ij} := \frac{\mu_{i,j}}{\mu_i - \mu_j}.
$$
 (2.7)

The compatibility condition

 $\mu_{i,jk} = \mu_{i,kj}, \qquad \forall \varepsilon(i,j,k) = \pm 1$

for Eq. (2.6) reads as follows

$$
(\mu_i - \mu_k)(a_{ij,k} - a_{ik,j}) - (\mu_j - \mu_k)(a_{ij,k} + a_{ij}a_{jk} + a_{ik}a_{kj} - a_{ij}a_{ik}) = 0.
$$
 (2.8)

Definition [2.2](#page-4-0) requires that equation [\(2.8\)](#page-4-2) is true for infinitely many F_0 parametrized by n arbitrary functions of one variable. So the coefficients of $\mu_i - \mu_k$ and of $\mu_j - \mu_k$ must vanish:

$$
a_{ij,k} - a_{ik,j} = 0, \qquad \forall \varepsilon(i,j,k) = \pm 1, \tag{2.9}
$$

$$
a_{ij,k} + a_{ij}a_{jk} + a_{ik}a_{kj} - a_{ij}a_{ik} = 0, \qquad \forall \varepsilon(i,j,k) = \pm 1. \tag{2.10}
$$

Note that (2.10) is implied by Eqs. (2.9) and (2.7) .

Definition 2.3. A local functional $F := \sum_{j=0}^{\infty} \epsilon^j F_j$ is called a conserved quantity of (1.5) , if

$$
\frac{dF}{dt} = 0. \t(2.11)
$$

Here, $F_j = \int_{S^1} f_j(v, v_1, \dots, v_j) dx, j \ge 0$ with f_j being differential polynomials of v homogeneous of degree j .

Conserved quantities (or say conservation laws) considered in this paper are always of the form as in Definition [2.3.](#page-4-6)

Equation (2.11) can be equivalently written as

$$
\{H,F\} \; = \; 0\,,
$$

which is recast into an infinite sequence of equations

$$
{H0, F0} = 0,{H0, F1} + {H1, F0} = 0,{H0, F2} + {H1, F1} + {H2, F0} = 0,etc.
$$

Definition 2.4. A Hamiltonian perturbation (1.5) is called integrable if its dispersionless limit (1.1) is integrable and generic conservation laws of (1.1) can be extended to those of [\(1.5\)](#page-1-1). For $N \ge 1$, (1.5) is called $\mathcal{O}(\epsilon^N)$ -integrable if its dispersionless limit (1.1) is integrable and every generic conservation law F_0 of (1.1) can be extended to a local functional F, s.t.

$$
\{H, F\} = \mathcal{O}(\epsilon^{N+1}).\tag{2.12}
$$

One important tool of studying Hamiltonian perturbations is to use Miura-type and quasi-Miura transformations [\[16\]](#page-17-4). Recall that a Miura-type transformation near identity is given by an invertible map of the form

$$
v \mapsto w, \qquad w^{\alpha} := \sum_{j=0}^{\infty} \epsilon^j W_j^{\alpha}(v, v_1, \dots, v_\ell), \ W_0^{\alpha} = v^{\alpha}, \tag{2.13}
$$

where W_j^{α} , $j \geq 0$ are differential polynomials of v homogeneous of degree j with respect to the degree assignments deg $v_{\ell}^{\alpha} = \ell, \ell \geq 1$. A Miura-type transformation is called *canonical* if there exists a local functional K, such that

$$
w^{\alpha} = v^{\alpha} + \epsilon \{v^{\alpha}(x), K\} + \frac{\epsilon^2}{2!} \{\{v^{\alpha}(x), K\}, K\} + \cdots \qquad (2.14)
$$

where $K = \sum_{j=0}^{\infty} \epsilon^j K_j$. Two Hamiltonian perturbations of the same form (1.5) are called *equivalent* if they are related via a canonical Miura-type transformation. A Hamiltonian perturbation [\(1.5\)](#page-1-1) is called *trivial* if it is equivalent to [\(1.1\)](#page-0-0).

A map of the form [\(2.13\)](#page-5-0) is called a *quasi-Miura* transformation, if $W_{\ell}^{\alpha}, \ell \geq 1$ are allowed to have rational and logarithmic dependence in v_x . The Hamiltonian perturbation [\(1.5\)](#page-1-1) is called *quasi-trivial* or possessing *quasitriviality*, if it is related via a canonical quasi-Miura transformation to [\(1.1\)](#page-0-0). We recall that many interesting nonlinear PDE systems possess quasi-triviality; for example, it was shown in [\[12](#page-17-10)] that if [\(1.5\)](#page-1-1) is *bihamiltonian* then it is quasitrivial. The precise definition used in this paper for quasi-Miura transformation will be given in the next section.

3. Proofs of Theorems [1.1](#page-2-0) and [1.2](#page-2-1)

In this section, we study integrability of the Hamiltonian system [\(1.5\)](#page-1-1) up to the second-order approximation, and prove Theorems [1.1](#page-2-0) and [1.2](#page-2-1) .

Assume that (1.1) is integrable.

We start with the first-order approximation. Let us first look at the integrability condition of the $\mathcal{O}(\epsilon^1)$ -approximation. Denote

$$
H = H_0 + \epsilon H_1 + \mathcal{O}(\epsilon^2) \tag{3.1}
$$

with $H_1 = \int_{S^1} \tilde{p}_{\alpha}(u) u_x^{\alpha} dx = \sum_{i=1}^n \int_{S^1} p_i(R) R_{ix} dx$. Here, the functions p_{α} and p_i are assumed to satisfy $\tilde{p}_{\alpha} = \sum_{i=1}^{n} p_i R_{i,\alpha}$.

Proof of Theorem [1.1.](#page-2-0) Denote by $\tilde{\theta}_{\alpha\beta}$ the exterior differential of the 1-form $\tilde{p}_{\alpha}du^{\alpha}$

$$
\tilde{\theta}_{\alpha\beta} = \tilde{p}_{\alpha,\beta} - \tilde{p}_{\beta,\alpha}.
$$
\n(3.2)

In the coordinate chart of the Riemann invariants R_1, \ldots, R_n , we have

$$
\theta_{ij} = \partial_i u^{\alpha} \tilde{\theta}_{\alpha\beta} \partial_j u^{\beta} = p_{i,j} - p_{j,i}.
$$

The $\mathcal{O}(\epsilon^1)$ -integrability says any local functional $F_0 = \int_{S^1} f(u) dx$ satisfying

$$
\{H_0,F_0\}~=~0
$$

can be extended to a local functional

$$
F = F_0 + \epsilon F_1 + \mathcal{O}(\epsilon^2),
$$

such that

$$
\{H, F\} = \mathcal{O}(\epsilon^2). \tag{3.3}
$$

Here, the local function F_1 is of the form

$$
F_1 = \int_{S^1} \tilde{q}_{\alpha}(u) u_x^{\alpha} dx = \sum_{i=1}^n \int_{S^1} q_i(R) R_{ix} dx.
$$
 (3.4)

Eq. [\(3.3\)](#page-6-1) reads as follows

$$
\{H_0,F_1\} + \{H_1,F_0\} = 0\,,
$$

which is equivalent to

$$
\tilde{\theta}_{\alpha\gamma}M^{\gamma}_{\beta} + \tilde{\theta}_{\beta\gamma}M^{\gamma}_{\alpha} = \tilde{\Theta}_{\alpha\gamma}A^{\gamma}_{\beta} + \tilde{\Theta}_{\beta\gamma}A^{\gamma}_{\alpha}
$$
\n(3.5)

or, in the coordinate system of the Riemann invariants, to

$$
\frac{\theta_{ij}}{\lambda_i - \lambda_j} = \frac{\Theta_{ij}}{\mu_i - \mu_j}, \qquad \forall \ i \neq j. \tag{3.6}
$$

Here, $\tilde{\Theta}_{\alpha\beta} := \tilde{q}_{\alpha,\beta} - \tilde{q}_{\beta,\alpha}, \Theta_{ij} := q_{i,j} - q_{j,i}$. The compatibility condition of (3.6) is given by

$$
\Theta_{ij,k} + \Theta_{jk,i} + \Theta_{ki,j} = 0, \quad \forall \ \varepsilon(i,j,k) = \pm 1. \tag{3.7}
$$

Introduce the notations

$$
\omega_{ij} = \frac{\theta_{ij}}{\lambda_i - \lambda_j}, \qquad i \neq j. \tag{3.8}
$$

Then, Eq. [\(3.7\)](#page-6-3) imply

$$
\partial_k [\omega_{ij} (\mu_i - \mu_j)] + \partial_i [\omega_{jk} (\mu_j - \mu_k)] + \partial_j [\omega_{ki} (\mu_k - \mu_i)] = 0,
$$

$$
\forall \varepsilon(i, j, k) = \pm 1,
$$

i.e.,

 $\omega_{i,k} (\mu_i - \mu_i) + \omega_{i,j} (\mu_{i,k} - \mu_{i,k}) +$ cyclic = 0, $\forall \varepsilon (i, j, k) = \pm 1$. (3.9) Substituting Eqs. $(2.6), (2.7)$ $(2.6), (2.7)$ $(2.6), (2.7)$ in Eq. $(3.9),$ $(3.9),$ we obtain

 $\omega_{i,j,k} (\mu_i - \mu_j) + \omega_{ij} (a_{ik} (\mu_i - \mu_k) - a_{jk} (\mu_j - \mu_k)) +$ cyclic = 0, (3.10) from which we obtain that for any pairwise distinct i, j, k ,

$$
(\mu_i - \mu_k)(\omega_{ij,k} + \omega_{ij} a_{ik} - \omega_{jk} a_{ji} + \omega_{jk} a_{ki} - \omega_{ki,j} - \omega_{ki} a_{ij})
$$

+
$$
(\mu_j - \mu_k)(-\omega_{ij,k} - \omega_{ij} a_{jk} + \omega_{jk,i} + \omega_{jk} a_{ji} - \omega_{ki} a_{kj} + \omega_{ki} a_{ij}) = 0.
$$

(3.11)

As a result, we conclude that

$$
\omega_{ij,k} + \omega_{ij} a_{ik} - \omega_{jk} a_{ji} + \omega_{jk} a_{ki} - \omega_{ki,j} - \omega_{ki} a_{ij} = 0, \quad \forall \varepsilon(i,j,k) = \pm 1,
$$

\n
$$
-\omega_{ij,k} - \omega_{ij} a_{jk} + \omega_{jk,i} + \omega_{jk} a_{ji} - \omega_{ki} a_{kj} + \omega_{ki} a_{ij} = 0, \quad \forall \varepsilon(i,j,k) = \pm 1.
$$

\n(3.12)
\n(3.13)

This arguments above can be reversed to get [\(3.7\)](#page-6-3). We therefore conclude that integrability at the first order of approximation is equivalent to (1.8) . \Box

Let us now consider the condition of (quasi-)triviality at the first order of approximation. The Hamiltonian perturbation [\(3.1\)](#page-6-4) is *quasi-trivial* at the first-order approximation, if there exists a local functional

$$
K_0 = \int_{S^1} k_0(v) dx
$$

$$
\{H_0, K_0\} = H_1.
$$
 (3.14)

such that

Clearly, quasi-triviality at the first-order approximation is the same as triviality at the first-order approximation. Equation (3.14) is equivalent to the existence of a function
$$
\psi
$$
 satisfying

$$
\tilde{p}_{\alpha} = \frac{\partial k_0}{\partial u^{\gamma}} A^{\gamma}_{\alpha} + \frac{\partial \psi}{\partial u^{\alpha}}.
$$
\n(3.15)

Eliminating ψ in the above equation we find the following equivalent equation to [\(3.14\)](#page-7-1):

$$
\tilde{\theta}_{\alpha\beta} = \frac{\partial^2 k_0}{\partial u^{\beta} \partial u^{\gamma}} A^{\gamma}_{\alpha} - \frac{\partial^2 k_0}{\partial u^{\alpha} \partial u^{\gamma}} A^{\gamma}_{\beta}.
$$
\n(3.16)

In the coordinate chart of Riemann invariants, Eqs. [\(3.15\)](#page-7-2) and [\(3.16\)](#page-7-3) become

$$
p_i = \lambda_i k_{0,i} + \psi_{,i}, \qquad (3.17)
$$

$$
\frac{\theta_{ij}}{\lambda_i - \lambda_j} = k_{0,ij} + a_{ij} k_{0,i} + a_{ji} k_{0,j}, \qquad i \neq j.
$$
 (3.18)

The compatibility condition of Eq. (3.18) is given by

$$
\partial_k k_{0,ij} = \partial_j k_{0,ik}, \qquad \forall \varepsilon(i,j,k) = \pm 1,
$$

which yields

$$
\partial_k \left(\frac{\theta_{ij}}{\lambda_i - \lambda_j} - a_{ij} k_{0,i} - a_{ji} k_{0,j} \right) = \partial_j \left(\frac{\theta_{ik}}{\lambda_i - \lambda_k} - a_{ik} k_{0,i} - a_{ki} k_{0,k} \right). \tag{3.19}
$$

Substituting Eq. (3.18) into (3.19) , we find

$$
\omega_{ij,k} - a_{ij} \omega_{ik} - a_{ji} \omega_{jk} - k_{0,i} a_{ij,k} + k_{0,j} (a_{ji} a_{jk} - a_{ji,k}) \n+ k_{0,k} (a_{ki} a_{ij} + a_{kj} a_{ji}) \n= \omega_{ik,j} - a_{ik} \omega_{ij} - a_{ki} \omega_{kj} - k_{0,i} a_{ik,j} + k_{0,k} (a_{ki} a_{kj} - a_{ki,j}) \n+ k_{0,j} (a_{ji} a_{ik} + a_{jk} a_{ki}).
$$
\n(3.20)

Finally substituting Eqs. (2.9) and (2.10) into (3.20) , we have

$$
\omega_{ij,k} - a_{ij}\omega_{ik} - a_{ji}\omega_{jk} = \omega_{ik,j} - a_{ik}\omega_{ij} - a_{ki}\omega_{kj}, \quad \forall \epsilon(i,j,k) = \pm 1.
$$
\n(3.21)

The procedure can again be reversed. So we proved the equivalence between (1.8) and triviality at the first-order approximation. The theorem is proved. \Box

We proceed with the second-order approximation. Let

$$
H = H_0 + \epsilon H_1 + \epsilon^2 H_2 + \mathcal{O}(\epsilon^3)
$$
 (3.22)

be a Hamiltonian perturbation of [\(1.1\)](#page-0-0) with

$$
H_2 = \int_{S^1} \tilde{d}_{\alpha\beta}(v) v_x^{\alpha} v_x^{\beta} dx = \int_{S^1} \sum_{i,j=1}^n d_{ij} R_{ix} R_{jx} dx \qquad (3.23)
$$

and \tilde{d} .

$$
\tilde{d}_{\alpha\beta} = \tilde{d}_{\beta\alpha}, \qquad d_{ij} = d_{ji} := \tilde{d}_{\alpha\beta} v_{,i}^{\alpha} v_{,j}^{\beta}. \tag{3.24}
$$

Assume as always that (1.1) is integrable, and assume that (3.22) is $\mathcal{O}(\epsilon^1)$ integrable. According to Theorem [1.1,](#page-2-0) there exists a canonical Miura-type transformation reducing H_1 to the zero functional. So the assumption that $H_1 = 0$ used in [\(1.10\)](#page-2-4) in the statement of Theorem [1.1](#page-2-0) does not lose generality as we already pointed it out in the Introduction.

Proof of Theorem [1.2.](#page-2-1) The proof will be given with the following order: firstly, we show that $\mathcal{O}(\epsilon^2)$ -integrability implies [\(1.11\)](#page-3-1)–[\(1.12\)](#page-3-2); secondly, we show that (1.11) – (1.12) is equivalent to quasi-triviality at the second-order approximation; thirdly, we show that quasi-triviality implies $\mathcal{O}(\epsilon^2)$ -integrability.

Assume that [\(3.22\)](#page-8-2) with $H_1 = 0$ is $\mathcal{O}(\epsilon^2)$ -integrable. This means that, for a generic conservation law F_0 of [\(1.1\)](#page-0-0), there exists a local functional of the form

$$
F_2 = \int_{S^1} \tilde{D}_{\alpha\beta}(u) u_x^{\alpha} u_x^{\beta} dx = \sum_{i,j=1}^n \int_{S^1} D_{ij}(R) R_{ix} R_{jx} dx \qquad (3.25)
$$

such that

$$
\{H_0, F_2\} + \{H_2, F_0\} = 0. \tag{3.26}
$$

Note that equation [\(3.26\)](#page-8-3) implies

$$
M^{\rho}_{\sigma}\tilde{d}_{\rho\beta} - M^{\rho}_{\beta}\tilde{d}_{\rho\sigma} = A^{\rho}_{\sigma}\tilde{D}_{\rho\beta} - A^{\rho}_{\beta}\tilde{D}_{\rho\sigma},
$$
\n(3.27)
\n
$$
M^{\rho}_{\gamma}\tilde{d}_{\rho\sigma,\beta} + M^{\rho}_{\sigma}\tilde{d}_{\rho\beta,\gamma} + M^{\rho}_{\beta}\tilde{d}_{\rho\gamma,\sigma} - M^{\rho}_{\sigma\gamma}\tilde{d}_{\rho\beta} - M^{\rho}_{\sigma\beta}\tilde{d}_{\rho\gamma} - M^{\rho}_{\beta\gamma}\tilde{d}_{\rho\sigma}
$$
\n
$$
- M^{\rho}_{\sigma}\tilde{d}_{\beta\gamma,\rho} - M^{\rho}_{\beta}\tilde{d}_{\sigma\gamma,\rho} - M^{\rho}_{\gamma}\tilde{d}_{\sigma\beta,\rho}
$$
\n
$$
= (M \leftrightarrow A, d \leftrightarrow D).
$$
\n(3.28)

In the coordinate system of the complete Riemann invariants, [\(3.27\)](#page-9-0) and [\(3.28\)](#page-9-1) become

$$
\frac{D_{ij}}{\mu_i - \mu_j} = \frac{d_{ij}}{\lambda_i - \lambda_j}, \quad \forall \ i \neq j,
$$
\n(3.29)
\n
$$
\lambda_{i,l} D_{ij} + \lambda_{j,i} D_{jl} + \lambda_{i,j} D_{il} + (\lambda_i - \lambda_l) D_{lj,i}
$$
\n
$$
+ (\lambda_j - \lambda_l) D_{li,j} + (\lambda_l - \lambda_j) D_{ij,l}
$$
\n
$$
= \mu_{i,l} d_{ij} + \mu_{j,i} d_{jl} + \mu_{i,j} d_{il} + (\mu_i - \mu_l) d_{lj,i} + (\mu_j - \mu_l) d_{li,j}
$$
\n
$$
+ (\mu_l - \mu_j) d_{ij,l}, \quad \forall \ i, j, l.
$$
\n(3.30)

Here, in the derivation of (3.30) , we have used (3.29) .

Taking $j = l = i$ in (3.30) , we obtain

$$
\lambda_{i,i} D_{ii} = \mu_{i,i} d_{ii}.
$$
\n(3.31)

By assumption, in the subset U of M, λ_i satisfy $\lambda_{i,i} \neq 0$. Thus, there exist functions $C_i(R)$ such that

$$
D_{ii} = -C_i(R)\,\mu_{i,i}\,, \qquad d_{ii} = -C_i(R)\,\lambda_{i,i}\,. \tag{3.32}
$$

Taking $l = j$ and $i \neq j$ in [\(3.30\)](#page-9-2), we find

$$
\lambda_{j,i}D_{jj} + (\lambda_i - \lambda_j)D_{jj,i} = \mu_{j,i} d_{jj} + (\mu_j - \mu_i) d_{jj,i}, \quad \forall j \neq i.
$$
 (3.33)
Substituting (3.32) into (3.33) and using (2.9) we obtain

$$
C_{j,i}\left((\lambda_i-\lambda_j)\mu_{j,j}-(\mu_i-\mu_j)\lambda_{j,j}\right) = 0, \qquad \forall j \neq i, \tag{3.34}
$$

which implies

$$
C_{j,i} ~=~ 0{\,},\qquad \forall\,j\neq i{\,},
$$

i.e.,

$$
C_j(R) = C_j(R_j).
$$

Taking $l = i$ and $j \neq i$ in (3.30) and using $(3.31),(3.33)$ $(3.31),(3.33)$ $(3.31),(3.33)$, we find

$$
\lambda_{i,i} D_{ij} + (\lambda_i - \lambda_j) D_{ij,i} = \mu_{i,i} d_{ij} + (\mu_i - \mu_j) d_{ij,i}.
$$
 (3.35)

Taking $j = i$ and $l \neq i$ in [\(3.30\)](#page-9-2) and using [\(3.33\)](#page-9-5), we find

$$
\lambda_{i,i} D_{li} + (\lambda_i - \lambda_l) D_{li,i} = \mu_{i,i} d_{li} + (\mu_i - \mu_l) d_{li,i}, \qquad (3.36)
$$

which coincides with (3.35) . It is straightforward to check that (3.29) and (2.9) imply [\(3.35\)](#page-9-7). So (3.35) does not give new constraints to d_{ij} , $i \neq j$.

Now we use [\(3.30\)](#page-9-2) with $\varepsilon(i, j, l) = \pm 1$. First, by [\(3.29\)](#page-9-3) it is convenient to write

$$
D_{ij} = s_{ij}(\mu_i - \mu_j), \quad d_{ij} = s_{ij}(\lambda_i - \lambda_j), \qquad i \neq j, \tag{3.37}
$$

where s_{ij} are some anti-symmetric fields. Substituting (3.37) in (3.30) and using (2.9) , we obtain

$$
(s_{lj,i}+s_{ji,l}+s_{il,j})\left((\lambda_i-\lambda_l)(\mu_j-\mu_l)-(\lambda_j-\lambda_l)(\mu_i-\mu_l)\right) = 0, \quad \forall \,\varepsilon(i,j,l) = \pm 1. \tag{3.38}
$$

Hence,

$$
s_{lj,i} + s_{ji,l} + s_{il,j} = 0, \qquad \forall \ \varepsilon(i,j,l) = \pm 1. \tag{3.39}
$$

This proves (1.11) – (1.12) .

We now consider the condition of quasi-triviality for (3.22) with $H_1 = 0$. Such a perturbation is called *quasi-trivial* if there exists a local functional K of the form

$$
K = \epsilon K_1 + \mathcal{O}(\epsilon^2), \quad K_1 = \int_{S^1} k_1(u; u_x) \, dx,\tag{3.40}
$$

such that

$$
H_0 + \epsilon \{H_0, K\} = H. \tag{3.41}
$$

Here, k_1 is also required to satisfy the following homogeneity condition:

$$
\sum_{r\geq 1} r u_r^{\alpha} \frac{\partial}{\partial u_r^{\alpha}} \left(\frac{\partial k_1}{\partial u^{\beta}} - \partial_x \left(\frac{\partial k_1}{\partial u_x^{\beta}} \right) \right) = \frac{\partial k_1}{\partial u^{\beta}} - \partial_x \left(\frac{\partial k_1}{\partial u_x^{\beta}} \right).
$$
 (3.42)

(The above (3.40) – (3.42)) is the precise definition used in this paper for quasitriviality at the second-order approximation.)

Equation [\(3.42\)](#page-10-1) is equivalent to the following linear PDE system:

$$
u_x^{\alpha} k_{1, u_x^{\alpha} u_x^{\beta} u_x^{\gamma}} + k_{1, u_x^{\beta} u_x^{\gamma}} = 0, \qquad (3.43)
$$

$$
u_x^{\alpha} k_{1,u_x^{\alpha}u^{\beta}} - u_x^{\alpha} u_x^{\gamma} k_{1,u^{\gamma} u_x^{\alpha} u_x^{\beta}} - k_{1,u^{\beta}} = 0.
$$
 (3.44)

From Eq. (3.41) , we obtain

$$
\{H_0,K_1\} \;=\; H_2\,,
$$

which is equivalent to

$$
\frac{\delta}{\delta u^{\rho}(x)} \bigg(H_2 + \int_{S^1} \frac{\delta K_1}{\delta u^{\alpha}(x)} A^{\alpha}_{\gamma} u^{\gamma}_x dx \bigg) = 0. \tag{3.45}
$$

Eq. [\(3.45\)](#page-10-3) read more explicitly as follows:

$$
\sum_{j=0}^{2} (-1)^{j} \partial_{x}^{j} \frac{\partial}{\partial u_{j}^{\rho}} \left[\tilde{d}_{\alpha\beta} u_{x}^{\alpha} u_{x}^{\beta} + A_{\gamma}^{\alpha} u_{x}^{\gamma} \left(\frac{\partial k_{1}}{\partial u^{\alpha}} - \partial_{x} \left(\frac{\partial k_{1}}{\partial u_{x}^{\alpha}} \right) \right) \right] = 0. \quad (3.46)
$$

Comparing the coefficients of u_{xxx}^{σ} of both sides of Eq. [\(3.46\)](#page-10-4) gives

$$
A^{\alpha}_{\rho} k_{1, u^{\alpha}_{x} u^{\sigma}_{x}} = A^{\alpha}_{\sigma} k_{1, u^{\alpha}_{x} u^{\rho}_{x}}.
$$
 (3.47)

In terms of the Riemann invariants, Eq. [\(3.47\)](#page-10-5) read

$$
\sum_{i \neq j} k_{1, R_{i x} R_{j x}} R_{i, \sigma} R_{j, \rho} (\lambda_j - \lambda_i) = 0,
$$

which imply

$$
k_{1,R_{i_x}R_{j_x}} = 0, \qquad \forall i \neq j. \tag{3.48}
$$

Lemma 3.1. *Up to a total x-derivative,* k_1 *must have the form*

$$
k_1 = \sum_{i=1}^{n} C_i(R_1, \dots, R_n) R_{i_x} \log R_{i_x} - C_i(R_1, \dots, R_n) R_{i_x} + \phi_i(R_1, \dots, R_n) R_{i_x}
$$
\n(3.49)

for some C_i , ϕ_i *. Moreover, if* k_1 *has the form* [\(3.49\)](#page-11-0) *then it satisfies* [\(3.43\)](#page-10-6)*,* [\(3.44\)](#page-10-7)*,* [\(3.47\)](#page-10-5)*.*

Proof. Eq. (3.48) imply that k_1 must have the variable separation form

$$
k_1 = \sum_{i=1}^{n} B_i(R_1, \dots, R_n; R_{ix}). \qquad (3.50)
$$

Noting that

$$
k_{1,u_x^{\alpha}} = \sum_{i=1}^{n} k_{1,R_{ix}R_{i,\alpha}},
$$

\n
$$
k_{1,u_x^{\alpha}u_x^{\beta}} = \sum_{i,j=1}^{n} k_{1,R_{ix}R_{j,x}} R_{i,\alpha} R_{j,\beta},
$$

\n
$$
k_{1,u_x^{\alpha}u_x^{\beta}u_x^{\gamma}} = \sum_{i,j,k=1}^{n} k_{1,R_{ix}R_{j,x}} R_{k,x} R_{i,\alpha} R_{j,\beta} R_{k,\gamma}
$$

and substituting Eq. (3.50) into Eq. (3.43) , we obtain

$$
R_{i_x} B_{i, R_{i_x} R_{i_x} R_{i_x} + 2B_{i, R_{i_x} R_{i_x}} = 0.
$$

If follows that

$$
B_i = E_i(R) + \phi_i(R)R_{ix} + C_i(R)R_{ix}\log R_{ix} - C_i(R)R_{ix}
$$
 (3.51)
one functions C ϕ F . Finally, pairing that

for some functions C_i , ϕ_i , E_i . Finally, noticing that

$$
k_{1,u^{\beta}} = \sum_{i=1}^{n} (k_{1,R_i} R_{i,\beta} + k_{1,R_{ix}} R_{i,\beta \sigma} u^{\sigma}_{x}),
$$

\n
$$
k_{1,u^{\alpha}_{x}u^{\beta}} = \sum_{i,j=1}^{n} (k_{1,R_{ix}R_j} R_{j,\beta} + k_{1,R_{ix}R_{jx}} R_{j,\beta \sigma} u^{\sigma}_{x}) R_{i,\alpha} + \sum_{i=1}^{n} k_{1,R_{ix}} R_{i,\alpha\beta},
$$

\n
$$
k_{1,u^{\alpha}_{x}u^{\beta}_{x}u^{\gamma}} = \sum_{i,j,k=1}^{n} (k_{1,R_{ix}R_{jx}R_k} R_{k,\gamma} + k_{1,R_{ix}R_{jx}R_{kx}} R_{k,\gamma \sigma} u^{\sigma}_{x}) R_{i,\alpha} R_{j,\beta}
$$

\n
$$
+ \sum_{i,j=1}^{n} k_{1,R_{ix}R_{jx}} (R_{i,\alpha \gamma} R_{j,\beta} + R_{i,\alpha} R_{j,\beta \gamma}),
$$

and substituting $(3.50), (3.51)$ $(3.50), (3.51)$ $(3.50), (3.51)$ into $(3.44),$ $(3.44),$ we obtain

$$
\partial_{\beta} \left(\sum_{i=1}^{n} E_i(R) \right) = 0, \qquad (3.52)
$$

which finishes the proof. \Box

Now collect the terms of (3.46) containing $u_{xx}^{\beta}u_{xx}^{\sigma}$:

$$
u_{xx}^{\beta} u_{xx}^{\sigma} \left(A_{\rho}^{\alpha} \frac{\partial^3 k_1}{\partial u_x^{\alpha} \partial u_x^{\beta} \partial u_x^{\sigma}} + A_{\beta}^{\alpha} \frac{\partial^3 k_1}{\partial u_x^{\alpha} \partial u_x^{\rho} \partial u_x^{\sigma}} - 2A_{\sigma}^{\alpha} \frac{\partial^3 k_1}{\partial u_x^{\alpha} \partial u_x^{\beta} \partial u_x^{\rho}} \right) = 0. (3.53)
$$

Lemma 3.2. *If* k_1 *satisfies* [\(3.48\)](#page-10-8)*, then it automatically satisfies* [\(3.53\)](#page-12-0)*.*

Proof. We have

LHS of (3.[53\)](#page-12-0)

$$
= u_{xx}^{\beta} u_{xx}^{\sigma} \sum_{i,j,l=1}^{n} k_{1, R_{ix} R_{jx} R_{lx}} R_{l,\alpha} (A_{\rho}^{\alpha} R_{i,\beta} R_{j,\sigma} + A_{\beta}^{\alpha} R_{i,\rho} R_{j,\sigma} - 2 A_{\sigma}^{\alpha} R_{i,\beta} R_{j,\rho})
$$

\n
$$
= u_{xx}^{\beta} u_{xx}^{\sigma} \sum_{i=1}^{n} k_{1, R_{ix} R_{ix} R_{ix}} R_{i,\alpha} (A_{\rho}^{\alpha} R_{i,\beta} R_{i,\sigma} + A_{\beta}^{\alpha} R_{i,\rho} R_{i,\sigma} - 2 A_{\sigma}^{\alpha} R_{i,\beta} R_{i,\rho})
$$

\n
$$
= u_{xx}^{\beta} u_{xx}^{\sigma} \sum_{i=1}^{n} k_{1, R_{ix} R_{ix} R_{ix}} \lambda_{i} (R_{i,\rho} R_{i,\beta} R_{i,\sigma} + R_{i,\beta} R_{i,\rho} R_{i,\sigma} - 2 R_{i,\sigma} R_{i,\beta} R_{i,\rho})
$$

\n
$$
= 0.
$$

The lemma is proved. \Box

Comparing the coefficients of u_{xx}^{β} of the both sides of [\(3.46\)](#page-10-4) yields $2\,A^\alpha_{\rho}\,k_{1,u^\alpha_x u^\beta_x u^\gamma} u^\gamma_x\,-\,A^\alpha_\beta\,k_{1,u^\alpha_x u^\rho_x u^\gamma} u^\gamma_x\,-\,3\,A^\alpha_{\beta\gamma}k_{1,u^\alpha_x u^\rho_x} u^\gamma_x\,-\,A^\alpha_{\gamma\epsilon}\,k_{1,u^\alpha_x u^\rho_x u^\beta_x} u^\epsilon_x u^\gamma_x$ $+ A^{\alpha}_{\beta}\left(k_{1,u^{\alpha}_{x}u^{\rho}}-k_{1,u^{\alpha}u^{\rho}_{x}}\right) + A^{\alpha}_{\rho}\left(k_{1,u^{\alpha}_{x}u^{\beta}}-k_{1,u^{\alpha}u^{\beta}_{x}}\right) - 2\tilde{d}_{\rho\beta} = 0.$ (3.54)

Substituting (3.49) into (3.54) , we obtain the following lemma.

Lemma 3.3. *The functions* C_i *must satisfy*

$$
C_{i,j} = 0, \quad \forall \ i \neq j. \tag{3.55}
$$

Proof. Noting that

$$
k_{1,R_{ix}} = C_i \log R_{ix} + \phi_i ,
$$

\n
$$
k_{1,R_{ix}R_j} = C_{i,j} \log R_{ix} + \phi_{i,j} ,
$$

\n
$$
k_{1,R_{ix}R_{jx}} = C_i \delta_{ij} R_{ix}^{-1} ,
$$

we find that the only possible terms containing $\log R_{ix}$ in Eq. [\(3.54\)](#page-12-1) are

$$
A^{\alpha}_{\rho}\left(k_{1,u^{\alpha}_{x}u^{\beta}}-k_{1,u^{\alpha}u^{\beta}_{x}}\right), \qquad A^{\alpha}_{\beta}\left(k_{1,u^{\alpha}_{x}u^{\rho}}-k_{1,u^{\alpha}u^{\rho}_{x}}\right).
$$

If follows that $\sum_{i,j=1}^n C_{i,j} (\lambda_i - \lambda_j) (R_{i,\beta} R_{j,\rho} + R_{i,\rho} R_{j,\beta}) \log R_{i,x} = 0$, which yields

$$
\sum_{j\neq i} C_{i,j} (\lambda_i - \lambda_j) (R_{i,\beta} R_{j,\rho} + R_{i,\rho} R_{j,\beta}) = 0.
$$

This gives (3.55) . The lemma is proved. \Box

Lemma 3.4. *The* $\tilde{d}_{\alpha\beta}$ *must have the form*

$$
\tilde{d}_{\alpha\beta} = -\frac{1}{2} \sum_{i=1}^{n} C_i(R_i) (\lambda_{i,\alpha} R_{i,\beta} + \lambda_{i,\beta} R_{i,\alpha}) + \frac{1}{2} \sum_{i \neq j} s_{ij} (\lambda_i - \lambda_j) R_{i,\alpha} R_{j,\beta},
$$
\n(3.56)

where $s_{ij} = \phi_{i,j} - \phi_{j,i}$ *for some functions* ϕ_i *.*

Proof. Using Eq. (3.54) , we obtain

$$
2\,\tilde{d}_{\alpha\beta}\,u_x^{\alpha}\,u_x^{\beta} = -2\,\sum_{i=1}^{n}C_i(R_i)\,\lambda_{ix}\,R_{ix} + \sum_{i,j=1}^{n} s_{ij}\,(\lambda_i - \lambda_j)\,R_{ix}\,R_{jx}.\tag{3.57}
$$

The lemma is proved.

Let us further show that the expression (3.56) is equivalent to the expression (1.13) (therefore is also equivalent to (1.11) – (1.12)). Indeed, in the coordinate chart of the complete Riemann invariants, [\(3.56\)](#page-13-0) becomes

$$
d_{ij} = -\frac{1}{2} \Big(C_i(R_i) \lambda_{i,j} + C_j(R_j) \lambda_{j,i} \Big) + \frac{1}{2} \sum_{i \neq j}^n s_{ij} \left(\lambda_i - \lambda_j \right), \tag{3.58}
$$

where $s_{ij} = \phi_{i,j} - \phi_{j,i}$ for some functions ϕ_i . It then suffices to show that $-\frac{1}{2}\left(C_i(R_i)\lambda_{i,j}+C_j(R_j)\lambda_{j,i}\right), \forall i \neq j$ can be absorbed into the term $\frac{1}{2}\sum_{i\neq j}^{n} s_{ij} (\lambda_i - \lambda_j)$. This is true because

$$
\partial_k \left(\frac{C_i(R_i)\lambda_{i,j} + C_j(R_j)\lambda_{j,i}}{\lambda_i - \lambda_j} \right) + \partial_i \left(\frac{C_j(R_j)\lambda_{j,k} + C_k(R_k)\lambda_{k,j}}{\lambda_j - \lambda_k} \right) + \partial_j \left(\frac{C_k(R_k)\lambda_{k,i} + C_i(R_i)\lambda_{i,k}}{\lambda_k - \lambda_i} \right) = 0, \quad \forall \ \varepsilon(i,j,k) = \pm 1. \tag{3.59}
$$

Finally, let us check that equalities [\(3.46\)](#page-10-4) hold true if $\tilde{d}_{\alpha\beta}$ and k_1 are given by (3.56) and (3.49) . Collecting the rest terms of both sides of (3.46) , we find that it suffices to show

$$
- \left(\tilde{d}_{\alpha\beta,\rho} u_x^{\beta} u_x^{\alpha} - 2 \tilde{d}_{\rho\beta,\gamma} u_x^{\gamma} u_x^{\beta} \right)
$$

\n
$$
= A_{\gamma}^{\alpha} u_x^{\gamma} \left(k_{1,u^{\alpha}u^{\rho}} - u_x^{\sigma} k_{1,u^{\sigma}u^{\alpha}u_x^{\rho}} \right) - A_{\rho}^{\alpha} u_x^{\gamma} \left(k_{1,u^{\gamma}u^{\alpha}} - u_x^{\sigma} k_{1,u^{\sigma}u^{\gamma}u_x^{\alpha}} \right)
$$

\n
$$
- A_{\gamma\beta\epsilon}^{\alpha} u_x^{\epsilon} u_x^{\beta} u_x^{\gamma} k_{1,u_x^{\alpha}u_x^{\rho}} + A_{\gamma\sigma}^{\alpha} u_x^{\sigma} u_x^{\gamma} \left(k_{1,u_x^{\alpha}u^{\rho}} - k_{1,u^{\alpha}u_x^{\rho}} - u_x^{\beta} k_{1,u^{\beta}u_x^{\alpha}u_x^{\rho}} \right),
$$

\n(3.60)

where $A^{\alpha}_{\gamma\beta\epsilon} := \eta^{\alpha\delta}\partial_{\delta}\partial_{\gamma}\partial_{\beta}\partial_{\epsilon}(h)$. Indeed, the contribution of ϕ_i -terms is just a result of canonical Miura-type transformation and note that Eq. [\(3.46\)](#page-10-4) depend on k_1 *linearly*, so we can assume $\phi_i = 0$, $i = 1, \ldots, n$. Then, by straightforward calculations, we find that the both sides of Eq. (3.60) are equal to $- \sum_{i=1}^{n} C_i(R_i) (\lambda_{i,\beta\delta} R_{i,\rho} + \lambda_{i,\rho} R_{i,\beta\delta}) u_x^{\beta} u_x^{\delta}.$

Hence, we have proved that the Hamiltonian perturbation [\(3.22\)](#page-8-2) is quasitrivial at the second-order approximation iff $\tilde{d}_{\alpha\beta}$ has the form [\(1.13\)](#page-3-4).

We proceed with proving that quasi-triviality at the second-order approximation implies $\mathcal{O}(\epsilon^2)$ -integrability. We have shown that there exist functions $C_i(R_i)$ and $\phi_i(R)$ such that Eqs. [\(3.56\)](#page-13-0) hold true. And the quasi-triviality is generated by $\epsilon K_1 + \mathcal{O}(\epsilon^2)$:

$$
K_1 = \int_{S^1} \sum_{i=1}^n C_i(R_i) R_{ix} \log R_{ix} - C_i(R_i) R_{ix} + \phi_i(R_1, \dots, R_n) R_{ix} dx.
$$
 (3.61)

For a generic conservation law $F_0 = \int_{S^1} f_0(v) dx$ of [\(1.1\)](#page-0-0), denote by μ_1, \ldots, μ_n the distinct eigenvalues of the Hessian (M_β^α) of f_0 . The calculations above can be applied to F_0 , which give

$$
F_2 := \{F_0, K_1\} = \int_{S^1} \left(- \sum_{i=1}^n C_i(R_i) \mu_{i} R_{ix} + \frac{1}{2} \sum_{i \neq j} (\mu_i - \mu_j) s_{ij} R_{ix} R_{j} \right) dx.
$$
\n(3.62)

Then, using the Jacobi identity, we obtain $\{H_0, F_2\} + \{H_2, F_0\} = 0$. Hence, we have proved the $\mathcal{O}(\epsilon^2)$ -integrability.

The theorem is proved. \Box

4. Example

The two component irrotational water wave equations in $1 + 1$ dimensions [\[1,](#page-16-1)[25\]](#page-18-1) are given by

$$
\int_{-\infty}^{\infty} e^{-ikx} dx \left\{ i \eta_t \cosh \left[k \epsilon (1 + \mu \eta) \right] - \frac{q_x}{\epsilon} \sinh \left[k \epsilon (1 + \mu \eta) \right] \right\} = 0, \quad (4.1)
$$

$$
q_t + \eta + \frac{\mu}{2} q_x^2 = \frac{\mu \epsilon^2}{2} \frac{(\eta + \mu q_x \eta_x)^2}{1 + \mu^2 \epsilon^2 \eta_x^2} + \frac{\sigma \epsilon^2 \eta_{xx}}{(1 + \mu^2 \epsilon^2 \eta_x^2)^{3/2}}.
$$
 (4.2)

Here, μ and σ are constants. For simplicity, we will only consider the case $\sigma \equiv 0$. Denote $r = 1 + \mu \eta$, $v = \mu q_x$. Then, we can rewrite (4.1) – (4.2) as the perturbation of a system of Hamiltonian PDEs of hydrodynamic type:

$$
r_t = (1+Q)^{-1} \sum_{j=1}^{\infty} \frac{(-1)^j \epsilon^{2j-2}}{(2j-1)!} \partial_x^{2j-1} (r^{2j-1} v), \tag{4.3}
$$

$$
v_t = -r_x - v v_x + \frac{\epsilon^2}{2} \partial_x \left(\frac{v \, r_x + (1+Q)^{-1} \sum_{j=1}^{\infty} \frac{(-1)^j \epsilon^{2j-2}}{(2j-1)!} \partial_x^{2j-1} (r^{2j-1} v)}{1 + \epsilon^2 r_x^2} \right),\tag{4.4}
$$

where Q is an operator defined by $Q := \sum_{j=1}^{\infty} \frac{(-1)^j \epsilon^{2j}}{(2j)!} \partial_x^{2j} \circ r^{2j}$. The dispersionless limit of (4.3) – (4.4) was studied by Whitham [\[24\]](#page-18-2) and is integrable. Now we look at the second-order approximation of (4.3) – (4.4) :

$$
r_t = -(rv)_x + \epsilon^2 \left(-r^2 r_x v_x - \frac{1}{3}r^3 v_{xx}\right)_x + \mathcal{O}(\epsilon^4), \tag{4.5}
$$

$$
v_t = -r_x - vv_x + \epsilon^2 \left(\frac{1}{2}r^2v_x^2\right)_x + \mathcal{O}(\epsilon^4). \tag{4.6}
$$

This approximation has the Hamiltonian structure:

$$
(r_t, v_t)^T = \begin{pmatrix} 0 & \partial_x \\ \partial_x & 0 \end{pmatrix} \left(\frac{\delta H}{\delta r(x)}, \frac{\delta H}{\delta v(x)} \right)^T, \tag{4.7}
$$

$$
H = H_0 + \epsilon^2 H_2 + \mathcal{O}(\epsilon^3), \tag{4.8}
$$

$$
H_0 = -\int_{S^1} \frac{1}{2} r v^2 + \frac{r^2}{2} dx, \qquad H_2 = \int_{S^1} \frac{1}{6} r^3 v_x^2 dx.
$$
 (4.9)

Proposition 4.1. *The system* [\(4.3\)](#page-14-3)–[\(4.4\)](#page-14-4) *is not integrable in the sense of Definition* [2.2](#page-4-0)*.*

Proof. The Riemann invariants are $R_1 = v/2 + \sqrt{r}$, $R_2 = v/2 - \sqrt{r}$. And the eigenvalues are

$$
\lambda_1 = -v - \sqrt{r} = -\frac{3}{2}R_1 - \frac{1}{2}R_2, \quad \lambda_2 = -v + \sqrt{r} = -\frac{1}{2}R_1 - \frac{3}{2}R_2. \tag{4.10}
$$

This gives $\lambda_{1,1} = \lambda_{2,2} = -3/2$. According to Theorem [1.2,](#page-2-1) the perturbation [\(4.8\)](#page-15-0) is quasi-trivial at the second-order approximation iff the following equation has a solution:

$$
- ((R_1 - R_2)(\phi_{1,2} - \phi_{2,1})) R_{1x} R_{2x}
$$

+ $\frac{3}{2} C_1(R_1) R_{1x}^2 + \frac{3}{2} C_2(R_2) R_{2x}^2 = \frac{(R_1 - R_2)^6}{384} (R_{1x} + R_{2x})^2$.

However, the solution set to this equation is empty as the coefficients of R_{1x}^2 on the both sides already produce a contradiction. The proposition is proved. \Box

Let us provide additional but more straightforward evidence supporting the already proved statement of Proposition [4.1.](#page-15-1) It is easy to verify that up to the second-order approximations, system (4.3) – (4.4) has four linearly independent conservation laws:

$$
\int_{S^1} r \, dx, \int_{S^1} v \, dx, \int_{S^1} r v \, dx, \ -H.
$$

We will show these form all possible conservation laws in all-order for (4.3) – [\(4.4\)](#page-14-4). (They are actually indeed conservation laws all-order, but we do not prove this in the present paper; instead we refer to $[1,3,25]$ $[1,3,25]$ $[1,3,25]$ $[1,3,25]$.) The precise statement that we will now prove is that only the following *four* conservation laws of the dispersionless limit of (4.3) – (4.4)

$$
\int_{S^1} r \, dx, \int_{S^1} v \, dx, \int_{S^1} r v \, dx, \int_{S^1} \frac{1}{2} r v^2 + \frac{r^2}{2} \, dx \tag{4.11}
$$

can be extended to conservation laws at the second-order approximation for (4.3) – (4.4) . To see this, denote $u^1 = r$, $u^2 = v$, and let

$$
F = F_0 + \epsilon^2 F_2 + \mathcal{O}(\epsilon^3) = \int_{S^1} f(u) \, dx + \epsilon^2 \int_{S^1} D_{\alpha\beta}(u) \, u_x^{\alpha} u_x^{\beta} + \mathcal{O}(\epsilon^3)
$$

be a conserved quantity of (4.3) – (4.4) at the second-order approximation. Then, we have

$$
f_{vv} = r f_{rr},\tag{4.12}
$$

$$
\mu_1 = f_{rv} - \sqrt{r} f_{rr}, \quad \mu_2 = f_{rv} + \sqrt{r} f_{rr}, \tag{4.13}
$$

$$
d_{11} = d_{22} = \frac{1}{384}(r_1 - r_2)^2,
$$
\n(4.14)

$$
D_{11} = -\frac{\partial_{R_1}(\mu_1)}{576}(r_1 - r_2)^6, \quad D_{22} = -\frac{\partial_{R_2}(\mu_2)}{576}(r_1 - r_2)^6. \tag{4.15}
$$

Substituting these equations in [\(3.33\)](#page-9-5) and using [\(4.12\)](#page-16-3), we find $f_{rrv} = 0$. It yields five solutions:

$$
f = r
$$
, $f = v$, $f = rv$, $f = \frac{1}{2}rv^2 + \frac{1}{2}r^2$, $f = \frac{v^2}{2} + r \log r$. (4.16)

However, through one by one verifications, only the first four can be (and are indeed) extended to the second-order approximation.

Acknowledgements

The author would like to thank Youjin Zhang, Si-Qi Liu and Boris Dubrovin for their advisings and helpful discussions. He is grateful to Youjin Zhang for suggesting the question about two-component water wave equations, and to Giordano Cotti and Mao Sheng for helpful discussions; he also wishes to thank Boris Dubrovin for suggesting the general question. Part of the work was done at Tsinghua University and at SISSA; we thank Tsinghua University and SISSA for excellent working conditions and financial supports. The work was partially supported by PRIN 2010-11 Grant "Geometric and analytic theory of Hamiltonian systems in finite and infinite dimensions" of Italian Ministry of Universities and Researches, by the Marie Curie IRSES project RIMMP, and by a starting research grant from University of Science and Technology of China.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- [1] Ablowitz, M.J., Fokas, A.S., Musslimani, Z.H.: On a new non-local formulation of water waves. J. Fluid Mech. **562**, 313–343 (2006)
- [2] Arsie, A., Lorenzoni, P., Moro, A.: On integrable conservation laws. Proc. R. Soc. A Math. Phys. Eng. Sci. **471**, 20140124 (2015)
- [3] Ashton, A.C., Fokas, A.S.: A non-local formulation of rotational water waves. J Fluid Mech. **689**, 129–148 (2011)
- [4] Degiovanni, L., Magri, F., Sciacca, V.: On deformation of Poisson manifolds of hydrodynamic type. Commun. Math. Phys. **253**, 1–24 (2005)
- [5] Dubrovin, B.: Geometry of 2D Topological Field Theories. In: Francaviglia, M., Greco, S. (eds.) Integrable Systems and Quantum Groups (Montecatini Terme, 1993). Springer Lecture Notes in Math, vol. 1620, pp. 120–348. Springer, Berlin (1996)
- [6] Dubrovin, B.: Hamiltonian perturbations of hyperbolic systems of conservation laws, II: Universality of critical behaviour. Comm. Math. Phys. **267**, 117–139 (2006)
- [7] Dubrovin, B.: On universality of critical behaviour in Hamiltonian PDEs. Amer. Math. Soc. Transl. **224**, 59–109 (2008)
- [8] Dubrovin, B.: Hamiltonian Perturbations of Hyperbolic PDEs and Applications. Lecture notes in School/Workshop on Integrable Systems and Scientific Computing, ICTP (2009)
- [9] Dubrovin, B.: Hamiltonian perturbations of hyperbolic PDEs: from classification results to the properties of solutions. In: Sidoravicius, V. (eds) New Trends in Mathematical Physics. Springer, Dordrecht, pp. 231–276 (2009)
- [10] Dubrovin, B.: Hamiltonian PDEs: deformations, integrability, solutions. J. Phys. A Math. Theor. **43**, 434002 (2010)
- [11] Dubrovin, B.: Gromov–Witten invariants and integrable hierarchies of topological type. Topology, Geometry, Integrable Systems, and Mathematical Physics. Amer. Math. Soc. Transl. Ser **2**, 141–171 (2014)
- [12] Dubrovin, B., Liu, S.-Q., Zhang, Y.: On Hamiltonian perturbations of hyperbolic systems of conservation laws I: quasi-Triviality of bi-Hamiltonian perturbations. Commun. Pure. Appl. Math. **59**, 559–615 (2006)
- [13] Dubrovin, B., Liu, S.-Q., Yang, D., Zhang, Y.: Hodge integrals and tausymmetric integrable hierarchies of Hamiltonian evolutionary PDEs. Adv. Math. **293**, 382–435 (2016)
- [14] Dubrovin, B., Novikov, S.P.: The Hamiltonian formalism of one-dimensional systems of hydrodynamic type and the Bogolyubov-Whitham averaging method. Soviet Math. Dokl. **270**, 665–669 (1983)
- [15] Dubrovin, B., Novikov, S.P.: On Poisson brackets of hydrodynamic type. Soviet Math. Dokl. **279**, 294–297 (1984)
- [16] Dubrovin, B., Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants. Preprint [arXiv:math/0108160](http://arxiv.org/abs/math/0108160) (2001)
- [17] Dyachenko, A.I., Kachulin, D.I., Zakharov, V.E.: Collisions of two breathers at the surface of deep water. Nat. Hazards Earth Syst. Sci. **13**, 3205 (2013)
- [18] Getzler, E.: A Darboux theorem for Hamiltonian operators in the formal calculus of variations. Duke Math. J. **111**, 535–560 (2002)
- [19] Haantjes, J.: On Xm-forming sets of eigenvectors. Indagat. Math. **17**, 158–162 (1955)
- [20] Liu, S.-Q., Zhang, Y.: On quasi-triviality and integrability of a class of scalar evolutionary PDEs. J. Geom. Phys. **57**, 101–119 (2006)
- [21] Liu, S.-Q., Wu, C.-Z., Zhang, Y.: On properties of Hamiltonian structures for a class of evolutionary PDEs. Lett. Math. Phys. **84**, 47–63 (2008)
- [22] Serre, D.: Systems of Conservation Laws 2: Geometric Structures, Oscilliations, and Initial-Boundary Value Problems. Cambridge University Press, Cambridge (2000)
- [23] Tsarev, S.: The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method. Math. USSR Izv. **37**, 397–419 (1991)
- [24] Whitham, G.B.: Linear and Nonlinear Waves. Wiley Interscience, New York (1974)
- [25] Zakharov, V.E.: Stability of periodic waves of finte amplitude on the surface of a deep fluid. Zhurnal Prildadnoi Mekhaniki i Tekhnicheskoi Fiziki **9**, 86–94 (1968)

Di Yang

School of Mathematical Sciences University of Science and Technology of China Hefei 230026 People's Republic of China e-mail: diyang@ustc.edu.cn

Communicated by Nikolai Kitanine.

Received: February 4, 2020.

Accepted: September 17, 2020.