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Abstract. We consider the Laguerre partition function and derive explicit
generating functions for connected correlators with arbitrary integer pow-
ers of traces in terms of products of Hahn polynomials. It was recently
proven in Cunden et al. (Ann. Inst. Henri Poincaré D, to appear) that
correlators have a topological expansion in terms of weakly or strictly
monotone Hurwitz numbers that can be explicitly computed from our
formulae. As a second result, we identify the Laguerre partition func-
tion with only positive couplings and a special value of the parameter
α = −1/2 with the modified GUE partition function, which has recently
been introduced in Dubrovin et al. (Hodge-GUE correspondence and the
discrete KdV equation. arXiv:1612.02333) as a generating function for
Hodge integrals. This identification provides a direct and new link be-
tween monotone Hurwitz numbers and Hodge integrals.

1. Introduction and Results

1.1. Laguerre Unitary Ensemble (LUE) and Formulae for Correlators

The LUE is the statistical model on the cone H+
N of positive definite Hermitian

matrices of size N endowed with the probability measure

1
ZN (α;0)

detαX exp tr (−X)dX, (1.1)

dX being the restriction to H+
N of the Lebesgue measure on the space HN �

R
N2

of Hermitian matrices X = X† of size N ;

dX :=
∏

1≤i≤N

dXii

∏

1≤i<j≤N

dRe XijdIm Xij . (1.2)
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The normalizing constant ZN (α;0) in (1.1) is computed explicitly as

ZN (α;0) :=
∫

H+
N

detαX e−tr XdX = π
N(N−1)

2

N∏

j=1

Γ(j + α). (1.3)

The parameter α could be taken as an arbitrary complex number satisfying
Re α > −1. Writing α = M − N , a random matrix X distributed according
to the measure (1.1) is called complex Wishart matrix with parameter M ; in
particular, when M is an integer, there is the equality in law X = 1

N WW †,
where W is an N ×M random matrix with independent identically distributed
Gaussian entries [36].

Our first main result, Theorem 1.1, concerns explicit and effective formu-
lae for correlators of the LUE
〈
tr Xk1 · · · trXkr

〉
:=

1
ZN (α;0)

∫

H+
N

trXk1 · · · trXkrdetαX exp tr (−X)dX

for arbitrary nonzero integers k1, . . . , kr ∈ Z\{0}. Theorem 1.1 is best formu-
lated in terms of connected correlators

〈
tr Xk1 · · · tr Xkr

〉
c
:=

∑

P partition of {1,...,r}
(−1)|P|−1(|P| − 1)!

∏

I∈P

〈
∏

i∈I

trXki

〉
,

(1.4)
e.g.,

〈tr Xk1〉c := 〈tr Xk1〉, 〈tr Xk1trXk2〉c := 〈tr Xk1tr Xk2〉 − 〈tr Xk1〉〈tr Xk2〉.
The generating function for connected correlators

〈
tr
(

1
x1 − X

)
tr
(

1
x2 − X

)
· · · tr

(
1

xr − X

)〉

c

(1.5)

can be expanded near xj = ∞ and/or xj = 0, yielding the following generating
functions up to some irrelevant terms; for r = 1

C1,0(x) :=
∑

k≥1

1
xk+1

〈
tr Xk

〉
, C0,1(x) := −

∑

k≥1

xk−1
〈
trX−k

〉
, (1.6)

for r = 2

C2,0(x1, x2) :=
∑

k1,k2≥1

〈
tr Xk1trXk2

〉
c

xk1+1
1 xk2+1

2

,

C1,1(x1, x2) := −
∑

k1,k2,≥1

xk2−1
2

xk1+1
1

〈
trXk1tr X−k2

〉
c
,

C0,2(x1, x2) :=
∑

k1,k2≥1

xk1−1
1 xk2−1

2

〈
trX−k1trX−k2

〉
c
, (1.7)

and, in general,

Cr+,r−(x1, . . . , xr) := (−1)r−
∑

k1,...,kr≥1

〈
tr Xσ1k1 · · · tr Xσrkr

〉
c

xσ1k1+1
1 · · · xσrkr+1

r

, (1.8)
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where r = r+ + r− and we introduce the signs

σ1 = · · · = σr+ = + , σr++1 = · · · = σr = − . (1.9)

We obtain the following explicit expression for these generating functions
for correlators.

Theorem 1.1. Introduce the matrix-valued formal series

R+(x) :=
(

1 0
0 0

)
+
∑

�≥0

1
x�+1

(
�A�(N,N+α) B�(N+1,N+α+1)

−N(N+α)B�(N,N+α) −�A�(N,N+α)

)
, (1.10)

R−(x) :=
(

1 0
0 0

)
+
∑

�≥0

x�

(α − �)2�+1

(
(�+1)A�(N,N+α) −B�(N+1,N+α+1)

N(N+α)B�(N,N+α) −(�+1)A�(N,N+α)

)
,

(1.11)

where, using a standard notation (p)j := p(p + 1) · · · (p + j − 1) for the rising
factorial,

A�(N,M) :=

⎧
⎪⎨

⎪⎩

N, � = 0,

1
�

�−1∑
j=0

(−1)j (N−j)�(M−j)�

j!(�−1−j)! , � ≥ 1,
(1.12)

B�(N,M) :=
�∑

j=0

(−1)j (N − j)�(M − j)�

j!(� − j)!
. (1.13)

Then, the generating functions (1.8) can be expressed as

C1,0(x) =
1
x

∫ ∞

x

[(R+(y))11 − 1] dy,

C0,1(x) =
1
x

∫ x

0

[1 − (R−(y))11] dy,

C2,0(x1, x2) =
tr (R+(x1)R+(x2)) − 1

(x1 − x2)2
,

C1,1(x1, x2) =
tr (R+(x1)R−(x2)) − 1

(x1 − x2)2
,

C0,2(x1, x2) =
tr (R−(x1)R−(x2)) − 1

(x1 − x2)2
, (1.14)

and, in general,

Cr+,r−(x1, . . . , xr) = −
∑

(i1,...,ir)∈Cr

tr
(
Rσi1

(xi1) · · · Rσir
(xir

)
)− δr,2

(xi1 − xi2) · · · (xir−1 − xir
)(xir

− xi1)
,

(1.15)
where r = r+ + r− ≥ 2, the summation extends over the r−cycles (i1, . . . , ir)
in the group of permutations of {1, . . . , r}, and we use the signs σ1, . . . , σr

defined in (1.9).
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The proof is given in Sect. 2.3. Theorem 1.1 generalizes formulae for one-
point correlators, since the formulae for the generating series C1,0 and C0,1

boil down to the following identities
〈
tr Xk

〉
= Ak(N,N + α),

〈
tr X−k−1

〉
=

Ak(N,N + α)
(α − k)2k+1

, k ≥ 0, (1.16)

which were already derived in the literature [23,44]. From Theorem 1.1, for
example, one can deduce compact expressions for correlators of the form

〈
trXktr X

〉
c
= kAk(N,N + α),

〈
trX−ktrX−1

〉
c
=

kAk(N,N + α)
α(α − k)2k+1

,

〈
tr XktrX−1

〉
c
= −kAk−1(N,N + α)

α
,

〈
tr X−ktr X

〉
c
= −kAk−1(N,N + α)

(α − k + 1)2k−1
; (1.17)

for the derivation, see Example 2.14. For general positive moments, see also
[48].

The entries A�(N,M), defined in (1.12), are known to satisfy a three-
term recursion [24,42]. We deduce this recursion together with a similar three-
term recursion for B�(N,M), in Lemma 2.11. It was pointed out in [23] that
the entries A�(N,M) are hypergeometric orthogonal polynomials (in particular
suitably normalized Hahn and dual Hahn polynomials [23,50]), a fact which
provides another interpretation of the same three-term recursion; this inter-
pretation extends to the entries B�(N,M), see Remark 2.12. In Lemma 3.2, we
provide an alternative expression for the entries A�(N,M), B�(N,M), which
makes clear that they are polynomials in N,M with integer coefficients.

Formulae of the same sort as (1.15) have been considered in [30] for the
Gaussian Unitary Ensemble and already appeared in the Topological Recursion
literature, see, e.g., [5,6,20,34,35]. Our approach is not directly based on the
Matrix Resolvent method [30] or the Topological Recursion [20]; in particular,
we provide a self-contained proof to Theorem 1.1 via orthogonal polynomials
and their Riemann–Hilbert problem [46].

Insertion of negative powers of traces in the correlators and computation
of mixed correlators are, to the best of our knowledge, novel aspects; as we shall
see shortly, these general correlators have expansions with integer coefficients, a
fact which generalizes results of, e.g., [22]. It would be interesting to implement
this method to other invariant ensembles of random matrices [26,36]. With the
aid of the formulae of Theorem 1.1, we have computed several LUE connected
correlators which are reported in the tables of “Appendix A.” Moreover, we can
make direct use of the formulae of Theorem 1.1 to prove (details in Sect. 3) the
following result, concerning the formal structure as large N asymptotic series
of arbitrary correlators of the LUE in the scaling

α = (c − 1)N, (1.18)

corresponding to M = cN in terms of the Wishart parameter M .
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Proposition 1.2. Arbitrary rescaled LUE correlators admit an asymptotic ex-
pansion for N → ∞ which is a series in N−2 with coefficients polynomial in c
and (c−1)−1 with integer coefficients. More precisely, for all k1, . . . , k� ∈ Z\{0}
we have

N−[� mod 2]−∑�
i=1 ki

〈
trXk1 · · · trXk�

〉
c
∼
∑

j≥0

f
(k1,...,k�)
j (c)

N2j
, N → ∞,

(1.19)
where f

(k1,...,k�)
j (c) ∈ Z

[
c, (c − 1)−1

]
for all j ≥ 0; here, we also denote

[�mod 2] ∈ {0, 1} the parity of �.

From this result, we infer that when c = 2 (equivalently, α = N) the
coefficients of this large N expansion are all integers.

From the tables in “Appendix A” one easily conjectures that actually a
stronger version of this result holds true, namely that the asymptotic expansion
for N �−2−∑�

i=1 ki
〈
trXk1 · · · trXk�

〉
c
. (Note the different power of N) as N →

∞ is a series in Z[c, (c − 1)−1][[N−2]]. Such stronger property holds true when
all the kj ’s have the same sign, see, e.g., [22,24] and the following section.

1.2. Topological Expansions and Hurwitz Numbers

It has been shown in [14,33] that for matrix models with convex potentials,
as in our case, correlators, suitably rescaled by a power of N , as in (1.19),
have a topological expansion, by which we mean an asymptotic expansion in
non-negative powers of N−2. As mentioned above, the topological expansion
of the LUE correlators in the regime (1.18) was considered in [22,24] where
the connection with Hurwitz numbers was made explicit.

Hurwitz numbers are very important combinatorial quantities, counting
factorizations in the symmetric group; they were first studied in the end of
the nineteenth century by Hurwitz and there has been a recent renewal of in-
terest in view of the connection with integrable systems and random matrices
[45,52]. The Hurwitz numbers related to this model [22] are a variant of mono-
tone Hurwitz numbers [12,13,38–40] which can be defined as follows. For μ, ν
partitions of the same integer d = |μ| = |ν|, define the strictly (resp. weakly)
monotone double Hurwitz numbers h>

g (μ; ν) (resp. h≥
g (μ; ν)) as the number of

tuples (α, τ1, . . . , τr, β) such that
(i) r = � + s + 2g − 2 where � is the length of μ and s is the length of ν,
(ii) α, β are permutations of {1, . . . , d} of cycle type μ, ν, respectively, and

τ1, . . . , τr are transpositions such that ατ1 · · · τr = β,
(iii) the subgroup generated by α, τ1, . . . , τr acts transitively on {1, . . . , d},

and
(iv) writing τj = (aj , bj) with aj < bj we have b1 < · · · < br (resp. b1 ≤ · · · ≤

br).

Theorem 1.3 ([22]). The following asymptotic expansions as N → ∞ hold true:

N �−|μ|−2 〈trXμ1 · · · tr Xμ�〉c =
∑

g≥0

1
N2g

1−2g+|μ|−�∑

s=1

H>
g (μ; s)cs, (1.20)
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for c > 1 − 1
N , and

N �+|μ|−2
〈
trX−μ1 · · · tr X−μ�

〉
c
=
∑

g≥0

1
N2g

∑

s≥1

H≥
g (μ; s)

(c − 1)2g−2+|μ|+�+s
, (1.21)

for c > 1 + |μ|
N . Here, we denote |μ| := μ1 + · · · + μ�, and the coefficients can

be expressed as

H>
g (μ; s) =

zμ

|μ|!
∑

ν of length s

h>
g (μ; ν), H≥

g (μ; s) =
zμ

|μ|!
∑

ν of length s

h≥
g (μ; ν),

(1.22)
where zμ :=

∏
i≥1 (imi) mi!, mi being the multiplicity of i in the partition μ.

From the structure of formula (1.21), it is clear that when c = 2 (equiv-
alently, α = N) the coefficients in this expansion are all positive integers.

Remark 1.4. The type of Hurwitz numbers appearing in expansions (1.20)
and (1.21) can also be expressed in terms of the (connected) multiparamet-
ric weighted Hurwitz numbers H̃d

G(μ), introduced and studied in [3,10,41,45],
which depend on a single partition μ and are parameterized by a positive
integer d and by a sequence g1, g2, . . . of complex numbers, the latter being
encoded in the series G(z) = 1 +

∑
i≥1 giz

i. To make the comparison precise,
one has to identify

d = 2g − 2 − |μ| − �(μ) (1.23)

and then we have
1−2g+|μ|−�∑

s=1

H>
g (μ; s)cs = zμc|μ|−dH̃d

G(μ), G(z) = (1 + cz)(1 + z), (1.24)

∑

s≥1

H≥
g (μ; s)

(c − 1)s
=

zμ

(c − 1)|μ|+d
H̃d

G(μ), G(z) =
1 + (c − 1)z

1 − z
, (1.25)

where zμ :=
∏

i≥1 (imi) mi!, mi being the multiplicity of i in the partition μ,
as above.

1.3. Laguerre and Modified GUE Partition Functions and Hodge Integrals

Our arguments in the proof of Theorem 1.1 mainly revolve around the following
generating function for correlators

ZN (α; t+, t−) =
∫

H+
N

detαX exp tr

⎛

⎝−X +
∑

k �=0

tkXk

⎞

⎠dX, (1.26)

which we call LUE partition function. Here, t+ = (t1, t2, . . . ) and t− =
(t−1, t−2, . . . ) are two independent infinite vectors of times and α is a complex
parameter. For precise analytic details about the definition (1.26), we refer to
the beginning of Sect. 2. Eventually, we are interested in the formal expan-
sion as tj → 0; more precisely, logarithmic derivatives of the LUE partition
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function at t+ = t− = 0 recover the connected correlators (1.4) as

∂� log ZN (α; t+, t−)
∂tk1 · · · ∂tk�

∣∣∣∣
t+=t−=0

=
〈
tr Xk1 · · · tr Xk�

〉
c
. (1.27)

It is known that ZN (α; t+, t−) is a Toda lattice tau function [2,49] sepa-
rately in the times t+ and t−; this point is briefly reviewed in Sect. 2.1.2. Our
second main result is the identification (Theorem 1.5) of the LUE partition
function (1.26) restricted to t− = 0 with another type of tau function, the mod-
ified Gaussian Unitary Ensemble (mGUE) partition function, which has been
introduced in [28] as a generating function for Hodge integrals (see below),
within the context of the Hodge-GUE correspondence [28,29,31,51,54,55].

The mGUE partition function Z̃N (s) is defined in [28] starting from the
even GUE partition function

Zeven
N (s) :=

∫

HN

exp tr

⎛

⎝−1
2
X2 +

∑

k≥1

skX2k

⎞

⎠dX, s = (s1, s2, . . . ),

(1.28)
which is the classical GUE partition function with couplings to odd powers
set to zero. It is well known [46] that (1.28) is a tau function of the discrete
KdV (also known as Volterra lattice) hierarchy, which is a reduction of the
Toda lattice hierarchy (see Sect. 2.1.2 for a brief discussion of the Toda lattice
hierarchy). As far as only formal dependence on N and on the times s is
concerned (see Sect. 4.2 for more details), it is then argued in [28] that the
identity

Zeven
N (s)

(2π)NVol(N)
= Z̃N− 1

2
(s)Z̃N+ 1

2
(s), Vol(N) :=

π
N(N−1)

2

G(N + 1)
, (1.29)

uniquely defines a function Z̃N (s), termed mGUE partition function; in (1.29)
and throughout this paper, G(z) is the Barnes G-function, with the particular
evaluation

G(N + 1) = 1!2! · · · (N − 1)! (1.30)

for any integer N > 0. With respect to the normalizations in [28], we are
setting ε ≡ 1 for simplicity; the dependence on ε can be restored by the scaling
N = xε. In [29], a new type of tau function for the discrete KdV hierarchy
is introduced and the mGUE partition function is identified with a particular
tau function of this kind.

We have the following interpretation for the mGUE partition function.

Theorem 1.5. The modified GUE partition function Z̃N (s) in (1.29) is identi-
fied with the Laguerre partition function ZN (α; t+, t−) in (1.26) by the relation

Z̃2N− 1
2
(s) = CNZN

(
α = −1

2
; t+, t− = 0

)
, (1.31)

where t+, s are related by
tk = 2ksk (1.32)
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and CN is an explicit constant depending on N only:

CN =
2

N
2 − 1

8 π
N2
2 G(1

2 )
G(N + 1

2 )
. (1.33)

The proof is given in Sect. 4.3. Identity (1.31) can be recast as the fol-
lowing explicit relation:

Z̃2N− 1
2
(s) =

2−N2+N− 1
8 π

N2
2 G(1

2 )
G(N + 1

2 )

∫

H+
N

exp tr

⎛

⎝−X

2
+
∑

k≥1

skXk

⎞

⎠ dX√
det X

,

(1.34)
which is obtained from (1.31) by a change of variable X → X

2 in the LUE
partition function.

Theorem 1.5 provides a direct and new link (Corollary 1.6) between the
monotone Hurwitz numbers in expansion (1.20) and special cubic Hodge inte-
grals. To state this result, let us denote Mg,n the Deligne–Mumford moduli
space of stable nodal Riemann surfaces, ψ1, . . . , ψn ∈ H2

(Mg,n,Q
)

and
κj ∈ H2j

(Mg,n,Q
)

(j = 1, 2, . . . ) the Mumford–Morita–Miller classes, and
Λ(ξ) := 1 + λ1ξ + · · · + λgξ

g the Chern polynomial of the Hodge bundle,
λi ∈ H2i

(Mg,n,Q
)
. For the definition of these objects, we refer to the litera-

ture, see, e.g., [56] and references therein.

Corollary 1.6. For any partition μ = (μ1, . . . , μ�) of length �, we have

∑

g≥0

ε2g−2Hg,μ = 2�
∑

γ≥0

(2ε)2γ−2
1−2γ+|μ|−�∑

s=1

(
λ +

ε

2

)2−2γ+|μ|−�−s (
λ − ε

2

)s
H>

γ (μ; s),

(1.35)

where

Hg,μ := 2g−1
∑

m≥0

(λ − 1)m

m!

∫

Mg,�+m

Λ2(−1)Λ

(
1

2

)
exp

⎛

⎝−
∑

d≥1

κd

d

⎞

⎠
�∏

a=1

μa

(
2μa

μa

)

1 − μaψa

+
δg,0δ�,1

2

(
λ − μ1

μ1 + 1

)(2μ1

μ1

)
+

δg,0δ�,2

2

μ1μ2

μ1 + μ2

(2μ1

μ1

)(2μ2

μ2

)
. (1.36)

The proof is given in Sect. 4.4. Note that Hg,μ in (1.36) is a well-defined
formal power series in C[[λ − 1]], as for dimensional reasons each coefficient of
(λ−1)m in (1.36) is a finite sum of intersection numbers of Mumford–Morita–
Miller and Hodge classes on the moduli spaces of curves.

Matching coefficients in (1.35), we obtain the following partial monotone
ELSV-like formulae valid for all partitions μ = (μ1, . . . , μ�) of length �:

∑

s≥1

H>
0 (μ; s) =

1
2�−1

∫

M0,�

exp

⎛

⎝−
∑

d≥1

κd

d

⎞

⎠
�∏

a=1

μa

(
2μa

μa

)

1 − μaψa

+ δ�,1
1

μ1 + 1

(
2μ1

μ1

)
+ δ�,2

μ1μ2

μ1 + μ2

(
2μ1

μ1

)(
2μ2

μ2

)
(1.37)
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in genus zero (see also Example 4.6) and
g∑

γ=0

24γ
∑

s≥1

⎡

⎣
∑

p≥0

(−1)p

(
2 − 2γ + |μ| − � − s

p

)(
s

2g − 2γ − p

)⎤

⎦H>
γ (μ; s)

= 23g+1−�

∫

Mg,�

Λ2(−1)Λ
(

1
2

)
exp

⎛

⎝−
∑

d≥1

κd

d

⎞

⎠
�∏

a=1

μa

(
2μa

μa

)

1 − μaψa
(1.38)

in higher genus g ≥ 1. Note that the left sides of (1.37) and (1.38) are finite
sums.

The connection between Hurwitz numbers and Hodge integrals, the so-
called ELSV formula, was introduced in [32], by T. Ekedahl, S. Lando, M.
Shapiro and A. Vainshtein. Insertion of κ classes in ELSV-type formulae for
monotone Hurwitz numbers has already been considered in the literature, e.g.,
in [4] for single monotone Hurwitz numbers and in [13] for orbifold monotone
Hurwitz numbers.

The relation between Hodge integrals and Hurwitz numbers expressed by
Corollary 1.6 is obtained from Theorem 1.5 by re-expanding the topological
expansion (1.20). Indeed, fixing α = − 1

2 implies that the parameter c in (1.20)
is no longer independent of N (soft-edge limit) but actually scales as c = 1− 1

2N
(hard-edge limit). This explains why we cannot derive from the Hodge-GUE
correspondence an expression in terms of Hodge integrals for each Hurwitz
number in (1.20), but only an expression for a combination of Hurwitz numbers
in different genera.

In particular, to obtain the formulae of Corollary 1.6 one has to re-expand
the topological expansion (1.20) in N after the substitution c = 1− 1

2N ; that the
result of this re-expansion, namely the right side of (1.35), involves only even
powers of ε is a consequence of the invariance of positive LUE correlators under
the involution (N,α) → (N+α,−α); this symmetry is described in Lemma 4.2.
More concretely, this symmetry implies the symmetry of the positive LUE
correlators under the involution (N, c) → (Nc, c−1) which in view of (1.20) is
equivalent to the identity

H>
g (μ; s) = H>

g (μ; 2 − 2g + |μ| − �(μ) − s). (1.39)

The above identity implies that the small ε expansion on the right-hand side of
(1.35) contains only even powers of ε. It is also possible to check the symmetry
(1.39) by purely combinatorial arguments, see Remark 4.3.

Remark 1.7. It is known that special cubic Hodge integrals are related to a q-
deformation of the representation theory of the symmetric group [53]; it would
be interesting to directly provide a link to the monotone Hurwitz numbers
under consideration here.

Organization of the Paper

In Sect. 2, we prove Theorem 1.1; a summary of the proof is given in the
beginning of that section. In Sect. 3, we analyze the formulae of Theorem 1.1
to prove Proposition 1.2. In Sect. 4, we prove the identification of the mGUE
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and LUE partition functions, namely Theorem 1.5; then, we recall the Hodge-
GUE correspondence [28] and we deduce Corollary 1.6. Finally, in the tables of
“Appendix A” we collect several connected correlators and weighted monotone
double Hurwitz numbers, computed applying the formulae of Theorem 1.1.

2. Proof of Theorem 1.1

In this section, we prove our first main result, Theorem 1.1. The proof com-
bines two main ingredients: on the one side the interpretation of the matrix
integral (1.26) as an isomonodromic tau function [9] and on the other side
some algebraic manipulations of residue formulae introduced in [7]. More in
detail, we first introduce the relevant family of monic orthogonal polynomials
and derive a compatible system of (monodromy-preserving) ODEs in the pa-
rameters t (Proposition 2.1); throughout this section, in the interest of lighter
notations, we set

t := (t+, t−) = (. . . , t−2, t−1, t1, t2, . . . ). (2.1)

Such orthogonal polynomials reduce to monic Laguerre polynomials for t = 0.
With the aid of this system of deformations, we then compute arbitrary deriva-
tives of the LUE partition function (1.26) in terms of formal residues of expres-
sions that do not contain any derivative in t (Propositions 2.4, 2.6 and 2.7).
Finally, the formulae of Theorem 1.1 are found by evaluation of these residues
at t = 0; the latter task is then to compute the asymptotic expansions of
Cauchy transforms of Laguerre polynomials at zero and infinity (Proposi-
tions 2.9 and 2.13). It is worth stressing at this point that the two formal
series R± of (1.10)–(1.11) in Theorem 1.1 are actually asymptotic expansions
of the same analytic function at two different points.

As a preliminary to the proof, let us comment on definition (1.26) of the
LUE partition function. Even though a formal approach is sufficient to make
sense of the LUE partition function as a generating function, we shall also
regard it as genuine analytic function of the times t. In this respect, let us
point out that to make strict non-formal sense of (1.26) one can assume that
the vector of times is finite, namely that

tk �= 0 ⇐⇒ K− ≤ k ≤ K+, (2.2)

and then, to ensure convergence of the matrix integral, that Re tK− < 0 for
K− < 0 and Re tK+ < δK+,1 for K+ > 0.

Though we have to assume in our computations that we have chosen such
an arbitrary truncation of the times, this is inconsequential in establishing the
formulae of Theorem 1.1. More precisely, such truncation implies that (1.27)
holds true only as long as K+,K− are large enough, and the formal generating
functions Cr+,r− (as it follows from our arguments, see Sect. 2.3) are manifestly
independent of K± and are therefore obtained by a well-defined inductive limit
K+ → ∞,K− → −∞.

Moreover, in (1.26) the parameter α has to satisfy Re α > −1; even worse,
in (1.27) we have to assume that Re α > −∑r

i=1 ki − 1 to enforce convergence
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of the matrix integral at X = 0. This restriction can be lifted, if α is not an
integer, by taking a suitable deformation of the contour of integration. This
caveat is crucial to us, as we shall need the formal expansion of the matrix R(x)
at all orders near x = 0, see (1.11); the coefficients of this expansion are in
general ill-defined for integer α (although truncated expansions are well defined
if α is confined to suitable right half-planes). It is clear how to overcome these
issues by the aforementioned analytic continuation; hence, we do not dwell
further on this point.

2.1. Orthogonal Polynomials and Deformation Equations

2.1.1. Orthogonal Polynomials. Let π
(α)
� (x; t) = x� + · · · (� ≥ 0) be the family

of monic orthogonal polynomials, uniquely defined by the property
∫ +∞

0

π
(α)
� (x; t)π(α)

�′ (x; t)e−Vα(x;t)dx = δ�,�′h�(t), �, �′ ≥ 0, (2.3)

where
Vα(x; t) := x − α log(x) −

∑

k �=0

tkxk, x > 0. (2.4)

For t = 0, they essentially reduce to the generalized Laguerre polynomials
L

(α)
� (x); more precisely, denoting π

(α)
� (x) := π

(α)
� (x; t = 0) we have the identity

π
(α)
� (x) := (−1)��!L(α)

� (x) =
�∑

j=0

(−1)�−j(� − j + 1)j(j + 1 + α)�−j

j!
xj , (2.5)

for all � ≥ 0. Using Rodrigues formula

π
(α)
� (x) = (−1)�x−αex

(
d�

dx�

(
e−xxα+�

))
(2.6)

and integration by parts, we obtain
∫ +∞

0

xkπ
(α)
� (x)e−xxαdx =

∫ +∞

0

(
d�

dx�
xk

)
e−xxα+�dx

=

{
0, k < �,

�! Γ(α + � + 1), k = �.
(2.7)

Hence, the orthogonality property (2.3) for t = 0 reads as
∫ +∞

0

π
(α)
� (x)π(α)

�′ (x)xαe−xdx = h�δ�,�′ , h� = �! Γ(α + � + 1), (2.8)

where h� = h�(t = 0). For general t instead, the monic orthogonal polynomials
π

(α)
0 (t), π

(α)
1 (t), . . . , π

(α)
L−1(t) exist whenever the moment matrix

(mi+j)
L−1
i,j=0 , m� :=

∫ +∞

0

x�e−Vα(x;t)dx, (2.9)

is non-degenerate. In the present case, their existence is ensured for real t by
the fact that the moment matrix (mi+j)

L−1
i,j=0 is positive definite.
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By standard computations, we have the following identity

ZN (α; t) =
π

N(N−1)
2

G(N + 1)

N−1∏

�=0

h�(t), (2.10)

where h�(t) are defined by (2.3).

2.1.2. Connection with Toda Lattice Hierarchy. It is well known that the
monic orthogonal polynomials π

(α)
� (x; t) satisfy a three-term recurrence re-

lation

xπ
(α)
� (x; t) = π

(α)
�+1(x; t) + vα

� (t)π(α)
� (x; t) + wα

� (t)π(α)
�−1(x; t). (2.11)

That is, the orthogonal polynomials are eigenvectors of the second order dif-
ference operator

(Lψ)� = ψ�+1 + vα
� ψ� + wα

� ψ�−1. (2.12)
The corresponding half-infinite tri-diagonal matrix, also denoted L = (Lij),
i, j ≥ 0, takes the form

L =

⎛

⎜⎜⎜⎜⎜⎝

vα
0 1 0 0 · · ·

wα
1 vα

1 1 0 · · ·
0 wα

2 vα
2 1 · · ·

0 0 wα
3 vα

3 · · ·
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎠
. (2.13)

It is a standard fact that L and therefore the coefficients vα
n(t) and wα

n(t)
evolve with respect to positive times t+ = (t1, t2, . . . ), for any fixed t− =
(t−1, t−2, . . . ), according to the Toda lattice hierarchy [2,19,27,30,49]

∂L

∂tk
=
[(

Lk
)
+

, L
]
, (2.14)

where for any matrix P , P+ denotes the lower triangular part of P , i.e., the
matrix with entries

(P+)ij :=

{
Pij if i ≥ j

0 if i < j
, (2.15)

where Pij are the entries of P . Setting t− = 0, we can also write the initial
data of the Toda hierarchy as

vα
� (t+ = t− = 0) = 2� + 1 + α, wα

� (t+ = t− = 0) = �(� + α) (2.16)

that are the recurrence coefficients for the monic generalized Laguerre poly-
nomials (2.5). Moreover, it is well known, see loc. cit., that ZN (α; t+, t− = 0)
is the Toda lattice tau function corresponding to this solution.

It can be observed that the evolution with respect to the negative times
t− = (t−1, t−2, . . . ) is also described by a Toda lattice hierarchy and a simple
shift in α. More precisely, we claim that ZN (α−2N, t+ = 0, t−) is also a Toda
lattice tau function, with a different initial datum; namely, it is associated
with the tri-diagonal matrix L̃ satisfying the Toda hierarchy

∂L̃

∂t−k
=
[(

L̃k
)

+
, L̃

]
(2.17)
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constructed as above from the three-term recurrence of monic orthogonal poly-
nomials, this time with respect to the measure

exp

(
− 1

x
+
∑

k>0

t−kxk

)
dx

xα
(2.18)

on (0,+∞). To see it, let us rewrite

ZN (α; t+ = 0, t−) =
∫

H+
N

detαX exp tr

(
−X +

∑

k<0

tkXk

)
dX

=
∫

H+
N

det−αX̃ exp tr

(
−X̃−1 +

∑

k>0

t−kX̃k

)
d
(
X̃−1

)
,

(2.19)

where we perform the change of variable X̃ = X−1, which is a diffeomorphism
of H+

N . The Lebesgue measure (1.2) can be rewritten (on the full-measure set
of semisimple matrices) as

dX = dU
∏

i<j

(xi − xj)2dx1 · · · dxN , (2.20)

where dU is a suitably normalized Haar measure on U(N)/(U(1))N and x1, . . . , xN

are the eigenvalues of X. Therefore, the measure transforms as

dX̃ = dU
∏

i<j

(
1
xi

− 1
xj

)2

d
(

1
x1

)
· · · d

(
1

xN

)

=
dU

(x1 · · · xN )2N

∏

i<j

(xi − xj)2dx1 · · · dxN =
dX

det2NX
, (2.21)

yielding

dX =
dX̃

det2N X̃
. (2.22)

Summarizing, we have

ZN (α; t+ = 0, t−) =
∫

H+
N

exp tr
(
−X̃−1 +

∑
k>0 t−kX̃k

)

detα+2N X̃
dX̃ (2.23)

and the standard arguments of loc. cit. now apply to the matrix integral
ZN (α−2N ; t+ = 0, t−) to show that it is indeed the Toda lattice tau function
associated with the solution L̃.

For our purposes, we need to describe the simultaneous dependence on t+
and t−; this is achieved by the zero-curvature condition (2.34) of the system
of compatible ODEs (2.30) which we now turn our attention to.



3298 M. Gisonni et al. Ann. Henri Poincaré

2.1.3. Cauchy Transform and Deformation Equations. Let us denote by

π̂
(α)
� (x; t) :=

1
2πi

∫ +∞

0

π
(α)
� (ξ; t)e−Vα(ξ;t) dξ

ξ − x
(2.24)

the Cauchy transforms of the orthogonal polynomials π
(α)
� (x; t). Then, for

fixed N introduce the following 2 × 2 matrix

Y (x; t) :=

(
π

(α)
N (x; t) π̂

(α)
N (x; t)

− 2πi
hN−1(t)

π
(α)
N−1(x; t) − 2πi

hN−1(t)
π̂

(α)
N−1(x; t)

)
, (2.25)

where, for the interest of clarity, we drop the dependence on N,α. The matrix
Y (x; t) was introduced in the seminal paper [46] to study the general con-
nection between orthogonal polynomials and random matrix models. The rest
of this section follows from [46]. Matrix (2.25) solves the following Riemann–
Hilbert problem for orthogonal polynomials; it is analytic for x ∈ C\[0,∞) and
continuous up to the boundary (0,∞) where it satisfies the jump condition

Y+(x; t) = Y−(x; t)
(

1 e−Vα(x;t)

0 1

)
, x ∈ (0,∞), (2.26)

where Y±(x; t) = limε→0+ Y (x ± iε; t). Moreover, at the endpoints x = ∞, 0
we have

Y (x; t) ∼ (
1 + O(x−1)

)
xNσ3 , x → ∞, (2.27)

Y (x; t) ∼ G0(t) (1 + O(x)) , x → 0, (2.28)

within the sector 0 < arg x < 2π; the matrix G0(t) in (2.28) is independent of
x and it is invertible. (Actually, it has unit determinant, as we now explain.)

The jump matrix in (2.26) has unit determinant; hence, detY (x; t) is
analytic for all complex x but possibly for isolated singularities at x = 0,∞;
however, det Y (x; t) ∼ 1 when x → ∞, see (2.27), and is bounded as x → 0,
see (2.28); therefore, we conclude by the Liouville theorem that detY (x; t) ≡ 1
identically.

Introduce the 2 × 2 matrix

Ψ(x; t) := Y (x; t) exp
(
−Vα(x; t)

σ3

2

)
. (2.29)

Here, we choose the branch of the logarithm appearing in Vα(x; t), see (2.4),
analytic for x ∈ C\[0,∞) satisfying limε→0+ log(x + iε) ∈ R; to be con-
sistent with (2.4), we shall identify Vα(x; t), without further mention, with
Vα,+(x; t) = limε→0+ Vα(x + iε; t) whenever x > 0.

Accordingly, Ψ(x; t) is analytic for x ∈ C\[0,∞).

Proposition 2.1. The matrix Ψ in (2.29) satisfies a compatible system of linear
2 × 2 matrix ODEs with rational coefficients:

∂Ψ(x; t)
∂x

= A(x; t)Ψ(x; t),
∂Ψ(x; t)

∂tk
= Ωk(x; t)Ψ(x; t), k �= 0. (2.30)
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In particular, for k > 0, the matrices Ωk(x; t) are polynomials in x of degree
k, whilst for k < 0 they are polynomials in x−1 of degree |k| without constant
term; more precisely, they admit the representations

Ωk(x; t) = res
ξ

(
Y (ξ; t)

σ3

2
Y −1(ξ; t)

ξkdξ

x − ξ

)
, (2.31)

where resξ denotes resξ=∞ when k > 0 and resξ=0 when k < 0. On the other
hand, A(x; t) is a Laurent polynomial in x, provided times are truncated ac-
cording to (2.2).

Proof. We note that (2.26) implies the following jump condition for the matrix
Ψ, with a constant jump matrix:

Ψ+(x; t) = Ψ−(x; t)
(

e−iπα e−iπα

0 eiπα

)
, x ∈ (0,∞). (2.32)

Here, Ψ±(x; t) = limε→0+ Ψ(x ± iε; t); to prove this relation, we observe that
the branch of the logarithm we are using satisfies log+(x) = log−(x) − 2πi
for x ∈ (0,∞) and so Vα,+(x; t) = Vα,−(x; t) + 2iπα, with a similar notation
for the ±-boundary values along (0,∞). Hence, all derivatives of Ψ satisfy the
same jump condition, with the same jump matrix. It follows that the ratios
A := ∂Ψ

∂x Ψ−1 and Ωk := ∂Ψ
∂tk

Ψ−1 (for all k �= 0) are regular along the positive
real axis; however, they may have isolated singularities at x = 0 and at x = ∞.
Let us start from Ωk for k > 0. In such case, it follows from (2.27) and (2.28)
that Ωk has a polynomial growth at x = ∞ and it is regular at x = 0:

Ωk =
∂Y (x; t)

∂tk
Y −1(x; t) + Y (x; t)

σ3

2
Y −1(x; t)xk

∼
{

σ3
2 xk + O (

xk−1
)
, x → ∞

O(1), x → 0.
(2.33)

From the Liouville theorem, we conclude that Ωk for k > 0 is a polynomial,
which therefore equals the polynomial part of its expansion at x = ∞, which
is computed as in (2.31), since at x = ∞ the term ∂Y

∂tk
Y −1 = O(x−1) does not

contribute to the polynomial part of the expansion. The statement for Ωk for
k < 0 follows along similar lines. Likewise, A(x; t) in (2.30) has a polynomial
growth at x = ∞ and a pole at x = 0 and therefore it is a Laurent polynomial.

�

The compatibility of (2.30) is ensured by the existence of the solution
Ψ(x; t). In particular, this implies the zero curvature equations

∂A
∂tk

− ∂Ωk

∂x
= [Ωk,A], k �= 0. (2.34)

Remark 2.2. Since the determinants of Y (x; t) and Ψ(x; t) are identically equal
to 1, it follows that Ωk(x; t) and A(x; t), introduced in (2.30), are traceless.

We end this paragraph by considering the restriction t = 0. The matrix
Ψ(x) := Ψ(x; t = 0) is obtained from the Laguerre polynomials (2.5). The
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matrix A(x) = ∂Ψ(x)
∂x Ψ(x)−1 takes the form

A(x) := A(x; t = 0) = −1
2
σ3 +

1
x

(
N + α

2 −hN

2πi
2πi

hN−1
−N − α

2 ,

)
(2.35)

which has a Fuchsian singularity at x = 0 and an irregular singularity of
Poincaré rank 1 at x = ∞.

Remark 2.3. The Frobenius indices of (2.35) at x = 0 are ±α
2 , and so the

Fuchsian singularity x = 0 is non-resonant if and only if α is not an integer. It
is worth pointing out that the monodromy matrix α

2 σ3 at x = 0 is preserved
under the t-deformation (2.30).

2.2. Residue Formulae for Correlators

2.2.1. One-Point Correlators. The general type of formulae of Proposition 2.4
first appeared in [9], where the authors consider a very general case. Such for-
mulae identify the LUE partition function with the isomonodromic tau func-
tion [47] of the monodromy-preserving deformation system (2.30). The starting
point for the following considerations is the representation (2.10) for the LUE
partition function (1.26).

Proposition 2.4. Logarithmic derivatives of the LUE partition function admit
the following expression in terms of formal residues:

∂ log ZN (α; t)
∂tk

= − res
x

tr
(

Y −1(x; t)
∂Y (x; t)

∂x

σ3

2

)
xkdx, (2.36)

where the symbol resx denotes resx=∞ when k > 0 and resx=0 when k < 0.

Proof. For the proof, we follow the lines of [21]. Omitting the dependence on
x, t for the sake of brevity, we first differentiate the orthogonality relation (2.3)

∂h�

∂tk
=
∫ +∞

0

(
π

(α)
�

)2

xke−Vαdx (2.37)

and recall the confluent Christoffel–Darboux formula for orthogonal polyno-
mials

N−1∑

�=0

(
π

(α)
�

)2

h�
=

1
hN−1

(
π

(α)
N−1

∂π
(α)
N

∂x
− ∂π

(α)
N−1

∂x
π

(α)
N

)

=
1

2πi

(
Y −1 ∂Y

∂x

)

21

, (2.38)

where in the last step one uses det Y (x; t) ≡ 1. It can be checked that the
jump relation (2.26) implies

tr
(

Y −1
+

∂Y+

∂x

σ3

2

)
= tr

(
Y −1

−
∂Y−
∂x

σ3

2

)
−
(

Y −1 ∂Y

∂x

)

21

e−Vα . (2.39)

Therefore, starting from (2.10), we compute

∂ log ZN (α; t)
∂tk

=
N−1∑

�=0

1
h�

∂h�

∂tk
=

N−1∑

�=0

∫ +∞

0

(
π

(α)
�

)2

h�
xke−Vαdx
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=
1

2πi

∫ +∞

0

tr
[(

Y −1
−

∂Y−
∂x

− Y −1
+

∂Y+

∂x

)
σ3

2

]
xkdx. (2.40)

Such an integral of a jump can be performed by a residue computation. First
of all, note that although xktr

(
Y −1 ∂Y

∂x
σ3
2

)
is not analytic at x = ∞, it has a

large x asymptotic expansion given by

xktr
(

Y −1 ∂Y

∂x

σ3

2

)
=

k−2∑

j=−1

cjx
j + O

(
1
x2

)
(2.41)

for any k ∈ N, where −c−1 is, by definition, the formal residue at infinity of
xktr

(
Y −1 ∂Y

∂x
σ3
2

)
. Then, recalling our choice for the branch of the logarithm

and using contour deformation, we can express (2.40) as

∂ log ZN (α; t)
∂tk

= − res
x=0

tr
(

Y −1 ∂Y

∂x

σ3

2

)
xkdx − res

x=∞ tr
(

Y −1 ∂Y

∂x

σ3

2

)
xkdx,

(2.42)
the residues being intended in the formal sense explained above. Finally, the
proof is complete by noting that for k > 0 (resp. k < 0) the formal residue at
x = 0 (resp. x = ∞) vanishes. �

For later convenience, let us slightly rewrite the result of the above propo-
sition. To this end, introduce the matrix

R(x; t) := Y (x; t)E11Y
−1(x; t), (2.43)

denoting E11 :=
(

1 0
0 0

)
from now on.

Corollary 2.5. We have

∂ log ZN (α; t)
∂tk

= − res
x

(
tr (A(x; t)R(x; t)) +

1
2

∂

∂x
Vα(x; t)

)
xkdx, (2.44)

where R(x; t) is introduced in (2.43) and again resx denotes resx=∞ when
k > 0 and resx=0 when k < 0.

Proof. We have from (2.29) and (2.30)

∂

∂x
Y = AY + Y

σ3

2
∂

∂x
Vα (2.45)

(omitting again the dependence on x, t for the sake of clarity) so that

tr
(

Y −1 ∂Y

∂x

σ3

2

)
= tr

(
Y −1AY

σ3

2

)
+

1
2

∂

∂x
Vα = tr (AR) +

1
2

∂

∂x
Vα, (2.46)

where in the last step we have used that

tr
(
Y −1AY

σ3

2

)
= tr

(
Y −1AY E11

)
= tr (AR) , (2.47)

where the first equality follows from tr A = 0 and the second one from the
cyclic property of the trace and definition (2.43). �
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2.2.2. Multipoint Connected Correlators. We first consider two-point con-
nected correlators.

Proposition 2.6. For every nonzero integers k1, k2, we have

∂2 log ZN (α; t)
∂tk2∂tk1

= res
x1

res
x2

tr (R(x1; t)R(x2; t)) − 1
(x1 − x2)2

xk1
1 xk2

2 dx1dx2, (2.48)

where the symbol resxi
denotes resxi=∞ (resp. resxi=0) if ki > 0 (resp. ki < 0).

Proof. From (2.44), we have

∂ log ZN (α; t)
∂tk1

= − res
x1

(
tr (A(x1; t)R(x1; t)) +

1
2

∂

∂x1
Vα(x1; t)

)
xk

1dx1.

(2.49)
Let us take one more time derivative
∂2 log ZN (α; t)

∂tk2∂tk1

= − res
x1

(
tr
(

∂A(x1; t)
∂tk2

R(x1; t) +
∂R(x1; t)

∂tk2

A(x1; t)
)

− 1
2
k2x

k2−1
1

)
xk1

1 dx1,

(2.50)

and note that using (2.34) and ∂tk
R(x; t) = [Ωk(x; t), R(x; t)]

tr
(

∂A(x1; t)
∂tk2

R(x1; t) +
∂R(x1; t)

∂tk2

A(x1; t)
)

= tr
(

∂Ωk2(x1; t)
∂x1

R(x1; t)
)

.

(2.51)
Now let us write Ωk2 from (2.31) as

Ωk2(x1; t) = res
x2

(
Y (x2; t)

σ3

2
Y −1(x2; t)

xk2
2

x1 − x2

)
dx2

= res
x2

R(x2; t)
xk2

2 dx2

x1 − x2
− 1

2
res
x2

xk2
2 dx2

x1 − x2
, (2.52)

yielding

∂Ωk2(x1; t)
∂x1

= − res
x2

R(x2; t)
xk2

2 dx2

(x1 − x2)2
+

1
2

res
x2

xk2
2 dx2

(x1 − x2)2
. (2.53)

Finally, the identity

− k2x
k2−1
1 = res

x2

xk2
2

(x1 − x2)2
dx2 (2.54)

holds true irrespectively of the sign of k2, and the proof is completed by in-
serting (2.51), (2.53) and (2.54) in (2.50), along with trR(x; t) ≡ 1. �

To compute higher-order logarithmic derivatives of the LUE partition
function, let us introduce the functions

Sr(x1, . . . , xr; t) := −
∑

(i1,...,ir)∈Cr

tr (R(xi1 ; t) · · · R(xir
; t)) − δr,2

(xi1 − xi2) · · · (xir−1 − xir
)(xir

− xi1)
,

(2.55)
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where, as explained in the statement of Theorem 1.1, the sum extends over
cyclic permutations of {1, . . . , r}. Due to the cyclic invariance of the trace and
of the polynomial (x1 − x2) · · · (xr − x1), it follows that Sr(x1, . . . , xr; t) is
symmetric in x1, . . . , xr.

The following proof is reported for the sake of completeness; it has ap-
peared in the literature several times, e.g., see [7,8,11,30]. The only slight
difference here is that we consider two different set of times and correspond-
ingly the residues are taken at two different points.

Proposition 2.7. For every r ≥ 2, we have

∂r log ZN (α; t)
∂tkr

· · · ∂tk1

= (−1)r res
x1

· · · res
xr

Sr(x1, . . . , xr; t)xk1
1 · · · xkr

r dx1 · · · dxr,

(2.56)
where, as above, the symbol resxi

denotes resxi=∞ (resp. resxi=0) if ki > 0
(resp. ki < 0).

Proof. We have

∂

∂tk
R(x; t) = [Ωk(x; t), R(x; t)] = res

ξ

[R(ξ; t), R(x; t)]
x − ξ

ξkdξ, (2.57)

where we have used (2.31) and resξ denotes the formal residue at ξ = ∞ if
k > 0 or the formal residue at ξ = 0 if k < 0. Hence, we compute

∂Sr(x1, . . . , xr; t)
∂tk

= − res
ξ

∑

(i1,...,ir)∈Cr

r∑

j=1

tr
(
R(xi1 ; t) · · · [R(ξ; t), R(xij

; t)] · · · R(xir
; t)
)

(xi1 − xi2) · · · (xir
− xi1)(xij

− ξ)
ξkdξ.

(2.58)

Expanding [R(ξ; t), R(xij
; t)] = R(ξ; t)R(xij

; t)−R(xij
; t)R(ξ; t), we note that

each term involving the expression

tr
(
R(xi1 ; t) · · · R(ξ; t)R(xij

; t) · · · R(xir
; t)
)

(2.59)

appears twice, but with different denominators; collecting these terms gives

− res
ξ

∑

(i1,...,ir)∈Cr

r∑

j=1

tr
(
R(xi1 ; t) · · · R(ξ; t)R(xij

; t) · · · R(xir
; t)
)

(xi1 − xi2) · · · (xir
− xi1)

×
(

1
xij

− ξ
− 1

xij−1 − ξ

)
ξkdξ
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= res
ξ

∑

(i1,...,ir)∈Cr

r∑

j=1

tr
(
R(xi1 ; t) · · · R(ξ; t)R(xij

; t) · · · R(xir
; t)
)

(xi1 − xi2) · · · (xij−1 − ξ)(ξ − xij
) · · · (xir

− xi1)
ξkdξ

= − res
ξ

Sr+1(x1, . . . , xr, ξ)ξkdξ, (2.60)

where the index j in the internal summation is taken mod r, namely i0 := ir.
Summarizing, we have shown that for all r ≥ 2

∂Sr(x1, . . . , xr; t)
∂tk

= − res
ξ

Sr+1(x1, . . . , xr, ξ)ξkdξ (2.61)

and the proof now follows by induction on r ≥ 2, the base r = 2 being
established in Proposition 2.6. �

Remark 2.8. The functions Sr(x1, . . . , xr) are regular along the diagonals xi =
xj . In the case r = 2, this can be seen from the fact that

tr (R2(x; t)) ≡ 1, (2.62)

and hence, the function tr (R(x1; t)R(x2; t))−1 is symmetric in x1 and x2 and
vanishes for x1 = x2. Therefore, the zero on the diagonal x1 = x2 is of order
at least 2 and so S2(x1, x2) is regular at x1 = x2. For r ≥ 3, instead we can
reason as follows: since Sr is symmetric, we can focus on the case xr−1 = xr,
and the only addends in Sr which are singular at xr−1 = xr are those coming
from the r-cycles (i1, . . . , ir−2, r − 1, r) and (i1, . . . , ir−2, r, r − 1), namely the
terms

∑

(i1,...,ir−2,r−1,r)

tr
(
R(xi1 ; t) · · · R(xir−2 ; t)R(xr−1; t)R(xr; t)

)

(xi1 − xi2) · · · (xir−2 − xr−1)(xr−1 − xr)(xr − xi1)

+
∑

(i1,...,ir−2,r,r−1)

tr
(
R(xi1 ; t) · · · R(xir−2 ; t)R(xr; t)R(xr−1; t)

)

(xi1 − xi2) · · · (xir−2 − xr)(xr − xr−1)(xr−1 − xi1)
,

(2.63)

and this expression is manifestly regular at xr−1 = xr.
In particular, the order in which residues are carried out in (2.56) is

immaterial.

Finally, we remark that it would be interesting to extend the above for-
mulation to other matrix ensembles like the GOE, see, e.g., [26].

2.3. Asymptotic Expansions and Proof of Theorem 1.1

To compute LUE correlators, we have to set t = 0 in the residue formulae of
Corollary 2.5 and of Propositions 2.6 and 2.7. To this end, we now consider

R(x) := R(x; t = 0), (2.64)

where R(x; t) is introduced in (2.43) and compute explicitly series expansions
as x → ∞, 0. We start with the expansion as x → ∞.
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Proposition 2.9. The matrix R(x) admits the asymptotic expansion

TR(x)T−1 ∼ R+(x), x → ∞, (2.65)

uniformly within the sector 0 < arg x < 2π. Here, R+ is the formal series
introduced in the beginning of this paper, see (1.10), and T is defined as

T :=
(

1 0
0 hN

2πi ,

)
(2.66)

where hN = N !Γ(N + α + 1) as in (2.8).

Remark 2.10. The matrix T is independent of x and is introduced for con-
venience as it simplifies the coefficients in the expansions. This simplification
does not affect the residue formulae of the previous paragraph, as it involves
a constant conjugation of R(x).

Proof. First off, we recall that

Y (x) := Y (x; t = 0) =

(
π

(α)
N (x) π̂

(α)
N (x)

− 2πi
hN−1

π
(α)
N−1(x) − 2πi

hN−1
π̂

(α)
N−1(x)

)
, (2.67)

where the polynomials π
(α)
� (x) and their Cauchy transforms π̂

(α)
� (x) have been

given in (2.5) and (2.24), respectively, while h� is in (2.8). We can expand π̂
(α)
�

as x → ∞ as

π̂
(α)
� (x) =

1
2πi

∫ +∞

0

π
(α)
� (ξ)ξαe−ξ dξ

ξ − x

∼ − 1
2πi

∑

j≥0

1
xj+1

∫ +∞

0

π
(α)
� (ξ)ξα+je−ξdξ

= − 1
2πi

∑

j≥0

1
xj+�+1

∫ +∞

0

π
(α)
� (ξ)ξα+j+�e−ξdξ

= − 1
2πi

∑

j≥0

1
xj+�+1

∫ +∞

0

(−1)�

(
d�

dξ�
(e−ξξα+�)

)
ξj+�dξ

= − 1
2πi

∑

j≥0

1
xj+�+1

∫ +∞

0

(
d�

dξ�
ξj+�

)
ξα+�e−ξdξ

= − 1
2πi

∑

j≥0

(j + 1)�Γ(j + � + 1 + α)
x�+j+1

, (2.68)

where we have used the orthogonality property to shift the sum in the first
place, then Rodrigues formula (2.6) and integration by parts. The expansion
(2.68) is formal; however, it has an analytic meaning of asymptotic expansion
as x → ∞. Indeed, for any J ≥ 0 the difference between the Cauchy transform
and its truncated formal expansion is
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π̂
(α)
� (x) +

1
2πi

J−1∑

j=0

1
xj+1

∫ +∞

0

π
(α)
� (ξ)ξα+je−ξdξ

=
1

2πixJ

∫ +∞

0

π
(α)
� (ξ)ξα+Je−ξ dξ

ξ − x
= O

(
1

xJ+1

)
, (2.69)

where the last step holds as x → ∞, uniformly in C\[0,+∞). Hence, using
(2.5) and (2.68),

Y (x) ∼
∑

j≥0

1
j!xj

(
(−1)j(N−j+1+α)j(N−j+1)j − hN−1

2πix (N+α)j+1(N)j+1

− 2πi
hN−1x (−1)j(N−j+α)j(N−j)j (N+α)j(N)j

)
xNσ3

(2.70)
as x → ∞ within the sector 0 < arg x < 2π. Since detY (x) ≡ 1, we have

TR(x)T−1 = TY (x)E11Y
−1(x)T−1

=
(

1 + Y21(x)Y12(x) − 2πi
hN

Y11(x)Y12(x)
hN

2πiY21(x)Y22(x) −Y21(x)Y12(x)

)
, (2.71)

from which the expansion at x = ∞ can be computed as follows. For the
(1, 1)−entry we have

Y21(x)Y12(x) ∼
∑

�≥0

1

x�+2

�∑

j=0

(−1)j(N + α)�−j+1(N)�−j+1(N − j + α)j(N − j)j

j!(� − j)!
,

(2.72)
and noting a trivial simplification of rising factorials

(N +α)�−j+1(N −j +α)j = (N −j +α)�+1, (N)�−j+1(N −j)j = (N −j)�+1,
(2.73)

it follows that as x → ∞
(TR(x)T−1)11 ∼ 1 +

∑

�≥0

1
x�+2

(� + 1)A�+1(N,N + α)

= 1 +
∑

�≥0

1
x�+1

�A�(N,N + α) = (R+)11(x), (2.74)

with A�(N,M) as in (1.12). In a similar way, we compute the (1, 2)-entry

− 2πi
hN

Y11(x)Y12(x) ∼ 1
N(N + α)

×
∑

�≥0

1
x�+1

�∑

j=0

(−1)j (N − j + 1 + α)j(N − j + 1)j(N + α)�−j+1(N)�−j+1

j!(� − j)!

=
∑

�≥0

1
x�+1

�∑

j=0

(−1)j (N − j + 1 + α)�(N − j + 1)�

j!(� − j)!
, (2.75)

where in the second relation we use a similar version of (2.73), and therefore,
from the above relation and (2.71) we conclude that

(TR(x)T−1)12 ∼
∑

�≥0

1
x�+1

B�(N + 1, N + 1 + α) = (R+)12(x), (2.76)
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with B�(N,M) as in (1.13). Finally, the (2, 1)−entry of the expansion of
TR(x)T−1 is computed in a similar way as

2πi
hN

Y21(x)Y22(x)

∼ −N(N + α)
∑

�≥0

1
x�+1

�∑

j=0

(−1)j (N − j + α)j(N − j)j(N + α)�−j(N)�−j

j!(� − j)!

= −N(N + α)
∑

�≥0

1
x�+1

�∑

j=0

(−1)j (N − j + α)�(N − j)�

j!(� − j)!

= −N(N + α)
∑

�≥0

1
x�+1

B�(N,N + α), (2.77)

and the proof is complete. �

Let us note a recurrence property of the coefficients A�(N,M) and
B�(N,M).

Lemma 2.11. The entries A�(N,M) and B�(N,M) (� ≥ 0), defined in (1.12)
and (1.13), satisfy the following three-term recursions

(� + 2)A�+1(N,M) = (2� + 1)(N + M)A�(N,M)

+ (� − 1)(�2 − (M − N)2)A�−1(N,M),

(� + 1)B�+1(N,M) = (2� + 1)(N + M − 1)B�(N,M)

+ �(�2 − (M − N)2)B�−1(N,M), (2.78)

for � ≥ 1, with initial data given as

A0(N,M) = N, A1(N,M) = NM, B0(N,M) = 1, B1(N,M) = N +M −1.
(2.79)

Proof. Introduce the matrices

σ3 =
(

1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
, (2.80)

and write

TR(x)T−1 =
1
2
1 + r3σ3 + r+σ+ + r−σ−, (2.81)

where we use that tr R ≡ 1; hereafter, we omit the dependence on x for brevity.
Recalling the first equation in (2.30), we infer that

∂

∂x
R(x) = [A(x), R(x)] ⇒ ∂

∂x

(
TR(x)T−1

)
= [TA(x)T−1, TR(x)T−1],

(2.82)
and writing

TA(x)T−1 = −1
2
σ3+

1
x

(
N + α

2 −1
N(N + α) −N − α

2

)
= a3σ3+a+σ++a−σ− (2.83)
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using (2.35), we deduce from (2.82) the system of linear ODEs

∂xr3 = a+r−−a−r+, ∂xr+ = 2(a3r+−a+r3), ∂xr− = 2(a−r3−a3r−),
(2.84)

which in turn implies the following decoupled third-order equations for ∂xr3,
r+, and r−,

3(2N + α − x)∂xr3 + (4 − α2 + 2(2N + α)x − x2)∂2
xr3 + 5x∂3

xr3

+x2∂4
xr3 = 0, (2.85)

(2N + α ± 1 − x)r± + (1 − α2 + 2(2N + α ± 1)x − x2)∂xr±
+3x∂2

xr± + x2∂3
xr± = 0. (2.86)

Finally, using the Wishart parameter M = N +α, we substitute the expansion
at x = ∞ given by (1.10) into the ODEs (2.85) and (2.86) to obtain the claimed
recursion relations. �

Remark 2.12. Let us remark that the recursion for A�(N,M) in Lemma 2.11
is also deduced, by different means, in [42]. In [23], it is pointed out that such
three term recursion is a manifestation of the fact that A�(N,M) is expressible
in terms of hypergeometric orthogonal polynomials; this property extends to the
entries B�(N,M), as we now show. Introducing the generalized hypergeometric
function 3F2

3F2

(
p1, p2, p3

q1, q2

∣∣∣∣ ζ
)

:=
∑

j≥0

(p1)j(p2)j(p3)j

(q1)j(q2)j

ζj

j!
, (2.87)

we can rewrite the coefficients A�(N,M) and B�(N,M) in the form

A�(N,M) :=
(N)�(M)�

�! 3F2

(
1 − N, 1 − M, 1 − �

1 − N − �, 1 − M − �

∣∣∣∣ 1
)

, (2.88)

B�(N,M) :=
(N)�(M)�

�! 3F2

(
1 − N, 1 − M, − �

1 − N − �, 1 − M − �

∣∣∣∣ 1
)

. (2.89)

Alternatively, introducing the Hahn and dual Hahn polynomials [23,50]

Qj(x;μ, ν, k) := 3F2

( −x, j + μ + ν + 1, − j

−k, μ + 1

∣∣∣∣ 1
)

, (2.90)

Rj(λ(x); γ, δ, k) := 3F2

( −j, x + γ + δ + 1, − x

−k, γ + 1

∣∣∣∣ 1
)

,

λ(x) = x(x + γ + δ + 1) (2.91)

the coefficients A�(N,M) and B�(N,M) can be rewritten in the form
�!

(N)�(M)�
A�(N,M) = Q�−1(N − 1;−M − �, 1, N + � − 1)

= RN−1(� − 1;−M − �, 1, N + � − 1), (2.92)
�!

(N)�(M)�
B�(N,M) = Q�(N − 1;−M − �, 0, N + � − 1)

= RN−1(�;−M − �, 0, N + � − 1). (2.93)
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Let us note that the first differential equation in (2.84) implies, at the
level of the coefficients of the power series r3, r−, r+, the following relation

�(� + 1)A�(N,M) = NM (B�(N + 1,M + 1) − B�(N,M)) , (2.94)

which is used in Example 2.14 to prove formulae (1.17).

Let us now consider the asymptotic expansion as x → 0.

Proposition 2.13. The matrix R(x) admits the asymptotic expansion

TR(x)T−1 ∼ R−(x), x → 0, (2.95)

uniformly in C\[0,+∞). Here, R− is the formal series introduced in the be-
ginning of this paper, see (1.11), and T is defined in (2.66).

Proof. First, we observe that by arguments which are entirely analogous to
those employed in the proof of Proposition 2.9, the matrices Y (x) and (conse-
quently) R(x) possess asymptotic expansions in integer powers of x as x → 0,
which are uniform in C\[0,+∞). The first coefficients of these expansions at
x = 0 can be computed from

π
(α)
� = (−1)�

(
(α + 1)� − �(α + 2)�−1x + O (

x2
))

, (2.96)

π̂
(α)
� ∼ (−1)�

2πi
(
�!Γ(α) + (� + 1)!Γ(α − 1)x + O (

x2
))

, (2.97)

where the former is found directly from (2.5) and the latter by a computation
analogous to (2.68); hence, recalling the definition (2.25) we have

Y (x) ∼ (−1)N

(
(α + 1)N

N !Γ(α)
2πi

2πi
hN−1

(α + 1)N−1
(N−1)!Γ(α)

hN−1

)

+ (−1)N

(
−N(α + 2)N−1

(N+1)!Γ(α−1)
2πi

− 2πi
hN−1

(N − 1)(α + 2)N−2
N !

hN−1
Γ(α − 1)

)
x + O (

x2
)

(2.98)

as x → 0 within 0 < arg x < 2π; this implies that in the same regime we have

TR(x)T−1 ∼
(

1 0
0 0

)
+

1
α

(
N −1

N(N + α) −N

)

+
(

2N(N + α) −2N − α − 1
N(N + α)(2N + α − 1) −2N(N + α)

)
x

(α − 1)α(α + 1)

+ O (
x2
)
. (2.99)

Therefore, our goal is just to show that the coefficients of the latter expansion
are related to those of the expansion at x = ∞ as stated in the formulae (1.10)
and (1.11). To this end let us write, in terms of the decomposition (2.81),

r3(x) ∼ 1
2

+
∑

�≥0

(� + 1)Ã�(N,N + α)
x�

(α − �)2�+1
,

r±(x) ∼
∑

�≥0

B̃±
� (N,N + α)

x�

(α − �)2�+1
, (2.100)
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for some, yet undetermined coefficients Ã�(N,M), B̃±
� (N,M). From (2.99), we

read the first coefficients Ã�(N,M), B̃±
� (N,M) in (2.100) as

Ã0(N,M) = N = A0(N,M),

B̃+
0 (N,M) = −1 = −B0(N + 1,M + 1),

B̃−
0 (N,M) = NM = NMB0(N,M)

Ã1(N,M) = NM = A1(N,M),

B̃+
1 (N,M) = −N − M − 1 = −B1(N + 1,M + 1),

B̃−
1 (N,M) = NM(N + M − 1) = NMB1(N,M). (2.101)

Finally, it can be checked that substituting (2.100) in (2.85) and (2.86), we
obtain, again using M = N + α, the recursions

(� + 2)Ã�+1(N,M) = (2� + 1)(N + M)Ã�(N,M)

+ (� − 1)(�2 − (M − N)2)Ã�−1(N,M),

(� + 1)B̃±
�+1(N,M) = (2� + 1)(N + M ± 1)B̃±

� (N,M)

+ �(�2 − (M − N)2)B̃±
�−1(N,M), (2.102)

for � ≥ 1. In view of Lemma 2.11, the linear recursions (2.102) with initial
data (2.101) are uniquely solved as

Ã�(N,M) = A�(N,M),

B̃+
� (N,M) = −B�(N + 1,M + 1), B̃−

� (N,M) = NMB�(N,M). (2.103)

Therefore, from (2.81), (2.100) and the above relation we obtain

TR(x)T−1 ∼
(

1 0
0 0

)
+
∑

�≥0

x�

(α − �)2�+1

×
(

(� + 1)A�(N,N + α) −B�(N + 1, N + 1 + α)
N(N + α)B�(N,N + α) −(� + 1)A�(N,N + α),

)
(2.104)

with α = M − N and A�(N,M) and B�(N,M) as in (1.12) and (1.13). The
proof is complete �

We are finally ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let us first consider the one-point generating functions
C1,0(x) and C0,1(x). It is convenient to introduce the scalar function

S1(x) := tr (A(x)R(x)). (2.105)

Indeed, from (2.44) we see that for all k �= 0 we have

∂ZN (α; t)
∂tk

∣∣∣∣
t=0

= − res
x

tr (A(x)R(x))xkdx + res
x

(
α

2x
− 1

2

)
xkdx

= − res
x

(xS1(x))xk−1dx − 1
2
δk,−1
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= res
x

∂(xS1(x))
∂x

xk

k
dx − 1

2
δk,−1

= res
x

(
∂(xS1(x))

∂x
+

1
2

)
xk

k
dx. (2.106)

We now claim that
∂

∂x
(xS1(x)) =

1
2

− R11(x). (2.107)

Indeed, we have

∂xS1(x) = tr ((∂xA(x))R(x)) + tr (A(x)(∂xR(x))) , (2.108)

and noting the following identities

∂xA(x) = − 1
x

(
A(x) +

1
2
σ3

)
, ∂xR(x) = [A(x), R(x)], (2.109)

we can rewrite (2.108) as

∂xS1(x) = − 1
x

tr (A(x)R(x))− 1
2x

tr (σ3R(x))+tr (A(x)[A(x), R(x)]) (2.110)

and (2.107) follows noting tr (A(x)[A(x), R(x)]) = tr ([A(x),A(x)R(x)]) = 0
and

1
2
tr (σ3R(x)) = tr (E11R(x)) − 1

2
tr R(x) = R11(x) − 1

2
(2.111)

as tr R(x) ≡ 1. Hence, substituting (2.107) into (2.106) we obtain, irrespec-
tively of the sign of k,

〈
trXk

〉 (1.27)
=

∂ZN (α; t)
∂tk

∣∣∣∣
t=0

= −1
k

res
x

(R11(x) − 1) xkdx. (2.112)

At the level of generating functions, for C1,0(x) we have

∂x(xC1,0(x))
(1.6)
= −

∑

k≥1

k
〈
tr Xk

〉

xk+1

(2.112)
=

∑

k≥1

1
xk+1

res
ξ=∞

(R11(ξ) − 1) ξkdξ

= −(R+(x))11 + 1, (2.113)

which, after integration, is the formula in the statement of Theorem 1.1; in
the last step of the last chain of equalities, we have to observe that (R+)11 =
1 + O (

x−2
)

as x → ∞, see (2.71).
Similarly, for C0,1(x) we have

∂x(xC0,1(x))
(1.6)
= −

∑

k≥1

kxk−1
〈
tr X−k

〉

(2.112)
= −

∑

k≥1

xk−1 res
ξ=0

(R11(ξ) − 1) ξ−kdξ = −(R−(x))11 + 1,

(2.114)

which, after integration, is the formula in the statement of Theorem 1.1. Here,
we have noted that (R(x))11 = (TR(x)T−1)11 since T is diagonal, see (2.66).
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The formulae for r ≥ 2 are proven instead by the following computation;

Cr+,r−(x1, . . . , xr)

(1.8)
=

∑

k1,...,kr≥1

(−1)r−

xσ1k1+1
1 · · · xσrkr+1

r

〈
trXσ1k1 · · · trXσrkr

〉
c

(1.27)
=

∑

k1,...,kr≥1

(−1)r−

xσ1k1+1
1 · · · xσrkr+1

r

∂r log ZN (α; t)
∂tσ1k1 · · · ∂tσrkr

∣∣∣∣
t=0

(2.56)
=

∑

k1,...,kr≥1

(−1)r+ res
ξ1

· · · res
ξr

Sr(ξ1, . . . , ξr; t = 0)ξσ1k1
1 · · · ξσrkr

r dξ1 · · · dξr

xσ1k1+1
1 · · · xσrkr+1

r

(2.55),(2.65),(2.95)
= −

∑

(i1,...,ir)∈Cr

tr
(
Rσi1

(xi1) · · · Rσir
(xir

)
)− δr,2

(xi1 − xi2) · · · (xir
− xi1)

, (2.115)

where we have noted that the transformation R → TRT−1 leaves the ex-
pression Sr invariant, and therefore, we are free to use the expansions R± of
Propositions 2.9 and 2.13; the signs σi are those defined in (1.9). The proof is
complete. �

Example 2.14. As an application of Theorem 1.1, let us show how to prove
formulae (1.17). Combining (1.7) and (1.14) gives

〈
tr Xktr X

〉
c
= res

x1=∞ res
x2=∞

tr (R+(x1)R+(x2)) − 1
(x1 − x2)2

xk
1x2 dx1dx2. (2.116)

Let us write the matrix R+(x) as

R+(x) = E11 +
∑

�≥0

R+
�

x�+1
, R+

� =
(

�A�(N,M) B�(N + 1,M + 1)
−NMB�(N,M) −�A�(N,M)

)

(2.117)
and expand the denominator in 1/(x1 − x2)2 as a geometric series (the order
we carry out the expansions in x1, x2 is irrelevant, as explained in Remark 2.8)
to rewrite the right side of (2.116) as

1
x2

2

∑

h1,h2≥0

xh1+h2
1

xh1+h2
2

⎛

⎝
∑

�1≥0

tr (E11R
+
�1

)

x�1+1
1

+
∑

�2≥0

tr (E11R
+
�2

)

x�2+1
2

+
∑

�1,�2≥0

tr (R+
�1

R+
�2

)

x�1+1
1 x�2+1

2

⎞

⎠ .

(2.118)
Finally, the residues extract the coefficient in front of x−k−1

1 x−2
2 , yielding

〈
tr Xktr X

〉
c
= tr (E11R

+
k ) = kAk(N,M). (2.119)

In a similar way, from the relation

〈
tr X−ktr X−1

〉
c
= res

x1=0
res

x2=0

tr (R−(x1)R−(x2)) − 1
(x1 − x2)2

x−k
1 x−1

2 dx1dx2 (2.120)

and
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R−(x) =
1
α

(
M −1

NM −N

)
+
∑

�≥1

x�

(α − �)2�+1
R−

� ,

R−
� =

(
(� + 1)A�(N,M) −B�(N + 1,M + 1)
NMB�(N,M) −(� + 1)A�(N,M),

)
(2.121)

we obtain
〈
tr X−ktr X−1

〉

c

=
1

α
tr

[(
M −1

NM −N

)
R−

k+1

]

=
(k + 2)(N + M)Ak+1(N, M) − NM (Bk+1(N + 1, M + 1) + Bk+1(N, M))

α(α − k − 1)2k+3

=
kAk(N, M)

α(α − k)2k+1
. (2.122)

The last equality follows from the recursion relations (2.78) and formula (2.94).
The computations of

〈
trXktrX−1

〉
c

and
〈
tr X−ktr X1

〉
c

follow in a similar
way.

3. Proof of Proposition 1.2

In this section, we prove Proposition 1.2 by means of the explicit formulae for
the matrices R±(x) of Theorem 1.1. The proof follows from two main lemmas;
the first one explains how rescaled correlators can be written as series in even
powers of N only. We recall that we are working in the regime α = (c − 1)N ,
i.e., M = cN , with c independent of N . From (1.8), we can write generating
functions for the rescaled correlators appearing in (1.19) as

∑

k1,...,kr≥1

N−∑r
i=1 σiki(−1)r−

xσ1k1+1
1 · · · xσrkr+1

r

〈tr Xσ1k1 · · · tr Xσrkr 〉c = NrCr+,r− (Nx1, . . . , Nxr) ,

(3.1)
where we use the signs in (1.9).

Let us preliminarily observe two properties of formula (1.15), which are
crucial to our proof of Proposition 1.2. First, such formula is invariant un-
der replacing the matrices R±(x) with GR±(x)G−1 for some constant non-
degenerate matrix G, and second, it is invariant (up to a simple modification
for the two-point function) under replacing R±(x) with R±(x) + γ1 for any
constant γ ∈ C. While the first property is trivial, the second one requires few
lines of explanation. When r = 2, one can exploit the fact that trR±(x) ≡ 1
to write

tr (R±(x1)R±(x2)) − 1
(x1 − x2)2

=
tr ((R±(x1) + γ1)(R±(x2) + γ1)) − (1 + 2γ + 2γ2)

(x1 − x2)2
.

(3.2)
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When r ≥ 3, instead we reason as follows. Let us write every r-cycle (i1, . . . , ir)
with ir = r, namely

∑

(i1,...,ir)∈Cr

tr (Ri1 · · · Rir
)

(xi1 − xi2) · · · (xir
− xi1)

=
∑

(i1,...,ir−1,r)∈Cr

tr
(
Ri1 · · · Rir−1Rr

)

(xi1 − xi2) · · · (xir−1 − xr)(xr − xi1)
, (3.3)

where for the purpose of this explanation we adopt a short notation Ri :=
Rσ(i)(xi); we point out that the role of the “fixed” matrix Rr is completely ar-
bitrary, as function (1.15) is symmetric. Let us now show that this expression
is invariant under the transformation Rr → Rr + γ1; indeed the difference be-
tween the two expressions is computed from the last formula to be proportional
to

∑

(i1,...,ir−1,r)∈Cr

tr
(
Ri1 · · · Rir−1

)

(xi1 − xi2) · · · (xir−1 − xr)(xr − xi1)

=
∑

(i1,...,ir−1,r)∈Cr

tr
(
Ri1 · · · Rir−1

)

(xi1 − xi2) · · · (xir−1 − xi1)

(
1

xir−1 − xr
− 1

xi1 − xr

)
= 0.

(3.4)

It follows that in (1.15) one may inductively substitute all Ri’s by Ri + γ1 (in
principle, even with different γ’s for each Ri, but we do not need such freedom)
without affecting formula (1.15).

Lemma 3.1. Cr+,r−(Nx1, . . . , Nxr) is an even function of N for every r+, r−.

Proof. Using formula (1.15) in Theorem 1.1, we have

Cr+,r−(Nx1, . . . , Nxr) = − 1

Nr

∑

(i1,...,ir)∈Cr

tr
(
Rσi1

(Nxi1) · · · Rσir
(Nxir )

)− δr,2

(xi1 − xi2) · · · (xir−1 − xir )(xir − xi1)
.

(3.5)
After the considerations exposed just before this lemma, it is clear that we
are done if we find a matrix G such that the matrices GR±(Nx)G−1 − 1

21 are
both odd in N . We claim that the matrix

G =
( √

c N−1

−√
cN 1

)
(3.6)

serves this purpose. Indeed, we have

GR+(Nx)G−1 =
1

2

(
1 −N−1

−N 1

)

+
1

2

∑

�≥0

1

x�+1

(
D�(c, N) N−2 (�E�(c, N) + F�(c, N))

�E�(c, N) − F�(c, N) −D�(c, N)

)
,

(3.7)

where

D�(c,N) :=
√

c

N �
(B�(N + 1, cN + 1) − B�(N, cN)) , (3.8)
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E�(c,N) := − 2
N �

A�(N, cN), (3.9)

F�(c,N) :=
√

c

N �−1
(B�(N + 1, cN + 1) + B�(N, cN)) . (3.10)

Therefore, our claim is equivalent to the statement that D�, E�, F� are odd
functions of N . This is easily seen from the linear recursions of Lemma 2.11.
For the coefficients E�, the initial datum of the recursion is

E0(c,N) = −2N, E1(c,N) = −2cN, (3.11)

and the recursion reads

N2(� + 2)E�+1(c,N) = N2(2� + 1)(c + 1)E�(c,N)

+ (� − 1)(�2 − (c − 1)2N2)E�−1(c,N) (3.12)

and the claim follows by induction, as the initial datum is odd and the recursion
is even in N . Similarly, for the coefficients D�, F�, the initial datum of the
recursion is odd in N

D0(c,N) = 0, D1(c,N) =
2
√

c

N
, F0(c,N) = 2

√
cN, F1(c,N) = 2N

√
c(c + 1),

(3.13)
and the recursion is even in N

N2(� + 1)D�+1(c,N) = N2(c + 1)(2� + 1)D�(c,N)

+ (2� + 1)F� + �(�2 − N2(c − 1)2)D�−1(c,N), (3.14)

N2(� + 1)F�+1(c,N) = N2(c + 1)(2� + 1)F�(c,N)

+ N2(2� + 1)D� + �(�2 − N2(c − 1)2)F�−1(c,N).
(3.15)

The same claim for R−(Nx) is proven exactly in the same way, as we have

GR−(Nx)G−1 =
1
2

(
1 −N−1

−N 1

)
+

1
2

∑

�≥0

N2�+1x�

(α − �)2�+1

×
(

−D�(c,N) N−2((�+1)E�(c,N)−F�(c,N))
(�+1)E�(c,N)+F�(c,N) D�(c,N)

)
(3.16)

and, since α = (c − 1)N ,

N2�+1

(α − �)2�+1
=

N2�

(c − 1)

�∏

j=1

1
N2(c − 1)2 − j2

(3.17)

which is even in N . �

The second lemma regards integrality of the coefficients.

Lemma 3.2. The functions A�(N,M) and B�(N,M) in (1.12) and (1.13) ad-
mit the alternative expressions

A�(N,M) =
∑

a,b≥0
a+b≤�−1

�!(� − 1)!(N − a)a+1(M − b)b+1

(a + 1)!(b + 1)!a!b!(� − 1 − a − b)!
, � ≥ 1, (3.18)
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B�(N,M) =
∑

a,b≥0
a+b≤�

�!(� − 1)!(N − a)a(M − b)b

a!2b!2(� − a − b)!
, � ≥ 0. (3.19)

Proof. Using the identity

(β)k = β(β + 1) · · · (β + k − 1) =
∂k

∂xk
xβ+k−1

∣∣∣∣
x=1

, (3.20)

we rewrite (1.12), for � ≥ 1, as

A�(N,M) =
1
�!

�−1∑

k=0

(−1)k

(
� − 1

k

)
(N − k)�(M − k)�

=
∂�

∂x�

∂�

∂y�

xNyM (xy − 1)�−1

�!

∣∣∣∣
x=1,y=1

, (3.21)

and then, we rewrite this expression, by a change of variable 1+ξ = x, 1+η = y,
as

∂�

∂ξ�

∂�

∂η�

(1 + ξ)N (1 + η)M (ξη + ξ + η)�−1

�!

∣∣∣∣
ξ=0,η=0

=
∑

a,b≥0
a+b≤�−1

�!(� − 1)!(N − a)a+1(M − b)b+1

(a + 1)!(b + 1)!a!b!(� − 1 − a − b)!
. (3.22)

Similarly, for all � ≥ 0 we have

B�(N,M) =
1
�!

�∑

k=0

(−1)k

(
�

j

)
(N − k)�(M − k)�

=
∂�

∂x�

∂�

∂y�

xN−1yM−1(xy − 1)�

�!

∣∣∣∣
x=1,y=1

=
∂�

∂ξ�

∂�

∂η�

(1 + ξ)N−1(1 + η)M−1(ξη + ξ + η)�

�!

∣∣∣∣
ξ=0,η=0

=
∑

a,b≥0
a+b≤�−1

�!(� − 1)!(N − a)a(M − b)b

a!2b!2(� − a − b)!
, (3.23)

and the proof is complete. �

Expression (3.18) is also derived, in a different way, in [42].
It can be checked that the coefficients �!(�−1)!

(a+1)!(b+1)!a!b!(�−1−a−b)! in (3.18)
are integers within the range of summation a, b ≥ 0, a + b ≤ � − 1; indeed, if
a + b ≤ � − 2, one can write such coefficient as

�!(� − 1)!
(a + 1)!(b + 1)!a!b!(� − 1 − a − b)!

=
(

�

a + 1

)(
� − 1

b

)(
� − b − 1

a

)
(b+2)�−a−b−2

(3.24)
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which is manifestly integer, while if a+b = �−1 the same coefficient is written
as

�!(� − 1)!
(a + 1)!(b + 1)!a!b!(� − 1 − a − b)!

=
1
�

(
�

a

)(
�

a + 1

)
, (3.25)

which is also manifestly integer since a ≤ � − 1. Similarly, the coefficients
�!(�−1)!

a!2b!2(�−a−b)! in (3.19) are integers within the range of summation a, b ≥ 0,
a + b ≤ �.

Proof of Proposition 1.2. Lemma 3.2 implies that A�(N, cN) and B�(N, cN)
are polynomials in N and c with integer coefficients. Then, the dependence on
N2 follows from Lemma 3.1 and the expansion of (3.17) as series in N and
(c − 1) with integer coefficients as

1
N(c − 1)

�∏

j=1

1
N2(c − 1)2 − j2

=
1

(N(c − 1))2�+1

∑

k1,...,k�≥0

12k122k2 · · · · · �2k�

(N(c − 1))2k1+···+2k�
,

(3.26)
provided � < N(c − 1).

Finally, we note, e.g., from the recursions, that D� ∼ O(N−1), E�, F� =
O(N), as N → ∞; hence, from (3.7) and (3.16) we see that GR±(Nx)G−1 =
diag(1, N)O(1)diag(1, N−1), where O(1) refers to the behavior as N → ∞. We
conclude that (3.1) is O(1) as N → ∞, and has the same parity in N → −N
as r (Lemma 3.1), completing the proof. �

Example 3.3. Here, we obtain the formulae of Theorem 1.1 in genus zero for
one- and two-point correlators. In these cases, equivalent formulae have already
appeared in the literature [25,37,54]. In the regime α = N(c−1) with N → ∞,
we have

lim
N→∞

A�(N, cN)
N �+1

=
1
�

�−1∑

b=0

(
�

b + 1

)(
�

b

)
cb+1, (3.27)

lim
N→∞

B�(N, cN)
N �

=
�∑

b=0

(
�

b

)2

cb. (3.28)

The above relations follow from Lemma 3.2 and the trivial estimate
(
N
k

) ∼ Nk

k! .
In particular, due to (1.16), in the regime N → ∞ with α = N(c − 1) we have

lim
N→∞

〈
tr X�

〉

N �+1
=

�∑

s=1

N�,sc
s, (3.29)

where

N�,s :=
1
�

(
�

s

)(
�

s − 1

)
, � ≥ 1, s = 1, . . . , � (3.30)

are the Narayana numbers. Formula (3.29) agrees with Wigner’s computation
of positive moments of the Laguerre equilibrium measure

ρ(x) =

√
(x+ − x)(x − x−)

2πcx
1x∈(x−,x+), (3.31)



3318 M. Gisonni et al. Ann. Henri Poincaré

where x± := (1 ± √
c)2, see [36]. From the one-point function, we obtain the

weighted strictly monotone and weakly monotone double Hurwitz numbers of
genus zero with partition μ = (k) and ν of length s as

H>
g=0((k); s) =

1
(k − 1)!

∑

ν of length s

h>
g=0((k); ν) = Nk,s =

1
k

(
k

s − 1

)(
k

s

)
,

(3.32)

H≥
g=0((k); s) =

1
(k − 1)!

∑

ν of length s

h≥
g=0((k); ν) =

(
k − 1
k − s

)
(s + 1)k−2

(k − 1)!
. (3.33)

Similarly, for all two-point generating functions, we obtain the planar limit
g = 0 as

lim
N→∞

N2C2,0(Nx1, Nx2) = lim
N→∞

N2C0,2(Nx1, Nx2)

=
φ(x1, x2) −√

φ(x1, x1)φ(x2, x2)
2
√

φ(x1, x1)φ(x2, x2)(x1 − x2)2
(3.34)

lim
N→∞

N2C1,1(Nx1, Nx2) = −φ(x1, x2) +
√

φ(x1, x1)φ(x2, x2)
2
√

φ(x1, x1)φ(x2, x2)(x1 − x2)2
, (3.35)

where
φ(x1, x2) := c2 − c(2 + x1 + x2) + (x1 − 1)(x2 − 1). (3.36)

The two-point planar limit is strictly related [35] to the so-called canonical
symmetric bi-differential (called also Bergman kernel) associated with the spec-
tral curve x2y2 = (x − x+)(x − x−) = c2 − 2c(x + 1) + (x − 1)2.

4. Hodge-LUE Correspondence

4.1. Factorization of Matrix Models with Even Potential

For the purposes of the present section, let us introduce two sequences of monic
orthogonal polynomials: pevenn (x) = xn + · · · satisfying

∫ +∞

−∞
pevenn (x)pevenm (x)e−V (x2)dx = heven

n δn,m (4.1)

and, for Reα > −1, p
(α)
n (x) = xn + · · · satisfying

∫ +∞

0

p(α)
n (x)p(α)

m (x)xαe−V (x)dx = h(α)
n δn,m, (4.2)

where V (x) is an arbitrary potential for which the polynomials are well defined.
The following lemma is elementary and the proof can be found in [21].

Lemma 4.1. For all n ≥ 0, we have

peven2n (x) = p
(− 1

2 )
n (x2), peven2n+1(x) = xp

( 1
2 )

n (x2) (4.3)

and
heven

2n = h
(− 1

2 )
n , heven

2n+1 = h
( 1

2 )
n . (4.4)
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Next, we recall the relation between matrix integrals and the norming
constants of the above orthogonal polynomials

1
Vol(N)

∫

HN

exp tr (−V (X2))dX = heven
0 heven

1 · · · heven
N−1, (4.5)

1
Vol(N)

∫

H+
N

detαX exp tr (−V (X))dX = h
(α)
0 h

(α)
1 · · · h(α)

N−1, (4.6)

where Vol(N) is defined in (1.29).
Using the above relations and (4.4) in the case V (x) = x

2 −∑k≥1 skxk, we
obtain the following identity between the GUE partition function Zeven

2N (s) in
(1.28) and the Laguerre partition function ZN

(± 1
2 ; t+

)
in (1.26) with t− = 0

Zeven
2N (s)

Zeven
2N (0)

=
ZN

(− 1
2 ; t+

)

ZN

(− 1
2 ;0

) ZN

(
1
2 ; t+

)

ZN

(
1
2 ;0

) , tk := 2ksk, (4.7)

where Zeven
N (0) is given in (4.10) and ZN

(± 1
2 ;0

)
in (1.3). There is a similar,

slightly more involved, factorization for the matrix model Zeven
2N+1, but we do

not need its formulation for our present purposes.

4.2. Formal Matrix Models and mGUE Partition Function

In this section, we review the definition of mGUE partition function. First, the
logarithm of the even GUE partition function can be considered as a formal
Taylor expansion for small sk as

log Zeven
N (s) := log Zeven

N (0) +
∑

r≥1

∑

k1,...,kr≥1

sk1 · · · skr

r!
〈
trXk1 · · · trXkr

〉even
c

,

(4.8)
where the connected even GUE correlators are introduced as in (1.27)

〈
trXk1 · · · trXkr

〉even
c

:=
∂r log Zeven

N (s)
∂sk1 · · · ∂skr

∣∣∣∣
s=0

(4.9)

and the normalizing constant Zeven
N (0) is

Zeven
N (0) =

√
2NπN2 . (4.10)

The infinite sum in (4.8) can be given a rigorous formal meaning in the al-
gebra C[N,α][[s]]; introducing the grading deg sk := k, the latter algebra is
obtained taking the inductive limit K → ∞ from the algebras of polynomials
in s of degree < K, with coefficients in C[N,α]. Equivalently, this grading can
be encoded, up to an inessential shift, by a (small) variable ε via the trans-
formation sk → εk−1sk, which is the same as considering the matrix model∫
HN

exp
[
− 1

ε

(
X2

2 −∑
k≥1 skX2k

)]
dX. For simplicity, we have preferred to

avoid the explicit ε dependence, even though we shall restore it for the state-
ment of the Hodge-GUE/LUE correspondence (Theorem 4.4, Corollary 4.5).

It must be stressed that (4.8) makes sense for any complex N , and not
just for positive integers as it would be required by the genuine matrix integral
interpretation; indeed, the correlators are polynomials in N .
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For the purposes of this section, it is convenient to apply the same argu-
ments to the Laguerre partition function (with t− = 0) and similarly identify
the latter with the formal series

log ZN (α; t+) = log ZN (α;0) +
∑

r≥1

∑

k1,...,kr≥1

tk1 · · · tkr

r!
〈
tr Xk1 · · · trXkr

〉
c

(4.11)
where ZN (α;0) is given in (1.3) and the correlators are as in (1.27); using
the last expression provided in (1.3) and the fact that the correlators are
polynomials in N,α, expression (4.11) makes sense also for N complex. This
remark is crucial for a correct understanding of formulae (4.14) and (4.15).

Let us finally recall from the introduction and [28] that the mGUE par-
tition function is introduced by (1.29), the left side of which being interpreted
formally as in (4.8). Of course in the identification of Theorem 1.5, the right
side must be interpreted formally as in (4.11).

4.3. Proof of Theorem 1.5

The proof of Theorem 1.5 relies on two main ingredients: on the one side the
factorization property (4.7) and a symmetry property of the formal positive
LUE partition function (4.11), which we now describe.

Lemma 4.2. The LUE connected correlator 〈tr Xk1 · · · trXkr 〉c with k1, . . . ,
kr > 0 is a polynomial in N,α, and it is invariant under the involution
(N,α) → (N + α,−α).

Proof. It follows directly from Theorem 1.1, as the coefficients of R+, defined
in (1.10), are polynomials in N,α which are manifestly symmetric under the
aforementioned transformation. Indeed, from (1.12) and (1.13) we see that all
the coefficients A�(N,M), B�(N,M) are symmetric in N,M but A0(N,M) =
N ; however, R+ only contains the combination �A�(N,M), which is always
symmetric in N,M . �

Remark 4.3. As already pointed out in “Introduction,” the symmetry of the
above lemma is equivalent, by (1.20), to the symmetry property (1.39) of Hur-
witz numbers. An alternative, purely combinatorial derivation of the symmetry
in the latter formulation can be given as follows. In the group algebra of the
group of permutations of {1, . . . , d} (consisting of formal C-linear combinations
of permutations of {1, . . . , d}), we consider the distinguished elements

• Cλ for any partition λ of d, which is the sum of all permutations of cycle
type λ, and

• Jm := (1,m)+· · ·+(m−1,m) (Jucys–Murphy elements) for m = 2, . . . , d.

Such elements commute among themselves and are related by

(1 + ξJ2) · · · (1 + ξJd) =
∑

|ν|=d

ξd−�(ν)Cν . (4.12)



Vol. 21 (2020) Laguerre Ensemble 3321

From this relation, we deduce that for every partition μ of d of length � we
have

Cμ

∑

|ν|=d

yd−�(ν)Cν(1+zJ2) · · · (1+zJd) = Cμ

∑

|λ|=d

zd−�(λ)(1+yJ2) · · · (1+yJd)Cλ.

(4.13)
From the definition of Hurwitz numbers, recalled in Sect. 1.2, the coefficient in
front of C[1d]y

d−sz2g−2+�+s on the left side of (4.13) is H>
g (μ; s) (up to the nor-

malization factor zμ

d! ); the coefficient of the same element C[1d]y
d−sz2g−2+�+s

on the right side of (4.13) is H>
g (μ; 2 − 2g + d − � − s) (up to the same nor-

malization factor zμ

d! ), yielding (1.39).

Let us restate Lemma 4.2, in view of the formal expansion (4.11), as the
following identity

ZN (α; t+)
ZN (α;0)

=
ZN+α(−α; t+)
ZN+α(−α;0)

. (4.14)

The following special case (α = 1
2 ) of (4.14)

ZN+ 1
2

(
−1

2
; t+

)
=

π
3
8+ N

2 G(N + 1)
G
(
N + 3

2

) ZN

(
1
2
; t+

)
(4.15)

plays a key role in the proof of Theorem 1.5, which we are now ready to give.

Proof of Theorem 1.5. We use the uniqueness of the decomposition (1.29) which
defines the mGUE partition function; rewriting it under the substitution N →
2N we have

Zeven
2N (s)

(2π)2NVol(2N)
= Z̃2N− 1

2
(s)Z̃2N+ 1

2
(s). (4.16)

On the other hand, from (4.7) we have

Zeven
2N (s) = DNZN

(
−1

2
; t+

)
ZN

(
1
2
; t+

)
, (4.17)

where here and below we are identifying tk = 2ksk. The proportionality con-
stant DN is explicitly evaluated from (1.3) and (4.10) as

DN =
Zeven

2N (0)
ZN

(− 1
2 ;0

)
ZN

(
1
2 ;0

) =
2NπN2+N+ 1

2 G(1
2 )2

G(N + 1
2 )G(N + 3

2 )
. (4.18)

It is then enough to show that two factorizations (4.16) and (4.17) are con-
sistent once we identify Z̃2N− 1

2
(s) = CNZN

(− 1
2 ; t+

)
with CN a constant

depending on N only. Such consistency follows from the chain of equalities

Zeven
2N (s)

(2π)2NVol(2N)
= Z̃2N− 1

2
(s)Z̃2N+ 1

2
(s)

= Z̃2N− 1
2
(s)Z̃2(N+ 1

2 )− 1
2
(s)
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= CNZN

(
−1

2
; t+

)
CN+ 1

2
ZN+ 1

2

(
−1

2
; t+

)

= CNCN+ 1
2

π
3
8+ N

2 G(N + 1)
G
(
N + 3

2

) ZN

(
−1

2
; t+

)
ZN

(
1
2
; t+

)
,

(4.19)

where we have used symmetry property (4.15). This shows that two factoriza-
tions (4.16) and (4.17) are consistent, provided we also identify the propor-
tionality constants (4.18) and (4.19)

CNCN+ 1
2

π
3
8+ N

2 G(N + 1)
G
(
N + 3

2

) = DN =
2NπN2+N+ 1

2 G(1
2 )2

G(N + 1
2 )G(N + 3

2 )
, (4.20)

and this uniquely fixes

CN =
2

N
2 − 1

8 π
N2
2 G(1

2 )
G(N + 1

2 )
, (4.21)

as stated in (1.31). �

We conclude this section with a couple of remarks.
First, the identification of the mGUE and LUE partition functions is

manifest also from the Virasoro constraints of the two models. Indeed, Virasoro
constraints for the modified GUE partition function have been derived in [28],
directly from those of the GUE partition function, and they assume the form

L̃nZ̃N (s) = 0, (4.22)

for n ≥ 0, where L̃n = L̃n(N, s) and

L̃n(N, s) :=

{∑
k≥1 k

(
sk − 1

2δk,1

)
∂

∂sk
+ N2

4 − 1
16 , n = 0,

∑n−1
k=1

∂2

∂sk∂sn−k
+
∑

k≥1 k
(
sk − 1

2δk,1

)
∂

∂sk+n
+ N ∂

∂sn
, n ≥ 1.

(4.23)
On the other hand, it is well known [1,43] that the LUE partition function
with only positive couplings t+ satisfies the Virasoro constraints

L(α)
n ZN (α; t+) = 0, (4.24)

for n ≥ 0, where L(α)
n = L(α)

n (N, t+) and

L(α)
n (N, t+) :=

{∑
k≥1 k (tk − δk,1) ∂

∂tk
+ N (N + α) , n = 0,

∑n−1
k=1

∂2

∂tk∂tn−k
+
∑

k≥1 k (tk − δk,1) ∂
∂tk+n

+ (2N + α) ∂
∂tn

, n ≥ 1.

(4.25)
The Virasoro constraints L̃n(N, s) in (4.23) and L(α)

n (N, t+) in (4.25) satisfy

2nL̃n

(
2N − 1

2
, s
)

= L(− 1
2 )

n (N, t+) (4.26)

under the identification tk = 2ksk, in agreement with Theorem 1.5.
Second, in [29] formulae of similar nature as those of Theorem 1.1 are

derived for the modified GUE partition function. It can be checked that such
formulae match with those of Theorem 1.1 restricted to α = − 1

2 under the
identifications of times made explicit in the statement of Theorem 1.5.
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4.4. Proof of Corollary 1.6

From Theorem 1.5 and the Hodge-GUE correspondence of [28], which we now
recall, we are able to deduce a Hodge-LUE correspondence; to state this result
(Corollary 4.5), let us introduce the generating function

H(p; ε) =
∑

g≥0

ε2g−2
∑

n≥0

∑

k1,...,kn≥0

pk1 · · · pkn

n!

∫

Mg,n

Λ2(−1)Λ
(

1
2

) n∏

i=1

ψki
i ,

(4.27)
for special cubic Hodge integrals (with the standard notations recalled before
the statement of Corollary 1.6); here, p = (p0, p1, . . . ).

Theorem 4.4. (Hodge-GUE correspondence [28]) Introduce the formal series

A(λ, s) :=
1
4

∑

j1,j2≥1

j1j2
j1 + j2

(
2j1
j1

)(
2j2
j2

)
sj1sj2 +

1
2

∑

j≥1

(
λ − j

j + 1

)(
2j

j

)
sj ,

(4.28)
and a transformation of an infinite vector of times s = (s1, s2, . . . ) → p =
(p0, p1, . . . ) depending on a parameter λ as

pk(λ, s) :=
∑

j≥1

jk+1

(
2j

j

)
sj + δk,1 + λδk,0 − 1, k ≥ 0. (4.29)

Then, we have

H
(
p (λ, s) ;

√
2ε
)

+ ε−2A(λ, s) = log Z̃λ
ε

(
(s1, εs2, ε

2s3, . . . )
)
+B(λ, ε), (4.30)

where B(λ, ε) is a constant depending on λ and ε only and Z̃λ
ε

is the mGUE
partition function in (1.29).

Corollary 4.5. (Hodge-LUE correspondence) Let H (
p (λ, s) ;

√
2ε
)

as above in
(4.30) and ZN

(− 1
2 ; t+

)
the Laguerre partition function (1.26) with parameter

α = − 1
2 and times t+ and t− = 0. We have

H
(
p(λ, s);

√
2ε
)

+ ε−2A (λ, s) = log ZN

(
−1

2
; t+

)
+ C(N, ε), (4.31)

where we identify

λ = ε

(
2N − 1

2

)
, tk = 2kεk−1sk, (4.32)

and A(λ, s) is defined in (4.28), p(λ, s) is defined in (4.29), and C(N, ε) is a
constant depending on N and ε only.

Proof. It follows from (4.30) upon the substitution λ → ε
(
2N − 1

2

)
and ap-

plying Theorem 1.5 for the set of times εk−1sk, k ≥ 1. �
It would be interesting to construct the Double Ramification hierarchy

(see [15,16]) for cubic Hodge integrals and then check in this case the conjecture
formulated in [17] by which the logarithm of the corresponding tau function
should coincide with the LUE partition function, after the change of variables
described in [18].
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Finally, Corollary 1.6 is obtained matching the coefficients in (4.30) using
(1.20).

Proof of Corollary 1.6. We apply ∂�

∂sμ1 ···∂sμ�

∣∣∣
s=0

, for � > 0, on both sides of

(4.30). On the right side, we get, in view of Theorem 1.5

∂�

∂sμ1 · · · ∂sμ�

∣∣∣∣
s=0

log Z̃λ
ε

(
(s1, εs2, ε

2s3, . . . )
)

= ε|μ|−�2|μ| 〈trXμ1 · · · tr Xμ�〉c
∣∣
N= λ

2ε + 1
4 , α=− 1

2

= ε|μ|−�2|μ| ∑

γ≥0

1−2γ+|μ|−�∑

s=1

(
λ + ε

2

2ε

)2−2γ+|μ|−�(λ − ε
2

λ + ε
2

)s

H>
γ (μ; s),

(4.33)

where in the last step we have used (1.20); we also note that the substitutions
2N − 1

2 = λ
ε , α = − 1

2 , from Theorem 1.5, yield N = λ+ ε
2

2ε , c = λ− ε
2

λ+ ε
2
. On the

other side, we get

∂�

∂sμ1 · · · ∂sμ�

∣∣∣∣
s=0

H(p(λ, s);
√

2ε) + ε−2 ∂�

∂sμ1 · · · ∂sμ�

∣∣∣∣
s=0

A(λ, s). (4.34)

The contributions from the last term are directly evaluated from (4.28) and
give the second line of (1.36). For the first term, we recall the affine change of
variable (4.29) and compute

∂�

∂sμ1 · · · ∂sμ�

H
(
p(λ, s);

√
2ε
)

=
∑

i1,...,i�≥0

�∏

b=1

μib+1
b

(
2μb

μb

)
∂�

∂pi1 · · · ∂pi�

H
(
p(λ, s);

√
2ε
)

=
∑

g,n≥0

(√
2ε
)2g−2

n!

∑

k1,...,kn≥0
i1,...,i�≥0

∫

Mg,n+�

Λ2(−1)Λ
(

1
2

) n∏

a=1

pka
(λ, s)ψka

a

×
�∏

b=1

μib+1
b

(
2μb

μb

)
ψib

n+b. (4.35)

Evaluation at s = 0 corresponds to pk = δk,1 + λδk,0 − 1; thus, in the previous
expression, we set n = m + r, where m is the number of ka’s equal to zero,
and the remaining k1, . . . , kr’s are all ≥ 2 (we are evaluating at p1 = 0), and
so the evaluation of the (4.35) at pk = δk,1 + λδk,0 − 1 reads

∑

g,m,r≥0

(√
2ε
)2g−2 ∑

k1,...,kr≥2
i1,...,i�≥0

(λ − 1)m(−1)r

m!r!

×
∫

Mg,�+m+r

Λ2(−1)Λ
(

1
2

) r∏

a=1

ψka
a

�∏

b=1

μib+1
b

(
2μb

μb

)
ψib

m+r+b
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=
∑

g,m,r≥0

(√
2ε
)2g−2 ∑

d1,...,dr≥1

(λ − 1)m(−1)r

m!r!

×
∫

Mg,�+m+r

Λ2(−1)Λ
(

1
2

) r∏

a=1

ψda+1
a

�∏

b=1

μb

(
2μb

μb

)

1 − μbψm+r+b
, (4.36)

where in the last step we rename ka = da + 1, da ≥ 1.
We can trade the ψ1, . . . , ψr classes in (4.36) for a suitable combination

of Mumford κ classes, following ideas from [13]. Let π : Mg,�+m+r → Mg,�+m

be the map forgetting the first r marked points (and contracting the result-
ing unstable components); then, we have the following iterated version of the
dilaton equation

π∗

(
(π∗X )

r∏

a=1

ψda+1
a

)
= X

∑

σ∈Sr

∏

γ∈Cycles(σ)

κ∑
a∈γ da

, da, . . . , dr ≥ 1,

(4.37)
for any X ∈ H• (Mg,�+m,Q

)
. Here and below, Sr is the group of permutations

of {1, . . . , r} and Cycles(σ) is the set of disjoint cycles in the permutation σ,
σ =

∏
γ∈Cycles(σ) γ. In our case, it is convenient to set

X = Λ2(−1)Λ
(

1
2

) �∏

b=1

μb

(
2μb

μb

)

1 − μbψm+b
, π∗X = Λ2(−1)Λ

(
1
2

) �∏

b=1

μb

(
2μb

μb

)

1 − μbψm+r+b
,

(4.38)
so that the sum over r ≥ 0 and d1, . . . , dr ≥ 1 in (4.36) can be expressed as

∑

r≥0

(−1)r

r!

∑

d1,...,dr≥1

∫

Mg,�+m+r

(π∗X )
r∏

a=1

ψda+1
a

=
∑

r≥0

(−1)r

r!

∑

d1,...,dr≥1

∫

Mg,�+m

X
∑

σ∈Sr

∏

γ∈Cycles(σ)

κ∑
a∈γ da

. (4.39)

Let us now recall that for any set of variables F1, F2, . . . , we have the
identity of symmetric functions

exp

⎛

⎝
∑

r≥1

ξr

r
Fr

⎞

⎠ =
∑

ν

ξ|ν|

zν
Fν1 · · · Fν�(ν) , (4.40)

where the sum on the right side extends over the set of all partitions ν =
(ν1, . . . , ν�(ν)), |ν| = ν1 + · · · + ν�(ν), and zν :=

∏
i≥1 (imi) mi!, mi being the

multiplicity of i in the partition ν, as above. Applying this relation to

Fr =
∑

d1,...,dr≥1

κ∑r
a=1 da

=
∑

d≥r

(
d − 1
r − 1

)
κd, ξ = −1, (4.41)

since for any partition ν of r the quantity r!/zν is the cardinality of the con-
jugacy class labeled by ν in Sr, we deduce that
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∑
r≥0

(−1)r

r!

∑
d1,...,dr≥1

∫

Mg,�+m

X
∑

σ∈Sr

∏
γ∈Cycles(σ)

κ∑
a∈γ da

=
∫

Mg,�+m

X exp
(
−
∑

d≥1

κd

d

)
, (4.42)

where we also use the identity
∑

r≥1
(−1)r

r

(
d−1
r−1

)
= − 1

d . The proof is complete.
�

Example 4.6. Comparing the coefficients of ε−2 on both sides of (1.35), we
obtain the following relation in genus zero

H0,μ = 2�−2λ|μ|+2−�

|μ|+1−�∑

s=1

H>
0 (μ; s) (4.43)

valid for any partition μ of length �. One can check that (4.43) is consistent with
the computations of Hurwitz numbers in genus zero performed in Example 3.3.

For example, for � = 1, namely μ = (μ1) we compute the first terms in
the (λ − 1)-expansion of the left side of (4.43), directly from (1.35),

H0,(μ1) =
1
2

1
μ1 + 1

(
2μ1

μ1

)
+

(λ − 1)
2

(
2μ1

μ1

)
+

(λ − 1)2

4
μ1

(
2μ1

μ1

)
+O (

(λ − 1)3
)
.

(4.44)
On the other hand, the right side of (4.43) is computed as

1
2
λμ1+1

μ1∑

s=1

H>
0 ((μ1); s) =

1
2μ1

λμ1+1

μ1∑

s=1

(
μ1

s

)(
μ1

s − 1

)

=
1

2μ1
λμ1+1

(
2μ1

μ1 − 1

)

=
1

2(μ1 + 1)

(
2μ1

μ1

) μ1+1∑

b=0

(
μ1 + 1

b

)
(λ − 1)b, (4.45)

where we use (3.33) and the identity
μ1∑

s=1

(
μ1

s − 1

)(
μ1

s

)
=

μ1−1∑

s=0

(
μ1

s

)(
μ1

μ1 − 1 − s

)
=
(

2μ1

μ1 − 1

)
, (4.46)

which follows from the Chu–Vandermonde identity
∑k−1

s=0

(
a
s

)(
b

k−1−s

)
=
(

a+b
k−1

)

for a = b = k = μ1. Expressions (4.44) and (4.45) match.
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Appendix A: Numerical Tables

A.1. Tables of Some Weighted Strictly Monotone Double Hurwitz Numbers

We recall that H>
g (μ; s) = zμ

|μ|!
∑

ν of length s h>
g (μ; ν), where h>

g (μ; ν) is the
strictly monotone double Hurwitz number with partitions μ and ν, see (1.22).

μ = (3, 1) g = 0 g = 1
s = 1 3 3
s = 2 9 0
s = 3 3 0

μ = (3, 2) g = 0 g = 1
s = 1 6 18
s = 2 30 18
s = 3 30 0
s = 4 6 0

μ = (3, 3) g = 0 g = 1 g = 2
s = 1 9 75 36
s = 2 72 198 0
s = 3 138 75 0
s = 4 72 0 0
s = 5 9 0 0

μ = (4, 4) g = 0 g = 1 g = 2 g = 3
s = 1 16 616 3304 1104
s = 2 264 4636 8132 0
s = 3 1200 8496 3304 0
s = 4 1940 4636 0 0
s = 5 1200 616 0 0
s = 6 264 0 0 0
s = 7 16 0 0 0

μ = (6, 3) g = 0 g = 1 g = 2 g = 3
s = 1 18 1428 16002 22872
s = 2 414 15120 70938 22872
s = 3 2598 43680 70938 0
s = 4 6210 43680 16002 0
s = 5 6210 15120 0 0
s = 6 2598 1428 0 0
s = 7 414 0 0 0
s = 8 18 0 0 0

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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μ = (2, 1, 1) g = 0
s = 1 6
s = 2 6

μ = (2, 2, 1) g = 0 g = 1
s = 1 16 8
s = 2 40 0
s = 3 16 0

μ = (2, 2, 2) g = 0 g = 1
s = 1 40 80
s = 2 176 80
s = 3 176 0
s = 4 40 0

μ = (4, 4, 4) g = 0 g = 1 g = 2 g = 3 g = 4
s = 1 704 89760 2631552 18161440 19033344
s = 2 21312 1568640 24587904 75241920 19033344
s = 3 204480 8507520 66562944 75241920 0
s = 4 843648 18934080 66562944 18161440 0
s = 5 1673856 18934080 24587904 0 0
s = 6 1673856 8507520 2631552 0 0
s = 7 843648 1568640 0 0 0
s = 8 204480 89760 0 0 0
s = 9 21312 0 0 0 0
s = 10 704 0 0 0 0

μ = (4, 3, 2, 1) g = 0 g = 1 g = 2 g = 3
s = 1 1728 54432 235872 70848
s = 2 26136 379512 570672 0
s = 3 111024 680832 235872 0
s = 4 175824 379512 0 0
s = 5 111024 54432 0 0
s = 6 26136 0 0 0
s = 7 1728 0 0 0

μ = (2, 2, 2, 2) g = 0 g = 1 g = 2
s = 1 672 3360 1008
s = 2 4464 8016 0
s = 3 7872 3360 0
s = 4 4464 0 0
s = 5 672 0 0

μ = (5, 4, 4, 2) g = 0 g = 1 g = 2 g = 3 g = 4 g = 5
s = 1 29120 7047040 444924480 8434666240 42317475200 35974149120
s = 2 1212800 180513600 6829912320 71893480000 168041817600 35974149120
s = 3 16616960 1529449920 33913376640 186374568640 168041817600 0
s = 4 103248000 5796138240 72317482560 186374568640 42317475200 0
s = 5 331189440 11030467200 72317482560 71893480000 0 0
s = 6 584935680 11030467200 33913376640 8434666240 0 0
s = 7 584935680 5796138240 6829912320 0 0 0
s = 8 331189440 1529449920 444924480 0 0 0
s = 9 103248000 180513600 0 0 0 0
s = 10 16616960 7047040 0 0 0 0
s = 11 1212800 0 0 0 0 0
s = 12 29120 0 0 0 0 0

μ = (2, 2, 2, 1, 1) g = 0 g = 1
s = 1 1680 3360
s = 2 7392 3360
s = 3 7392 0
s = 4 1680 0

μ = (3, 3, 2, 2, 2) g = 0 g = 1 g = 2 g = 3
s = 1 71280 2661120 18461520 18722880
s = 2 1206144 23973840 75182256 18722880
s = 3 6314976 63697968 75182256 0
s = 4 13791600 63697968 18461520 0
s = 5 13791600 23973840 0 0
s = 6 6314976 2661120 0 0
s = 7 1206144 0 0 0
s = 8 71280 0 0 0
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A.2. Tables of Some Weighted Weakly Monotone Double Hurwitz Numbers

We recall that H≥
g (μ; s) = zμ

|μ|!
∑

ν of length s

h≥
g (μ; ν), where h≥

g (μ; ν) is the weakly

monotone double Hurwitz number with partitions μ and ν, see (1.22).

In general, H≥
g (μ; s) �= 0 for every s ≤ |μ| and g ≥ 0; therefore, we

calculate H≥
g (μ; s) for the first few values of g.

μ = (3, 1) g = 0 g = 1 g = 2
s = 1 3 45 483
s = 2 18 255 2688
s = 3 30 420 4410
s = 4 15 210 2205

μ = (3, 2) g = 0 g = 1 g = 2
s = 1 6 168 3402
s = 2 54 1464 29058
s = 3 156 4176 82212
s = 4 180 4800 94260
s = 5 72 1920 37704

μ = (3, 3) g = 0 g = 1 g = 2
s = 1 9 462 16443
s = 2 117 5742 197559
s = 3 516 24660 833472
s = 4 1008 47580 1594836
s = 5 900 42300 1413720
s = 6 300 14100 471240

μ = (1, 1, 1) g = 0 g = 1 g = 2 g = 3 g = 4
s = 1 4 20 84 340 1364
s = 2 12 60 252 1020 4092
s = 3 8 40 168 680 2728

μ = (3, 2, 1) g = 0 g = 1 g = 2 g = 3
s = 1 42 2268 81774 2498496
s = 2 558 28248 982326 29405736
s = 3 2472 121320 4143024 122714160
s = 4 4836 234060 7926312 233606280
s = 5 4320 208080 7025760 206699040
s = 6 1440 69360 2341920 68899680

μ = (5, 3, 2) g = 0 g = 1 g = 2 g = 3 g = 4 g = 5
s = 1 330 98670 17117100 2288397540 262779844470 27370788935490
s = 2 11790 3139530 508126980 64989626220 7244914364850 739256601861510
s = 3 151140 37555800 5814501240 722008428240 78865374260700 7932095991173640
s = 4 973200 231506100 34809669720 4236585517200 456285210221400 45429895491347220
s = 5 3600180 832748640 122812524600 14745786668160 1572851081541420 155505293985110400
s = 6 8126700 1846504080 268910866680 31999520486160 3391243294051140 333707416656660000
s = 7 11380320 2557716000 369587047200 43733298023520 4615886297332800 452853891923025600
s = 8 9649080 2155587000 310123401000 36581098895880 3852087017209200 377274782175656400
s = 9 4536000 1010772000 145151092800 17098516260000 1798743628584000 176040872796600000
s = 10 907200 202154400 29030218560 3419703252000 359748725716800 35208174559320000

μ = (1, 1, 1, 1) g = 0 g = 1 g = 2 g = 3 g = 4 g = 5
s = 1 30 420 4410 42240 390390 3554460
s = 2 174 2364 24498 233328 2151222 19565892
s = 3 288 3888 40176 382176 3521664 32022864
s = 4 144 1944 20088 191088 1760832 16011432

μ = (2, 2, 1, 1) g = 0 g = 1 g = 2 g = 3 g = 4 g = 5
s = 1 224 11760 417648 12652640 353825472 9465041040
s = 2 2936 145560 5001792 148676240 4111488168 109250057640
s = 3 12912 623088 21061152 619916064 17042443920 451231651728
s = 4 25176 1200264 40262736 1179630192 32339018280 854769872184
s = 5 22464 1066464 35678592 1043606592 28581355584 754984855584
s = 6 7488 355488 11892864 347868864 9527118528 251661618528

μ = (3, 2, 2, 1) g = 0 g = 1 g = 2 g = 3 g = 4 g = 5
s = 1 1080 142560 11891880 808030080 49030839000 2777130588960
s = 2 24408 2975688 236613384 15604156944 928759785048 51934912866648
s = 3 195696 22833936 1764985248 114273524448 6718979907216 372620872120176
s = 4 764208 86946408 6607836864 423012867984 24682857466608 1361716707058488
s = 5 1622160 181944000 13692581280 870735528000 50576815946160 2781487931040000
s = 6 1911600 212829120 15934474080 1009718844480 58506896866320 3212163320083200
s = 7 1175040 130440960 9745954560 616691715840 35698249900800 1958572008345600
s = 8 293760 32610240 2436488640 154172928960 8924562475200 489643002086400

μ = (3, 3, 3, 3) g = 0 g = 1 g = 2 g = 3 g = 4
s = 1 14742 6781320 1863064476 397980044280 73027276324002
s = 2 684774 286543656 73938326364 15124478632344 2690423275640562
s = 3 11927088 4700315952 1162209509712 230530176869328 40089332784598560
s = 4 108506304 41049414576 9847619855856 1910059732782864 326635075616752080
s = 5 591049872 217264375440 50997568912848 9730568084094000 1643434518194147520
s = 6 2065978224 744104821680 171941934622896 32417467690208400 5425295582074933440
s = 7 4798180800 1703613513600 389301061256640 72772493528332800 12099023079466665600
s = 8 7485955200 2632114958400 596891523260160 110918372096491200 18356651181359395200
s = 9 7754940000 2709582840000 611410862412000 113177279163888000 18674140608815688000
s = 10 5114988000 1780691688000 400648862930400 73995902520393600 12187705122917006400
s = 11 1944000000 675695520000 151836376608000 28014789102336000 4610660182447564800
s = 12 324000000 112615920000 25306062768000 4669131517056000 768443363741260800



3330 M. Gisonni et al. Ann. Henri Poincaré

A.3. Tables of Some Positive LUE Correlators

We write the correlators in terms of N and the parameter α = N(c − 1).

〈tr X tr X〉c = N(α + N),

〈tr X2tr X〉c = 2N(α + N)(α + 2N),

〈tr X2tr X2〉c = 2α
(
1 + 2α2

)
N + 2

(
1 + 11α2

)
N2 + 36αN3 + 18N4,

〈tr X3tr X1〉c = 3N (α + N)
(
1 + α2 + 5αN + 5N2

)

〈tr X3tr X2〉c = 6N (α + N) (α + 2N)
(
3 + α2 + 6αN + 6N2

)

〈tr X3tr X3〉c = 3N (α + N)
(
12 + 25α2 + 3α4 + 4α

(
29 + 9α2

)
N

+4
(
29 + 34α2

)
N2 + 200αN3 + 100N4

)
,

〈tr X tr X tr X〉c = 2N(α + N),

〈tr X2tr X tr X〉c = 6N(α + N)(α + 2N),

〈tr X2tr X2tr X〉c = 8α
(
1 + 2α2

)
N + 8

(
1 + 11α2

)
N2 + 144αN3 + 72N4,

〈tr X2tr X2tr X2〉c = 40α2
(
2 + α2

)
N + 48

(
5α + 7α3

)
N2

+ 16
(
10 + 59α2

)
N3 + 1080αN4 + 432N5,

〈tr X4tr X3tr X2〉c = 24α
(
328 + 1092α2 + 252α4 + 8α6

)
N

+ 24
(
328 + 1092α2 + 252α4 + 8α6

+α
(
4826α + 2765α3 + 169α5

))
N2+

+ 24
(
4826α + 2765α3 + 169α5

+α
(
4826 + 9935α2 + 1239α4

))
N3

+ 24
(
4826 + 9935α2 + 1239α4+

+α
(
14340α + 4240α3

))
N4

+ 24
(
14340α + 4240α3 + α

(
7170 + 7370α2

))
N5

+ 24
(
7170 + 13670α2

)
N6 + 201600αN7 + 50400N8,

〈tr X tr X tr X tr X〉c = 6N(α + N),

〈tr X2tr X tr X tr X〉c = 24N(α + N)(α + 2N),

〈tr X2tr X2tr X tr X〉c = 40α
(
1 + 2α2

)
N + 40

(
1 + 11α2

)
N2

+ 720αN3 + 360N4,

〈tr X2tr X2tr X2tr X〉c = 240α2
(
2 + α2

)
N + 288

(
5α + 7α3

)
N2

+ 96
(
10 + 59α2

)
N3 + 6480αN4 + 2592N5,

〈tr X2tr X2tr X2tr X2〉c = 48α
(
21 + 14α2

(
5 + α2

))
N

+ 48
(
21 + 377α2 + 163α4

)
N2

+ 96
(
307α + 338α3

)
N3+

+ 48
(
307 + 1283α2

)
N4 + 54432αN5 + 18144N6,

〈tr X tr X tr X tr X tr X〉c = 24N(α + N),

〈tr X2tr X tr X tr X tr X〉c = 120N(α + N)(α + 2N),

〈tr X2tr X2tr X tr X tr X〉c = 240α
(
1 + 2α2

)
N + 240

(
1 + 11α2

)
N2 + 4320αN3 + 2160N4,
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〈tr X3tr X2tr X2tr X2tr X〉c = 6048α2
(
11 + α2

) (
3 + 2α2

)
N

+ 432
(
42α

(
11 + α2

) (
3 + 2α2

)

+3α3
(
611 + 121α2

))
N2+

+ 432
(
28
(
11 + α2

) (
3 + 2α2

)
+ 39α2

(
47 + 37α2

)

+9α2
(
611 + 121α2

))
N3 + 432

(
2160α3+

+117α
(
47 + 37α2

)
+ 6α

(
611 + 121α2

))
N4

+ 2592
(
611 + 1741α2

)
N5 + 3265920αN6

+ 933120N7,

A.4. Tables of Some Negative LUE Correlators

In the following formulæ we denote aj := (α − j)2j+1, α = N(c − 1).

〈tr X−1tr X−1〉c =
1

a1a0
N(α + N),

〈tr X−2tr X−1〉c =
1

a2a0
2N(α + N)(α + 2N),

〈tr X−2tr X−2〉c =
1

a3a1
2N(α + N)

(
2α4 + 9α3N + α2

(
9N2 − 5

)

−21αN − 21N2 + 3
)
,

〈tr X−3tr X−1〉c =
1

a3a0
3N(α + N)

(
α2 + 5αN + 5N2 + 1

)
,

〈tr X−3tr X−2〉c =
1

a4a1
6N (α + N) (α + 2N)

(
2 + α4 − 26αN + 6α3N − 26N2

+α2
(−3 + 6N2

))
,

〈tr X−3tr X−3〉c =
1

a5a2
3N (α + N)

(
320 − 444α2 + 147α4

− 26α6 + 3α8 + 4α
(−200 + 411α2 − 100α4 + 9α6

)
N

+4
(−200 + 1731α2 − 425α4 + 34α6

)
N2

+ 40α
(
264 − 65α2 + 5α4

)
N3

+20
(
264 − 65α2 + 5α4

)
N4

)
,

〈tr X−1tr X−1tr X−1〉c =
1

a2a2
0

4N(α + N)(α + 2N),

〈tr X−2tr X−1tr X−1〉c =
1

a3a1a0
2N(α + N)

(
5α4 + 24α3N

+α2
(
24N2 − 5

)− 36αN − 36N2
)
,

〈tr X−2tr X−2tr X−1〉c =
1

a4a1a0
24N(α + N)(α + 2N)

(
α4 + 6α3N

+α2
(
6N2 − 3

)− 26αN − 26N2 + 2
)
,

〈tr X−2tr X−2tr X−2〉c =
1

a5a2
1

8N(α + N)
(
7α2

(
α2 − 7

) (
α2 − 1

)2

+ 36
(
6α4 − 71α2 + 125

)
N4



3332 M. Gisonni et al. Ann. Henri Poincaré

+ 72α
(
6α4 − 71α2 + 125

)
N3

+ 9(α − 1)α(α + 1)
(
9α4 − 89α2 + 100

)
N

+9
(
33α6 − 382α4 + 689α2 − 100

)
N2

)
,

〈tr X−3tr X−2tr X−2〉c =
1

a6a2a1
24N(α + N)(α + 2N)

(
2α2

(
α2 − 1

)2

(
2α4 − 25α2 + 68

)

+ 60
(
3α6 − 71α4 + 488α2 − 840

)
N4+

+ 120α
(
3α6 − 71α4 + 488α2 − 840

)
N3

+ (α − 1)α(α + 1)
(
57α6 − 1105α4 + 6148α2 − 7200

)
N+

+
(
237α8 − 5422α6 + 36533α4 − 63748α2 + 7200

)
N2

)
,

〈tr X−1tr X−1tr X−1tr X−1〉c =
1

a3a1a2
0

6N(α + N)
(
5α4 + 24α3N + α2

(
24N2 − 5

)

−36αN − 36N2
)
,

〈tr X−2tr X−1tr X−1tr X−1〉c =
1

a4a1a2
0

12N(α + N)(α + 2N)

(
7α4 + 44α3N + α2

(
44N2 − 7

)

−144αN − 144N2
)
,

〈tr X−2tr X−2tr X−1tr X−1〉c =
1

a5a2a1a0
8N(α + N)

(
14α2

(
α2 − 1

)2 (
2α4 − 13α2 + 20

)

+ 12
(
78α6 − 1055α4 + 4237α2 − 3800

)
N4+

+ 24α
(
78α6 − 1055α4 + 4237α2 − 3800

)
N3

+ 3(α − 1)α(α + 1)
(
113α6 − 1205α4 + 3632α2 − 800

)
N+

+3
(
425α8 − 5538α6 + 21785α4 − 19632α2 + 800

)
N2

)
,

A.5. Tables of Some Mixed LUE Correlators

In the following formulæ we denote aj := (α − j)2j+1, α = N(c − 1).

〈tr X−1tr X1〉c = − 1

a0
N,

〈tr X−2tr X1〉c = − 1

a1
2N(α + N),

〈tr X−1tr X2〉c = − 1

a0
2N(α + N),

〈tr X−2tr X2〉c = − 1

a1
(α + 2N)

(
α2 + 2αN + 2N2 − 1

)
,

〈tr X−3tr X1〉c = − 1

a2
3N (α + N) (α + 2N) ,

〈tr X−3tr X2〉c = − 1

a2
6N (α + N)

(−2 + α2 + 2αN + 2N2
)
,
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〈tr X−1tr X3〉c = − 1

a0
3N (α + N) (α + 2N) ,

〈tr X−2tr X3〉c = − 1

a1
6N (α + N)

(−1 + α2 + 2αN + 2N2
)
,

〈tr X−3tr X3〉c = − 1

a2
3
(
2α

(
4 − 5α2 + α4

)
+
(
4 − 11α2 + 3α4

)
N

+6α
(−3 + 2α2

)
N2 + 4

(−3 + 7α2
)
N3 + 30αN4 + 12N5

)
,

〈tr X−1tr X1tr X1〉c = 0,

〈tr X−1tr X−1tr X1〉c = − 1

a0a1
2N(α + N),

〈tr X−2tr X−1tr X1〉c = − 1

a2a0
6N(α + N)(α + 2N),

〈tr X−1tr X2tr X1〉c = − 1

a0
2N(α + N),

〈tr X−2tr X1tr X1〉c =
1

a1
2N(α + N),

〈tr X−1tr X−1tr X2〉c = − 1

a0a1
2N(α + N)(α + 2N),

〈tr X−1tr X2tr X2〉c = − 1

a0
8N(α + N)(α + 2N),

〈tr X−2tr X2tr X1〉c = 0,

〈tr X−2tr X−2tr X1〉c = − 1

a3a1
8N(α + N)

(
2α4 + 9α3N + α2

(
9N2 − 5

)

−21αN − 21N2 + 3
)
,

〈tr X−2tr X−1tr X2〉c = − 1

a2a0
8N(α + N)(−1 + α2 + 3αN + 3N2),

〈tr X−1tr X−1tr X3〉c = − 1

a1a0
12N2(α + N)2,

〈tr X−1tr X1tr X3〉c = − 1

a0
6N(α + N)(α + 2N),

〈tr X−3tr X−1tr X1〉c = − 1

a3a0
12N(α + N)

(
α2 + 5αN + 5N2 + 1

)
,

〈tr X−3tr X1tr X1〉c =
1

a2
6N(α + N)(α + 2N),

〈tr X−3tr X−2tr X1〉c = − 1

a4a1
30N(α + N)(α + 2N)

(
α4 + 6α3N + α2

(
6N2 − 3

)

−26αN − 26N2 + 2
)
,

〈tr X−3tr X−2tr X2〉c = − 1

a4a1
24N(α + N)

(
2α6 − 17α4 + 10

(
3α2 − 13

)
N4

+ 20
(
3α2 − 13

)
αN3 + 23α2+

+2
(
23α4 − 120α2 + 57

)
N2 + 2

(
8α4 − 55α2 + 57

)
αN − 8

)
,

〈tr X−1tr X1tr X1tr X1〉c = 0,

〈tr X−1tr X−1tr X1tr X1〉c =
1

a1a0
2N(α + N),
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〈tr X−1tr X−1tr X−1tr X1〉c = − 1

a2a2
0
12N(α + N)(α + 2N),

〈tr X−2tr X1tr X1tr X1〉c = 0,

〈tr X−2tr X−2tr X1tr X1〉c =
1

a3a1
24N(α + N)

(
2α4 + 9α3N + α2 (9N2 − 5

)

−21αN − 21N2 + 3
)
,

〈tr X−2tr X−2tr X−1tr X1〉c = − 1

a4a1a0
120N(α + N)(α + 2N)

(
α4 + 6α3N

+α2 (6N2 − 3
)− 26αN − 26N2 + 2

)
,

〈tr X−2tr X−1tr X−1tr X2〉c = − 1

a3a1a0
24N(α + N)(−1 + α + 2N)(α + 2N)

(1 + α + 2N)(2α2 − 3),

〈tr X−2tr X−1tr X2tr X1〉c =
1

a2a0
8N(α + N)(−1 + α2 + 3αN + 3N2),

〈tr X−2tr X2tr X1tr X1〉c = 0,

〈tr X−1tr X2tr X2tr X1〉c = − 1

a0
24N(α + N)(α + 2N),

〈tr X−1tr X−1tr X2tr X2〉c = − 1

a1a0
24N2(α + N)2,

〈tr X−3tr X−1tr X−1tr X2〉c = − 1

a4a1a0
24N(α + N)

(
100

(
α2 − 2

)
N4 + 200α

(
α2 − 2

)
N3+

+2
(
73α4 − 165α2 + 52

)
N2 + 2α

(
23α4 − 65α2 + 52

)
N

+5α2 (α4 − 3α2 + 2
))

.

A.6. Topological Expansion of Some Mixed Correlators

We compute the first terms in the large N expansion for some of the above
mixed correlators, see with Proposition 1.2.

〈tr X−2tr X3〉c = −N

(
12

(c − 1)3
+

24

(c − 1)2
+

18

c − 1
+ 6

)

− 1

N

(
12

(c − 1)5
+

24

(c − 1)4
+

12

(c − 1)3

)
+

− 1

N3

(
12

(c − 1)7
+

24

(c − 1)6
+

12

(c − 1)5

)

− 1

N5

(
12

(c − 1)9
+

24

(c − 1)8
+

12

(c − 1)7

)
+ O

(
1

N7

)
,

〈tr X−4tr X4〉c = −
(

400

(c − 1)7
+

1400

(c − 1)6
+

1968

(c − 1)5
+

1420

(c − 1)4

+
560

(c − 1)3
+

120

(c − 1)2
+

16

c − 1
+ 2

)
+

− 1

N2

(
5600

(c − 1)9
+

19600

(c − 1)8
+

26920

(c − 1)7
+

18300

(c − 1)6

+
6320

(c − 1)5
+

980

(c − 1)4
+

40

(c − 1)3

)
+
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− 1

N4

(
58800

(c − 1)11
+

205800

(c − 1)10
+

280448

(c − 1)9
+

186620

(c − 1)8

+
61560

(c − 1)7
+

8620

(c − 1)6
+

232

(c − 1)5

)
+ O

(
1

N6

)
,

〈tr X−1tr X2tr X2〉c = −N2

(
16

c − 1
+ 24 + 8(c − 1)

)
,

〈tr X−2tr X−2tr X1〉c = − 1

N4

(
72

(c − 1)8
+

144

(c − 1)7
+

88

(c − 1)6
+

16

(c − 1)5

)
+

− 1

N6

(
912

(c − 1)10
+

1824

(c − 1)9
+

1112

(c − 1)8
+

200

(c − 1)7

)
+

− 1

N8

(
9144

(c − 1)12
+

18288

(c − 1)11
+

11160

(c − 1)10
+

2016

(c − 1)9

)

+ O

(
1

N10

)
,

〈tr X−3tr X−2tr X2tr X2〉c =
1

N3

(
720

(c − 1)10
+

2160

(c − 1)9
+

2544

(c − 1)8
+

1488

(c − 1)7

+
432

(c − 1)6
+

48

(c − 1)5

)
+

1

N5

(
19200

(c − 1)12
+

57600

(c − 1)11

+
66864

(c − 1)10
+

37728

(c − 1)9
+

10344

(c − 1)8
+

1080

(c − 1)7

)
+

+
1

N7

(
377040

(c − 1)14
+

1131120

(c − 1)13
+

1304688

(c − 1)12
+

724176

(c − 1)11

+
193056

(c − 1)10
+

19488

(c − 1)9

)
+ O

(
1

N9

)
,

〈tr X−3tr X−1tr X−1tr X2〉c = − 1

N5

(
2400

(c − 1)11
+

7200

(c − 1)10
+

8304

(c − 1)9
+

4608

(c − 1)8

+
1224

(c − 1)7
+

120

(c − 1)6

)
+

− 1

N7

(
69600

(c − 1)13
+

208800

(c − 1)12
+

239904

(c − 1)11

+
131808

(c − 1)10
+

34464

(c − 1)9
+

3360

(c − 1)8

)
+

− 1

N9

(
1430400

(c − 1)15
+

4291200

(c − 1)14
+

4923408

(c − 1)13
+

2694816

(c − 1)12

+
700248

(c − 1)11
+

68040

(c − 1)10
+

)
+ O

(
1

N11

)
.

References

[1] Adler, M., van Moerbeke, P.: Matrix integrals, Toda symmetries, Virasoro con-
straints and orthogonal polynomials. Duke Math. J. 80(3), 863–911 (1995)

[2] Adler, M., van Moerbeke, P.: Integrals over classical groups, random permuta-
tions, Toda and Toeplitz lattices. Commun. Pure Appl. Math. 54(2), 153–205
(2001)



3336 M. Gisonni et al. Ann. Henri Poincaré
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