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Location of Eigenvalues of Non-self-adjoint
Discrete Dirac Operators

B. Cassano, O. O. Ibrogimov, D. Krejčǐŕık and F. Štampach

Abstract. We provide quantitative estimates on the location of eigenvalues
of one-dimensional discrete Dirac operators with complex �p-potentials
for 1 ≤ p ≤ ∞. As a corollary, subsets of the essential spectrum free
of embedded eigenvalues are determined for small �1-potential. Further
possible improvements and sharpness of the obtained spectral bounds are
also discussed.

1. Introduction

1.1. Motivation and State of the Art

The principal objective of this paper is to initiate a mathematically rigor-
ous investigation of spectral properties of quantum systems characterized by a
fusion of the following three features: (α) relativistic, (β) discrete, (γ) non-self-
adjoint. While models within one of the respective classes have been intensively
studied over the last decades, the combination seems to represent a new chal-
lenging branch of mathematical physics.

The relativistic feature (α) is implemented by considering the Dirac equa-
tion, which is well understood in the simultaneously continuous and self-adjoint
settings, see [31] for a classical reference. Apart from describing relativistic
quantum matter, it also models quasi-particles in new materials like graphene.

The discrete feature (β) is due to introducing the Dirac operator on a lat-
tice rather than in the Euclidean space. In the non-relativistic (Schrödinger)
setting, it is well known that the discretization is not a mere shortcoming
motivated by numerical solutions, but it is in fact a more realistic model
for semiconductor crystals, see [4]. Indeed, it is essentially the tight-binding
approximation in solid-state physics. Works on the fusion (α)∩(β) exist in the
self-adjoint setting, see [5,11,21,26] and references therein.

Finally, the non-self-adjointness (γ) is implemented through possibly non-
Hermitian perturbations added to the free Dirac operator. Despite the new
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physical motivations coming from quasi-Hermitian quantum mechanics (cf.[2]),
there are very few results on non-self-adjoint Dirac operators in the literature.
For the fusion (α)∩(γ) in the continuous setting, see [7–10,12–14,28]. For the
complete combination (α)∩(β)∩(γ), we are only aware of the works [3,23]
concerned with estimates on the number of discrete eigenvalues.

In this paper, we are interested in the location of eigenvalues of one-
dimensional discrete Dirac operator perturbed by non-Hermitian potentials
(in particular, the coefficients of the potential are allowed to be complex).
The main ingredient in our proofs is the Birman–Schwinger principle, and
the results are of the nature of the celebrated result of Davies et al.[1] for one-
dimensional continuous Schrödinger operators. However, following the strategy
developed in [16] (see also [15] for an alternative approach), we manage to
cover eigenvalues embedded in the essential spectrum as well. This article can
be considered as a relativistic follow-up of [25] by two of the present authors.

1.2. Mathematical Model

Let {en}n∈Z be the standard basis of the Hilbert space �2(Z) and let d :
�2(Z) → �2(Z) be the difference operator determined by the equation den :=
en −en+1, n ∈ Z. The free discrete Dirac operator D0 is a self-adjoint bounded
operator in the Hilbert space �2(Z)⊕�2(Z) given by the block operator matrix

D0 :=
(

m d
d∗ −m

)
, (1.1)

where m is a non-negative constant and d∗ is the adjoint operator to d which
fulfills d∗en = en − en−1, n ∈ Z. It is well known that the spectrum of D0 is
absolutely continuous and is given by

σ(D0) =
[−√m2 + 4,−m

] ∪ [m,
√

m2 + 4
]
, (1.2)

see for instance [21].
It is worth noting that D0 can be represented by a doubly-infinite Jacobi

matrix by using a suitably chosen orthonormal basis of �2(Z) ⊕ �2(Z). Indeed,
if we set

f2n := 0 ⊕ en and f2n+1 := en ⊕ 0,

for n ∈ Z, then the matrix representation of D0 with respect to the orthonor-
mal basis {fn}n∈Z reads

D0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . .
−1 −m 1

1 m −1
−1 −m 1

1 m −1
. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1.3)
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Moreover, it is often advantageous to view the above matrix as the 2×2-
block tridiagonal Laurent matrix

D0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . .
aT b a

aT b a
aT b a

. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1.4)

where

b :=
(−m 1

1 m

)
, a :=

(
0 0

−1 0

)
.

The matrix (1.4) naturally determines a unique operator acting on the Hilbert
space H := �2(Z, C2) that is unitarily equivalent to D0 given by (1.1). We do
not distinguish the unitarily equivalent operators in the notation.

Further, we intend to perturb (1.4) by the 2 × 2-block diagonal matrix

V =
⊕
n∈Z

υn, (1.5)

where

υn :=
(

υ11
n υ12

n

υ21
n υ22

n

)
(1.6)

is a given sequence of 2×2 complex matrices. We denote the resulting operator
by DV := D0 + V . In view of the initial setting (1.1), such perturbation cor-
responds to a perturbation of each of the four operator entries by a diagonal
matrix operator acting on �2(Z). For special symmetric choices of the coeffi-
cients, the perturbations of the diagonal entries represent an electric potential
while the off-diagonal elements introduce a magnetic potential to D0; we pro-
ceed in a greater generality by making no hypotheses about the coefficients
except for summability conditions.

In this paper we are concerned with the location of eigenvalues of the
Dirac operator DV . If the entries of υn vanish as n → ±∞, i.e. υij

n → 0
as n → ±∞, then V is compact and hence the essential spectrum of the
perturbed operator DV coincides with σ(D0). The goal of the present paper
is to investigate the location of the point spectrum of DV . To this end, we
consider the block diagonal matrix potentials V given by (1.5) and (1.6) which
belong to the Banach space �p

(
Z, C2×2

)
equipped with the norm

‖V ‖p =
(∑

n∈Z

|υn|p
)1/p

, 1 ≤ p < ∞, ‖V ‖∞ = sup
n∈Z

|υn|, (1.7)

where |υn| denotes the operator norm of the matrix υn. As it is seen by com-
paring (1.5) and (1.7), we slightly abuse the notation by not distinguishing
between V as the operator and V as the doubly-infinite 2 × 2-matrix valued
sequence, whenever suitable. Except the notation |υ| used for the spectral norm
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of a matrix υ ∈ C
2×2, we denote by |υ|HS the Hilbert–Schmidt (or Frobenius)

norm of υ throughout the paper. Recall that |υ| ≤ |υ|HS.

1.3. Main Results

Our main result for �1-potentials reads as follows:

Theorem 1. Let V ∈ �1
(
Z, C2×2

)
. Then

σp(DV ) ⊂
{

λ ∈ C
∣∣ |λ2 − m2||λ2 − m2 − 4| ≤ (|λ + m| + |λ − m|)2∥∥V ∥∥2

1

}
.

(1.8)

The spectral enclosure in (1.8) is a compact set symmetric with respect
to both the real and the imaginary line. The geometry of its boundary is
quite easy to understand. It is an algebraic curve of generically three possible
topological configurations depending on the �1-norm of the potential V and the
parameter m > 0. A closer inspection of the respective polynomial equation
shows that, if

0 < ‖V ‖21 <
m2

2
+ 1 − m

√
m2

4
+ 1, (1.9)

the boundary curve consists of four simple closed curves having the end-points
of the essential spectrum ±m and ±√

m2 + 4 in their interiors, respectively.
If

m2

2
+ 1 − m

√
m2

4
+ 1 < ‖V ‖21 <

m2

4
+ 1,

the boundary curve comprises two simple closed curves with the intervals
[−√

m2 + 4,−m] and [
√

m2 + 4,m] in their interiors, respectively. Finally, for

‖V ‖21 >
m2

4
+ 1,

the boundary curve is a closed simple curve with the interval [−√
m2 + 4,√

m2 + 4] in its interior. Figure 1 shows all the topological configurations.
As an immediate corollary of the firstly mentioned possible configuration

for the boundary curve of (1.8), we obtain subsets of the essential spectrum
of DV that are free of embedded eigenvalues of DV .

Corollary 1. If the potential V ∈ �1
(
Z, C2×2

)
satisfy (1.9), then the union of

intervals

(−λ+,−λ−) ∪ (λ−, λ+),

where

λ± :=

√
m2 + 2

(
1 − ‖V ‖21 ±

√
(1 − ‖V ‖21)2 − ‖V ‖21m2

)
,

is free of embedded eigenvalues of DV .
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Figure 1. The plots of the expanding boundary curves cor-
responding to the spectral enclosure (1.8) for various values
of ‖V ‖1 ∈ [0.5, 1.5] and m = 1. The black intervals indicate
the essential spectrum of DV

Remark 1. In fact, Corollary 1 can be improved under additional assumptions
that 1 + υ12

n �= 0 and 1 + υ21
n �= 0 for all n ∈ Z. In this case, the whole interior

of (1.2) is free of embedded eigenvalues of DV . Indeed, let DV be viewed as the
2-periodic Jacobi matrix (1.3) correspondingly perturbed by V for the moment.
Then, if υij ∈ �1(Z) for all i, j ∈ {1, 2}, there exist two linearly independent
solutions φ(±) of the eigenvalue equation DV φ = λφ such that φ

(±)
n ∼ w±nan,

as n → ∞, for a nontrivial 2-periodic sequence an, where |w| = 1 provided that
λ ∈ (−√

m2 + 4,−m) ∪ (m,
√

m2 + 4). As a result, there cannot be a square
summable solution of DV φ = λφ, for λ ∈ (−√

m2 + 4,−m) ∪ (m,
√

m2 + 4),
if the set of solutions is of dimension 2 which is guaranteed by the additional
assumptions 1+υ12

n �= 0 and 1+υ21
n �= 0 for all n ∈ Z. This was proved in [19]

for a certain real �1-perturbations V . The reality is, however, inessential for
the proof and the claim can be extended to complex �1-perturbations as well,
see the proof of [19, Thm. 3].

Our next result provides a spectral estimate in terms of the �p–norm of
the potential for p > 1. The strategy of its derivation relies on an application
of Stein’s complex interpolation theorem to an appropriate analytic family of
Birman–Schwinger-type operators. This approach was successfully used in the
continuous setting recently, see e.g. [6,8,17].

Theorem 2. Let 1 < p ≤ ∞ and V ∈ �p
(
Z, C2×2

)
. If λ /∈ σ(D0) satisfies
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gp(λ,m)‖V ‖p < 1 (1.10)

with

gp(λ,m) :=
(|λ − m| + |λ + m|) 1

p

|λ2 − m2| 1
2p |λ2 − m2 − 4| 1

2p (dist(λ, σ(D0)))1− 1
p

, (1.11)

then λ /∈ σ(DV ).

Remark 2. For p = ∞, the function in (1.11) has to be understood as

g∞(λ,m) =
1

dist(λ, σ(D0))
.

Third theorem concerns with spectral bounds for �p-potentials with p ≥ 1
again. In particular, the bound for �1-potentials is an improvement of Theo-
rem 1. The price we have to pay, however, is that the new bounds are quite
complicated and not entirely explicit since they involve spectral norms of the
matrices

T0(k) =
1

k−1 − k

(
λ − m 1 − k
1 − k λ + m

)
and

T1(k) =
k

k−1 − k

(
λ − m 1 − k

1 − k−1 λ + m

)
, (1.12)

which arise in the formula for the resolvent operator (D0 − λ)−1, see Sect. 2.
Moreover, in contrast to Theorems 1 and 2, the spectral enclosures are not
expressible entirely in the spectral parameter λ. Rather than that they use the
auxiliary parameter k with |k| < 1. The relation between λ and k is determined
by the equality

λ2 = m2 + 2 − k − k−1 (1.13)

which introduces a one-to-two mapping λ = λ(k) between the punctured unit
disc {k ∈ C | 0 < |k| < 1} and the resolvent set ρ(D0). This mapping plays
the same role as the Joukowski mapping in the case of discrete Schrödinger
operator, see [25] for details.

The proof of the following theorem is based on a discrete version of
Young’s inequality. Here and in the sequel, for p ∈ (1,∞], we denote by
q ∈ [1,∞) the corresponding Hölder exponent, i.e. q = p/(p − 1) if 1 < p < ∞
and q = 1 if p = ∞.

Theorem 3. Let 1 ≤ p ≤ ∞ and assume V ∈ �p
(
Z, C2×2

)
. If λ /∈ σ(D0)

satisfies

hq(λ,m)‖V ‖p < 1

then λ /∈ σ(DV ), with

hq(λ,m) :=

⎧⎪⎨
⎪⎩
(
|T0(k)|q + 2

1−|k|q |T1(k)|q
)1/q

if 1 ≤ q < ∞,

max {|T0(k)|, |T1(k)|} if q = ∞,
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and k the unique point in the punctured unit disk {k ∈ C | 0 < |k| < 1}
such that λ2 = m2 + 2 − k − k−1. The matrices T0(k) and T1(k) are defined
in (1.12).

Remark 3. Clearly, spectral norms of the 2×2 matrices (1.12) can be expressed
explicitly, but the resulting formulas are somewhat cumbersome. Namely, we
have

|T1(k)|2 = |k|2 |λ + m|2 + |λ − m|2 + (|k| + |k|−1)|λ2 − m2|
|λ2 − m2||λ2 − m2 − 4| (1.14)

and

|T0(k)|2 =
1
2

(
B +

√
B2 − 4C

)
, (1.15)

where

B =
|λ + m|2 + |λ − m|2 + 2|k||λ2 − m2|

|λ2 − m2||λ2 − m2 − 4| and C =
|k|

|λ2 − m2 − 4| .

Remark 4. We do not discuss the eigenvalues possibly embedded in σ(D0) in
Theorem 3 for p = 1 similarly as is done in Corollary 1 after Theorem 1.
Nevertheless, an inspection of the intersection points of the boundary curve
of the spectral enclosure of Theorem 3 with σ(D0) (when they exist) shows
that they actually coincide with the points identified in Corollary 1. Indeed,
it readily follows from formulas (1.15) and (1.14) that

lim
k→k0

|T0(k)| ≤ |λ0 + m| + |λ0 − m|√
|λ2

0 − m2||λ2
0 − m2 − 4| = lim

k→k0
|T1(k)|,

for λ0 ∈ σ(D0) \ {±m,±√
m2 + 4} and k0 a point on the unit circle such that

λ2
0 = m2 + 2 − k0 − k−1

0 . Consequently,

lim
λ→λ0

h∞(λ,m) =
|λ0 + m| + |λ0 − m|√
|λ2

0 − m2||λ2
0 − m2 − 4| ,

which is the expression appearing in the spectral enclosure of Theorem 1.
Consequently, even if the intervals of σ(D0) given by the intersection points
of the boundary curves of the improved spectral enclosure from Theorem 3
for p = 1 were proved to be free of embedded eigenvalues of DV , Corollary 1
would not be improved. This is also illustrated in Fig. 3 (part a) in “Appendix”,
where the enclosures provided by Theorems 1 and 3 are compared.

In addition to the statement of Theorem 3, we prove that the improved
spectral enclosure for �1-potentials is at least partly optimal. Namely, we show
that a significant part of the boundary of the spectral enclosure is actually an
eigenvalue of a concretely chosen discrete Dirac operator within the studied
class. This means that this spectral bound cannot be significantly improved.

The proof of the tighter spectral bound of Theorem 3 for �1-potentials
does not make use of majorizing spectral norms by Hilbert–Schmidt norms.
The reason for a possible but unnecessary passing to the Hilbert–Schmidt
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norms is that the resulting spectral bounds are of comparatively simpler forms.
If we prefer a less sharp but more explicit result for 1 < p ≤ ∞, then majorizing
|Ti(k)| ≤ |Ti(k)|HS, for i = 1, 2, and applying natural estimates for |Ti(k)|HS,
see Lemma 1, we arrive at the following corollary of Theorem 3.

Corollary 2. Let 1 < p ≤ ∞ and assume V ∈ �p
(
Z, C2×2

)
. If λ /∈ σ(D0)

satisfies

fq(λ,m)‖V ‖p < 1

with

fq(λ,m) :=
|λ − m| + |λ + m|√|λ2 − m2||λ2 − m2 − 4|

(
1 +

2
√|k|q

1 − |k|q
)1/q

,

where k is a unique point in the punctured unit disk {k ∈ C | 0 < |k| < 1}
such that λ2 = m2 + 2 − k − k−1, then λ /∈ σ(DV ).

Remark 5. Note that, if p → 1, i.e. q → ∞ in Theorem 2 and Corollary 2, we
arrive at the spectral enclosure of Theorem 1 with the exception of possibly
embedded eigenvalues.

Stein’s interpolation together with the improved spectral bound of The-
orem 3 for the case p = 1 leads to the following improvement of Theorem 2.

Theorem 4. Let 1 ≤ p ≤ ∞ and assume V ∈ �p
(
Z, C2×2

)
. If λ /∈ σ(D0)

satisfies

ψq(λ,m)‖V ‖p < 1

then λ /∈ σ(DV ), with

ψq(λ,m) := (max{|T0(k)|, |T1(k)|})1− 1
q (dist(λ, σ(D0)))

− 1
q

and k the unique point in the punctured unit disk {k ∈ C | 0 < |k| < 1} such
that λ2 = m2+2−k−k−1. The matrices T0(k) and T1(k) are defined in (1.12)
and their norms are given by formulas (1.15) and (1.14).

Remark 6. One may hope that |T0(k)| ≥ |T1(k)| which would mean that the
resolvent operator (D0 − λ)−1 is diagonally dominant, see formula (2.1) given
below. This would turn the spectral enclosure of Theorem 3 (especially in the
case of �1-potentials) into a reasonably simple form. Unfortunately, the inequal-
ity |T0(k)| ≥ |T1(k)| does not hold in general. This can be verified analytically
for m = 0 and therefore the inequality remains false for m small by continuity.
Moreover, the dependence of the relation between the values of |T0(k)| and
|T1(k)| on the parameter k seems to be nontrivial, see Fig. 5 in “Appendix”.

Similarly as in Theorem 1, the spectral enclosures from Theorems 2, 3,
and 4 are symmetric with respect to the real as well as the imaginary axes. On
the other hand, if p > 1, these enclosures always contain the entire essential
spectrum of DV for any choice of the potential V ∈ �p

(
Z, C2×2

)
and m > 0.

Illustrative plots as well as comparisons of the obtained results are given in
“Appendix”.
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1.4. Organization of the Paper

As preliminary results for our proofs, in Sects. 2 and 3 we recall the resolvent
of the free discrete Dirac operator D0 and develop the Birman–Schwinger
principle for the operator DV . The proofs of Theorems 1–4 are presented in
Sect. 4. In Sect. 5, the optimality of the improved spectral enclosure for �1-
potentials from Theorem 3 is discussed.

The paper is concluded by four appendices. In “Appendix A” we numeri-
cally visualize the spectral enclosure of Theorem 2 for several choices of p > 1.
Several comparison plots as well as an illustration of the partial optimality
proved for the spectral enclosure from Theorem 3 for p = 1 are given in the
parts B and C of “Appendix”. Finally, “Appendix D” serves as a numerical
illustration of Remark 6.

2. The Free Resolvent

Making use of the observation that

D2
0 =

(
m2 + dd∗ 0

0 m2 + d∗d

)

together with the familiar formula for the resolvent of the discrete Laplacian
dd∗ = d∗d (see e.g.[30, Chp. 1] or [25, Eq. (2.2)]), the resolvent of the free
Dirac operator can be expressed fully explicitly. Using the 2 × 2-block matrix
representation as in (1.4), the resulting formula for the resolvent of D0 can be
written as the 2 × 2-block Laurent matrix

(D0 − λ)−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

...
...

...
...

...
. . . T−1(k) T0(k) T1(k) T2(k) T3(k) . . .
. . . T−2(k) T−1(k) T0(k) T1(k) T2(k) . . .
. . . T−3(k) T−2(k) T−1(k) T0(k) T1(k) . . .

...
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(2.1)

where T0(k) and T1(k) are defined by (1.12) and

Ti(k) = TT
−i(k) = ki−1T1(k), for i ≥ 1. (2.2)

Here 0 < |k| < 1 and the spectral parameter λ is related to k by Eq. (1.13)
which determines a one-to-two mapping k �→ λ(k) between the punctured unit
disk {k ∈ C | 0 < |k| < 1} and the resolvent set of D0.

For later purpose, we will need the following estimate of the Hilbert–
Schmidt norm of the resolvent entries Ti(k), i ∈ Z.

Lemma 1. Let λ ∈ ρ(D0) and k be such that 0 < |k| < 1 related to λ via (1.13).
Then one has

|Tj(k)|HS ≤ |Cj(k)|
|k−1 − k|

(|λ − m| + |λ + m|), j ∈ Z, (2.3)
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where

Cj(k) =

{
1 if j = 0,

k|j|−1/2 if j �= 0.

Proof. By a straightforward computation, one gets

|T0(k)|2HS =
1

|k−1 − k|2
(

|λ − m|2 + |λ + m|2 + 2|k|
∣∣∣k−1/2 − k1/2

∣∣∣2
)

and

|Tj(k)|2HS = |T−j(k)|2HS

=
|k|2j−1

|k−1 − k|2
(

|k||λ − m|2 + |k||λ + m|2 + (1 + |k|2)
∣∣∣k−1/2 − k1/2

∣∣∣2
)

,

for j ≥ 1. To arrive at (2.3), it suffices to note that, for 0 < |k| < 1, one has

2|k|
∣∣∣k−1/2 − k1/2

∣∣∣2 ≤ (1 + |k|2)
∣∣∣k−1/2 − k1/2

∣∣∣2 ≤ 2
∣∣∣k−1/2 − k1/2

∣∣∣2
and use the equality ∣∣∣k−1/2 − k1/2

∣∣∣2 = |λ2 − m2|
which follows readily from (1.13). �

3. The Birman–Schwinger Principle

For n ∈ Z, we denote by wn the absolute value of υn, i.e. wn :=
√

υ∗
nυn. Using

the polar decomposition of matrices, we have υn = unwn, where un ∈ C
2×2 is

a partial isometry. Notice that |υn| = |wn| = |√wn|2. Further, let us denote
by U and W the 2× 2-block diagonal matrices with the diagonal block entries
un and wn, respectively, i.e.

U =
⊕
n∈Z

un and W =
⊕
n∈Z

wn.

Then U is a partial isometry and we have

V = UW = U
√

W
√

W,

where
√

W is the square root of the positive operator W .
Given any λ ∈ ρ(D0), we introduce the Birman–Schwinger operator

K(λ) :=
√

W (D0 − λ)−1 U
√

W (3.1)

and recall the conventional Birman–Schwinger principle

λ ∈ σ(DV ) ⇐⇒ −1 ∈ σ(K(λ)) (3.2)

which can be easily justified by usual arguments if, for example, V is bounded.
The next lemma resembles a one-sided version of the Birman–Schwinger

principle extended to possibly embedded eigenvalues. The strategy of the proof
we provide below is inspired by the ones of analogous results in [14,16,18,24].
We recall the notation H = �2(Z, C2).
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Lemma 2. Let V ∈ �1
(
Z, C2×2

)
and let λ ∈ σ(D0) \ {±m,±√

m2 + 4} be such
that DV ψ = λψ for some ψ ∈ H. Then φ :=

√
Wψ ∈ H and, for all ϕ ∈ H,

we have

lim
ε→0+

(ϕ,K(λ + iε)φ)H = −(ϕ, φ)H. (3.3)

Proof. It is not difficult to check that

‖
√

W‖H→H ≤
√

‖V ‖1.
Hence φ =

√
Wψ ∈ H.

Let ϕ ∈ H be fixed and ε > 0 be arbitrary. Then λ + iε /∈ σ(D0) and we
have(

ϕ,K(λ + iε)φ
)
H

=
(
ϕ,

√
W (D0 − λ − iε)−1V ψ

)
H

=
(
ϕ,

√
W (D0 − λ − iε)−1

(−(D0 − λ − iε)ψ − iεψ
))

H

= −(ϕ, φ
)
H

− iε
(
ϕ,

√
W (D0 − λ − iε)−1ψ

)
H

.

Further, denoting M(ε) :=
√

W (D0 − λ − iε)−1 and employing the Cauchy–
Schwarz inequality, we observe∣∣∣(ϕ,

√
W (D0 − λ − iε)−1ψ

)
H

∣∣∣ ≤ ‖ϕ‖H ‖M(ε)‖ ‖ψ‖H .

In the remaining part of the proof, we show that ε‖M(ε)‖ → 0 as ε → 0+ from
which the claim will follow. Let k = k(ε) be the unique point inside the unit
disk corresponding to λ+iε via (1.13), where λ is replaced by λ+iε. Applying
Lemma 1, we get the estimate

∣∣k − k−1
∣∣2∑

i∈Z

|Ti(k)|2HS =
∣∣k − k−1

∣∣2
(

|T0(k)|2HS + 2
∞∑

i=1

|Ti(k)|2HS

)

≤ (|λ + iε − m| + |λ + iε + m|)2
(

1 + 2
∞∑

i=1

|k|2i−1

)

≤ 2
1 − |k|2

(|λ + iε − m| + |λ + iε + m|)2.
Therefore,

‖M(ε)‖2 ≤ ‖M(ε)‖2HS =
∑
i∈Z

∑
j∈Z

∣∣√wiTj−i(k)
∣∣2
HS

≤
∑
i∈Z

∑
j∈Z

∣∣√wi

∣∣2∣∣Tj−i(k)
∣∣2
HS

=
∑
i∈Z

|υi|
∑
j∈Z

∣∣Tj(k)
∣∣2
HS

≤ 2
|k − k−1|2

‖V ‖1
1 − |k|2

(|λ + iε − m| + |λ + iε + m|)2.
For λ ∈ (−√

m2 + 4,−m) ∪ (m,
√

m2 + 4), elementary calculations show that
1

|k − k−1|2
1

1 − |k|2 = O(ε−1) as ε → 0+.

Hence, ε‖M(ε)‖ decays at least as O(ε1/2) for ε → 0+. �
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4. Proofs

4.1. Proof of Theorem 1

First we consider the case λ /∈ [−√
m2 + 4,−m] ∪ [m,

√
m2 + 4]. Let k ∈ C

denote the point inside the punctured unit disk determined by λ via (1.13).
For V ∈ �1

(
Z, C2×2

)
, the Birman–Schwinger operator K(λ) is Hilbert–

Schmidt. To estimate its Hilbert–Schmidt norm, we use the general inequality

‖ABC‖HS ≤ ‖A‖‖B‖HS‖C‖,

which holds true for any Hilbert–Schmidt operator B and bounded operators
A,C; see, e.g. [20, Prop. IV.2.3]. Moreover, using that |Cj(k)| ≤ 1 and∣∣k − k−1

∣∣2 =
∣∣λ2 − m2

∣∣ ∣∣λ2 − m2 − 4
∣∣

by (1.13), in Lemma 1, we obtain
∣∣Ti(k)

∣∣2
HS

≤ (|λ − m| + |λ + m|)2
|λ2 − m2 − 4||λ2 − m2| .

Now, we may estimate the Hilbert–Schmidt norm of K(λ) as follows:

‖K(λ)‖2HS =
∑
i∈Z

∑
j∈Z

∣∣√wiTj−i(k)uj
√

wj

∣∣2
HS

≤
∑
i∈Z

∑
j∈Z

|√wi|2 |Tj−i(k)|2HS

∣∣√wj

∣∣2

=
∑
i∈Z

∑
j∈Z

|υi| |Tj−i(k)|2HS |υj |

≤ ‖V ‖21
(|λ − m| + |λ + m|)2

|λ2 − m2 − 4||λ2 − m2| .

Therefore,

‖K(λ)‖ ≤ ‖K(λ)‖HS ≤ ‖V ‖1 |λ − m| + |λ + m|√|λ2 − m2 − 4||λ2 − m2| . (4.1)

and the Birman–Schwinger principle (3.2) implies that λ cannot belong to the
point spectrum of HV unless it holds that

|λ2 − m2||λ2 − m2 − 4| ≤ ‖V ‖21(|λ − m| + |λ + m|)2. (4.2)

Now we consider the case λ ∈ (−√
m2 + 4,−m) ∪ (m,

√
m2 + 4). Let

ε > 0 be arbitrary. Since λ + iε /∈ [−√
m2 + 4,−m] ∪ [m,

√
m2 + 4], we can

apply (4.1) and deduce

‖K(λ + iε)‖ ≤ ‖V ‖1 |λ + iε − m| + |λ + iε + m|√|(λ + iε)2 − m2 − 4||(λ + iε)2 − m2| . (4.3)

On the other hand, if λ ∈ σp(DV ) with an eigenvector ψ ∈ H, then we can
invoke Lemma 2 and apply (3.3) with ϕ = φ = W 1/2ψ. Taking the limit ε →
0+, we thus obtain

‖ϕ‖2 ≤ lim inf
ε→0+

‖K(λ + iε)‖‖ϕ‖2 . (4.4)
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However, it is not difficult to see that ϕ = W 1/2ψ �= 0 (otherwise, λ would be
an eigenvalue of D0 which is impossible). Hence, we deduce from (4.4) that
lim infε→0+ ‖K(λ + iε)‖ ≥ 1. Therefore, letting ε → 0+ in (4.3), we conclude

1 ≤ lim inf
ε→0+

‖K(λ + iε)‖ ≤ ‖V ‖1 |λ − m| + |λ + m|√|λ2 − m2 − 4||λ2 − m2| .

i.e. also embedded eigenvalues must obey the estimate (4.2).
Finally, since the endpoints λ ∈ {±√

m2 + 4,±m} are involved in the set
on the right-hand side of (1.8), the proof is completed. �

4.2. Proof of Theorem 2

The proof is based on the following special variant of Stein’s complex interpo-
lation theorem, see [29, Thm. 1].

Lemma 3 (Stein’s interpolation). Let Tz : �2(Z; C2×2) → �2(Z; C2×2) be a
family of operators analytic in the strip 0 < �z < 1 and continuous and
uniformly bounded in its closure 0 ≤ �z ≤ 1. Suppose further that there exist
constants C0 and C1 such that

‖Tiy‖ ≤ C0 and ‖T1+iy‖ ≤ C1,

for all y ∈ R. Then, for any θ ∈ [0, 1], one has

‖Tθ‖ ≤ C1−θ
0 Cθ

1 .

Proof of Theorem 2. Let λ /∈ σ(D0) be fixed. If p = ∞, one has the trivial
estimate for the Birman–Schwinger operator

‖K(λ)‖ ≤ ‖
√

W‖‖(D0 − λ)−1‖‖
√

W‖ ≤ ‖V ‖∞
dist(λ, σ(D0))

.

Then (3.2) implies (1.10) in the particular case p = ∞.
For the case 1 < p < ∞, we consider the operator family

Tz := W zp/2(D0 − λ)−1W zp/2,

for z ∈ C with 0 ≤ �z ≤ 1. Note that Tz is continuous in the closed strip
0 ≤ �z ≤ 1 and analytic in its interior. Moreover, Tz is uniformly bounded for
0 ≤ �z ≤ 1 as one has

sup
0≤�z≤1

‖Tz‖ ≤ max(1, ‖V ‖p
∞)

dist(λ, σ(D0))
.

Further, since V ∈ �p(Z, C2×2) by the hypothesis, we can apply (4.1) to get

‖T1+iy‖ ≤ ‖W p/2(D0 − λ)−1W p/2‖ ≤ |λ − m| + |λ + m|√|λ2 − m2| |λ2 − m2 − 4| ‖V ‖p
p,

for any y ∈ R. Moreover, for all y ∈ R, we have also the estimate

‖Tiy‖ ≤ 1
dist(λ, σ(D0))

.



2206 B. Cassano et al. Ann. Henri Poincaré

Thus, one can apply Theorem 3 with θ = 1/p which implies

‖K(λ)‖ ≤ ‖T1/p‖ ≤ (|λ − m| + |λ + m|) 1
p ‖V ‖p

|λ2 − m2| 1
2p |λ2 − m2 − 4| 1

2p

1

(dist(λ, σ(D0)))1− 1
p

and the claim immediately follows from the Birman–Schwinger princi-
ple (3.2). �

4.3. Proof of Theorem 3

In the proof of Theorem 3, will need a discrete version of Young’s inequality.

Lemma 4 (Young’s inequality). Let p, q, r ≥ 1 be such that

1
p

+
1
q

+
1
r

= 2.

Then, for any f ∈ �p(Z), g ∈ �q(Z), and h ∈ �r(Z), one has∑
i,j∈Z

|fi||gj−i||hj | ≤ ‖f‖p‖g‖q‖h‖r. (4.5)

Moreover, the inequality (4.5) is sharp.

Young’s inequality holds true in a very abstract setting see, e.g.[22,
Thm. 20.18], which implies Lemma 4 as a particular case. Differently from
the continuous setting, cf.[27, Sec. 4.2], the optimal constant in the inequality
(4.5) is 1, indeed. One can prove the discrete variant of Young’ inequality by
mimicking the standard arguments used typically for the proof of the continu-
ous variant of the inequality. We provide this proof of Theorem 4 for reader’s
convenience.

Proof of Lemma 4. Let f ∈ �p(Z), g ∈ �q(Z) h ∈ �r(Z), for p, q, r ≥ 1 such
that

1
p

+
1
q

+
1
r

= 2.

Observe that ∑
i,j∈Z

|fi||gj−i||hj | = ‖ϕχψ‖1,

for

ϕi,j := |fi|p(1− 1
r )|gj−i|q(1− 1

r ),

χi,j := |fi|p(1− 1
q )|hj |r(1− 1

q ),

ψi,j := |gj−i|q(1− 1
p )|hj |r(1− 1

p ).

Moreover, ϕ ∈ �u(Z2), χ ∈ �v(Z2), ϕ ∈ �w(Z2), where u, v, w ≥ 1 are such
that

1
u

+
1
r

= 1,
1
v

+
1
q

= 1,
1
w

+
1
p

= 1.
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By the assumptions, the indices u, v, w fulfill
1
u

+
1
v

+
1
w

= 1.

and the application of (generalized) Hölder’s inequality yields∑
i,j∈Z

|fi||gj−i||hj | ≤ ‖ϕ‖u‖χ‖v‖ψ‖w

=
(‖f‖p

p‖g‖q
q

)1− 1
r
(‖f‖p

p‖h‖r
r

)1− 1
q
(‖g‖q

q‖h‖r
r

)1− 1
p

= ‖f‖p‖g‖q‖h‖r.

The constant 1 on the right-hand side of (4.5) is optimal, indeed the
equality is attained for f = {fn}n∈Z, g = {gn}n∈Z, and h = {hn}n∈Z with
entries

fn = f0δn,0, gn = g0δn,0, and hn = h0δn,0,

for any f0, g0, h0 ∈ C. �

Proof of Theorem 3. Assume λ ∈ σ(DV )\σ(D0) and k ∈ C, 0 < |k| < 1 is such
that (1.13) holds. The main idea of the proof relies again on the implication
from the Birman–Schwinger principle:

λ ∈ σ(DV ) \ σ(D0) =⇒ ‖K(λ)‖ ≥ 1.

The case V ∈ �1(Z, C2×2): Using the definition of the Birman–Schwinger
operator (3.1), we may estimate

‖K(λ)φ‖22 =
∑
i∈Z

∣∣∣∣
∑
j∈Z

Ki,j(λ)φj

∣∣∣∣
2

2

≤
∑
i∈Z

⎛
⎝∑

j∈Z

|√wi| |Tj−i(k)| ∣∣√wj

∣∣ |φj |2
⎞
⎠

2

≤ sup
n∈Z

|Tn(k)|2
∑
i∈Z

|υi|
⎛
⎝∑

j∈Z

∣∣√wj

∣∣ |φj |2
⎞
⎠

2

≤ sup
n∈Z

|Tn(k)|2‖V ‖21‖φ‖22,

for φ ∈ �2(Z, C2). Here | · |2 stands for the Euclidian norm on C
2. Moreover, it

follows from (2.2) that

|Ti(k)| ≤ |T1(k)|,
for all i �= 0. Consequently, we get

‖K(λ)‖ ≤ max{|T0(k)|, |T1(k)|}‖V ‖1 (4.6)

and the Birman–Schwinger principle implies the claim for the case p = 1.
The case V ∈ �p(Z, C2×2) with p > 1: Making use of (3.1), one obtains,

for φ, ψ ∈ �2(Z, C2), the estimate

| (φ,K(λ)ψ)�2 | ≤
∑
i,j∈Z

|√wi| |φi|2 |Tj−i(k)| ∣∣√wj

∣∣ |ψj |2,
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The right-hand side is in a suitable form for the application of discrete Young’s
inequality. Thus, applying (4.5) with p and r replaced by 2p/(p + 1) and q the
Hölder dual index to p, i.e. q = p/(p − 1), one arrives at the estimate

| (φ, K(λ)ψ)�2 | ≤
⎡
⎣∑

i,j∈Z

(|√wi| |φi|2)
2p

p+1

⎤
⎦

p+1
2p

‖|T (k)|‖q

⎡
⎣∑

i,j∈Z

(|√wi| |φi|2)
2p

p+1

⎤
⎦

p+1
2p

where |T (k)| stands for the doubly infinite sequence with entries |Ti(k)|, i ∈ Z.
Noticing that, by Hölder’s inequality,⎡

⎣∑
i,j∈Z

(|√wi| |φi|2)
2p

p+1

⎤
⎦

p+1
2p

≤
∥∥∥√W

∥∥∥
2p

‖φ‖2 = ‖V ‖1/2
p ‖φ‖2

and

‖|T (k)|‖q =

(∑
i∈Z

|Ti(k)|q
)1/q

=

(
|T0(k)|q + 2|T1(k)|q

∞∑
i=0

|k|qi

)1/q

=
(

|T0(k)|q +
2

1 − |k|q |T1(k)|q
)1/q

,

where we have used (2.2), we obtain

| (φ,K(λ)ψ)�2 | ≤
(

|T0(k)|q +
2

1 − |k|q |T1(k)|q
)1/q

‖V ‖p‖φ‖2‖ψ‖2,

for any φ, ψ ∈ �2(Z, C2). In other words, we have the estimate

‖K(λ)‖ ≤
(

|T0(k)|q +
2

1 − |k|q |T1(k)|q
)1/q

‖V ‖p

and the Birman–Schwinger principle implies the claim for the case p > 1. �
4.4. Proof of Theorem 4

The proof is completely analogous to that of Theorem 2. It follows from the
application of Stein’s interpolation theorem using this time the inequality (4.6)
which plays the same role as the inequality (4.1) in the proof of Theorem 2.

5. Optimality for �1-potentials

In [25], a similar approach as in the proof of Theorem 1 was used to deduce a
spectral enclosure for the discrete Schrödinger operator with an �1-potential.
In this case, the obtained spectral enclosure turned out to be optimal in the
following sense: every point from the boundary curve of the spectral enclosure
except possible intersections with the spectrum of the unperturbed operator is
an eigenvalue of some discrete Schrödinger operator with particularly chosen
�1-potential. It means that the obtained spectral enclosure is, in a sense, the
best possible since it cannot be further squeezed.

On the contrary, the spectral enclosure of Theorem 1 for the discrete
Dirac operators with �1-potentials is not optimal in the aforementioned sense.
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Concerning the optimality of the improved spectral enclosure of Theorem 3 in
the case of �1-potential we were not able to prove it in its full generality as
specified above. In other words, using the notation of Theorem 3 and denoting
the boundary curve as

ΓQ := {λ ∈ C | h∞(λ,m)Q = 1},

for a fixed parameter Q > 0, we do not have a proof demonstrating that every
point λ ∈ ΓQ \ σ(D0) is an eigenvalue of some DV with ‖V ‖1 = Q. However,
we can show a sort of a partial optimality. It means that we can show that at
least some points from ΓQ are eigenvalues of DV with a particularly chosen
potential V ∈ �1(Z, C2×2). These particular points have to be additionally
included in the region

D := {λ ∈ C | |T0(k)| ≥ |T1(k)| for k ∈ C, 0 < |k| < 1, such that (1.13) holds},

i.e. in the region where the diagonal dominance of the resolvent operator (D0−
λ)−1 actually happens. In the proof below, we construct explicitly a potential
V ∈ �1(Z, C2×2), ‖V ‖1 = Q, such that λ ∈ ΓQ ∩ D not belonging to σ(D0) is
an eigenvalue of DV .

Theorem 5. For every Q > 0 and λ ∈ ΓQ ∩ D \ σ(D0), there exists V ∈
�1(Z, C2×2) with ‖V ‖1 = Q such that

λ ∈ σp(DV ).

Proof. Let Q > 0 and λ ∈ ΓQ ∩ D \ σ(D0) be fixed. Denote by k the unique
point such that 0 < |k| < 1 and related to λ by (1.13).

First, note that since λ ∈ ΓQ ∩ D \ σ(D0) one has h∞(λ,m) = |T0(k)| =
Q−1. We define the potential sequence V := {υn}n∈Z entry-wise as follows:

υn := −δn,0 Q2 T ∗
0 (k).

Then clearly

‖V ‖1 = |υ0| = Q2|T0(k)| = Q.

Next, observe that the eigenvalue equation DV ψ = λψ has a nontriv-
ial solution ψ ∈ �2(Z, C2) if and only if there exists a nontrivial vector
φ ∈ �2(Z, C2) such that

φ = −V (D0 − λ)−1φ. (5.1)

A nontrivial solution φ ∈ �2(Z, C2) of Eq. (5.1) can be chosen so that φn = 0
for all n �= 0 and φ0 ∈ C

2 is a non-trivial solution of the linear system

(1 + υ0T0(k)) φ0 = 0

which exists since the matrix 1 + υ0T0(k) is singular due to the particular
choice of the potential V . �

Remark 7. The construction in Theorem 5 is inspired by [9] where a sharp
spectral enclosure was obtained for the one-dimensional Dirac operator on
the real line. In the continuous setting, the free resolvent has a diagonally
dominant kernel for every spectral parameter λ from the resolvent set and
thanks to this δ–potentials can serve as an example for proving optimality
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of the whole spectral enclosure. The analysis of the discrete setting is not
completely analogous, since diagonal dominance of the resolvent only happens
in the subdomain D � C (see Remark 6).

A comparison of the spectral enclosures from Theorems 1 and 3 for the
case of �1-potentials is numerically illustrated in Fig. 3 of “Appendix B”. This
Figure also shows the parts of the boundary curves of the improved spec-
tral bound of Theorem 3 in the case of �1-potentials that can be reached by
an eigenvalue of a concretely chosen discrete Dirac operator as discussed in
Theorem 5.
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PON: progetto AIM1892920-attività 2, linea 2.1—CUP H95G18000150006
ATT2. The research of D. K. was partially supported by the GACR Grant
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Appendix: Illustrative and Comparison Plots

A: Plots of the Spectral Enclosures from Theorem 2

The spectral enclosure for the �1-potentials from Theorem 1 was displayed
already in the introduction in Fig. 1. Similarly, we provide several plots illus-
trating the spectral enclosures from Theorem 2 in Fig. 2 below. Namely, the
plots show the boundary curves given by the equation

gp(λ,m)‖V ‖p = 1,

for m = 1, ‖V ‖p = j
4 , j ∈ {1, 2, . . . , 7}, and four choices of p ∈ {3/2, 2, 3, 5}.

B: Comparison Plots for the �1-Bounds of Theorems 1 and 3 and Optimality

Next set of plots show the boundary curve of the spectral enclosure from
Theorem 1 together with the corresponding improved result of Theorem 3 for a
comparison. Moreover, the boundary curve of the improved spectral enclosure
is made in two colors distinguishing the parts that are eigenvalues of some
discrete Dirac operators as discussed in Theorem 5.

More concretely, in Fig. 3, we plot the boundary curve of Theorem 1 by
blue dashed lines for m = 1/2 and several choices of ‖V ‖1. At the same time,
we add a plot of the curve defined by the equation

max{|T0(k)|, |T1(k)|}‖V ‖1 = 1,
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(a)

(b)

(c)

Figure 3. Boundary curves for the spectral enclosures The-
orem 1 (dashed blue lines) compared to the corresponding
result of Theorem 3 (solid red/green lines) with m = 1/2.
Green color demonstrates the partial optimality in the sense
of Theorem 5 (color figure online)

by red or green solid lines for the same choice of parameters. The parts of the
curve made in green belong to the set D and hence these points are eigenvalues
of some discrete Dirac operators with �1-potentials. The remaining parts are
made in red.



Vol. 21 (2020) Location of Eigenvalues of Non-self-adjoint 2213

(a
)

(b
)

(c
)

(d
)

F
ig
u
r
e
4
.

B
ou

nd
ar

y
cu

rv
es

of
sp

ec
tr

al
en

cl
os

ur
es

of
T

he
or

em
2

(s
ol

id
ye

llo
w

lin
es

),
T

he
or

em
3

(r
ed

da
sh

ed
lin

es
),

an
d

C
or

ol
la

ry
2

(b
lu

e
do

tt
ed

lin
es

)
fo

r
m

=
1,

‖V
‖ p

=
0.

7,
an

d
fo

ur
ch

oi
ce

s
of

th
e

pa
ra

m
et

er
p

>
1

(c
ol

or
fig

ur
e

on
lin

e)



2214 B. Cassano et al. Ann. Henri Poincaré

Figure 5. The blue subregion of the unit disk indicates the
set of k’s for which |T0(k)| < |T1(k)| when m = 1/8

C: Comparison Plots for the �p -Bounds from Theorems 2, 3, and Corollary 2

In the next plots, we compare the spectral enclosures given in Theorems 2 and 3
for �p-potentials with p > 1. As an extra, we add also the spectral enclosure
of Corollary 2 into these plots. In this numerical comparison, we exclude the
result of Theorem 4 due to its complexity and non-reliability of the numerical
computations. Note that it is clear from the proofs that Theorem 4 is an
improvement of Theorem 2.

The comparison is made in plots in Fig. 4 where the boundary curve
of the spectral enclosure from Theorem 2 is made in solid yellow lines, from
Theorem 3 in red dashed lines, and from Corollary 2 in blue dotted lines for
m = 1, ‖V ‖p = 0.7, and four choices of the parameter p ∈ {3/2, 2, 3, 5}.

It is by no means evident whether one of the spectral enclosures of Theo-
rems 2 and 3 is better than the other. However, numerical experiments indicate
that none is better than the other, i.e. none is a subset of the other, in general.

D: A Plot for Remark 6

Finally, as an illustration for Remark 6, Fig. 5 shows for what k’s within the
unit disk the norm of the diagonal element T0(k) of the resolvent (2.1) is not
dominant.
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