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Homogenization for Generalized Langevin
Equations with Applications to Anomalous
Diffusion
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Abstract. We study homogenization for a class of generalized Langevin
equations (GLEs) with state-dependent coefficients and exhibiting multi-
ple time scales. In addition to the small mass limit, we focus on homog-
enization limits, which involve taking to zero the inertial time scale and,
possibly, some of the memory time scales and noise correlation time scales.
The latter are meaningful limits for a class of GLEs modeling anoma-
lous diffusion. We find that, in general, the limiting stochastic differential
equations for the slow degrees of freedom contain non-trivial drift correc-
tion terms and are driven by non-Markov noise processes. These results
follow from a general homogenization theorem stated and proven here.
We illustrate them using stochastic models of particle diffusion.
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1. Introduction

1.1. Motivation

Most of the mathematical models of diffusion phenomena use noise which is
white (i.e., uncorrelated) or Markovian [54]. The present paper is a step to-
ward removing this limitation. The diffusion models studied here are driven by
noises, belonging to a wide class of non-Markov processes. A standard exam-
ple of Markovian noise is a multi-dimensional Ornstein–Uhlenbeck process. An
important class of Gaussian stochastic processes is obtained by linear transfor-
mations of multi-dimensional Ornstein–Uhlenbeck processes. The covariance
(equal to correlation in the case of zero mean) of such a process is a linear
combination of exponentials decaying and possibly oscillating on different time
scales, and its spectral density (power spectrum) is a ratio of two semi-positive
defined polynomials [16]. In cases when the polynomial in the denominator has
degenerate zeros, the covariance contains products of exponentials and poly-
nomials in time. This is a very general class of processes—every stationary
Gaussian process whose covariance is a Bohl function (see Sect. 2) can be ob-
tained as a linear transformation of an Ornstein–Uhlenbeck process in some
(finite) dimension. In general, these processes are not Markov.

Let us mention here the seminal result by Khalfin [33], who showed,
quite generally that in any system with energy spectrum bounded from below
(which is a necessary condition for the physical stability), correlations must
decay no faster than according to a power-law. To this day, this result provides
inspirations and motivations for further studies in the context of thermalization
[71], cooling of atoms in photon reservoirs [41], decay of metastable states as
monitored by luminescence [64], or quantum anti-Zeno effect (c.f. [42,60]),
to name a few examples. Khalfin’s result further motivates studying systems
with non-Markovian noise, as most natural examples of strongly correlated
processes do not satisfy Markov property.

While the noise processes studied here have exponentially decaying co-
variances, their class is very rich and they may be useful in approximating
strongly correlated noises on time intervals, relevant for studied phenomena
[68]. In addition, as discussed in more detail later, generalization of the method
applied here may lead to a representation of a class of noises whose covariances
decay as powers (see Remark 3.7). Also, the representation of spectral density
of the noise processes as ratio of two polynomials is convenient in applications,
in particular for solving the problem of predicting (in the least mean square
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sense) a colored noise process given observations on a finite segment of the
past or on the full past [16].

1.2. Definitions and Models

We consider the following stochastic model for a particle (for instance, Brow-
nian particle or a tagged tracer particle) interacting with the environment (for
instance, a heat bath or a viscous fluid). Let xt ∈ R

d denote the particle’s
position, where t ≥ 0 denotes time and d is a positive integer. The evolution of
the particle’s velocity, vt := ẋt ∈ R

d, is described by the following generalized
Langevin equation (GLE):

mdvt = F 0 (t,xt,vt,ηt) dt + F 1

(
t, {xs,vs}s∈[0,t], ξt

)
dt + F e(t,xt)dt. (1.1)

In the above, m > 0 is the particle’s mass, ηt is a k-dimensional Gaussian white
noise satisfying E[ηt] = 0 and E[ηtη

∗
s] = δ(t − s)I, and ξt is a colored noise

process independent of ηt. Here and throughout the paper, the superscript
∗ denotes transposition of matrices or vectors, I denotes identity matrix of
appropriate dimension, E denotes expectation, and R

+ := [0,∞). The initial
data are random variables, x0 = x, v0 = v, independent of {ξt, t ∈ R

+} and
{ηt, t ∈ R

+}.
The three terms on the right-hand side of (1.1) model forces of different

physical natures acting on the particle.

(i) F e is an external force field, which may be conservative (potential) or
not.

(ii) F 0 is a Markovian force of the form

F 0 (t,xt,vt,ηt) dt = −γ0(t,xt)vtdt + σ0(t,xt)dW
(k)
t , (1.2)

containing an instantaneous damping term and a multiplicative white
noise term. The damping and noise coefficients, γ0 : R+ × R

d → R
d×d

and σ0 : R+×R
d → R

d×k, may depend on the particle’s position and on
time. W

(k)
t denotes a k-dimensional Wiener process—the time integral

of the white noise ηt.
(iii) F 1 is a non-Markovian force of the form

F 1

(
t, {xs,vs}s∈[0,t], ξt

)

= −g(t,xt)
(∫ t

0

κ(t − s)h(s,xs)vsds

)
+ σ(t,xt)ξt, (1.3)

containing a non-instantaneous damping term, describing the delayed
drag effects by the environment on the particle, and a multiplicative col-
ored noise term. The coefficients, g : R+ × R

d → R
d×q, h : R+ × R

d →
R

q×d and σ : R
+ × R

d → R
d×r, depend in general on the particle’s

position and on time. In the above, q and r are positive integers, and
the memory function κ : R → R

q×q is a real-valued function that decays
sufficiently fast at infinities. ξt ∈ R

r is a mean-zero stationary Gaussian
vector process, to be defined in detail later. The statistical properties
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of the process ξt are completely determined by its (matrix-valued) co-
variance function,

R(t) := E[ξtξ
∗
0] = R∗(−t) ∈ R

r×r, (1.4)

or equivalently, by its spectral density, S(ω), i.e., the Fourier transform
of R(t) defined as:

S(ω) =
∫ ∞

−∞
R(t)e−iωtdt. (1.5)

For simplicity, we have omitted other forces such as the Basset force [25]
from Eq. (1.1). Note that F 0 and F 1 describe two types of forces associated
with different physical mechanisms. Of particular interest is when the noise
term in F 0 and F 1 models environments of different nature (passive bath and
active bath, respectively [14]) that the particle interacts with.

As the name itself suggests, GLEs are generalized versions of the Mar-
kovian Langevin equations, frequently employed to model physical systems.
A basic form of the GLEs was first introduced by Mori in [53] and subse-
quently used in numerous statistical physics models [36,72,76]. The studies
of GLEs have attracted increasing interest in recent years. We refer to, for
instance, [24,27,39,46,47,50,69,70,75] for various applications of GLEs and
[21,40,49,56] for their asymptotic analysis. The main merit of GLEs from
modeling point of view is that they take into account the effects of memory
and the colored nature of noise on the dynamics of the system.

Remark 1.1. In general, there need not be any relation between κ(t) and R(t),
or any relation between the damping coefficients and the noise coefficients ap-
pearing in the formula for F 0 and F 1. A particular but important case that we
will revisit often in this paper is the case when a fluctuation-dissipation rela-
tion holds. In this case, γ0 is proportional to σ0σ

∗
0, h = g∗, g is proportional

to σ and (without loss of generality1) R(t) = κ(t). Studies of microscopic
Hamiltonian models for open classical systems lead to GLEs of the form (1.1)
satisfying the above fluctuation-dissipation relation (see, for instance, Appen-
dix A of [43] or [11]). On another note, GLEs of the form (1.1) are extended
versions of the ones studied in our previous work [43]—here the GLEs are gen-
eralized to include a Markovian force, in addition to the non-Markovian one,
as well as explicit time dependence in the coefficients.

As a motivation, we now provide and elaborate on examples of systems
that can be modeled by our GLEs.

An important type of diffusion, which has been observed in many physical
systems, from charge transport in amorphous materials to intracellular particle
motion in cytoplasm of living cells [63], is ballistic diffusion. It is a subclass of
anomalous diffusions and is characterized by the property that the particle’s
long-time mean-square displacement grows quadratically in time—in contrast

1The factor kBT , where T is the absolute temperature and kB denotes the Boltzmann
constant, is here set to 1. In general, it can be absorbed into either one of the coefficients g ,
h or σ .
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to linear growth in usual diffusion. There are many different theoretical models
of anomalous diffusion with diverse properties, coming from different physical
assumptions; see [51] for a comprehensive survey. In the following, we provide
two GLE models that are employed to study such phenomena. Their properties
will be studied in Sect. 2, as an application of the results proven here.

Example 1. Two GLE models for anomalous diffusion of a free Brownian par-
ticle in a heat bath. A large class of models for diffusive systems is described
by the system of equations (for simplicity, we restrict to one dimension):

dxt = vtdt, (1.6)

mdvt = −
(∫ t

0

κ(t − s)vsds

)
dt + ξtdt, (1.7)

where xt, vt ∈ R are the position and velocity of the particle, κ(t) is called
the memory function, and ξt is a mean-zero stationary Gaussian process.
Two particular GLE models are described by (1.6) and (1.7), with:
(M1) memory function of the bi-exponential form:

κ(t) =
Γ2

2(Γ2e
−Γ2|t| − Γ1e

−Γ1|t|)
2(Γ2

2 − Γ2
1)

, (1.8)

where the parameters satisfy Γ2 > Γ1 > 0, and ξt has the covariance
function R(t) = κ(t) and thus the spectral density,

S(ω) =
Γ2

2ω
2

(ω2 + Γ2
1)(ω2 + Γ2

2)
. (1.9)

This model is similar to the one first introduced and studied in [3]. The
noise with the above covariance function can be realized by the differ-
ence between two Ornstein–Uhlenbeck processes, with different damping
rates, driven by the same white noise. Various properties as well as ap-
plications of GLEs of the form (1.6) and (1.7) were studied in [2,3,69].

(M2) memory function of the form:

κ(t) =
1
2
(δ(t) − Γ1e

−Γ1|t|), (1.10)

where Γ1 > 0, and ξt has the covariance function R(t) = κ(t) and thus
the spectral density,

S(ω) =
ω2

ω2 + Γ2
1

. (1.11)

This model can be obtained from the one in (M1) by sending Γ2 → ∞
in the formula for κ(t) in (1.8).
Observe that the spectral densities in both models share the same as-
ymptotic behavior near ω = 0, i.e., S(ω) ∼ ω2 as ω → 0, contributing to
the enhanced diffusion (super-diffusion) of the particle with mean-square
displacement growing as t2 as t → ∞ [67,69]. See Proposition 3.5 for a
precise argument.
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Other examples of systems that can be modeled by our GLEs are mul-
tiparticle systems with hydrodynamic interaction [17], active matter systems
[66], among others. Although our main results are applicable to these systems,
we will not pursue the study of these systems here.

1.3. Goals, Organization, and Summary of Results of the Paper

Goals of the Paper. We aim to derive homogenized models for a general class
of GLEs (see Sect. 3), containing the examples (M1) and (M2) as special
cases (see Corollaries 2.1 and 2.2). This will allow us to gain insights into
the stochastic dynamics of such systems, including many systems that exhibit
anomalous diffusion (see discussion in the paragraph before Example 1)—
this is, in fact, the main motivation of the present paper. To the best of our
knowledge, this is the first work that studies homogenization for GLE models
describing anomalous diffusion.

Given a GLE system, it is often desirable to work with simpler, reduced
models that capture the essential features of its dynamics. To obtain satisfac-
tory and optimal models, one needs to take into account the trade-off between
the simplicity and accuracy of the reduced models sought after. Indeed, one
may find that a reduced model, while simplified, fails to give a physically cor-
rect model for describing a system of interest [65]. Two successful reductions
were carried out in [29] for the case F 1 = 0 and in [43] for the case F 0 = 0.

One of our main goals in this paper is to devise and study new homog-
enization procedures that yield reduced models retaining essential features of
a more general class of models. This program is of importance for identifica-
tion, parameter inference and uncertainty quantification of stochastic systems
[26,39,46,62] arising in the studies of anomalous diffusion [50,52], climate mod-
eling [23,48] and molecular systems [10], among others. In particular, classical
homogenization and averaging were performed within the Mori–Zwanzig for-
malism in [23]. There is increasing amount of effort striving to implement
this or related programs, starting from microscopic models [61], using various
techniques [7,19,20,27,58], for different systems of interest in the literature.
The derived effective SDE models will be of particular interest for modelers of
anomalous diffusion (see [22] for deterministic homogenization of anomalous-
diffusive systems).

Organization of the Paper. The paper is organized as follows. We first present
the application of the results obtained in the later sections (Sects. 5 and 6) to
study homogenization of generalized versions of the one-dimensional models
(M1) and (M2) from Example 1 in Sect. 2. Since these results are easier to state
and require minimal notation to understand, we have chosen to present them as
early as possible to demonstrate the value of our study to application-oriented
readers. The later sections study an extended, multi-dimensional version of the
GLEs in Sect. 2. In Sect. 3, we introduce the GLEs to be studied. In Sect. 4,
we discuss various ways of homogenizing GLEs. Following this discussion, we
study the small mass limit of the GLEs in Sect. 5. We introduce and study
novel homogenization procedures for a class of GLEs in Sect. 6. We state
conclusions and make final remarks in Sect. 7. Relevant technical details and
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supplementary materials are provided in the appendix. In particular, we state
a homogenization theorem for a general class of SDEs with state-dependent
coefficients in Appendix A. The proof of this theorem is given in Appendix B.

Summary of the Main Results. For reader’s convenience, below we list (not in
exactly the same order as the results appear in the paper) and summarize the
main results obtained in the paper.

• The first main result is Theorem 5.4. It studies the small mass limit of the
GLE described by (5.1) and (5.2). It states that the position process con-
verges, in a strong pathwise sense, to a component of a higher-dimensional
process satisfying an Itô SDE. The SDE contains non-trivial drift correc-
tion terms. We stress that, while being a component of a Markov process,
the limiting position process itself is not Markov. This is in contrast to
the nature of limiting processes obtained in earlier works, the difference
which holds interesting implications from a physical point of view [recall
the discussion after Eq. (1.5)]. Therefore, Theorem 5.4 constitutes a novel
result, both mathematically and physically.

• The second main result is Theorem 6.7. It describes the homogenized
behavior of a family of GLEs [Eqs. (6.16) and (6.17)], parametrized by
ε > 0, in the limit as ε → 0. This limit is equivalent to the limit in
which the inertial time scale, some of the memory time scales and some
of the noise correlation time scales in the pre-limit system, tend to zero
at the same rate. As in Theorem 5.4, the result here states that the
position process converges, in a strong pathwise sense, to a component
of a higher-dimensional process satisfying an Itô SDE which contains
non-trivial drift correction terms. Again, the limiting position process is
non-Markov. However, the structure of the SDE is rather different from
the one obtained in Theorem 5.4. As discussed later, this result holds
interesting consequences for systems exhibiting anomalous diffusion.

• The third and fourth main results are Corollaries 2.1 and 2.2. These re-
sults specialize the earlier ones to one-dimensional GLE models, which
are generalizations of (M1) and (M2), and follow from the earlier theo-
rems. They give explicit expressions for the drift correction terms present
in the limiting SDEs and therefore may be used directly for modeling and
simulation purposes. Furthermore, we show that, in the important case
where the fluctuation-dissipation relation (see Remark 1.1) holds, the two
corollaries are intimately connected. Recall that these results are going
to be presented first in Sect. 2.

• The last main result is Theorem A.6, on homogenization of a family of
parametrized SDEs whose coefficients are state-dependent. These SDEs
are variants of the ones studied in earlier works [4,6,29]. In comparison
with all the earlier studies, the state-dependent coefficients of the pre-
limit SDEs (A.3) and (A.4) may depend on the parameter ε > 0 (to be
taken to zero) explicitly. Therefore, this result is new and not simply a
minor generalization of earlier results. Moreover, it is important in the
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context of present paper and is needed here to study various homogeniza-
tion limits of GLEs, the importance of which is evident in the discussions
above, in the main paper.

2. Application to One-Dimensional GLE Models

We first study the small mass limit of a one-dimensional GLE, which is a
generalized version of the GLE in model (M2) of Example 1, modeling super-
diffusion of a particle in a heat bath. Our models are generalized in that the
coefficients of the GLEs are state-dependent. For simplicity, we are going to
omit the explicit time dependence in the damping and noise coefficients—but
not in the external force.

For t ∈ R
+, m > 0, let xt, vt ∈ R be the solutions to the equations:

dxt = vtdt, (2.1)

mdvt = −g(xt)
(∫ t

0

κ(t − s)h(xs)vsds

)
dt + σ(xt)ξtdt + Fe(t, xt)dt, (2.2)

where

κ(t) =
β2

2
(δ(t) − Γ1e

−Γ1|t|), (2.3)

where Γ1 > 0, and ξt is the mean-zero stationary Gaussian process with the
covariance function R(t) = κ(t) and spectral density,

S(ω) =
β2ω2

ω2 + Γ2
1

, (2.4)

The initial data (x, v) are random variables independent of ε and have finite
moments of all orders.

The following corollary describes the limiting SDE for the particle’s po-
sition obtained in the small mass limit of (2.1) and (2.2).

Corollary 2.1. Assume that for every y ∈ R, g(y), g′(y), h(y), h′(y), σ(y) are
bounded continuous functions in y, Fe(t, y) is bounded and continuous in t and
y, and all the listed functions have bounded y-derivatives. Then in the limit
m → 0, the particle’s position, xt ∈ R, satisfying (2.1) and (2.2), converges to
Xt, where Xt solves the following Itô SDE:

dXt =
2

β2gh
Fe(t,Xt)dt − 2

βh
Ytdt + S1(Xt)dt +

2σ

βgh
(Ztdt + dWt), (2.5)

dYt = −Γ1

βg
Fe(t,Xt)dt + S2(Xt)dt − Γ1σ

g
(dWt + Ztdt), (2.6)

dZt = −Γ1Ztdt − Γ1dWt, (2.7)

where

S1(X) =
2
β2

∂

∂X

(
1
gh

)
σ2

gh
, S2(X) = −Γ1

β

∂

∂X

(
1
g

)
σ2

gh
. (2.8)
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Moreover, if in addition g := φσ, where φ > 0, then the number of limiting
SDEs reduces from three to two:

dXt =
2

β2φ2

∂

∂X

(
1

σh

)
σ

h
dt +

2
φσhβ2

Fe(t,Xt)dt − 2
βφh

Uφ
t dt +

2
βφh

dWt,

(2.9)

dUφ
t = − Γ1

βφ2

∂

∂X

(
1
σ

)
σ

h
dt − Γ1

βσ
Fe(t,Xt)dt, (2.10)

where Uφ
t = φYt − Zt.

The convergence is in the sense that for every T > 0, supt∈[0,T ] |xt−Xt| →
0 in probability as m → 0.

Proof. We apply Theorem 5.4 by setting d = 1, d2 = d4 = 2, α1 = α3 = 0,
α2 = α4 = 1, γ0 = β2gh/2, σ0 = βσ, h = h, g = g, σ = σ, C2 = C4 =
β, Γ2 = Γ1, M2C

∗
2 = −Γ1β/2, Γ4 = Γ1, Σ4 = −Γ1, and F e = Fe. The

assumptions of Theorem 5.4 can be verified in a straightforward way and so
the results of the corollary follow. �

We next specialize the result of Theorem 6.7 to study homogenization of
one-dimensional GLEs which are generalizations of the model (M1) in Exam-
ple 1: for t ∈ R

+, m > 0, let xt, vt ∈ R be the solutions to the equations:

dxt = vtdt, (2.11)

mdvt = −g(xt)
(∫ t

0

κ(t − s)h(xs)vsds

)
dt + σ(xt)ξtdt + Fe(t, xt)dt, (2.12)

where

κ(t) =
β2Γ2

2(Γ2e
−Γ2|t| − Γ1e

−Γ1|t|)
2(Γ2

2 − Γ2
1)

, (2.13)

with Γ2 > Γ1 > 0, and ξt is the mean-zero stationary Gaussian process with
the covariance function R(t) = κ(t) and spectral density,

S(ω) =
β2Γ2

2ω
2

(ω2 + Γ2
1)(ω2 + Γ2

2)
. (2.14)

The initial data (x, v) are random variables independent of ε and have finite
moments of all orders.

For ε > 0, we set m = m0ε and Γ2 = γ2/ε in (2.11) and (2.12), where m0

and γ2 are positive constants. This gives the family of equations:

dxε
t = vε

tdt, (2.15)

m0εdvε
t = −g(xε

t)
(∫ t

0

κε(t − s)h(xε
s)v

ε
sds

)
dt + σ(xε

t)ξ
ε
tdt + Fe(t, xε

t)dt,

(2.16)

where

κε(t) =
β2γ2

2(γ2
ε e− γ2

ε |t| − Γ1e
−Γ1|t|)

2(γ2
2 − ε2Γ2

1)
, (2.17)
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Figure 1. Plot of the memory function κ(t) in (2.13) with
Γ1 = 1, β = 1 for different values of Γ2

and ξε
t is the family of mean-zero stationary Gaussian processes with the co-

variance functions, Rε(t) = κε(t).

Discussion. We discuss the physical meaning behind the above rescaling of
parameters. Recall that in the first case of Example 1 (i.e., the model (M1)),
the mean-square displacement of the particle grows as t2 as t → ∞, and
therefore, the above model describes a particle exhibiting super-diffusion. As
ε → 0, the environment allows for more and more negative correlation and in
the limit the covariance function consists of a delta-type peak at t = 0 and
a negative long tail compensating for the positive peak when integrated (see
Fig. 1 and also page 105 of [72]). Indeed,

κε(t) → κ(t) :=
β2

2
(δ(t) − Γ1e

−Γ1|t|) (2.18)

as ε → 0. This is the so-called vanishing effective friction case in [1]. The noise
with the covariance function κε(t) is called harmonic velocity noise, whereas
the noise with the covariance function κ(t) is the derivative of an Ornstein–
Uhlenbeck process.

The following corollary provides the homogenized model in the limit ε →
0 of (2.15) and (2.16).

Corollary 2.2. Assume that for every y ∈ R, g(y), g′(y), h(y), h′(y), σ(y) are
bounded continuous functions in y, Fe(t, y) is bounded and continuous in t and
y, and all the listed functions have bounded derivatives in y. Then in the limit
ε → 0, the particle’s position, xε

t ∈ R, satisfying (2.15) and (2.16), converges
to Xt, where Xt solves the following Itô SDE:

dXt =
2

β2gh
Fe(t,Xt)dt − 2

βh
Ytdt + S1(Xt)dt +

2σ

βgh
(dWt + Ztdt), (2.19)

dYt = −Γ1

βg
Fe(t,Xt)dt + S2(Xt)dt − Γ1σ

g
(dWt + Ztdt), (2.20)

dZt = −Γ1Ztdt − Γ1dWt, (2.21)
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where g = g(Xt), h = h(Xt), σ = σ(Xt), Wt is a one-dimensional Wiener
process, and

S1 =
2
β2

∂

∂X

(
1
gh

)
σ2

gh
− ∂

∂X

(
1
h

)
4σ2

g(ghβ2 + 4m0γ2)

+
∂

∂X

(
σ

gh

)
4σ

β2gh + 4m0γ2
, (2.22)

S2 = −Γ1

β

∂

∂X

(
1
g

)
σ2

gh
− ∂

∂X

(
σ

g

)
2Γ1βσ

β2gh + 4m0γ2
. (2.23)

Moreover, if in addition g := φσ, where φ > 0, then the number of
limiting SDEs reduces from three to two:

dXt =
2

β2φ2

∂

∂X

(
1

σh

)
σ

h
dt +

2
φσhβ2

Fe(t,Xt)dt − 2
βφh

Uφ
t dt +

2
βφh

dWt,

(2.24)

dUφ
t = − Γ1

βφ2

∂

∂X

(
1
σ

)
σ

h
dt − Γ1

βσ
Fe(t,Xt)dt, (2.25)

where Uφ
t = φYt − Zt.

The convergence is in the sense that for every T > 0, supt∈[0,T ] |xε
t −

Xt| → 0 in probability as ε → 0.

Proof. Let d = 1, d2 = d4 = 2 and denote the one-dimensional version of the
variables, coefficients and parameters in Theorem 6.7 by non-bold letters (for
instance, xt, B2, Γ2,2 etc.). Furthermore, set B2 = B4 = β > 0, γ2,2 = γ4,2 =
γ2 > 0 and Γ2,1 = Γ4,1 = Γ1. Then it can be verified that the assumptions of
Theorem 6.7 hold and the results follow upon solving a Lyapunov equation.

�

Remark 2.3. A few remarks on the contents of Corollary 2.2 follow.
(i) the homogenized position process is non-Markov, driven by a colored

noise process which is the derivative of the Ornstein–Uhlenbeck process.
This behavior is expected in view of the asymptotic behavior of the
rescaled memory function and spectral density as ε → 0.

(ii) similarly to the small mass limit case considered earlier, the limiting
equation for the particle’s position not only contains noise-induced drift
terms but is also coupled to equations for other slow variables. Moreover,
the limiting equations for these other slow variables also contain non-
trivial correction terms—the memory-induced drift.

Relation between Corollary 2.1 and Corollary 2.2. The limiting SDE systems in
Corollaries 2.1 and 2.2 are generally different because of the different correction
drift terms S1 and S2. In other words, sending Γ2 → ∞ first in (2.11) and
(2.12) and then taking m → 0 of the resulting GLE does not, in general, give
the same limiting SDE as taking the joint limit of m → 0 and Γ2 → ∞.
However, if one further assumes that g is proportional to σ, then the limiting
SDE systems coincide. An important particular case is when g = h = σ,
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in which case a fluctuation-dissipation relation holds and the GLE can be
derived from a microscopic Hamiltonian model (see Remark 1.1). In this case,
the homogenized model described in both corollaries reduces to:

dXt =
2

β2σ2
Fe(t,Xt)dt − 2

βσ
Utdt +

2
β2

∂

∂Xt

(
1
σ2

)
dt +

2
βσ

dWt, (2.26)

dUt = − Γ1

βσ
Fe(t,Xt)dt − Γ1

β

∂

∂X

(
1
σ

)
dt. (2.27)

To end this section, we remark that one could in principle repeat the
above analysis for the case where the spectral density varies as ω2l, for l =
2, 4, . . . (i.e., the highly nonlinear case).

3. GLEs in Finite Dimensions

We call a system modeled by GLE of the form (1.1) a generalized Langevin
system. Its dynamics will be referred to as generalized Langevin dynamics.

We assume that the memory function κ(t) in the GLE (1.1) is a Bohl
function, i.e., that each matrix element of κ(t) is a finite, real-valued linear
combination of exponentials, possibly multiplied by polynomials and/or by
trigonometric functions. The noise process, {ξ(t), t ∈ R

+}, is a mean-zero,
mean-square continuous stationary Gaussian process with Bohl covariance
function and, therefore, its spectral density S(ω) is a rational function (see
Theorem 2.20 in [73]). In this case, the generalized Langevin dynamics can be
realized by an SDE system in a finite-dimensional space. The case in which
an infinite-dimensional space is required is deferred to a future work (see also
Remark 3.7 and Sect. 7).

Below we define the memory function and the noise process in the GLE
(1.1) [see Eq. (1.3)] and along the way introduce our notation. They are de-
fined in a manner ensuring simplicity as well as providing sufficient parameters
for matching the memory function and the correlation function of the noise,
thereby reflecting the essential statistical properties of the GLE. This provides
a systematic framework for our homogenization studies (see the discussion in
Sect. 4).

For i = 1, 2, 3, 4, let Γi ∈ R
di×di , M i ∈ R

di×di , Σi ∈ R
di×qi be constant

matrices. Also, let Ci ∈ R
q×di (for i = 1, 2) and Ci ∈ R

r×di (for i = 3, 4) be
constant matrices. Here, the di and qi (i = 1, 2, 3, 4) are positive integers. Let
αi ∈ {0, 1} be a “switch on or off” parameter. We define the memory function
in terms of the sextuple (Γ1,M1,C1;Γ2,M2,C2) of matrices:

κ(t) = α1κ1(t) + α2κ2(t) =
2∑

i=1

αiCie
−Γi |t|M iC

∗
i , (3.1)

The noise process is defined as:

ξt = α3C3β
3
t + α4C4β

4
t , (3.2)
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where the βj
t ∈ R

dj (j = 3, 4) are independent Ornstein–Uhlenbeck type
processes, i.e., solutions of the SDEs:

dβj
t = −Γjβ

j
tdt + ΣjdW

(qj)
t , (3.3)

with the initial conditions, βj
0, normally distributed with mean-zero and covari-

ance M j . Here, W
(qj)
t denotes a qj-dimensional Wiener process, independent

of βj
0. Also, the Wiener processes W

(q3)
t and W

(q4)
t are independent.

For i = 1, 2, 3, 4, Γi is positive stable, i.e., all eigenvalues of Γi have posi-
tive real parts and M i = M∗

i > 0 satisfies the following Lyapunov equation:

ΓiM i + M iΓ∗
i = ΣiΣ∗

i . (3.4)

The M i are therefore the steady-state covariances of the systems, i.e., the
resulting Ornstein–Uhlenbeck processes are stationary. In control theory, M i

is also known as the controllability Gramian for the pair (Γi,Σi) [73].
The covariance matrix, R(t), of the mean-zero Gaussian noise process is

expressed by the sextuple (Γ3,M3,C3;Γ4,M4,C4) of matrices as follows:

R(t) = α3R3(t) + α4R4(t) =
4∑

i=3

αiCie
−Γi |t|M iC

∗
i , (3.5)

and so the sextuple (Γ3,M3,C3;Γ4,M4,C4), together with the parameters
α3, α4, completely determine the probability distributions of ξt. We denote the
spectral density of the noise process by S(ω) =

∑
i=3,4 αiSi(ω), where Si(ω)

is the Fourier transform of Ri(t) for i = 3, 4.
We will view the system (3.2) and (3.3) (which is in a statistical steady

state) as a representation of the noise process ξt and call such a representation
a (finite-dimensional) stochastic realization of ξt. Similarly, we view (3.1) as
a representation of the memory function κ(t) and call such a representation
a (finite-dimensional, deterministic) memory realization of κ(t). We call the
Fourier transform of κ(t) and R(t) the spectral density of the memory function
and spectral density of the noise process respectively.

An important message from the stochastic realization theory is that the
system (3.2) and (3.3) is more than a representation of ξt in terms of a white
noise, in that it also contains state variables βj (j = 3, 4) which serve as
a “dynamical memory.” In contrast to standard treatments, this dynamical
memory comes not from one, but from two independent systems of type (3.3).
This will be used to include two distinct types of dynamical memory that
can be switched on or off using the parameters αi—see Proposition 3.5. This
consideration motivates us to define the memory function (and noise) explicitly
using two independent systems, with different constraints on their parameters
easier to state than if a single higher-dimensional system were used.

The sextuples that define the memory function in (3.1) and the noise
process in (3.2) are only unique up to the following transformations:

(Γ′
i = T iΓiT

−1
i ,M ′

i = T iM iT
∗
i ,C

′
i = CiT

−1
i ), (3.6)

where i = 1, 2, 3, 4 and T i are any invertible matrices of appropriate dimensions
[44]. Different choices of T i correspond to different coordinate systems.
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Remark 3.1. Realization of the memory function and noise process in terms
of the matrix sextuples, as defined above, covers all GLEs driven by Gaussian
processes that can be realized in a finite dimension (see the propositions and
theorems on page 303–308 of [74]). See also the remarks on the subject in [43].

A summary of the above discussion is included in the following:

Assumption 3.2. The memory function κ(t) in the GLE (1.1) is a real-valued
Bohl function defined by (3.1) and the noise process, {ξt, t ∈ R

+}, is a mean-
zero, mean-square continuous, stationary Gaussian process with Bohl covari-
ance function (hence, with rational spectral density), admitting a stochastic
realization given by (3.2) and (3.3).

We introduce a generalized version of the effective damping constant
and effective diffusion constant used in [43], which will be useful to study the
asymptotic behavior of spectral densities.

Definition 3.3. For n ∈ Z, the nth order effective damping constant is defined
as the constant matrix, parametrized by α1, α2 ∈ {0, 1}:

K(n)(α1, α2) := α1K
(n)
1 + α2K

(n)
2 ∈ R

q×q, (3.7)

where K
(n)
i = CiΓ−n

i M iC
∗
i (for i = 1, 2). Likewise, the nth order effective

diffusion constant,

L(n)(α3, α4) := α3L
(n)
3 + α4L

(n)
4 ∈ R

r×r, (3.8)

where L
(n)
j = CjΓ−n

j M jC
∗
j (for j = 3, 4).

Note that the first-order effective damping constant K(1)(α1, α2) =
∫∞
0

κ(t)dt and the first-order effective diffusion constant L(1)(α3, α4) =
∫∞
0

R(t)dt
are simply the effective damping constant and effective diffusion constant in-
troduced in [43]. The memory function and the covariance function of the noise
process can be expressed in terms of these constants:

κ(t) =
∑

i=1,2

∞∑

n=0

αi
(−|t|)n

n!
K

(−n)
i , R(t) =

∑

j=3,4

∞∑

n=0

αj
(−|t|)n

n!
L

(−n)
j . (3.9)

Assumption 3.4. The matrix K
(1)
1 in the expression for first-order effective

damping constant is invertible and the matrix K
(1)
2 equals zero. Similarly,

in the expression for the first-order effective diffusion constant L
(1)
3 , which is

invertible, L
(1)
4 = 0.

In order to develop intuition about general GLEs, it will be helpful to
study the following exactly solvable special case.

Example 2. (An exactly solvable case) In the GLE (1.1), set F e = 0. Let
γ0(t,x) = γ0, σ0(t,x) = σ0, h(t,x) = h, g(t,x) = g and σ(t,x) = σ be
constant matrices. The initial data are the random variables, x(0) = x, v(0) =
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v, independent of {ξ(t), t ∈ R
+} and of {W (k)(t), t ∈ R

+}. The resulting GLE
is:

mdv(t) = −γ0v(t)dt − g

(∫ t

0

κ(t − s)hv(s)ds

)
dt + σ0dW (k)(t) + σξ(t)dt.

(3.10)
Of particular interest is the GLE (3.10) with γ0 = σ0σ

∗
0/2 ≥ 0, g = h∗ = σ >

0, and R(t) = κ(t) = κ∗(t), so that the fluctuation-dissipation relations hold
(see Remark 1.1 and also Remark 3.6). The resulting GLE gives a simple model
describing the motion of a free particle, interacting with a heat bath. Note that
generally the process v(t) is not assumed to be stationary, in particular v(0)
could be an arbitrarily distributed random variable.

The following proposition gives the asymptotic behavior of the spectral
densities (equivalently, covariance functions, or memory functions), the reg-
ularity2 (in the mean-square sense) of the noise process, and, in the exactly
solvable case of Example 2, the long-time mean-square displacement of the
particle.

Proposition 3.5. Suppose that Assumptions 3.2 and 3.4 are satisfied. Let x(t) =∫ t

0
v(s)ds ∈ R

d, where v(t) solves the GLE (3.10).
(i) We have S3(ω) = O(1) as ω → 0. Also, let k ≥ 3 be a positive odd

integer and assume that L
(n)
4 = 0 for 0 < n < k, where n is odd, and

L
(k)
4 �= 0. Then S4(ω) = O(ωk−1) as ω → 0. If there exists h > 0 such

that the noise spectral density, S(ω) = O
(

1
ω2h+1

)
as ω → ∞, then ξt is

n-times mean-square differentiable3 for n < h.
(ii) Let κ̂(z) denote the Laplace transform of κ(t), i.e., κ̂(z) :=

∫∞
0

κ(t)e−zt

dt, and E = 1
2mE[vv∗] be the particle’s initial average kinetic energy.

Assume for simplicity that R(t) = κ(t) and σκ(t)σ∗ = h∗κ∗(t)g∗. Then
we have the following formula for the particle’s mean-square displace-
ment (MSD):

E[x(t)x∗(t)] = 2
∫ t

0

H(s)ds + 2m

(
H(t)EH∗(t) −

∫ t

0

H(u)Ḣ∗(u)du

)

+
∫ t

0

H(u)(σ0σ
∗
0 − 2γ∗

0)H
∗(u)du, (3.11)

where the Laplace transform of H(t) is given by Ĥ(z) = zF̂ (z), with

F̂ (z) = (z2(mzI + γ0 + gκ̂(z)h))−1. (3.12)

2Sample path continuity does not in general imply mean-square continuity.
3A process X(t) is mean-square differentiable (with derivative dX(t)/dt) on a time interval
τ if for every t ∈ τ ,

∥
∥
∥
∥

X(t + h) − X(t)

h
− dX

dt

∥
∥
∥
∥

L2(Ω)

→ 0,

as h → 0.



1828 S. H. Lim et al. Ann. Henri Poincaré

For (iii) and (iv) below, we consider the process xt solving the GLE (3.10)
with γ0 = σ0σ

∗
0/2 ≥ 0, g = h∗ = σ > 0, and R(t) = κ(t) = κ∗(t).

(iii) Let α1 = α3 = 1 (αi, for i = 2, 4, can be 0 or 1 and F 0 can be zero or
nonzero). Then E[x(t)x∗(t)] = O(t) as t → ∞, in which case we say
that the particle diffuses normally.

(iv) Let α1 = 0, α2 = 1 and F 0 = 0 (the vanishing effective damping con-
stant case). Then E[x(t)x∗(t)] = O(t2) as t → ∞, in which case we say
that the particle exhibits a ballistic (super-diffusive) behavior.

Proof. (i) For i = 3, 4, it is easy to compute that

Si(ω) = Ci[(iωI + Γi)−1 + (−iωI + Γi)−1]M iC
∗
i (3.13)

= 2Ci[(iωI + Γi)−1Γi(−iωI + Γi)−1]M iC
∗
i (3.14)

= 2CiΓ−1
i (ω2Γ−2

i + I)−1M iC
∗
i , (3.15)

and so one has:

Si(ω) = 2CiΓ−1
i M iC

∗
i − 2CiΓ−3

i M iC
∗
i ω

2

+2CiΓ−5
i M iC

∗
i ω

4 + · · · , (3.16)

as ω → 0. The first two statements in (i) then follow by Assumption 3.4.
The last statement follows from Lemma 6.11 in [45].

(ii) Note that ẋ(t) = v(t), with x(0) = 0 and v(t) solving the GLE (3.10),
rewritten as:

mv̇(t) = −γ0v(t) + σ0η(t) − g

∫ t

0

κ(t − s)hv(s)ds + σξ(t), (3.17)

where η(t)dt = dW (k)(t), and v0 = v is a random variable that is
independent of {ξ(t), t ∈ R

+} and of {η(t), t ∈ R
+}. These equations can

be solved analytically by means of Laplace transform. Applying Laplace
transform on the equations for xt and vt gives:

zx̂(z) = v̂(z), (3.18)

m(zv̂(z) − v(0)) = −gκ̂(z)hv̂(z) − γ0v̂(z) + σ0η̂(z) + σξ̂(z), (3.19)

and thus

x̂(z) = Ĥ(z)(mv(0) + σ0η̂(z) + σξ̂(z)), (3.20)

where Ĥ(z) = (mz2I +zγ0 +zgκ̂(z)h)−1. Taking the inverse transform
gives the following formula for x(t):

x(t) = H(t)mv +
∫ t

0

H(t − s)(σ0η(s) + σξ(s))ds, (3.21)

where H(0) = 0.
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Therefore, using the mutual independence of v, {ξ(t), t ∈ R
+} and

{η(t), t ∈ R
+}, the Itô isometry, and the assumption that R(t) = κ(t),

we obtain:

E[x(t)xT (t)] = 2mH(t)EH∗(t) +
∫ t

0

H(t − s)σ0σ
∗
0H

∗(t − s)ds + L(t),

(3.22)

where

L(t) =
∫ t

0

ds

∫ t

0

du H(t − s)σκ(|s − u|)σ∗H∗(t − u). (3.23)

To compute the double integral L(t), we first rewrite it as L(t) = L1(t)+
L2(t), with

L1(t) =
∫ t

0

ds H(t − s)
∫ t

s

du σκ(u − s)σ∗H∗(t − u), (3.24)

L2(t) =
∫ t

0

ds H(t − s)
∫ s

0

du σκ(s − u)σ∗H∗(t − u). (3.25)

We then compute:

L1(t) =
∫ t

0

ds H(t − s)
∫ t

s

d(t − u) σκ(t − s − (t − u)) · (−1)σ∗H∗(t − u),

(3.26)

=
∫ t

0

ds H(t − s)
∫ t−s

0

dτ σκ(t − s − τ)σ∗H∗(τ), (3.27)

=
∫ t

0

ds H(t − s)(σκσ∗ � H∗)(t − s), (3.28)

=
∫ t

0

du H(u)(σκσ∗ � H∗)(u), (3.29)

where � denotes convolution. Now note that, by the convolution theorem,
(σκσ∗ � H∗)(u) is the inverse Laplace transform of σκ̂(z)σ∗Ĥ∗(z),
which can be written as I/z−(mzI+γ∗

0)Ĥ
∗(z) by using the assumption

that σκ(t)σ∗ = h∗κ∗(t)g∗. Computing the inverse transform gives us:

L1(t) =
∫ t

0

du H(u)(I − mḢ∗(u) − γ∗
0H

∗(u)). (3.30)

Similarly, we obtain L2(t) = L1(t), and so L(t) = 2L1(t). Therefore,
combining (3.22) and (3.30) gives us the desired formula for MSD.

(iii) & (iv) The assumptions that g = h∗ = σ and R(t) = κ(t) = κ∗(t)
ensure that we can apply the MSD formula in (ii). The additional as-
sumption that γ0 = σ0σ

∗
0/2 (fluctuation-dissipation relation of the first

kind) implies that Ĥ(z) = Ĥ
∗
(z) and simplifies the formula to:

E[x(t)x∗(t)] = 2
∫ t

0

H(s)ds + 2m

(
H(t)EH(t) −

∫ t

0

H(u)Ḣ(u)du

)
.

(3.31)
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To determine the behavior of E[x(t)x∗(t)] as t → ∞, it suffices to inves-
tigate the asymptotic behavior of Ĥ(z), whose formula is given in (ii),
as z → 0. Noting that

Ĥ(z) =
1
z

⎡

⎣mzI + γ0 + g
∑

i=1,2

αiCi(zI + Γi)−1M iC
∗
i h

⎤

⎦

−1

(3.32)

and using Assumption 3.4, we find that, as z → 0,

Ĥ(z) ∼ 1
z

[
γ0 + α1gK

(1)
1 h +

⎛

⎝mI −
∑

j=1,2

αjgK
(2)
j h

⎞

⎠ z

+ α2gK
(3)
2 hz2 + α2gK

(4)
2 hz3 + · · ·

]−1

. (3.33)

Therefore, if γ0 = σ0σ
∗
0/2 is nonzero, then Ĥ(z) ∼ 1/z as z → 0.

Otherwise, if in addition α1 = 1, then Ĥ(z) ∼ 1/z as z → 0, whereas if
in addition α1 = 0, α2 = 1, then Ĥ(z) ∼ 1/z2 as z → 0. The results in
(iii) and (iv) then follow by applying the Tauberian theorems [18], which
say, in particular, that if Ĥ(z) ∼ 1/zβ as z → 0, then H(t) ∼ tβ−1 as
t → ∞, for β = 1, 2 here. �

Remark 3.6. We emphasize that super-diffusion with E[x(t)x∗(t)] behaving
as tα as t → ∞, where α > 2, cannot take place when the velocity process
converges to a stationary state. For a system to behave this way, the velocity
itself has to grow with time. Moreover, we remark that one could obtain a
richer class of asymptotic behaviors for the MSD by relaxing the assumption
of fluctuation-dissipation relations.

To summarize, (i) says that in the case where F 0 = 0, α1 = α3 = 0,
the nth-order effective constants characterize the asymptotic behavior of the
spectral densities at low frequencies; (ii) provides a formula for the particle’s
mean-square displacement, and (iii)–(iv) classify the types of diffusive behavior
of the GLE model, in the exactly solvable case of Example 2, satisfying the
fluctuation-dissipation relations. We emphasize that in the sequel we go beyond
the above exactly solvable case; in particular the coefficients g, h, σ, γ0, σ0

will depend in general on the particle’s position. However, the GLE in the
exactly solvable case can be viewed as linear approximation to the general
GLE (1.1) (by expanding these coefficients in a Taylor series about a fixed
position x′ ∈ R

d).
In view of Proposition 3.5, the parameters αi ∈ {0, 1} allow us to control

diffusive behavior of the generalized Langevin dynamics. Our GLE models
are very general and need not satisfy a fluctuation-dissipation relation. As
we will see, these different behaviors motivate our introduction and study
of various homogenization schemes for the GLE. Depending on the physical
systems under consideration, one scheme might be more realistic than the
others. It is one of the goals of this paper to explore homogenization schemes
for different GLE classes.
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The equation for the particle’s position, together with the GLE (1.1), can
be cast as the system of SDEs for the Markov process
zt := (xt,vt,y

1
t ,y

2
t ,β

3
t ,β

4
t ) ∈ R

d × R
d × R

d1 × R
d2 × R

d3 × R
d4 :

dxt = vtdt, (3.34)

mdvt = −γ0(t,xt)vtdt + σ0(t,xt)dW
(k)
t − g(t,xt)

∑

i=1,2

αiCiy
i
tdt

+ σ(t,xt)
∑

j=3,4

αjCjβ
j
tdt + F e(t,xt)dt, (3.35)

dyi
t = −Γiy

i
tdt + M iC

∗
i h(t,xt)vtdt, i = 1, 2, (3.36)

dβj
t = −Γjβ

j
tdt + ΣjdW

(qj)
t , j = 3, 4, (3.37)

where we have defined the auxiliary memory processes:

yi
t :=

∫ t

0

e−Γi(t−s)M iC
∗
i h(s,xs)vsds ∈ R

di , i = 1, 2. (3.38)

Remark 3.7. In finite dimension, it is not possible to realize generalized Lange-
vin dynamics with a noise and/or memory function whose spectral density
varies as 1/ωp, p ∈ (0, 1), near ω = 0 (i.e., the so-called 1/f -type noise [37]),
and, consequently, the noise covariance function and/or memory function de-
cay as a power 1/tα, α ∈ (0, 1), as t → ∞. In this case, one can use the
formula in (ii) of Proposition 3.5 to show, at least for the exactly solvable case
in Example 2 where the fluctuation-dissipation relations hold, that the asymp-
totic behavior of the particle is sub-diffusive, i.e., E[x(t)x∗(t)] = O(tβ), where
β ∈ (0, 1), as t → ∞ (see also the related works [15,49]). Sub-diffusive behav-
ior has been discovered in a wide range of statistical and biological systems
[35], making the study in this case relevant. One could, following the ideas in
[21,55], extend the state space of the GLEs to an infinite-dimensional one, in
order to study the sub-diffusive case. Homogenization in this case, where more
technicalities are expected, will be explored in a future work.

4. On the Homogenization of Generalized Langevin Dynamics

In this section, we discuss some new directions for homogenization of GLEs.
In the case of nonvanishing (first-order) effective damping constant and

effective diffusion constant, homogenization of a version of the GLE (1.1) was
studied in [43], where a limiting SDE for the position process was obtained
in the limit, in which all the characteristic time scales of the system (i.e., the
inertial time scale, the memory time scale and the noise correlation time scale)
tend to zero at the same rate. Extending this result, we are going to focus on
the following two cases.

(A) The case where an instantaneous damping term is present in the GLE,
i.e., F 0 �= 0, or the nonvanishing effective damping constant case, i.e.,
α1 = 1. Together with the conditions in Example 2, this gives a model
for normally diffusing systems; see Proposition 3.5 (iii). One can study
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the limit in which the inertial time scale and a subset (possibly all or
none of) of other characteristic time scales of the system tend to zero;
in particular the small mass limit in the case F 0 �= 0 of the generalized
Langevin dynamics. We remark that the small mass limit is not well-
defined in the case F 0 = 0 and α1 = α3 = 1—this was first observed in
[50], where it was pointed out that the limit leads to the phenomenon
of anomalous gap of the particle’s mean-square displacement (see also
[10,30]).

(B) The vanishing effective damping constant and effective diffusion con-
stant case, i.e., F 0 = 0, α1 = α3 = 0, α2 = α4 = 1. Together with
the conditions in Example 2, this gives a model for systems with super-
diffusive behavior; see Proposition 3.5 (iv). One can study the limit
in which the inertial time scale, a subset of the memory time scales,
and a subset of the noise correlation time scales tend to zero at the
same rate. Such effective models are physically relevant when they pre-
serve the asymptotic behavior of the spectral densities at low and/or
high frequencies in the limit. Situations are also possible, where some of
the eigenmodes of the memory and noise spectrum are damped much
stronger than other, for example due to an injection of monochromatic
light from a laser into the system, which is originally in thermal equi-
librium. This justifies studying homogenization limits that selectively
target a part of frequencies of memory and noise.

We will study homogenization of the GLE (1.1) in the limits described in the
above scenarios. In all cases, the inertial time scale is taken to zero—this gives
rise to the singular nature of the limit problems. We remark that one could
also consider the more interesting scenarios in which the time scales tend to
zero at different rates, but we choose not to pursue this in this already long
paper.

Notation. Throughout the paper, we denote the variables in the pre-limit equa-
tions by small letters (for instance, xε(t)), and those of the limiting equa-
tions by capital letters (for instance, X(t)). We use Einstein’s summation
convention on repeated indices. The Euclidean norm of an arbitrary vec-
tor w is denoted by |w| and the (induced operator) norm of a matrix A
by ‖A‖. For an R

n2×n3 -valued function f(y) := ([f ]jk(y))j=1,...,n2;k=1,...,n3 ,
y := ([y]1, . . . , [y]n1) ∈ R

n1 , we denote by (f)y (y) the n1n2 × n3 matrix:

(f)y (y) = (∇y [f ]jk(y))j=1,...,n2;k=1,...,n3 , (4.1)

where ∇y [f ]jk(y) stands for the gradient vector
(

∂[f ]jk(y)
∂[y]1

, . . . ,
∂[f ]jk(y)

∂[y]n1

)
∈

R
n1 for every j, k. We denote by ∇· the divergence operator which contracts a

matrix-valued function to a vector-valued function, i.e., for the matrix-valued
function A(X), the ith component of its divergence is given by (∇ · A)i =
∑

j
∂Aij

∂Xj . Lastly, the symbol E denotes expectation with respect to the prob-
ability measure P.
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5. Small Mass Limit of Generalized Langevin Dynamics

Consider the following family of equations for the processes (xm
t ,vm

t ) ∈ R
d×d,

t ∈ [0, T ], m > 0:

dxm
t = vm

t dt, (5.1)

mdvm
t = −γ0(t,x

m
t )vm

t dt − g(t,xm
t )
(∫ t

0

κ(t − s)h(s,xm
s )vm

s ds

)
dt

+ σ0(t,xm
t )dW

(k)
t + σ(t,xm

t )ξtdt + F e(t,xm
t )dt, (5.2)

where κ(t) and ξt are the memory function and noise process defined in (3.1)
and (3.2), respectively, with each of the αi (i = 1, 2, 3, 4) equal to zero or to
one. Equations (5.1) and (5.2) are equivalent to the following system of SDEs
for the Markov process zm

t := (xm
t ,vm

t ,y1,m
t ,y2,m

t ,β3,m
t ,β4,m

t ) ∈ R
d × R

d ×
R

d1 × R
d2 × R

d3 × R
d4 :

dxm
t = vm

t dt, (5.3)

mdvm
t = −γ0(t,x

m
t )vm

t dt + σ0(t,xm
t )dW

(k)
t − g(t,xm

t )
∑

i=1,2

αiCiy
i,m
t dt

+ σ(t,xm
t )

∑

j=3,4

αjCjβ
j,m
t dt + F e(t,xm

t )dt, (5.4)

dyi,m
t = −Γiy

i,m
t dt + M iC

∗
i h(t,xm

t )vm
t dt, i = 1, 2, (5.5)

dβj,m
t = −Γjβ

j,m
t dt + ΣjdW

(qj)
t , j = 3, 4, (5.6)

where we have defined the auxiliary memory processes:

yi,m
t :=

∫ t

0

e−Γi(t−s)M iC
∗
i h(s,xm

s )vm
s ds ∈ R

di , i = 1, 2. (5.7)

Note that the processes β3,m
t and β4,m

t do not actually depend on m, but we
are adding the superscript m for a more homogeneous notation.

We make the following simplifying assumptions concerning (5.3)–(5.6).
Let W (qj) (j = 3, 4) be independent Wiener processes on a filtered proba-
bility space (Ω,F ,Ft,P) satisfying the usual conditions [32] and let E denote
expectation with respect to P.

Assumption 5.1. There are no explosions, i.e., almost surely, for every m > 0
there exists global unique solution to the pre-limit SDEs (5.3)–(5.6) and also
to the limiting SDEs (5.8)–(5.10) on the time interval [0, T ].

Assumption 5.2. For t ∈ R
+, y ∈ R

d, the functions F e(t,y), σ0(t,y) and
σ(t,y) are continuous and bounded (in t and y) as well as Lipschitz in y,
whereas the functions γ0(t,y), g(t,y), h(t,y), (γ0)y (t,y), (g)y (t,y) and (h)y

(t,y) are continuously differentiable and Lipschitz in y as well as bounded (in
t and y). Moreover, the functions (γ0)yy (t,y), (g)yy (t,y) and (h)yy (t,y) are
bounded for every t ∈ R

+, y ∈ R
d.
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Assumption 5.3. The initial data x,v ∈ R
d are F0-measurable random vari-

ables independent of the σ-algebra generated by the Wiener processes W (qj)

(j = 3, 4). They are independent of m and have finite moments of all orders.

The following theorem describes the homogenized behavior of the parti-
cle’s position modeled by the family of Eqs. (5.1) and (5.2)—or, equivalently,
by the SDE systems (5.3)–(5.6)—in the limit as the particle’s mass tends to
zero.

Theorem 5.4. Let zm
t := (xm

t ,vm
t ,y1,m

t ,y2,m
t ,β3,m

t ,β4,m
t ) be a family of pro-

cesses solving the SDE system (5.3)–(5.6). Suppose that Assumption 3.2 and
Assumptions 5.1–5.3 hold. In addition, suppose that for every m > 0, x ∈ R

d,
the family of matrices γ0(t,x) is positive stable, uniformly in t and x. Then
as m → 0, the position process xm

t converges to Xt, where Xt is the first
component of the process (Xt,Y

1
t ,Y

2
t ,β

3
t ,β

4
t ) satisfying the Itô SDE system:

dXt = γ−1
0 (t,Xt)

[
− g(t,Xt)

2∑

i=1

αiCiY
i
t + σ(t,Xt)

4∑

j=3

αjCjβ
j
t

+ F e(t,Xt)
]
dt + γ−1

0 (t,Xt)σ0(t,Xt)dW
(k)
t + S(0)(t,Xt)dt, (5.8)

dY k
t = −ΓkY k

t dt + MkC∗
kh(t,Xt)γ−1

0 (t,Xt)
[

− g(t,Xt)
2∑

i=1

αiCiY
i
t

+ σ(t,Xt)
4∑

j=3

αjCjβ
j
t + F e(t,Xt)

]
dt + S(k)(t,Xt)dt

+ MkC∗
kh(t,Xt)γ−1

0 (t,Xt)σ0(t,Xt)dW
(k)
t , for k = 1, 2, (5.9)

dβl
t = −Γlβ

l
tdt + ΣldW

(ql)
t , for l = 3, 4, (5.10)

where the ith component of the S(k) (k = 0, 1, 2) is given by:

S
(0)
i (t,X) =

∂

∂Xl

(
(γ−1

0 )ij(t,X)
)
Jlj , j, l = 1, . . . , d, (5.11)

and for k = 1, 2,

S
(k)
i (t,X) =

∂

∂Xl

(
(MkC∗

kh(t,X)γ−1
0 (t,X))ij

)
Jlj , j, l = 1, . . . , d, (5.12)

with J ∈ R
d×d solving the Lyapunov equation, γ0J + Jγ∗

0 = σ0σ
∗
0. The con-

vergence is obtained in the following sense: for all finite T > 0, supt∈[0,T ] |xm
t −

Xt| → 0 in probability, as m → 0.

Proof. We prove the theorem by applying Theorem A.6. Using the notation in
the statement of Theorem A.6, let ε = m, n1 = d + d1 + d2 + d3 + d4, n2 = d,
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k1 = q3 + q4, k2 = k, xε(t) = (xm
t ,y1,m

t ,y2,m
t ,β3,m

t ,β4,m
t ), vε(t) = vm

t ,

a1 = [I M1C
∗
1h(t,xm

t ) M2C
∗
2h(t,xm

t ) 0 0], (5.13)

a2 = −γ0(t,x
m
t ), (5.14)

b1 = −(0,Γ1y
1,m
t ,Γ2y

2,m
t ,Γ3β

3,m
t ,Γ4β

4,m
t ), (5.15)

b2 = F e(t,xm
t ) − g(t,xm

t )
∑

i=1,2

αiCiy
i,m
t + σ(t,xm

t )
∑

j=3,4

αjCjβ
j,m
t , (5.16)

σ1 =

⎡

⎢
⎢
⎢
⎢
⎣

0 0
0 0
0 0
Σ3 0
0 Σ4

⎤

⎥
⎥
⎥
⎥
⎦

, (5.17)

σ2 = σ0(t,xm
t ), (5.18)

W (k1)(t) = (W (q3)
t ,W

(q4)
t ) and W (k2)(t) = W

(k)
t . The initial conditions are

x(0) = (x,0,0,β3
0,β

4
0) and v(0) = v, where βj

0 (j = 3, 4) are normally dis-
tributed with mean-zero and covariance M j . They are independent of m.

Observe that in the above formula, ai, bi, σi (i = 1, 2) do not depend
explicitly on ε = m, so by the convention adopted in Appendix A, we denote
them Ai, Bi, Σi, respectively, and we put ai = bi = ci = di = ∞, where
ai, bi, ci, di are the rates in Assumption A.5.

Next, we verify the assumptions of Theorem A.6. Assumption A.1 clearly
follows from Assumption 5.1. Since the family of matrices γ0(t,x) is positive
stable (uniformly in t and x), Assumption A.2 is satisfied. It is straightfor-
ward to see that our assumptions on the coefficients of the GLE imply As-
sumption A.3. As x(0) and v(0) are random variables independent of m, As-
sumption A.4 holds by our assumptions on the initial conditions x0, v0 and
βj

0 (j = 3, 4). Finally, as noted earlier, Assumption A.5 holds with ai = bi =
ci = di = ∞. The assumptions of Theorem A.6 are thus satisfied. Applying it,
we obtain the limiting SDE system (5.8)–(5.10). �

We remark that the limiting SDE is unique up to the transformation in
(3.6), as pointed out already in [43].

Remark 5.5. In the special case when αi = 0 for i = 1, 2, 3, 4 and the coeffi-
cients do not depend on t explicitly, Theorem 5.4 reduces to the result obtained
in [29]. In general, by comparing the result with the one obtained in [29], we
see that perturbing the original Markovian system by adding a memory and
colored noise changes the behavior of the homogenized system obtained in the
small mass limit. In particular,

(i) the limiting equation for the particle’s position not only contains a cor-
rection drift term (S(0))—the noise-induced drift, but is also coupled to
equations for other slow variables;

(ii) in the case when α1 and/or α2 are/is one, the limiting equation for the
(slow) auxiliary memory variables contains correction drift terms (S(1)
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and/or S(2))—which could be called the memory-induced drifts. Inter-
estingly, the memory-induced drifts disappear when h is proportional to
γ0, a phenomenon that can be attributed to the interaction between the
forces F 0 and F 1.

Note that the highly coupled structure of the limiting SDEs is due to the fact
that only one time scale (inertial time scale) was taken to zero in the limit. We
expect the structure to simplify when all time scales present in the problem
are taken to zero at the same rate.

6. Homogenization for the Case of Vanishing Effective Damping
Constant and Effective Diffusion Constant

In this section, we consider the GLE (1.1), with F 0 = 0, α1 = α3 = 0, and
α2 = α4 = 1. We explore a class of homogenization schemes, aiming to:

(P1) reduce the complexity of the generalized Langevin dynamics in a way
that the homogenized dynamics can be realized on a state space with
minimal dimension and are described by minimal number of effective
parameters;

(P2) retain non-trivial effects of the memory and the colored noise in the
homogenized dynamics by matching the asymptotic behavior of the
spectral density of the noise process and memory function in the orig-
inal and the effective model.

Remark 6.1. Generally, the larger the number of time scales (the eigenval-
ues of the Γi) present in the system, the higher the dimension of the state
space needed to realize the generalized Langevin system. On the other hand,
in addition to Γi, information on Ci and M i is needed to determine the as-
ymptotic behavior of the spectral densities [see Proposition 3.5(i)]. In other
words, although analysis based solely on time scales consideration may reduce
the dimension of the model, it does not in general allow one to achieve the
model matching in (P2). It is desirable to have homogenization schemes that
achieve both goals of dimension reduction (P1) and matching of models (P2).
Such a scheme is considered below.

The idea is to consider the limit when the inertial time scale, a proper
subset of the memory time scales and a proper subset of the noise correlation
time scales tend to zero at the same rate. The case of sending all the char-
acteristic time scales to zero is excluded here as it is uninteresting when the
effective damping and diffusion vanish in the limit.

We assume that the Γi (i = 1, 2, 3, 4) are already in the Jordan normal
form and work in Jordan basis. Such form will reveal the slow-fast time scale
structure of the system and so give us a rubric to develop homogenization
schemes.

Assumption 6.2. Let i = 2, 4. All the Γi are of the following Jordan normal
form:

Γi = diag(Γi,1, . . . ,Γi,Ni
), (6.1)
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where Ni < di, Γi,k ∈ R
ν(λi,k)×ν(λi,k) (k = 1, . . . , Ni) is the Jordan block as-

sociated with the (controllable and observable) eigenvalue λi,k (or time scale
τi,k = 1/λi,k) and corresponds to the invariant subspace Xi,k = Ker(λi,kI −
Γi,k)ν(λi,k), where ν(λi,k) is the index of λi,k, i.e., the size of the largest Jor-
dan block corresponding to the eigenvalue λi,k. Let 1 ≤ Mi < Ni and the
eigenvalues be ordered as 0 < λi,1 ≤ · · · ≤ λi,Mi

< λi,Mi+1 ≤ · · · ≤ λi,Ni
,

so that we have the invariant subspace decomposition, Rdi =
⊕Ni

j=1 Xi,j , with
di =

∑Ni

k=1 ν(λi,k).
Let 0 < li < di. The following procedure studies generalized Langevin

dynamics whose spectral densities of the memory and the noise process have
the asymptotic behavior, Si(ω) ∼ ω2li for small ω, and Si(ω) ∼ 1/ω2di for
large ω, for i = 2, 4. We construct a homogenized version of the model in
such a way that its memory and noise processes have spectral densities whose
asymptotic behavior at low ω matches that of the original model [to achieve
(P2)], while that at high ω it varies as 1/ω2li [to achieve (P1)].
Algorithm 6.3. Procedure to study a class of homogenization problems.

(1) Let α1 = α3 = 0, α2 = α4 = 1 and F 0 = 0 in the GLE (1.1).
Suppose that Assumption 6.2 holds and there exists Mi such that li =∑Mi

k=1 ν(λi,k). Take this Mi.
(2) For i = 2, 4, set m = m′ε and λi,k = λ′

i,k/ε, for k = Mi + 1, . . . , Ni

(i.e., we scale the (d2 − l2) smallest memory time scales and the (d4 − l4)
smallest noise correlation time scales with ε), where m′ and the λ′

i,k are
positive constants.

(3) Select the Ci, M i, Σi such that the Ci are constant matrices indepen-
dent of the λi,k (k = 1, . . . , Ni), CiΓ−ni

i M iC
∗
i = 0 for 0 < ni < 2li,

CiΓ
−(2li+1)
i M iC

∗
i �= 0, and upon a suitable rescaling involving the mass,

memory time scales and noise correlation time scales the resulting family
of GLEs can be cast in the form of the SDEs (A.3) and (A.4). Note that
the matrix entries of the M i and/or Σi necessarily depend on the λi,k

due to the Lyapunov equations that relate them to the Γi.
(4) Apply Theorem A.6 to study the limit ε → 0 and obtain the homogenized

model, under appropriate assumptions on the coefficients and parameters
in the GLEs.
We remark that while one has the above procedure to study homoge-

nization schemes that achieve (P1) and (P2), the derivations and formulae for
the limiting equations could become tedious and complicated as the li and
di become large. Therefore, we consider a simple yet still sufficiently general
instance of Algorithm 6.3 in the following.
Assumption 6.4. The spectral densities, Si(ω) = Φi(iω)Φ∗

i (−iω) (i = 2, 4),
with the (minimal) spectral factor:

Φi(z) = Q−1
i (z)P i(z), (6.2)

where the P i(z) ∈ R
pi×mi are matrix-valued monomials with degree li :

P i(z) = Bliz
li (6.3)
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and the Qi(z) ∈ R
pi×pi are matrix-valued polynomials of degree di, i.e.,

Qi(z) =
di∏

k=1

(zI + Γi,k). (6.4)

Here p2 = q, p4 = r, the mi (i = 2, 4) are positive integers, the Bli ∈ R
pi×mi

are constant matrices, Γi,k ∈ R
pi×pi are diagonal matrices with positive en-

tries, and I denotes identity matrix of appropriate dimension.

Under Assumption 6.4, the spectral densities have the following asymp-
totic behavior: Si(ω) ∼ ω2li for small ω, and Si(ω) ∼ 1/ω2di for large ω. One
can then implement Algorithm 6.3 explicitly to study homogenization for a
sufficiently large class of GLEs, where the rescaled spectral densities tend to
the ones with the asymptotic behavior mentioned in the paragraph just before
Algorithm 6.3 in the limit. We discuss one such implementation in Appendix C.
Since the calculations become more complicated as li and di become large, we
will only study simpler cases and illustrate how things could get complicated
in the following.

We assume d2 and d4 are even integers and consider in detail the case
when l2 = l4 = l = 1, d2 = d4 = h = 2,

Γ2,1 = diag(λ2,1, . . . , λ2,d2/2), Γ2,2 = diag(λ2,d2/2+1, . . . , λ2,d2), (6.5)

Γ4,1 = diag(λ4,1, . . . , λ4,d4/2), Γ4,2 = diag(λ4,d4/2+1, . . . , λ4,d4), (6.6)

with λ2,d2 ≥ · · · ≥ λ2,d2/2+1 > λ2,d2/2 ≥ · · · ≥ λ2,1 > 0 and λ4,d4 ≥ · · · ≥
λ4,d4/2+1 > λ4,d4/2 ≥ · · · ≥ λ4,1 > 0 in Assumption 6.4, so that for i = 2, 4,

Γi = diag(Γi,1,Γi,2) ∈ R
di×di . (6.7)

We consider:

Ci = [Bi Bi] ∈ R
pi×di , (6.8)

Σi =
[−Γi,1Γi,2(Γi,2 − Γi,1)−1 Γ2

i,2(Γi,2 − Γi,1)−1
]∗ ∈ R

di×di/2,
(6.9)

so that

M i =

[
M11

i M12
i

M21
i M22

i

]

∈ R
di×di , (6.10)

where

M11
i =

1
2
Γi,1Γ2

i,2(Γi,1 − Γi,2)−2, (6.11)

M12
i = M21

i = −Γi,1Γ3
i,2(Γi,1 + Γi,2)−1(Γi,1 − Γi,2)−2, (6.12)

M22
i =

1
2
Γ3

i,2(Γi,1 − Γi,2)−2, (6.13)

p2 = q and p4 = r as in Assumption 6.4. One can verify that this is indeed
the vanishing effective damping constant and effective diffusion constant case
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(i.e., CiΓ−1
i M iC

∗
i = 0 for i = 2, 4). Also, for i = 2, 4, the memory function,

κ2(t) and covariance function, R4(t), are of the following bi-exponential form:

Cie
−Γi|t|M iC

∗
i =

1
2
BiΓ2

i,2(Γ
2
i,2 − Γ2

i,1)
−1
(
Γi,2e

−Γi,2|t| − Γi,1e
−Γi,1|t|

)
B∗

i

(6.14)
and their Fourier transforms are:

Si(ω) = BiΓ2
i,2B

∗
i ω

2((ω2I + Γ2
i,1)(ω

2I + Γ2
i,2))

−1, (6.15)

which vary as ω2 near ω = 0. Note that in the above the Bi do not necessarily
commute with the Γi,j .

Following step (2) of Algorithm 6.3, we set m = m0ε, Γi,2 = γi,2/ε for
i = 2, 4, where m0 > 0 is a constant and the γi,2 are diagonal matrices with
positive eigenvalues, in (6.14) and (6.15). We consider the family of GLEs
(parametrized by ε > 0):

m0εdvε
t = −g(t,xε

t)
(∫ t

0

κε
2(t − s)h(s,xε

s)v
ε
sds

)
dt + σ(t,xε

t)C4β
4,ε
t dt

+ F e(t,xε
t)dt, (6.16)

εdβ4,ε
t = −Γ4β

4,ε
t dt + Σ4dW

(q4)
t , (6.17)

where

κε
2(t) =

1
2
B2B

∗
2γ

2
2,2(γ

2
2,2 − ε2Γ2

2,1)
−1
(γ2,2

ε
e− γ 2,2

ε |t| − Γ2,1e
−Γ2,1|t|

)
(6.18)

and the covariance function of the noise process ξε
t = C4β

4,ε
t is given by

Rε
4(t) =

1
2
B4B

∗
4γ

2
4,2(γ

2
4,2 − ε2Γ2

4,1)
−1
(γ4,2

ε
e− γ 4,2

ε |t| − Γ4,1e
−Γ4,1|t|

)
. (6.19)

Note that κε
2(t) and Rε

4(t) converge (in the sense of distribution), as
ε → 0, to

1
2
BiB

∗
i (δ(t)I − Γi,1e

−Γi,1|t|), (6.20)

with i = 2 and i = 4, respectively. The corresponding spectral densities are

Si(ω) = BiB
∗
i ω

2(ω2I + Γ2
i,1)

−1, (6.21)

with i = 2 and i = 4, respectively.
Together with the equation for the particle’s position, Eqs. (6.16) and

(6.17) form the SDE system:

dxε
t = vε

tdt, (6.22)

εm0dvε
t = −g(t,xε

t)B2(y
2,1,ε
t + y2,2,ε

t )dt + σ(t,xε
t)B4(β

4,1,ε
t + β4,2,ε

t )dt

+ F e(t,xε
t)dt, (6.23)

dy2,1,ε
t = −Γ2,1y

2,1,ε
t dt + Mε

1h(t,xε
t)v

ε
tdt, (6.24)

εdy2,2,ε
t = −γ2,2y

2,2,ε
t dt + Mε

2h(t,xε
t)v

ε
tdt, (6.25)

dβ4,1,ε
t = −Γ4,1β

4,1,ε
t dt + σε

1dW
(q4/2)
t , (6.26)

εdβ4,2,ε
t = −γ4,2β

4,2,ε
t dt + σε

2dW
(q4/2)
t , (6.27)
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where

Mε
1 =

(
(2(εΓ2,1 − γ2,2)

2)−1Γ2,1γ
2
2,2

− ((εΓ2,1 − γ2,2)
2(εΓ2,1 + γ2,2))

−1Γ2,1γ
3
2,2

)
B∗

2, (6.28)

Mε
2 =

(
(2(εΓ2,1 − γ2,2)

2)−1γ3
2,2

− ε((εΓ2,1 − γ2,2)
2(εΓ2,1 + γ2,2))

−1Γ2,1γ
3
2,2

)
B∗

2, (6.29)

σε
1 = −(γ4,2 − Γ4,1ε)−1Γ4,1γ4,2, (6.30)

σε
2 = (γ4,2 − Γ4,1ε)−1γ2

4,2. (6.31)

In the following, we take ε ∈ E := (0, ε0], ε0 > 0, to be small. We make
the following assumptions, similar to those made in Theorem 5.4.

Assumption 6.5. There are no explosions, i.e., almost surely, for every ε ∈ E ,
there exist unique solutions on the time interval [0, T ] to the pre-limit SDEs
(6.22)–(6.27) and to the limiting SDE (6.34).

Assumption 6.6. The initial data x,v ∈ R
d are F0-measurable random vari-

ables independent of the σ-algebra generated by the Wiener processes W (qj)

(j = 3, 4). They are independent of ε and have finite moments of all orders.

The following theorem describes the homogenized dynamics of the family
of the GLEs (6.16) and (6.17) [or equivalently, of the SDEs (6.22)–(6.27)] in
the limit ε → 0, i.e., when the inertial time scale, one half of the memory
time scales and one half of the noise correlation time scales in the original
generalized Langevin system tend to zero at the same rate.

Theorem 6.7. Consider the family of the GLEs (6.16) and (6.17) [or equiva-
lently, of the SDEs (6.22)–(6.27)]. Suppose that Assumption 5.2 and Assump-
tions 6.4–6.6 hold, with the Ci, Σi, M i and Γi (i = 2, 4) given in (6.7)–(6.13).

Assume that for every t ∈ R
+, ε > 0, x ∈ R

d,

I + g(t,x)κ̃ε(λ)h(t,x)/λm0 and I + g(t,x)κ̃(λ)h(t,x)/λm0 (6.32)

are invertible for all λ in the right half plane {λ ∈ C : Re(λ) > 0}, where

κ̃ε(z)=B2(zI+γ2,2)
−1Mε

2 and κ̃(z)=
1
2
B2(zI + γ2,2)

−1γ2,2B
∗
2. (6.33)

Also, assume that ν(t,x) := 1
2g(t,x)B2B

∗
2h(t,x) is invertible for every t ∈

R
+, x ∈ R

d.
Then the particle’s position, xε

t ∈ R
d, solving the family of GLEs, con-

verges as ε → 0, to Xt ∈ R
d, where Xt is the first component of the process

θt := (Xt,Y t,Zt) ∈ R
d+d2/2+d4/2, satisfying the Itô SDE:

dθt = P (t,θt)dt + Q(t,θt)dt + R(t,θt)dW
(d4/2)
t , (6.34)
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where

P (t,θ) =

⎡

⎢
⎣

ν−1(F e − gB2Y t + σB4Zt)
− 1

2Γ2,1B
∗
2hν−1(F e − gB2Y t + σB4Zt) − Γ2,1Y t

−Γ4,1Zt

⎤

⎥
⎦ , (6.35)

R(t, θ) =

⎡

⎢
⎣

ν−1σB4

− 1
2Γ2,1B

∗
2hν−1σB4

−Γ4,1

⎤

⎥
⎦ , (6.36)

and the ith component of Q, i = 1, . . . , d + d2/2 + d4/2, is given by:

Qi =
∂

∂Xl
[Hi,j(t,X)] Jj,l, l = 1, . . . , d; j = 1, . . . , d + d2/2 + d4/2, (6.37)

with H(t,X) = T (t,X)U−1(t,X) ∈ R
(d+d2/2+d4/2)×(d+d2/2+d4/2) and

J ∈ R
(d+d2/2+d4/2)×(d+d2/2+d4/2) is the solution to the Lyapunov equation

UJ + JU∗ = diag(0,0,γ2
4,2), where

T =

⎡

⎢
⎣

I 0 0

− 1
2Γ2,1B

∗
2h 0 0

0 0 0

⎤

⎥
⎦ , U =

⎡

⎢
⎣

0 gB2/m0 −σB4/m0

− 1
2γ2,2B

∗
2h γ2,2 0

0 0 γ4,2

⎤

⎥
⎦.

(6.38)

The convergence holds in the same sense as in Theorem 5.4, i.e., for all finite
T > 0, supt∈[0,T ] |xε

t − Xt| → 0 in probability, as ε → 0.

Proof. We apply Theorem A.6 to the SDEs (6.22)–(6.27). To this end, we set,
in Theorem A.6, n1 = n2 = d + d2/2 + d4/2, k1 = k2 = d4/2 and

xε(t) = (xε
t,y

2,1,ε
t ,β4,1,ε

t ),

vε(t) = (vε
t,y

2,2,ε
t ,β4,2,ε

t ) ∈ R
d+d2/2+d4/2, (6.39)

a1(t,xε(t), ε) =

⎡

⎢
⎣

I 0 0

Mε
1h(t,xε

t) 0 0

0 0 0

⎤

⎥
⎦ ∈ R

(d+d2/2+d4/2)×(d+d2/2+d4/2),

(6.40)

a2(t,xε(t), ε) =

⎡

⎢
⎣

0 −g(t,xε
t)B2/m0 σ(t,xε

t)B4/m0

Mε
2h(t,xε

t) −γ2,2 0

0 0 −γ4,2

⎤

⎥
⎦ (6.41)

∈ R
(d+d2/2+d4/2)×(d+d2/2+d4/2),

b1(t,xε(t), ε) = (0,−Γ2,1y
2,1,ε
t ,−Γ4,1β

4,1,ε
t ) ∈ R

d+d2/2+d4/2, (6.42)

b2(t,xε(t), ε) = ((−g(t,xε
t)B2y

2,1,ε
t + σ(t,xε

t)B4β
4,1,ε
t + F e(t,xε

t))/m0,

0,0) ∈ R
d+d2/2+d4/2, (6.43)

σ1(t,xε(t), ε) = [0 0 σε
1]

∗ ∈ R
(d+d2/2+d4/2)×d4/2, (6.44)

σ2(t,xε(t), ε) = [0 0 σε
2]

∗ ∈ R
(d+d2/2+d4/2)×d4/2. (6.45)
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The initial conditions are xε(0) = (x,0,β4,1,ε
0 ) and vε(0) = (v,0,β4,2,ε

0 );
both depend on ε.

We now verify each of the assumptions of Theorem A.6. Assumption A.1
clearly holds by our assumptions on the GLE. The assumptions on the coef-
ficients in the SDEs follow easily from Assumptions 5.2 and 5.3 and therefore
Assumption A.3 holds.

Next, note that β4,ε
0 = (β4,1,ε

0 ,β4,2,ε
0 ) is a random variable normally dis-

tributed with mean-zero and covariance:

M ε
4 =

[
E[|β4,1,ε

0 |2] E[β4,1,ε
0 (β4,2,ε

0 )∗]

E[β4,2,ε
0 (β4,1,ε

0 )∗] E[|β4,2,ε
0 |2]

]

, (6.46)

where

E[|β4,1,ε
0 |2] =

1
2
Γ4,1γ

2
4,2(εΓ4,1 − γ4,2)

−2 = O(1), (6.47)

E[β4,1,ε
0 (β4,2,ε

0 )∗] = E[β4,2,ε
0 (β4,1,ε

0 )∗]

= −Γ4,1γ
3
4,2(εΓ4,1 + γ4,2)

−1(εΓ4,1 − γ4,2)
−2

= O(1), (6.48)

E[|β4,2,ε
0 |2] =

1
2ε

γ3
4,2(εΓ4,1 − γ4,2)

−2 = O

(
1
ε

)
(6.49)

as ε → 0. Using the bound E[|z|p] ≤ Cp(E[|z|2])p/2, where z is a mean-zero
Gaussian random variable, Cp > 0 is a constant and p > 0, it is straightforward
to see that Assumption A.4 is satisfied.

Note that Bi = bi (for i = 1, 2) by our convention (see Appendix A), as
the bi do not depend explicitly on ε. The uniform convergence of ai(t,x, ε),
(ai)x(t,x, ε) and σi(t,x, ε) (in x) to Ai(t,x), (Ai)x(t,x) and Σi(t,x), respec-
tively, in the limit ε → 0 can be shown easily and, in fact, we see that A1 = T ,
A2 = −U , where T and U are given in (6.38),

Σ1 = [0 0 − Γ4,1]∗, (6.50)

Σ2 = [0 0 γ4,2]
∗, (6.51)

and a1 = a2 = c1 = c2 = d1 = d2 = 1, b1 = b2 = ∞, where the ai, bi, ci

and di are from Assumption A.5 of Theorem A.6. Therefore, the first part of
Assumption A.5 is satisfied.

It remains to verify the (uniform) Hurwitz stability of a2 and A2 (i.e.,
Assumption A.2 and the last part of Assumption A.5). This can be done using
the methods of the proof of Theorem 2 in [43], and we omit the details here.
The results then follow by applying Theorem A.6, and (6.34)–(6.38) follow
from matrix algebraic calculations. �

It is clear from Theorem 6.7 that the homogenized position process is
a component of the (slow) Markov process θt. In general, it is not a Markov
process itself. Also, the components of θt are coupled in a non-trivial way.
We emphasize that one could use Theorem A.6 to study cases in which the
different time scales are taken to zero in a different manner.
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The limiting SDE for the position process may simplify under additional
assumptions. In particular, in the one-dimensional case, i.e., with d = 1 (or
when all the matrix-valued coefficients and the parameters are diagonal in
the multi-dimensional case), the formula for the limiting SDEs becomes more
explicit. This special case has been studied in Sect. 2 (see Corollary 2.2) in the
context of the model (M1) in Example 1.

7. Conclusions and Final Remarks

We have explored various homogenization schemes for a wide class of gener-
alized Langevin equations and the relevance of the studied limit problems in
the context of usual and anomalous diffusion of a particle in a heat bath. Our
explorations here open up a wide range of possibilities and provide insights in
the model reduction of and effective drifts in generalized Langevin systems.

The following summarizes the main conclusions of the paper:
(i) (stochastic modeling point of view) Homogenization schemes producing

effective SDEs, driven by white noise, should be the exception rather
than the rule. This is particularly important if one seeks to reduce the
original model, retaining its non-trivial features;

(ii) (complexity reduction point of view) There is a trade-off in simplifying
GLE models with state-dependent coefficients: The greater the level
of model reduction, the more complicated the correction drift terms,
entering the homogenized model;

(iii) (statistical physics point of view) Homogenized equation obtained could
be further simplified, i.e., number of effective equations could be reduced
and the drift terms become simplified, when certain special conditions
such as a fluctuation-dissipation theorem holds.

We conclude this paper by mentioning a very interesting future direction.
As mentioned in Remark 3.7, one could extend the current GLE studies to the
infinite-dimensional setting so that a larger class of memory functions and
covariance functions can be covered. To this end, one can define the noise
process as an appropriate linear functional of a Hilbert space valued process
solving a stochastic evolution equation [12,13]. This way, one can approach
a class of GLEs, driven by noises having a completely monotone covariance
function. This large class of functions contains covariances with power decay,
and thus, the method outlined above can be viewed as an extension of those
considered in [21,55], where the memory function and covariance of the driving
noise are represented as suitable infinite series with a power-law tail. The works
in [21,55] are, to the best of our knowledge, among the few works that study
rigorously GLEs with a power-law memory. This approach to systems driven
by strongly correlated noise, which is our future project, is expected to involve
substantial technical difficulties. More importantly, one can expect that power
decay of correlations leads to new phenomena, altering the nature of noise-
induced drift.
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Appendix A: Homogenization for a Class of SDEs with
State-Dependent Coefficients

In this section, we study homogenization for a general class of perturbed SDEs
with state-dependent coefficients. Homogenization of differential equations has
been extensively studied, from the seminal works of Kurtz [38], Papanicolaou
[57] and Khasminksy [34] to the more recent works [4,5,9,28,29,58,59]. Here
we are going to present yet another variant of homogenization result that will
be needed for studying homogenization for our GLEs (see the last paragraph
in Sect. 1.3 for comments on novelty of this result).

Let n1, n2, k1, k2 be positive integers. Let ε ∈ (0, ε0] =: E be a small
parameter and xε(t) ∈ R

n1 , vε(t) ∈ R
n2 for t ∈ [0, T ], where ε0 > 0 and

T > 0 are finite constants. Let W (k1) and W (k2) denote independent Wiener
processes, which are R

k1 -valued and R
k2-valued, respectively, on a filtered

probability space (Ω,F ,Ft,P) satisfying the usual conditions [32].
With respect to the standard bases of Rn1 and R

n2 respectively, we write:

xε(t) = ([xε]1(t), [xε]2(t), . . . , [xε]n1(t)), (A.1)

vε(t) = ([vε]1(t), [vε]2(t), . . . , [vε]n2(t)). (A.2)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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We consider the following family of perturbed SDE systems4 for
(xε(t),vε(t)) ∈ R

n1+n2 :

dxε(t) = a1(t,xε(t), ε)vε(t)dt + b1(t,xε(t), ε)dt + σ1(t,xε(t), ε)dW (k1)(t),
(A.3)

εdvε(t) = a2(t,xε(t), ε)vε(t)dt + b2(t,xε(t), ε)dt + σ2(t,xε(t), ε)dW (k2)(t),
(A.4)

with the initial conditions, xε(0) = xε and vε(0) = vε, where xε and vε are
random variables that possibly depend on ε. In the SDEs (A.3) and (A.4),
the coefficients a1 : R+ × R

n1 × E → R
n1×n2 , a2 : R+ × R

n1 × E → R
n2×n2 ,

σ2 : R+ × R
n1 × E → R

n2×k2 are nonzero matrix-valued functions, whereas
b1 : R+×R

n1×E → R
n1 , b2 : R+×R

n1×E → R
n2 , σ1 : R+×R

n1×E → R
n1×k1

are matrix-valued or vector-valued functions, which may depend on xε, as well
as on t and ε explicitly, as indicated by the parentheses (t,xε(t), ε). In the case
where the coefficients do not depend on ε explicitly, we will denote them by
the corresponding capital letters (for instance, if ai(t,x, ε) = ai(t,x), then
ai(t,x) := Ai(t,x) etc.).

We are interested in the limit as ε → 0 of the SDEs (A.3) and (A.4),
in particular the limiting behavior of the process xε(t), under appropriate as-
sumptions5 on the coefficients. In this appendix, we present a homogenization
theorem that studies this limit and delay its proof to Appendix B.

We make the following assumptions concerning the SDEs (A.3) and (A.4)
and (A.10).

Assumption A.1. The global solutions, defined on [0, T ], to the pre-limit SDEs
(A.3) and (A.4) and to the limiting SDE (A.10) a.s. exist and are unique for
all ε ∈ E (i.e., there are no explosions).

Assumption A.2. The matrix-valued functions

{−a2(t,y, ε); t ∈ [0, T ],y ∈ R
n1 , ε ∈ E}

are uniformly positive stable, i.e., all real parts of the eigenvalues of −a2(t,y, ε)
are bounded from below, uniformly in t, y and ε, by a positive constant (or,
equivalently, the matrix-valued functions {a2(t,y, ε); t ∈ [0, T ],y ∈ R

n1 , ε ∈ E}
are uniformly Hurwitz stable). They are O(1) as ε → 0 (see Assumption A.5).

Assumption A.3. For t ∈ [0, T ], y ∈ R
n1 , ε ∈ E , and i = 1, 2, the functions

bi(t,y, ε) and σi(t,y, ε) are continuous and bounded in t and y, and Lipschitz
in y, whereas the functions ai(t,y, ε) and (ai)y (t,y, ε) are continuous in t,
continuously differentiable in y, bounded in t and y, and Lipschitz in y. More-
over, the functions (ai)yy (t,y, ε) (i = 1, 2) are bounded for every t ∈ [0, T ],
y ∈ R

n1 and ε ∈ E .

4Note that here the variables xε(t) and v ε(t) are general and they do not necessarily repre-
sent position and velocity variables of a physical system.
5We forewarn the readers that our assumptions can be relaxed in various directions (see
later remarks) but we will not pursue these generalizations here.
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We assume that the (global) Lipschitz constants are bounded by L(ε),
where L(ε) = O(1) as ε → 0, i.e., for every t ∈ [0, T ], x, y ∈ R

n1 ,

max
{

‖ai(t,x, ε) − ai(t,y, ε)‖, ‖(ai)x(t,x, ε) − (ai)x(t,y, ε)‖,

|bi(t,x, ε) − bi(t,y, ε)|, ‖σi(t,x, ε) − σi(t,y, ε)‖; i = 1, 2
}

≤ L(ε)|x − y|. (A.5)

Assumption A.4. The initial condition xε
0 = xε ∈ R

n1 is an F0-measurable
random variable that may depend on ε, and we assume that E[|xε|p] = O(1)
as ε → 0 for all p > 0. Also, xε converges, in the limit as ε → 0, to a
random variable x as follows: E [|xε − x|p] = O(εpr0), where r0 > 1/2 is a
constant, as ε → 0. The initial condition vε

0 = vε ∈ R
n2 is an F0-measurable

random variable that may depend on ε, and we assume that for every p > 0,
E[|εvε|p] = O(εα) as ε → 0, for some α ≥ p/2.

Assumption A.5. For i = 1, 2, t ∈ [0, T ], and every x ∈ R
n1 , each of the matrix

or vector entries of the (nonzero) functions ai(t,x, ε), (ai)x(t,x, ε), bi(t,x, ε)
and σi(t,x, ε), converges, uniformly in x, to a unique nonzero limit as ε → 0.
Their limits are denoted by Ai(t,x), (Ai)x(t,x), Bi(t,x) and Σi(t,x), respec-
tively. Their rate of convergence is assumed to satisfy the following power-law
bounds: for every t ∈ [0, T ], x ∈ R

n1 and i = 1, 2,

‖ai(t,x, ε) − Ai(t,x)‖ ≤ αi(ε), (A.6)

|bi(t,x, ε) − Bi(t,x)| ≤ βi(ε), (A.7)

‖σi(t,x, ε) − Σi(t,x)‖ ≤ γi(ε), (A.8)

‖(ai)x(t,x, ε) − (Ai)x(t,x)‖ ≤ θi(ε) (A.9)

where αi(ε) = O(εai), βi(ε) = O(εbi), γi(ε) = O(εci) and θi(ε) = O(εdi), as
ε → 0, for some positive exponents ai, bi, ci and di. Moreover, we assume that
A2(t,x) is Hurwitz stable for every t and x.

Convention. In the case where the coefficients do not show explicit dependence
on ε or in the case when any of the coefficients b1, b2 and σ1 is zero, we set
the exponent, describing the corresponding rate of convergence, to infinity. For
instance, if ai(t,x, ε) = Ai(t,x), we set ai = ∞. Meanwhile, if σ1 = 0, we set
c1 = ∞, etc.

We now state our homogenization theorem.

Theorem A.6. Suppose that the family of SDE systems (A.3) and (A.4) sat-
isfies Assumptions A.1–A.5. Let (xε(t),vε(t)) ∈ R

n1 × R
n2 be their solutions,

with the initial conditions (xε,vε). Let X(t) ∈ R
n1 be the solution to the fol-

lowing Itô SDE with the initial position X(0) = x:

dX(t) = [B1(t,X(t)) − A1(t,X(t))A−1
2 (t,X(t))B2(t,X(t))]dt

+ S(t,X(t))dt + Σ1(t,X(t))dW (k1)(t)

− A1(t,X(t))A−1
2 (t,X(t))Σ2(t,X(t))dW (k2)(t), (A.10)
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where S(t,X(t)) is the noise-induced drift vector whose ith component is given
by

[S]i(t,X) = − ∂

∂Xl

(
[A1A

−1
2 ]i,j(t,X)

)
· [A1]l,k(t,X) · [J ]j,k(t,X), (A.11)

where i, l = 1, . . . , n1, j, k = 1, . . . , n2, or in index-free notation,

S = A1A
−1
2 ∇ · (JA∗

1) − ∇ · (A1A
−1
2 JA∗

1), (A.12)

and J ∈ R
n2×n2 is the unique solution to the Lyapunov equation:

JA∗
2 + A2J = −Σ2Σ∗

2. (A.13)

Then the process xε(t) converges, as ε → 0, to the solution X(t), of the Itô
SDE (A.10), in the following sense: for all finite T > 0, p > 0, there exists a
positive random variable ε1 such that

E

[

sup
t∈[0,T ]

|xε(t) − X(t)|p; ε ≤ ε1

]

= O(εr), (A.14)

in the limit as ε → 0, with r > 0 is defined as:

r =

{
β for all 0 < β < p

2 , if ai, bi, ci, di ≥ 1
2 for i = 1, 2,

p · min(ai, bi, ci, di; i = 1, 2), otherwise,
(A.15)

where the ai, bi, ci, di (i = 1, 2) are the positive constants from Assump-
tion A.5. In particular, for all finite T > 0,

sup
t∈[0,T ]

|xε(t) − X(t)| → 0, (A.16)

in probability, in the limit as ε → 0.

Remark A.7. With more work and additional assumptions, one could prove
the statements in Assumption A.1 from Assumptions A.2–A.5. However, we
choose to incorporate such existence and uniqueness results into our assump-
tions and work with the assumptions as stated above. Moreover, as we have
forewarned the readers, our assumptions can be relaxed in various directions at
the cost of more technicalities. For instance, the boundedness assumption on
the coefficients of the SDEs may be removed to obtain still a pathwise conver-
gence result by adapting the techniques in [28]—see also analogous remarks
in Remark 5 in [43]. However, we choose not to pursue the above technical
details in this already long paper.

Appendix B: Proof of Theorem A.6

Proof of Theorem A.6 uses techniques developed in earlier works [6,29,43],
but here one needs to additionally take into account the ε-dependence of the
coefficients in the SDEs (A.3) and (A.4). As a preparation for the proof, we
need a few lemmas and propositions.

We start from an elementary calculus result.
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Lemma B.1. For i = 1, . . . , N , let f i(y, ε) : Rn × (0,∞) → R
mi×n be bounded

and globally Lipschitz in y for every ε > 0, with a Lipschitz constant that is
bounded as ε → 0, i.e., for every y,z ∈ R

n, there exists a constant Mi(ε) > 0
such that

‖f i(y, ε) − f i(z, ε)‖ ≤ Mi(ε)|y − z|, (B.1)

where Mi(ε) = O(1) as ε → 0.

(i) Suppose that for each i and y ∈ R
n, there exists a unique bounded F i(y) :

R
n → R

mi×n and a constant Ci > 0 such that ‖f i(y, ε)−F i(y)‖ ≤ Ciε
ri ,

for some positive constant ri, as ε → 0 (i.e., the left-hand side is of order
O(εri) as ε → 0). Then there exist constants D, K1, . . . ,KN > 0, such
that

∥
∥
∥
∥

N∏

i=1

f i(y, ε) −
N∏

i=1

F i(y)
∥
∥
∥
∥ ≤ K1ε

r1 + · · · + KN εrN ≤ Dεmin(r1,...,rN ) (B.2)

= O(εmin(r1,...,rN )), (B.3)

as ε → 0. If, in addition, n = m1, f1(y, ε) and F 1(y) are invertible for
every y ∈ R

n and ε > 0, then ‖f−1
1 (y, ε) − F −1

1 (y)‖ = O(εr1) as ε → 0.
(ii) Let ci ∈ R, i = 1, . . . , N . For every ε > 0 and y ∈ R

n,
∑N

i=1 cif i(y, ε)
and

∏N
i=1 cif i(y, ε) are globally Lipschitz with a Lipschitz constant that

is O(1) as ε → 0. Moreover, if m1 = n and for every ε > 0, y ∈ R
n,

f1(y, ε) is invertible, then for every ε > 0, y ∈ R
n, f−1

1 (y, ε) is globally
Lipschitz in y with a Lipschitz constant that is O(1) as ε → 0.

Proof. (i) We prove this inductively. The base case of N = 1 clearly holds
with D = C1. Let k ∈ {1, . . . , N − 1}. Assume that (B.2) holds with
N := k and D := Dk. Then

∥
∥
∥
∥

k+1∏

i=1

f i(y, ε) −
k+1∏

i=1

F i(y)
∥
∥
∥
∥

=
∥
∥
∥
∥fk+1(y, ε) ·

k∏

i=1

f i(y, ε) − F k+1(y) ·
k∏

i=1

F i(y)
∥
∥
∥
∥ (B.4)

≤ ‖fk+1(y, ε)‖ ·
∥
∥
∥
∥
∥

k∏

i=1

f i(y, ε) −
k∏

i=1

F i(y)

∥
∥
∥
∥
∥

+ ‖fk+1(y, ε) − F k+1(y)‖ ·
∥
∥
∥
∥
∥

k∏

i=1

F i(y)

∥
∥
∥
∥
∥

(B.5)

≤ C(Dkεmin(r1,...,rk) + Ck+1ε
rk+1) (B.6)

≤ C max{Dk, Ck+1}(εmin(r1,...,rk) + εrk+1) ≤ Dk+1ε
min(r1,...,rk+1), (B.7)

as ε → 0, where C, Dk+1 are positive constants and we have used the
inductive hypothesis and assumptions of the lemma in the last two lines
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above. The last statement follows from:

‖f−1
1 (y, ε) − F −1

1 (y)‖ = ‖f−1
1 (y, ε)(F 1(y) − f1(y, ε))F −1

1 (y)‖ (B.8)

≤ ‖f−1
1 (y, ε)‖ · ‖F 1(y) − f1(y, ε)‖ · ‖F −1

1 (y)‖ (B.9)

≤ Cεr1 , (B.10)

as ε → 0, where C is a positive constant.
(ii) The statements can be proven using the same techniques used for (i) and

so we omit the proof. �

Let xε(t) ∈ R
n1 , vε(t) ∈ R

n2 and T > 0. For t ∈ [0, T ], let pε(t) := εvε(t)
denote a solution of the SDE:

dpε(t) =
a2(t,xε(t), ε)

ε
pε(t)dt + b2(t,xε(t), ε)dt + σ2(t,xε(t), ε)dW (k2)(t).

(B.11)

We provide estimates for the moments of the process pε(t), under appro-
priate assumptions on the coefficients and the initial conditions, in the limit
as ε → 0.

We need the following lemma, adapted from Proposition A.2.3 of [31],
to obtain an exponential bound on fundamental matrix solutions of a linear
equation.

Lemma B.2. Fix a filtered probability space (Ω,F ,Ft,P). For each ε > 0, let
Bε : [0, T ] × Ω → R

n×n be a bounded (uniformly in ε, ω ∈ Ω and t ∈ [0, T ]),
pathwise continuous process. Assume that the real parts of all eigenvalues of
B are bounded from above by −2κ, uniformly in ε, ω ∈ Ω and t ∈ [0, T ], where
κ is a positive constant. Let Φε(t, s, ω) be the fundamental matrix that solves
the initial value problem (IVP):

∂Φε(t, s, ω)
∂t

=
Bε(t, ω)

ε
Φε(t, s, ω), Φε(s, s, ω) = I, 0 ≤ s ≤ t ≤ T. (B.12)

Then there exists a constant C > 0 and an (in general random6) ε1 = ε1(ω)
such that

‖Φε(t, s, ω)‖ ≤ Ce−κ(t−s)/ε (B.13)

for all ε ≤ ε1 and for all s, t ∈ [0, T ].

Proof. Let u ∈ [s, t]. We rewrite for ω ∈ Ω, s, t ∈ [0, T ]:

∂Φε(t, s, ω)
∂t

=
Bε(u, ω)

ε
Φε(t, s, ω) +

Bε(t, ω) − Bε(u, ω)
ε

Φε(t, s, ω), (B.14)

and represent the solution to the IVP as:

Φε(t, s, ω)=e(t−s) B ε(u,ω)
ε +

1
ε

∫ t

s

e(t−r) B ε(u,ω)
ε (Bε(r, ω)−Bε(u, ω))Φε(r, s, ω)dr.

(B.15)

6See also Remark 14 in [43].
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Denote W ε(t, s, ω) := eκ(t−s)/εΦε(t, s, ω). Setting u = t in the above
representation and multiplying both sides by eκ(t−s)/ε, we obtain:

W ε(t, s, ω)

= eκ(t−s)/εe(t−s)B ε(t,ω)/ε+
1
ε

∫ t

s

eκ(t−s)/εe(t−r)B ε(t,ω)/ε(Bε(r, ω)−Bε(t, ω))

· Φε(r, s, ω)dr (B.16)

= eκ(t−s)/εe(t−s)B ε(t,ω)/ε +
1
ε

∫ t

s

eκ(t−s)/εe(t−r)B ε(t,ω)/εe−κ(r−s)/ε

· (Bε(r, ω) − Bε(t, ω))W ε(r, s, ω)dr. (B.17)

Since Bε is bounded (uniformly in ω, t and ε), by assumption on the spectrum
of Bε, there exists a constant C > 0, such that for all s, t ∈ [0, T ] we have

‖esB ε(t,ω)/ε‖ ≤ Ce−2κs/ε (B.18)

Using this, we obtain:

‖W ε(t, s, ω)‖ ≤ Ce−κ(t−s)/ε

+
C

ε

∫ t

s

e−2κ(t−r)/εe−κ(r−s)/εeκ(t−s)/ε‖W ε(r, s, ω)‖
· ‖Bε(r, ω) − Bε(t, ω)‖dr. (B.19)

This leads to the estimate:

sup
s,t∈[0,T ]

‖W ε(t, s, ω)‖ ≤ C + sup
r,s∈[0,T ]

‖W ε(r, s, ω)‖ · Aε(ω), (B.20)

where

Aε(ω) =
C

ε
sup

t∈[0,T ]

∫ t

0

e− κ(t−r)
ε ‖Bε(r, ω) − Bε(t, ω)‖ dr. (B.21)

For a fixed ω ∈ Ω, Aε(ω) can be made arbitrary small as ε → 0. Therefore,
there exists an ε1 = ε1(ω) > 0 (generally dependent on ω) such that

sup
s,t∈[0,T ]

‖W ε(t, s, ω)‖ ≤ C +
1
2

sup
s,t∈[0,T ]

‖W ε(t, s, ω)‖ (B.22)

for all ε ≤ ε1. This implies that sups,t∈[0,T ] ‖W ε(t, s, ω)‖ ≤ 2C, which is the
claimed bound. �

We now prove a lemma that gives a bound on a class of stochastic inte-
grals. It is modification of Lemma 5.1 in [4]. In both cases, the main idea is to
rewrite some of the stochastic integrals in terms of ordinary ones.

Lemma B.3. Let Ht := H0 +M t +At be the Doob-Meyer decomposition of a
continuous R

k-valued semimartingale on (Ω,F ,Ft, P ) with a local martingale
M t and a process of locally bounded variation At. Let V ∈ L1

loc(A) ∩ L2
loc(M)

be R
n×k-valued and let Bε(t) be an adapted process whose values are n × n

matrices, satisfying the assumptions of Lemma B.2. Let Φε(t) := Φε(t, 0) be
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the adapted C1 process that pathwise solves the IVP (B.12). Then for every
T ≥ δ > 0 and for every ε ≤ ε1, we have the P-a.s bound:

sup
t∈[0,T ]

∣
∣
∣
∣Φ

ε(t)
∫ t

0

(Φε)−1(s)V sdHs

∣
∣
∣
∣

≤ C

(

1 +
4
κ

sup
s∈[0,T ]

‖Bε(s)‖
)(

e−κδ/ε sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0

V rdHr

∣
∣
∣
∣

+ max
k=0,1,...,N−1

sup
t∈[kδ,(k+2)δ]

∣
∣
∣
∣

∫ t

kδ

V rdHr

∣
∣
∣
∣

)
, (B.23)

where N = max{k ∈ Z : kδ < T}, ε1, κ and C are from Lemma B.2, and
l2-norm is used on every R

k.

Proof. The proof is identical to that of Lemma 5.1 in [4] up to line (5.10), with
the constant α there replaced by κ, etc. We let ε ≤ ε1 and replace the bound
in line (5.11) there by the following bound, which follows from the semigroup
property of the fundamental matrix process and Lemma B.2:

‖Φε(t)(Φε)−1(s)‖ = ‖Φε(t, 0)Φε(0, s)‖ = ‖Φε(t, s)‖ ≤ Ce−κ(t−s)/ε. (B.24)

Then we proceed as in the proof of Lemma 5.1 in [4] to get the desired bound.
�

In particular, (B.13) and (B.23) hold for Bε = a2(t,xε(t), ε).

Proposition B.4. Suppose that Assumptions A.1–A.5 hold. For all p ≥ 1, T >
0, 0 < β < p/2, there exists a positive random variable ε1 such that:

E

[

sup
t∈[0,T ]

|pε(t)|p; ε ≤ ε1

]

= O(εβ), (B.25)

as ε → 0, where pε(t) solves the SDE (B.11). Therefore, for any p ≥ 1, T > 0,
β > 0, we have

E

[

sup
t∈[0,T ]

‖εvε(t)vε(t)∗‖p
F ; ε ≤ ε1

]

= O(ε−β), (B.26)

as ε → 0, where ‖ · ‖F denotes the Frobenius norm.

Proof. Let Φε(t) be the matrix-valued process solving the IVP:

∂Φε(t)
∂t

=
a2(t,xε(t), ε)

ε
Φε(t), Φε(0) = I. (B.27)
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Then,

pε(t) = Φε(t)εvε + Φε(t)
∫ t

0

Φ−1
ε (s)b2(s,xε(s), ε)ds

+ Φε(t)
∫ t

0

Φ−1
ε (s)σ2(s,xε(s), ε)dW (k2)(s) (B.28)

= Φε(t)εvε + Φε(t)
∫ t

0

Φ−1
ε (s)B2(s,xε(s))ds

+ Φε(t)
∫ t

0

Φ−1
ε (s) [b2(s,xε(s), ε) − B2(s,xε(s))] ds

+ Φε(t)
∫ t

0

Φ−1
ε (s)σ2(s,xε(s), ε)dW (k2)(s). (B.29)

Therefore, for T > 0 and p ≥ 1, using the bound
∣
∣
∣
∣
∣

N∑

i=1

ai

∣
∣
∣
∣
∣

p

≤ Np−1
N∑

i=1

|ai|p (B.30)

for p ≥ 1 (here the ai ∈ R and N is a positive integer), taking supremum on
both sides, and applying Lemma B.2 (with Bε = a2(t,xε(t), ε)), we estimate:

sup
t∈[0,T ]

|pε(t)|p

≤ 4p−1 sup
t∈[0,T ]

[
Cpe− κp

ε tεp|vε|p + Cp

(∫ t

0

e− κ
ε (t−s)|B2(s,xε(s))|ds

)p

+ Cp

(∫ t

0

e− κ
ε (t−s)

∣
∣
∣
∣[b2(s,xε(s), ε) − B2(s,xε(s))]

∣
∣
∣
∣ds

)p

+
∣
∣
∣
∣Φε(t)

∫ t

0

Φ−1
ε (s)σ2(s,xε(s), ε)dW (k2)(s)

∣
∣
∣
∣

p]
(B.31)

≤ 4p−1

(
Cpεp|vε|p +

Cpεp

κp

(
sup

s∈[0,T ]

|B2(s,xε(s))|p

+ sup
s∈[0,T ]

|b2(s,xε(s), ε) − B2(s,xε(s))|p
)

+ sup
t∈[0,T ]

∣
∣
∣
∣Φε(t)

∫ t

0

Φ−1
ε (s)σ2(s,xε(s), ε)dW (k2)(s)

∣
∣
∣
∣

p)
, (B.32)

for ε ≤ ε1, where C > 0, κ > 0, and ε1 > 0 is the random variable whose
existence was proven in Lemma B.2.

Note that sups∈[0,T ] |B2(s,xε(s))|p < ∞ and Assumption A.5 implies
that

sup
s∈[0,T ]

|b2(s,xε(s), ε) − B2(s,xε(s))|p ≤ |β2(ε)|p, (B.33)

where β2(ε) ≤ Kεb2 .
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Denote E1[·] = E[·; ε ≤ ε1], i.e., the expectation is taken on {ω : ε ≤
ε1(ω)}. We are going to estimate E1

[
supt∈[0,T ] |pε(t)|p

]
.

By Assumption A.4, we have E1[supt∈[0,T ] |εvε|p] = O(εα) as ε → 0, for
some α ≥ p/2. Therefore, combining the above estimates, we obtain:

E1

[

sup
t∈[0,T ]

|pε(t)|p
]

≤ C1(p)(εα + εb2p + εp)

+ C2(p)E1

[

sup
t∈[0,T ]

∣
∣
∣
∣Φε(t)

∫ t

0

Φ−1
ε (s)σ2(s,xε(s), ε)dW (k2)(s)

∣
∣
∣
∣

p
]

,

(B.34)

where C1(p), C2(p) > 0 are constants.
Next, the idea is to use Lemma B.3 and the Burkholder-Davis-Gundy in-

equality (see Theorem 3.28 in [32]) to estimate the last term on the right-hand
side above. This is analogous to the technique used in the proof of Proposition
5.1 in [4].

Let δ be a constant such that 0 < δ < T . Applying Lemma B.3, we
estimate, using (B.30):

E1

[

sup
t∈[0,T ]

∣
∣
∣
∣Φε(t)

∫ t

0

Φ−1
ε (s)σ2(s,xε(s), ε)dW (k2)(s)

∣
∣
∣
∣

p
]

≤ 2p−1Cp
E1

[(

1 +
4
κ

sup
s∈[0,T ]

‖a2(s,xε(s), ε)‖
)p

· Π

]

, (B.35)

≤ 2p−1Cp

(
1 +

4
κ

‖a2(t,xε(t), ε)‖∞

)p

· E1[Π], (B.36)

where ‖a2(t,xε(t), ε)‖∞ := supt∈[0,T ],y∈Rn1 ,ε∈E ‖a2(t,y, ε)‖ and

Π = e−pδκ/ε sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0

σ2(s,xε(s), ε)dW (k2)(s)
∣
∣
∣
∣

p

+ max
k=0,...,N−1

sup
t∈[kδ,(k+2)δ]

∣
∣
∣
∣

∫ t

kδ

σ2(s,xε(s), ε)dW (k2)(s)
∣
∣
∣
∣

p

. (B.37)

We estimate:

E1[Π] = e−pδκ/ε
E1

[

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0

σ2(s,xε(s), ε)dW (k2)(s)
∣
∣
∣
∣

p
]

+ E1

[

max
k=0,...,N−1

sup
t∈[kδ,(k+2)δ]

∣
∣
∣
∣

∫ t

kδ

σ2(s,xε(s), ε)dW (k2)(s)
∣
∣
∣
∣

p
]

(B.38)

≤ e−pδκ/ε
E1

[

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0

σ2(s,xε(s), ε)dW (k2)(s)
∣
∣
∣
∣

p
]
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+ E1

⎡

⎣

(
N−1∑

k=0

sup
t∈[kδ,(k+2)δ]

(∫ t

kδ

σ2(s,xε(s), ε)dW (k2)(s)
)pq

)1/q
⎤

⎦

(B.39)

≤ e−pδκ/ε
E1

[

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0

σ2(s,xε(s), ε)dW (k2)(s)
∣
∣
∣
∣

p
]

+

⎛

⎝
N−1∑

k=0

E1

[

sup
t∈[kδ,(k+2)δ]

(∫ t

kδ

σ2(s,xε(s), ε)dW (k2)(s)
)pq

)1/q
⎤

⎦ ,

(B.40)

with N := max{k ∈ Z : kδ < T}, where we have used the fact that the
l∞-norm on R

N is bounded by the lq norm for every q ≥ 1 and then applied
Hölder’s inequality to get the last two lines above.

Now, letting δ = ε1−h for 0 < h < 1, and using the Burkholder-Davis-
Gundy inequality,

E1[Π] ≤ Cp,q

⎡

⎣e−pκ/εh

E1

[(∫ T

0

‖σ2(s,xε(s), ε)‖2
F ds

) pq
2
]1/q

+

⎛

⎝
N−1∑

k=0

E1

(∫ (k+2)δ

kδ

‖σ2(s,xε(s), ε)‖2
F ds

) pq
2
⎞

⎠

1/q
⎤

⎥
⎦ (B.41)

≤ Cp,q‖σ2(s,xε(s), ε)‖p
F,∞(e−pκ/εh

T p/2 + 2p/2(Nδ
pq
2 )1/q), (B.42)

where Cp,q is some constant and

‖σ2(s,xε(s), ε)‖F,∞ := sup
t∈[0,T ],y∈Rn1 ,ε∈E

‖σ2(t,y, ε)‖F < ∞. (B.43)

Since Nδ < T , we have Nδpq/2 < Tδpq/2−1 = Tε(1−h)(pq/2−1). Therefore,
E1[Π] = O(ε(1−h)(p/2−1/q)). For all 0 < β < p/2, one can choose 0 < h < 1
and q > 1 such that (1 − h)(p/2 − 1/q) = β.

Therefore, we have

E1

[

sup
t∈[0,T ]

∣
∣
∣
∣Φε(t)

∫ t

0

Φ−1
ε (s)σ2(s,xε(s), ε)dW (k2)(s)

∣
∣
∣
∣

p
]

= O(εβ) (B.44)

as ε → 0, for all 0 < β < p/2.
Combining all the estimates obtained, one has:

E1

[

sup
t∈[0,T ]

|pε(t)|p
]

≤ C1ε
α + C2ε

p + C3ε
pb2 + C4ε

β (B.45)

where the Ci are positive constants, α ≥ p/2 is some constant, and b2 > 0 is
the constant from Assumption A.5. The statement of the proposition follows.

�
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We also need the following estimate on a class of integrals with respect
to products of the coordinates of the process pε(t).

Proposition B.5. Suppose that Assumptions A.1–A.5 hold and ε ∈ E. Let hε :
R

+ ×R
n1 → R be a family of functions, continuously differentiable in y ∈ R

n1

and bounded (in s ∈ R
+ and y ∈ R

n1), with bounded first derivatives ∇yhε(y)
for y ∈ R

n1 . Assume that hε and ∇yhε(y) are O(1) as ε → 0. Moreover,
assume that ∂

∂shε is bounded and is O(1) as ε → 0.
Then for any p ≥ 1, T > 0, 0 < β < p/2, i, j = 1, . . . , n2, in the limit as

ε → 0 we have

E

[

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0

hε(s,xε(s))d([pε]i(s) · [pε]j(s))
∣
∣
∣
∣

p

; ε ≤ ε1

]

= O(εβ), (B.46)

where xε(t) and pε(t) solve the SDEs (A.3) and (A.4) and the SDE (B.11),
respectively, and ε1 is from Proposition B.4.

Proof. Let ε ∈ E , t ∈ [0, T ], and i, j = 1, . . . , n2. An integration by parts gives:
∫ t

0

hε(s,xε(s))d([pε]i(s) · [pε]j(s))

= hε(t,xε(t))[pε]i(t)[pε]j(t) − hε(t,xε)[pε]i[pε]j

−
∫ t

0

[pε]i(s)[pε]j(s)
(

∇xεhε(s,xε(s)) · pε(s)
ε

+
∂

∂s
hε(s,xε(s))

)
ds.

(B.47)

Using the notation E1[·] = E[·; ε ≤ ε1], we estimate, for p ≥ 1,

E1

[

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0

hε(s,xε(s))d([pε]i(s) · [pε]j(s))
∣
∣
∣
∣

p
]

≤ 4p−1

(
E1 sup

t∈[0,T ]

|hε(t,xε(t))[pε]i(t)[pε]j(t)|p

+ E1 sup
t∈[0,T ]

|hε(t,xε)[pε]i[pε]j |p

+ E1 sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0

[pε]i(s)[pε]j(s)∇xεhε(s,xε(s)) · pε(s)
ε

ds

∣
∣
∣
∣

p

+ E1 sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0

[pε]i(s)[pε]j(s)
∂

∂s
hε(s,xε(s))ds

∣
∣
∣
∣

p)
(B.48)

≤ C(p, T )
[
‖hε‖p

∞

(

E1 sup
t∈[0,T ]

|pε(t)|2p + E1|pε|2p

)

+
1
εp
E1 sup

t∈[0,T ]

∣
∣
∣
∣

∫ t

0

[pε]i(s)[pε]j(s)[∇xεhε]k(s,xε(s))[pε]k(s)ds

∣
∣
∣
∣

p

+
∥
∥
∥
∥

∂

∂s
hε

∥
∥
∥
∥

p

∞
· E1 sup

t∈[0,T ]

|pε(t)|2p

]
, (B.49)
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where C(p, T ) > 0 is a constant, ‖gε‖∞ := sups∈[0,T ],y∈Rn1 |gε(s,y)|, and we
have used Einstein’s summation over repeated indices convention.

Now, estimating as before, we obtain:

E1 sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0

[pε]i(s)[pε]j(s)[∇xεhε]k(s,xε(s))[pε]k(s)ds

∣
∣
∣
∣

p

≤ D(p, T )‖∇xεhε‖∞ · E1 sup
t∈[0,T ]

|pε(t)|3p, (B.50)

where D(p, T ) > 0 is a constant.
By our assumptions, all the quantities of the form ‖ · ‖∞ are bounded

and are O(1) as ε → 0. Therefore, collecting the above estimates, using As-
sumption A.4, and applying Proposition B.4, we have, for p ≥ 1, T > 0,
i, j = 1, . . . , n2,

E1

[

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0

hε(s,xε(s))d([pε]i(s) · [pε]j(s))
∣
∣
∣
∣

p
]

= O(εβ), (B.51)

for every 0 < β < p/2. �

Now we proceed to prove Theorem A.6. Using the above moment es-
timates and the proof techniques in [4,6], we are going to first obtain the
convergence of xε

t to Xt in the limit as ε → 0 in the following sense: for all
finite T > 0, p ≥ 1,

E

[

sup
t∈[0,T ]

|xε
t − Xt|p; ε ≤ ε1

]

→ 0, (B.52)

as ε → 0, where the ε1 is from Proposition B.4. The main tools are well-
known ordinary and stochastic integral inequalities, as well as a Gronwall type
argument. This result will then imply that for all finite T > 0, supt∈[0,T ] |xε

t −
Xt| → 0 in probability, in the limit as ε → 0 (see Lemma 1 in [43]).

Proof of Theorem A.6. Let T > 0 and recall that [B]i,j denotes the (i, j)-entry
of a matrix B. First, we assume that p > 2.

From (A.4), we have, for every ε > 0, t ∈ [0, T ],

vε(t)dt = εa−1
2 (t,xε(t), ε)dvε(t) − a−1

2 (t,xε(t), ε)b2(t,xε(t), ε)dt

− a−1
2 (t,xε(t), ε)σ2(t,xε(t), ε)dW (k2)(t). (B.53)

Substituting this into (A.3), we obtain:

dxε(t) = εa1(t,xε(t), ε)a−1
2 (t,xε(t), ε)dvε(t)

− a1(t,xε(t), ε)a−1
2 (t,xε(t), ε)b2(t,xε(t), ε)dt

− a1(t,xε(t), ε)a−1
2 (t,xε(t), ε)σ2(t,xε(t), ε)dW (k2)(t)

+ b1(t,xε(t), ε)dt + σ1(t,xε(t), ε)dW (k1)(t). (B.54)
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In integral form, we have:

xε(t) = xε + ε

∫ t

0

a1(s,xε(s), ε)a−1
2 (s,xε(s), ε)dvε(s)

+
∫ t

0

{b1(s,xε(s), ε) − a1(s,xε(s), ε)a−1
2 (s,xε(s), ε)b2(s,xε(s), ε)}ds

−
∫ t

0

a1(s,xε(s), ε)a−1
2 (s,xε(s), ε)σ2(s,xε(s), ε)dW (k2)(s)

+
∫ t

0

σ1(s,xε(s), ε)dW (k1)(s). (B.55)

The ith component, [xε]i(t) (i = 1, 2, . . . , n1) is (recall that we are em-
ploying Einstein’s summation convention):

[xε]i(t) = [xε]i + ε

∫ t

0

[a1a
−1
2 ]i,j(s,xε(s), ε) · d[vε]j(s)

+
∫ t

0

{[b1]i(s,xε(s), ε) − [a1a
−1
2 b2]i(s,xε(s), ε)}ds

−
∫ t

0

[a1a
−1
2 σ2]i,j(s,xε(s), ε) · d[W (k2)]j(s)

+
∫ t

0

[σ1]i,j(s,xε(s), ε) · d[W (k1)]j(s). (B.56)

Next, we perform integration by parts in the second term on the right-
hand side above:
∫ t

0

[Sε]i(s,xε(s),vε(s), ε)ds := ε

∫ t

0

[a1a
−1
2 ]i,j(s,xε(s), ε) · d[vε]j(s) (B.57)

= ε[a1a
−1
2 ]i,j(t,xε(t), ε) · [vε]j(t) − ε[a1a

−1
2 ]i,j(0,x, ε) · [vε]j

−
∫ t

0

∂

∂[xε]l(s)

(
[a1a

−1
2 ]i,j(s,xε(s), ε)

)
· d[xε]l(s) · ε[vε]j(s)

−
∫ t

0

∂

∂s

(
[a1a

−1
2 ]i,j(s,xε(s), ε)

) · ε[vε]j(s)ds. (B.58)

Substituting the following expression for d[xε]l(s):

d[xε]l(s) = [a1]l,k(s,xε(s), ε)[vε]k(s)ds + [b1]l(s,xε(s), ε)ds

+ [σ1]l,k(s,xε(s), ε)d[W (k1)]k(s) (B.59)

into (B.58), we obtain:
∫ t

0

[Sε]i(s,xε(s),vε(s), ε)ds

= ε[a1a
−1
2 ]i,j(t,xε(t), ε) · [vε]j(t) − ε[a1a

−1
2 ]i,j(0,x, ε) · [vε]j

−
∫ t

0

∂

∂[xε]l(s)

(
[a1a

−1
2 ]i,j(s,xε(s), ε)

)
· [b1]l(s,xε(s), ε) · ε[vε]j(s)ds
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−
∫ t

0

∂

∂[xε]l(s)

(
[a1a

−1
2 ]i,j(s,xε(s), ε)

)

[σ1]l,k(s,xε(s), ε)ε[vε]j(s)d[W (k1)]k(s)

−
∫ t

0

∂

∂[xε]l(s)

(
[a1a

−1
2 ]i,j(s,xε(s), ε)

)

× [a1]l,k(s,xε(s), ε)ε[vε]k(s)[vε]j(s)ds

−
∫ t

0

∂

∂s

(
[a1a

−1
2 ]i,j(s,xε(s), ε)

) · ε[vε]j(s)ds. (B.60)

Next, we apply Itô formula to εvε(t)(εvε(t))∗ ∈ R
n2×n2 :

d[εv ε(t)(εv ε(t))∗]

= εdv ε(t) · ε(v ε(t))∗ + εv ε(t) · εd(v ε(t))∗ + d[εv ε(t)] · d[(εv ε(t))∗] (B.61)

=
[
a2(t, x

ε(t), ε)v ε(t)dt + b2(t, x
ε(t), ε)dt + σ 2(t, x

ε(t), ε)dW (k2)(t)
]
εv ε(t)∗

+ εv ε(t)
[
a2(t, x

ε(t), ε)v ε(t)dt + b2(t, x
ε(t), ε)dt + σ 2(t, x

ε(t), ε)dW (k2)(t)
]∗

+ σ 2(t, x
ε(t), ε)σ∗

2(t, x
ε(t), ε)dt. (B.62)

Denoting J ε(t) := εvε(t)(vε(t))∗, we can rewrite the above as:

−a2(t,xε(t), ε)J ε(t)dt −J ε(t)a∗
2(t,x

ε(t), ε)dt = F ε
1(t)dt +F ε

2(t)dt +F ε
3(t)dt,
(B.63)

where

F ε
1(t)dt = −d[εvε(t)(εvε(t))∗], (B.64)

F ε
2(t)dt = (b2(t,xε(t), ε)dt + σ2(t,xε(t), ε)dW (k2)(t))ε(vε(t))∗

+ εvε(t)(b2(t,xε(t), ε)dt + σ2(t,xε(t), ε)dW (k2)(t))∗, (B.65)

F ε
3(t) = σ2(t,xε(t), ε)σ2(t,xε(t), ε)∗. (B.66)

Since −a2(t,xε(t), ε) is positive stable uniformly (in t, xε and ε) by As-
sumption A.2, the solution of the Lyapunov equation (B.63) can be represented
as:

J ε(t) = J ε
1(t) + J ε

2(t) + J ε
3(t), (B.67)

where

J ε
n(t) =

∫ ∞

0

ea2(t,x
ε(t),ε)yF ε

n(t)ea∗
2(t,xε(t),ε)ydy (B.68)

for n = 1, 2, 3.
Therefore, for s ∈ [0, T ],

ε[vε]j(s)[vε]k(s)ds

= −
∫ ∞

0

[
ea2(s,xε(s),ε)y

]

j,p1

·
[
d[εvε(s)(εvε(s))∗]

]

p1,p2

·
[
ea∗

2(s,xε(s),ε)y

]

p2,k

dy
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+
∫ ∞

0

[
ea2(s,xε(s),ε)y

]

j,p1

·
[
(b2(s,xε(s), ε)ds

+ σ2(s,xε(s), ε)dW (k2)(s))ε(vε(s))∗
]

p1,p2

·
[
ea∗

2(s,xε(s),ε)y

]

p2,k

dy

+
∫ ∞

0

[
ea2(s,xε(s),ε)y

]

j,p1

·
[
εvε(s)(b2(s,xε(s), ε)ds

+ σ2(s,xε(s), ε)dW (k2)(s))∗
]

p1,p2

·
[
ea∗

2(s,xε(s),ε)y

]

p2,k

dy

+
∫ ∞

0

[
ea2(s,xε(s),ε)y

]

j,p1

·
[
σ2(s,xε(s), ε)σ2(s,xε(s), ε)∗ds

]

p1,p2

·
[
ea∗

2(s,xε(s),ε)y

]

p2,k

dy. (B.69)

On the other hand, by (A.10),

X(t) = x +
∫ t

0

[B1(s,X(s)) − A1(s,X(s))A−1
2 (s,X(s))B2(s,X(s))]ds

+
∫ t

0

S(s,X(s))ds +
∫ t

0

Σ1(s,X(s))dW (k1)(s)

−
∫ t

0

A1(s,X(s))A−1
2 (s,X(s))Σ2(s,X(s))dW (k2)(s). (B.70)

We use again the notation E1[·] := E[·; ε ≤ ε1], where ε1 > 0 is the random
variable from Proposition B.4.

For any p > 2, T > 0, i = 1, . . . , n1 (recall that [b]i denotes the ith
component of vector b), we estimate:

E1

[

sup
t∈[0,T ]

|[xε(t) − X(t)]i|p
]

≤ 6p−1

{
E1 [|xε − x|p]

+ E1

[

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0

[
Sε(s,xε(s),vε(s), ε) − S(s,X(s))

]

i

ds

∣
∣
∣
∣

p
]

+ E1

[
sup

t∈[0,T ]

(∫ t

0

∣
∣
∣
∣

[
a1(s,xε(s), ε)a−1

2 (s,xε(s), ε)b2(s,xε(s), ε)

− A1(s,X(s))A−1
2 (s,X(s))B2(s,X(s))

]

i

∣
∣
∣
∣ds

)p]

+ E1

[

sup
t∈[0,T ]

(∫ t

0

∣
∣
∣
∣

[
b1(s,xε(s), ε) − B1(s,X(s))

]

i

∣
∣
∣
∣ds

)p
]

+ E1

[
sup

t∈[0,T ]

∣
∣
∣
∣

∫ t

0

[
a1(s,xε(s), ε)a−1

2 (s,xε(s), ε)σ2(s,xε(s), ε)
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− A1(s,X(s))A−1
2 (s,X(s))Σ2(s,X(s))

]

i,j

d[W (k2)]j(s)
∣
∣
∣
∣

p]

+ E1

[

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0

[
σ1(s,xε(s), ε) − Σ1(s,X(s))

]

i,j

d[W (k1)]j(s)
∣
∣
∣
∣

p
] }

(B.71)

=: 6p−1

(
5∑

k=0

Rk

)

. (B.72)

By Assumption A.4, R0 = E1 [|xε − x|p] ≤ E [|xε − x|p] = O(εpr0) as
ε → 0, where r0 > 1/2 is a constant. We now estimate each of the Rk, k =
1, . . . , 5.

We have:

R3 ≤ E1 sup
t∈[0,T ]

(∫ t

0

|b1(s,xε(s), ε) − B1(s,X(s))|ds

)p

(B.73)

= E1 sup
t∈[0,T ]

(∫ t

0

|b1(s,xε(s), ε) − b1(s,X(s), ε) + b1(s,X(s), ε)

− B1(s,X(s))|ds

)p

≤ 2p−1

[
E1 sup

t∈[0,T ]

(∫ t

0

|b1(s,xε(s), ε) − b1(s,X(s), ε)|ds

)p

+ E1 sup
t∈[0,T ]

(∫ t

0

|b1(s,X(s), ε) − B1(s,X(s))|ds

)p ]
(B.74)

≤ 2p−1

[

Lp(ε)E1 sup
t∈[0,T ]

∫ t

0

|xε(s) − X(s)|pds + T pβ1(ε)p1{b1 �=B 1}

]

(B.75)

≤ L3(ε, p, T )
∫ T

0

E1 sup
u∈[0,s]

|xε(u) − X(u)|pds + C3(p, T )β1(ε)p1{b1 �=B 1},

(B.76)

on the set S1 := {ε : ε ≤ ε1}, where 1A denotes the indicator function of a set
A, L3(ε, p, T ) = O(1) as ε → 0 and C3(p, T ) is a constant dependent on p and
T . In the last two lines of the above estimate, we have used Assumption A.3,
Assumption A.5, and the inequality:

E1 sup
t∈[0,T ]

(∫ t

0

|u(s)|ds

)p

≤ T p−1
E1

∫ T

0

|u(s)|pds, (B.77)

where u(s) ∈ R
n1 for s ∈ [0, T ] (recall that L(ε) = O(1) as ε → 0 by Assump-

tion A.3).
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Using again the above techniques, together with Lemma B.1, one obtains:

R2 ≤ L2(ε, p, T )
∫ T

0

E1 sup
u∈[0,s]

|xε(u) − X(u)|pds

+ C2(p, T )
[
α1(ε)p1{a1 �=A1} + α2(ε)p1{a2 �=A2} + β2(ε)p1{b2 �=B 2}

]
,

(B.78)

on S1, where α1(ε), α2(ε), β2(ε) are from Assumption A.3, L2(ε, p, T ) = O(1)
as ε → 0 and C2(p, T ) is a constant.

To estimate R5, we use the Burkholder-Davis-Gundy inequality:

R5 ≤ C ′
pE1

(∫ T

0

‖σ1(s,xε(s), ε) − Σ1(s,X(s))‖2
F ds

)p/2

, (B.79)

where C ′
p is a positive constant and ‖ · ‖F denotes the Frobenius norm. Using

Hölder’s inequality, Assumption A.3, Assumption A.5, and the above tech-
niques, we obtain:

R5 ≤ C ′′
pE1

(∫ T

0

‖σ1(s,xε(s), ε) − σ1(s,X(s), ε)‖2
F ds

)p/2

+ C ′′
pE1

(∫ T

0

‖σ1(s,X(s), ε) − Σ1(s,X(s))‖2
F ds

)p/2

(B.80)

≤ C ′′
p T

p
2 −1

∫ T

0

E1‖σ1(s,xε(s), ε) − σ1(s,X(s), ε)‖p
F ds

+ C ′′′
p |γ1(ε)|pT

p
2 1{σ1 �=Σ1} (B.81)

≤ L5(ε, p, T )
∫ T

0

E1 sup
u∈[0,s]

|xε(u) − X(u)|pds + C5(p, T )γ1(ε)p1{σ1 �=Σ1},

(B.82)

on the set S1, where C ′′
p and C ′′′

p are constants, γ1(ε) is from Assumption A.3,
L5(ε, p, T ) = O(1) as ε → 0 and C5(p, T ) is a constant.

Similarly, using the above techniques and Lemma B.1, one can show:

R4 ≤ L4(ε, p, T )
∫ T

0

E1 sup
u∈[0,s]

|xε(u) − X(u)|pds

+ C4(p, T )
[
α1(ε)p1{a1 �=A1} + α2(ε)p1{a2 �=A2} + γ2(ε)p1{σ2 �=Σ2}

]
,

(B.83)

on S1, where γ2(ε) is from Assumption A.3, L4(ε, p, T ) = O(1) as ε → 0 and
C4(p, T ) is a constant.

To obtain a bound for R1, first we estimate:
∣
∣
∣
∣

∫ t

0

[
S ε(s, xε(s), v ε(s), ε) − S (s, X (s))

]

i

ds

∣
∣
∣
∣

≤
∣
∣
∣
∣ε[a1a

−1
2 ]i,j(t, x

ε(t), ε) · [v ε]j(t) − ε[a1a
−1
2 ]i,j(0, x, ε) · [v ]j

∣
∣
∣
∣
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+

∣
∣
∣
∣

∫ t

0

∂

∂s

(
[a1a

−1
2 ]i,j(s, x

ε(s), ε)
)

· ε[v ε]j(s)ds

∣
∣
∣
∣

+

∫ t

0

∣
∣
∣
∣

∂

∂[xε]l(s)

(
[a1a

−1
2 ]i,j(s, x

ε(s), ε)

)
· [b1]l(s, x

ε(s), ε) · ε[v ε]j(s)

∣
∣
∣
∣ds

+

∣
∣
∣
∣

∫ t

0

∂

∂[xε]l(s)

(
[a1a

−1
2 ]i,j(s, x

ε(s), ε)

)
· [σ1]l,k(s, xε(s), ε)

· ε[v ε]j(s)d[W (k1)]k(s)

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ t

0

∂

∂[xε]l(s)

(
[a1a

−1
2 ]i,j(s, x

ε(s), ε)

)
· [a1]l,k(s, xε(s), ε) · [J ε

1]j,k(s)ds

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ t

0

∂

∂[xε]l(s)

(
[a1a

−1
2 ]i,j(s, x

ε(s), ε)

)
· [a1]l,k(s, xε(s), ε) · [J ε

2]j,k(s)ds

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ t

0

∂

∂[X ]l(s)

(
[A1A

−1
2 ]i,j(s, X (s))

)
· [A1]l,k(s, X (s)) · [J ]j,k(s)

− ∂

∂[xε]l(s)

(
[a1a

−1
2 ]i,j(s, x

ε(s), ε)

)
· [a1]l,k(s, xε(s), ε) · [J ε

3]j,k(s)ds

∣
∣
∣
∣

(B.84)

=:

6∑

k=0

Πk, (B.85)

and so R1 ≤ 6p−1
∑6

k=0

(
E1 supt∈[0,T ] |Πk|p

)
=: 6p−1

∑6
k=0 Mk.

It is straightforward to show, using the boundedness assumptions of the
theorem, that for k = 0, 1, 2, 3, 5:

Mk ≤ Ck(p, T ) · E1 sup
t∈[0,T ]

|εvε(t)|p, (B.86)

where the Ck are positive constants.
Applying Proposition B.5, we obtain:

M4 := E1 sup
t∈[0,T ]

|Π4|p ≤ C4(p, T )εβ , (B.87)

on S1, for all 0 < β < p/2, as ε → 0, where C4(p, T ) is a positive constant.
We now estimate M6:

M6 ≤ E1 sup
t∈[0,T ]

(∫ t

0

∣
∣
∣∣

∂

∂[xε]l(s)

(
[a1a

−1
2 ]i,j(s, x

ε(s), ε)

)
· [a1]l,k(s, xε(s), ε)

· [J ε
3]j,k(s) − ∂

∂[X ]l(s)

(
[A1A

−1
2 ]i,j(s, X (s))

) · [A1]l,k(s, X (s))

· [J ]j,k(s)

∣
∣
∣∣ds

)p

(B.88)

≤ C(p)E1 sup
t∈[0,T ]

(∫ t

0

∣
∣
∣
∣

∂

∂[xε]l(s)

(
[a1a

−1
2 ]i,j(s, x

ε(s), ε)

)
· [a1]l,k(s, xε(s), ε)

− ∂

∂[X ]l(s)

(
[A1A

−1
2 ]i,j(s, X (s))

)
· [A1]l,k(s, X (s))

∣∣
∣
∣

p

· |[J ε
3]j,k(s)|pds

)
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+ C(p)E1 sup
t∈[0,T ]

(∫ t

0

∣∣
∣
∣

∂

∂[X ]l(s)

(
[A1A

−1
2 ]i,j(s, X (s))

)
· [A1]l,k(s, X (s))

∣∣
∣
∣

p

· |[J ε
3 − J ]j,k(s)|pds

)
(B.89)

≤ C(p)E1 sup
t∈[0,T ]

(∫ t

0

∣
∣∣
∣

∂

∂[xε]l(s)

(
[a1a

−1
2 ]i,j(s, x

ε(s), ε)

)
· [a1]l,k(s, xε(s), ε)

− ∂

∂[X ]l(s)

(
[A1A

−1
2 ]i,j(s, X (s))

)
· [A1]l,k(s, X (s))

∣
∣
∣∣

p

· |[J ε
3]j,k(s)|pds

)

+ C(p)E1 sup
t∈[0,T ]

∫ t

0

‖J ε
3(s) − J (s)‖p

F ds, (B.90)

where the constants C(p) may vary from one expression to another.
Note that in the above, J ε

3(s) and J(s) are solutions to the Lyapunov
equation

a2(s,xε(s), ε)J ε
3(s) + J ε

3(s)a
∗
2(s,x

ε(s), ε) = −(σ2σ
∗
2)(s,x

ε(s), ε) (B.91)

and

A2(s,X(s))J(s) + J(s)A∗
2(s,X(s)) = −(Σ2Σ∗

2)(s,X(s)). (B.92)

respectively.
Let Hε(s) := J ε

3(s) − J(s) and Gε(s) := a2(s,xε(s), ε) − A2(s,X(s)).
After some algebraic manipulations with the above pair of Lyapunov equations,
we obtain another Lyapunov equation:

A2(s,X(s))Hε(s) + Hε(s)A∗
2(s,X(s))

= (Σ2Σ∗
2)(s,X(s)) − (σ2σ

∗
2)(s,x

ε(s), ε) − Gε(s)J ε
3(s) − J ε

3(s)(G
ε)∗(s).
(B.93)

By the last statement in Assumption A.5, A2 is positive stable uni-
formly (in X and s); therefore, the above Lyapunov equation has a unique
solution:

Hε(s) =
∫ ∞

0

eA2(s,X (s))y

(
− (Σ2Σ∗

2)(s,X(s)) + (σ2σ
∗
2)(s,x

ε(s), ε)

+ Gε(s)J ε
3(s) + J ε

3(s)(G
ε)∗(s)

)
eA∗

2(s,X (s))ydy. (B.94)

Using (B.94), the assumptions of the theorem, and estimating as before,
we obtain:

E1 sup
t∈[0,T ]

∫ t

0

‖J ε
3(s) − J(s)‖p

F ds ≤ C(ε, p, T )
∫ T

0

E1 sup
u∈[0,s]

|xε(u) − X(u)|pds

+ D(p, T )[α2(ε)p1a2 �=A2 + γ2(ε)p1σ2 �=Σ2 ]
(B.95)
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on the set S1, where C(ε, p, T ) = O(1) as ε → 0 and D(p, T ) is a positive
constant, α2(ε) and γ2(ε) are from Assumption A.5.

Applying the above estimates, Lemma B.1 and techniques used earlier,
one obtains from (B.90):

M6 ≤ L6(ε, p, T )
∫ T

0

E1 sup
u∈[0,s]

|xε(u) − X(u)|pds

+ C6(p, T )
[
α1(ε)p1{a1 �=A1} + α2(ε)p1{a2 �=A2} + γ2(ε)p1{σ2 �=Σ2}

+ θ1(ε)p1{(a1)x �=(A1)x } + θ2(ε)p1{(a2)x �=(A2)x }

]
, (B.96)

on S1, where L6(ε, p, T ) = O(1) as ε → 0, C6(p, T ) is a positive constant, and
αi(ε), θi(ε) (i = 1, 2) and γ2(ε) are from Assumption A.5.

Collecting the above estimates for the Mk, we obtain:

R1 ≤ C1(p, T )
(
E1 sup

t∈[0,T ]

|εvε(t)|p

+ α1(ε)p1{a1 �=A1} + α2(ε)p1{a2 �=A2} + γ2(ε)p1{σ2 �=Σ2}+

+ θ1(ε)p1{(a1)x �=(A1)x } + θ2(ε)p1{(a2)x �=(A2)x }

)

+ C2(ε, p, T )
∫ T

0

E1 sup
u∈[0,s]

|xε(u) − X(u)|pds + C3(p, T )M4 (B.97)

on S1, where C1(p, T ) and C3(p, T ) are constants, C2(ε, p, T ) = O(1) as ε → 0,
and M4 satisfies the bound in (B.87).

Using all the estimates for the Ri, we have:

E1

[

sup
t∈[0,T ]

|xε(t) − X(t)|p
]

= E1

[

sup
t∈[0,T ]

n1∑

k=1

|[xε − X]k(t)|p
]

(B.98)

≤ n1 max
k=1,...,n1

{

E1 sup
t∈[0,T ]

|[xε − X]k(t)|p
}

(B.99)

≤ L(ε, p, T, n1)
∫ T

0

E1 sup
u∈[0,s]

|xε(u) − X(u)|pds

+ C(p, T, n1)
(

εpr0 + E1 sup
t∈[0,T ]

|εvε(t)|p + M4

+ α1(ε)p1{a1 �=A1} + α2(ε)p1{a2 �=A2} + γ1(ε)p1{σ1 �=Σ1}
+ γ2(ε)p1{σ2 �=Σ2} + β1(ε)p1{b1 �=B 1} + β2(ε)p1{B 2 �=B 2}

+ θ1(ε)p1{(a1)x �=(A1)x } + θ2(ε)p1{(a2)x �=(A2)x }

)
(B.100)



Vol. 21 (2020) Homogenization for Generalized Langevin Equations 1865

≤ L(ε, p, T, n1)
∫ T

0

E1 sup
u∈[0,s]

|xε(u) − X(u)|pds

+ C(p, T, n1)εr, (B.101)

on S1, where L(ε, p, T, n1) = O(1) as ε → 0, r is the rate of convergence (A.15)
in the statement of the theorem, C(p, T, n1) is a constant that changes from line
to line, and we have applied Proposition B.4, Lemma B.1 and Assumption A.5
to get the last expression in the above estimate.

Finally, applying the Gronwall lemma gives:

E1

[

sup
t∈[0,T ]

|xε(t) − X(t)|p
]

≤ εr · C(p, T, n1)eL(ε,p,T,n1)T (B.102)

on S1.
(A.14) then follows for the case p > 2. The result for 0 < p ≤ 2 follows

by an application of the Hölder’s inequality: for 0 < p ≤ 2, taking q > 2 so
that p/q < 1, we have

E1

[

sup
t∈[0,T ]

|xε(t) − X(t)|p
]

≤
[
E1

(
sup

t∈[0,T ]

|xε(t) − X(t)|p
)q/p]p/q

(B.103)

= O(εβ), (B.104)

for all 0 < β < p′, as ε → 0. The statement on convergence in probability
follows from Lemma 1 in [43]. �

Appendix C: An Implementation of Algorithm 6.3 Under
Assumption 6.4

We describe how Algorithm 6.3 can be applied to a large class of GLEs, sat-
isfying Assumption 6.4. For i = 2, 4, one can write

Qi(z) = zdiI + ai,di−1z
di−1 + · · · + ai,1z + ai,0, (C.1)

where the ai,k are related to the Γi,k as follows:

ai,0 =
di∏

k=1

Γi,k,

ai,1 =
∑

k1,...,kdi−1=1,...,di:k1>···>kdi−1

Γi,k1Γi,k2 · · ·Γi,kdi−1 ,

...

ai,di−2 =
∑

k1,k2=1,...,di:k1>k2

Γi,k1Γi,k2 ,

ai,di−1 =
N∑

k=1

Γi,k. (C.2)
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Then it can be shown that Φi(z) admits the following (controllable) realization
[8]: Φi(z) = Hi(zI + F i)−1Gi, with

Hi = [0 · · · 0 Bli 0 · · · 0] ∈ R
pi×pidi , (C.3)

where Bli is in the lith slot,

F i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −I

0 −I

. . . . . .

0 −I

ai,0 ai,1 . . . ai,di−2 ai,di−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
pidi×pidi , (C.4)

Gi = [0 · · · 0 I]∗ ∈ R
pidi . (C.5)

Then the realization of the memory function (for the case i = 2) and noise
process (for the case i = 4) can be obtained by taking Γi = F i, Ci = Hi and
solving the following linear matrix inequality:

F iM i + M iF
∗
i =: ΣiΣ∗

i ≥ 0, M iH
∗
i = Gi (C.6)

for M i = M∗
i [74].

The above realization gives us the desired spectral densities. Indeed, let
us use the transformation of type (3.6) to diagonalize the M i, i.e., M ′

i =
T iM iT

∗
i = I, Γ′

i = T iΓiT
−1
i , Σi = T iΣi, C ′

i = CiT
−1
i . In this case, for

i = 4 we have: (ξi)′
t = C ′

i(β
i)′

t = Ciβ
i
t = ξi

t, where (βi)′
t solves the SDE:

d(βi)′
t = −Γ′

i(β
i)′

tdt + Σ′
idW

(q4)
t , (C.7)

and one can compute the spectral density to be:

Si(ω) = Φi(−iω)Φ∗
i (iω) = Bliω

2li((ω2I + Γi,1)2) · · · (ω2I + Γi,di
)2))−1B∗

li .
(C.8)

A similar discussion applies to the realization of the memory function.
For i = 2, 4, set m = εm0, Γi,k = γi,k/ε for k = li + 1, . . . , di and

rescale the Bli with ε accordingly, so that the limit as ε → 0 of the rescaled
spectral densities gives us the desired asymptotic behavior. The choice of which
and how many of the Γi,k to rescale as well as the smallness of ε (i.e., what
determines the wide separation of time scales and their magnitude) depends
on the physical system under study. The resulting family of GLEs can then be
cast in a form suitable for application of Theorem A.6 and the homogenized
SDE for the particle’s position can be obtained, under appropriate assumptions
on the coefficients of the GLE.
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