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Abstract. We prove the Schrödinger operator with infinitely many point
interactions in R

d (d = 1, 2, 3) is self-adjoint if the support Γ of the inter-
actions is decomposed into infinitely many bounded subsets {Γj}j such
that infj �=k dist(Γj ,Γk) > 0. Using this fact, we prove the self-adjointness
of the Schrödinger operator with point interactions on a random pertur-
bation of a lattice or on the Poisson configuration. We also determine the
spectrum of the Schrödinger operators with random point interactions of
Poisson–Anderson type.

1. Introduction

Let Γ be a locally finite subset of Rd (d = 1, 2, 3), that is, #(Γ ∩ K) < ∞ for
any compact subset K of Rd, where the symbol #S is the cardinality of a set
S. We define the minimal operator HΓ,min by

HΓ,minu = −Δu, D(HΓ,min) = C∞
0 (Rd\Γ),

where Δ =
∑d

j=1 ∂2/∂x2
j is the Laplace operator. Clearly, HΓ,min is a densely

defined symmetric operator, and it is well known that the deficiency indices
n±(HΓ,min) are given by

n±(HΓ,min) := dimKΓ,± =

{
2#Γ (d = 1),
#Γ (d = 2, 3),

where KΓ,± := Ker(HΓ,min
∗ ∓ i) are the deficiency subspaces (see e.g., [2]).

So, HΓ,min is not essentially self-adjoint unless Γ = ∅. A self-adjoint extension
of HΓ,min is called the Schrödinger operator with point interactions, since the
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support of the interactions is concentrated on countable number of points in
R

d. The Schrödinger operator with point interactions is known as a typical
example of solvable models in quantum mechanics, and numerous works are
devoted to the study of this model or its perturbation by a scalar potential or
a magnetic vector potential. The book [2] contains most of fundamental facts
about this subject and exhaustive list of references up to 2004. The papers
[9,20,22] also give us recent development of this subject.

There are mainly three popular methods of defining self-adjoint exten-
sions H of HΓ,min. Here, we denote the free Laplacian by H0, that is, H0 = −Δ
with D(H0) = H2(Rd).

(i) Calculate the deficiency subspaces KΓ,± and give the difference of the
resolvent operators (H − z)−1 − (H0 − z)−1 (Im z �= 0) for the desired
self-adjoint extension H by using von Neumann’s theory and Krein’s
resolvent formula.

(ii) Introduce a scalar potential V , choose the renormalization factor λ(ε)
appropriately and define the operator H as the norm resolvent limit

H = lim
ε→0

Hε, Hε = −Δ + λ(ε)ε−dV (·/ε). (1)

(iii) Define the operator domain D(H) of the desired self-adjoint extension H
in terms of the boundary conditions at γ ∈ Γ.

These methods are mutually related with each other and give the same op-
erators consequently. Historically, the seminal works by Kronig–Penney [21]
(d = 1) and Thomas [28] (d = 3) start from the method (ii), and conclude
that the limiting operators are described by the method (iii). Bethe–Peierls [7]
also obtain a similar boundary condition for d = 3. Berezin–Faddeev [6] start
from the method (ii) for d = 3 by using the cutoff in the momentum space and
show that the limiting operator is also defined by the method (i). After the
paper [6], the method (i) becomes probably the most commonly used one. It is
mathematically rigorous and useful in the analysis of spectral and scattering
properties of the system, since various quantities (e.g., spectrum, scattering
amplitude, resonance, etc.) are defined via the resolvent operator. The char-
acteristic feature in the method (ii) is the dependence of the renormalization
factor λ(ε) on the dimension d. We can take λ(ε) = 1 for d = 1, but λ(ε) → 0
as ε → 0 for d = 2, 3 (see [2] or Theorem 23 in the appendix). Recently, the
method (iii) is reformulated in terms of the boundary triplet (see [9,20,22] and
references therein). The method (iii) is useful when we cannot calculate the
deficiency subspaces explicitly, e.g., the point interactions on a Riemannian
manifold, etc. In the present paper, we adapt the method (iii), as explained
below.

We define the maximal operator HΓ,max by HΓ,max = HΓ,min
∗, the adjoint

operator of HΓ,min. The operator HΓ,max is explicitly given by

HΓ,maxu = −Δ|Rd\Γu, D(HΓ,max) = {u ∈ L2(Rd); Δ|Rd\Γu ∈ L2(Rd)},

where Δ|Rd\Γu =
∑d

j=1 ∂2u/∂x2
j in the sense of Schwartz distributions D′(Rd\Γ)

on R
d\Γ (see [2] or Proposition 8 below). When d = 1, an element u ∈
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D(HΓ,max) has boundary values u(γ ± 0)(:= limx→γ±0 u(x)) and u′(γ ± 0)
for any γ ∈ Γ. When d = 2, 3, it is known that any element u ∈ D(HΓ,max)
has asymptotics

u(x) = uγ,0 log |x − γ| + uγ,1 + o(1) as x → γ (d = 2),

u(x) = uγ,0|x − γ|−1 + uγ,1 + o(1) as x → γ (d = 3) (2)

for every γ ∈ Γ, where uγ,0 and uγ,1 are constants (see [2,9] or Proposition 9
below).

Let α = (αγ)γ∈Γ be a sequence of real numbers. We define a closed linear
operator HΓ,α in L2(Rd) by

HΓ,αu = −Δ|Rd\Γu,

D(HΓ,α) = {u ∈ D(HΓ,max); u satisfies (BC)γ for every γ ∈ Γ}.

The boundary condition (BC)γ at the point γ ∈ Γ is defined as follows.
{

u(γ + 0) = u(γ − 0) = u(γ),
u′(γ + 0) − u′(γ − 0) = αγu(γ)

(d = 1),

2παγuγ,0 + uγ,1 = 0 (d = 2),
−4παγuγ,0 + uγ,1 = 0 (d = 3),

(3)

where uγ,0 and uγ,1 are the constants in (2). The above parametrization of the
boundary conditions is consistent with the parametrization in [2], though our
HΓ,α is denoted by −Δα.Y in [2]. When d = 1, ‘no interaction at γ’ corresponds
to the value αγ = 0, and the formal expression HΓ,α = −Δ +

∑
γ∈Γ αγδγ is

justified in the sense of quadratic form, where δγ is the Dirac delta function
supported on the point γ (see (6)). However, when d = 2, 3, ‘no interaction
at γ’ corresponds to the value αγ = ∞, and the coupling constant αγ is not
the coefficient before the delta function, but the parameter appearing in the
second term of the expansion of the renormalization factor λ(ε) in (1) (see [2]
or Theorem 23 in the appendix).

It is well known that HΓ,α is self-adjoint when #Γ < ∞. When #Γ = ∞,
the self-adjointness of HΓ,α is proved under the uniform discreteness condition

d∗ := inf
γ,γ′∈Γ, γ �=γ′

|γ − γ′| > 0 (4)

in the book [2] and many other references (e.g., [10,15,16,22]). There are only
a few results in the case d∗ = 0. Minami [24] studies the self-adjointness and

the spectrum of the random Schrödinger operator Hω = − d2

dt2
+ Q′

t(ω) on R,

where {Qt(ω)}t∈R is a temporally homogeneous Lévy process. If we take

Qt(ω) =
∫ t

0

∑

γ∈Γω

αω,γδ(s − γ)ds

for the Poisson configuration (the support of the Poisson point process; see
Definition 14 below) Γω on R and i.i.d. (independently, identically distributed)
random variables αω = (αω,γ)γ∈Γω

, we conclude that HΓω,αω
is self-adjoint

almost surely. Kostenko–Malamud [20] give the following remarkable result.
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Theorem 1 (Kostenko–Malamud [20]). Let d = 1. Let Γ = {γn}n∈Z be a se-
quence of strictly increasing real numbers with limn→±∞ γn = ±∞. Assume

−1∑

n=−∞
d2

n =
∞∑

n=0

d2
n = ∞, dn = γn+1 − γn. (5)

Then, HΓ,α is self-adjoint for every α = (αγ)γ∈Γ.

Actually, Kostenko–Malamud [20] state the result in the half-line case, but
the result can be easily extended in the whole line case, as stated above. In
the proof, Kostenko–Malamud construct an appropriate boundary triplet for
HΓ,min

∗. Moreover, Christ–Stolz [10] give a counter example of (Γ, α) so that
d = 1, d∗ = 0 and HΓ,α is not self-adjoint. However, the proof of Minami [24]
uses that the deficiency indices are not more than two for one-dimensional
symmetric differential operator, and the proof of Kostenko–Malamud [20] uses
the decomposition L2(R) = ⊕∞

n=−∞L2((γn, γn+1)). Both methods depend on
the one dimensionality of the space and cannot directly be applied in two- or
three-dimensional case.

In the present paper, we give a sufficient condition for the self-adjointness
of HΓ,α, which is available even in the case d∗ = 0 and d = 2, 3. In the sequel,
we denote R-neighborhood of a set S by (S)R, that is,

(S)R := {x ∈ R
d; dist(x, S) < R},

where the distance dist(S, T ) between two sets S and T is defined by

dist(S, T ) := inf
x∈S, y∈T

|x − y|.

Assumption 2. Γ is a locally finite subset of Rd and there exists R > 0 such
that every connected component of (Γ)R is a bounded set.

The set (Γ)R is the union of BR(γ), an open disk of radius R centered at
γ ∈ Γ (see Fig. 1). Assumption 2 is a generalization of the uniform discreteness
condition (4). In fact, when #Γ = ∞, Assumption 2 is equivalent to the
condition that Γ is decomposed into infinitely many bounded subsets {Γj}j

such that infj �=k dist(Γj ,Γk) > 0. However, in this paper, we cannot treat the
case where Γ has accumulation points.

Our first main result is stated as follows.

Theorem 3. Let d = 1, 2, 3. Suppose Assumption 2 holds. Then, HΓ,α is self-
adjoint for any α = (αγ)γ∈Γ.

In the case d = 1, Theorem 3 is a special case of Theorem 1, since Assumption 2
implies there are infinitely many positive n and negative n such that dn ≥ 2R,
so the assumption (5) holds. In the case d = 2, 3, Theorem 3 is new. Moreover,
Theorem 3 also holds even if αγ = ∞ (Dirichlet condition at γ for d = 1, no
interaction at γ for d = 2, 3) for some γ ∈ Γ, as is easily seen from the proof.

Theorem 3 is especially useful in the study of Schrödinger operators with
random point interactions. There are a lot of studies about the Schrödinger
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Figure 1. The set (Γ)R in (−5, 5)2 when d = 2 and R = 0.4.
Γ is a sample configuration of the Poisson configuration with
intensity 1

operators with random point interactions ([3,8,11–13,17,24]), but in most of
these results Γ is assumed to be Zd or its random subset, except Minami’s paper
[24]. Using Theorem 3, we can study more general random point interactions
so that d∗ can be 0. In the present paper, we prove the self-adjointness of HΓ,α

for the following two models. First one is the random displacement model, given
as follows. Notice that d∗ can be 0 for this model.

Corollary 4. Let d = 1, 2, 3. Let {δn(ω)}n∈Zd be a sequence of i.i.d. Rd-valued
random variables defined on some probability space Ω such that |δn(ω)| < C
for some positive constant C independent of n and ω ∈ Ω. Put

Γω = {n + δn(ω)}n∈Zd .

Then, HΓω,α is self-adjoint for any α = (αγ)γ∈Γω
.

The proof of Corollary 4 is an application of Theorem 3 via some auxiliary
result (Corollary 13). Another one is the Poisson model, given as follows.

Corollary 5. Let d = 1, 2, 3. Let Γω be the Poisson configuration on R
d with

intensity measure λdx for some positive constant λ. Then, HΓω,α is self-adjoint
for any α = (αγ)γ∈Γω

, almost surely.

Corollary 5 is proved by combining Theorem 3 with the theory of contin-
uum percolation (Theorem 15). These results are new when d = 2, 3, and are
not new when d = 1, as stated before.

The proof of Theorem 3 also enables us to determine the spectrum of
HΓ,α for the point interactions of Poisson–Anderson type, defined as follows.

Assumption 6. (i) Γω is the Poisson configuration with intensity measure
λdx for some λ > 0.
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(ii) The coupling constants αω = (αω,γ)γ∈Γω
are real-valued i.i.d. random

variables with common distribution measure ν on R. Moreover, (αω,γ)γ∈Γω

are independent of Γω.

We note that αω = (αω,γ)γ∈Γω
can be deterministic: the case supp ν =

{α0} for some α0 ∈ R is allowed.

Theorem 7. Let d = 1, 2, 3. Let Γω and αω satisfy Assumption 6 and put
Hω = HΓω,αω

. Then, the spectrum σ(Hω) of Hω is given as follows.
(i) When d = 1, we have

σ(Hω) =

{
[0,∞) (supp ν ⊂ [0,∞)),
R (supp ν ∩ (−∞, 0) �= ∅),

almost surely.
(ii) When d = 2, 3, we have σ(Hω) = R almost surely.

Notice that the result is independent of supp ν when d = 2, 3. If we permit
αω,γ = ∞ for some ω, γ and regard ν as a measure on R∪{∞}, the statement
still holds in the case d = 1 if we replace ‘supp ν ⊂ [0,∞)’ by ‘supp ν ⊂ [0,∞].’
In the case d = 2, 3, we have to assume ‘supp ν ∩ R �= ∅’ in order to obtain
the same conclusion. If supp ν = {∞}, then Hω becomes the free Laplacian,
so σ(Hω) = [0,∞).

Theorem 7 can be interpreted as a generalization of the corresponding
result for the Schrödinger operator −Δ + Vω with random scalar potential of
Poisson–Anderson type

Vω(x) =
∑

γ∈Γω

αω,γV0(x − γ),

where Γω and αω satisfy Assumption 6, and V0 is a real-valued scalar function
having some regularity and decaying property. The spectrum σ(−Δ + Vω) is
determined in [5,18,25], and the result says ‘the spectrum equals [0,∞) if Vω

is nonnegative, and it equals R if Vω has negative part.’ When d = 1, the
point interaction at γ has the same sign as the sign of the coupling constant
αγ in the sense of quadratic form, that is,

(u,HΓ,αu) = ‖∇u‖2 +
∑

γ∈Γ

αγ |u(γ)|2 (6)

for u ∈ D(HΓ,α) with bounded support. When d = 2, 3, the sign of point inter-
action at γ is in some sense negative for any αγ ∈ R. Actually, if Hε converges
to some HO,α (O := {0}, α = {α0}) for some α0 ∈ R in the approximation
procedure (1), V necessarily has negative part (for the detail, see Theorem 23
in the appendix). There is also qualitative difference between the proof of The-
orem 7 in the case d = 1 and that in the case d = 2, 3. The spectrum (−∞, 0)
is created by the accumulation of many points in one place when d = 1, while
it is created by the merging of two points when d = 2, 3 (see Sect. 3.3). The
latter fact reminds us Thomas collapse, which says the mass defect of the tri-
tium 3H becomes arbitrarily large as the distances between a proton and two
neutrons become small enough (see [28]).
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Let us give a brief comment on the magnetic case. The Schrödinger op-
erator with a constant magnetic field plus infinitely many point interactions
was studied in [12,14], and the self-adjointness was proved under the uniform
discreteness condition (4). Theorem 3 can be generalized under the existence
of a constant magnetic field, by using the magnetic translation operator. We
will discuss this case elsewhere in the near future.

The present paper is organized as follows. In Sect. 2, we review some
fundamental formulas about self-adjoint extensions of HΓ,min and prove The-
orem 3. The crucial fact is ‘bounded support functions are dense in D(HΓ,α)
under Assumption 2’ (Proposition 12). In Sect. 3, we prove the self-adjointness
of Schrödinger operators with various random point interactions. We also de-
termine the spectrum of Hω = HΓω,αω

for Poisson–Anderson-type point in-
teractions, using the method of admissible potentials (Proposition 18; see also
[5,18,19,25]). In the proof, we again need Proposition 12 and also need to
take care of the dependence of the operator domain D(HΓ,α) with respect to
Γ and α. Once we establish the method of admissible potentials, the proof of
Theorem 7 is reduced to the calculation of σ(HΓ,α) for admissible (Γ, α).

Let us explain the notation in the manuscript. The notation A := B
means A is defined as B. The set Br(x) is the open ball of radius r centered at
x ∈ R

d, that is, Br(x) := {y ∈ R
d; |y−x| < r}. The space D(H) is the operator

domain of a linear operator H equipped with the graph norm ‖u‖2
D(H) =

‖u‖2 + ‖Hu‖2. For an open set U , C∞
0 (U) is the set of compactly supported

C∞ functions on U . The space L2(U) is the space of square integrable functions
on U , and the inner product and the norm on L2(U) are defined as

(u, v)L2(U) =
∫

U

uvdx, ‖u‖L2(U) = (u, u)1/2
L2(U) =

(∫

U

|u|2dx

)1/2

.

When U = R
d, we often abbreviate the subscript L2(U). The space H2(U) is

the Sobolev space of order 2 on U , and the norm is defined by

‖u‖2
H2(U) =

∑

0≤|α|≤2

∥
∥
∥
∥

∂|α|u
∂xα1

1 · · · ∂xαd

d

∥
∥
∥
∥

2

L2(U)

,

where α = (α1, . . . , αd) ∈ (Z≥0)d is the multi-index and |α| = α1+· · ·+αd, and
the derivatives are defined as elements of D′(U), the Schwartz distributions on
U . The space L2

loc(U) is the set of the functions u such that χu ∈ L2(U) for
any χ ∈ C∞

0 (U). The space H2
loc(U) is defined similarly.

2. Self-adjointness

2.1. Structure of D(HΓ,max)

First, we review fundamental properties of the operator domain D(HΓ,max) of
the maximal operator HΓ,max. Most of the results are already obtained under
more general assumption (see e.g., [2,9,22]), but we give the proof here since
the ingredient of which is closely related to those of our main theorems.
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Proposition 8. Let d = 1, 2, 3.
(i) We have

D(HΓ,max) = {u ∈ L2(Rd) ; Δ|Rd\Γu ∈ L2(Rd)}
= {u ∈ L2(Rd) ∩ H2

loc(R
d\Γ) ; Δ|Rd\Γu ∈ L2(Rd)},

where Δ|Rd\Γu =
∑d

j=1 ∂2u/∂x2
j in the sense of Schwartz distributions

D′(Rd\Γ) on R
d\Γ.

(ii) Let χ ∈ C∞
0 (Rd) such that Γ∩supp∇χ = ∅. Then, for any u ∈ D(HΓ,max),

we have χu ∈ D(HΓ,max).

In the sequel, we simply write Δ = Δ|Rd\Γ when there is no fear of
confusion.

Proof. (i) By definition, the statement u ∈ D(HΓ,max) = D(HΓ,min
∗) is equiv-

alent to ‘u ∈ L2(Rd) and there exists v ∈ L2(Rd) such that

(u,−Δφ) = (v, φ)

for any φ ∈ C∞
0 (Rd\Γ)’. The latter statement is equivalent to v = −Δ|Rd\Γu ∈

L2(Rd). Moreover, by the elliptic inner regularity theorem (Corollary 25), we
have u ∈ H2

loc(R
d\Γ).

(ii) Let χ satisfy the assumption and u ∈ D(HΓ,max). By the chain rule,
we have

Δ(χu) = (Δχ)u + 2∇χ · ∇u + χΔu. (7)

Since u,Δu ∈ L2(Rd), the first term of (7) and the third belong to L2(Rd).
Moreover, since supp∇χ is a compact subset of R

d\Γ and u ∈ H2
loc(R

d\Γ),
the second term also belongs to L2(Rd). Thus, χu,Δ(χu) ∈ L2(Rd), and the
statement follows from (i). �
The assumption Γ∩ supp∇χ = ∅ above cannot be removed when d = 2, 3. For
example, consider the case d = 2, Γ = O := {0}. Take functions u and χ such
that

u(x) =

{
log |x| |x| < 1,

0 |x| > 2,
χ(x) =

{
x1 |x| < 1,

0 |x| > 2,
(8)

and defined appropriately for 1 ≤ |x| ≤ 2 so that u ∈ C∞(R2\O) and χ ∈
C∞

0 (R2). Since Δ log |x| = 0 for x �= 0, we see that u, Δu ∈ L2(R2), so u ∈
D(HO,max). However, the chain rule (7) implies

Δ(χu) =
2x1

|x|2
for |x| < 1, so Δ(χu) �∈ L2(R2). This fact is crucial in our proof of self-
adjointness criterion (Theorem 3).

Next, we define the (generalized) boundary values at γ ∈ Γ of u ∈
D(HΓ,max). In the case d = 2, 3, similar argument is found in [2,9].

Proposition 9. (i) Let d = 1, u ∈ D(HΓ,max) and γ ∈ Γ. Then, one-side
limits u(γ ± 0) and u′(γ ± 0) exist.
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(ii) Let d = 2, 3, u ∈ D(HΓ,max) and γ ∈ Γ. Let ε be a small positive constant
so that Bε(γ)∩Γ = {γ}. Then, there exist unique constants uγ,0 and uγ,1,
and ũ ∈ H2(Bε(γ)) with ũ(γ) = 0, such that for x ∈ Bε(γ)

u(x) = uγ,0 log |x − γ| + uγ,1 + ũ(x) (d = 2),
u(x) = uγ,0|x − γ|−1 + uγ,1 + ũ(x) (d = 3). (9)

Proof. (i) This is a consequence of the Sobolev embedding theorem, since
the restriction of u ∈ D(HΓ,max) on I belongs to H2(I) for any connected
component I of R\Γ.

(ii) We consider the case d = 2. By a cutoff argument ((ii) of Proposi-
tion 8), we can reduce the proof to the case Γ equals one point set. Without loss
of generality, we assume Γ = O. Then, by von Neumann’s theory of self-adjoint
extensions (see e.g., [26, Section X.1]), we have

D(HO,max) = D(HO,min) ⊕ KO,− ⊕ KO,+, (10)

where D(HO,min) is the closure of D(HO,min) with respect to the graph norm
(or H2-norm), and KO,± = Ker(HO,max ∓ i) are deficiency subspaces. It is
known that KO,± are one-dimensional spaces spanned by

ϕ±(x) = H
(1)
0 (

√±ir),

where H
(1)
0 is the 0-th order Hankel function of the first kind, r = |x|, and the

branches of
√±i are taken as Im

√±i > 0 (see [2]). Thus, we have inclusion

D(HO,min) ⊂ {u ∈ H2(R2) ; u(0) = 0} ⊂ H2(R2) ⊂ D(HO,max). (11)

The first inclusion is due to the Sobolev embedding theorem. The second
inclusion is clearly strict, and the third one is also strict since D(HO,max)
contains elements singular at 0, by (10) (see (12) below). The decomposition
(10) also tells us dim

(
D(HO,max)/D(HO,min)

)
= 2, so the first inclusion in

(11) must be equality, that is,

D(HO,min) = {u ∈ H2(R2) ; u(0) = 0}.

By the series expansion of the Hankel function, we have

ϕ±(x) = 1 +
2i

π

(

γE + log
√±ir

2

)

+ O(r2 log r) (r → 0), (12)

where γE is the Euler constant. It is easy to see the remainder term is in
H2(Bε(0)) and vanishes at 0. Thus, by the decomposition (10), every u ∈
D(HO,max) can be uniquely written as (9).

In the case d = 3, a basis of the deficiency subspace KO,± is

ϕ±(x) =
ei

√±ir

r
=

1
r

+ i
√±i + O(r) (r → 0)

(see [2]). Using this expression, we can prove the statement for d = 3 similarly.
�

Next, we introduce the generalized Green formula.
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Proposition 10. Let d = 1, 2, 3. Let u, v ∈ D(HΓ,max), and assume suppu or
supp v is bounded. Then, we have

(HΓ,maxu, v) − (u,HΓ,maxv)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

γ∈Γ

(−u′(γ − 0)v(γ − 0) + u(γ − 0)v′(γ − 0)

+u′(γ + 0)v(γ + 0) − u(γ + 0)v′(γ + 0)
)

(d = 1),
∑

γ∈Γ

2π(uγ,0vγ,1 − uγ,1vγ,0) (d = 2),

∑

γ∈Γ

(−4π)(uγ,0vγ,1 − uγ,1vγ,0) (d = 3).

(13)

Proof. The proof in the case d = 1 is easy. Consider the case d = 2. By a
cutoff argument, we can assume both supp u and supp v are bounded. We can
also assume supp u ∪ supp v ⊂ BR(0), and Γ ∩ ∂BR(0) = ∅. Then, we can
decompose u and v as

u =
∑

γ∈Γ∩BR(0)

(uγ,0φγ + uγ,1ψγ) + ũ, v =
∑

γ∈Γ∩BR(0)

(vγ,0φγ + vγ,1ψγ) + ṽ,

where ũ, ṽ ∈ D(HΓ,min), and φγ , ψγ ∈ D(HΓ,max) are real-valued functions
such that

φγ(x) = log |x − γ|, ψγ(x) = 1 near x = γ,

and suppφγ ∪ suppψγ is contained in some small neighborhood of γ so that
{supp φγ ∪ suppψγ}γ∈Γ∩BR(0) are disjoint sets in BR(0).

We use the notation

[φ, ψ] = (HΓ,maxφ, ψ) − (φ,HΓ,maxψ).

Clearly, [φ, ψ] = −[ψ, φ], so [φ, φ]=0 for real-valued φ ∈ D(HΓ,max). Moreover,
[φ, ψ] = 0 if φ ∈ D(HΓ,max) and ψ ∈ D(HΓ,min). Thus, we have

[u, v] =
∑

γ∈Γ∩BR(0)

(uγ,0vγ,1 − uγ,1vγ,0) [φγ , ψγ ].

Let us calculate [φγ , ψγ ]. By translating the coordinate, we assume γ = 0 and
write φγ = φ, ψγ = ψ. Then, since φ = log r and ψ = 1 near x = 0,

[φ, ψ] = lim
ε↓0

∫

Bε(0)c

(
(−Δφ)ψ + φ(Δψ)

)
dx

= lim
ε↓0

∫

∂Bε(0)

(
(−∇φ · n)ψ + φ(∇ψ · n)

)
ds

= lim
r↓0

∫ 2π

0

(
∂φ

∂r
· ψ − φ · ∂ψ

∂r

)

rdθ

= 2π,

where n is the unit inner normal vector on ∂Bε(0), ds is the line element, and
(r, θ) is the polar coordinate. Thus, the assertion for d = 2 holds. The proof
for the case d = 3 is similar, but we take the function φγ as
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φγ(x) = |x − γ|−1 near x = γ.

�

If the uniform discreteness condition (4) holds, the results in this sub-
section can be formulated in terms of the boundary triplet for HΓ,max, as is
done in [9,22]. When d = 1 and d∗ = 0, the boundary triplet for HΓ,max is
constructed in [20]. The construction in the case d = 2, 3 and d∗ = 0 seems to
be unknown so far.

2.2. Proof of Theorem 3

Let Γ be a locally finite set in R
d, and α = (αγ)γ∈Γ be a sequence of real

numbers. In this subsection, we write H = HΓ,α, that is,

Hu = −Δ|Rd\Γu,

D(H) = {u ∈ D(HΓ,max) ; u satisfies (BC)γ for every γ ∈ Γ},

where (BC)γ is defined in (3). We introduce an auxiliary operator Hb by

Hbu = −Δ|Rd\Γu, D(Hb) = {u ∈ D(H) ; suppu is bounded}.

By the generalized Green formula (Proposition 10), we have the following.

Proposition 11. Let d = 1, 2, 3. For any locally finite set Γ and sequence of
real numbers α, the operator Hb is a densely defined symmetric operator, and
Hb

∗ = H.

Proof. We consider the case d = 2, since the case d = 1, 3 can be treated
similarly. For u, v ∈ D(Hb), the generalized Green formula (13) and (BC)γ

imply

[u, v] := (Hu, v) − (u,Hv) =
∑

γ∈Γ

2π(uγ,0vγ,1 − uγ,1vγ,0)

=
∑

γ∈Γ

(2π)2αγ(−uγ,0vγ,0 + uγ,0vγ,0) = 0. (14)

Thus, Hb is a symmetric operator.
The equality (14) also holds for any u ∈ D(Hb) and v ∈ D(H), so D(H) ⊂

D(Hb
∗). Conversely, let v ∈ D(Hb

∗). By definition, [u, v] = 0 holds for any
u ∈ D(Hb). For γ ∈ Γ, take u ∈ D(Hb) such that uγ,0 = 1/(2π), uγ,1 = −αγ ,
and uγ′,0 = uγ′,1 = 0 for γ′ �= γ. Since D(Hb

∗) ⊂ D(HΓ,min
∗) = D(HΓ,max),

we have by the generalized Green formula (13)

[u, v] = vγ,1 + 2παγvγ,0 = 0.

Thus, v satisfies (BC)γ for every γ ∈ Γ, and we conclude v ∈ D(H). This
means H = Hb

∗. �

Now, Theorem 3 is a corollary of the following proposition.

Proposition 12. Suppose Assumption 2 holds. Then, Hb = H. In other words,
D(Hb) is an operator core for the operator H.
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Figure 2. The union of non-dashed disks is the set Sn for
n = 2. Here, (Γ)R is the set in Fig. 1

Proof. Let R be the constant in Assumption 2. For a positive integer n, let Sn

be the connected component of Bn(0) ∪ (Γ)R containing Bn(0) (see Fig. 2).
By assumption, Sn is a bounded open set in R

d. Let η ∈ C∞
0 (Rd) be

a rotationally symmetric function such that η ≥ 0, supp η ⊂ BR/3(0), and∫
Rd ηdx = 1. Put

χn(x) =
∫

Sn

η(x − y)dy.

The function χn has the following properties.

(i) χn ∈ C∞
0 (Rd), 0 ≤ χn(x) ≤ 1, and

χn(x) =

{
1 (x ∈ Sn, dist(x, ∂Sn) > R/3),
0 (x �∈ Sn, dist(x, ∂Sn) > R/3).

In particular, χn(x) → 1 as n → ∞ for every x ∈ R
d.

(ii) supp∇χn ⊂ (∂Sn)R/3, and supp∇χn ∩ Γ = ∅.
(iii) ‖∇χn‖∞, ‖Δχn‖∞ are bounded uniformly with respect to n, where ‖·‖∞

denotes the sup norm.

Let u ∈ D(H). By (i), (ii) and Proposition 8, χnu ∈ D(Hb). By the dominated
convergence theorem and (i), χnu → u in L2(Rd). Moreover,

Δ(χnu) − Δu = (χn − 1)Δu + 2∇χn · ∇u + (Δχn)u. (15)

Since u,Δu ∈ L2, the first term of (15) and the third tend to 0 in L2(Rd) by the
dominated convergence theorem. As for the second term, we apply the elliptic
inner regularity estimate (Corollary 25) for U = (∂Sn)R/2 and V = (∂Sn)R/3,
and obtain
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‖∇χn · ∇u‖L2(Rd)

≤ ‖∇χn‖∞‖∇u‖L2(V )

≤ C‖∇χn‖∞
(‖Δu‖L2(U) + ‖u‖L2(U)

)

≤ C‖∇χn‖∞
(
‖Δu‖L2(Bn−R/2(0)c) + ‖u‖L2(Bn−R/2(0)c)

)
.

Here, the constant C is independent of n, since dist(V, ∂U) ≥ R/6 and the
lower bound is independent of n. The last expression tends to 0 as n → ∞, so
Δ(χnu) − Δu → 0 in L2(Rd). Thus, χnu ∈ D(Hb) converges to u in D(H),
and we conclude D(Hb) is dense in D(H). �

Proof of Theorem 3. Proposition 11 implies H = Hb
∗, and Hb

∗ = (Hb)∗ al-
ways holds. On the other hand, Proposition 12 says Hb = H, so

H = Hb
∗ = (Hb)∗ = H∗.

Thus, H is self-adjoint. �

3. Random Point Interactions

Using Theorem 3, we study the Schrödinger operators with random point
interactions so that d∗ can be 0.

3.1. Self-adjointness

First, we give a simple corollary of Theorem 3.

Corollary 13. Assume that there exists R0 > 0 and M > 0 such that #(Γ ∩
BR0(x)) ≤ M for every x ∈ R

d. Then, HΓ,α is self-adjoint for any α =
(αγ)γ∈Γ.

Proof. The assumption implies Assumption 2 holds with R = R0/(2M + 1),
since the connected component of (Γ)R containing x ∈ R

d is contained in the
bounded set BR0(x). �

The assumption of Corollary 13 is satisfied for random displacement model
(Corollary 4).

Proof of Corollary 4. Under the assumption of Corollary 4, we have

#(Γ ∩ B1(x)) ≤ #(Zd ∩ BC+1(x)) ≤
∣
∣
∣BC+1+

√
d/2(0)

∣
∣
∣ ,

where |S| denotes the Lebesgue measure of a measurable set S. Thus, the
assumption of Corollary 13 is satisfied. �

Next, we consider the case Γ = Γω is the Poisson configuration (Corol-
lary 5). We review the definition of the Poisson configuration (see e.g., [5,18,
25,27]).

Definition 14. Let μω be a random measure on R
d (d ≥ 1) dependent on ω ∈ Ω

for some probability space Ω. For a positive constant λ, we say μω is the Poisson
point process with intensity measure λdx if the following conditions hold.
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(i) For every Borel measurable set E ∈ R
d with the Lebesgue measure,

|E| < ∞, μω(E) is an integer-valued random variable on Ω and

P(μω(E) = k) =
(λ|E|)k

k!
e−λ|E|

for every nonnegative integer k.
(ii) For any disjoint Borel measurable sets E1, . . . , En in R

d with finite
Lebesgue measure, the random variables {μω(Ej)}n

j=1 are independent.

We call the support Γω of the Poisson point process measure μω the Poisson
configuration.

We introduce a basic result in the theory of continuum percolation (see
e.g., [23]).

Theorem 15. (Continuum percolation) Let Γ = Γω be the Poisson configura-
tion on R

d (d ≥ 2) with intensity measure λdx, where λ is a positive constant.
For R > 0, let θR(λ) be the probability of the event ‘the connected component
of (Γ)R containing the origin is unbounded.’ Then, for any R > 0, there exists
a positive constant λc(R), called the critical density, such that

{
θR(λ) = 0 (λ < λc(R)),
θR(λ) > 0 (λ > λc(R)).

Moreover, the scaling property

λc(R) = R−dλc(1) (16)

holds for any R > 0.

When d = 1, it is easy to see θR(λ) = 0 for every R > 0 and λ > 0, so
we put λc(R) = ∞.

Proof of Corollary 5. By the scaling property (16), the condition λ < λc(R) is
satisfied if we take R sufficiently small. Then, since the Poisson point process
is statistically translationally invariant and R

d has a countable dense subset,
we see that every connected component of (Γω)R is bounded, almost surely.
Thus, Theorem 3 implies the conclusion. �

3.2. Admissible Potentials for Poisson–Anderson-Type Point Interactions

By Corollary 5, we can define the Schrödinger operator with random point
interactions of Poisson–Anderson type, that is, (Γω, αω) satisfies Assumption
6. We write Hω = HΓω,αω

for simplicity and study the spectrum of Hω. For this
purpose, we use the method of admissible potentials, which is a useful method
when we determine the spectrum of the random Schrödinger operators (see
e.g., [5,18,19,25]).

Definition 16. Let ν be the single-site measure in (ii) of Assumption 6.

(i) We say a pair (Γ, α) belongs to AF if Γ is a finite set in R
d and α =

(αγ)γ∈Γ with αγ ∈ supp ν for every γ ∈ Γ.
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(ii) We say a pair (Γ, α) belongs to AP if Γ is expressed as

Γ =
n⋃

k=1

⎛

⎝γk +
d⊕

j=1

Zej

⎞

⎠

for some n = 0, 1, 2, . . ., some vectors γ1, . . . , γn ∈ R
d and independent

vectors e1, . . . , ed ∈ R
d, and α = (αγ)γ∈Γ is a supp ν-valued periodic

sequence on Γ, i.e., αγ ∈ supp ν for every γ ∈ Γ and αγ+ej
= αγ for

every γ ∈ Γ and j = 1, . . . , d.

Notice that (Γ, α) belongs to both AF and AP if Γ = ∅.
We need a lemma about the continuous dependence of the operator do-

main D(HΓ,α) with respect to (Γ, α).

Lemma 17. Let Γ = {γj}n
j=1 be an n-point set and α = (αj)n

j=1 a real-valued
sequence on Γ, where we denote αγj

by αj. Let δ = minj �=k |γj −γk|. Let ε > 0,
E ∈ R, and U be a bounded open set. Suppose that there exists uε ∈ D(HΓ,α)
such that ‖uε‖ = 1, suppuε ⊂ U , and ‖(HΓ,α −E)uε‖ ≤ ε. Then, the following
holds.
(i) There exists ε′ > 0 satisfying the following property; for any Γ̃ = {γ̃j}n

j=1

with |γj −γ̃j | ≤ ε′, there exists vε ∈ HΓ̃,α such that ‖vε‖ = 1, supp vε ⊂ U ,
and ‖(HΓ̃,α − E)vε‖ ≤ 2ε.

(ii) There exists ε′′ > 0 satisfying the following property; for any α̃ = (α̃j)n
j=1

with |αj − α̃j | ≤ ε′′, there exists vε ∈ HΓ,α̃ such that ‖vε‖ = 1, supp vε ⊂
U , and ‖(HΓ,α̃ − E)vε‖ ≤ 2ε. Moreover, ε′′ can be taken uniformly with
respect to Γ so that δ = δ(Γ) is bounded uniformly from below.

Proof. (i) Let η ∈ C∞
0 (Rd) such that 0 ≤ η ≤ 1, η(x) = 1 for |x| ≤ δ/4, and

η(x) = 0 for |x| ≥ δ/3. Let Γ̃ = {γ̃j}n
j=1 with |γj − γ̃j | ≤ ε′ for sufficiently

small ε′ (specified later). Consider the map

Φ(x) = x +
n∑

j=1

η(x − γj) · (γ̃j − γj). (17)

By definition, Φ is a C∞ map from R
d to itself, Φ(γj) = γ̃j , and

|Φ(x) − x| + |∇(Φ(x) − x)| + |Δ(Φ(x) − x)| ≤ Cε′

for some positive constant C. Thus, by Hadamard’s global inverse function
theorem, Φ is a diffeomorphism from R

d to itself, for sufficiently small ε′.
Put wε := uε ◦ Φ−1. We can easily check wε ∈ D(HΓ̃,α), since Φ(x) =

x + γ̃j − γj for x ∈ Bδ/4(γj). We use the coordinate change x = Φ(y) or
y = Φ−1(x). By (17) and the inverse function theorem, we have estimates

∂xj

∂yk
(y) = δjk + O(ε′),

∂yj

∂xk
(x) = δjk + O(ε′),

∂2yj

∂xk∂x

(x) = O(ε′),

det
(

∂x

∂y

)

= 1 + O(ε′) (18)



420 M. Kaminaga et al. Ann. Henri Poincaré

as ε′ → 0, where δjk is Kronecker’s delta, and ∂x/∂y = (∂xj/∂yk)jk is the
Jacobian matrix. The remainder terms are uniform with respect to x (or y),
and are equal to 0 for x �∈ ⋃

j

(
Bδ/3(γj)\Bδ/4(γj)

)
. Thus, we have by (18)

‖wε‖2 =
∫

Rd

|uε(y)|2dx =
∫

Rd

|uε(y)|2
∣
∣
∣
∣det

(
∂x

∂y

)∣
∣
∣
∣ dy = 1 + O(ε′).

Next, by the chain rule

Δwε(x) =
d∑

j=1

∂2

∂x2
j

uε(y)

=
d∑

j=1

∂

∂xj

(
d∑

k=1

∂uε

∂yk
(y) · ∂yk

∂xj
(x)

)

=
d∑

j=1

d∑

k=1

(
d∑


=1

∂2uε

∂2yky

(y) · ∂y


∂xj
(x) · ∂yk

∂xj
(x) +

∂uε

∂yk
(y) · ∂2yk

∂x2
j

(x)

)

.

Thus, we have by (18)

‖(HΓ̃,α − E)wε‖2

∫

Rd

|(−Δx − E)wε(x)|2dx

=
∫

Rd

|(−Δy − E)uε(y)|2dy · (1 + O(ε′))

+
n∑

j=1

‖uε‖2
H2(Bδ/3(γj)\Bδ/4(γj))

· O(ε′).

≤ ε2(1 + O(ε′)) +
n∑

j=1

‖uε‖2
H2(Bδ/3(γj)\Bδ/4(γj))

· O(ε′).

By the elliptic inner regularity estimate (Corollary 25)
n∑

j=1

‖uε‖2
H2(Bδ/3(γj)\Bδ/4(γj))

≤ C
n∑

j=1

(
‖(−Δuε − E)uε‖2

L2(Bδ/2(γj))
+ ‖uε‖2

L2(Bδ/2(γj))

)

≤ C(ε2 + 1),

where C is a positive constant independent of uε. Taking ε′ sufficiently small
and putting vε = wε/‖wε‖, we conclude vε has the desired property.

(ii) We give the proof only in the case d = 2 (the case d = 1, 3 can be
treated similarly). Let φj = φγj

and ψj = ψγj
be the functions introduced in

the proof of Proposition 10. Then, the function uε can be uniquely expressed
as
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uε =
d∑

j=1

Cj(φj − 2παjψj) + ũε,

where Cj is a constant and ũε ∈ H2(R2) such that ũε(γj) = 0 for every j.
Suppose |α̃j − αj | ≤ ε′′ for sufficiently small ε′′, and put

wε =
d∑

j=1

Cj(φj − 2πα̃jψj) + ũε,

and vε = wε/‖wε‖. Then, we can prove that vε has the desired property. �

Proposition 18. Let d = 1, 2, 3, and Γω and αω satisfy Assumption 6. Then,
for Hω = HΓω,αω

,

σ(Hω) =
⋃

(Γ,α)∈AF

σ(HΓ,α) =
⋃

(Γ,α)∈AP

σ(HΓ,α) (19)

holds almost surely.

Proof. First, let

Σ =
⋃

(Γ,α)∈AF

σ(HΓ,α),

and prove σ(Hω) = Σ holds almost surely.
Recall that Γω is a locally finite subset satisfying Assumption 2 (so Hω

is self-adjoint), almost surely. For such ω, let E ∈ σ(Hω). Then, by Proposi-
tion 12, for any ε > 0, there exists uε ∈ D(Hω) such that suppuε is bounded,
‖uε‖ = 1, and ‖(Hω − E)uε‖ ≤ ε. Let Γ̃ = Γω ∩ suppuε and α̃ = (αω,γ)γ∈Γ̃.

Then, (Γ̃, α̃) ∈ AF , uε ∈ D(HΓ̃,α̃) and ‖(HΓ̃,α̃ − E)uε‖ ≤ ε. This implies
dist(E,Σ) ≤ ε for any ε > 0, so E ∈ Σ. Thus, we conclude σ(Hω) ⊂ Σ almost
surely.

Conversely, let E ∈ σ(HΓ,α) for some (Γ, α) ∈ AF . Then, for any ε > 0,
there exists uε ∈ D(HΓ,α) such that suppuε is contained in some bounded
open set U , ‖uε‖ = 1, and ‖(HΓ,α −E)uε‖ ≤ ε. We write Γ̃ := Γ∩U = {γj}n

j=1

and αj = αγj
. By the ergodicity of (Γω, αω), for any ε′, ε′′ > 0 we can almost

surely find y ∈ R
d such that Γε′ := Γω ∩ (y + U) = {γ′

j}n
j=1, γ′

j = γj + y + ε′
j

with |ε′
j | ≤ ε′, and αω,γ′

j
= αj + ε′′

j with |ε′′
j | ≤ ε′′. Taking ε′ and ε′′ sufficiently

small and applying Lemma 17, we can almost surely find vε ∈ D(Hω) such
that supp vε is bounded, ‖vε‖ = 1, and ‖(Hω − E)vε‖ ≤ 4ε. Then, we have
dist(σ(Hω), E) ≤ 4ε for any ε > 0, so E ∈ σ(Hω) almost surely. Thus, Σ ⊂
σ(Hω), and the first equality in (19) holds.

The proof of the second equality in (19) is similar; we have only to replace
AF by AP , and (Γ̃, α̃) in the first part of the proof by its periodic extension.

�
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3.3. Calculation of the Spectrum

By Proposition 18, the proof of Theorem 7 is reduced to the calculation of the
spectrum of HΓ,α for (Γ, α) ∈ AF or AP .

First, we consider the case d = 1 and the interactions are nonnegative.

Lemma 19. Let d = 1. Let Γ be a finite set and α = (αγ)γ∈Γ with αγ ≥ 0 for
every γ ∈ Γ. Then, σ(HΓ,α) = [0,∞).

Proof. Under the assumption of the lemma, we have

(u,HΓ,αu) = ‖∇u‖2 +
∑

γ∈Γ

αγ |u(γ)|2 ≥ 0

for any u ∈ D(HΓ,α). Thus, σ(HΓ,α) ⊂ [0,∞). The inverse inclusion σ(HΓ,α) ⊃
[0,∞) follows from [2, Theorem II-2.1.3]. �

Lemma 19 seems obvious, but the same statement does not hold when
d = 2, 3, since the point interaction is always negative in that case, as stated
in the introduction.

Next, we consider the other cases. In the following lemmas, the sequence
α = (αγ)γ∈Γ is assumed to be a constant sequence, that is, all the coupling
constants αγ are the same. We denote the common coupling constant αγ also
by α, by abuse of notation.

Lemma 20. Let d = 1, and x1, . . . , xN be N distinct points in R with 2 ≤ N <
∞. For L > 0, put ΓN,L = {Lxj}N

j=1. Let α be a constant sequence on ΓN,L

with common coupling constant α < 0. Then, the following holds.
(i) Let N = 2 and |x1 − x2| = 1. Then, HΓ2,L,α has only one negative

eigenvalue E1(L) for L ≤ −2/α, and two negative eigenvalues E1(L)
and E2(L) (E1(L) < E2(L)) for L > −2/α. The function E1(L) (resp.
E2(L)) is real analytic and monotone increasing (resp. decreasing) with
respect to L ∈ (0,∞) (resp. L ∈ (−2/α,∞)), and

lim
L→+0

E1(L) = −α2, lim
L→∞

E1(L) = −α2

4
,

lim
L→−2/α+0

E2(L) = 0, lim
L→∞

E2(L) = −α2

4
.

(ii) Let N ≥ 3. Then, the operator HΓN,L,α has at least one negative eigen-
value for any L > 0. The smallest eigenvalue E1(L) is simple, real ana-
lytic and monotone increasing with respect to L ∈ (0,∞), and

lim
L→+0

E1(L) = − (Nα)2

4
, lim

L→∞
E1(L) = −α2

4
.

Proof. According to [2, Theorem II-2.1.3], HΓN,L,α has a negative eigenvalue
E = −s2 (s > 0) if and only if detM = 0, where M = (Mjk) is the N × N
matrix given by

Mjk =

{
−α−1 − (2s)−1 (j = k),
−(2s)−1e−sL|xj−xk| (j �= k).
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Figure 3. Graphs of both sides of (20) for α = −1 and L =
2n (n = −4, . . . , 1)

Figure 4. Graphs of both sides of (20) for α = −1 and L =
2n (n = 2, . . . , 4)

Let M̃ = (M̃jk) be the N ×N -matrix given by M̃jk = e−sL|xj−xk|. Then, since
M = −(2s)−1(2s/α · I + M̃) (I is the identity matrix),

det M = 0 ⇔ M has eigenvalue 0

⇔ −2s/α coincides with one of eigenvalues of M̃.

(i) Let N = 2 and |x1 −x2| = 1. Then, the eigenvalues of M̃ are 1±e−sL.
Thus, E = −s2 (s > 0) is an eigenvalue of HΓ2,L,α if and only if s satisfies one
of two equations

−2s

α
= 1 + e−sL, −2s

α
= 1 − e−sL. (20)

The statements can be understood graphically by the graphs of both sides of
(20) (see Figs. 3 and 4). Below we give a rigorous proof of the statements.

In order to study the first equation in (20), put f(s, L) = 1+e−sL+2s/α.
Then,

∂f

∂s
(s, L) = −Le−sL +

2
α

< 0,

lim
s→+0

f(s, L) = 2, lim
s→∞ f(s, L) = −∞,
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since α < 0. Thus, the equation f(s, L) = 0 has unique positive solution
s = s1(L), which is analytic with respect to L. Moreover, by the implicit
function theorem,

∂f

∂L
(s, L) = −se−sL < 0,

∂s1

∂L
(L) = −

∂f
∂L |s=s1(L)

∂f
∂s |s=s1(L)

< 0.

Thus, s1(L) is monotone decreasing, and E1(L) = −s1(L)2 is monotone in-
creasing. The limit of s1(L) as L → +0 (resp. L → ∞) can be obtained by solv-
ing the limit equation f(s, 0) = 2 + 2s/α = 0 (resp. f(s,∞) = 1 + 2s/α = 0),
that is,

lim
L→+0

s1(L) = −α, lim
L→∞

s1(L) = −α

2
.

Thus, we obtain the corresponding limit values for E1(L) = −s1(L)2.
Next, we study the second equation in (20). Put g(s, L) = 1−e−sL+2s/α.

Then,
∂g

∂s
(s, L) = Le−sL +

2
α

< L +
2
α

,

lim
s→+0

g(s, L) = 0, lim
s→∞ g(s, L) = −∞.

Thus, the number of positive solutions of g(s, L) = 0 depends on L and α.
If L ≤ −2/α, then ∂g/∂s < 0, and no positive solution exists. If L > −2/α,
then g(s, L) is monotone increasing for 0 < s < sm for some sm > 0, takes
positive maximum at s = sm, and is monotone decreasing for s > sm. Thus,
there exists unique positive solution s = s2(L), which is analytic with respect
to L, and E2(L) = −s2(L)2 is a negative eigenvalue. Since f(s, L) > g(s, L)
and ∂f/∂s < 0, we have s1(L) > s2(L) and E1(L) < E2(L). Moreover, by the
implicit function theorem,

∂g

∂L
(s, L) = se−sL > 0,

∂s2

∂L
(L) = −

∂g
∂L |s=s2(L)

∂g
∂s |s=s2(L)

> 0,

since ∂g/∂s|s=s2(L) < 0. Thus, s2(L) is monotone increasing, and E2(L) is
monotone decreasing. In order to obtain the limit of s2(L) as L → −2/α + 0,
consider the inequality for positive s and L

e−sL > 1 − sL +
s2L2

2
, g(s, L) < s

(

L +
2
α

)

− s2L2

2
.

The equation s (L + 2/α) − s2L2/2 = 0 has unique positive solution s =
s3(L) = 2(L+2/α)/L2, which tends to 0 as L → −2/α+0. Since 0 < s2(L) <
s3(L), we have

lim
L→−2/α+0

s2(L) = 0.

The limit of s2(L) as L → ∞ can be obtained by solving the limit equation
g(s,∞) = 1 + 2s/α = 0, that is,

lim
L→∞

s2(L) = −α

2
.
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Thus, we obtain the corresponding limit values for E2(L) = −s2(L)2.
(ii) Let N ≥ 3. Let μ1(s, L) be the largest eigenvalue of M̃ . The matrix M̃

is a symmetric matrix with positive components, depending only on the prod-
uct sL. Then, by the Perron–Frobenius theorem, we conclude the eigenvalue
μ1(s, L) is simple and positive, and there is unique normalized eigenvector
v(s, L) ∈ R

N with only positive components. Since the components of M̃ are
real analytic with respect to sL, μ1(s, L) and v(s, L) are also real analytic
with respect to sL. Since v has only positive components, we have by the
Feynman–Hellman theorem

∂M̃jk

∂(sL)
= −|xj − xk|e−sL|xj−xk| ≤ 0,

∂μ1

∂(sL)
= tv

∂M̃

∂(sL)
v < 0,

∂μ1

∂s
= L

∂μ1

∂(sL)
< 0,

∂μ1

∂L
= s

∂μ1

∂(sL)
< 0,

where tv is the transpose of a column vector v. Moreover, the asymptotic form
of M̃ is given by

lim
sL→0

M̃jk = 1, lim
sL→∞

M̃jk = δjk,

where δjk is the Kronecker delta. Thus, we conclude

lim
sL→0

μ1(s, L) = N, lim
sL→∞

μ1(s, L) = 1.

In Figs. 5 and 6, we give the graphs of −αs/2 and eigenvalues of M̃ for N = 4,
xj = j (j = 1, . . . , 4), α = −1 and L = 1/16, 4.

By the above properties and α < 0, we conclude that there exists a unique
positive solution s = s1(L) of the equation −2s/α = μ1(s, L), and the function
s1(L) is real analytic and strictly monotone decreasing on (0,∞), similarly as
in the case (i). Moreover, by solving the limit equations −2s/α = μ1(s, 0) = N
and −2s/α = μ1(s,∞) = 1, we conclude

lim
L→0

s1(L) = −Nα

2
, lim

L→∞
s1(L) = −α

2
.

Figure 5. Graphs of −2s/α and eigenvalues of M̃ for N = 4,
α = −1 and L = 1/16
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Figure 6. Graphs of −2s/α and eigenvalues of M̃ for N = 4,
α = −1 and L = 4

Since E1(L) = −s1(L)2, the statement holds. �

Lemma 21. Let d = 2. For L > 0, let ΓL = {γ1, γ2} with |γ1 − γ2| = L. Let
α be a constant sequence on ΓL with common coupling constant α ∈ R. Then,
HΓL,α has only one negative eigenvalue E1(L) for L ≤ e2πα, and two negative
eigenvalues E1(L) and E2(L) (E1(L) < E2(L)) for L > e2πα. The function
E1(L) (resp. E2(L)) is real analytic, monotone increasing (resp. decreasing)
with respect to L ∈ (0,∞) (resp. L ∈ (e2πα,∞)), and

lim
L→+0

E1(L) = −∞, lim
L→∞

E1(L) = −4e−4πα−2γE ,

lim
L→e2πα+0

E2(L) = 0, lim
L→∞

E2(L) = −4e−4πα−2γE ,

where γE is the Euler constant.

Proof. By [2, Theorem II-4.2], HΓL,α has a negative eigenvalue E = −s2 (s >
0) if and only if detM = 0, where M = (Mjk) is a 2 × 2-matrix given by

Mjk =

{
(2π)−1(2πα + γE + log(s/2)) (j = k),
− i

4H
(1)
0 (isL) (j �= k).

Here, H
(1)
0 is the 0-th order Hankel function of the first kind. By [1, 9.6.4], we

have

− i

4
H

(1)
0 (isL) = − 1

2π
K0(sL),

where Kν(z) is the ν-th order modified Bessel function of the second kind.
Thus, det M = 0 if and only if one of the following two equations hold.

f(s, L) := 2πα + γE + log
s

2
− K0(sL) = 0, (21)

g(s, L) := 2πα + γE + log
s

2
+ K0(sL) = 0. (22)
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Let us review formulas for the modified Bessel functions [1, 9.6.23,9.6.27,9.6.13,
9.7.2].

Kν(z) =
π1/2

Γ(ν + 1/2)

(z

2

)ν
∫ ∞

1

e−zt(t2 − 1)ν−1/2dt
(
| arg z| <

π

2

)
, (23)

K ′
0(z) = −K1(z), (24)

K0(z) = − log
z

2
− γE + O(z2 log z) as z → 0, (25)

K0(z) =
√

π

2z
e−z(1 + O(z−1)) as z → +∞. (26)

By (23)–(26), we see that Kν(z) > 0 for z > 0 and ν > −1/2, and

∂f

∂s
=

1
s

+ LK1(sL) > 0,
∂f

∂L
= sK1(sL) > 0,

lim
s→+0

f(s, L) = −∞, lim
s→∞ f(s, L) = ∞,

lim
L→+0

f(s, L) = −∞, lim
L→∞

f(s, L) = 2πα + γE + log
s

2
.

The graphs of y = f(s, L) are given as curves below the dashed curve in Figs. 7
and 8. Here, the dashed curve is the limit curve y = 2πα + γE + log s/2.

Figure 7. Graphs of y = f(s, L) and y = g(s, L) for α = 1
and L = 4n (n = −4, . . . , 2)

Figure 8. Graphs of y = f(s, L) and y = g(s, L) for α = 1
and L = e2πα+n/2 (n = −1, 0, 1)
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Similarly as in the proof of Lemma 20, by using these properties, we
conclude that Eq. (21) has unique positive solution s = s1(L) for any L > 0,
s1(L) is real analytic and monotone decreasing, and

lim
L→+0

s1(L) = ∞, lim
L→∞

s1(L) = 2e−2πα−γE .

Next, again by (23)–(26),

∂g

∂s
=

1
s

− LK1(sL) =
1
s

− sL2

∫ ∞

1

e−sLt(t2 − 1)1/2dt

>
1
s

− sL2

∫ ∞

0

e−sLttdt = 0,

∂g

∂L
= −sK1(sL) < 0,

lim
s→+0

g(s, L) = 2πα − log L, lim
s→∞ g(s, L) = ∞,

lim
L→+0

g(s, L) = ∞, lim
L→∞

g(s, L) = 2πα + γE + log
s

2
.

The graphs of y = g(s, L) are given as curves above the dashed curve in Figs. 7
and 8. By these properties, we conclude Eq. (22) has no positive solution for
L ≤ e2πα, has unique positive solution s = s2(L) for L > e2πα, s2(L) is real
analytic and monotone increasing, and

lim
L→e2πα+0

s2(L) = 0, lim
L→∞

s2(L) = 2e−2πα−γE .

Since E1(L) = −s1(L)2 and E2(L) = −s2(L)2, the statements hold. �

Lemma 22. Let d = 3. For L > 0, let ΓL = {γ1, γ2} with |γ1 − γ2| = L. Let
α be a constant sequence on ΓL with common coupling constant α ∈ R. Then,
the following holds.

(i) Assume α ≥ 0. Then, HΓL,α has no negative eigenvalue for L ≥ 1/(4πα)
and has one negative eigenvalue E1(L) for 0 < L < 1/(4πα) (when
α = 0, we interpret 1/(4πα) = ∞ and the first case does not occur).
The function E1(L) is real analytic, monotone increasing with respect to
L ∈ (0, 1/(4πα)), and

lim
L→+0

E1(L) = −∞, lim
L→1/(4πα)−0

E1(L) = 0.

(ii) Assume α < 0. Then, HΓL,α has one negative eigenvalue E1(L) for
L ≤ 1/(−4πα) and two negative eigenvalues E1(L) and E2(L) (E1(L) <
E2(L)) for L > 1/(−4πα). The function E1(L) (resp. E2(L)) is real an-
alytic, monotone increasing (resp. decreasing) with respect to L ∈ (0,∞)
(resp. L ∈ (1/(−4πα),∞)), and

lim
L→+0

E1(L) = −∞, lim
L→∞

E1(L) = −(4πα)2,

lim
L→1/(−4πα)+0

E2(L) = 0, lim
L→∞

E2(L) = −(4πα)2.
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Proof. By [2, Theorem II-1.1.4], HΓL,α has a negative eigenvalue E = −s2

(s > 0) if and only if detM = 0, where M = (Mjk) is a 2 × 2-matrix given by

Mjk =

⎧
⎪⎨

⎪⎩

α +
s

4π
(j = k),

−e−sL

4πL
(j �= k).

So, detM = 0 if and only if one of the following equations holds.

4πα + s =
e−sL

L
, (27)

4πα + s = −e−sL

L
. (28)

The graphs of both sides of (27) and (28) are given in Figs. 9 and 10.
The functions

f(s, L) := 4πα + s − e−sL

L
, g(s, L) := 4πα + s +

e−sL

L

satisfy the following properties.

∂f

∂s
(s, L) = 1 + e−sL > 0, lim

s→+0
f(s, L) = 4πα − 1

L
, lim

s→∞ f(s, L) = ∞,

Figure 9. Graphs of both sides of (27) and (28) for α = 1
and L = 2n/(4πα) (n = −1, 0, 1)

Figure 10. Graphs of both sides of (27) and (28) for α = −1
and L = 2n/(−4πα) (n = −1, 0, 1)
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∂f

∂L
(s, L) =

sL + 1
L2

e−sL > 0, lim
L→+0

f(s, L) = −∞, lim
L→∞

f(s, L) = 4πα + s,

∂g

∂s
(s, L) = 1 − e−sL > 0, lim

s→+0
g(s, L) = 4πα +

1
L

, lim
s→∞ g(s, L) = ∞,

∂g

∂L
(s, L) = −sL + 1

L2
e−sL < 0, lim

L→+0
g(s, L) = ∞, lim

L→∞
g(s, L) = 4πα + s.

By using these properties, we conclude the following, similarly as in the proof
of Lemma 20.

(i) For α ≥ 0, Eq. (27) has no positive solution for L ≥ 1/(4πα) and
has one positive solution s = s1(L) for 0 < L < 1/(4πα). Moreover,
s1(L) is real analytic and monotone decreasing, and limL→+0 s1(L) = ∞,
limL→1/(4πα)−0 s1(L) = 0. Equation (28) has no positive solution.

(ii) For α < 0, Eq. (27) has one positive solution s = s1(L) for any L > 0,
s1(L) is real analytic and monotone decreasing, and limL→+0 s1(L) = ∞,
limL→∞ s1(L) = −4πα. Equation (28) has no positive solution for L ≤
1/(−4πα), has one positive solution s = s2(L) for L > 1/(−4πα), s2(L)
is real analytic and monotone increasing, and limL→1/(−4πα)+0 s2(L) = 0,
limL→∞ s2(L) = −4πα.

These facts and E1(L) = −s1(L)2, E2(L) = −s2(L)2 imply the statements.
�

Proof of Theorem 7. Put

Σ =
⋃

(Γ,α)∈AF

σ(HΓ,α).

By Proposition 18, we have σ(Hω) = Σ almost surely.
First, consider the case d = 1 and supp ν ⊂ [0,∞). Then, for any (Γ, α) ∈

AF , we have σ(HΓ,α) = [0,∞) by Lemma 19. So Σ = [0,∞).
In all other cases, we have to prove Σ = R. Since σ(HΓ,α) = [0,∞) for

Γ = ∅, we have only to prove (−∞, 0) ⊂ Σ.
Consider the case d = 1 and supp ν ∩ (−∞, 0) �= ∅. Let ΓN,L given in

Lemma 20, and α be a constant sequence on ΓN,L with common coupling
constant α ∈ supp ν ∩ (−∞, 0). Then, (ΓN,L, α) ∈ AF for any N ≥ 2 and
L > 0, so

Σ ⊃
⋃

N≥2,L>0

σ(HΓN,L,α).

By Lemma 20, the right hand side contains (−∞, 0). When d = 2, 3, the
statement can be proved similarly by using Lemmas 21 and 22. �

In the case d = 1 and supp ν has negative part, there is a simple another
proof using the spectrum of the Kronig–Penney model (see [2,21]).
Another proof of Theorem 7 (i) Put

Σ =
⋃

(Γ,α)∈AP

σ(HΓ,α).
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Figure 11. Graphs of y = f(s, L) for L = 2−n (n = 3, . . . , 6).
As L → +0, the negative band becomes longer and longer

By Proposition 18, we have σ(Hω) = Σ almost surely.
Assume d = 1 and (−∞, 0) ∩ supp ν �= ∅. It is sufficient to show Σ ⊃

(−∞, 0). For L > 0, let ΓL = LZ, and α be a constant sequence on ΓL with
common coupling constant α ∈ supp ν ∩ (−∞, 0). Then, (ΓL, α) ∈ AP . By [2,
Theorem III.2.3.1], the spectrum of HΓL,α is given by

σ(HΓL,α) =
{
k2 ∈ R | |cos(kL) + α/(2k) sin(kL)| ≤ 1

}
.

Put k = is for s > 0. Then, E = −s2 ∈ σ(HΓL,α) if and only if

|cosh(sL) + α/(2s) sinh(sL)| ≤ 1. (29)

Take arbitrary s0 > 0, and let s ∈ (0, s0]. Consider the Taylor expansion with
respect to L

f(s, L) := cosh(sL) +
α

2s
sinh(sL) = 1 +

α

2
L + O(L2) as L → 0. (30)

The remainder term is uniform with respect to s ∈ (0, s0]. Since α < 0, (30)
implies (29) holds for sufficiently small L uniformly with respect to s ∈ (0, s0]
(see also Fig. 11). Thus, [−s2

0, 0) ⊂ σ(HΓL,α) for sufficiently small L, so
(−∞, 0) ⊂ Σ.

�
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4. Appendix

4.1. Renormalization Procedure for Point Interactions

For readers’ convenience, we quote a result about the renormalization proce-
dure (1)

H = lim
ε→0

Hε, Hε = −Δ + λ(ε)ε−dV (·/ε) (1)

in the case d = 3 and Γ = O := {0} ([2, Theorem I-1.2.5]).

Theorem 23 ([2]). Let d = 3. Let V be a real-valued function on R
3 belonging to

Rollnik class (i.e.,
∫∫

R3×R3 |V (x)||V (x′)||x−x′|−2dxdx′ < ∞), and (1+|·|)V ∈
L1(R3). Let λ(ε) = εμ(ε), where μ(ε) is real analytic near ε = 0, μ(0) = 1 and
μ′(0) �= 0. Let G0 = (−Δ)−1, defined as an integral operator with integral
kernel 1/(4π|x − x′|). If two functions φ ∈ L2(R3) and ψ ∈ L2

loc(R
3)\L2(R3)

satisfy

sgn V |V |1/2G0|V |1/2φ = −φ, ψ = G0|V |1/2φ,

where sgn z = z/|z| (z �= 0) and sgn 0 = 1, then ψ is called a zero-energy
resonance for −Δ + V .
(i) If a zero-energy resonance for −Δ + V exists, then the norm resolvent

limit of Hε in (1) coincides with HO,α, α = (α0), for some α0 ∈ R.
(ii) If no zero-energy resonance for −Δ + V exists, then the norm resolvent

limit of Hε in (1) coincides with the free Laplacian H0.

It is easy to see that ψ satisfies the equation (−Δ+V )ψ = 0. In the case (i), an
explicit formula for α0 is given in [2, Theorem I-1.2.5]. If −Δ + V has simple
zero-energy resonance ψ and no zero-energy eigenfunction, it is given as

α0 = −μ′(0)C−1, C =
∣
∣
∣
∣

∫

R3
|V |1/2φdx

∣
∣
∣
∣

2

.

Thus, α0 appears in the coefficient of λ(ε) as λ(ε) = ε − Cα0ε
2 + O(ε3). It

is known that if V is nonnegative, then there is no zero-energy resonance for
−Δ + V . So, the occurrence of the case (i) requires V to have negative part.

A similar result is obtained also in the case d = 2, but α0 appears in the
coefficient of λ(ε) in more complicated way (see [2, Theorem I-5.5]).

4.2. Elliptic Inner Regularity Estimate

The following is a special case of the elliptic inner regularity theorem ([4,
Theorem 6.3]).

Theorem 24. Let U be an open set in R
d and u ∈ L2(U). Assume that there

exists a positive constant M such that

|(u,Δφ)L2(U)| ≤ M‖φ‖L2(U) (31)

holds for every φ ∈ C∞
0 (U). Then, u ∈ H2

loc(U). Moreover, for any open set
V such that V is a compact subset of U , there exists a positive constant C
dependent only on U and V such that
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‖u‖H2(V ) ≤ C(M + ‖u‖L2(U)),

where M is the constant in (31).

From Theorem 24, we have the following corollary useful for our purpose.

Corollary 25. Let U , V be open sets in R
d such that V ⊂ U and

dist(∂U, V ) ≥ δ

for some positive constant δ. Let u ∈ L2(U) such that Δu ∈ L2(U) in the dis-
tributional sense. Then, u ∈ H2

loc(U), and there exists a constant C dependent
only on δ and the dimension d such that

‖u‖2
H2(V ) ≤ C

(
‖Δu‖2

L2(U) + ‖u‖2
L2(U)

)
. (32)

Proof. Put ε = δ/(2d). For x0 ∈ R
d, consider open cubes Q = x0 + (−ε, ε)d

and Q′ = x0 + (−ε/2, ε/2)d. When Q ⊂ U , we have

|(u,Δφ)L2(Q)| = |(Δu, φ)L2(Q)| ≤ ‖Δu‖L2(Q)‖φ‖L2(Q)

for every φ ∈ C∞
0 (Q). Then, the assumption of Theorem 24 is satisfied with

U = Q, V = Q′, and M = ‖Δu‖L2(Q), and we have

‖u‖2
H2(Q′) ≤ C(‖Δu‖2

L2(Q) + ‖u‖2
L2(Q)) (33)

for some positive constant C dependent only on δ and dimension d. We collect
all the cubes Q′ such that the center x0 ∈ εZd and Q′ ∩ V �= ∅. Notice that
Q ⊂ U for such Q′. Thus, we have by (33)

‖u‖2
H2(V ) ≤

∑

Q′
‖u‖2

H2(Q′)

≤ C
∑

Q′

(
‖Δu‖2

L2(Q) + ‖u‖2
L2(Q)

)

≤ 2dC
(
‖Δu‖2

L2(U) + ‖u‖2
L2(U)

)
,

where we use the fact Q can overlap at most 2d times. �
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