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Trigonometric Integrable Tops from
Solutions of Associative Yang–Baxter
Equation

T. Krasnov and A. Zotov

Abstract. We consider a special class of quantum nondynamical R-matrices
in the fundamental representation of GLN with spectral parameter given
by trigonometric solutions of the associative Yang–Baxter equation. In
the simplest case N = 2, these are the well-known 6-vertex R-matrix and
its 7-vertex deformation. The R-matrices are used for construction of the
classical relativistic integrable tops of the Euler–Arnold type. Namely,
we describe the Lax pairs with spectral parameter, the inertia tensors
and the Poisson structures. The latter are given by the linear Poisson–
Lie brackets for the nonrelativistic models and by the classical Sklyanin-
type algebras in the relativistic cases. In some particular cases, the tops
are gauge equivalent to the Calogero–Moser–Sutherland or trigonometric
Ruijsenaars–Schneider models.
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1. Introduction

In this paper, we discuss GLN integrable Euler–Arnold-type tops [1–7] defined
by the equations of motion

Ṡ = [S, J(S)], S =
N∑

i,j=1

EijSij ∈ Mat(N, C), (1.1)

where {Sij , i, j = 1, . . . , N} is the set of dynamical variables, {Eij} is the
standard basis in Mat(N, C) and J(S) is a linear map1 on S

J(S) =
N∑

i,j,k,l=1

JijklEijSlk ∈ Mat(N, C) (1.2)

with components Jijkl independent of dynamical variables. The model is not
integrable in the general case but for special choices of J(S) only. The con-
struction of integrable tops under consideration goes back to Sklyanin’s paper
[8] (see also [9]). The idea was to formulate the classical analogue of the mod-
els described by the inverse scattering method. In this way, the classical spin
chains were described and the quadratic Poisson structures were obtained via
the classical limit of the exchange (RLL) relations.

The GLN top can be viewed as the model obtained through the classical
limit from the 1-site spin chain. The rational models of this type were described
in [10–12]. Here, we use a specification of the above-mentioned results based
on trigonometric R-matrices satisfying the associative Yang–Baxter equation
(AYBE) [13,14]:

R�

12(z12)R
η
23(z23) = Rη

13(z13)R
�−η
12 (z12) + Rη−�

23 (z23)R�

13(z13), zab = za − zb.
(1.3)

It was shown in [15] that solution of (1.3) satisfying also additional properties
of skew-symmetry2

R�

12(z) = −R−�

21 (−z) = −P12R
−�

12 (−z)P12, P12 =
N∑

i,j=1

Eij ⊗ Eji, (1.4)

unitarity
R�

12(z)R�

21(−z) = f�(z) 1N ⊗ 1N (1.5)

and the local expansions3

Res
�=0

R�

12(z) = 1N ⊗ 1N = 1N2 , Res
z=0

R�

12(z) = P12 (1.6)

1Equation (1.1) describe rotation of a rigid body in N -dimensional (complex) space. In this
respect, J(S) is the inverse inertia tensor.
2P12 in (1.4) and below is the permutation operator. In particular, for any pair of matrices
A, B ∈ Mat(N, C) with C-valued matrix elements: (A ⊗ B)P12 = P12(B ⊗ A).
3Here, we imply that R-matrices have simple poles at z = 0 and � = 0 only, and no higher
order poles. The classical limit is given by the expansion near � = 0. It is the first one
condition in (1.6). See (3.1)–(3.3).
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(1N – is N ×N identity matrix) leads to explicit constructions of the Lax pair
L(z),M(z) ∈ Mat(N, C). That is the Lax equations

L̇(z) = [L(z),M(z)] (1.7)

are equivalent to the equations of motion (1.1) identically in spectral parameter
z. All the data of the models including their Hamiltonians, the Lax pairs, the
Poisson structures and the inertia tensors (i.e., J(S)) are given in terms of
coefficients of expansion of the R-matrices near � = 0 and z = 0. For example,
in the relativistic case, the Lax pair is as follows:

Lη(z) = tr2(R
η
12(z)S2), Mη(z) = −tr2(r12(z)S2), (1.8)

where S2 = 1N ⊗ S and r12(z) is the classical r-matrix. See Sect. 3 for details.
The Planck constant plays the role of the relativistic deformation parameter
η. In some special case, it is identified with the corresponding parameter in
the Ruijsenaars–Schneider model.

Notice that together with properties (1.4) and (1.5), a solution of (1.3)
satisfies also the custom Yang–Baxter equation

R�

12(z1 − z2)R�

13(z1 − z3)R�

23(z2 − z3) = R�

23(z2 − z3)R�

13(z1 − z3)R�

12(z1 − z2),
(1.9)

so that such solution of (1.3) is then a true quantum R-matrix by convention.
Sometimes the following property holds true as well4:

R�

12(z)P12 = Rz
12(�). (1.10)

This allows to relate the coefficients of expansion (of R-matrices) near � = 0
and z = 0 to each other.

The paper is organized as follows. In Sect. 2, we describe the set of well-
known trigonometric R-matrices satisfying conditions (1.3)–(1.6) and briefly
describe the general classification of such solutions of (1.3) suggested by
Schedler and Polishchuk [17,18]. We will show that a representative exam-
ple of the classification is given by the so-called nonstandard trigonometric
R-matrix [19], which generalizes the GL2 7-vertex R-matrix [20] for N > 2.
In Sect. 3, we review the construction of integrable tops and evaluate all the
data for the general case and the nonstandard R-matrix. Using (1.3), we also
prove that the classical quadratic r-matrix structure provides the classical
Sklyanin-type Poisson structure. This results in getting the classification of
the trigonometric Sklyanin-type Poisson structures, and it is parallel to the
classification of solutions of the associative Yang–Baxter equation. In Sect. 4,
we consider a special top corresponding to rank one matrix S and related to
the nonstandard R-matrix. It turns out that this model is gauge equivalent to
the Ruijsenaars–Schneider [21,22] or the Calogero–Moser–Sutherland [23–26]
models. Explicit changes in variables are described.

4Condition (1.10) is related to the finite Fourier transformations. See [16] for details.
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2. Trigonometric R-matrices and AYBE

We begin with the properties of well-known R-matrices and then proceed to
the general case.

2.1. Standard and Nonstandard R-matrices

Consider the following examples of R-matrices:

Rη
12(z) =

N∑

i,j,k,l=1

Rη
ijkl(z)Eij ⊗ Ekl (2.1)

• The ZN -invariant AN−1 trigonometric R-matrix [20,27,28]:

(R1)
η
ij,kl(z) = δijδklδik

N

2

(
coth(Nz/2) + coth(Nη/2)

)

+ δijδklε(i �= k)
Ne(i−k)η−sign(i−k)Nη/2

2 sinh(Nη/2)

+ δilδkjε(i �= k)
Ne(i−k)z−sign(i−k)Nz/2

2 sinh(Nz/2)
, (2.2)

where hereinafter we use

ε(A) =
{

1, if A is true,
0, if A is false. (2.3)

• Baxterization of the (trigonometric) Cremmer–Gervais R-matrix [19,29]:

(R2)
η
ij,kl(z) = δijδklδik

N

2

(
coth(Nz/2) + coth(Nη/2)

)

+ δijδklε(i �= k)
Ne(i−k)η−sign(i−k)Nη/2

2 sinh(Nη/2)

+ δilδkjε(i �= k)
Ne(i−k)z−sign(i−k)Nz/2

2 sinh(Nz/2)

+Nδi+k,j+l

(
ε(i<j<k)e(i−j)z+(j−k)η

− ε(k<j<i)e(i−j)z+(j−k)η
)
. (2.4)

It differs from the previous one (2.2) by the last line. Let us comment on how
it is related to the Cremmer–Gervais R-matrix. First, one should perform the
gauge transformation

Rη
12(z − w) → R̃η

12(z, w) = D1(z)D2(w)Rη
12(z)D−1

1 (z)D−1
2 (w) (2.5)

with the diagonal matrix Dij(z) = δije
−jz. For (2.4) R̃η

12(z, w) = R̃η
12(z − w).

The result is

(R̃2)
η
ij,kl(z) = δijδklδik

N

2

(
coth(Nz/2) + coth(Nη/2)

)

+ δijδklε(i �= k)
Ne(i−k)η−sign(i−k)Nη/2

2 sinh(Nη/2)
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+ δilδkjε(i �= k)
Nesign(i−k)Nz/2

2 sinh(Nz/2)

+Nδi+k,j+l

(
ε(i<j<k)e(j−k)η − ε(k<j<i)e(j−k)η

)
. (2.6)

Consider the Cremmer–Gervais R-matrix [30]. It is free of spectral parameter:

RCG,q
12 = q−1/N

⎛

⎝q
N∑

i=1

Eii ⊗ Eii + q
N∑

i>j

q−2(i−j)/NEii ⊗ Ejj

+ q−1
N∑

i<j

q−2(i−j)/NEii ⊗ Ejj

− (q − q−1)
N∑

i<j

j−i−1∑

k=1

q2k/NEj−k,i ⊗ Ei+k,j

+ (q − q−1)
N∑

i>j

i−j−1∑

k=0

q−2k/NEj+k,i ⊗ Ei−k,j

⎞

⎠ . (2.7)

Next, introduce

RCG,q
12 (x) = xRCG,q

12 − x−1
(
RCG,q

21

)−1

. (2.8)

Finally,

(R̃2)
η
12(z) = − N

4 sinh(Nz/2) sinh(Nη/2)
RCG,q

12 (x)T , (2.9)

where ”T” means the transpose of matrix (Rij,kl
T→ Rji,lk) and x = e−η/2−Nz/2,

q = e−Nη/2.
• Nonstandard trigonometric R-matrix [19]:

Rη
ij,kl(z) = δijδklδik

N

2

(
coth(Nz/2) + coth(Nη/2)

)

+ δijδklε(i �= k)
Ne(i−k)η−sign(i−k)Nη/2

2 sinh(Nη/2)

+ δilδkjε(i �= k)
Ne(i−k)z−sign(i−k)Nz/2

2 sinh(Nz/2)

+Nδi+k,j+l

(
ε(i<j<k)e(i−j)z+(j−k)η − ε(k<j<i)e(i−j)z+(j−k)η

)

+Nδi+k,j+l+N

(
δiNe−jz−lη − δkNelz+jη

)
. (2.10)

It differs from the previous one (2.4) by the last line, which provides in N = 2
case the 7-vertex deformation [20] of the 6-vertex R-matrix.
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Properties of R-matrices.

Briefly, all the R-matrices (2.2), (2.4) and (2.10) satisfy the associative Yang–
Baxter equation (1.3), the skew-symmetry property (1.4), the unitarity prop-
erty (1.5) and therefore, the Yang–Baxter equation (1.9). Moreover, all of
them satisfy the Fourier symmetry (1.10). The gauge-transformed R-matrix
(2.6) does not satisfy (1.10) while the rest of the properties hold true.

In order to summarize the properties of the above R-matrices, introduce
notations for the last lines of (2.4) and (2.10): Δ1R

η(z) = (R2)η(z)− (R1)η(z)
and Δ2R

η(z) = (R)η(z) − (R2)η(z), i.e.,

Δ1R
η
ij,kl(z) = Nδi+k,j+l

(
ε(i<j<k)e(i−j)z+(j−k)η

− ε(k<j<i)e(i−j)z+(j−k)η
)
, (2.11)

Δ2R
η
ij,kl(z) = Nδi+k,j+l+N

(
δiNe−jz−lη − δkNelz+jη

)
(2.12)

and consider the following linear combination:

Rη(z) = A0(R1)η(z) + A1Δ1R
η(z) + A2Δ2R

η(z), (2.13)

where A0, A1 and A2 are some constants. For example, for A0 = A1 = A2 = 1,
(2.13) yields (2.10). To summarize:

Proposition 2.1. For any A0, A1 and A2 , (2.13) satisfies the properties (1.4),
(1.10) and (1.5) with

fη(z) = A2
0

N2

4

(
1

sinh2(Nη/2)
− 1

sinh2(Nz/2)

)
, (2.14)

that is (2.13) is nondegenerated iff A0 �= 0.
The associative Yang–Baxter equation (1.3) holds true for all R-matrices

(2.2), (2.4) and (2.10). The linear combination (2.13) satisfies (1.3) in the
following cases:

1. A0 = A1 �= 0, A2 – any,
2. A0 �= 0, A1 = A2 = 0
3. A0 = A1 = 0, A2 – any.

The latter means that the R-matrix (2.12) satisfies (1.3).

Let us also mention two special cases:
a. In the case5 N = 2, 3, the combination (2.13) satisfies (1.3) for A0, A1—

any, and A2 = 0.
b. for N = 4 and A0 = A2 = 0, (2.13) does not satisfy (1.3) while the

Yang–Baxter equation (1.9) holds true.
Case 2 from the proposition can be verified directly. Instead of a direct proof
of cases 1 and 3, we will show (in the next subsection) that the nonstandard
R-matrix (2.10) is contained in the general classification. Next, we can apply
the gauge transformation (2.5) with

Dij = δije
−jΛ (2.15)

5In fact, for N = 2 case A1 is not necessary since Δ1Rη(z) = 0 in this case.
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to (2.10). In terms of components, it leads to Rη
ij,kl(z) → e(j+l−i−k)ΛRη

ij,kl(z).
Therefore, the last line of (2.10) is multiplied by e−NΛ:

Rη
ij,kl(z) = δijδklδik

N

2

(
coth(Nz/2) + coth(Nη/2)

)

+ δijδklε(i �= k)
Ne(i−k)η−sign(i−k)Nη/2

2 sinh(Nη/2)

+ δilδkjε(i �= k)
Ne(i−k)z−sign(i−k)Nz/2

2 sinh(Nz/2)

+Nδi+k,j+l

(
ε(i<j<k)e(i−j)z+(j−k)η

− ε(k<j<i)e(i−j)z+(j−k)η
)

+Ne−NΛδi+k,j+l+N

(
δiNe−jz−lη − δkNelz+jη

)
. (2.16)

By taking the limit Λ → ±∞, we come to cases 1 with A2 = 0 or to case 3.
At last, consider

• R-matrix for the affine quantized algebra Ûq(glN ) [31,32]:

Rxxz,η
12 (z) =

N

2

(
coth(Nz/2) + coth(Nη/2)

) N∑

i=1

Eii ⊗ Eii

+
(N/2)

sinh(Nη/2)

N∑

i�=j

Eii ⊗ Ejj

+
(N/2)

sinh(Nz/2)

N∑

i<j

(
Eij ⊗ Eji eNz/2 + Eji ⊗ Eij e−Nz/2

)
.

(2.17)

It is used for construction of GLN XXZ spin chains and is usually written in
different normalization:

R̃xxz,q
12 (x) =

4
N

sinh(Nz/2) sinh(Nη/2)Rxxz,η
12 (z)

=
(

xq − 1
xq

) N∑

i=1

Eii ⊗ Eii +
(

x − 1
x

) N∑

i�=j

Eii ⊗ Ejj

+
(

q − 1
q

) N∑

i�=j

xsign(j−i)Eij ⊗ Eji, (2.18)

where x = eNz/2, q = eNη/2. The XXZ R-matrix is the Baxterization of the
Drinfeld’s one [33]:

(
RDr,q

12

)±1

= q±1
N∑

i=1

Eii ⊗ Eii +
N∑

i�=j

Eii ⊗ Ejj ± (q − q−1)
N∑

i>j

Eij ⊗ Eji.

(2.19)
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Namely,

R̃xxz,q
12 (x) = xRDr,q

21 − x−1
(
RDr,q

12

)−1

. (2.20)

The R-matrix (2.17) satisfies Yang–Baxter equation (1.9). It is skew-symmetric
and unitary (1.5) with

fη(z) =
N2

4

(
1

sinh2(Nη/2)
− 1

sinh2(Nz/2)

)
. (2.21)

The associative Yang–Baxter equation (1.3) for (2.17) holds true in the N = 2
case. For N > 2, the difference of the l.h.s. and the r.h.s. from (1.3) is not zero
though it is independent of spectral parameters:

R�

12(z12)R
η
23(z23) − Rη

13(z13)R
�−η
12 (z12) − Rη−�

23 (z23)R�

13(z13)

= − N2

8 cosh(N�/4) cosh(Nη/4) cosh(N(� − η)/4)

×
N∑

i�=j �=k �=i

Eii ⊗ Ejj ⊗ Ekk. (2.22)

The latter statement is verified by direct computation. We do not consider the
XXZ R-matrix for construction of integrable tops in this paper. It is of course
possible, but our method requires (1.3) to be valid.

2.2. General Classification

Here, we briefly describe the classification [17,18] of trigonometric solutions to
associative Yang–Baxter equation (1.3) with the properties of skew-symmetry
(1.4) and unitarity (1.5). As noted previously, this is sufficient condition for
satisfying the Yang–Baxter equation (1.9) as well. So that we deal with the
quantum nondynamical R-matrices. Another goal of the section is to show how
the nonstandard R-matrix (2.10) arises from the classification.

General solution of (1.3) is given in terms of combinatorial construction
called the associative Belavin–Drinfeld structure. Consider S = {1, . . . , N}—a
finite set of N elements. Say, S is the set of N vertices on a circle numerated
from 1 to N (the extended Dynkin diagram of AN−1 type). Let C0 be a
transitive cyclic permutation acting on S and ΓC0 be its graph, i.e., the set of
ordered pairs ΓC0 = {(s, C0(s)), s ∈ S}.

Define another one transitive cyclic permutation C and a pair of proper
subsets Γ1,Γ2 ⊂ ΓC0 related by C: (C × C)Γ1 = Γ2, where the action means
(C ×C)(i, j) = (C(i), C(j)). So that C ×C provides the induced bijective map
τ : Γ1

C×C−→ Γ2. The set (Γ1,Γ2, τ) is an example of the Belavin–Drinfeld triple
[34].

Here, the action of τ is extended to larger sets. Namely, it is extended to
τ : P1

C×C−→ P2, where P1,2 are the following sets:

Pi = {(s, Ck
0 (s)) : (s, C0(s)) ∈ Γi, . . . , (Ck−1

0 (s), Ck
0 (s)) ∈ Γi,

(Ck
0 (s), Ck+1

0 (s)) /∈ Γi}. (2.23)
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From the transitivity of C and the choice of Γ1,2 to be proper subsets of ΓC0 ,
it follows that there exists a number k such that (C × C)kΓ1 /∈ Γ1. Similarly,
there exist k1, k2 with the property (C0 × C0)ki+1Γi /∈ Γi, i = 1, 2. Therefore,
Pi are well-defined finite sets, and τ is the bijective map between them.

Then, the general answer for trigonometric R-matrix based on (C0, C,
Γ1,Γ2) is as follows:

Rη
12(z) =

N

2

(
coth(Nz/2) + coth(Nη/2)

) ∑

i

Eii ⊗ Eii

+
N

eNη − 1

∑

0<n<N, i=Cn(k)

enηEii ⊗ Ekk

+
N

eNz − 1

∑

0<m<N, k=Cm
0 (i)

emzEik ⊗ Eki

+
∑

0 < m < N, n > 0,
i = Cm

0 (j), τn(j, i) = (k, l)

×N
(
e−nη−mzEij ⊗ Ekl − enη+mzEkl ⊗ Eij

)
, (2.24)

where the sums are over all possible values of indices—elements of S. In partic-
ular, the last sum is over all i, j, k, l ∈ {1, . . . , N} and positive m,n for which
the τn(j, i) is defined, i.e., (j, i) ∈ P1 and τn(j, i) = (k, l) ∈ P2 with i = Cm

0 (j).
The R-matrix is skew-symmetric and unitary (1.5) with fη(z) (2.21). Answer
(2.24) is given e up to some gauge transformations. See the details in [17,18].

Example. Consider example with the cyclic permutations

C0 :

s C0(s)
1 N
2 1
3 2
...

...
N N − 1

C = C−1
0 :

s C(s)
1 2
2 3
...

...
N − 1 N

N 1

(2.25)

and the proper subsets Γ1,2 ⊂ ΓC0 = {(s, C0(s)) given by

Γ1 =
{

(1, N), (2, 1), (3, 2), . . . , (N − 1, N − 2)
}

, (2.26)

Γ2 = (C × C)Γ1 =
{

(2, 1), (3, 2), . . . , (N − 1, N − 2), (N,N − 1)
}

.

(2.27)

To construct P1, consider the action of C0 × C0 on the elements of Γ1 (2.26):

(1, N) C0×C0−→ (N,N − 1) �⊂ Γ1,

(2, 1) C0×C0−→ (1, N) C0×C0−→ (N,N − 1) �⊂ Γ1,

(3, 2) C0×C0−→ (2, 1) C0×C0−→ (1, N) C0×C0−→ (N,N − 1) �⊂ Γ1,
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...

(N − 1, N − 2) C0×C0−→ . . .
C0×C0−→ (2, 1) C0×C0−→ (1, N)

C0×C0−→ (N,N − 1) �⊂ Γ1. (2.28)

According to definition (2.25), we get the following set for P1:

P1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1, N),
(2, 1), (2, N),
(3, 2), (3, 1), (3, N),

...
(N−1, N−2), (N−1, N−3), . . . , (N−1, 1), (N−1, N)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(2.29)

In a similar way from (2.27), we obtain the set of P2:

P2 = (C × C)P1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2, 1),
(3, 2), (3, 1),
(4, 3), (4, 2), (4, 1),

...
(N,N−1), (N,N−2), . . . , (N, 2), (N, 1)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(2.30)

The bijection between P1 and P2 induced by C × C is the map τ .

Proposition 2.2. The R-matrix (2.24) reproduces the nonstandard one (2.10)
for the case of the associative Belavin–Drinfeld structure (2.25)–(2.27).

Proof. The first lines of (2.24) and (2.10) coincide. Consider the first term
from the second line of (2.24):

N

eNη − 1

∑

0<n<N, i=Cn(k)

enηEii ⊗ Ekk

=
Ne−Nη/2

2 sinh(Nη/2)

∑

0<n<N, i=Cn(k)

enηEii ⊗ Ekk (2.31)

Due to the definition of C (2.25) for the summation index n, we have: n = i−k
if i > k and n = N − k + i for i < k. In this way, we reproduce the first term
in the second line of (2.10). Similar consideration for the second term in the
second line of (2.24) yields that the total second line of (2.24) coincides with
the second line of (2.10).

Next, consider the first sum in the last line of (2.24) and subdivide it into
two parts:

∑

0 < m < N, n > 0,
i = Cm

0 (j), τn(j, i) = (k, l)

Ne−nη−mzEij ⊗ Ekl

=
(∑′

+
∑′′)

Ne−nη−mzEij ⊗ Ekl, (2.32)
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where the sums
∑′ and

∑′′ are defined as follows. The total sum is over i, j, k, l
such that (j, i) ∈ P1 (and (k, l) ∈ P2). Then, the sum

∑′′ is over the diagonal
elements (1, N), . . . ,(N − 1, N) among (j, i) ∈ P1 (2.29), and the sum

∑′ is
over the rest of the elements among (j, i) ∈ P1 [it is the lower triangular part
of (2.29)].

From (2.29) and (2.30), it follows that j > i and k > l for the elements
in the

∑′. Moreover, i + k = j + l for these elements,6 and k > j since the
map P1 → P2 is generated by C × C. Therefore, i < j < k holds true. Also,
from i = Cm

0 (j) we have m = j − i. And finally, Cn(j) = k, so that n = k − j.
In this way, we showed that the sum

∑′ provides the first term in the third
line of (2.10).

For the elements of the sum
∑′′, we have i = N > j and i+k = j+ l+N .

Since N = Cm
0 (j), we have j = m. On the other hand, Cn(N) = k, so that

k = n. In this way, the sum
∑′′ is shown to be the first term in the last line

of (2.10).
In the same way (by subdividing into two parts), the second term in the

last line of (2.31) is shown to be equal to the sum of the second terms in the
third and the fourth lines of (2.10). �

Let us comment on the origin of the general classification. It comes from
nontrivial limiting procedures (trigonometric limits) [19,35,36] starting from
the elliptic case, where the classification is rather simple. It is based on the
M. Atiyah’s classification of bundles over elliptic curves. The elliptic R-matrix
is fixed by its poles structure (1.6) and quasiperiodic boundary conditions
on a torus given by powers of N × N matrices Ik

1 , I l
2 (k, l = 1, . . . , N −

1), where I1 = diag(exp(2πı/N), exp(4πı/N), . . . , 1) and (I2)ij = ε(i = j +
1mod N). The nondynamical R-matrix corresponds to g.c.d.(k,N) = 1 and
g.c.d.(l, N) = 1. Otherwise, elliptic moduli appear, which play the role of
dynamical variables.

3. Integrable Tops

Below, we describe the relativistic and the nonrelativistic tops constructed by
means of R-matrices satisfying (1.3)–(1.6). Our consideration uses results of
[11,12,15]. For the relativistic models, the classical r-matrix structure is qua-
dratic, while in the nonrelativistic case it is linear. In its turn, the relativistic
models admit two natural (and equivalent) Lax representations: The first one
includes explicit dependence on the relativistic parameter η. It is based on the
quantum R-matrix. And the second one is based on the classical r-matrix. The
Lax pair in this description is independent of η.

6Condition i + k = j + l is verified directly for n = 1 by comparing (2.29) and (2.30). To
make the next application of τ , one should determine Image(τ) ∩ P1 ⊂ P1, i.e., each time
we return back to a subset in P1. This is why condition i + k = j + l is independent of n.
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Consider a solution of the associative Yang–Baxter equation (1.3) with
the properties7 (1.4) and (1.5) and the following expansions near � = 0 (the
classical limit):

R�

12(z) =
1
�

1N ⊗ 1N + r12(z) + � m12(z) + O(�2) (3.1)

and near z = 0

R�

12(z) =
1
z

P12 + R
�,(0)
12 + zR

�,(1)
12 + O(z2),

(3.2)

R
�,(0)
12 =

1
�

1N ⊗ 1N + r
(0)
12 + O(�), r12(z) =

1
z

P12 + r
(0)
12 + O(z).

(3.3)

From the skew-symmetry (1.4), we have

r12(z) = −r21(−z), m12(z) = m21(−z),

R
�,(0)
12 = −R

−�,(0)
21 , r

(0)
12 = −r

(0)
21 . (3.4)

If the Fourier symmetry (1.10) holds true8 as well then

R
z,(0)
12 = r12(z)P12,

R
z,(1)
12 = m12(z)P12,

r
(0)
12 = r

(0)
12 P12. (3.5)

Let us summarize the results from [15]. Consider R-matrix, which obeys Equa-
tions (1.3)–(1.6) and has expansions (3.1)–(3.3). Then, the Lax equations

L̇(z, S) = [L(z, S),M(z, S)] (3.6)

are equivalent to equations
Ṡ = [S, J(S)] (3.7)

in the following cases
• Relativistic top:

Lη(z, S) = tr2(R
η
12(z)S2), Mη(z, S) = −tr2(r12(z)S2) (3.8)

and
Jη(S) = tr2

(
(Rη,(0)

12 − r
(0)
12 )S2

)
. (3.9)

• Nonrelativistic top:

L(z, S) = tr2(r12(z)S2), M(z, S) = tr2(m12(z)S2) (3.10)

and
J(S) = tr2(m12(0)S2). (3.11)

7In fact, it is enough [15] to have any one of (1.4) or (1.5) conditions. In any case, we deal
with R-matrices satisfying both properties except the case A0 = A1 = 0 in (2.13), where
the unitarity is degenerated.
8The right multiplication of R-matrix (2.1) by P12 provides Rijkl → Rilkj .
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These formulae can be easily written through R-matrix components (2.1). For
example, the Lax matrix (3.8) is of the form

Lη(z, S) =
N∑

i,j,k,l=1

Rη
ijkl(z)SlkEij , (3.12)

due to tr(EklS) = Slk. Equivalently,

Lη(z, S) =
N∑

i,j=1

Lη
ij(z, S)Eij , Lη

ij(z, S) =
N∑

k,l=1

Rη
ijkl(z)Slk, (3.13)

and for (3.9), (3.11)

Jη(S) =
N∑

i,j=1

EijJ
η
ij(S), Jη

ij(S) =
N∑

k,l=1

(Rη,(0)
ij,kl − r

(0)
ij,kl)Slk,

J(S) =
N∑

i,j=1

EijJij(S), Jij(S) =
N∑

k,l=1

mij,kl(0)Slk. (3.14)

Classical Sklyanin Algebras and r-Matrix Structures. In this subsection, we
show that any solution of the associative Yang–Baxter equation (1.3) with the
properties provides (1.4)–(1.6) and the local expansions (3.1)–(3.4) provide
the quadratic Poisson structures of Sklyanin type. The quadratic r-matrix
structure [8]

c2{Lη
1(z, S), Lη

2(w,S)} = [Lη
1(z, S)Lη

2(w,S), r12(z − w)], (3.15)

where c2 �= 0 is arbitrary constant, leads to the following Poisson brackets:

c2{S1, S2} = [S1S2, r
(0)
12 ] + [Lη,(0)

1 (S)S2, P12], L
η,(0)
1 (S) = tr3(R

η,(0)
13 S3).

(3.16)
for the defined above Lax matrices. These brackets are easily obtained (see
[11,12]) by taking residues at z = 0 and w = 0 of both sides of (3.15). Being
written in components (3.16) takes the form:

c2{Sij , Skl} =
(
L

η,(0)
il Skj − L

η,(0)
kj Sil

)
+

N∑

a,b=1

(
SiaSkbr

(0)
aj,bl − r

(0)
ia,kbSajSbl

)
,

(3.17)
where

L
η,(0)
ij =

N∑

k,l=1

R
η,(0)
ij,kl Slk. (3.18)

The proof of equivalence of (3.16) and (3.17) is based on the degeneration of
(1.3)

R�

12(x)R�

23(y) = R�

13(x + y)r12(x) + r23(y)R�

13(x + y) − ∂�R�

13(x + y),
(3.19)

obtained by taking the limit η → � in (1.3).
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Proposition 3.1. For the Lax matrix (3.8) defined by R-matrix satisfying the
associative Yang–Baxter equation (1.3) together with properties (3.1)–(3.5), the
Poisson brackets (3.16) are equivalently written in the r-matrix form (3.15).

Proof. Plugging the Lax matrix (3.8) into (3.15), we get the following expres-
sion for the l.h.s. of (3.15) up to c2:9

tr3,4

(
Rη

13(z)Rη
24(w){S3, S4}

)

(3.16)
= tr3,4

(
Rη

13(z)Rη
24(w)

(
[S3S4, r

(0)
34 ] + [Lη,(0)

3 (S)S4, P34]
))

,

(3.20)

and we are going to prove that it is equal to the r.h.s. of (3.15):

r.h.s. = tr3,4

((
Rη

13(z)Rη
24(w)r12(z − w) − r12(z − w)Rη

13(z)Rη
24(w)

)
S3S4

)
.

(3.21)
Let us rewrite the expression in the brackets of (3.21) using (3.19), which we
represent in the form (the skew-symmetry (1.4) is also used)

Rη
24(w)r12(z − w) = −Rη

21(w − z)Rη
14(z) + r14(z)Rη

24(w) − ∂ηRη
24(w) (3.22)

for the first term in (3.21), and

r12(z − w)Rη
24(w) = −Rη

14(z)Rη
21(w − z) + Rη

24(w)r14(z) − ∂ηRη
24(w) (3.23)

for the second one. Due to [Rη
13(z), ∂ηRη

24(w)] = 0, we have

Rη
13(z)Rη

24(w)r12(z − w) − r12(z − w)Rη
13(z)Rη

24(w)
= Rη

14(z)Rη
21(w − z)Rη

13(z) − Rη
13(z)Rη

21(w − z)Rη
14(z)

+Rη
13(z)r14(z)Rη

24(w) − Rη
24(w)r14(z)Rη

13(z). (3.24)

The second line of (3.24) is canceled out after substitution into (3.21) since
it is skew-symmetric under renaming the numbers of the tensor components
3 ↔ 4. Therefore, expression (3.21) is simplified to

r.h.s. = tr3,4

((
Rη

13(z)r14(z)Rη
24(w) − Rη

24(w)r14(z)Rη
13(z)

)
S3S4

)
. (3.25)

Next, transform the latter expression using further degeneration of (1.3), cor-
responding to z → 0 in (3.22) and (3.23):

Rη
13(z)r14(z) = r

(0)
34 Rη

13(z) + Rη
14(z)Rη,(0)

43 − ∂zR
η
14(z)P34 + ∂ηRη

13(z),
(3.26)

r14(z)Rη
13(z) = Rη

13(z)r(0)
34 + R

η,(0)
43 Rη

14(z) − ∂zR
η
13(z)P34 + ∂ηRη

13(z).
(3.27)

Then, the expression in the brackets of (3.25) transforms into

Rη
13(z)r14(z)Rη

24(w) − Rη
24(w)r14(z)Rη

13(z)

= r
(0)
34 Rη

13(z)Rη
24(w) − Rη

24(w)Rη
13(z)r(0)

34

9The R-matrices Rη
13(z) and Rη

24(w) commute since they are defined in different tensor

components.
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+Rη
14(z)Rη,(0)

43 Rη
24(w) − Rη

24(w)Rη,(0)
43 Rη

14(z)
+Rη

24(w)∂zR
η
13(z)P34 − ∂zR

η
14(z)P34R

η
24(w). (3.28)

The last line of (3.28) vanishes being substituted into (3.21). Indeed, on the
one hand

tr3,4

(
∂zR

η
14(z)P34R

η
24(w)S3S4

)
= tr3,4

(
P34∂zR

η
13(z)Rη

24(w)S3S4

)
, (3.29)

and, on the other hand,

tr3,4

(
Rη

24(w)∂zR
η
13(z)P34S3S4

)
= tr3,4

(
∂zR

η
13(z)Rη

24(w)P34S3S4

)

= tr3,4

(
∂zR

η
13(z)Rη

24(w)S3S4P34

)

= tr3,4

(
P34∂zR

η
13(z)Rη

24(w)S3S4

)
. (3.30)

The second line of (3.28) after substitution into (3.21) results in the first term
of the r.h.s. of (3.20):

tr3,4

((
r
(0)
34 Rη

13(z)Rη
24(w) − Rη

24(w)Rη
13(z)r(0)

34

)
S3S4

)

= tr3,4

(
Rη

13(z)Rη
24(w)

(
[S3S4, r

(0)
34 ]

))
. (3.31)

Finally, the third line of (3.28) after substitution into (3.21) results in the
second term of the r.h.s. of (3.20):

tr3,4

((
Rη

14(z)Rη,(0)
43 Rη

24(w) − Rη
24(w)Rη,(0)

43 Rη
14(z)

)
S3S4

)

= tr3,4

(
Rη

13(z)Rη
24(w)

(
L

η,(0)
3 (S)S4P34 − P34L

η,(0)
3 (S)S4

))
. (3.32)

The latter equality is verified as follows. Let us show that the first terms in
the upper and lower lines of (3.32) are equal to each other (the equality of the
second terms is verified similarly):

tr3,4

(
Rη

13(z)Rη
24(w)L

η,(0)
3 (S)S4P34

)
= tr3,4

(
Rη

13(z)L
η,(0)
3 (S)S4P34R

η
24(w)

)

= tr3,4,5

(
Rη

13(z)R
η,(0)
35 S5S4P34R

η
24(w)

)
= tr3,4,5

(
P34R

η
14(z)R

η,(0)
45 S5S3R

η
24(w)

)

= tr3,4,5

(
P34R

η
14(z)R

η,(0)
45 Rη

24(w)S5S3

)
= tr3,4,5

(
Rη

14(z)R
η,(0)
45 Rη

24(w)S5S3P34

)

= tr3,4,5

(
Rη

14(z)R
η,(0)
45 Rη

24(w)S5P34S4

)
(3.33)

The last step is to take the trace over the third tensor component (then P34

vanishes) and rename the component 5 ↔ 3.
To summarize, we deduce the r-matrix structure (3.15) from brackets

(3.16). The converse statement (when the brackets (3.16) are derived from
the r-matrix structure(3.15)) follows from the local behavior (3.2). Indeed, by
now we have proved that the r-matrix structure (3.15) is equivalent to the
condition tr3,4(R

η
13(z)Rη

24(w)A34) = 0 with A12 = c2{S1, S2} − [S1S2, r
(0)
12 ] −

[Lη,(0)
1 (S)S2, P12], which is the difference between l.h.s. and r.h.s. of (3.16). In

order to prove that A12 = 0, consider the expression A12(z, w) = tr3,4(R
η
13(z)

Rη
24(w)A34) locally near z = 0 and w = 0. Then, from (3.2), we have A12(z, w) =



2686 T. Krasnov, A. Zotov Ann. Henri Poincaré

z−1w−1tr3,4(P13P24A34) + · · · = z−1w−1A12 + · · · . Therefore, A12 = 0 follows
from A12(z, w) = 0. �

In the nonrelativistic limit, we are left with the linear r-matrix structure

c1{L1(z, S), L2(w,S)} = [L1(z, S) + L2(w,S), r12(z − w)], (3.34)

which provides the Poisson–Lie brackets on gl∗N Lie coalgebra (c1 �= 0 is an
arbitrary constant):

c1{S1, S2} = [S2, P12] (3.35)

or
c1{Sij , Skl} = Skjδil − Silδkj . (3.36)

The Poisson structures (3.15)–(3.16) and (3.34)–(3.35) provide the Hamil-
tonians generating the Euler–Arnold equations (3.7). In the relativistic case,
the Hamiltonian is given by

Hrel =
1
c2

tr(S), (3.37)

and for the nonrelativistic case we have

Hnon-rel =
1

2c1
tr(SJ(S)). (3.38)

In the relativistic case, the Hamiltonian is linear, while the Poisson structure
is quadratic (in variables S), and vice versa for nonrelativistic models.

3.1. The Case of Nonstandard R-matrix

In order to describe the tops explicitly, it is enough to write down all R-
matrices and related coefficients of expansions entering (3.8)–(3.14). Below is
the summary based on the R-matrix (2.16):

Rη
ij,kl(z) = δijδklδik

N

2

(
coth(Nz/2) + coth(Nη/2)

)

+ δijδklε(i �= k)
Ne(i−k)η−sign(i−k)Nη/2

2 sinh(Nη/2)

+ δilδkjε(i �= k)
Ne(i−k)z−sign(i−k)Nz/2

2 sinh(Nz/2)

+Nδi+k,j+le
(i−j)z+(j−k)η

(
ε(i<j<k) − ε(k<j<i)

)

+Ne−NΛδi+k,j+l+N

(
δiNe−jz−lη − δkNelz+jη

)
. (3.39)

The classical r-matrix:

rij,kl(z) = δijδklδik
N

2
coth(Nz/2)

+ δijδklε(i �= k)
(
(i − k) − Nsign(i − k)

2

)

+ δilδkjε(i �= k)
Ne(i−k)z−sign(i−k)Nz/2

2 sinh(Nz/2)
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+Ne(i−j)zδi+k,j+l

(
ε(i<j<k) − ε(k<j<i)

)

+Ne−NΛδi+k,j+l+N

(
e−jzδiN − elzδkN

)
. (3.40)

The next coefficient in expansion (3.1):

mij,kl(z) = δijδklδik
N2

12
+ δijδklε(i �= k)

(
(i − k)2

2
− N2

12
− N

2
|i − k|

)

+N(j − k)e(i−j)zδi+k,j+l (ε(i<j<k) − ε(k<j<i))

−Ne−NΛδi+k,j+l+N

(
l e−jzδiN + j elzδkN

)
. (3.41)

Its value at z = 0 entering the inverse inertia tensor in the nonrelativistic case
(3.11) or (3.14):

mij,kl(0) = δijδklδik
N2

12
+ δijδklε(i �= k)

(
(i − k)2

2
− N2

12
− N

2
|i − k|

)

+N(j − k)δi+k,j+l (ε(i<j<k) − ε(k<j<i))

−Ne−NΛδi+k,j+l+N (l δiN + j δkN ) . (3.42)

The coefficient from expansions (3.2) and (3.3) entering the relativistic inverse
inertia tensor (3.9) or (3.14):

R
η,(0)
ij,kl = rilkj(η) = δijδklδik

N

2
coth(Nη/2)

+ δijδklε(i �= k)
Ne(i−k)η−sign(i−k)Nη/2

2 sinh(Nη/2)

+ δilδkjε(i �= k)
(

(i − k) − Nsign(i − k)
2

)

+Ne(j−k)η δi+k,j+l (ε(i<j<k) − ε(k<j<i))

+Ne−NΛδi+k,j+l+N

(
e−lηδiN − ejηδkN

)
(3.43)

and

r
(0)
ij,kl = (δijδklε(i �= k) + δilδkjε(i �= k))

(
(i − k) − Nsign(i − k)

2

)

+Nδi+k,j+l (ε(i<j<k) − ε(k<j<i))

+Ne−NΛδi+k,j+l+N (δiN − δkN ) . (3.44)

Lax Pairs. The Lax matrix of the relativistic top constructed by means of
(3.39) is of the following form. For i = j:

Lη
ii(z) =

N

2
(
coth(Nz/2) + coth(Nη/2)

)
Sii

+
N

2 sinh(Nη/2)

(
e−Nη/2

i−1∑

k=1

e(i−k)ηSkk

+ eNη/2
N∑

k=i+1

e(i−k)ηSkk

)
, (3.45)
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for i < j:

Lη
ij(z) =

N exp(Nz/2 + (i − j)z)
2 sinh(Nz/2)

Sij

+N

N∑

k=j+1

e(i−j)z+(j−k)ηSi−j+k,k, (3.46)

and for i > j:

Lη
ij(z) =

N exp(−Nz/2 + (i − j)z)
2 sinh(Nz/2)

Sij − N

j−1∑

k=1

e(i−j)z+(j−k)ηSi−j+k,k

−Ne−NΛe(i−j)z+jηSi−j,N

+ δiNNe−NΛ
N∑

k=j+1

e−jz+(j−k)ηSk−j,k. (3.47)

From definitions (3.8), (3.10) and the expansion (3.1), it follows that

−Mη(z) = L(z) = Res
η=0

(
η−1Lη(z)

)
, M(z) = Res

η=0

(
η−2Lη(z)

)
. (3.48)

Similarly, expansion (3.2) near z = 0 yields

Lη(z) =
1

z
S + Lη,(0)(S) + O(z), Lη,(0)(S) = tr2

(
R

η,(0)
12 S2

)
= Res

z=0

(
z−1Lη(z)

)
.

(3.49)
Example: GL2 Top. In this case, we deal with the following quantum:

R�(z)=

⎛

⎜⎜⎝

coth(z) + coth(�) 0 0 0
0 sinh−1(�) sinh−1(z) 0
0 sinh−1(z) sinh−1(�) 0

− 4 e−2Λ sinh(z + �) 0 0 coth(z) + coth(�)

⎞

⎟⎟⎠

(3.50)
and classical

r(z) =

⎛

⎜⎜⎝

coth(z) 0 0 0
0 0 sinh−1(z) 0
0 sinh−1(z) 0 0
− 4 e−2Λ sinh(z) 0 0 coth(z)

⎞

⎟⎟⎠ (3.51)

R-matrices. In the relativistic case, this provides the Lax pair

L
η
(z, S) =

⎛

⎜⎜⎝
S11(coth(z) + coth(η)) +

S22

sinh(η)

S12

sinh(z)
S21

sinh(z)
− 4e

−2Λ
S12 sinh(z + η) S22(coth(z) + coth(η)) +

S11

sinh(η)

⎞

⎟⎟⎠

(3.52)

M
η
(z, S) = −

⎛

⎜⎜⎝
coth(z)S11

S12

sinh(z)
S21

sinh(z)
− 4e

−2Λ
sinh(z)S12 coth(z)S22

⎞

⎟⎟⎠ (3.53)
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and the inverse inertia tensor

Jη(S) =

⎛

⎝
coth(η)S11 + S22

sinh(η) 0

− 4e−2Λ sinh(η)S12
S11

sinh(η) + coth(η)S22

⎞

⎠ (3.54)

In the nonrelativistic case, the Lax matrix is defined by (3.53): L(z, S) =
−Mη(z, S). The accompanying matrix is as follows:

M(z, S) =
1
6

⎛

⎝
2S11 − S22 0

− 24 e−2Λ cosh(z)S12 −S11 + 2S22

⎞

⎠ (3.55)

The inverse inertia tensor acquires the form:

J(S) =
1
6

⎛

⎝
2S11 − S22 0

− 24 e−2ΛS12 −S11 + 2S22

⎞

⎠ (3.56)

• Relativistic top (η-independent description):
Another one description for the relativistic top is available, which is simi-

lar to original construction [8]. Instead of usage of the quantum R-matrix (3.8),
consider the traceless part of the nonrelativistic Lax matrix and supplement
it by the scalar term s01N :

L̃(z, S) = s01N + L(z, S) − 1N

N
trL(z, S), s0 =

trS
N

, (3.57)

where s0 is a dynamical variable. In fact, it is the Hamiltonian since trL̃ = Ns0.
The Lax equations do not change because L(z, S) and L̃(z, S) differ from each
other by only a scalar matrix. So that the M -matrix for (3.57) is the same as
in (3.8). However, the Poisson structures are different (see below). It happens
because of the bi-Hamiltonian structure in this kind of models [11,12,37].

As mentioned in [11,12] (see also [38]), there is a relation between the
Lax matrices (3.8) and (3.57). Similarly, to the rational case, we have

Lη
(
z − η

N
, L̃

( η

N
, S

))
=

tr
(
Lη

(
z − η

N , S
))

tr(S)
L̃(z, S). (3.58)

This relation can be verified directly using explicit formulae (3.45)–(3.47).
The quadratic Poisson structure takes the form

{L̃1(z, S), L̃2(w,S)} =
1
c2

[L̃1(z, S)L̃2(w,S), r12(z − w)], (3.59)

and provides the following Poisson brackets:

c2{S1, S2} = s0[S2, P12] +
[
S1S2, r

(0)
12

]
+

[
tr3(r

(0)
13 S3)S2, P12

]
. (3.60)

The latter is verified similarly to the η-dependent case (3.15)–(3.16).
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3.2. The Case of General R-matrix

The summary of the integrable tops data in the general case is based on the
expansions of the R-matrix (2.24):

Rη
12(z) =

N

2

(
coth(Nz/2) + coth(Nη/2)

) ∑

i

Eii ⊗ Eii

+
N

eNη − 1

∑

0<n<N, i=Cn(k)

enηEii ⊗ Ekk

+
N

eNz − 1

∑

0<m<N, k=Cm
0 (i)

emzEik ⊗ Eki

+
∑

0 < m < N, n > 0,
i = Cm

0 (j), τn(j, i) = (k, l)

×N
(
e−nη−mzEij ⊗ Ekl − enη+mzEkl ⊗ Eij

)
, (3.61)

The classical r-matrix and the next coefficient of the classical limit (3.1) are
as follows:

r12(z) =
N

2
coth(Nz/2)

∑

i

Eii ⊗ Eii

+
∑

0<n<N, i=Cn(k)

(
n − N

2

)
Eii ⊗ Ekk

+
N

eNz − 1

∑

0<m<N, k=Cm
0 (i)

emzEik ⊗ Eki

+
∑

0 < m < N, n > 0,
i = Cm

0 (j), τn(j, i) = (k, l)

×N
(
e−mzEij ⊗ Ekl − emzEkl ⊗ Eij

)
(3.62)

and

m12(z) =
N2

12

∑

i

Eii ⊗ Eii +
1
12

∑

0<n<N, i=Cn(k)

(
6n2 − 6nN + N2

)
Eii ⊗ Ekk

−
∑

0 < m < N, n > 0,
i = Cm

0 (j), τn(j, i) = (k, l)

×Nn
(
e−mzEij ⊗ Ekl + emzEkl ⊗ Eij

)
. (3.63)

The first nontrivial coefficients from expansions (3.2), (3.3) are of the form:
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R
η,(0)
12 =

N

2
coth(Nη/2)

∑

i

Eii ⊗ Eii

+
N

eNη − 1

∑

0<n<N, i=Cn(k)

enηEii ⊗ Ekk

+
∑

0<m<N, k=Cm
0 (i)

(
m − N

2

)
Eik ⊗ Eki

+
∑

0 < m < N, n > 0,
i = Cm

0 (j), τn(j, i) = (k, l)

×N
(
e−nηEij ⊗ Ekl − enηEkl ⊗ Eij

)
(3.64)

and

r
(0)
12 =

∑

0<n<N, i=Cn(k)

(
n − N

2

)
Eii ⊗ Ekk +

∑

0<m<N, k=Cm
0 (i)

(
m − N

2

)
Eik ⊗ Eki

+
∑

0 < m < N, n > 0,
i = Cm

0 (j), τn(j, i) = (k, l)

N (Eij ⊗ Ekl − Ekl ⊗ Eij) . (3.65)

4. Relation to Ruijsenaars–Schneider Model

Introduce the matrix [19]10

g(z, q) = Ξ(z, q)D−1(q) ∈ Mat(N, C), (4.1)

where
Ξij(z, q) = e(i−1)(z−q̄j) + (−1)Ne−(z−q̄j)δiN (4.2)

and
Dij(q) = δij

∏

k �=i

(
e−q̄i − e−q̄k

)
. (4.3)

The matrices depend on z and the set of variables q1, . . . , qN . The vari-
ables q̄1, . . . , q̄N are obtained by transition to the center of mass frame:

q̄i = qi − 1
N

N∑

k=1

qk. (4.4)

The determinant of the matrix Ξ is as follows:

det Ξ(z, q) = ezN(N−1)/2(1 − e−Nz)
N∏

i>j

(
e−q̄i − e−q̄j

)
. (4.5)

That is Ξ(z, q) is degenerated at z = 0.

10It is the intertwining matrix relating the nonstandard R-matrix and the trigonometric
Felder’s dynamical R-matrix through the quantum IRF-Vertex correspondence.
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Our statement is that the following matrix

LRS(z) = g−1(z)g(z + η)eP/c, P = diag(p1, p2, . . . , pN ) (4.6)

is the Lax matrix of the trigonometric Ruijsenaars–Schneider model. More
precisely,

LRS
ij (z) = e

N−2
2 η sinh(η/2)

(
coth

(
Nz

2

)
+ coth

(
qi − qj + η

2

))
epj/c

×
N∏

k �=j

sinh
(

qj−qk−η
2

)

sinh
(

qj−qk

2

) . (4.7)

The proof is obtained by direct verification, which is similar to calculations
performed in [10–12] in the rational case. One should introduce the set of
elementary symmetric polynomials σk(q) of N variables {e−q̄1 , . . . , e−q̄N }

N∏

k=1

(ζ − e−q̄k) =
N∑

k=0

(−1)kζkσk(q) (4.8)

and N sets of similar functions {σ̌k,i(q), i = 1, . . . , N} defined for the sets
{e−q̄1 , . . . , e−q̄N }\{e−q̄i} of N − 1 variables each:

N∏

k �=i

(ζ − e−q̄k) =
N∑

k=0

(− 1)kζkσ̌k,i(q). (4.9)

The inverse of Ξ is then written as follows:

(Ξ−1)ij(z, q) =
(−1)j−1e(N−j+1)z

eNz − 1

(
σ̌j−1,i(q) + e−q̄i σ̌j,i(q)e−Nz

)
∏

k �=i (e−q̄i − e−q̄k)
. (4.10)

Consider the gauge-transformed Lax matrix

Lη(z) = g(z)L̃RS(z)g−1(z) = g(z + η)eP/cg−1(z) (4.11)

Then,11

Lη(z) = tr (Rη
12(z)S2(p, q)) (4.12)

with the nonstandard R-matrix (2.16), where Λ =
√−1π. Put it differently,

matrix (4.12) coincides with (3.45)–(3.47) when Λ =
√−1π. The change of

variables is as follows:

Sij(p, q) =
(−1)jσj(q)e

(i−1)η

N

N∑

n=1

epn/c

∏
k:k �=n(e−q̄n − e−q̄k)

(
e−(i−1)q̄n +

(− 1)NδiN

eNη−q̄n

)
.

(4.13)
The Poisson structure for (p, q) variables is canonical, i.e.,

{pi, qj} = δij or {pi, q̄j} = δij − 1
N

. (4.14)

After some tedious calculations, it can be verified that the Poisson brackets
{Sij(p, q), Skl(p, q)} evaluated through (4.14) coincide with (3.17) with c2 =

11The origins of factorization of the Lax pairs (4.6) and (4.11), (4.12) are discussed in [39].
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Nc and r
(0)
12 from (3.44). In particular, it is useful to notice for the proof that

matrix (4.13) is of rank 1, i.e.,

Sij(p, q) = ai(p, q)bj(q),

ai(p, q) =
e(i−1)η

N

N∑

n=1

epn/c

∏
k:k �=n(e−q̄n − e−q̄k)

(
e−(i−1)q̄n +

(−1)NδiN

eNη−q̄n

)
,

bj(q) = (− 1)jσj(q). (4.15)

In this case, SijSkl = SilSkj , and the Poisson structure (3.17) takes the (rela-
tively simple) form:

{Sij , Skl} =
1

Nc
(Lη,(0)

il Skj − L
η,(0)
kj Sil) +

2
Nc

(k − i)SijSkl

+
ε(i>k)

c

i−k−1∑

p=0

Si−p,jSk+p,l − ε(i<k)
c

k−i−1∑

p=0

Si+p,jSk−p,l

+
(− 1)NδkN

c

i−1∑

p=1

Si−p,jSp,l − (−1)NδiN

c

k−1∑

p=1

SpjSk−p,l.

(4.16)

Nonrelativistic Limit. The Calogero–Moser–Sutherland models appear from
the above results by taking the nonrelativistic limit, when η = ν/c and c → ∞.
The Lax matrix arising from (4.7) is of the form12,13

LCM
ij (z) = δij(q̇i + ν coth(Nz)) + ν(1 − δij)

(
coth

(qi − qj

2

)
+ coth(Nz)

)
,

q̇i = pi + ν(N − 2) − ν
N∑

k �=i

coth
(qi − qj

2

)
. (4.17)

Similarly, the nonrelativistic top (3.10) comes from (3.9). The gauge transfor-
mation (4.11) holds on at the level of nonrelativistic models as well [39,46].
That is

L(z) = tr
(
r12(z)S2(p, q)

)
= g(z)LCM(z)g−1(z). (4.18)

The residue of both parts of the latter relation provides explicit change of
variables, or the nonrelativistic limit of (4.15):

Sij(p, q) = ai(p, q)bj(q), bj(q) = (−1)jσj(q),

ai(p, q) =
1

N

N∑

n=1

(pn + (i − 1)ν)
(
e−(i−1)q̄n + (−1)NδiNeq̄n

)
− Nν(− 1)NδiNeq̄n

∏
k:k �=n(e−q̄n − e−q̄k)

.

(4.19)

12It is easy to verify that pi → q̇i(p, q) with q̇i(p, q) from (4.17) is a canonical map, i.e.,
{q̇i(p, q), qj} = δij .
13Let us mention that there is another one application of the associative Yang–Baxter equa-
tion to the models of the Calogero–Moser–Sutherland type and related long-range spin chains
[40–45].
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The Poisson brackets {Sij(p, q), Skl(p, q)} computed via the canonical struc-
ture (4.14) reproduce (3.36) with c1 = N , and the value of the Casimir func-
tions is given by the powers of the Calogero–Moser–Sutherland coupling con-
stant

tr(Sk) = νk. (4.20)

Thus, the Calogero–Moser–Sutherland model is gauge equivalent to the nonrel-
ativistic top with special values of the Casimir functions corresponding to the
coadjoint orbit (of GLN group) of minimal dimension. Apart from the gauge
transformation, we obtain explicit change of variables (in fact, a canonical
map) (pi, qj) → (ai(p, q), bi(q)), where bi are elementary symmetric functions.
These variables are known in the quantum Calogero–Moser–Sutherland model
[47,48].
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