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Lp-Spectrum and Lieb–Thirring Inequalities
for Schrödinger Operators on the
Hyperbolic Plane

Marcel Hansmann

Abstract. This paper deals with the Lp-spectrum of Schrödinger operators
on the hyperbolic plane. We establish Lieb–Thirring-type inequalities for
discrete eigenvalues and study their dependence on p. Some bounds on
individual eigenvalues are derived as well.

1. Introduction

The study of spectral properties of non-self-adjoint Schrödinger operators
−Δ + V in L2(Rd), with a complex-valued potential V , has attracted con-
siderable attention in recent years. In particular, many works have been dedi-
cated to the derivation of non-self-adjoint versions of the famous Lieb–Thirring
inequalities (first considered by Lieb and Thirring for real-valued potentials in
[37,38]) and to the problem of finding good upper bounds on individual eigen-
values. Let us mention [4,10–12,18,19,21,25,26,35,45] as some references for
the former topic and [1,16–18,20,22,35,44] as some references for the latter.

While it is natural to study Schrödinger operators in the Hilbert space
L2(Rd), there also exist good reasons (see e.g., [46]) to consider them in Lp(Rd),
for p �= 2, as well. However, from a spectral perspective this is not interest-
ing at all. Indeed, it has been shown in [30] that under weak assumptions on
the potential V the Lp-spectra of self-adjoint Schrödinger operators coincide.
Moreover, later results showed that this is the case in the non-self-adjoint set-
ting as well (see [34,39]). Even more is true: The fact that the underlying
manifold is R

d does not play a role either. For instance, it was shown in [50]
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that the Lp-spectra of the Laplace–Beltrami operator on a complete Riemann-
ian manifold M with Ricci curvature bounded from below are p-independent,
provided that the volume of M grows at most sub-exponentially.

One of the simplest manifolds where the Lp-spectrum of the Laplace–
Beltrami operator does depend on p is given by the hyperbolic plane H. In the
half-space model, this manifold is given by

H = {(y, t) ∈ R
2 : y ∈ R, 0 < t < ∞},

together with the conformal metric ds2 = t−2(dy2 +dt2). It has been shown in
[9] that the spectrum of −Δp in Lp(H), 1 ≤ p < ∞, consists of the parabolic
sets

Σp :=
{
a + ib : a ≥ 1/(pp′) and b2 ≤ (1 − 2/p)2 (a − 1/(pp′))

}
; (1)

see Fig. 1. Here, p′ denotes the conjugate exponent, i.e.,

1/p + 1/p′ = 1.

In particular, the spectrum of the self-adjoint operator −Δ2 consists of the
interval Σ2 = [1/4,∞) and in case p �= 2 the spectrum is the set of points on
and inside the parabola with vertex λ = 1/(pp′) and focus λ = 1/4. We see
that Σp = Σp′ , reflecting the fact that (up to a reflection on the real line) the
spectra of −Δp and its adjoint −Δp′ coincide. Moreover, let us remark that,
while in case p = 2 the spectrum is clearly purely essential, it seems to be
unknown whether the same is true for p �= 2 as well (we conjecture that it is).

Figure 1. Boundaries of Σp = σ(−Δp) drawn for p = 1,
some general p ∈ (1, 2) and p = 2, respectively (from outer to
inner)
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In the present paper, we will study the Schrödinger operator

Hp = −Δp + V in Lp(H), 1 < p < ∞, (2)

given the assumption that

V ∈ Lr(H) for some r ≥ max(p, p′). (3)

We will see below that in this case the operator of multiplication by V is −Δp-
compact, and hence the essential spectra of Hp and −Δp coincide. In particu-
lar, the topological boundary ∂Σp, not containing any isolated points, belongs
to the essential spectrum of both operators. While the essential spectrum is
stable, other parts of the spectrum of −Δp will change with the introduction
of the perturbation V . In particular, the spectrum of Hp in Σc

p (the resolvent
set of −Δp) will consist of an at most countable number of discrete eigenval-
ues, which can accumulate at ∂Σp only. It is our aim to say more about the
speed of this accumulation, and its dependence on p, by deriving suitable Lieb–
Thirring-type inequalities. In addition, we will also provide some estimates on
individual eigenvalues. Let us mention that in the case of Schrödinger opera-
tors with complex potentials in R

d, it has been shown by Bögli [4] that there
exist potentials V such that the discrete eigenvalues of −Δ+V accumulate at
every point of σess(−Δ) = [0,∞). We suspect, but do not prove in the present
paper, that a similar result is true in the hyperbolic case as well.

As far as we can say, the present paper constitutes the first work on such
topics in a non-Hilbert space context. Moreover, we think that our results are
even new in the Hilbert space case p = 2, where the only existing articles we
are aware of are [36,40], respectively. Here, [36] considers the self-adjoint case
only and provides bounds on the number of discrete eigenvalues of −Δ2+V in
hyperbolic space of dimension d ≥ 3, whereas the abstract results of [40] also
apply to complex-valued potentials and could, in principle, be used to obtain
some estimates on the discrete eigenvalues of H2 in the half-plane {λ ∈ C :
Re(λ) < 1/4}. In contrast to this, the results we will derive in this paper will
provide information on all discrete eigenvalues of Hp in Σc

p.
While in the present paper we restrict ourselves to the two-dimensional

hyperbolic plane, let us at least mention that in principle we can obtain results
for higher-dimensional hyperbolic space as well. Indeed, our results rely on
the explicit knowledge of the green kernel of −Δp, which is available in all
dimensions (though it gets more complicated in case d ≥ 4).

2. Main Results

This section contains the main results of this paper. We use some standard
terminology concerning operators and spectra, which is reviewed in ‘Appen-
dix A.1.’

2.1. Bounds on Eigenvalues

We begin with two results concerning the location of the discrete spectrum
σd(Hp), starting with the case p = 2.
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Theorem 2.1. Let 2 ≤ r < ∞ and V ∈ Lr(H). If λ ∈ σd(H2), then

dist(λ, [1/4,∞))(r−1)

(
1 +

1
2|1/4 − λ|1/2

)
≤ 23/2C0‖V ‖r

r, (4)

where

C0 =
1 + π

2 coth(π
2 )

4π
≈ 0.216. (5)

In particular, we see that (4) implies that the distance of the discrete
eigenvalues to the essential spectrum is bounded above, i.e., for λ ∈ σd(H2)
we have

dist(λ, [1/4,∞)) ≤ 23/(2(r−1))C
1/(r−1)
0 ‖V ‖r/(r−1)

r .

Remark 2.2. Given the same assumptions on V , for the Schrödinger operator
−Δ + V in L2(R2) it is even known that the imaginary part of a discrete
eigenvalue needs to be small if its real part is large, see [18]. Whether a similar
statement remains true on the hyperbolic plane is an open question.

In case p �= 2, the result we obtain is more complicated. For its statement,
it is convenient to introduce γp ∈ [0, 1/2] by setting

γp :=
1
2

∣
∣
∣
∣1 − 2

p

∣
∣
∣
∣ . (6)

A short computation shows that γ2
p = 1/4 − 1/(pp′), which is the focal length

of the parabola Σp = σ(−Δp) (the distance between focus and vertex). In
particular, we see that γ2 = 0 and γp = γp′ .

Theorem 2.3. Let 2 < max(p, p′) ≤ r < ∞ and suppose that V ∈ Lr(H). If
λ ∈ σd(Hp) ∩ Σc

p, then
(

dist(λ,Σp)
|1/4 − λ|1/2

)2r−2 (
1 +

|1/4 − λ|1/2

8 dist(λ,Σp)

)2rγp+1

≤ 162r−2C0‖V ‖r
r, (7)

where C0 is as defined in (5).

Since γp = γp′ and Σp = Σp′ we see that Theorem 2.3 provides the same
bounds for the eigenvalues of Hp and Hp′ , respectively. This is not a coincidence
but follows from the fact that H∗

p = Hp′ and hence (up to a reflection on the
real line) the spectra and discrete spectra of Hp and Hp′ coincide. This will
be proved in Proposition 3.3. The same phenomenon will be observed in other
results of this paper.

Remark 2.4. We note that the term |λ−1/4| in (7) does not play the same role
as in (4), since in case p �= 2 the point 1/4 is in the interior of the spectrum.

While (7) puts some restrictions on the location of the discrete eigenval-
ues, we emphasize that in contrast to the case p = 2, in case p �= 2 the bound
(7) does not imply that dist(λ,Σp) is bounded above for λ ∈ σd(Hp) ∩ Σc

p.
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Indeed, in this case (using that for p > 2 we have |λ − 1/4| 
 |λ| for λ ∈ Σc
p)

we can only conclude that there exists a constant C = C(V, p, r) such that

dist(λ,Σp) ≤ C|λ|1/2, λ ∈ σd(Hp) ∩ Σc
p. (8)

We do not know whether this reflects a real difference between the two
cases, or whether it is just an artifact of our method of proof.

2.2. Lieb–Thirring Inequalities

We now consider the speed of accumulation of discrete eigenvalues, again start-
ing with the Hilbert space case p = 2. In the following estimate, we distinguish
between discrete eigenvalues lying in a disk around 1/4 (with radius depending
on V ) and eigenvalues lying outside this disk.

Theorem 2.5 (p = 2). Let 2 ≤ r < ∞ and V ∈ Lr(H) . Let (λj) denote an
enumeration of the discrete eigenvalues of H2, each eigenvalue being counted
according to its algebraic multiplicity. Then, for every τ ∈ (0, 1) there exist
constants C and C ′, both depending on τ and r, such that the following holds:

(ia) If 2 ≤ r ≤ 3 − τ , then

∑

|1/4−λj |r−3/2≤(2‖V ‖r)r

(
dist(λj , [1/4,∞))

|1/4 − λj |1/2

)r+τ

≤ C · ‖V ‖
r

2r−3 (r+τ)
r .

(ib) If r > 3 − τ , then

∑

|1/4−λj |r−3/2≤(2‖V ‖r)r

dist(λj , [1/4,∞))r+τ

|1/4 − λj |3/2
≤ C · ‖V ‖

r
2r−3 (2r−3+2τ)
r .

(ii)

∑

|1/4−λj |r−3/2>(2‖V ‖r)r

dist(λj , [1/4,∞))r+τ

|1/4 − λj | 3+3τ
2

≤ C ′ · ‖V ‖
r

2r−3 (2r−3−τ)
r .

Remark 2.6. The previous theorem has consequences for sequences (Ej) of
discrete eigenvalues converging to some E ∈ [1/4,∞). For instance,

– if E > 1/4, then (Im Ej) ∈ lr+τ ,
– if E = 1/4 and Re(Ej) ≤ 1/4, then (|Ej − 1/4|) ∈ lq, where

q =
{

(r + τ)/2, if 2 ≤ r ≤ 3 − τ,
r − 3/2 + τ, if r > 3 − τ.

(9)

In particular, concerning sequences of eigenvalues converging to the bottom
of the essential spectrum we obtain different results for r < 3 and r > 3,
respectively. Whether this reflects a real difference between the two cases is
another interesting open question.

For the next result in case p �= 2 we again recall that 1/(pp′) is the vertex
of Σp.
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Theorem 2.7 (p �= 2). Let 2 < max(p, p′) ≤ r < ∞ and V ∈ Lr(H) . Let (λj)
denote an enumeration of the discrete eigenvalues of Hp in Σc

p, each eigenvalue
being counted according to its algebraic multiplicity. Moreover, set

k := k(r, p) := r(2 − 2γp) − 2 (∈ (2,∞)),

where γp is as defined in (6). Then, for every τ ∈ (0, 1) there exist 0 <
ε1, ε2, ε3 < 4τ and constants C,C ′, depending on τ, r and p, such that the
following holds:

(i)

∑

| 1
pp′ −λj |(k−1)/2≤(2‖V ‖r)r

dist(λj ,Σp)k+ε1 ≤ C‖V ‖r
r

(
‖V ‖

r
k−1
r + γp

)k+1+ε2

.

(ii)

∑

| 1
pp′ −λj |(k−1)/2>(2‖V ‖r)r

dist(λ,Σp)k+ε1

(|λ − 1
pp′ |1/2 + 2γp)k+1+ε3

≤ C ′‖V ‖r
r

(
‖V ‖

r
k−1
r + γp

)−τ

.

Remark 2.8. We see that in contrast to the case p = 2 (where the parabola
Σp degenerates to an interval) here we obtain the same information on all
sequences of eigenvalues, independent of the fact whether they converge to
the vertex 1/(pp′) or to a generic point of the boundary of Σp. Still, also here
differentiating between ‘small’ and ‘large’ eigenvalues has its value, since the
estimate in (ii) also provides information on sequences (Ej) of eigenvalues
diverging to ∞.

To see how the above estimates depend on p, let us assume that V ∈
Lr(H) for some fixed r > 2 and let (without restriction) 2 < p ≤ r. Suppose
that (Ej) is a sequence of discrete eigenvalues of Hp = −Δp + V converging
to some E ∈ ∂Σp. Then, (dist(Ej ,Σp)) ∈ lk+ε1 , where

k = r(2 − 2γp) − 2 = r(1 + 2/p) − 2.

In particular, we see that k decreases for increasing p. This can be interpreted
as saying that the constraints on sequences of eigenvalues of Hp, 2 < p ≤ r,
are getting more severe with increasing p and are maximal for p = r, in which
case (dist(Ej ,Σp)) ∈ lr+ε1 (just like in the Hilbert space case).

Finally, let us emphasize that the results of Theorems 2.5 and 2.7 are not
‘continuous’ in p, but have a ‘discontinuity’ at p = 2. To see this, let (Ej) again
denote a sequence of eigenvalues of Hp, converging to some E ∈ ∂Σp\{1/(pp′)}.
Then, in case p = 2 the sequence (dist(Ej ,Σp)) is ‘almost’ in lr, while in
case p = 2 + ε (with ε sufficiently small) it is only ‘almost’ in l2r−2. Since
2r − 2 > r for r > 2, the latter result is weaker than the former. Whether this
discontinuity corresponds to a real phenomenon seems like a further interesting
question for future research.
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2.3. On Proofs and How the Paper Proceeds

The results in Sect. 2.1 will be proved using the Birman–Schwinger principle,
which requires us to obtain good upper bounds on the norm of the Birman–
Schwinger operator V (−Δp−λ)−1. We will obtain such bounds via correspond-
ing Schatten–von Neumann norm estimates (in case p = 2) and summing norm
estimates (in case p �= 2), respectively.

The Lieb–Thirring estimates in Sect. 2.2 will be obtained using a method
first introduced in [5,13]: We will construct suitable holomorphic functions
(perturbation determinants) whose zeros coincide with the eigenvalues of Hp

and we will then use a complex analysis result of Borichev et al. [5] to study
these zeros. While this method has been applied in many different cases for
operators in Hilbert spaces (see the citations at the beginning of the introduc-
tion), we seem to be the first to apply it in a general Banach space context.
In order to make this work, we will rely on a general theory of perturbation
determinants in Banach spaces recently obtained in [27].

The paper will proceed as follows: In the next section, we will provide
the precise definitions of −Δp and Hp, respectively, and we will derive and
recall some of their properties. In Sect. 4, we will derive various norm estimates
on the resolvent of −Δp and on the Birman–Schwinger operator V (−Δp −
λ)−1. These results will be used in Sect. 5 to prove the results of Sect. 2.1.
In Sect. 6, we will derive an abstract Lieb–Thirring estimate, which will be
applied in Sect. 7 to prove the results of Sect. 2.2. The paper is concluded
by an appendix with three parts: In the first part, we recall some standard
results concerning operators and their spectra; in the second part, we review
the theory of perturbation determinants in Banach spaces and we introduce
the Schatten–von Neumann and (p, q)-summing ideals; finally, in the third part
we recall some results from complex interpolation theory which are required
in Sect. 4.

3. The Operators

Some standard results (and terminology) for operators and spectra used
throughout this section are compiled in ‘Appendix A.1.’

3.1. The Hyperbolic Plane, Its Laplace–Beltrami Operator and Green’s Func-
tion

Most of the material in this section is taken from [8, Section 5.7] (see also [6]).
(a) As noted in the Introduction, in the half-space model the hyperbolic

plane is described by

H = {x = (y, t) ∈ R
2 : y ∈ R, 0 < t < ∞}.

Equipped with the conformal metric ds2 = t−2(dy2 + dt2), it is a complete
Riemannian manifold with volume element

dμ(x) := t−2dy dt.



2454 M. Hansmann Ann. Henri Poincaré

The Riemannian distance d(x, x′) between two points x = (y, t), x′ = (y′, t′)
can be computed via the identity

cosh(d(x, x′)) + 1 =
|y − y′|2 + (t + t′)2

2tt′
.

It is sometimes convenient to use the so-called geodesic polar coordinates, see,
e.g., [52, Section 3.1]: We fix x0 ∈ H and identify x ∈ H\{x0} with the pair

(r, ξ) ∈ (0,∞) × S
1,

where r := d(x, x0) and ξ ∈ S
1 denotes the unit vector at x0 which is tangent

to the geodesic ray that starts at x0 and contains x. (Here, we identify the
unit tangent space at x0 with the sphere S

1.) The volume element in geodesic
polar coordinates is given by

sinh(r)dr dξ,

with dξ denoting the surface measure on S
1.

(b) The Laplace–Beltrami operator on H is given by

−Δ = − t2(∂2/∂y2 + ∂2/∂t2).

It is essentially self-adjoint on C∞
c (H) and so its closure (also denoted by

−Δ) is self-adjoint in L2(H). Since −Δ is positive, Δ generates a contraction
semigroup etΔ on L2(H), which can be shown to be submarkovian (i.e., it is
positivity preserving and a contraction on L∞(H)). In particular, this implies
that etΔ maps L1(H) ∩ L∞(H) into itself and etΔ|L1∩L∞ can be extended to a
submarkovian semigroup Tp(t) on Lp(H) for every p ∈ [1,∞]. Moreover, these
semigroups are consistent, i.e., Tp(t)|Lp∩Lq

= Tq(t)|Lp∩Lq
for p �= q. In case

that p ∈ [1,∞) they are also strongly continuous. In the following, we denote
the generator of Tp(t), 1 ≤ p < ∞, by Δp (in particular, −Δ = −Δ2). Note
that the domain of −Δp coincides with the Sobolev space W p

2 (H), see, e.g.,
[49] and [53, Section 7.4.5]. Identifying the adjoint space of Lp(H) with Lp′(H),
the adjoint of −Δp, 1 < p < ∞, is equal to −Δp′ . The spectrum of −Δp is
equal to the set Σp defined in (1). Concerning the structure of the spectrum
let us mention that for p > 2 each point in the interior of Σp is an eigenvalue,
see [51].

Remark 3.1. In general, it seems to be unknown whether σ(−Δp) is purely
essential.

(c) For λ ∈ 
(−Δp) = Σc
p the resolvent (−Δp − λ)−1 is an integral

operator on Lp(H) whose kernel (green function) Gλ(x, x′) depends on the
Riemannian distance d(x, x′) only. In order to present an explicit formula for
this kernel, it is convenient to first map C\[1/4,∞) conformally onto the half-
plane {λ : Re(λ) > 1/2} by setting

s := s(λ) = 1/2 +
√

1/4 − λ, λ ∈ C\ [1/4,∞) , (10)

i.e., λ = − s(s − 1).

Remark 3.2. We note that throughout this article we use the branch of the
square root on C\(−∞, 0] which has positive real part.
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With d = d(x, x′), we have

Gλ(x, x′) =
1

23/2π

∫ ∞

d

e−r(s− 1
2 )

(cosh(r) − cosh(d))1/2
dr, (11)

see, e.g., [9, Formula (2.13)].

3.2. The Schrödinger Operator

Let p > 1 and V ∈ Lp(H) + L∞(H). We use the same symbol V to denote the
maximal operator of multiplication by V in Lp(H). The Sobolev embedding
theorems, see e.g., [29], imply that Dom(−Δp) = W p

2 (H) ⊂ Lp(H) ∩ L∞(H)
and hence the Schrödinger operator

Hp = −Δp + V

is well defined on Dom(Hp) := Dom(−Δp). We now assume that V satisfies
the stronger assumption (3), i.e., V ∈ Lr(H) for some r ≥ max(p, p′). Then, in
case p ≥ 2 we will prove in Theorem 4.11 that V is −Δp-compact and hence
Hp is closed and σess(Hp) = σess(−Δp), see ‘Appendix A.1 (b).’

The case 1 < p < 2 can be reduced to the case p > 2 with the help of the
following proposition.

Proposition 3.3. Let 1 < p < 2 and suppose that V ∈ Lr(H) for some r ≥ p′ =
p/(p − 1). Then, Hp = H∗

p′ . In particular, up to a reflection on the real line
the essential and discrete spectra of Hp and Hp′ coincide.

Note that some standard properties of the adjoint operator are reviewed
in ‘Appendix A.1 (c).’

Proof of the proposition. Just for this proof let us write Vp for the maximal
operator of multiplication by V in Lp(H), so V ∗

p = Vp′ . Since 0 ∈ 
(−Δp′), we
then have

Hp′ = (−Δp′ + Vp′) = (I + Vp′(−Δp′)−1)(−Δp′).

Since p′ > 2 by the previous discussion (or Theorem 4.11) the operator (I +
Vp′(−Δp′)−1) is bounded on Lp′(H), so we obtain

H∗
p′ = (−Δp′)∗(I + Vp′(−Δp′)−1)∗ = (−Δp)(I + [Vp′(−Δp′)−1]∗).

Now, general theory only allows us to conclude that [Vp′(−Δp′)−1]∗ ⊃
(−Δp)−1Vp. However, since the operator on the left-hand side of this inclusion
is bounded on Lp (even compact), it coincides with the closure of the operator
on the right-hand side and hence H∗

p′ = (−Δp)(I +(−Δp)−1Vp). But here the
domain of the product on the right is equal to Dom(−Δp) and on this set the
operators (−Δp)−1Vp and (−Δp)−1Vp coincide. So finally we see that

H∗
p′ = (−Δp)(I + (−Δp)−1Vp) = −Δp + Vp = Hp.

�
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4. A Variety of Estimates

In this section, we derive various estimates on the resolvent and the resolvent
kernel of −Δp and on the Birman–Schwinger operator V (−Δp − λ)−1. To
this end, it will be necessary to first map the resolvent set Σc

p = 
(−Δp)
conformally onto the right half-plane

C+ := {λ ∈ C : Re(λ) > 0}.

Since (1) shows that Σc
p is just the set outside the parabola parameterized by

R 
 t �→ 1/(pp′)+ t2 + it(1−2/p), such a conformal map (or rather its inverse)
is given by

Ψp : C+ → Σc
p

z �→ 1/(pp′) − z2 − z|1 − 2/p| =: λ. (12)

Using γp = 1/2|1 − 2/p| as defined in (6), a short calculation shows that

λ = Ψp(z) = 1/4 − (z + γp)2 (13)

and

z = Ψ−1
p (λ) = −γp +

√
1/4 − λ. (14)

We note that with s = s(λ) as defined in (10) we have

s = Ψ−1
p (λ) + 1/2 + γp, λ ∈ Σc

p. (15)

The following lemma will allow us to freely switch between estimates in terms
of λ and z, respectively.

Lemma 4.1. Let z ∈ C+ and λ = Ψp(z), 1 ≤ p < ∞.
(i) If p = 2, then

|z|Re(z) ≤ dist(λ, [1/4,∞)) ≤ 2Re(z)|z|. (16)

(ii) If p �= 2, then

|z + γp|Re(z)
4

≤ dist(λ,Σp) ≤ 16|z + γp|Re(z). (17)

Proof. (i) In case p = 2, a short computation shows that with λ = 1/4 − z2:

dist(λ, [1/4,∞)) =
{ |z|2, | Im(z)| ≤ Re(z),

2Re(z)| Im(z)|, | Im(z)| > Re(z).

Since |z| ≥ Re(z), and
√

2| Im(z)| > |z| if | Im(z)| > Re(z), we obtain the lower
bound in (16). Similarly, since |z| ≤ √

2|Re(z)| if | Im(z)| ≤ Re(z), and since
| Im(z)| ≤ |z|, we obtain the upper bound as well.

(ii) In case p �= 2, we proceed more indirectly. Let φ : D → C+ denote
an arbitrary conformal mapping between the unit disk D = {w ∈ C : |w| ≤ 1}
and the right half-plane. Then, the Koebe distortion theorem (see [43], page
9) implies that with z = φ(w) :

1
4
|φ′(w)|(1 − |w|) ≤ Re(z) = dist(z, ∂C+) ≤ 2|φ′(w)|(1 − |w|). (18)
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The function f := Ψp ◦ φ : D → Σc
p is conformal as well, so applying the

distortion theorem a second time we obtain with λ = Ψp(φ(w)) = Ψp(z):

1
4
|f ′(w)|(1 − |w|) ≤ dist(λ,Σp) ≤ 2|f ′(w)|(1 − |w|). (19)

But f ′(w) = Ψ′
p(z) · φ′(w), so (18) and (19) together imply that

dist(λ,Σp) ≤ 2|Ψ′
p(z)||φ′(w)|(1 − |w|) ≤ 8|Ψ′

p(z)|Re(z).

Since Ψ′
p(z) = − 2(z + γp), this proves the upper bound in (17). The lower

bound is proved similarly. �

4.1. Kernel Estimates

In the following, we present a series of estimates on the green function Gλ(., .)
defined in (11), starting with the following one due to Elstrodt. As above, we
write ‖.‖p for the norm in Lp(H).

Proposition 4.2 ([15], Corollary 7.3. (see also [14])). For λ ∈ C\[ 14 ,∞) and
s = s(λ) as defined in (10), the following holds:

sup
x∈H

‖Gλ(x, .)‖2
2 ≤

⎧
⎨

⎩

| Im(ψ(s))|
2π| Im(λ)| , λ ∈ C\R,

ψ′(s)
4π(s− 1

2 )
, λ ∈ R.

(20)

Here, ψ(s) = d
ds ln(Γ(s)) denotes the Digamma function.

It is convenient to rewrite this estimate as follows.

Corollary 4.3. For all z ∈ C+ and λ = Ψ2(z) = 1
4 − z2, we have

sup
x∈H

‖Gλ(x, .)‖2
2 ≤ C0

1
|z + 1

2 |(Re(z))
, (21)

where C0 is as defined in (5).

Proof of the corollary. Let us first consider the case λ ∈ C\R, λ = − s(s − 1).
Since

ψ(s) = − γ +
∞∑

k=1

(
1
k

− 1
k + s − 1

)
,

where γ is the Euler–Mascheroni constant (see [2, Formula 6.3.16]), we can use
the fact that Re(s) > 1/2 to obtain that

| Im(ψ(s))| = | Im(s)|
∞∑

k=0

1
(k + Re(s))2 + Im(s)2

≤ | Im(s)|
∞∑

k=0

1
k2 + |s|2

=
| Im(s)|

2

(
1

|s|2 +
π coth(π|s|)

|s|
)

≤ | Im(s)|
2|s|

(
2 + π coth

(π

2

))
.

Moreover, a short computation shows that

Im(λ) = 2 Im(s)
(

1
2

− Re(s)
)

.
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Hence, for λ ∈ C\R we obtain that

| Im(ψ(s))|
2π| Im(λ)| ≤ 1 + π

2 coth(π
2 )

4π

1
|s|(Re(s) − 1

2 )
. (22)

Similarly, for λ < 1/4 (and hence s > 1/2) we use that

ψ′(s) =
∞∑

k=0

1
(s + k)2

≤
∞∑

k=0

1
s2 + k2

≤ 1
s

(
1 +

π

2
coth

(π

2

))

to obtain

ψ′(s)
4π(s − 1

2 )
≤ 1 + π

2 coth(π
2 )

4π

1
s(s − 1

2 )
, λ < 1/4. (23)

Taking into account that by (15) we have s = z + 1
2 , the estimates (22), (23)

and (20) conclude the proof. �

Now, we estimate the L1-norm of the Green function.

Lemma 4.4. For all z ∈ C+ and λ = Ψ1(z) = 1
4 − (z + 1

2 )2, we have

sup
x∈H

‖Gλ(x, .)‖1 ≤ 1
Re(z)(Re(z) + 1)

. (24)

Proof. We note that with d = d(x, x′) we obtain from (11) and (15) that

Gλ(x, x′) =
1

2
3
2 π

∫ ∞

d

e−a(z+ 1
2 )

(cosh(a) − cosh(d))1/2
da.

Switching to geodesic polar coordinates, centered at x, we can thus compute

‖Gλ(x, .)‖1 =

∫

H

μ(dx′)|Gλ(x, x′)|

≤ 1

2
3
2 π

∫

S1
dξ

∫ ∞

0

dr sinh(r)

∫ ∞

r

da
e−a(Re(z)+ 1

2 )

(cosh(a) − cosh(r))1/2

=
1

2
1
2

∫ ∞

0

da e−a(Re(z)+ 1
2 )

∫ a

0

dr
sinh(r)

(cosh(a) − cosh(r))1/2

= 2
1
2

∫ ∞

0

da e−a(Re(z)+ 1
2 )(cosh(a) − 1)1/2

=

∫ ∞

0

da e−a(Re(z)+ 1
2 )(ea/2 − e−a/2)

=
1

Re(z)
− 1

Re(z) + 1
=

1

Re(z)(Re(z) + 1)
.

Here, in the last equality between the integrals, we used that 2(cosh(a)− 1) =
(ea/2 − a−a/2)2. �

Finally, we generalize the previous two lemmas using complex interpola-
tion; see ‘Appendix A.3.’
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Lemma 4.5. Let 1 ≤ p < 2. Then, for z ∈ C+ and λ = Ψp(z) = 1
4 − (z + γp)2

we have

sup
x∈H

‖Gλ(x, .)‖p ≤ C
1−1/p
0

(
1

Re(z)(Re(z) + 1
2 )

)1/p

, (25)

where C0 was defined in (5).

Proof. We use the terminology of Appendix A.3. Let S := {w : 0 ≤ Re(w) ≤
1}. For fixed x ∈ H and z ∈ C+, we consider the function

f : S → L2(H) + L1(H), w �→ G 1
4−(z+ 1

2w)2(x, .)

The explicit expression (11) for the kernel and our above estimates show that
this function is in G(L2(H), L1(H)), i.e., it is continuous and bounded on S
and analytic in the interior of S. Moreover, by (21)

A2
0 := sup

y∈R

‖f(iy)‖2
2 ≤ C0 sup

y∈R

1
|z + iy

2 + 1
2 |(Re(z + iy

2 ))
=C0

1
(Re(z)+ 1

2 )(Re(z))

and by (24)

A1 := sup
y∈R

‖f(1 + iy)‖1 ≤ sup
y∈R

1
Re(z + iy

2 )(Re(z + iy
2 ) + 1)

=
1

Re(z)(Re(z)+1)
.

Hence, from Proposition A.4 we obtain that for θ ∈ (0, 1) and 1/p = (1 −
θ)/2 + θ we have f(θ) ∈ Lp(H) = [L2(H), L1(H)]θ and

‖f(θ)‖p = ‖f(θ)‖[L2,L1]θ ≤ A1−θ
0 Aθ

1.

But using that θ = 2/p−1, γp = 1/p−1/2 and λ = 1
4 −(z+γp)2 = 1

4 −(z+ 1
2θ)2

the last bound translates into

‖Gλ(x, .)‖p ≤ C
(1−1/p)
0

(
1

(Re(z)+ 1
2 )(Re(z))

)(1−1/p) (
1

Re(z)(Re(z)+1)

)2/p−1

≤ C
(1−1/p)
0

(
1

Re(z)(Re(z) + 1
2 )

)1/p

,

where in the last step we used that Re(z) + 1 > Re(z) + 1/2. �

4.2. A Resolvent Norm Estimate

We continue with an estimate on the operator norm of the resolvents of
−Δp. Here and in the following, we write ‖T‖p,q for the operator norm of
T : Lp(H) → Lq(H).

Lemma 4.6. Let 1 ≤ p < ∞ and let z ∈ C+ and λ = Ψp(z) = 1
4 − (z + γp)2.

(i) If p = 2, then

‖(−Δ − λ)−1‖2,2 =
1

dist(λ, [1/4,∞))
≤ 1

|z|Re(z)
.

(ii) If p �= 2, then

‖(−Δp − λ)−1‖p,p ≤
(

1
(Re(z))2−2γp(1 + Re(z))2γp

)
.
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Proof. (i) The identity follows from the fact that −Δ = −Δ2 is self-adjoint
with σ(−Δ2) = [1/4,∞). The inequality follows from Lemma 4.1 (i).

(ii) In case p = 1, we can use Lemma 4.4 to compute for λ = 1
4 −(z+ 1

2 )2

‖(−Δ1 − λ)−1‖1,1 ≤ sup
x∈H

‖Gλ(., x)‖1 = sup
x∈H

‖Gλ(x, .)‖1 ≤ 1
Re(z)(Re(z) + 1)

.

(26)

Now, we treat the case 1 < p < 2 by interpolation (see again Appendix A.3):
Let S = {w ∈ C : 0 ≤ Re(w) ≤ 1} and fix z ∈ C+. Define

Tw :=

(

−Δ − 1
4

+
(

z +
1
2
w

)2
)−1

.

Then, for all simple functions f, g : H → C the function

S 
 w �→
∫

H

Twf(x)g(x)μ(dx)

is continuous and bounded on S and analytic in the interior of S. Moreover,
for every simple function f we have

sup
y∈R

‖Tiyf‖2 ≤ ‖f‖2 sup
y∈R

‖
(

−Δ − 1
4

+ (z +
1
2
(iy))2

)−1

‖2,2

≤ ‖f‖2 sup
y∈R

1
|z + iy

2 |Re(z + iy
2 )

= ‖f‖2
1

(Re(z))2

and

sup
y∈R

‖T1+iyf‖1 ≤ ‖f‖1 sup
y∈R

‖
(

−Δ1 − 1
4

+ (z +
1
2
(1 + iy))2

)−1

‖1,1

≤ ‖f‖1 sup
y∈R

1
Re(z + iy

2 )(Re(z + iy
2 ) + 1)

= ‖f‖1
1

Re(z)(1 + Re(z))
.

Hence, the Stein interpolation theorem (Theorem A.6) implies that for θ ∈
(0, 1) and 1

p = (1− θ) 1
2 + θ, the operator Tθ extends to a bounded operator on

Lp(H) satisfying

‖Tθ‖p,p ≤
(

1
(Re(z))2

)1−θ (
1

Re(z)(1 + Re(z))

)θ

.

Since 1 < p < 2, we have θ = (2/p − 1) = 2γp (see Definition (6)) and
λ = 1

4 − (z + γp)2 = 1
4 − (z + 1

2θ)2. Hence, the previous estimate implies

‖(−Δp − λ)−1‖p,p ≤ 1
(Re(z))2−2γp(1 + Re(z))2γp

.

Finally, the case p > 2 follows by duality using the fact that γp = γp′ . �
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4.3. Summing Norm Estimates

In this section, (Πr, ‖.‖Πr
) and (Πr,q, ‖.‖Πr,q

) denote the r-summing and (r, q)-
summing operators on Lp(H), respectively. Some properties of these operator
ideals are reviewed in ‘Appendix A.2’ (see Examples A.1 and A.2, in particu-
lar).

Lemma 4.7. Let p ≥ 2, z ∈ C+ and λ = Ψp(z). If V ∈ L∞(H), then

‖V (−Δp − λ)−1‖p,p ≤ ‖V ‖∞ ·
⎧
⎨

⎩

1
dist(λ,[1/4,∞)) , p = 2,

1

(Re(z))
1+ 2

p (1+Re(z))
1− 2

p
, p > 2.

(27)

Proof. This follows from Lemma 4.6 and the fact that

‖V (−Δp − λ)−1‖p,p ≤ ‖V ‖∞‖(−Δp − λ)−1‖p,p.

�

Lemma 4.8. Let p ≥ 2, z ∈ C+ and λ = Ψp(z). If V ∈ Lp(H), then V (−Δp −
λ)−1 ∈ Πp(Lp(H)) and

‖V (−Δp − λ)−1‖p
Πp

≤ C0 · ‖V ‖p
p ·

⎧
⎨

⎩

1
|z+ 1

2 |(Re(z))
, p = 2

(
1

Re(z)(Re(z)+ 1
2 )

)p/p′

, p > 2,
(28)

where C0 was defined in (5).

Proof. Since V (−Δp − λ)−1 is an integral op. with kernel k(x, x′) =
V (x)Gλ(x, x′), its p-summing norm can be computed as follows (see, e.g., [32,
Thm.3.a.3 and its proof]):

‖V (−Δp − λ)−1‖p
Πp

≤
∫

H

μ(dx)
(∫

H

μ(dx′)|V (x)Gλ(x, x′)|p′
)p/p′

≤ ‖V ‖p
p sup

x∈H

‖Gλ(x, .)‖p
Lp′

≤ C0‖V ‖p
p ·

⎧
⎨

⎩

1
|z+ 1

2 |(Re(z))
, p = 2

(
1

Re(z)(Re(z)+ 1
2 )

)p/p′

, p > 2.

Here, in the last inequality, we used (21) and (25), respectively. �

Now, we are going to interpolate between the results of the last two
lemmas to obtain a result for V ∈ Lr(H), p < r < ∞. We will need the following
result of Pietsch and Triebel concerning the complex interpolation spaces of
the Schatten–von Neumann and absolutely summing ideals, respectively. We
refer again to ‘Appendix A.3’ for the notation and terminology.

Proposition 4.9 ([42]). Let H and X denote complex Hilbert and Banach
spaces, respectively. Moreover, let p ≥ 1, 0 < θ < 1 and define r > p by
1
r = θ

p . Then, the following holds:

(i) [B(H),Sp(H)]θ = Sr(H) and ‖T‖[B,Sp]θ = ‖T‖Sr
for T ∈ Sr(H).
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(ii) [B(X),Πp(X)]θ ⊂ Πr,p(X) and

‖T‖Πr,p
≤ ‖T‖[B,Πp]θ for T ∈ [B(X),Πp(X)]θ.

Remark 4.10. We recall that for p = 2 and r ≥ 2 we have Πr,2(H) = Sr(H)
and ‖.‖Πr,2 = ‖.‖Sr

, see [41, Prop. 2.11.28].

Theorem 4.11. Let 2 ≤ p ≤ r < ∞, z ∈ C+ and λ = Ψp(z) = 1/4 − (z + γp)2.
If V ∈ Lr(H), then V (−Δp − λ)−1 ∈ Πr,p(Lp(H)) and

‖V (− Δp − λ)−1‖Πr,p ≤ C
1/r
0 ‖V ‖r ·

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1

dist(λ,[1/4,∞))

)1−2/r
(

1
|z+ 1

2 |(Re(z))

)1/r

, p = 2,

(
1

Re(z)

)1+2/p−3/r
(

1
Re(z)+ 1

2

)1−2/p+1/r

, p > 2,

where C0 was defined in (5).

In particular, the theorem shows that for V ∈ Lr(H) the operator of
multiplication by V is −Δp-compact. This is used in Sect. 3.2.

Proof. A density argument shows that it is sufficient to consider the case where
V is a nonnegative simple function. For such a V define

f : S → B(Lp(H)) + Πp(Lp(H)), f(w) = V
r
p w(−Δp − λ)−1,

where as above S = {w : 0 ≤ Re(w) ≤ 1}. From what we have shown above, we
infer that f is continuous and bounded on S and holomorphic in the interior
of S. Moreover, since ‖V

r
p iy‖∞ ≤ 1 we obtain from Lemma 4.7 that

A0 := sup
y∈R

‖f(iy)‖p,p ≤
⎧
⎨

⎩

1
dist(λ,[1/4,∞)) , p = 2,

1

(Re(z))
1+ 2

p (1+Re(z))
1− 2

p
, p > 2.

Furthermore, Lemma 4.8 implies that

Ap
1 := sup

y∈R

‖f(1 + iy)‖p
Πp(Lp) ≤ C0 · ‖V r

p ‖p
p ·

⎧
⎨

⎩

1
|z+ 1

2 |(Re(z))
, p = 2

(
1

Re(z)(Re(z)+ 1
2 )

)p/p′

, p > 2,

and here ‖V
r
p ‖p

p = ‖V ‖r
r. But then Propositions A.4 and 4.9 imply that with

1/r = θ/p (i.e., f(θ) = V (−Δp − λ)−1)

‖V (− Δp − λ)−1‖Πr,p(Lp(H)) ≤ ‖V (− Δp − λ)−1‖[B,Πp]θ ≤ A
(1−θ)
0 Aθ

1

≤ C
1/r
0 ‖V ‖r

⎧
⎪⎪⎨

⎪⎪⎩

(
1

dist(λ,[1/4,∞))

)1−2/r (
1

|z+ 1
2 |(Re(z))

)1/r

, p = 2,
(

1

(Re(z))
1+ 2

p (1+Re(z))
1− 2

p

)1−p/r (
1

Re(z)(Re(z)+ 1
2 )

)p/(rp′)
, p > 2.

Now, a rearrangement of terms, using the estimate Re(z) + 1 > Re(z) + 1
2 ,

concludes the proof. �

The previous theorem will be used to prove the results in Sect. 2.1. To
prove the results in Sect. 2.2, we will use the following corollary.
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Corollary 4.12. Let 2 ≤ p ≤ r < ∞, z ∈ C+ and λ = Ψp(z). If V ∈ Lr(H),
then V (−Δp − λ)−1 ∈ Πr,p(Lp(H)) and

‖V (−Δp − λ)−1‖Πr,p
≤ 21−2/p‖V ‖r

⎧
⎪⎨

⎪⎩

(
1

|z|
)1−2/r (

1
Re(z)

)1− 1
r

, p = 2,

(
1

Re(z)

)1+2/p−3/r

, p > 2.

Proof. The case p = 2 follows using Lemma 4.1 to estimate dist(λ, [1/4,∞)) ≥
|z|Re(z), together with the estimate |z + 1/2| ≥ 1/2 for z ∈ C+, and the fact
that 2C0 ≤ 1. The case p > 2 follows in the same way using that Re(z)+ 1

2 ≥ 1
2

and C
1/r
0 21−2/p+1/r ≤ 21−2/p. �

5. Proof of Theorems 2.1 and 2.3

Let p ≥ 2 and let λ ∈ Σc
p = 
(−Δp). Then, by the Birman–Schwinger principle

λ is an eigenvalue of Hp = −Δp + V if and only if −1 is an eigenvalue of
V (−Δp − λ)−1. Hence, in this case we obtain for r ≥ p that

1 ≤ ‖V (−Δp − λ)−1‖ ≤ ‖V (−Δp − λ)−1‖Πr,p
. (29)

Now, we use Theorem 4.11 to estimate the right-hand side from above and we
rearrange terms. We distinguish between two cases:

(i) In case p = 2, we obtain with z = Ψ−1
2 (λ) =

√
1/4 − λ

(dist(λ, [1/4,∞)))r−2|z + 1/2|Re(z) ≤ C0‖V ‖r
r. (30)

A short calculation shows that, since z ∈ C+, we have |z +1/2| ≥ 1/
√

2 · (|z|+
1/2). Hence, using Lemma 4.1 we see that the left-hand side of (30) can be
bounded from below as follows:

(dist(λ, [1/4,∞)))r−2|z + 1/2|Re(z)

≥ 1/
√

2 · (dist(λ, [1/4,∞)))r−2(|z| + 1/2)Re(z)

= 1/
√

2 · (dist(λ, [1/4,∞)))r−2(1 + 1/(2|z|))|z|Re(z)

≥ 1/(2
√

2) · (dist(λ, [1/4,∞)))r−1|1 + 1/(2|1/4 − λ|1/2)|. (31)

But (30) and (31) show the validity of (4) and conclude the proof of Theo-
rem 2.1

(ii) In case p > 2, we obtain from (29) and Theorem 4.11 that

(Re(z))2r−2(1 + 1/(2Re(z)))r(1−2/p)+1 ≤ C0‖V ‖r
r. (32)

Now, we use Lemma 4.1 and (14) to estimate the left-hand side from below
by

(
1
16

dist(λ,Σp)
|1/4 − λ|1/2

)2r−2 (
1 +

|1/4 − λ|1/2

8 dist(λ,Σp)

)r(1−2/p)+1

.

This shows the validity of (7) in case p > 2. Finally, the case 1 < p < 2 follows
by duality using Proposition 3.3. This concludes the proof of Theorem 2.3.
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6. An Abstract Lieb–Thirring Estimate

Theorems 2.5 and 2.7 are proved using the following abstract result. Here,
we use terminology from [27], which is reviewed in ‘Appendix A.2.’ Moreover,
x+ = max(x, 0) denotes the positive part of x ∈ R.

Theorem 6.1. Let X denote a complex Banach space, let r ≥ 1 and let (I, ‖.‖I)
be an lr-ideal in B(X). Moreover, let Z0 and Z = Z0 + M denote closed
operators in X such that

– for some p ∈ [1,∞) we have σ(Z0) = Σp as defined in (1),
– there exist α, β, γ ≥ 0 and C1 > 0 such that for all z ∈ C+ and Ψp(z) as
defined in (13):

‖M(Z0 − Ψp(z))−1‖I ≤ C1 · Re(z)−α · |z|−β (33)

and

‖(Z0 − Ψp(a))−1‖ ≤ a−γ , a > 0. (34)

Finally, let τ > 0 and set

δ1 := rα + 1 + τ,

δ2 := (rβ − 1 + τ)+,

δ3 := r(1 − α − β − γ).

Then, there exist constants C and C ′, both depending on α, β, γ, r and τ , such
that

∑

|λ− 1
pp′ | 12 ≤(2C1)

1
α+β

dist(λ,Σp)δ1 |λ − 1
pp′ |δ2

(|λ − 1
pp′ | 1

2 + 2γp)δ1+δ2
≤ C · C

r+
δ1+δ2+δ3

α+β

1 (C
1

α+β

1 + γp)r

(35)

and
∑

|λ− 1
pp′ | 12 >(2C1)

1
α+β

dist(λ,Σp)δ1 |λ − 1
pp′ |δ2

(|λ − 1
pp′ | 1

2 + 2γp)2δ1+2δ2+δ3+r+τ
≤C ′ · Cr

1(C
1

α+β

1 + γp)−τ .

(36)

Here, in both sums, we are summing over all eigenvalues λ ∈ σd(Z) ∩ Σc
p

satisfying the stated restrictions, each eigenvalue being counted according to
its algebraic multiplicity. Moreover, γp is as defined in (6).

In the remainder of this section, we are going to prove the previous
theorem. We start with a lemma providing a resolvent norm estimate on
Z = Z0 + M .

Lemma 6.2. Given assumptions (33) and (34), we have for all

a ≥ (2C1)1/(α+β) (37)

that Ψp(a) ∈ 
(Z) and

‖(Z − Ψp(a))−1‖ ≤ 2a−γ . (38)
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Proof. Since for a > 0 we have Ψp(a) ∈ Σc
p = 
(Z0), we can write

Z − Ψp(a) = Z0 + M − Ψp(a) = (I + M(Z0 − Ψp(a))−1)(Z0 − Ψp(a)). (39)

By assumption (33),

‖M(Z0 − Ψp(a))−1‖ ≤ ‖M(Z0 − Ψp(a))−1‖I ≤ C1a
−α−β .

Hence, we see that for a ≥ (2C1)1/(α+β) the operator I + M(Z0 − Ψp(a))−1 is
invertible with norm of the inverse being at most 2. But then also Z − Ψp(a)
is invertible and using (34) and (39) we obtain

‖(Z − Ψp(a))−1‖ ≤ 2‖(Z0 − Ψp(a))−1‖ ≤ 2a−γ . �

Now, for a shorter notation let us set

b = Ψp(a)

with some a satisfying (37). Then, b ∈ 
(Z) ∩ 
(Z0) and

K := (Z − b)−1 − (Z0 − b)−1 = −(Z − b)−1M(Z0 − b)−1 ∈ I.

Let us set A = (Z0 − b)−1 and B := A + K := (Z − b)−1. By the spectral
mapping theorem

λ ∈ 
(Z0)\{b} ⇔ (λ − b)−1 ∈ 
(A)

(and a similar result holds for Z and B). From [27, Theorem 4.10], see ‘Appen-
dix A.2,’ we know that there exists a holomorphic function d : 
(A) → C with
the following properties:
(p1) lim|u|→∞ d(u) = 1,
(p2) for u ∈ 
(A) we have

|d(u)| ≤ exp
(
μr

rΓr‖K(u − A)−1‖r
I
)
,

where μr denotes the eigenvalue constant of I and Γr is a universal r-
dependent constant, see [28],

(p3) d(u) = 0 iff u ∈ σ(A + K),
(p4) if u ∈ 
(A)∩σd(A+K), then its algebraic multiplicity (as an eigenvalue)

coincides with its order as a zero of d.
Using the spectral mapping theorem, again we see that

D(λ) := d((λ − b)−1)

is well defined and analytic on 
(Z0)\{b} and, by (p1), can be analytically
extended to 
(Z0) = Σc

p by setting D(b) = 1. Moreover, by spectral mapping
and (p3) and (p4) we know that D(λ) = 0 iff λ ∈ σ(Z) and if λ ∈ 
(Z0)∩σd(Z),
then its algebraic multiplicity coincides with its order as a zero of D. Finally,
since

((λ − b)−1 − A)−1 = ((λ − b)−1 − (Z0 − b)−1)−1 = (λ − b)(Z0 − b)(Z0 − λ)−1

we see that

K((λ − b)−1 − A)−1 = ((Z − b)−1 − (Z0 − b)−1)(λ − b)(Z0 − b)(Z0 − λ)−1

= (b − λ)(Z − b)−1M(Z0 − λ)−1
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and hence for λ ∈ 
(Z0) = Σc
p we have by (p2)

|D(λ)| ≤ exp
(
μr

rΓr|λ − b|r‖(Z − b)−1‖r‖M(Z0 − λ)−1‖r
I
)
.

Writing b = Ψp(a) and λ = Ψp(z), with z ∈ C+, the assumption (33) and
Lemma 6.2 hence imply that

|D(Ψp(z))| ≤ exp
(
μr

rΓr|Ψp(z) − Ψp(a)|r2ra−rγCr
1 Re(z)−rα|z|−rβ

)
. (40)

Here, the holomorphic function D ◦ Ψp is defined on the right half-plane C+.
In the following, it will be necessary to transfer this function to the unit disk
D using the conformal map

Φa : D → C+, Φa(w) = a
1 − w

1 + w

with inverse

Φ−1
a (z) =

a − z

a + z
.

Lemma 6.3. Let w ∈ D, z = Φa(w) ∈ C+ and λ = Ψp(z) ∈ Σc
p. Then, the

following holds:

1 + w =
2a

a + z
, 1 − w =

2z

a + z
(41)

|Ψp(z) − Ψp(a)| ≤ 4a(a + 2γp)
|1 + w|2 (42)

a
1 − |w|
|1 + w|2 ≤ Re(z) ≤ 2a

1 − |w|
|1 + w|2 (43)

a · dist(λ,Σp)
8|a + z|2|1/4 − λ|1/2

≤ 1 − |w| ≤ 16a · dist(λ,Σp)
|a + z|2|1/4 − λ|1/2

. (44)

Proof of the lemma. The identities in (41) are immediate consequences of the
definitions. To see (42), we compute, using (13),

|Ψp(z) − Ψp(a)| = |(a + γp)2 − (z + γp)2| = |a2 − z2 + 2γp(a − z)|.
Hence, since

a − z = a

(
1 − 1 − w

1 + w

)
=

2aw

1 + w
, a + z =

2a

1 + w
,

we obtain

|Ψp(z) − Ψp(a)| =
∣
∣
∣
∣

4wa2

(1 + w)2
+

4waγp

1 + w

∣
∣
∣
∣

=
4|w|a

|1 + w|2 |a + γp(1 + w)| ≤ 4a(a + 2γp)
|1 + w|2 .

The estimates in (43) follow from

Re(z) = a
1 − |w|2
|1 + w|2 . (45)
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Finally, in order to show (44) we first use Lemma 4.1 to obtain

|z + γp|Re(z)
4

≤ dist(λ,Σp) ≤ 16|z + γp|Re(z). (46)

(Here, we ignore the fact that a better estimate is valid if p = 2.) Since
z + γp =

√
1/4 − λ, we obtain, also using (41) and (45), that

|z + γp|Re(z) =
a|1/4 − λ|1/2(1 − |w|2)

|1 + w|2 = (1 − |w|2) |1/4 − λ|1/2|a + z|2
4a

.

(47)

But (47) and (46) imply (44). �

Now, let us introduce the holomorphic function

h : D → C, h(w) = D(Ψp(Φa(w))).

Then, h(w) = 0 if and only if λ = Ψp(Φa(w)) ∈ σd(Z) ∩ Σc
p (and order and

multiplicity coincide) and h(0) = D(Ψp(a)) = D(b) = 1. Moreover, using the
previous lemma and (40) a short computation shows that

|h(w)| ≤ exp

(
8rμr

rΓrCr
1ar(1−α−β−γ)(a + 2γp)r 1

|1 + w|r(2−2α−β)|1 − w|rβ(1 − |w|)rα

)
.

So we see that h grows at most exponentially for w approaching the unit circle,
with the rate of explosion depending on whether w approaches 1 or −1 or a
generic point of the boundary, respectively. A theorem of Borichev, Golinskii
and Kupin [5, Theorem 0.3] allows us to transform this information on the
growth of h into the following information on its zero set: The theorem says
that for all τ > 0 there exists a constant C = C(α, β, γ, r, τ) > 0 such that

∑

h(w)=0,w∈D

(1 − |w|)rα+1+τ |1 − w|(rβ−1+τ)+ |1 + w|(r(2−2α−β)−1+τ)+

≤ C · Cr
1 · ar(1−α−β−γ)(a + 2γp)r, (48)

where each zero of h is counted according to its order. Using Lemma 6.3, we
see that the summands on the LHS are bounded below by
(

a

8
dist(λ,Σp)

|a + z|2|1/4 − λ|1/2

)rα+1+τ ∣
∣
∣
∣

2z

a + z

∣
∣
∣
∣

(rβ−1+τ)+ ∣
∣
∣
∣

2a

a + z

∣
∣
∣
∣

(r(2−2α−β)−1+τ)+

.

Hence, we have proved the following lemma.

Lemma 6.4. Assume (33) and (34). Let τ > 0 and set

δ1 := rα + 1 + τ,

δ2 := (rβ − 1 + τ)+,

δ3 := r(1 − α − β − γ),
δ4 := (r(2 − 2α − β) − 1 + τ)+.
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Then, there exists C = C(α, β, γ, r, τ) such that for all a ≥ (2C1)1/(α+β) we
have

∑

λ∈σd(Z)∩Σc
p

(
dist(λ,Σp)
|14 − λ|1/2

)δ1 |z|δ2
|a + z|2δ1+δ2+δ4

≤ C · Cr
1 · a− Δ1−δ4+δ3(a+2γp)r.

(49)

Here, each eigenvalue is counted according to its alg. multiplicity and z =
Ψ−1

p (λ).

In order to finish the proof of Theorem 6.1, we need to distinguish between
‘small’ and ‘large’ eigenvalues. Namely, introducing

0 < η := (2C1)1/(α+β)

we consider the cases

(i) |λ − 1/(pp′)|1/2 ≤ η and (ii) |λ − 1/(pp′)|1/2 > η,

respectively. Note that by (12)

λ − 1/(pp′) = − z(z + 2γp). (50)

Case (i): Since for z ∈ C+ we have |z + 2γp| ≥ |z|, we obtain

η ≥ |λ − 1/(pp′)|1/2 = |z(z + 2γp)|1/2 ≥ |z|.
Now, we apply (49) with a = η, the sum being restricted to those λ satisfying
the first case, and use the estimate |z + η| ≤ |z| + η ≤ 2η. We obtain

∑

|λ−1/(pp′)|1/2≤η

(
dist(λ,Σp)
|14 − λ|1/2

)δ1

|z|δ2 ≤ C · Cr
1 · ηδ1+δ2+δ3(η + γp)r

≤ C · C
r+

δ1+δ2+δ3
α+β

1 (C
1

α+β

1 + γp)r. (51)

Remark 6.5. Note that here the constants C are different from each other and
from the one in (49), but they depend on the same parameters. Also, in the
following this constant may change from line to line.

It remains to estimate the sum on the left-hand side of the previous
inequality from below in a suitable manner. To this end, we note that since
1/4 − 1/(pp′) = γ2

p we have

|λ − 1/4|1/2 ≤ (|λ − 1/(pp′)| + γ2
p

)1/2 ≤ |λ − 1/(pp′)|1/2 + γp. (52)

Moreover, this estimate implies that, with z = Ψ−1
p (λ) = − γp +

√
1/4 − λ,

|z + 2γp| ≤ |z + γp| + γp = |1/4 − λ|1/2 + γp ≤ |λ − 1/(pp′)|1/2 + 2γp. (53)

Finally, the previous inequality and (50) show that

|z| =
|λ − 1/(pp′)|

|z + 2γp| ≥ |λ − 1/(pp′)|
|λ − 1/(pp′)|1/2 + 2γp

. (54)

Remark 6.6. It is important to note that (52)–(54) are valid for all λ ∈ Σc
p.
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Now, we can use (54) and (52) to estimate the sum in (51) from below
by

∑

|λ−1/(pp′)|1/2≤(2C1)1/(α+β)

dist(λ,Σp)δ1
|λ − 1

pp′ |δ2
(|λ − 1

pp′ |1/2 + 2γp)δ1+δ2
.

This completes the proof of inequality (35).
Case (ii): For those λ satisfying the second case, we have

η < |λ − 1/(pp′)|1/2 = |z(z + 2γp)|1/2 ≤ |z + 2γp|.
Now, we restrict the sum in (49) to those λ satisfying the second case, multiply
left- and right-hand side of (49) by aδ1+δ4− Δ3(a+2γp)−r−1−τ and integrate a
from η to ∞.

Then, as a result for the RHS we obtain

C · Cr
1 ·

∫ ∞

η

da (a + 2γp)−1−τ = C · Cr
1 · 1

τ
(η + 2γp)−τ . (55)

Moreover, for the LHS we obtain
∫ ∞

η

da aδ1+δ4− Δ3(a + 2γp)−r−1−τ
∑

|λ−1/(pp′)|1/2>η

(
dist(λ, Σp)

| 1
4

− λ|1/2

)δ1 |z|δ2
|a + z|2δ1+δ2+δ4

≥
∑

|λ−1/(pp′)|1/2>η

(
dist(λ, Σp)

| 1
4

− λ|1/2

)δ1

|z|δ2
∫ ∞

η

da
aδ1+δ4− Δ3

(a + 2γp)r+1+τ (a + |z|)2δ1+δ2+δ4
.

(56)

Now, we change variables in the integral in (56), obtaining that
∫ ∞

η

da
aδ1+δ4− Δ3

(a + 2γp)r+1+τ (a + |z|)2δ1+δ2+δ4

= |z + 2γp|δ1+δ4− Δ3+1

∫ ∞

η/|z+2γp|
db

bδ1+δ4− Δ3

(b|z + 2γp| + 2γp)r+1+τ (b|z + 2γp| + |z|)2δ1+δ2+δ4

≥ |z + 2γp|− Δ1−δ2−δ3−r−τ

∫ ∞

1

db
bδ1+δ4−δ3

(b + 1)r+1+τ+2δ1+δ2+δ4
, (57)

where in the last step we used that |z| ≤ |z + 2γp| and 2γp ≤ |z + 2γp| for
z ∈ C+, and that η < |z + 2γp| as had been shown above. From (57), (56) and
(55), we obtain that

∑

|λ−1/(pp′)|1/2>η

(
dist(λ,Σp)
|14 − λ|1/2

)δ1 |z|δ2
|z + 2γp|δ1+δ2+δ3+r+τ

≤ C · Cr
1(C1/(α+β)

1 + γp)−τ . (58)

Finally, we use (52)–(54) to estimate the left-hand side of (58) from below by
∑

|λ−1/(pp′)|1/2>(2C1)1/(α+β)

dist(λ,Σp)δ1 |λ − 1/(pp′)|δ2
(|λ − 1/(pp′)|1/2 + 2γp)2δ1+2δ2+δ3+r+τ

.
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This shows that also inequality (36) is valid and concludes the proof of
Theorem 6.1.

7. Proof of Theorems 2.5 and 2.7

In this final section, we use Theorem 6.1 to prove Theorems 2.5 and 2.7,
starting with the former. We set H0 = −Δp and Hp = −Δp + V acting in
Lp(H), 1 < p < ∞.

7.1. Proof of Theorem 2.5

Let r ≥ 2. Since Theorem 2.5 is obviously true if ‖V ‖r = 0, we can assume that
this is not the case. Now, we apply Theorem 6.1 with the lr-ideal Sr(L2(H))
(see ‘Appendix A.2’ and Example A.1). By Corollary 4.12, we have

‖V (H0 − Ψ2(z))−1‖Sr
≤ ‖V ‖r Re(z)−(1−1/r)|z|−(1−2/r), z ∈ C+.

Moreover, Lemma 4.6 shows that for a > 0

‖(H0 − Ψ2(a))−1‖2,2 ≤ a−2.

Hence, we can apply Theorem 6.1 with Z0 = H0,M = V, p = 2 and

C1 = ‖V ‖r, α = 1 − 1/r, β = 1 − 2/r, γ = 2,

and so 1/(α + β) = r/(2r − 3) and

δ1 = r + τ, δ2 = (r − 3 + τ)+, δ3 = 3 − 3r.

Then, (35) implies, using that γ2 = 0,
∑

|λ−1/4|r−3/2≤(2‖V ‖r)r

dist(λ, [1/4,∞))r+τ

|14 − λ| r+τ−(r−3+τ)+
2

≤ C · ‖V ‖
r

2r−3 (r+τ+(r−3+τ)+)
r .

In particular, if we restrict to τ ∈ (0, 1) and consider the cases 2 ≤ r ≤ 3 − τ
and r > 3 − τ separately, the validity of Theorem 2.5, part (ia) and (ib), is
easily derived.

Similarly, (36) implies that
∑

|λ−1/4|r−3/2>(2‖V ‖r)r

dist(λ, [1/4,∞))r+τ

|14 − λ|(3+3τ)/2
≤ C ′‖V ‖

r
2r−3 (2r−3−τ)
r .

This shows the validity of Theorem 2.5, part (ii), and concludes the proof of
the theorem.

7.2. Proof of Theorem 2.7

In view of Proposition 3.3, it is sufficient to prove the theorem in case p > 2.
Let r ≥ p > 2 and ‖V ‖r �= 0 (otherwise the theorem is trivially satisfied). As
remarked in ‘Appendix A.2,’ Example A.2, if r ≥ p > 2 the (r, p)-summing
ideal Πr,p(Lp(H)) is an lR-ideal, where

R = r + ε(r) and ε(r) =
{

0, if r = p
ε0, if r > p.

(59)



Vol. 20 (2019) Lp-spectrum for Schrödinger Operators 2471

Here, ε0 > 0 can be chosen arbitrarily small. By Corollary 4.12, we have

‖V (H0 − Ψp(z))−1‖Πr,p
≤ 21−2/p‖V ‖r Re(z)−(1+2/p−3/r), z ∈ C+,

and Lemma 4.6 shows that for a > 0

‖(H0 − Ψp(a))−1‖p,p ≤ a−2.

Hence, we can apply Theorem 6.1 with the lR-ideal Πr,p, Z0 = H0,M = V
and

C1 = 21−2/p‖V ‖r, α = 1 + 2/p − 3/r, β = 0, γ = 2,

so that 1/(α + β) = r/(r(1 + 2/p) − 3) and for τ ∈ (0, 1)

δ1 = R(1 + 2/p − 3/r) + 1 + τ

= r(1 + 2/p) − 2 + τ + ε(r)(1 + 2/p − 3/r),
δ2 = (−1 + τ)+ = 0,

δ3 = R(1 − (1 + 2/p − 3/r) − 2) = R(−2 − 2/p + 3/r)
= 3 − r(2 + 2/p) − ε(r)(2 + 2/p − 3/r).

Before applying (35) in the present situation, we note that for |λ − 1
pp′ | 1

2 ≤
(2C1)1/(α+β) we trivially have (|λ−1/(pp′)| 1

2 +2γp) ≤ (2C1)1/(α+β) +2γp and
hence (35) implies that

∑

|λ− 1
pp′ | 12 ≤(2C1)

1
α+β

dist(λ,Σp)δ1 · |λ − 1
pp′ |δ2

≤ C · C
r+

δ1+δ2+δ3
α+β

1 (C
1

α+β

1 + γp)r+δ1+δ2

≤ C · Cr
1(C

1
α+β

1 + γp)r+2δ1+2δ2+δ3 .

Inserting the parameters computed above, the previous estimate and a
short computation shows that with

ε1 := τ + ε(r)(1 + 2/p − 3/r), ε2 := 2τ + ε(r)(2/p − 3/r),

we have
∑

|λ− 1
pp′ | 12 ≤(2‖V ‖r)r/(r(1+2/p)−3)

dist(λ,Σp)r(1+2/p)−2+ε1

≤ C · ‖V ‖r
r(‖V ‖r/(r(1+2/p)−3)

r + γp)r(2/p+1)−1+ε2 .

Note that choosing ε(r) sufficiently small we can achieve that 0 < ε1, ε2 < 4τ .
Since

k = r(2 − 2γp) − 2 = r

(
1 +

2
p

)
− 2 if p > 2, (60)

this concludes the proof of Theorem 2.7, part (i).
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Similarly, considering ‘large’ eigenvalues we first note that from (36) we
obtain, using that here δ2 = 0,

∑

|λ− 1
pp′ | 12 >(2C1)

1
α+β

dist(λ,Σp)δ1

(|λ − 1
pp′ | 1

2 + 2γp)2δ1+δ3+r+τ
≤ C ′ · Cr

1

(
C

1
α+β

1 + γp

)−τ

.

Inserting the parameters this shows that, with

ε3 := 3τ + ε(r)(2/p − 3/r)

and k as in (60) we have
∑

|λ− 1
pp′ | 12 >(2‖V ‖r)r/(k−1)

dist(λ,Σp)k+ε1

(|λ − 1
pp′ | 1

2 + 2γp)k+1+ε3

≤ C ′ · ‖V ‖r
r(‖V ‖r/(k−1)

r + γp)−τ .

Since we can choose ε(r) sufficiently small such that 0 < ε1, ε3 < 4τ , this
shows the validity of part (ii) of Theorem 2.7 and concludes the proof of the
theorem.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Appendix

A.1. Operators, Spectra and Perturbations

We introduce terminology and collect some standard results on operators and
spectra. As references see, e.g., [23,24,31].

(a) X and Y denote complex Banach spaces, and B(X,Y ) denotes the
algebra of all bounded linear operators from X to Y . As usual, we set B(X) :=
B(X,X). The spectrum of a closed operator Z in X will be denoted by σ(Z)
and 
(Z) := C\σ(Z) denotes its resolvent set. An isolated eigenvalue λ of Z
will be called discrete if its algebraic multiplicity m(λ) := dim(Ran(PZ(λ)) is
finite. Here,

PZ(λ) =
1

2πi

∫

γ

(μ − Z)−1dμ

denotes the Riesz projection of Z with respect to λ (and γ is a counterclock-
wise oriented circle centered at λ, with sufficiently small radius). The set of
all discrete eigenvalues is called the discrete spectrum σd(Z). The essential
spectrum σess(Z) is defined as the set of all λ ∈ C, where λ − Z is not a
Fredholm operator. We have σess(Z) ∩ σd(Z) = ∅ and if Ω ⊂ C\σess(Z) is a
connected component and Ω ∩ 
(Z) �= ∅, then Ω ∩ σ(Z) ⊂ σd(Z). Moreover,
each point on the topological boundary of σ(Z) either is a discrete eigenvalue
or a point in the essential spectrum. The discrete eigenvalues of Z can accu-
mulate at the essential spectrum only. Finally, the spectral mapping theorem
for the resolvent says that for a ∈ 
(Z) we have
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σ((Z − a)−1)\{0} = {(λ − a)−1 : λ ∈ σ(Z)}.

A similar identity holds for the essential and the discrete spectra as well. In
the latter case, the algebraic multiplicities of λ ∈ σd(Z) and (λ − a)−1 ∈
σd((Z − a)−1) coincide.

(b) In this paper, the sum Z +M of two closed operators Z,M in X will
always denote the usual operator sum defined on Dom(Z)∩Dom(M) (and the
product ZM is defined on {f ∈ Dom(M) : Mf ∈ Dom(Z)}). The operator M
is called Z-compact if Dom(Z) ⊂ Dom(M) and M(Z − a)−1 is compact for
one (hence all) a ∈ 
(Z). If this is the case, the sum Z + M is closed and for
a ∈ 
(Z + M) ∩ 
(Z) also the resolvent difference

(Z + M − a)−1 − (Z − a)−1 = − (Z + M − a)−1M(Z − a)−1

is compact. In particular, Weyl’s theorem on the invariance of the essential
spectrum under compact perturbations and the spectral mapping theorem
imply that σess(Z) = σess(Z + M).

(c) If Z is closed and densely defined Z∗ denotes its adjoint (see [31, Sec-
tions III.5.5 and III.6.6]). The spectrum σ(Z∗) is the mirror image of σ(Z) with
respect to the real axis and [(λ − Z)−1]∗ = (λ − Z∗)−1. Moreover, λ ∈ σd(Z)
iff λ ∈ σd(Z∗) and the respective algebraic multiplicities coincide. Finally, we
note that if M is another operator in X and ZM is densely defined, then
(ZM)∗ ⊃ M∗Z∗, with equality if Z ∈ B(X).

A.2. lr -Ideals and Perturbation Determinants

We recall some results concerning the construction of perturbation determi-
nants on Banach spaces. The main reference is [27], see also [32,41].

Let X denote a complex Banach space and let r > 0. A quasi-normed
subspace (I, ‖.‖I) of B(X) is called an lr-ideal (in B(X)) with eigenvalue
constant μr > 0 if the following holds:
(1) The finite rank operators, denoted by F(X), are dense in I.
(2) ‖L‖ ≤ ‖L‖I for all L ∈ I.
(3) If L ∈ I and A,B ∈ B(X), then ALB ∈ I and

‖ALB‖I ≤ ‖A‖‖L‖I‖B‖.

(4) For every L ∈ I, one has ‖(λj(L))‖lr ≤ μr‖L‖I . Here, (λj(L)) denotes the
sequence of discrete eigenvalues of L, counted according to their algebraic
multiplicity (note that by (1) and (2) each L ∈ I is compact).
In the present paper, we will need only two particular lr-ideals, which we

introduce in the following two examples.

Example A.1. Let H denote a complex Hilbert space and let r > 0. The
Schatten–von Neumann classes Sr(H) are defined by

Sr(H) = {K ∈ B(X) : K is compact and (sn(K)) ∈ lr}.

Here, (sn(K)) denotes the sequence of singular values of K. Equipped with the
(quasi-) norm ‖K‖Sr

:= ‖(sn(K))‖lr this class is an lr-ideal with eigenvalue
constant μr = 1.
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Example A.2. Let 1 ≤ q ≤ p < ∞. An operator L ∈ B(X) is called (p, q)-
summing if there exists 
 > 0 such that for all finite systems of elements
x1, . . . , xn ∈ X one has

(
n∑

k=1

‖Lxk‖p

)1/p

≤ 
 sup
x′∈X′,‖x′‖≤1

(
n∑

k=1

|x′(xk)|q
)1/q

.

We denote the infimum of all such 
 > 0 by ‖L‖Πp,q
and the class of all

such operators by Πp,q(X). In the special case p = q, we speak of p-summing
operators and write Πp(X). We note that for 1 ≤ q1 ≤ q0 ≤ p0 ≤ p1 < ∞ we
have Πp0,q0(X) ⊂ Πp1,q1(X) and

‖L‖Πp1,q1
≤ ‖L‖Πp0,q0

, L ∈ Πp0,q0(X). (61)

Moreover, if H is a complex Hilbert space, then for r ≥ 2 we have
Πr,2(H) = Sr(H) and the corresponding norms coincide. Concerning the above
properties of an lr-ideal we note that Πp,q(X) always satisfies (2) and (3), and
it satisfies (1) if X ′ has the approximation property and is reflexive, see [27,
Remark 5.4]. For such X, we can use known information on the eigenvalue
distribution of the (p, q)-summing operators to make the following statements:

(a) (Πp(X), ‖.‖Πp
) is an lmax(p,2)-ideal with eigenvalue constant

μmax(p,2) = 1.
(b) If p > 2, then the eigenvalues of L ∈ Πp,2(X) are in the weak space

lp,∞(N), see [33]. More precisely, if the eigenvalues are denoted decreasingly
|λ1(L)| ≥ |λ2(L)| ≥ . . . (where each eigenvalue is counted according to its
algebraic multiplicity and the sequence is extended by 0 if there are only
finitely many eigenvalues), then

sup
j∈N

|λj(L)|j1/p ≤ 2e‖L‖Πp,2 .

In particular, this implies that for q > p and n ∈ N

n∑

j=1

|λj(L)|q =
n∑

j=1

(
|λj(L)|j1/p

)q

j−q/p ≤ (
2e‖L‖Πp,2

)q
∞∑

j=1

j−q/p.

Hence, we see that Πp,2(X) is an lq-ideal for every q > p > 2, with eigenvalue
constant μq

q = (2e)q
∑∞

j=1 j−q/p. Moreover, by (61) we see that for p > r ≥ 2
also Πp,r(X) is an lq-ideal for every q > p, with the same constant μq as before.

The lr-ideals can be used to construct perturbation determinants on
Banach spaces: First, for a finite rank operator F ∈ F(X) and r > 0 we
define

detr(I − F ) :=
∏

j

⎛

⎝(1 − λj(F )) exp

⎛

⎝

r�−1∑

k=1

λk
j (F )
k

⎞

⎠

⎞

⎠ . (62)

Now, one can show that for every lr-ideal (I, ‖.‖I) there exists a unique con-
tinuous function detr,I(I − .) : (I, ‖.‖I) → C that coincides with detr(I − .)
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on the finite rank operators F(X). Moreover, there exists Γr > 0 such that for
all L ∈ I we have

|detr,I(I − L)| ≤ exp (μr
rΓr‖L‖r

I) ,

where μr denotes the eigenvalue constant of I. Finally, if A ∈ B(X) and K ∈ I,
we define the r-regularized perturbation determinant d of A by K (with respect
to I) as follows:

d : 
(A) 
 λ �→ detr,I(I − K(λ − A)−1).

Then, the following holds: (i) d is analytic on 
(A). (ii) lim|λ|→∞ d(λ) = 1.
(iii) For λ ∈ 
(A), we have

|d(λ)| ≤ exp
(
μr

rΓr‖K(λ − A)−1‖r
I
)
.

(iv) d(λ) = 0 iff λ ∈ σ(A + K). (v) If λ ∈ 
(A) ∩ σd(A + K), then its algebraic
multiplicity as an eigenvalue of A + K coincides with its order as a zero of d.

A.3. Complex Interpolation

We review some aspects of Calderon’s method of complex interpolation, see
[7] or [3].

Let S := {z ∈ C : 0 ≤ Re(z) ≤ 1} and let (X,Y ) denote an interpolation
couple of complex Banach spaces (i.e., X and Y are complex Banach spaces
continuously embedded in a topological vector space V ). Then, X ∩ Y and
X + Y become Banach spaces when equipped with the norms ‖z‖X∩Y =
max(‖z‖X , ‖z‖Y ) and ‖z‖X+Y = inf{‖x‖X + ‖y‖Y : z = x + y, x ∈ X, y ∈ Y },
respectively. We denote by G(X,Y ) the vector space of all functions f : S →
X + Y which satisfy the following properties:

– f is holomorphic in the interior of S,
– f ∈ Cb(S;X + Y ), i.e., f is continuous and bounded on S,
– t �→ f(it) ∈ Cb(R;X) and t �→ f(1 + it) ∈ Cb(R;Y ).

Then, G(X,Y ) becomes a Banach space with the norm

‖f‖G(X,Y ) := max
(

sup
t∈R

‖f(it)‖X , sup
t∈R

‖f(1 + it)‖Y

)
.

For 0 < θ < 1, the complex interpolation spaces [X,Y ]θ are introduced as
follows:

[X,Y ]θ = {f(θ) : f ∈ G(X,Y )}, ‖z‖[X,Y ]θ = inf
f∈G(X,Y ),f(θ)=z

‖f‖G(X,Y ).

One can show that

X ∩ Y ⊂ [X,Y ]θ ⊂ X + Y,

both embeddings being continuous.

Example A.3. For a σ-finite measure space (M,μ) and p0, p1 ∈ [1,∞], we have

[Lp0(M), Lp1(M)]θ = Lp(M), where
1
p

=
1 − θ

p0
+

θ

p1
.

Moreover, the corresponding norms coincide.
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Proposition A.4. Let f ∈ G(X,Y ) and set

A0 = sup
t∈R

‖f(it)‖X and A1 = sup
t∈R

‖f(1 + it)‖Y .

Then, ‖f(θ)‖[X,Y ]θ ≤ A1−θ
0 Aθ

1.

Proof. If A0, A1 �= 0, the function g(w) := (A0/A1)w−θf(w), w ∈ S, is in
G(X,Y ) with g(θ) = f(θ) and

sup
t∈R

‖g(it)‖X ≤ A1−θ
0 Aθ

1 and sup
t∈R

‖g(1 + it)‖Y ≤ A1−θ
0 Aθ

1.

Hence, ‖f(θ)‖[X,Y ]θ ≤ ‖g(θ)‖G(X,Y ) ≤ A1−θ
0 Aθ

1. If one of A0, A1 vanishes,
we can replace it by ε > 0 in the definition of g and then send ε → 0. If
A0 = A1 = 0, we can choose g(w) = 0 to obtain the result. �

In this paper, we will not need interpolation results for operators between
abstract interpolation spaces. However, we will need the following more con-
crete result known as the Stein interpolation theorem [47] (see also [48]).

Remark A.5. Let us recall that a simple function on a measure space (M,μ)
is a finite linear combination of characteristic functions of measurable sets of
finite measure.

In the following, we denote the norm of Lp(M) by ‖.‖p and the operator
norm of T : Lp → Lq by ‖T‖p,q.

Theorem A.6. Let (M,μ) and (N, ν) be σ-finite measure spaces and assume
that for every w ∈ S, Tw is a linear operator mapping the space of simple
functions on M into measurable functions on N . Moreover, suppose that for
all simple functions f : M → C and g : N → C, the product Twf ·g is integrable
and that

S 
 w �→
∫

N

(Twf)(x)g(x)ν(dx)

is continuous and bounded on S and holomorphic in the interior of S. Finally,
suppose that for some pj , qj ∈ [1,∞], j = 0, 1, and A0, A1 ≥ 0 we have

‖Titf‖q0 ≤ A0‖f‖p0 , ‖T1+itf‖q1 ≤ A1‖f‖p1

for all t ∈ R and all simple functions f : M → C. Then, for each θ ∈ (0, 1)
and

1/pθ = (1 − θ)/p0 + θ/p1, 1/qθ = (1 − θ)/q0 + θ/q1,

the operator Tθ can be extended to a bounded operator in B(Lpθ
(M), Lqθ

(N))
and

‖Tθ‖pθ,qθ
≤ A1−θ

0 Aθ
1.
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