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On Large Deviations of Interface Motions
for Statistical Mechanics Models

Lorenzo Bertini, Paolo Buttà and Adriano Pisante

Abstract. We discuss the sharp interface limit of the action functional
associated with either the Glauber dynamics for Ising systems with Kac
potentials or the Glauber+Kawasaki process. The corresponding limit-
ing functionals, for which we provide explicit formulae of the mobility
and transport coefficients, describe the large deviation asymptotics with
respect to the mean curvature flow.

1. Introduction

Consider the dynamical evolution, with non-conserved order parameter, of a
system undergoing a first-order phase transition. A basic paradigm of statis-
tical mechanics is that the corresponding macroscopic behavior is described
by the motion by curvature of the interfaces separating the two stable phases.
For lattice systems with short-range interaction, the lattice symmetries are
still felt on the macroscopic scale and the resulting evolution is an anisotropic
motion by curvature. For values of the temperature below the roughening tran-
sition, the Wulff shape is not strictly convex and the corresponding evolution is
crystalline; i.e., it generates facets [40,41]. On the other hand, for long-range
interactions, the resulting interface evolution is described by the (isotropic)
motion by mean curvature. We refer to [26] for a recent overview on stochastic
interface evolutions.

In principle, the macroscopic evolution of the interfaces should be derived
from a microscopic Glauber-like dynamics and the corresponding transport co-
efficients characterized in terms of the microscopic interaction and the jump
rates. While there is plenty of numerical evidence that this is indeed the case,
the analytical results are few and the derivation of motion by curvature, say
for the Ising model with Glauber dynamics at positive low temperature, re-
mains a most challenging issue. For short-range interactions, the only available
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results are in fact at zero temperature [15,34,39]. In the case of long-range in-
teractions, or more precisely for Ising model with Kac potentials, the motion
by mean curvature has been derived in [20,31]. The key feature of this model
is the presence of a parameter, the interaction range, that allows to achieve
this derivation in two separate steps. Firstly, the evolution of the empirical
magnetization in the Lebowitz–Penrose limit is examined. One shows that its
limiting behavior is described by a non-local evolution equation. Secondly, it is
shown that under a diffusive rescaling of space and time, this evolution leads to
motion by mean curvature. This second step is quite similar to the analogous
derivation starting from the Allen–Cahn equation [3,28]. Another model with
similar features is the Glauber+Kawasaki process, for which the derivation of
motion by mean curvature has been achieved by the same procedure [13,30].

The present purpose is to describe, in the sense of large deviations the-
ory, the probability of deviations from the motion by curvature. Postponing
the connection with the microscopic dynamics, let us first discuss this topic
purely from a phenomenological point of view in the setting introduced in [39].
On a scale large compared to the microscopic length scale, we can represent
the interface between the two pure phases as a surface Γ of codimension one
embedded in R

d. The typical evolution of Γ can then be deduced by free en-
ergy considerations. We denote by τ the surface tension. In general, τ depends
on the local orientation of the surface, i.e., on the local normal n̂ at Γ. The
surface free energy is then given by

F =
∫

Γ

dσ τ(n̂), (1.1)

where dσ is the surface measure. Observe that in the isotropic case τ is constant
and F becomes proportional to the perimeter of Γ. Phenomenologically, it is
postulated that the interface velocity along the local normal, denoted by v, is
given by

v = −μ
δF

δΓ
, (1.2)

where the mobility μ may depend on the local orientation on the surface. As
shown in [39], for short-range interactions, the mobility μ can be computed
from the microscopic dynamics, either by a Green–Kubo formula obtained via
a linear response argument, or by looking at the fluctuations of the empirical
order parameter.

Let τ̃ be the 1-homogeneous extension of τ to a function on R
d, and

introduce the stiffness matrix A(n̂) as the Hessian of τ̃ at n̂ (so that A(n̂)n̂ =
0). For x ∈ Γ, we define

κA(x) := τ(n̂(x))−1
d−1
∑

i=1

〈ei(x), A(n̂(x))ei(x)〉κi(x),

where κi(x) are the principal curvatures and ei(x) are the corresponding prin-
cipal curvature directions of Γ at x. Then, (1.2) reads

v = θκA,



Vol. 20 (2019) On Large Deviations of Interface Motions 1787

where the transport coefficient θ is given by the Einstein relation,

θ = μτ. (1.3)

In the isotropic case, τ and μ are constant, A(n̂) = τ1I on the subspace or-
thogonal to n̂, hence κA = κ, the mean curvature of Γ.

Referring to [39] for the analysis of (small) Gaussian fluctuations, we next
introduce the rate function describing the asymptotics of the probability of
large deviations around the motion by mean curvature. To this end, fix a time
interval [0, T ] and a path Γ(t), t ∈ [0, T ]. On a basis of a Gaussian assumption
on the noise and a fluctuation dissipation relation, the rate function ought to
be given by

Sac(Γ) =
∫ T

0

dt

∫

Γ(t)

dσ
(v − θκA)2

4μ
. (1.4)

This functional should catch the asymptotics of the probability of smooth
paths, and we next discuss its extension to more general paths. As shown in
[33] in the context of the Allen–Cahn equation, the path t �→ Γ(t) need not be
continuous since nucleation might occur at some intermediate times. In such
cases, the appropriate rate function reads,

S(Γ) = Sac(Γ) + Snucl(Γ), (1.5)

where Snucl measures, according to (1.1), the free energy cost of the interfaces
nucleated in the time interval [0, T ]. As we discuss in Sect. 4, Snucl can be re-
covered from Sac by approximating nucleation events with continuous paths.
Moreover, interfaces need to be counted with their multiplicity and are not
necessarily smooth, even away from the nucleation times. Suitable weak defi-
nitions of the curvature and velocity are thus needed. This is accomplished by
using tools of geometric measure theory, and we refer to [36] for the proper def-
inition of the functional S in the case of non-smooth interfaces in the isotropic
case. Finally, it cannot be excluded that the map t �→ Γ(t) has a singular
continuous (e.g., Cantor) part, which does not affect the cost functional con-
structed in [36]. A variational definition of S which takes into account also such
singular continuous part is provided in [6], and its corresponding zero level set
is given by the mean curvature flow according to the Brakke’s formulation [9].

The rate functional S should describe the large deviation asymptotics
of microscopic stochastic dynamics that leads to the motion by curvature of
the interfaces. The corresponding analysis has been carried out mostly for the
Allen–Cahn evolution. In particular, the functional (1.5) has been identified
by considering the sharp interface limit of the natural action functional as-
sociated with the Allen–Cahn equation, initially in [33] and in greater detail
in [36]. A stochastic Allen–Cahn equation has been considered in [6], where
the large deviation upper bound with rate function S is proven. Observe that,
as discussed in [39], the Allen–Cahn evolution exhibits a trivial transport co-
efficient, μ = 1/τ , so that θ = 1 regardless of the shape of the double-well
potential. The case of Glauber dynamics for Ising systems with Kac poten-
tials, in the one-dimensional case, has been considered in [7,8]. In this work,
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the asymptotic probability of a displacement of an interface in a given finite
time is evaluated.

Here, we discuss, in the case of smooth interfaces, the derivation of the
rate function S in the isotropic case, by considering either the Glauber dynam-
ics for Ising systems with Kac potentials or the Glauber+Kawasaki process. For
these models, the large deviation asymptotics, respectively, in the Lebowitz–
Penrose and in the continuum limit, has been derived in [16] and in [29]. We
thus analyze the sharp interface limit of the corresponding action functionals,
deducing the rate functional (1.4) and providing explicit formulae for the mo-
bility coefficients. While the basic strategy is analogous to the one in [33], the
non-local character of the action functionals requires a more clever choice of
the optimizing sequences. More precisely, in order to obtain the right transport
coefficient, we need to introduce a corrector in the ansatz for the recovery se-
quences and solve a variational problem to identify the optimal choice. In the
case of the Ising model with Kac potentials, the mobility derived here agrees
with that derived in [14] by a linear response argument, thus validating the
fluctuation dissipation assumption. The computation of the mobility for the
Glauber+Kawasaki process appears instead novel and provides a dynamical
characterization of the surface tension. Note indeed that, as the invariant mea-
sure of this process is not explicitly known, a static characterization according
to the guidelines of equilibrium statistical mechanics is not feasible.

It would be interesting to extend the results of the present paper on the
rate function S to the case of general interfaces, possibly exhibiting nucleation
events. In analogy with the results in [36] for the Allen–Cahn equation, a key
step should be to describe in both the models considered here the asymptotic
behavior of sequences ϕε with equibounded action [see Eqs. (2.41) and (3.14)].
In the case of Ising–Kac, a compactness property is expected, in analogy with
the result in [1] for time-independent sequences with equibounded free energy
[see (2.18) below], yielding paths of sharp interfaces in the limit ε → 0 with
uniformly bounded perimeter. However, it is unclear how to associate with
such configurations ϕε corresponding paths of generalized surfaces t �→ Γε(t)
(as varifolds in the sense of geometric measure theory) with suitable uniform
curvature and velocity bounds. As a consequence, we are not able to deduce
curvature and velocity bounds on the limiting interfaces. Moreover, it remains
to be proven that the well-prepared sequences ϕε here considered [see (2.37)
and (3.19)] actually describe the typical asymptotic behavior of configurations
assuming uniform boundedness of the action functionals.

2. Glauber Dynamics with Kac Potentials

In this section, we analyze the sharp interface limit of the action functional in
the context of the Glauber dynamics for Ising systems with Kac potentials.

2.1. Microscopic Model and Its Mean Field Limit

Let T
d
L = (R/LZ)d be the torus of side L ≥ 1 in R

d; when L = 1, we drop
it from the notation, i.e., T

d = T
d
1. We denote by r, r′ the elements of T

d
L
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and by dr the Haar measure on T
d
L. Given a smooth nonnegative function

j : R+ → R+, supported in [0, 1
2 ] and such that

∫

Rddz j(|z|) = 1, we let
J : Td

L → R+ be the probability density defined by J(r) = j(|r|). In the sequel,
J ∗ f(r) :=

∫

T
d
L
dr′ J(r − r′)f(r′) is the standard convolution on T

d
L.

Given L > 0, and γ > 0 such that γ−1L ∈ N, let T
d
L,γ := (γZ/LZ)d be

the discrete approximation of Td
L with lattice spacing γ. The microscopic con-

figuration space is ΩL,γ := {−1, 1}Td
L,γ . The microscopic energy is the function

HL,γ : ΩL,γ → R defined by

HL,γ(σ) = −1
2

∑

i,j∈T
d
L,γ

γdJ(i − j)σ(i)σ(j).

Given the inverse temperature β > 0, the corresponding Gibbs measure μβ
L,γ

is the probability on ΩL,γ defined by

μβ
L,γ(σ) =

1

Zβ
L,γ

exp
{− βHL,γ(σ)

}

, (2.1)

where Zβ
L,γ is the partition function.

Lebowitz–Penrose Limit. We consider the supercritical case β > 1 and de-
fine the spontaneous magnetization mβ as the strictly positive solution of the
Curie–Weiss equation, that is

mβ = tanh(βmβ), mβ > 0. (2.2)

Denoting by M(Td
L) the space of bounded measures on the torus Td

L, equipped
with the weak* topology, we define the empirical magnetization as the map
Mγ : ΩL,γ → M(Td

L) given by

Mγ(σ) = γd
∑

i∈T
d
L,γ

σ(i) δi.

As proven in [23], in the Lebowitz–Penrose limit γ → 0 the excess free
energy functional for the Gibbs measures (2.1) is given by the functional
FL : L∞(Td

L; [−1, 1]) → [0,∞) defined by

FL(m) =
∫

dr [fβ(m) − fβ(mβ)]

+
1
4

∫

dr

∫

dr′ J(r − r′)[m(r) − m(r′)]2, (2.3)

where

fβ(m) = −m2

2
+ β−1ı(m), ı(m) =

1 + m

2
log

1 + m

2
+

1 − m

2
log

1 − m

2
.

(2.4)

Observe that, since ±mβ are the minimizers of fβ , the functional FL vanishes
on the pure phases ±mβ . The probabilistic content of this statement is that the
family {μγ

L,γ◦(Mγ)−1}γ>0 of probabilities on M(Td
L) satisfies a large deviation
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principle with speed β−1γd and rate function FL given by FL(ν) = FL(m) if
ν = m dr for some m ∈ L∞(Td

L; [−1, 1]) and +∞ otherwise.

Glauber–Kac Dynamics. The Glauber dynamics with Kac potentials is a
continuous-time Markov chain on the state space ΩL,γ , reversible with re-
spect to the Gibbs measure (2.1). It is defined by assigning the rates at which
the value of the spin σ at site i is flipped. The corresponding generator Lγ is
the operator acting on functions on ΩL,γ as

Lγf(σ) =
∑

i∈T
d
L,γ

c(i,Mγ(σ))e−βJ∗Mγ(σ)(i)σ(i)[f(σi) − f(σ)], (2.5)

where σi denotes the configuration obtained from σ by flipping its value at site
i and c : Td

L × M(Td
L) → (0,+∞) is a continuous function satisfying c(r, ν) =

c(r, ν − ν({r})δr), which implies the detailed balance condition, namely, that
Lγ is self-adjoint with respect to the Gibbs measure (2.1).

In order to perform the sharp interface limit, we restrict to a special class
of rates. More precisely, we assume that

c(r, ν) ≡ c(ν)(r) = a(K ∗ ν(r)), r ∈ T
d
L, (2.6)

where a : R → (0,+∞) is a Lipschitz function and K is a smooth radial func-
tion on R

d with support in the ball of radius 1
2 and satisfying K(0) = 0; i.e.,

K(r) = k(|r|) for a smooth nonnegative function k : R+ → R+ with support
in [0, 1

2 ]. A standard choice, see [20], is

c(i,Mγ(σ)) =
1

2 cosh
{

β
∑

j �=i γdJ(i − j)σ(j)
} (2.7)

that, provided J(0) = 0, corresponds to c(r, ν) = (2 cosh{βJ ∗ ν(r)})−1.

Mean Field Evolution Equation. As proven in [20], in the Lebowitz–Penrose
limit (mesoscopic limit) the empirical magnetization under the Glauber dy-
namics becomes absolutely continuous and its density m evolves according to
the non-local equation,

∂m

∂t
= −2c(m)

√

1 − m2 sinh(arctanhm − βJ ∗ m). (2.8)

We notice that expanding the sinh, Eq. (2.8) reads,

∂m

∂t
= 2c(m) cosh(βJ ∗ m)(tanh(βJ ∗ m) − m). (2.9)

In particular, with the choice (2.7), the mean field evolution becomes,

∂m

∂t
= tanh(βJ ∗ m) − m. (2.10)

The stationary solutions to (2.8) do not depend on the particular choice
of the rates. In particular, since we are assuming β > 1, recalling (2.2), the
spatially homogeneous stationary solutions are m = ±mβ that are stable and
m = 0, which is unstable.
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Action Functional. The large deviation asymptotics for the empirical mag-
netization under the Glauber dynamics for an Ising spin system with Kac
potentials has been analyzed in [16]. We next recall the associated rate func-
tion.

Let B1(L) be the unit ball in L∞(Td
L) equipped with the (metrizable)

weak* topology. For T > 0, we then let C([0, T ];B1(L)) be the set of B1(L)-
valued continuous functions equipped with the induced uniform distance. Let
finally C∗([0, T ];B1(L)) be the subset of functions ϕ in C([0, T ];B1(L)) such
that there exists ψ ∈ L1([0, T ] × T

d
L) for which

ϕ(t, r) − ϕ(0, r) =
∫ t

0

ψ(s, r) ds r - a.e. ∀ t ∈ [0, T ].

Clearly, ψ is unique and will be denoted by ϕ̇. We define the functional
IT,L : C([0, T ];B1(L)) → [0,∞] by

IT,L(ϕ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∫ T

0

dt

∫

dr L(ϕ(t, ·), ϕ̇(t, ·)) if ϕ ∈ C∗([0, T ];B1(L)),

+∞ otherwise,

(2.11)

where, given measurable functions u : Td
L → [−1, 1] and v : Td

L → R,

L(u, v) =
v

2β
log

v
2c(u) +

√

1 − u2 + v2

4c(u)2

1 − u
− v

2
J ∗ u

+
c(u)
β

(

cosh(βJ ∗ u) − u sinh(βJ ∗ u) −
√

1 − u2 + v2

4c(u)2

)

.

(2.12)

Under suitable assumptions on the initial conditions, in [16] it is proven that
the empirical magnetization sampled according to the Glauber dynamics, re-
garded as a random variable taking values in the Skorokhod space
D([0, T ];M(Td

L)), satisfies a large deviation principle with speed β−1γd and
rate function IT,L given by IT,L(ν) = IT,L(ϕ) if νt = ϕt dr for some ϕ ∈
C∗([0, T ];B1(L)) and +∞ otherwise.

For our purposes, by noticing that, as ι′(m) = arctanhm, the functional
derivative (L2-gradient) of FL is given by

δFL

δm
= β−1 arctanh m − J ∗ m, (2.13)

we rewrite the Lagrangian L in (2.12) in the form,

L(u, v) =
v

2β

(

arctanh u − βJ ∗ u + arcsinh
v

2c(u)
√

1 − u2

)

+
c(u)
β

√

1 − u2

(

cosh
(

βJ ∗ u − arctanhu
)−
√

1 + v2

4c(u)2(1−u2)

)
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=
v

2

(

δFL

δu
+

1
β

arcsinh
v

2c(u)
√

1 − u2

)

+
c(u)
β

√

1 − u2

(

cosh
(

β
δFL

δu

)

−
√

1 + v2

4c(u)2(1−u2)

)

.

Accordingly, the action functional becomes,

IT,L(ϕ) =
1
2
[

FL(ϕ(T )) − FL(ϕ(0))
]

+
∫ T

0

dt

∫

dr

[

ϕ̇

2β
arcsinh W (ϕ, ϕ̇)

−c(ϕ)
β

√

1 − ϕ2
(
√

1 + W (ϕ, ϕ̇)2 − 1
)

]

+
∫ T

0

dt

∫

dr
c(ϕ)
β

√

1 − ϕ2

(

cosh
(

β
δFL

δϕ

)

− 1
)

, (2.14)

where

W (ϕ, ϕ̇) =
ϕ̇

2c(ϕ)
√

1 − ϕ2
. (2.15)

It is worthwhile to remark that the above representation of the action
functional reflects a Legendre duality. More precisely, for α > 0 let G(·;α) and
G∗(·;α) be the Legendre pair of real convex even functions,

G(q;α) := α(cosh q − 1), G∗(p;α) = p arcsinh(p/α) −
√

α2 + p2 + α,

(2.16)

so that qp + G(q;α) + G∗(p;α) ≥ 0 with equality if and only if p = −α sinh q.
Then, (2.14) can be rewritten as

IT,L(ϕ) =
1
2
[

FL(ϕ(T )) − FL(ϕ(0))
]

+
1
2

∫ T

0

dt

∫

dr
[

G
(

β δFL

δϕ ;α(ϕ)
)

+ G∗(β−1ϕ̇;α(ϕ)
)

]

, (2.17)

where α(ϕ) = 2β−1c(ϕ)
√

1 − ϕ2. From this representation, we easily conclude
that the solution m to the mean field Eq. (2.8) is characterized by IT,L(m) = 0,
or equivalently IT,L(m) ≤ 0. The last inequality provides the following gradient
flow formulation: m is a solution to (2.8) if and only if, for any t ∈ [0, T ],

FL(m(t)) +
∫ t

0

ds

∫

dr
[

G
(

β δFL

δm ;α(m)
)

+ G∗(β−1ṁ;α(m)
)

]

≤ FL(m(0)).

2.2. Sharp Interface Limit

A natural and physically relevant question is to investigate the limiting behav-
ior of the Ising–Kac model in the sharp interface limit, in which the interface
between the two stable phases ±mβ is described by surfaces of codimension
one.



Vol. 20 (2019) On Large Deviations of Interface Motions 1793

Excess Free Energy and Surface Tension. We set ε = L−1 and rescale the
space variable r ∈ T

d
L by setting r = ε−1x with x ∈ T

d. We then introduce the
rescaled excess free energy renormalized with a factor Ld−1. We namely define
F ε : L∞(Td; [−1, 1]) → [0,∞) by F ε(m) := εd−1Fε−1(m(ε−1·)), i.e.,

F ε(m) =
∫

dx
fβ(m) − fβ(mβ)

ε

+
ε

4

∫

dx

∫

dy Jε(x − y)
[

m(x) − m(y)
ε

]2

, (2.18)

where Jε(z) := ε−dJ(ε−1z). The asymptotics of the excess free energy func-
tional (2.18) has been discussed in [1,2], where it is proven that the limiting
functional is finite only if m takes the values ±mβ , and in this case its value is
proportional to the perimeter of the jump set of m. The proportionality factor
defines the surface tension of the Ising–Kac model, which is denoted by τ and
will be characterized below. This result has been extended to the anisotropic
case, i.e., when J is not radial; then, the surface tension τ is no longer constant
but a convex function of the orientation [1,5].

The surface tension is the excess free energy cost per unit area of the
transition between the two stable phases. The characterization of τ reduces to
a one-dimensional computation in the direction normal to the interface. We
introduce the instanton m̄(ξ), ξ ∈ R, as the optimal magnetization profile of
such a transition, that is, m̄ is solution to

m̄(ξ) = tanhβ ˜J ∗ m̄(ξ), m̄(0) = 0, lim
ξ→±∞

m̄(ξ) = ±mβ , (2.19)

where, recalling J(r) = j(|r|),

˜J(ξ) =
∫

Rd−1
dη j

(
√

ξ2 + |η|2). (2.20)

Then, τ = F(m̄), where F is the free energy functional on R,

F(m) =
∫

dξ [fβ(m) − fβ(mβ)] +
1
4

∫

dξ

∫

dξ′
˜J(ξ − ξ′)[m(ξ) − m(ξ′)]2.

(2.21)

It can be shown [14] that

τ =
∫

dξ m̄′(ξ)
∫

dξ′
∫

Rd−1
dη j

(
√

(ξ − ξ′)2 + |η|2) m̄′(ξ′)
η2
1

2
. (2.22)

For later purpose, we recall the main properties of the instanton, see
[18,21,22]. It is an odd and strictly increasing function which converges ex-
ponentially fast to its asymptotes. More precisely, m̄′(ξ) > 0 and there are
a, c, δ > 0 such that, for any ξ ≥ 0,

∣

∣m̄(ξ) − (mβ − ae−αξ)
∣

∣+
∣

∣m̄′(ξ) − aαe−αξ)
∣

∣

+
∣

∣m̄′′(ξ) − aα2e−αξ)
∣

∣ ≤ ce−(α+δ)ξ, (2.23)
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where α is the unique positive solution to the equation

β(1 − m2
β)
∫

dξ ˜J(ξ)e−αξ = 1. (2.24)

Motion by Mean Curvature. Concerning the dynamical behavior, the sharp
interface limit of the non-local evolution equation has been analyzed in [19,
20,31], with the special choice of c as in (2.7). To describe these results, let m
be the solution to (2.10) and define, according to a diffusive rescaling of space
and time, mε : R+ × T

d → [−1, 1] by mε(t, x) = m(ε−2t, ε−1x), which solves

∂mε

∂t
= ε−2

(

tanh(βJε ∗ mε) − mε
)

. (2.25)

In order to describe the limiting behavior of mε, we briefly recall the notion of
classical mean curvature flow. Given a C1 family of oriented smooth surfaces
Γ = {Γ(t)}t≥0, with Γ(t) = ∂Ω(t) for some open Ω(t) ⊂ T

d, we denote by
nt = nΓ(t) the inward normal of Γ(t), by vt : Γ(t) → R the normal velocity
of Γ at time t. Finally, we set κt = κΓ(t), where κΓ(t) : Γ(t) → R is the mean
curvature of Γ(t). Then, given θ > 0, Γ evolves according to the mean curvature
flow with transport coefficient θ > 0 if

vt = θκt, t ≥ 0. (2.26)

Given a mean curvature flow as above, assuming that the initial datum for
(2.10) satisfies mε(0, ·) → mβ1IΩ(0) − mβ1IΩ(0)� , then mε(t, ·) → mβ1IΩ(t) −
mβ1IΩ(t)� for any t > 0. The actual value of θ obtained in [19,31] will be
discussed later.

In [20,31], the convergence to the mean curvature flow is proven also
starting directly from the microscopic Glauber dynamics. More precisely, let-
ting Mγ,ε be the diffusively rescaled empirical magnetization, it is shown that
if ε = | log γ|−1 then Mγ,ε satisfies a law of large numbers as γ → 0, with
limiting evolution being given by the mean curvature flow.

Transport Coefficients and Einstein Relation. The value of the transport coef-
ficient θ, for arbitrary c(m) of the form (2.6), can be inferred by using a linear
response argument along the guidelines in [39]. Consider the non-local mean
field Eq. (2.9) on R

d with external field h, that is,

∂m

∂t
= 2c(m) cosh(β(J ∗ m + h))[tanh(β(J ∗ m + h)) − m].

In view of (2.6) and recalling that J and K are radial, solutions to the
above equation with planar symmetry along a fixed direction n̂ have the form
m(t, η) = m̃(η · n̂, t) with m̃(ξ, t), ξ ∈ R, solution to

∂m̃

∂t
= 2a( ˜K ∗ m̃) cosh(β( ˜J ∗ m̃ + h))[tanh(β( ˜J ∗ m̃ + h)) − m̃], (2.27)

where ˜J is defined in (2.20) and, analogously, recalling K(r) = k(|r|),
˜K(ξ) =

∫

Rd−1
dη k

(
√

ξ2 + |η|2). (2.28)
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In particular, if we look for a traveling wave solution along n̂, i.e., a solution of
the form m(t, η) = qh(η · n̂ − v(h)t), we deduce that qh and the front velocity
v(h) do not depend on the direction n̂ and solve (in the case of (2.10) with h
small, their existence is proven in [18])

− v(h)q′
h = 2a( ˜K ∗ qh) cosh(β( ˜J ∗ qh + h))[tanh(β( ˜J ∗ qh + h)) − qh]. (2.29)

In order to compute the linear response to the external field, we expand,

v(h) = v1h + O(h2), qh = m̄ + hψ + O(h2),

where m̄ is the instanton which solves (2.29) with h = 0 and v(0) = 0, see
(2.19). In the sequel, we set

ā(ξ) := a( ˜K ∗ m̄(ξ)), ξ ∈ R. (2.30)

By (2.29), at the first order in h, we obtain the following identity,

−v1m̄
′ =

2ā√
1 − m̄2

[− ψ + (1 − m̄2)β ˜J ∗ ψ + β(1 − m̄2)
]

,

where we used that cosh(β ˜J ∗ m̄) = 1/

√

1 − tanh2(β ˜J ∗ m̄) = 1/
√

1 − m̄2.
We multiply both sides of the above equation by m̄′/(2ā

√
1 − m̄2) and then

integrate; using that m̄′ = (1 − m̄2)β ˜J ∗ m̄′, we obtain

v1 = −2Nβmβ ,

where

N =
[∫

dξ
(m̄′)2

2ā
√

1 − m̄2

]−1

. (2.31)

But, by the definition of the (macroscopic) mobility μ, see [39], it must be
v(h) = −2mβμh + O(h2). We conclude that

μ = Nβ = β

[∫

dξ
(m̄′)2

2ā
√

1 − m̄2

]−1

. (2.32)

We finally remark that in the case (2.7) we have 2ā =
√

1 − m̄2, so that

N =
[

∫

dξ (m̄′)2

1−m̄2

]−1

in this case.

Sharp Interface Limit of the Action Functional. The main purpose of the
section is to discuss the sharp interface limit of the action functional. To this
end, we perform a diffusive rescaling of space and time with parameter ε = L−1

and normalize the resulting action with a factor Ld−1. Namely, given T > 0,
we define Sε : C([0, T ];B1) → [0,∞] [here B1 is a short notation for the unit
ball B1(1) in L∞(Td)] by

Sε(ϕ) = εd−1Iε−2T,ε−1(ϕ(ε2·, ε·)) = ε−1

∫ T

0

dt

∫

dxLε(ϕ(t, ·), ϕ̇(t, ·)), (2.33)
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where, given measurable functions u : Td → [−1, 1], v : Td → R and recalling
Jε(·) := ε−dJ(·/ε),

Lε(u, v) =
v

2β
log

ε2v

2cε(u)
+

√

1 − u2 +
(

ε2v

2cε(u)

)2

1 − u
− v

2
Jε ∗ u

+
cε(u)
βε2

⎛

⎝cosh(βJε ∗ u) − u sinh(βJε ∗ u) −
√

1 − u2 +
(

ε2v

2cε(u)

)2
⎞

⎠ ,

(2.34)

with, recalling (2.6) and letting Kε(·) := ε−dK(·/ε),

cε(u) := a(Kε ∗ u). (2.35)

We consider a C1 family of oriented smooth surfaces Γ = {Γ(t)}t∈[0,T ],
with Γ(t) = ∂Ω(t) for some open Ω(t) ⊂ T

d. As before, we denote by nt = nΓ(t)

the inward normal of Γ(t), by vt : Γ(t) → R the normal velocity of Γ at time t

and by κt the mean curvature of Γ(t). Letting ˜d(·,Γ(t)) be the signed distance
from Γ(t), i.e., ˜d(·,Γ(t)) := dist(·,Ω(t)�) − dist(·,Ω(t)), we denote by d(·,Γ(t))
a regularized version of ˜d(·,Γ(t)) such that they coincide on a neighborhood
of Γ(t).

For such families of surfaces, the corresponding action functional is

Sac(Γ) =
1
4μ

∫ T

0

dt

∫

Γ(t)

dσ (vt − θκt)2, (2.36)

with μ as given in (2.32) and θ = μτ with τ as defined in (2.22). As next
stated, it describes the sharp interface limit of the rescaled action functional
associated with the Glauber dynamics for an Ising system with Kac potentials.

Theorem 2.1. Let Γ = {Γ(t)}t∈[0,T ] as before and consider a sequence {ϕε} ⊂
C([0, T ];B1) converging to mβ1IΩ(·) − mβ1IΩ(·)� of the form

ϕε(t, x) = m̄

(

d(x,Γ(t))
ε

+ εQ

(

t, x,
d(x,Γ(t))

ε

))

+ εRε(t, x), (2.37)

where m̄ is the instanton, Q : [0, T ] × T
d × R → R is a smooth function such

that

sup
(t,x,ξ)∈[0,T ]×Td×R

∣

∣Q(t, x, ξ)
∣

∣+
∣

∣∂tQ(t, x, ξ)
∣

∣+
∣

∣∂ξQ(t, x, ξ)
∣

∣

1 + |ξ| < +∞, (2.38)

and Rε : [0, T ] × T
d → R is a smooth function.

(a) If ‖Rε‖∞ + ‖∂tRε‖∞ → 0 as ε → 0 then, for any Q,

lim inf
ε→0

Sε(ϕε) ≥ Sac(Γ).

(b) There exist Q∗ such that choosing Q = Q∗ and Rε = 0, we have

lim
ε→0

Sε(ϕε) = Sac(Γ).
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From a physical viewpoint, the main content of this result is the identifi-
cation of the transport coefficients in the limiting rate function S. As expected,
the mobility μ, initially introduced via a linear response argument, coincides
with the variance of fluctuations around the motion by mean curvature. The
mechanism behind this identification is an averaging property, common to ho-
mogenization problems. At the mathematical level, this is achieved by the
introduction (in the spirit of [31]) of the corrector Q in the ansatz (2.37): The
transport coefficients are then identified by solving an optimization problem on
Q. As mentioned in Introduction, this issue does not appear in the Allen–Cahn
case, in which the introduction of correctors is not needed.

From a technical viewpoint, the previous results hint at Γ-convergence
of the sequence of functionals Sε to Sac. Before discussing the missing steps,
we review the state of affairs in the case of the Allen–Cahn action functional.
The variational convergence of the rescaled action functional has been first
studied in [33], and Theorem 2.1 is the analog of Proposition 2.2 there. Using
tools from geometric measure theory and relying on the static results in [38], a
Γ-liminf inequality has been proven in [36]. By exploiting the argument in [6],
such inequality can be improved to account for a possible singular continuous
part in the limiting paths. For smooth paths, a Γ-limsup inequality has been
proven in [33], by constructing suitable recovery sequences. To achieve the full
Γ-convergence, the missing step is a density theorem showing that arbitrary
paths of finite action can be approximated by smooth paths. We emphasize
that this issue concerns the limiting functional and not the approximating
sequence.

For the Ising–Kac model, the main difficulty in obtaining a Γ-liminf in-
equality consists in showing that sequences ϕε satisfying Sε(ϕε) ≤ C are nec-
essarily of the form given by (2.37) for suitable (not necessarily smooth) path
Γ and some Q and Rε. In the Allen–Cahn case, this structure is deduced as a
consequence of the vanishing property of the discrepancy measures, but here
we have no clue on how to handle this issue since we have no analog of discrep-
ancy measures. Concerning the Γ-limsup inequality, statement (b) provides the
construction of a recovery sequence when the limiting path Γ is smooth with-
out nucleations. Combining this statement with the argument presented in
Sect. 4, it is also possible to construct a recovery sequence for piecewise C1

paths.
A natural further step is the analysis of the large deviation properties of

the empirical magnetization for the underlying microscopic dynamics in the
joint limit γ → 0 and ε → 0, for instance when ε = | log γ|−1. For the stochastic
Allen–Cahn equation, the large deviations upper bound with rate function S
is proven in [6] by constructing suitable exponential martingales. This strategy
seems applicable also to the Ising–Kac model, but requires, as a crucial step,
the Γ-convergence lower bound discussed above.

2.3. Proof of Theorem 2.1

To carry out the proof, we shall need the following results on the linearization
of the non-local evolution. Consider Eq. (2.27) for h = 0; by (2.30) and using
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again the identity cosh(β ˜J ∗ m̄) = 1/
√

1 − m̄2, the linearization around the
instanton gives rise to the linear operator,

Lψ =
2ā√

1 − m̄2
(−ψ + (1 − m̄2)β ˜J ∗ ψ). (2.39)

We regard it as an operator on L2(R; ν), where

ν(dξ) =
dξ

2ā(ξ)
√

1 − m̄2(ξ)
. (2.40)

Following [21], we observe that L is bounded, symmetric and negative semi-
definite, with 0 a simple eigenvalue and m̄′ the corresponding eigenvector. In
fact, using again that m̄′ = (1 − m̄2)β ˜J ∗ m̄′, it is easy to check that Lm̄′ = 0
and that
∫

ν(dξ) ψ(ξ)Lψ(ξ) = −β

2

∫

dξ

∫

dξ′
˜J(ξ − ξ′)m̄′(ξ)m̄′(ξ′)

[

ψ

m̄′ (ξ) − ψ

m̄′ (ξ
′)
]2

.

As ˜J(0) > 0 and ˜J is continuous, we infer that the integral on the right-hand
side is zero if and only if ψ/m̄′ is constant. An application of Weyl’s theorem
shows that L has the gap property, i.e., that 0 is an isolated eigenvalue. A
similar result holds also in L∞. This is done in [18] for the case (2.7), and the
extension to the general case is straightforward.

For expository reasons, we prove the statements in reverse order.
Proof of (b). Recalling (2.14), the decomposition (2.16) and (2.17), we rewrite
the rescaled action functional (2.33) as

Sε(ϕ) = S(1)
ε (ϕ) + S(2)

ε (ϕ) + S(3)
ε (ϕ), (2.41)

where

S(1)
ε (ϕ) =

1
2
[

F ε(ϕ(T )) − F ε(ϕ(0))
]

,

S(2)
ε (ϕ) =

1
2

∫ T

0

dt

∫

dx G∗((βε)−1ϕ̇;αε(ϕ)),

S(3)
ε (ϕ) =

1
2

∫ T

0

dt

∫

dx G
(

εβ δF ε

δm (ϕ);αε(ϕ)
)

,

with F ε as in (2.18) and

αε(ϕ) = 2
cε(ϕ)
βε3

√

1 − ϕ2, εβ
δF ε

δm
(ϕ) = arctanhϕ − βJε ∗ ϕ. (2.42)

In the sequel, we choose ϕ = ϕε as in (2.37), with Rε = 0 and Q to be
determined later, and analyze separately the contribution of the three terms
in (2.41).
(1) As proven in [37], the free energy F ε Γ-converges to τPer(·), where Per(·)
is the perimeter functional. Moreover, for any choice of the corrector Q and
t ∈ [0, T ], the function ϕε(t, ·) is a recovery sequence. Hence,

lim
ε→0

S(1)
ε (ϕε) =

τ

2
[Per(Ω(T )) − Per(Ω(0)] = −τ

2

∫ T

0

dt

∫

Γ(t)

dσ κtvt,
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where in the last equality we used that − ∫
Γ(t)

dσ κtvt is the time derivative of
Per(Ω(t)). By (1.3), we thus have,

lim
ε→0

S(1)
ε (ϕε) = − 1

μ

∫ T

0

dt

∫

Γ(t)

dσ
θκtvt

2
. (2.43)

(2) We first notice that, by Taylor expansion, G∗(p, α) = α
[

1
2

(

p
α

)2+O
((

p
α

)4)].
By (2.38),

ϕ̇ε(x, t) = −∂td(x,Γ(t))
ε m̄′

(

d(x,Γ(t))
ε (1 + O(ε))

)(

1 +
(

1 + |d(x,Γ(t))|
ε

)

O(ε)
)

.

(2.44)

As m̄′(ξ) converges exponentially fast to zero as |ξ| → ∞, see (2.23), and in
view of (2.42), the integrand appearing in S

(2)
ε is smaller than any power of ε if

|d(x,Γ(t))| > Cε(log ε)2. Therefore, we can restrict the domain of integration
in a small neighborhood of Γt. In view of the expansion of G∗, using the co-area
formula, we then get,

lim
ε→0

S(2)
ε (ϕε) = lim

ε→0

∫ T

0

dt

∫

Cε

ds

∫

d=s

dσ ε−1 m̄′(s/ε)2

2cε(ϕε)
√

1 − m̄(s/ε)2
(∂td)2

4β
,

(2.45)

where Cε := [−Cε(log ε)2, Cε(log ε)2], dσ is the surface measure on the level
set of the distance function d, and, by (2.35), cε(ϕε) = a(Kε ∗ϕε). To compute
the asymptotic behavior of cε(ϕε), we choose an orthonormal frame with origin
in the orthogonal projection xΓ(t) of x on Γ(t) and the first direction e0 along
the normal to Γ(t) at xΓ(t). If d(x,Γ(t)) = s, then x = s e0 and therefore,
using (2.28),

Kε ∗ ϕε(x)

=
∫

dy ε−dk
(

ε−1
√

(s − y · e0)2 + |y − (y · e0)e0|2
)

m̄
(y · e0

ε

)

+ O(ε)

=
∫

dξ′
˜K
(s

ε
− ξ′

)

m̄(ξ′) + O(ε) = ˜K ∗ m̄
(s

ε

)

+ O(ε).

We conclude that recalling the definition of ā in (2.30),

lim
ε→0

S(2)
ε (ϕε) =

∫ T

0

dt

∫

Γ(t)

dσ
v2

t

4β

∫

dξ
m̄′(ξ)2

2ā(ξ)
√

1 − m̄(ξ)2

=
1
μ

∫ T

0

dt

∫

Γ(t)

dσ
v2

t

4
,

(2.46)

where we used that −∂td(·,Γ(t)) = vt on Γ(t), and (2.31) and (2.32) in the
last identity.
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(3) We are left with the limit of S
(3)
ε (ϕε). This is the point where the corrector

Q plays a role and has to be chosen appropriately. As arctanh m̄ = β ˜J ∗ m̄,

εβ
δF ε

δm
(ϕε)(x, t) = β

∫

dξ′
˜J

(

d(x,Γ(t))
ε

+ εQ

(

t, x,
d(x,Γ(t))

ε

)

− ξ′
)

m̄(ξ′)

− β

∫

dy Jε(x, y) m̄

(

d(y,Γ(t))
ε

+ εQ

(

t, x,
d(y,Γ(t))

ε

))

.

Since m̄(ξ) converges exponentially fast to ±mβ as ξ → ±∞, see (2.23), the
above expression is smaller than any power of ε if |d(x,Γ(t))| > Cε(log ε)2.
Therefore, as G(q, α) = α

[

1
2q2 + O(q4)

]

, restricting the domain of integration,
and using the previous computation for the limit of cε(ϕε), we obtain,

lim
ε→0

S(3)
ε (ϕε)

= lim
ε→0

1
2βε3

∫ T

0

dt

∫

Cε

ds

∫

d=s

dσ ā
(s

ε

)

√

1 − m̄
(s

ε

)2
(

εβ
δF ε

δm
(ϕε)

)2

.

To compute εβ δF ε

δm (ϕε), we choose an orthonormal frame with origin in the
orthogonal projection xΓ(t) of x on Γ(t), the first direction e0 along the normal
to Γ(t) and the remaining directions {e1, . . . , ed−1} along the principal curva-
ture directions of Γ(t). In this way, if d(x,Γ(t)) = s with |s| ≤ Cε(log ε)2 and
|x − y| ≤ ε, we have,

x = s e0, d(y,Γ(t)) = y · e0 −
d−1
∑

i=1

κ
(i)
t

(y · ei)2

2
+ o(ε2),

where κ
(i)
t are the principal curvatures of Γ(t) at xΓ(t); in particular, the mean

curvature reads κt =
∑d−1

i=1 κ
(i)
t . Therefore, if d(x,Γ(t)) = s,

β

∫

dξ′
˜J

(

d(x,Γ(t))
ε

+ εQ

(

t, x,
d(x,Γ(t))

ε

)

− ξ′
)

m̄(ξ′)

= β

∫

dξ′
˜J
(s

ε
− ξ′

) [

m̄(ξ′) + εQ
(

t, x,
s

ε

)

m̄′(ξ′)
]

+ o(ε)

and

β

∫

dy Jε(x, y) m̄

(

d(y,Γ(t))
ε

+ εQ

(

t, y,
d(y,Γ(t))

ε

))

= β

∫

dy ε−dj
(

ε−1
√

(s − y · e0)2 + |y − (y · e0)e0|2
)

[

m̄
(y · e0

ε

)

+ εQ
(

t, x,
y · e0

ε

)

m̄′
(y · e0

ε

)

−
d−1
∑

i=1

κ
(i)
t

(y · ei)2

2
m̄′
(y · e0

ε

)

]

+ o(ε)

= β

∫

dξ′
˜J
(s

ε
− ξ′

)

[

m̄(ξ′) + εQ(t, x, ξ′)m̄′(ξ′)
]

− εβκt

∫

dξ′
∫

Rd−1
dη j

(
√

(s

ε
− ξ′

)2

+ |η|2
)

m̄′(ξ′)
η2
1

2
+ o(ε).
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We now choose Q(t, x, ξ) = Q∗(t, x, ξ) := K(t, x)Q̄(ξ), where K : [0, T ] ×
T

d → R is any smooth function satisfying K(t, x) = κt(x) for all x ∈ Γ(t), while
Q̄ : R → R is a suitable a smooth function, to be fixed later and satisfying

sup
ξ∈R

∣

∣Q̄(ξ)
∣

∣+
∣

∣Q̄′(ξ)
∣

∣

1 + |ξ| < +∞. (2.47)

Therefore, under this assumption,

εβ
δF ε

δm
(ϕε) = εβK(t, x)

∫

dξ′
˜J
(s

ε
− ξ′

)

m̄′(ξ′)
[

Q̄
(s

ε

)

− Q̄(ξ′)
]

+ εβκt

∫

dξ′
∫

Rd−1
dη j

(
√

(s

ε
− ξ′

)2

+ |η|2
)

m̄′(ξ′)
η2
1

2
+ o(ε).

(2.48)

Inserting this expansion in the approximated expression for S
(3)
ε (ϕε), we ob-

tain

lim
ε→0

S(3)
ε (ϕε) =

∫ T

0

dt

∫

Γ(t)

dσ AQ̄(κt), (2.49)

where

AQ̄(κt) :=
κ2

t

2β

∫

dξ ā
√

1 − m̄2
[

β ˜J ∗ (m̄′Q̄) − β( ˜J ∗ m̄′)Q̄ − βf
]2

,

with

f(ξ) =
∫

dξ′
∫

Rd−1
dη j

(
√

(ξ − ξ′)2 + |η|2
)

m̄′(ξ′)
η2
1

2
. (2.50)

Recalling the definitions (2.39), (2.40), and using m̄′ = (1 − m̄2)β ˜J ∗ m̄′, we
get,

AQ̄(κt) =
κ2

t

4β

∫

ν(dξ)
[

L(m̄′Q̄) − H
]2

,

where

H := β 2ā
√

1 − m̄2 f. (2.51)

By (2.31) and (2.40),
∫

ν(dξ) m̄′(ξ)H(ξ)
∫

ν(dξ) (m̄′)2
= Nβ

∫

dξ m̄′(ξ)f(ξ) = Nβτ = θ,

where in the last equalities, we used that, by (2.22), τ =
∫

dξ m̄′(ξ)f(ξ), and
relations (1.3) and (2.32). It follows that the component of H orthogonal to
m̄′ in L2(R; ν) is

̂H = H − θm̄′. (2.52)

Therefore, by the symmetry of L and Lm̄′ = 0,

AQ̄(κt) =
(θκt)2

4μ
+

1
4β

∫

ν(dξ)
[

L(m̄′Q̄) − ̂H
]2

.
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The corrector Q̄ is now determined by minimizing the above expression. More
precisely, Q̄ is the solution to the equation L(m̄′Q̄) = ̂H which satisfies (2.47)
and Q̄(0) = 0, whose existence and uniqueness is the content of Lemma A.1
in “Appendix A.” In view of (2.49), with this choice of Q, we get

lim
ε→0

S(3)
ε (ϕε) =

1
μ

∫ T

0

dt

∫

Γ(t)

dσ
(θκt)2

4
. (2.53)

The statement (b) of the theorem follows from (2.43), (2.46) and (2.53).
Proof of (a). By Legendre duality, Lε(u, v) = supp {pv − Hε(u, p)}, where,
given measurable functions u : Td → [−1, 1] and η : Td → R,

Hε(u, η) = ε−2 cε(u)
β

[

cosh(βJε ∗ u + 2βη) − cosh(βJε ∗ u)

−u sinh(βJε ∗ u + 2βη) + u sinh(βJε ∗ u)
]

. (2.54)

Whence, letting ϕε be as in (2.37), for each g = g(t, x),

Sε(ϕε) ≥ ε−1

∫ T

0

dt

∫

dx

{

ϕ̇εg − ε−2 cε(ϕε)
β

[

cosh(βJε ∗ ϕε + 2βg)

− cosh(βJε ∗ ϕε) − ϕε sinh(βJε ∗ ϕε + 2βg) + ϕε sinh(βJε ∗ ϕε)
]

}

=: Λε(ϕε, g).

Given a fixed smooth function p = p(t, x), we choose (recall N is defined in
(2.31))

g(t, x) = gε(t, x) = εNp(t, x)

[

m̄′(s/ε)
2ā(s/ε)

√

1 − m̄(s/ε)2

]

s=d(x,Γ(t))

and compute the limit of Λε(ϕε, gε) as ε → 0. By second-order Taylor expan-
sion of Hε(u, ·) and observing the remainder are equibounded and converge to
zero point-wise as ε → 0, we have

Λε(ϕε, gε) = Λ(1)
ε (ϕε, gε) + Λ(2)

ε (ϕε, gε) + Λ(3)
ε (ϕε, gε) + o(1),

where

Λ(1)
ε (ϕε, gε) =

∫ T

0

dt

∫

dx ε−1ϕ̇εgε,

Λ(2)
ε (ϕε, gε) =

∫ T

0

dt

∫

dx
cε(ϕε)

ε3
cosh(βJε ∗ ϕε)

[

ϕε − tanh(βJε ∗ ϕε)
]

2gε

=
∫ T

0

dt

∫

dx
cε(ϕε)

ε3

√

1 − ϕ2
ε sinh

(

εβ
δF ε

δm
(ϕε)

)

2gε,

Λ(3)
ε (ϕε, gε) = −

∫ T

0

dt

∫

dx
cε(ϕε)

ε3
cosh(βJε ∗ ϕε)

[

1−ϕε tanh(βJε ∗ ϕε)
]

2βg2
ε .

By (2.38) and the assumptions on Rε, the expansion (2.44) holds with an
extra additive o(ε) due to the presence of Rε. Therefore, as gε is equibounded
and recalling (2.31), the same reasoning leading to (2.46) gives,
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lim
ε→0

Λ(1)
ε (ϕε, gε) = lim

ε→0

∫ T

0

dt

∫

Cε

dσ ε−1 −m̄′(s/ε)2Np∂td

2ā(s/ε)
√

1 − m̄(s/ε)2

= −
∫ T

0

dt

∫

Γ(t)

dσ vtp.

Concerning Λ(2)
ε and Λ(3)

ε , we observe that as gε = O(ε)m̄′(d/ε) and the de-
pendence on ϕε of the integrands is locally Lipschitz, the contribution due to
Rε is o(1) as ε → 0 and therefore can be neglected.

Noticing that (2.48) holds true here with Q in place of KQ̄ and recalling
(2.50), we have

lim
ε→0

Λ(2)
ε (ϕε, gε) = lim

ε→0

∫ T

0

dt

∫

Cε

ds

∫

d=s

dσ Np

× ε−1
{

m̄′[− β ˜J ∗ (m̄′Q) + β( ˜J ∗ m̄′)Q + βKf
]

}(s

ε

)

=
∫ T

0

dt

∫

Γ(t)

dσ Np

∫

ν(dξ) m̄′[βκt 2ā
√

1 − m̄2 f − L(m̄′Q)
]

=
∫ T

0

dt

∫

Γ(t)

dσ θκtp,

where in the last identity we used that
∫

ν(dξ) m̄′L(m̄′Q) = 0. Finally, as
cosh(βJε ∗ ϕε)

[

1 − ϕε tanh(βJε ∗ ϕε)
]

=
√

1 − m̄(s/ε)2 + o(1),

lim
ε→0

Λ(3)
ε (ϕε, gε) = lim

ε→0

∫ T

0

dt

∫

R

ds

∫

d=s

dσ ε−1βN2p2 −m̄′(s/ε)2

2ā(s/ε)
√

1 − m̄(s/ε)2

=
∫ T

0

dt

∫

Γ(t)

dσ (−μp2).

We conclude that, for any function p = p(x, t),

lim
ε→0

Sε(ϕε) ≥
∫ T

0

dt

∫

Γ(t)

dσ (−vtp + θκtp − μp2),

whence, by optimizing over p,

lim
ε→0

Sε(ϕε) ≥
∫ T

0

dt

∫

Γ(t)

dσ sup
p

(−vtp + θκtp − μp2)

=
1
4μ

∫ T

0

dt

∫

Γ(t)

dσ (vt − θκt)2.

The statement (a) of the theorem is thus proven. �

3. Glauber+Kawasaki Process

In this section, we analyze the sharp interface limit of the action functional in
the context of the Glauber+Kawasaki process.
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3.1. Motivation

The so-called Glauber+Kawasaki process is a simple stochastic model describ-
ing a chemical reaction among two species together with their diffusion. Recall
that T

d
L denotes the d-dimensional torus of side L ∈ N and, given an in-

teger N ≥ 1, in this section we let T
d
L,N := (N−1

Z/LZ)d be the discrete

approximation of Td
L with lattice spacing 1/N . Set also ΩN,L := {0, 1}Td

L,N , if
η ∈ ΩN,L we regard its value at the site i ∈ T

d
L,N , that can be either zero or

one, as representing the species occupying i. The Glauber+Kawasaki process
is a continuous-time Markov chain on the state space ΩN,L, whose dynamics
is obtained superimposing two elementary mechanisms, respectively, modeling
the reaction (Glauber) and the diffusion (Kawasaki). Namely, the generator of
the chain is

LN := LG + N2LK. (3.1)

Let c, a strictly positive local function of the configuration, be the rate of the
reaction; then, given f : ΩN,L → R,

LGf (η) :=
∑

i∈T
d
L,N

c(τiη)
[

f(ηi) − f(η)
]

,

where τi is the translation, i.e., (τiη)j := ηj−i, and ηi is the configuration ob-
tained from η by flipping the occupation number at i. The Kawasaki dynamics
is instead defined by the generator,

LKf (η) :=
1
2

∑

{i,j}

[

f(ηi,j) − f(η)
]

,

where the sum runs over the (unordered) nearest neighbors pairs {i, j} ⊂ T
d
L,N

and ηi,j is the configuration obtained from η by exchanging the occupation
numbers at the sites i and j. Note that in (3.1), according to a diffusive rescal-
ing, the Kawasaki dynamics has been speeded up by N2. Let M+(Td

L) be the
set of positive measures on T

d
L and define the empirical density as the map

πN : ΩL,N → M+(Td
L) given by

πN (η) =
1

Nd

∑

i∈T
d
L,N

ηiδi.

Assuming that the initial datum η(0) for the Glauber+Kawasaki process is
well prepared, in the sense that πN (η(0)) → u0(x)dx for some Borel function
u0 : TL → [0, 1], in [17] it is proven that πN (η(t)) → u(t, x)dx in probability,
where u : [0,∞) × T

d
L → [0, 1] solves the reaction diffusion equation,
{

∂tu = 1
2Δu + B(u) − D(u),

u(0) = u0.
(3.2)

The reaction term is described by the coefficients B,D : [0, 1] → [0,+∞) that
can be obtained from the microscopic rate c : ΩL,N → (0,∞) according to
the following procedure. For ρ ∈ [0, 1], let νρ be the Bernoulli measure with
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parameter ρ, namely the product probability on ΩL,N with marginals νρ(ηi =
1) = ρ. Then,

B(ρ) = νρ

(

(1 − η0)c
)

, D(ρ) = νρ

(

η0c
)

.

Observe that, as c is a strictly positive local function, B and D are strictly
positive polynomials in (0, 1), while B(1) = 0 and D(0) = 0.

The hydrodynamic Eq. (3.2) describes the typical behavior of the Glau-
ber+Kawasaki process in the diffusive scaling limit. On the other hand, the
statistics of the fluctuations cannot be described simply by adding a Gaussian
noise to (3.2). In fact, as made precise by large deviation theory, the Poissonian
nature of the underlying Glauber dynamics is still felt in the diffusive limit. A
main motivation for analyzing the large deviations properties of the empirical
density is the following. Since the Glauber+Kawasaki process is irreducible,
by a general criterion for Markov chains, there exists a unique stationary prob-
ability μL,N on ΩL,N . As the dynamics does not satisfy the detailed balance
condition, μL,N cannot be written in a closed form (with the exception of the
special choices discussed in [27]) and, as shown in [4], it exhibits long-range
correlations. According to the general philosophy concerning thermodynamics,
we are not really interested in all details of the probability μL,N , but rather
in the statistics of the empirical density in the limit N → ∞. It is therefore
natural to introduce the sequence of probabilities {℘L,N}N∈N on M+(Td

L)
defined by ℘L,N := μL,N ◦ (πN )−1 and look for its asymptotic behavior as
N → ∞. Let W : [0, 1] → R be such that B − D = −W ′. If W has a unique
minimizer, it is natural to expect that the sequence {℘L,N}N∈N converges to
the stationary solution of (3.2) corresponding to the minimizer of W . Indeed,
in the one-dimensional case, this is proven in [10] when W has a single well,
and in [11] when W has a double well.

A finer description of the asymptotics of {℘L,N}N∈N can be achieved by
looking at its large deviations. This means obtaining an estimate of the form

℘L,N

(

π ∼ u dx
) � exp{−NdFL(u)},

for a suitable functional FL on the set of densities u : Td
L → [0, 1]. Here, FL

plays the same role as the Cahn–Hilliard functional in the gradient theory
of phase transition or the Lebowitz–Penrose functional (2.3), with the minor
inconvenience that it is not known.

According to the Freidlin–Wentzell theory for diffusions on R
n, see [25],

the functional FL can be characterized in terms of a dynamical problem. To
this end, fix T > 0, a sequence of initial configurations ηN (0), and consider
the large deviations asymptotics for the empirical measure in the time window
[0, T ]. Under the assumption that B and D are concave, this large deviation
principle has been proven in [12,29,35] in one dimension (however, the result
can be extended to higher dimension), the corresponding rate function, denoted
by IT,L, will be recalled later. As proven in [25, Chap. 6] for diffusions on
R

n and in [24] for the present setting [in one dimension and with additional
hypotheses on the coefficients B and D implying a complete characterization
of the stationary solutions to (3.2)], the functional FL is the quasi-potential
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associated with the dynamical rate functional IT,L. This means that FL can
be obtained from IT,L by solving a suitable variational/combinatorial problem
whose details are here omitted. Using this approach, in [24], the cluster points
of {℘L,N} are shown to be supported on stationary solutions to (3.2) associated
with the minimizers of W .

We consider here the case of a bistable reaction term. Recalling W sat-
isfies B − D = −W ′, we namely assume that W has a twofold degenerate
quadratic minimum. In other words, there exist 0 < ρ− < ρ+ < 1 such that
for ρ �= ρ± we have W (ρ) > W (ρ−) = W (ρ+) and W ′′(ρ−),W ′′(ρ+) > 0. In
this situation, the probability μL,N describes the phase coexistence of the two
stable phases, like a Gibbs measure undergoing a first-order phase transition.
Our purpose is to characterize the corresponding surface tension τ . By defini-
tion, τ measures the cost of a transition between the two stable phases ρ±.

As in the case of Ising–Kac model, the surface tension is identified by
considering the sharp interface limit. By setting ε = L−1, as far as the dynam-
ical behavior is concerned, under diffusive rescaling the joint limit N → ∞ and
ε → 0 (with ε � N−1) of the empirical measure has been analyzed in [13,30].
More precisely, it is there proven that the limiting dynamics is described by the
motion by mean curvature of the interface separating the stable phases. This
is done by using classical methods in [13] and using the level-set method [30].

In order to analyze the asymptotic behavior of the probability ℘L,N , let
us introduce the family of functionals F ε on the set of densities u : Td → [0, 1]
defined by

F ε(u) := εd−1Fε−1

(

u(ε·)).
We are next going to argue, but not rigorously prove, that as ε → 0 the
sequence F ε converges to a functional F that is finite only for functions u ∈
BV
(

T
d; {ρ−; ρ+}), and for such u is proportional to the (measure theoretic)

perimeter of the jump set of u. This means that F (u) = τHd−1(Su), where
Hd−1 is the (d − 1)-dimensional Hausdorff measure on T

d and Su denotes the
jump set of u. The constant τ > 0 is then identified with the surface tension
for the Glauber+Kawasaki processes, and it will be characterized in terms of
the solution to a one-dimensional ODE.

As the quasi-potential FL is not directly accessible, we shall consider the
sharp interface limit of the dynamical rate function IT,L. More precisely, let
Sε be the functional on the set of paths φ : [0, T ] × T

d → [0, 1] defined by
Sε(φ) := εd−1Iε−2T,ε−1

(

φ(ε2·, ε·)). In Theorem 3.1, we prove that for suitable
sequences φε converging to

φ(t, x) =

{

ρ+ if x ∈ Ω(t),
ρ− if x �∈ Ω̄(t),

for some open Ω(t) ⊂ T
d with smooth boundary,

lim
ε→0

Sε(φε) =
1
2
τ

∫ T

0

dt

∫

Γ(t)

dσ

(

vt − 1
2
κt

)2

, (3.3)
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where Γ(t) = ∂Ω(t), dσ is the surface measure on Γ(t), vt is the normal velocity
of Γ(t), κt is its mean curvature and τ is a positive constant.

Observe now that the limiting dynamical rate function in (3.3) measures,
in L2 sense, the deviations with respect to the motion by mean curvature
vt = 1

2κt. Since this evolution is—informally—the gradient flow of (one half
of) the perimeter, we deduce that the quasi-potential associated with the lim-
iting dynamical rate function is proportional to the perimeter and we identify
the proportionality constant with τ , see [25, Thm. 4.3.1] for a proof of this
statement in the context of diffusions in R

n.

3.2. Preliminaries

Let ū be the instanton (standing wave) associated with the hydrodynamic Eq.
(3.2) in dimension one, namely the solution to

1
2
ū′′ + B(ū) − D(ū) = 0, ū(±∞) = ρ±, ū(0) =

ρ+ + ρ−
2

. (3.4)

Clearly, ū′(ξ) > 0 and it can be easily shown that

sup
ξ∈R

(∣

∣ū′(ξ)
∣

∣+ |ū′′(ξ)
∣

∣

)

eγ|ξ| < +∞, (3.5)

where γ = min{D′(ρ+) − B′(ρ+);D′(ρ−) − B′(ρ−)}.
The large deviation asymptotics for the empirical density under the

Glauber+Kawasaki dynamics has been analyzed in [12,29,35]. We next recall
the associated rate function. Given L positive, let C(L) := {ρ ∈ L∞(Td

L) : 0 ≤
ρ ≤ 1}, where T

d
L is the d-dimensional torus of side L > 0, equipped with the

(metrizable) weak* topology. We define IT,L : C([0, T ];C(L)) → [0,∞] by

IT,L(φ) := sup
H∈C1,2([0,T ]×T

d
L)

JH
T,L(φ), (3.6)

where

JH
T,L(φ) :=

∫

dr
[

φ(T, ·)H(T, ·) − φ(0, ·)H(0, ·)]

−
∫ T

0

dt

∫

dr

[

φ

(

∂tH +
1
2
ΔH

)

+
1
2
φ(1 − φ)|∇H|2

]

−
∫ T

0

dt

∫

dr

[

B(φ)(eH − 1) + D(φ)(e−H − 1)
]

. (3.7)

Under suitable assumptions on the initial conditions, in [12,29,35] it is proven
that the empirical magnetization sampled according to the Glauber dynam-
ics, regarded as a random variable taking values in the Skorokhod space
D([0, T ];M(Td

L)), satisfies a large deviation principle with speed Nd and rate
function IT,L given by IT,L(ν) = IT,L(φ) if νt = φt dr for some φ ∈ C([0, T ];
C(L)) and +∞ otherwise.

By [29, Lemma 2.1], or rather its generalization in dimension d ≥ 1,
if φ ∈ C2,3([0, T ] × T

d
L; (0, 1)), then the supremum in (3.6) is achieved for
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H = H(φ) ∈ C1,2([0, T ] × T
d
L), the unique classical solution to the nonlinear

Poisson equation,

∂tφ + ∇ · [φ(1 − φ)∇H] =
1
2
Δφ + B(φ)eH − D(φ)e−H , (3.8)

so that, for such H,

IT,L(φ) = JH
T,L(φ) =

1
2

∫ T

0

dt

∫

dr φ(1 − φ)|∇H|2

+
∫ T

0

dt

∫

dr B(φ)
(

1 − eH + HeH
)

+
∫ T

0

dt

∫

dr D(φ)
(

1 − e−H − He−H
)

. (3.9)

Due to the lack of reversibility of the underlying microscopic dynamics, it is
not possible to decompose the action function in a form analogous to (2.17).

3.3. Sharp Interface Limit of the Action Functional

To this end, we set ε = L−1, perform a diffusive rescaling of space and time and
normalize the resulting action with a factor Ld−1. As in the previous section,
the space variable in T

d is denoted by x. We then introduce the rescaled
action functional renormalized with a factor Ld−1. We thus define the rescaled
functional Sε : C([0, T ];C(1)) → [0,∞] by

Sε(φ) = εd−1Iε−2T,ε−1(φ(ε2·, ε·)), (3.10)

whose variational representation is

Sε(φ) := sup
H∈C1,2([0,T ]×Td)

JH
ε (φ), (3.11)

where

JH
ε (φ) :=

1
ε

∫

dx
[

φ(T, ·)H(T, ·) − φ(0, ·)H(0, ·)]

−1
ε

∫ T

0

dt

∫

dx

[

φ

(

∂tH +
1
2
ΔH

)

+
1
2
φ(1 − φ)|∇H|2

]

−1
ε

∫ T

0

dt

∫

dx

(

B(φ)
eH − 1

ε2
+ D(φ)

e−H − 1
ε2

)

. (3.12)

Moreover, the representation (3.8), (3.9) gives, for φ ∈ C2,3([0, T ]×T
d; (0, 1)),

∂tφ + ∇ · [φ(1 − φ)∇H] =
1
2
Δφ +

B(φ)eH − D(φ)e−H

ε2
(3.13)

and

Sε(φ) =
1
2ε

∫ T

0

dt

∫

dxφ(1 − φ)|∇H|2

+
1
ε3

∫ T

0

dt

∫

dxB(φ)
(

1 − eH + HeH
)
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+
1
ε3

∫ T

0

dt

∫

dxD(φ)
(

1 − e−H − He−H
)

. (3.14)

As in the previous section, given a C1 family of oriented smooth surfaces
Γ = {Γ(t)}t∈[0,T ], with Γ(t) = ∂Ω(t) for some open Ω(t) ⊂ T

d, we denote by
nt = nΓ(t) the inward normal of Γ(t), by vt : Γ(t) → R the normal velocity of
Γ at time t, by κt the mean curvature of Γ(t) and by d(·,Γ(t)) a regularized
version of the signed distance from Γ(t).

For such families of surfaces, we define the limiting action functional,

Sac(Γ) =
1
4μ

∫ T

0

dt

∫

Γ(t)

dσ

(

vt − 1
2
κt

)2

, (3.15)

where the mobility μ is computed according to the following procedure. Re-
calling the definition (3.4), let Lū be the linear operator given by

Lūψ =
[

(ū(1 − ū)ψ′]′ − [B(ū) + D(ū)]ψ, (3.16)

which is obtained by linearizing (3.8) in dimension one at φ = ū around H = 0.
Then,

μ =
2〈ū′, (−Lū)ū′〉L2

‖ū′‖4
L2

. (3.17)

For later purpose, we notice that since B+D is strictly positive, Lū is bijective
on L2(R). Moreover, the inverse of Lū preserves the decays properties of a
forcing term, in the sense that if Lūψ = w then, for any γ′ > 0,

sup
ξ∈R

|w(ξ)|eγ′|ξ| < +∞ =⇒ sup
ξ∈R

(|ψ(ξ)|

+|ψ′(ξ)| + |ψ′′(ξ)|)eγ′|ξ| < +∞. (3.18)

Theorem 3.1. Let Γ = {Γ(t)}t∈[0,T ] as before and consider a sequence {φε} ⊂
C([0, T ];C(1)), converging to ρ− + (ρ+ − ρ−)1IΩ(·), of the form

φε(t, x) = ū

(

d(x,Γ(t))
ε

+ εQ

(

t, x,
d(x,Γ(t))

ε

))

+ εRε(t, x), (3.19)

where ū is the instanton, Q : [0, T ] × T
d × R → R is a smooth function such

that

sup
(t,x,ξ)∈[0,T ]×Td×R

{
∣

∣Q(t, x, ξ)
∣

∣+
∣

∣∂ξQ(t, x, ξ)
∣

∣

1 + |ξ|

+

∣

∣∂tQ(t, x, ξ)
∣

∣+
∣

∣DxQ(t, x, ξ)
∣

∣+
∣

∣D2
xxQ(t, x, ξ)

∣

∣

1 + |ξ|
}

< +∞, (3.20)

and Rε : [0, T ] × T
d → R is a smooth function.

(a) If ‖Rε‖∞ + ‖∂tRε‖∞ + ‖ΔRε‖∞ → 0 as ε → 0 then, for any Q,

lim inf
ε→0

Sε(φε) ≥ Sac(Γ).

(b) There exist Q∗ such that choosing Q = Q∗ and Rε = 0 we have,

lim
ε→0

Sε(φε) = Sac(Γ).
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For expository reasons, we prove the statements in reverse order.
Proof of (b). In the sequel, we assume Rε = 0 and Q(t, x, ξ) := A(t, x)Q̄(ξ),
where A : [0, T ] × T

d → R and Q̄ : R → R are smooth functions to be deter-
mined later, with Q̄ such that

sup
ξ∈R

{
∣

∣Q̄(ξ)
∣

∣

1 + |ξ| +
∣

∣Q̄′(ξ)
∣

∣+
∣

∣Q̄′′(ξ)
∣

∣

}

< +∞. (3.21)

In order to compute the cost of the sequence (3.19) with these choices, we start
by examining the expansions,

φε = ū(dε) + εū′(dε)Qε + εR(1)
ε , ∂tφε = ū′(dε)

∂td

ε
+ R(2)

ε ,

Δφε =
ū′′(dε)

ε2
+

ū′(dε)Δd + ū′′′(dε)Qε + 2ū′′(dε)Q′
ε + ū′(dε)Q′′

ε

ε
+ R(3)

ε ,

(3.22)

where we adopted the notation d = d(x,Γ(t)), dε = d/ε, Qε = Q(t, x, dε),
Q′

ε = ∂ξQ(t, x, dε), and Q′′
ε = ∂2

ξξQ(t, x, dε), and R
(i)
ε = R

(i)
ε (t, x, dε), i =

1, 2, 3, are such that

lim sup
ε→0

sup
(t,x,ξ)∈[0,T ]×Td×R

eγ|ξ|/2|R(i)
ε (t, x, ξ)| < ∞,

with γ as in (3.5). Equation (3.22) can be easily derived using (3.5) and re-
calling that |∇d| = 1 in a neighborhood of Γ(t).

Next, assuming for the function H, the unique solution to (3.13), an
expansion of the form H(t, x) = εH1(t, x, d(x,Γ(t))/ε)) + O(ε2), we deduce a
linear equation for H1. To this end, we write

B(φε)eH − D(φε)e−H

ε2
=

B(ū(dε)) − D(ū(dε))
ε2

+
B′(ū(dε)) − D′(ū(dε))

ε
ū′(dε)Qε +

B(ū(dε)) + D(ū(dε))
ε

H1 + O(1).

(3.23)

Plugging (3.22) and (3.23) in (3.13) and making use of (3.4) and its derivative,
we deduce, after some straightforward computations, that, for (t, x) ∈ [0, T ] ×
T

d fixed, H1(t, x, ·) satisfies

(ū(1 − ū)H ′
1)

′ − [B(ū) + D(ū)]H1 =
(

1
2
Δd − ∂td

)

ū′

+ ū′′AQ̄′ +
1
2
ū′AQ̄′′, (3.24)

where H ′
1 = ∂ξH1(x, t, ξ). Hence, by choosing A = ∂td − 1

2Δd and recalling
(3.16), we get H1(t, x, ξ) = A(t, x)h(ξ) where h : R → R solves

Lūh = −ū′ + ū′′Q̄′ +
1
2
ū′Q̄′′. (3.25)
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For later purpose, we remark that, in view of (3.5), (3.18) and (3.21),

sup
ξ∈R

(|h(ξ)| + |h′(ξ)| + |h′′(ξ)|)eγ|ξ| < +∞. (3.26)

With this choice of H1, the initial assumption on the expansion for H holds.
Indeed, in “Appendix A,” it is proven that H(t, x) = εH1(t, x, d(x,Γ(t))/ε))+
ε2
˜Hε(t, x) with

lim sup
ε→0

sup
(t,x)∈[0,T ]×Td

(| ˜Hε(t, x)| + ε|∇ ˜Hε(t, x)|) < ∞. (3.27)

From (3.14), the explicit form of H1 and (3.27), we then have,

Sε(φε) = S(1)
ε + S(2)

ε + O(ε), (3.28)

where, after integrating by parts,

S(1)
ε =

1
2ε

∫ T

0

dt

∫

dx

[

− ∇ · (φε(1 − φε) ε2∇H1) +
B(φε) + D(φε)

2
H1

]

H1

and

S(2)
ε =

1
2

∫ T

0

dt

∫

dxφε(1 − φε) ε2∇H1 · ∇ ˜Hε

+
∫ T

0

dt

∫

dx

[

(B(φε) + D(φε))H1
˜Hε +

B(φε) − D(φε)
3

H3
1

]

.

Now, from (3.22), (3.24) and (3.26), we deduce

∇ · (φε(1 − φε)∇(εH1)) − B(φε) + D(φε)
ε2

(εH1)

=
1
ε
(ū(dε)(1 − ū(dε))H ′

1)
′ − B(ū(dε)) + D(ū(dε))

ε
H1 + R(4)

ε

=
1
ε

[(

1
2
Δd − ∂td

)

ū′(dε) + ū′′(dε)AQ̄′ +
1
2
ū′(dε)AQ̄′′

]

+ R(4)
ε , (3.29)

with R(4) = R
(4)
ε (t, x, dε), such that

lim sup
ε→0

sup
(t,x,ξ)∈[0,T ]×Td×R

eγ|ξ|/2|R(4)
ε (t, x, ξ)| < ∞.

Recalling that A(t, x) = ∂td(x,Γ(t)) − 1
2Δd(x,Γ(t)) = vt(x) − 1

2κt(x) for x ∈
Γ(t) and using (3.5), (3.22), (3.25) and (3.27), by applying the co-area formula
as was done in the proof of (2.45), we can compute the limit of S

(1)
ε and S

(2)
ε

as ε → 0. By a few direct calculations (that we omit), we obtain,

lim
ε→0

S(1)
ε = CQ̄

∫ T

0

dt

∫

Γ(t)

dσ

(

v − 1
2
κt

)2

, lim
ε→0

S(2)
ε = 0, (3.30)

where, denoting by 〈·, ·〉L2 the scalar product in L2(R; dξ),

CQ̄ =
1
2

〈(

ū′ − ū′′Q̄′ − 1
2
ū′Q̄′′

)

, (−Lū)−1
(

ū′ − ū′′Q̄′ − 1
2
ū′Q̄′′

)〉

L2
.
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We observe that, since ū′′Q̄′+ 1
2 ū′Q̄′′ ∈L2(R; dξ) and

〈

ū′, ū′′Q̄′+ 1
2 ū′Q̄′′〉

L2

= 0,

CQ̄ ≥ C∗ :=
1
2

min
ψ:〈ū′,ψ〉L2=0

〈(ū′ − ψ), (−Lū)−1(ū′ − ψ)〉L2 . (3.31)

The above minimum is achieved at

ψ̄ = ū′ − ‖ū′‖2
L2

〈ū′, (−Lū)ū′〉L2
Lūū′,

so that, recalling (3.17),

C∗ =
1
2
〈(ū′ − ψ̄)(−Lū)−1(ū′ − ψ̄)〉L2 =

‖ū′‖4
L2

2〈ū′, (−Lū)ū′〉L2
=

1
4μ

. (3.32)

In view of (3.28), (3.30) and (3.31), to conclude the proof of the statement
(b), it remains to show that there is Q̄ for which the minimum is obtained, i.e.,
there exists a solution Q̄ to the linear equation ū′′Q̄′ + 1

2 ū′Q̄′′ = ψ̄ satisfying
(3.21). This solution can be explicitly computed, precisely,

Q̄(ξ) = 2
∫ ξ

0

dξ′ 1
ū′(ξ′)2

∫ ξ′

−∞
dξ′′ ū′(ξ′′)ψ̄(ξ′′),

which satisfies (3.21) in view of (3.5).
Proof of (a). Let φε be as in (3.19). By (3.11), (3.12) and integration by parts,
we have, for any H ∈ C1,2([0, T ] × T

d),

Sε(φε) ≥ 1
ε

∫ T

0

dt

∫

dx

[(

∂tφε − 1
2
Δφε

)

H − 1
2
φε(1 − φε)|∇H|2

]

+
1
ε

∫ T

0

dt

∫

dx

(

B(φε)
1 − eH

ε2
+ D(φε)

1 − e−H

ε2

)

.

(3.33)

We choose H of the form H(t, x) = εH1(t, x, d(x,Γ(t))/ε), with H1 : [0, T ] ×
T

d × R → R a smooth function to be determined later such that, for some
γ′ > 0,

sup
(t,x,ξ)∈[0,T ]×Td×R

eγ′|ξ|{|H1(t, x, ξ)| + |∇xH1(t, x, ξ)|

+ |∂ξH1(t, x, ξ)|} < ∞. (3.34)

Noticing that the dependence on φε of the integrands in the right-hand side
of (3.33) is locally Lipschitz and recalling the hypothesis on Rε, in view of the
above assumptions on H1, it is readily seen that the contribution due to Rε is
o(1) as ε → 0, and hence it can be neglected.

Therefore, few direct calculations (using (3.22), here applied to φε −εRε,
and the co-area formula) give

lim inf
ε→0

Sε(φε) ≥
∫ T

0

dt

∫

Γ(t)

dσ

∫

dξ

{[

ū′
(

∂td − 1
2
Δd
)

+ ū′′Q′ +
1
2
ū′Q′′

]

H1

− 1
2
ū(1 − ū)(H ′

1)
2 − B(ū) + D(ū)

2
H2

1

}

,
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where the notation Q′ = ∂ξQ(x, t, ξ), Q′′ = ∂ξξQ(t, x, ξ), H ′
1 = ∂ξH1(x, t, ξ)

and H ′′
1 = ∂ξξH1(t, x, ξ) has been adopted. The maximum of the expression in

the right-hand side is obtained for H1 = H with, for any (t, x) ∈ [0, T ] × T
d

fixed, H(t, x, ·) solution to

LūH =
(1

2
Δd − ∂td

)

ū′ − ū′′Q′ − 1
2
ū′Q′′ =: FQ,

which satisfies the assumptions (3.34) in view of (3.5), (3.18) and (3.20).
Hence,

lim inf
ε→0

Sε(φε) ≥ 1
2

∫ T

0

dt

∫

Γ(t)

dσ

∫

dξ FQ(−Lū)−1FQ. (3.35)

We next observe that, in view of (3.31), for each (t, x) ∈ [0, T ] × T
d fixed,

1
2

∫

dξ FQ(−Lū)−1FQ ≥
(

∂td − 1
2
Δd
)2

C∗.

As ∂td(x,Γ(t)) − 1
2Δd(x,Γ(t)) = vt(x) − 1

2κt(x) for x ∈ Γ(t), the statement
(a) follows by (3.32) and (3.35). �

4. Approximating Nucleation Events

In this section, we discuss how the nucleation part of the rate function in
(1.5) can be recovered from its absolutely continuous part. The general result
should be the following. Given T > 0, let Γ = Γ(t), t ∈ [0, T ], be a path of
interfaces satisfying S(Γ) < +∞ (with possible nucleation events), then there
exists a sequence of smooth paths {Γδ} such that Γδ → Γ and Sac(Γδ) → S(Γ)
as δ → 0. This statement is essentially the content of the density theorem
mentioned in the comments just after Theorem 2.1 and appears to be out
of reach. In this section, we, however, provide a link between the nucleation
cost and the absolutely continuous part in the functional (1.5). More precisely,
we consider an example of path Γ with nucleation and show how it can be
approximated by a sequence with zero nucleation cost. For convenience, we
discuss the two-dimensional isotropic case.

The basic idea is that in dimension d = 2 points [i.e., (d−2)-dimensional
interfaces] can be nucleated with no cost, and we can then let them evolve
for a short time (vanishing as δ → 0) in such a way that at the final time
the resulting interface approximates the one we want to nucleate. Moreover,
as we are going to argue, it is possible to arrange the evolution so that the
corresponding cost indeed approximates the cost of a nucleation event.

Let us consider a path Γ of the form,

Γ(t) =

{

∅ if t ∈ [0, t̄),
Γ0(t) if t ∈ [t̄, T ],

(4.1)

where t̄ ∈ (0, T ) is the nucleation time and Γ0 is a smooth path of smooth one-
dimensional interfaces with initial value Γ̄ := Γ0(t̄). We assume that Γ0(t) =
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∂Ω0(t), for some open set Ω0(t), when t ∈ (t̄, T ], while Γ̄ = limt↓t̄ Ω0(t). The
corresponding nucleation cost is

Snucl(Γ) = 2τPer(Γ̄),

where we recall that τ is the surface tension and Per(Γ̄) denotes here the length
of Γ̄, while the factor 2 is due to the fact that Γ̄ has be thought as an interface
with double multiplicity.

In view of the assumed smoothness of Γ̄, by localization, it suffices to
consider the case in which it is a segment, say of length �. In order to define
the corresponding approximating path Γδ, we first construct a path Σδ(s),
s ∈ [0, σδ], with σδ → 0, satisfying Σδ(0) → Γ̄, Per

(

Σδ(0)
) → 2Per(Γ̄) = 2�,

and Σδ(σδ) = ∅. To this end, chop the segment Γ̄ into Nδ sub-segments (with
Nδ diverging as δ → 0) and then fat each subsegment to an ellipse with major
axis of length �/Nδ and minor axis of length mδ � �/Nδ. Denoting by Σ̄δ the
resulting interface, then Σ̄δ → Γ̄ and Per

(

Σ̄δ

) → 2�. The path Σδ(s), s ≥ 0
is now defined as the evolution by mean curvature with initial datum Σ̄δ and
transport coefficient θ. Here, we understand that each ellipse evolves by mean
curvature separately. By comparing the evolution of each ellipse with that of
a circle of initial diameter equal to the major axis, we deduce that Σδ(σδ) = ∅
for some σδ ≤ (�/Nδ)2/(8θ).

We now set

Γδ(t) :=

⎧

⎪

⎨

⎪

⎩

∅ t ∈ [0, t̄ − σδ),
Σδ(t̄ − t) t ∈ [t̄ − σδ, t̄),
Γ0

δ(t) t ∈ [t̄, T ],

where Γ0
δ is a suitable approximation of the path Γ0 in (4.1), satisfying Γ0

δ(t̄) =
Σδ(0), organized so that Sac,[t̄,T ](Γ0

δ) → Sac,[t̄,T ](Γ0), whose details are omitted.
To conclude, we next show that

Sac,[0,t̄](Γδ) → 2τ�.

Even if this is essentially a Freidlin–Wentzell argument for evaluating the quasi-
potential in the reversible case, we provide the details of the computation.
Denoting by vδ and κδ the normal velocity and mean curvature of Γδ, we
write

1
4μ

(vδ − θκδ)2 =
1
4μ

(vδ + θκδ)2 − θ

μ
κδvδ.

By construction of the path that has been obtained by time reversal of motion
by mean curvature, the first term on the right-hand side above vanishes. Since

d
dt

Per(Γδ(t)) = −
∫

Γδ(t)

vδκδ,

we conclude by using the Einstein relation (1.3).
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Appendix A

Lemma A.1. For ̂H as in (2.52), there exists a unique solution Q̄ to the equa-
tion L(m̄′Q̄) = ̂H which satisfies Q̄(0) = 0 and Eq. (2.47).

Proof. Recall the properties of L, given by (2.39) and acting on L2(R; ν),
described in Sect. 2.2. Letting E := {φ ∈ L2(R; ν) :

∫

ν(dξ) m̄′(ξ)φ(ξ) =
0}, the bounded operator L : E → E is symmetric, coercive and therefore a
bijection. As ̂H ∈ E, we deduce that there exists a unique solution φ∗ ∈ E

to the equation Lφ = ̂H. This implies that the family of functions of the
form ψλ := φ∗ + λm̄′, λ ∈ R, coincides with the set of all the solutions to
Lψ = ̂H in L2(R; ν). Moreover, from the explicit form (2.39) of L and the
smoothness of ˜J , m̄, c and ̂H, the functions ψλ turn out to be smooth as well.
In particular, since m̄′ > 0, the values of λ are uniquely determined by the
condition ψλ(0) = 0.

So far, we have proven that there exists a unique solution ψ̄ ∈ L2(R; ν) to
the equation Lψ = ̂H which has the form ψ̄ = m̄′Q̄ with Q̄ a smooth function
with Q̄(0) = 0. We are left with the proof of Eq. (2.47), which is equivalent,
in view of (2.23), to prove that

sup
ξ∈R

eα|ξ|∣
∣ψ̄(ξ)

∣

∣+ eα|ξ|∣
∣ψ̄′(ξ)

∣

∣

1 + |ξ| < +∞, (A.1)

with α as in (2.24).
Recalling (2.39), (2.50), (2.51) and (2.52), we have that

ψ̄ = p ˜J ∗ ψ̄ + g, ψ̄′ = p ˜J ∗ ψ̄′ + g′, (A.2)

where, see (2.4),

p := β(1 − m2
β) =

1
1 + f ′′

β (mβ)
< 1 (A.3)

and

g := (m2
β − m̄2)β ˜J ∗ ψ̄ − (1 − m̄2)βf +

θ
√

1 − m̄2

2ā
m̄′. (A.4)

Since ψ̄ ∈ L2(R; ν), both ˜J ∗ ψ̄ and ˜J ′ ∗ ψ̄ are bounded functions, so that, in
view of (2.23) and (2.50),

sup
ξ∈R

eα|ξ|(∣
∣g(ξ)

∣

∣+
∣

∣g′(ξ)
∣

∣

)

< +∞. (A.5)
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This immediately implies, by (A.2), that also ψ̄ and ψ̄′ are bounded functions.
To obtain the decay properties (A.1), we now adapt to the present context part
of the analysis developed in [18] to study the spatial structure of the traveling
fronts. Actually, we only show that

sup
ξ>0

eαξ
∣

∣ψ̄(ξ)
∣

∣

1 + ξ
< +∞, (A.6)

since the proof of the other bound in (A.1) is similar.
Let

K(ξ, ξ′) := eα(ξ−ξ′)p ˜J(ξ − ξ′), Ko(ξ, ξ′) := K(ξ, ξ′)1Iξ′>0. (A.7)

By (2.24), K(ξ, ξ′) is a probability kernel, i.e.,
∫

dξ′ K(ξ, ξ′) = 1. By (A.2), for
any ξ > 0,

ψ̄(ξ) =
∫ +∞

0

dξ′ e−α(ξ−ξ′)Ko(ξ, ξ′)ψ̄(ξ′)

+
∫ 0

−1

dξ′ e−α(ξ−ξ′)K(ξ, ξ′)ψ̄(ξ′) + g(ξ),

which implies, by iteration,

ψ̄(ξ) =
n−1
∑

j=0

∫ +∞

0

dξ′ e−α(ξ−ξ′)Kj
o(ξ, ξ′)

∫ 0

−1

dξ′′ e−α(ξ′−ξ′′)K(ξ′, ξ′′)ψ̄(ξ′′)

+
∫ +∞

0

dξ′ e−α(ξ−ξ′)Kn
o (ξ, ξ′)ψ̄(ξ′)

+
n−1
∑

j=0

∫ +∞

0

dξ′ e−α(ξ−ξ′)Kj
o(ξ, ξ′)g(ξ′), ∀ ξ ≥ 0 ∀n ∈ N. (A.8)

Above, the iterated kernel Kj
o(ξ, ξ′) is recursively defined by K0

o (ξ, ξ′) = δ(ξ −
ξ′), K1

o (ξ, ξ′) = Ko(ξ, ξ′), and Kj
o(ξ, ξ′) =

∫

dξ′′Ko(ξ, ξ′′)Kj−1
o (ξ′′, ξ′) for j > 1.

Since ψ̄ and g are bounded functions and
∫

dξ ˜J(ξ) = 1, the jth terms of
the sums in the right-hand side of (A.8) are bounded by a constant multiple
of pj and the term in the middle line by a constant multiple of pn. As p < 1,
we thus have, letting n → ∞ in (A.8),

eαξψ̄(ξ) =
∫ 0

−1

dξ′ π(ξ, ξ′)eαξ′
ψ̄(ξ′) + G(ξ), ξ > 0, (A.9)

where both the series

π(ξ, ξ′) :=
∞
∑

j=0

∫ +∞

0

dξ′′ Kj
o(ξ, ξ′′)K(ξ′′, ξ′)

and

G(ξ) :=
∞
∑

j=0

∫ +∞

0

dξ′ Kj
o(ξ, ξ′)eαξ′

g(ξ′)

converge.
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The Green function π(ξ, ξ′), ξ > 0, ξ′ ∈ [−1, 0], can be interpreted as a
probability kernel because it is nonnegative and

∫ 0

−1

dξ′ π(ξ, ξ′) = 1 ∀ ξ > 0. (A.10)

Moreover, there exists a probability density �(ξ), ξ ∈ [−1, 0], so that, for any
function ϕ ∈ C([−1, 0]),

lim
ξ→+∞

∫ 0

−1

dξ′ π(ξ, ξ′)ϕ(ξ′) =
∫ 0

−1

dξ′ �(ξ′)ϕ(ξ′). (A.11)

We omit the proof of (A.10) and (A.11) which are a special case of [18, Eq.
(3.69) and Lemma 3.7].

Since ψ̄ is a continuous function, from (A.11) the integral in the right-
hand side of (A.9) converges to

∫ 0

−1
dξ′ �(ξ′)eαξ′

ψ̄(ξ′) as ξ → +∞. Therefore,
to prove (A.6), it remains to show that

sup
ξ>0

∣

∣G(ξ)
∣

∣

1 + ξ
< +∞. (A.12)

By (A.5) there is C > 0 such that

|G(ξ)| ≤ C + C
∞
∑

n=1

∫ +∞

0

dξ′ Kn
o (ξ, ξ′).

To estimate the nth term of the sum in the right-hand side, the key observation
is taken from the proof of [18, Eq. (3.69)]. We have,
∫ +∞

0

dξ′ Kn
o (ξ, ξ′) ≤

∫

dξ1 · · · dξn K(ξ, ξ1) · · · K(ξn−1, ξn) 1Iξn>0 =: In.

Since the probability kernel K(ξ, ξ′) depends only on the difference ξ′ − ξ, see
(A.7), the multiple integral In can be viewed as an expectation with respect
to n i.i.d. random variables Yj = ξj − ξj−1, j = 1, . . . , n, where ξ0 := ξ, each
one with the distribution of ξ′ − ξ as given by K(ξ, ξ′) dξ′. More precisely, as
{ξn > 0} = {(ξn − ξn−1) + (ξn−1 − ξn−2) + · · · + (ξ1 − ξ) > −ξ} and observing
that, in view of (A.7), E(Y1) =

∫

dξ′ K(ξ, ξ′)(ξ′ − ξ) = C1 < 0,

In = P

⎛

⎝

n
∑

j=1

Yj > −ξ

⎞

⎠ = P

⎛

⎝

n
∑

j=1

(Yj − C1) > n|C1| − ξ

⎞

⎠ .

If n ≤ 2ξ/|C1|, we use the obvious estimate In ≤ 1, while for n > 2ξ/|C1|, by
Chebyshev’s inequality,

In ≤ P

⎛

⎝

n
∑

j=1

(Yj − C1) >
n

2
|C1|
⎞

⎠ ≤ 16
C4

1n4
E

⎡

⎢

⎣

⎛

⎝

n
∑

j=1

(Yj − C1)

⎞

⎠

4
⎤

⎥

⎦

≤ 16C4n + 96C2n
2

C4
1n4

,
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where C2 := E
[

(Y1 − C1)2
]

and C4 := E
[

(Y1 − C1)4
]

. We conclude that

|G(ξ)| ≤ C + C
∞
∑

n≥1

In ≤ C +
2C

|C1|ξ +
∑

n>0

16C4n + 96C2n
2

C4
1n4

,

from which (A.12) follows. �

Proof of Eq. (3.27). We write Hε = Hε + Kε with Hε solving the linear equa-
tion,

−∇ · (φε(1 − φε)∇Hε) +
B(φε) + D(φε)

ε2
Hε = ∂tφε

−1
2
Δφε − B(φε) − D(φε)

ε2
, (A.13)

and therefore Kε satisfying
∇ · (φε(1 − φε)∇Kε)

=
B(φε)(eHε+Kε − 1 − Hε) − D(φε)(e−Hε−Kε − 1 + Hε)

ε2
.

(A.14)

Since B(φε) + D(φε) and φε(1 − φε) are strictly positive, the first equation
has a unique solution in L2(Td), which is a smooth function of (t, x) by the
smoothness of φε and elliptic regularity. In addition, in view of the expansions
(3.22) and (3.23) (the latter for H = 0), the right-hand side in (A.13) is O(ε−1),
so that the maximum principle yields Hε = O(ε).

Combining (3.29) with (A.13), by (3.22) and (3.23) (the latter for H =
0),

− ∇ · (φε(1 − φε)∇(Hε − εH1)) +
B(φε) + D(φε)

ε2
(Hε − εH1) = O(1),

(A.15)

hence the maximum principle yields Hε − εH1 = O(ε2).
Next, using (A.14), we show that Kε = O(ε2), whence ˜Hε = ε−2Kε +

ε−2(Hε−εH1) = O(1). Indeed, recalling that B(φε) and D(φε) are strictly pos-
itive and noticing that the nonlinear term in (A.14) is an increasing function of
Kε, by comparison principle it is enough to construct super- and sub-solutions
in the form K±

ε = ±Cε2, where C is a (suitably large) positive constant. This
simply follows from the elementary inequality 1 − H − eCε2−H > 0, which
holds if |H| ≤ C1ε for given C1 > 0, provided C is large enough and ε is small
enough.

We are left with the estimate on the gradient of ˜Hε. To this end, we first
notice that, as Hε = O(ε) and Kε = O(ε2), Eq. (A.14) can be recast in the
form,

− ∇ · (φε(1 − φε)∇Kε +
B(φε) + D(φε)

ε2
Kε = O(1). (A.16)

By (A.15) and (A.16), we get

− ∇ · (φε(1 − φε)∇ ˜Hε +
B(φε) + D(φε)

ε2
˜Hε = O(ε−2). (A.17)
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As Hε = O(1), the estimate on ε|∇ ˜Hε| follows by a standard covering argument
with balls of radius ε and applying elliptic regularity. �
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