
Ann. Henri Poincaré 20 (2019), 1651–1698
c© 2019 Springer Nature Switzerland AG
1424-0637/19/051651-48
published online March 20, 2019
https://doi.org/10.1007/s00023-019-00786-3 Annales Henri Poincaré

Embeddings, Immersions and the Bartnik
Quasi-Local Mass Conjectures

Michael T. Anderson and Jeffrey L. Jauregui

Abstract. Given a Riemannian 3-ball (B̄, g) of nonnegative scalar curva-
ture, Bartnik conjectured that (B̄, g) admits an asymptotically flat (AF)
extension (without horizons) of the least possible ADM mass and that
such a mass minimizer is an AF solution to the static vacuum Einstein
equations, uniquely determined by natural geometric conditions on the
boundary data of (B̄, g). We prove the validity of the second statement,
i.e., such mass minimizers, if they exist, are indeed AF solutions of the
static vacuum equations. On the other hand, we prove that the first state-
ment is not true in general; there is a rather large class of bodies (B̄, g)
for which a minimal mass extension does not exist.

1. Introduction

A fundamental problem in general relativity is the formulation of a “suitable”
definition of quasi-local mass (cf. [49, Problem 1]). To motivate this concept,
consider for instance a time-symmetric, asymptotically flat (AF) initial data
set (M, g) without boundary for the Einstein equations, i.e., a Riemannian 3-
manifold viewed as a totally geodesic space-like hypersurface in a Lorentzian
(3+1)-dimensional space-time. Assuming the space-time obeys the dominant
energy condition, the submanifold (M, g) has nonnegative scalar curvature.
The quasi-local mass of a compact region Ω ⊂ (M, g) should be a real number
that represents the mass contained within Ω.

Many definitions of quasi-local mass have been put forth in the last several
decades, though we make no attempt here to give a comprehensive history;
see [55] for an excellent review. Some of the “classical” examples include the
Hawking mass [26], the Brown–York mass [16] and the Bartnik mass [7]. More
recently, Wang–Yau proposed a very interesting definition that generalizes the
approach of Brown–York [57].

In this paper, we are interested in the Bartnik mass, whose setup we
now recall. Let Ω be a smooth 3-manifold, with boundary, diffeomorphic to
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the closed 3-ball B̄ in R
3, and let gΩ be a Riemannian metric on Ω with

nonnegative scalar curvature. The Bartnik mass was originally defined as

mB(Ω, gΩ) = inf
g

{mADM(g)}, (1.1)

where the infimum is taken over the set of smooth AF metrics g on R
3 such that

(Ω, gΩ) embeds isometrically into (R3, g), and (R3, g) has nonnegative scalar
curvature and contains no horizons [7]. (Note that a smooth AF 3-manifold
of nonnegative scalar curvature with no horizons is diffeomorphic to R

3 [43].)
Bartnik defined a horizon to be a stable minimal 2-sphere, but a number of
variants have since been considered in the literature. Among these, we will
take a horizon to be an immersed compact minimal surface that surrounds Ω;
this choice is discussed further in Sect. 2.

The Bartnik mass satisfies many of the generally desired properties of a
quasi-local mass (cf. [7]). For instance, mB(Ω, gΩ) is nonnegative, by the pos-
itive mass theorem [52,58]. Furthermore, if (Ω, gΩ) is isometric to a smooth
region in Euclidean space (R3, gEucl), then mB(Ω, gΩ) vanishes. Bartnik conjec-
tured that the converse holds (“strict positivity of mB”), i.e., if mB(Ω, gΩ) = 0,
then (Ω, gΩ) is a Euclidean region. A key result of Huisken and Ilmanen [28]
shows that if mB(Ω, gΩ) = 0, then (Ω, gΩ) is locally flat, i.e., locally isometric
to Euclidean space (although this result applies to a slightly different definition
of Bartnik mass). The Bartnik mass also enjoys monotonicity (i.e., a region
contained in (Ω, gΩ) cannot have a greater value of mB ; this follows from the
definition), and the Bartnik mass limits to the ADM mass for an exhaust-
ing sequence of large balls in an AF manifold of nonnegative scalar curvature
[28]. The most fundamental open questions regarding the Bartnik mass are
to determine under which general conditions the infimum in (1.1) is achieved,
to understand the structure of the space of such minimizers and to describe
the behavior of the corresponding mass functional on the space of minimizers.
Before proceeding further, we recast the Bartnik mass in a slightly different
manner, by focusing on the role played by the boundary geometry on the two
sides of ∂Ω.

For a pair (Ω, gΩ) as above, let γ = gΩ|T (∂Ω) be the induced metric on
∂Ω ∼= S2, and let H be the mean curvature of ∂Ω, (with respect to the unit
outward normal, i.e., positive for round spheres in R

3). The pair (γ,H) will be
called the (geometric) Bartnik boundary data of (Ω, gΩ). More generally, any
pair (γ,H), where γ is a smooth Riemannian metric on S2 and H is a smooth
function on S2, will be called Bartnik boundary data.

Bartnik pointed out that a minimizer g of (1.1) would only be expected
to be Lipschitz along the “seam” ∂Ω, obeying the boundary conditions [9,10]

γ∂Ω = γ∂M , H∂Ω = H∂M , (1.2)

where M is the closure of the complement of the embedded image of Ω in R
3

and H∂M is the mean curvature of ∂M with respect to the unit normal pointing
into M . The significance of matching the mean curvatures on both sides is that
it assures the scalar curvature is distributionally nonnegative across the seam.
The scalar curvature is also well known to be distributionally nonnegative if
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γ∂Ω = γ∂M , H∂Ω ≥ H∂M , (1.3)

are satisfied; we discuss this point further in Remark 2.9. The boundary con-
dition (1.3) was also considered by Miao [44] and Shi and Tam [53]. Thus, we
consider the following reformulation of the Bartnik mass. Fix M as a smooth
manifold with boundary diffeomorphic to the closure of R3\B̄, and consider
the space P(M) of smooth, AF Riemannian metrics g on M (see (2.1)) with
nonnegative scalar curvature, with

◦P(M) being the subset such that (M, g)
contains no horizons (defined as above: immersed compact minimal surfaces
that surround Ω). We call g ∈ P(M) an admissible extension of a region
(Ω, gΩ) as above if (1.3) holds. We take as our definition of the Bartnik mass:

mB(Ω, gΩ) = inf{mADM(g) : g ∈ ◦P(M) is an admissible extension of (Ω, gΩ)}.
(1.4)

One might also consider the mass defined by the equality condition (1.2).
Both of these versions have previously appeared in the literature. For further
discussion on the numerous variations in the definition of Bartnik mass, and
some progress on reconciling them, see [32,42].

These three definitions, based on (1.1)–(1.3), all require a precise choice
among the various possible definitions of horizon. A major reason a horizon is
defined here to be a surrounding minimal surface (as opposed to an arbitrary
minimal surface in M) is that

◦P(M) is then open in P(M), cf. Lemma 2.1,
so that this condition is stable. (This is unknown for other definitions of the
horizon condition.)

Regarding then the boundary conditions (1.1)–(1.3) themselves, we prove
in Theorem 2.10 that if a minimizer subject to (1.3) exists in

◦P(M), it nec-
essarily satisfies (1.2) (cf. also prior work of Miao on this issue [45]). This
result strongly suggests the two definitions of Bartnik mass based on (1.2) and
(1.3) are equivalent and also very likely equivalent to (1.1), cf. Remark 2.9 and
[32,42]. Henceforth, we adopt (1.4) as the definition of the Bartnik mass.

The following three conjectures are due to Bartnik; they are discussed in
[7,10] and in most detail in [9].

Conjecture I. Any region (Ω, gΩ) with Ω ∼= B̄, H∂Ω > 0 and gΩ of nonnegative
scalar curvature admits an admissible extension in

◦P(M).

Thus, conjecturally, any metric of nonnegative scalar curvature on a ball,
with positive boundary mean curvature, can be extended to an AF mani-
fold with nonnegative scalar curvature, where the extension has no horizons
and (1.3) is satisfied. (The hypothesis of positive boundary mean curvature is
imposed because if, for instance, H∂Ω were negative everywhere, then any AF
extension would contain a horizon.) This general extension conjecture essen-
tially appears in [9, Problem 1]. It implies that any region (Ω, gΩ) as above
has a well-defined Bartnik mass (1.4).

Conjecture I is known as the Bartnik extension conjecture and remains
open in general (even allowing extensions in P(M)). Further discussion of the
conjecture and some partial results are given in Sect. 3.
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Conjecture II. For any region (Ω, gΩ) with Ω ∼= B̄, H∂Ω > 0 and gΩ of nonneg-
ative scalar curvature, there exists an admissible extension g ∈ ◦P(M) realizing
the Bartnik mass (1.4). Moreover, g satisfies the boundary conditions (1.2).

Conjecture II is known as the Bartnik mass-minimization conjecture.
Bartnik [9,11] developed a heuristic program suggesting that a metric g real-
izing the Bartnik mass (1.4) on M yields an asymptotically flat (AF) solution
of the static vacuum Einstein equations, i.e., there is a potential function
u : M → R, with u → 1 at infinity, such that

u Ricg = D2u, Δu = 0. (1.5)

(Moreover, the AF potential function u is expected to be positive). This
has been partially verified, using quite different methods, by Corvino [21,22],
cf. Remark 2.11 for further discussion. We give a full proof of this proposal,
thus completely implementing Bartnik’s program:

Theorem 1.1. For a region (Ω, gΩ) as above with H∂Ω > 0, a metric g mini-
mizing the Bartnik mass (1.4) admits an AF potential function u > 0 such that
(g, u) is an AF solution of the static vacuum Einstein Eqs. (1.5). Moreover,
such a minimizer g satisfies (1.2).

We refer to Theorem 2.8 and Theorem 2.10 for further details.

Conjecture III. For any geometric Bartnik boundary data (γ,H) on S2, with
H > 0, there exist a unique extension g ∈ ◦P(M) of (γ,H) and a function
u > 0 with u → 1 at infinity, such that the pair (g, u) is an AF solution of the
static vacuum Einstein Eqs. (1.5).

Conjecture III is known as the Bartnik static metric extension conjecture.
In addition to the horizon issue, the assumption H > 0 in Conjectures II

and III is made due to the black hole uniqueness theorem, cf. [17,29], and also
[46]. Namely, the data (γ, 0) are boundary data of a static vacuum solution
only for γ a round, constant curvature metric on S2, realized by the family of
Schwarzschild metrics. Thus, Conjectures II and III are well known to fail for
H = 0 boundary data.

It is clear that Conjectures II and III each imply Conjecture I. Using
Theorem 1.1, Conjecture II implies the existence part of Conjecture III for the
special case of boundary data (γ,H) obtained from a region Ω with nonneg-
ative scalar curvature and H > 0. On the other hand, even for this special
class of boundary data, Conjecture III does not imply Conjecture II, since
all mass-minimizing sequences for a given body Ω may fail to converge to a
limit. As discussed in Proposition 2.7, the static vacuum solutions given in
Conjecture III are precisely the critical points of the ADM mass mADM (with
fixed boundary conditions), but it is not clear that these are minimizers. If
Conjecture II holds, so minimizers exist, then the uniqueness of Conjecture III
would imply that all critical points are minimizers.

Given this background, the main purpose of this work is to prove that
Conjecture II is not true in the generality stated, so that further hypotheses
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are required to maintain its validity (see the discussion at the end of Sect. 5).
As discussed below, similar remarks apply to Conjecture III. This failure is
related to the degeneration of the exterior manifold-with-boundary structure
on M , given control on the boundary data in (1.2) or (1.3). This is most simply
described in the passage from embedded spheres to immersed spheres in R

3,
which we now discuss.

Let Imm(B̄,R3) be the space of smooth immersions

F : B̄ → R
3,

of the closed 3-ball B̄ ⊂ R
3; thus, F extends to an immersion of an open neigh-

borhood of B̄. Let F ⊂ Imm(B̄,R3) denote the subspace of immersions that
restrict to embeddings on the interior of B̄ and on which the self-intersection
set Z of F |∂B̄ = F |S2 consists of a finite, nonzero number of double points.
Thus, there is a finite set Z ⊂ S2 given as a disjoint union (∪zi) ∪ (∪z′

i) such
that F is injective on B̄\Z, F (zi) = F (z′

i) for each i, and F (zi) �= F (zj) for
i �= j. For F ∈ F , the set F (B̄) is not a smooth region in R

3. However, the pull-
back (B̄, F ∗(gEucl)) is obviously a smooth, locally flat Riemannian manifold
with boundary. It is easy to see that F provides a large, infinite-dimensional
space of such locally flat domains. We also remark that there is a large class
of immersions F ∈ F such that (B̄, F ∗(gEucl)) has positive boundary mean
curvature (consider, for example, a torus in R

3 with positive mean curvature,
appropriately cut with spherical caps glued back in, tangent at their respective
poles —see [4, Figure 1]).

Theorem 1.2. Conjecture II is false for any region (B̄, F ∗(gEucl)) for F ∈ F as
above. In particular, there is no admissible extension of (B̄, F ∗(gEucl)) whose
ADM mass attains the Bartnik mass (which equals zero).

In particular, this also shows that strict positivity of the Bartnik mass
fails, i.e., the result of Huisken and Ilmanen [28] that mB(Ω, gΩ) = 0 implies
local flatness is optimal. This is because the proof of Theorem 1.2 will show
that (B̄, F ∗(gEucl)) has zero Bartnik mass and does not embed isometrically
in Euclidean 3-space, cf. also Remark 4.4.

Note that for F ∈ F , there is a sequence of embeddings Fi of the closed 3-
ball into R

3 with Fi → F smoothly, with the corresponding embedded spheres
Fi(S2) converging smoothly to an immersed sphere. In particular, the class
F of immersions is at the boundary of the space of embeddings. Of course,
Conjecture II holds for regions Ω isometrically embedded in R

3.
As noted above, the pulled-back Euclidean metrics F ∗

i (gEucl) converge
smoothly to a limiting smooth flat metric on the abstract 3-ball B̄ with limit
boundary data (γ,H). However, the flat metrics on the complementary mani-
folds Mi = R

3\Fi(B̄) degenerate in the limit. It is a priori possible that there
is a distinct sequence of (nonflat) admissible extensions gi of the boundary
data (γ,H) with mADM(gi) converging to the infimum of the mass of such
extensions, which do not degenerate and so give a limit realizing the Bartnik
mass. The main content of Theorem 1.2 is to prove that in fact this does not
occur.
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We conjecture that this phenomenon is quite general, i.e., that Conjec-
ture II is false for any domain (B̄, F ∗(gEucl)) obtained from an immersion
F : B̄ → R

3 that is not an embedding (even if F is not at the boundary of the
space of embeddings), cf. Conjecture 4.11.

A version of the discussion above also holds with respect to Conjecture III.
Namely, let Em,α be the moduli space of AF static vacuum solutions (g, u),
u > 0, on M = R

3\B. The moduli space Em,α is the space of all static vacuum
metrics (g, u) which are Cm,α smooth up to ∂M , modulo the action of the
Cm+1,α diffeomorphisms Diffm+1,α

1 (M) of M equal to the identity on ∂M
(and asymptotic to the identity at infinity). It is proved in [2] (cf. also [4])
that Em,α is a smooth Banach manifold, and moreover, the map to Bartnik
boundary data

ΠB : Em,α → Metm,α(S2) × Cm−1,α(S2),
ΠB(g, u) = (γ,H), (1.6)

is a smooth Fredholm map, of Fredholm index 0. Here, Metm,α(S2) is the
space of Cm,α Riemannian metrics on S2 with the Cm,α topology.

Now consider the map Π+
B , the restriction of ΠB to the open subspace

Em,α
+ of static vacuum metrics with H > 0 at ∂M :

Π+
B : Em,α

+ → Metm,α(S2) × Cm−1,α
+ (M). (1.7)

Conjecture III is equivalent to the statement that Π+
B in (1.7) is a bijection.

However, it is proved in [4] that Π+
B is not a homeomorphism; in fact, the

inverse map to Π+
B , if it exists, is not continuous in general. The failure of

the homeomorphism property is closely related to the behavior of Π+
B at the

boundary of the space of (flat) embeddings within the larger space of immer-
sions, discussed above in connection with Conjecture II.

Theorem 1.2 shows that a major obstacle in establishing the validity of
Conjecture II is controlling the behavior of mass-minimizing sequences arbi-
trarily close to the boundary ∂M = ∂Ω, given control on the Bartnik bound-
ary data (γ,H), so that the manifold-with-boundary structure of M does not
degenerate. A similar difficulty arises in proving Conjecture III; for example, it
is much simpler to control the behavior of sequences of static vacuum solutions
in the interior of M (away from ∂M) compared with controlling the behavior
near the boundary; see, for example, the analysis in [1]. We expect a similar
phenomenon for more general mass-minimizing sequences.

In contrast to the negative results above on Conjectures II and III, we
present positive evidence for the validity of Conjecture I in Sect. 3. We prove
in Proposition 3.2 that if the boundary data (γ,H) admit an extension to an
AF metric of nonnegative scalar curvature, then so do (γ, ˜H), for any ˜H ≥
H. Combining this with previous results in [3,38] leads to the verification of
Conjecture I for a wide variety of boundary data (γ,H), although without
addressing the issue of horizons.
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The contents of the paper are briefly as follows. In Sect. 2, we discuss
the various possible definitions of horizon as well as the boundary conditions
(1.2)–(1.3), and the relations of minimizers of the Bartnik mass with the static
vacuum Einstein equations. The main results are Theorems 2.8 and 2.10, which
imply Theorem 1.1. In Sect. 3, we discuss Conjecture I and present new evi-
dence for its validity in general. Section 4 is devoted to the proof of Theorem
1.2, while Conjecture III is discussed further in Sect. 5. We note that although
the topics of these sections are of course inherently related, the sections them-
selves are essentially independent of each other.

2. Mass Minimizers and the Static Vacuum Einstein Equations

In this section, we discuss relations between the various notions of Bartnik
mass from Introduction and their relations with the static vacuum Einstein
equations.

Starting with an idea suggested by Brill et al. [15], Bartnik [9,11] pre-
sented a heuristic argument that critical points of the mass on the space of
solutions of the (time-symmetric) four-dimensional vacuum Einstein constraint
equations, with fixed boundary data (γ,H), should be given by solutions of
the static vacuum Einstein equations. This strongly suggested that minimizers
of the Bartnik mass (with respect to a suitable horizon condition) should then
also be static vacuum Einstein solutions. Some recent work along these lines
has also been carried out by McCormick [40,41].

The main results of this section are a full proof of Bartnik’s proposal for
Bartnik mass minimizers, cf. Theorems 2.8 and 2.10. In addition, Theorem
2.10 shows that a Bartnik mass minimizer defined according to (1.3) actu-
ally satisfies (1.2), leading to a corresponding strong monotonicity result in
Corollary 2.12. We refer the reader to Remark 2.11 for relevant prior results.

Throughout, M will be a smooth 3-manifold with boundary, diffeomor-
phic to R

3\B, where B is an open ball. A Cm,α Riemannian metric g on M
(i.e., Cm,α up to and on ∂M) will be called asymptotically flat (AF) if

gij − δij ∈ Cm,α
δ (M), (2.1)

where Cm,α
δ (M) is the weighted Hölder space of functions on M that decay

to 0 at a rate r−δ with kth derivatives decaying at the rate r−δ−k, k ≤ m,
and with appropriately weighted Hölder α-seminorms of the mth derivatives
bounded, cf. [19] for example. The rate δ is fixed throughout and assumed to
satisfy

1
2 < δ < 1.

We also fix any m ≥ 3 and α ∈ (0, 1).
Given a fixed δ as above, let Pm,α(M) = Pm,α

δ (M) be the space of AF
metrics g on M with nonnegative scalar curvature s = sg. Recall that the
ADM mass mADM of g ∈ Pm,α(M) is only defined [6] for metrics with
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s ∈ L1(M). (2.2)

The Bartnik mass (1.4) is then obtained by minimizing the ADM mass on
Pm,α(M) subject to the boundary conditions (1.3) on ∂M and subject to the
no-horizon condition. Alternatively, one might consider minimizing the mass
subject to the stronger condition (1.2).

As mentioned in Introduction, there are several notions of horizon appear-
ing in the literature without a current general consensus. The most strict con-
dition is that (M, g) has no immersed compact minimal surfaces; let ms

B denote
the corresponding Bartnik mass. Variations of this condition such as no sta-
ble compact minimal surfaces or no embedded compact minimal surfaces have
also been considered. In some cases, the minimal surfaces are required to be
topological spheres.

A somewhat weaker condition (and the one that we adopt) is that there
are no immersed compact minimal surfaces surrounding ∂M in M , i.e., any
path from ∂M to infinity must pass through the surface. (Again one might
consider variations such as no stable or no embedded surrounding compact
minimal surfaces). Let mw

B denote the corresponding Bartnik mass; then, one
clearly has

mw
B ≤ ms

B . (2.3)
The same relation holds with respect to the weaker and stronger boundary
conditions (1.2) and (1.3), respectively.

Moreover, a third definition was suggested by Bray [14], requiring that
∂M be outer-minimizing in (M, g). This version of the mass will be discussed
briefly in Sect. 5, but not used before then.

One of the main reasons for preferring the weaker condition is the follow-
ing stability result. Let

◦Pm,α(M) ⊂ Pm,α(M) (2.4)
be the subset of metrics that have no immersed minimal surface surrounding
∂M .

Lemma 2.1.
◦Pm,α(M) is an open subset of Pm,α(M).

Proof. We show that the complement is closed. Let {gi} be a sequence in
Pm,α(M)\ ◦Pm,α(M) converging to some g ∈ Pm,α(M). Each gi is an AF met-
ric on M such that (M, gi) contains an immersed minimal surface Σi surround-
ing ∂M . The unbounded component ̂Mi of M\Σi is then AF; one may then
minimize the area functional for surfaces in ̂Mi homologous to infinity. Since
∂ ̂Mi together with a large sphere S near infinity (independent of i) serve as
well-defined barriers, it follows from well-known results of Meeks et al. [43]
that ̂Mi contains a minimal surface ̂Σi that has the least area among surfaces
surrounding ∂ ̂Mi.

In particular, ̂Σi is stable. Further, the area of ̂Σi with respect to gi

is uniformly bounded, since ̂Σi has less gi-area than S, and areagi
(S) →

areag(S). Using the well-known curvature estimates of Schoen, it is then
standard, (cf. [20] for example) that a subsequence of ̂Σi converges to a
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stable minimal surface Σ in (M, g). Clearly, Σ surrounds ∂M , so that g ∈
Pm,α(M)\ ◦Pm,α(M). �

It is mainly for this stability behavior that we choose a horizon to be a
surrounding minimal surface. (Such stability is unknown for other definitions of
horizon in an AF manifold with boundary.) A further reason is that static vac-
uum Einstein metrics have no horizons in this sense (except for Schwarzschild
metrics), by a result of Miao [46]. (This is again unknown for general minimal
surfaces). We prove Theorem 1.2 for the version of the Bartnik mass we adopt
(i.e., for horizons as surrounding minimal surfaces and for the weaker bound-
ary condition (1.3)). In Remark 4.10, we describe a possible modification to
the proof that may allow for the stronger boundary condition (1.2). Theorem
2.10 strongly suggests that with respect to

◦Pm,α(M) as in (2.4), the boundary
conditions (1.2) and (1.3) give equal Bartnik masses; this is less clear for the
stronger definition ms

B .
To summarize using the current notation, as in (1.4), we set

mB(Ω, gΩ)=mB(γ,H)=inf{mADM(g) : g ∈ ◦Pm,α(M), g|∂M = γ,H∂M ≤ H}.
(2.5)

Note that an immediate consequence of the definition is the following (weak)
inverse monotonicity property: If H ′ ≤ H, then

mB(γ,H) ≤ mB(γ,H ′). (2.6)

A strong monotonicity will be proved in Corollary 2.12 below.
Returning to the discussion prior to (2.2), let Sm,α(M) = Sm,a

δ (M)
be the space of pairs (g, u), with g a Cm,α

δ AF metric on M and u an
AF function, i.e., u − 1 ∈ Cm,α

δ (M), so that u → 1 at infinity. We write
Sm,α(M) = Metm,α

AF (M) × Cm,α
AF (M). Data (g, u) for which u > 0 correspond

to AF Lorentzian metrics on M = R × M of the form

gM = −u2dt2 + g. (2.7)

Metrics of the form (2.7) (or such pairs (g, u)) will be referred to as static;
this is not to be confused with other notions of static (e.g., static vacuum or
Corvino’s definition of static in [21]).

Clearly, Sm,α(M) = Metm,α
AF (M) × Cm,α

AF (M) is a smooth Banach mani-
fold. Let Sm,α

+ (M) ⊂ Sm,α(M) be the subset such that

sg ≥ 0.

Thus, Sm,α
+ (M) = Pm,α(M) × Cm,α

AF (M). Note that if (g, u) ∈ ∂(Sm,α
+ (M)),

then the scalar curvature of g is nonnegative and vanishes at some point in
M . We point out that the condition (2.2) is not assumed a priori on Sm,α

+ .
Consider the Regge–Teitelboim Hamiltonian [51] in this setting:

H : Sm,α(M) → R,

H(g, u) =
∫

M

usdvg − 16πmADM(g), (2.8)
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where s = sg is the scalar curvature of g. If u > 0, note that since sgM =
sg − 2Δu

u and dvgM = udvg, the first term gives the Einstein–Hilbert action
on the 4-manifold M modulo a divergence term (namely −2Δu). The reason
for this modification of the Einstein–Hilbert action is to obtain a well-defined
variational problem for the ADM Hamiltonian; we refer to [51] for details.

If s /∈ L1(M), then the individual terms in (2.8) are ill-defined although
the combination is well defined. Explicitly, following [11], (2.8) may be rewrit-
ten in the form

H(g, u) =
∫

M

(u − 1)sdvg −
∫

M

(R0 − s)dvg, (2.9)

where u − 1 ∈ Cm,α
δ (M) and R0 is the bulk integral for the mass, given by

R0 = (δ0δ0g − Δg0(trg0g))
dvg0

dvg
,

where g0 is any background metric agreeing with g near ∂M and is Euclidean
outside a compact set, and δ0 is the corresponding divergence. By the diver-
gence theorem,

∫

M
R0dvg = 16πmADM(g), when the ADM mass is defined,

cf. [11]. Thus, the Regge–Teitelboim Hamiltonian (2.9) is well defined and a
smooth functional on the full Banach manifold Sm,α(M). Of course, the defi-
nitions (2.8) and (2.9) agree when s ∈ L1(M).

Let
S∗u = D2u − (Δu)g − u Ric, (2.10)

be the formal L2-adjoint of the linearization s′ = Dsg of the scalar curvature.
The static vacuum Einstein Eqs. (1.5) are equivalent to the following system
for (g, u) ∈ Sm,α(M):

S∗u = 0, Δu = 0. (2.11)
Note that static vacuum metrics are necessarily scalar flat, s = 0, and are
also necessarily in

◦Pm,α(M), i.e., as noted above, have no horizons (except
for Schwarzschild metrics), cf. [46]. The relation Δu = 0 in (2.11) follows
from S∗u = 0 by taking the trace, and using the Bianchi identity to establish
constant scalar curvature; then, asymptotic flatness gives s = 0 and hence
Δu = 0.

The following result is essentially classical and is a version of results
proved in [11,23,51]; a simple proof in this notation is also given in [4]. Let N be
the unit normal at ∂M pointing into M , and let A be the second fundamental
form of ∂M in M .

Proposition 2.2. The L2-gradient of H on Sm,α(M) is given by

∇H = (S∗u + 1
2usg, s, uA − N(u)γ, 2u) (2.12)

in the sense that, if (h, u′) is any variation of (g, u) inducing the variation
(hT ,H ′

h) of boundary data (γ,H), then

dH(g,u)(h, u′, hT ,H ′
h) =

∫

M

[〈S∗u + 1
2usg, h〉 + su′]

+
∫

∂M

[〈uA − N(u)γ, hT 〉 + 2uH ′
h]. (2.13)
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(The volume forms associated with the metrics on M and ∂M are omit-
ted, to simplify the notation).

Let Sm,α
(γ,H)(M) be the space of static metrics with fixed Bartnik bound-

ary conditions; thus, Sm,α
(γ,H)(M) consists of pairs (g, u) ∈ Sm,α(M) with the

metric g having fixed boundary data equal to (γ,H) at ∂M . It is straight-
forward (using the implicit function theorem) to show that Sm,α

(γ,H)(M) is a
smooth, closed Banach submanifold of Sm,α(M), for all choices of (γ,H) ∈
Metm,α(S2)×Cm−1,α(S2). Tangent vectors to Sm,α

(γ,H)(M) are variations (h, u′)
of (g, u) such that (hT ,H ′

h) = (0, 0) at ∂M , where hT is the restriction of h to
T (∂M) and H ′

h is the variation of the mean curvature in the direction of h.
Proposition 2.2 thus shows that critical points of the Hamiltonian H on

Sm,α
(γ,H)(M) are given exactly by static vacuum Einstein metrics realizing the

given boundary data (γ,H).
In contrast, we show next that there are no critical points of the mass

mADM : D ⊂ Sm,α
(γ,H)(M) → R,

where D is the domain on which mADM is well defined, i.e., the subset of
Sm,α

(γ,H)(M) consisting of metrics g with integrable scalar curvature. Given H,
let Sm,α

(γ,H≤)
(M) be the space of static metrics with boundary metric γ and

mean curvature ≤ H at ∂M .

Lemma 2.3. For any (g, u) ∈ Sm,α
(γ,H)(M) for which mADM is defined, one has

(DmADM)g �= 0. (2.14)

(i.e., there exists an appropriate variation h of g with (DmADM)g(h) �= 0).
If, in addition, (g, u) ∈ Sm,α

+ (M), then (DmADM)g is nonvanishing in the
directions of Sm,α

+ (M) ∩ Sm,α
(γ,H)(M) (again in the sense that there exists an

appropriate variation). Furthermore, if (g, u) ∈ Sm,α
+ (M) and

sg �≡ 0,

then there is an infinitesimal deformation (h, 0) of (g, u) in the direction of
Sm,α

+ (M) ∩ Sm,α
(γ,H≤)

(M) such that

(DmADM)g(h) < 0, (2.15)

so that there are metrics g′ ∈ Sm,α
+ (M) ∩ Sm,α

(γ,H≤)
(M) with mADM(g′) <

mADM(g).

Proof. We use a well-known conformal argument, cf. [21] for example. Suppose
g is an AF metric and g̃ = v4g is a conformal deformation of g, with v > 0 in
Cm,α

AF , so that g̃ is AF. The scalar curvatures of g̃ and g are related by

v5s̃ = −8Δv + sv.
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Suppose the ADM mass m of g is defined and that Δv ∈ L1(M). Then, the
ADM mass m̃ of g̃ is also defined, and a well-known formula (cf. [44], eqn. (46))
relating m and m̃ reads

m̃ = m − 1
2π

lim
r→∞

∫

S(r)

N(v)dA, (2.16)

where N is the outward unit normal at the coordinate sphere S(r), and dA is
the induced area form on S(r) with respect to g.

Let ϕ be a superharmonic function on (M, g), Δϕ ≤ 0, with ϕ = 0
in a neighborhood of ∂M and with ϕ harmonic outside a large compact set,
tending to a constant −c < 0 at infinity. It is easy to see such functions exist.
Let Ft : M → M be a smooth family of diffeomorphisms equal to the identity
near ∂M and equal to the map x → (1−tc)−2x near infinity with F0 = Id. We
apply (2.16) to the curve of metrics gt = F ∗

t ((1+tϕ)4g). (The diffeomorphisms
are needed to put the curve gt in the space Metm,α

AF (M)). Note that sg ≥ 0
implies sgt

≥ 0.
Taking the derivative of (2.16) and using the divergence theorem gives,

for r sufficiently large,

m′
h = (DmADM)g(h) = − 1

2π

∫

S(r)

N(ϕ)dA > 0,

for the variation h = ∂tgt|t=0. (Note the diffeomorphisms Ft may be neglected
in this calculation, since the ADM mass is diffeomorphism invariant). Since h
preserves the boundary conditions, this proves the first two statements.

To prove the last statement, let v ∈ Cm,α
AF be the unique solution to the

equation −8Δv + sρv = 0 with v = 1 on ∂M and v → 1 at infinity, where
s ≥ 0, s �≡ 0 and 0 ≤ ρ ≤ 1 is smooth and compactly supported, such that
ρs �≡ 0. In particular, v ∈ Cm,α

AF . By the minimum principle, v > 0 on M , so
that g̃ = v4g is well defined asymptotically flat, and sg̃ ≥ 0. By the maximum
principle, v < 1 in the interior of M (since ρs is not identically zero) and
N(v) < 0 at ∂M . There is an ε > 0 such that the level set v−1(1 − ε) has a
compact, regular component L that is a closed surface in the AF end of M ,
enclosing the support of ρ. Thus, v is g-harmonic outside of L, equaling 1 − ε
on L and approaching 1 at infinity. By the Hopf maximum principle, N(v) > 0
along L. Applying the divergence theorem in the region outside of L, it follows
that

m̃ = m − 1
2π

lim
r→∞

∫

S(r)

N(v)dA < m.

Moreover, one has ˜H = H + 4N(v) < H on ∂M , by the Hopf maximum
principle.

One may also linearize this argument by choosing v = vt as above solving
−8Δv + tsρv = 0, so that −8Δvt + svt = svt − tsvt = svt(1 − t) ≥ 0, i.e., the
conformally deformed metric has nonnegative scalar curvature. Taking the
derivative at t = 0 gives the result. �
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Lemma 2.3 shows the special role accorded to the scalar-flat metrics on
M . In the context of the 4-metric (2.7) on M, the equation

s = 0,

on (M, g) is exactly the set of vacuum Einstein constraint equations (since the
second fundamental form K of M in M vanishes). Let

Cm,α = {(g, u) : sg = 0} ⊂ Sm,α(M).

be the space of solutions of the constraint equations on Sm,α(M). Note that
there is no condition on the lapse u (except u − 1 ∈ Cm,α

δ ). Of course, Cm,α is
a (small) subset of the full boundary ∂(Sm,α

+ (M)). Note also that since static
vacuum metrics are scalar flat, any critical point (g, u) of H on Sm,α

(γ,H)(M)
must lie in Cm,α.

To proceed further, we need to examine the smoothness of the spaces
Cm,α and Cm,α

(γ,H), where the latter is the subset of Cm,α consisting of pairs
(g, u) where g induces Bartnik boundary data (γ,H).

Proposition 2.4. The scalar curvature map

s : Sm,α(M) → Cm−2,α
δ+2 (M), (g, u) �→ s(g)

is a smooth submersion at any (g, u) ∈ Sm,α(M), i.e., the linearization Dsg

is surjective and its kernel splits. The same statement holds for the restricted
map

s : Sm,α
(γ,H)(M) → Cm−2,α

δ+2 (M), (g, u) �→ s(g). (2.17)

Consequently, the spaces Cm,α and Cm,α
(γ,H) (the latter if nonempty) are smooth

Banach manifolds, (closed submanifolds of Sm,α(M)).

A similar result was proved by Bartnik [11, Theorem 3.7] for complete
AF manifolds in a Hilbert space setting for the general constraint equations.
The proof below is conceptually related. On the one hand, it is simpler than
Bartnik’s since one only has to take account of the scalar constraint (s = 0); on
the other hand, it is more difficult, due to the presence of boundary conditions.

Proof. We prove the second statement (i.e., for Sm,α
(γ,H)(M)), which implies the

first (for Sm,α(M)). Note also that both statements are independent of u, so
we may assume u > 0.

The proof proceeds (of course) by the implicit function theorem in Banach
spaces. To apply this, one needs to prove that the linearization s′ = Dsg in
(2.17), i.e.,

s′ : TSm,α
(γ,H)(M) → TCm−2,α

δ+2 (M), (h, u′) → s′(h), (2.18)

is surjective and the kernel Ker s′ splits as a subspace of TSm,α
(γ,H)(M) at (g, u).

The usual proofs of these properties for compact manifolds or complete AF
manifolds, based either on conformal deformations, or on the structure of the
formally elliptic operator s′ ◦ (s′)∗, will not work in this setting due to the
presence of the boundary conditions. We begin with the proof of surjectivity.
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Consider the 4-manifold M and static metrics gM on M, as in (2.7). The
Ricci curvature of the metric gM, determined by (g, u), is given by

RicgM = Ricg −u−1D2u + u−1Δuω ⊗ ω,

where ω = udt is a gM-unit covector in the “vertical” direction and the first
two terms are in the “horizontal” direction (tangent to M). Passing to the
associated Einstein tensor RicgM − sgM

2 gM of gM gives

EgM = Eg − u−1(D2u − Δu g) +
s

2
ω ⊗ ω, (2.19)

where Eg is the Einstein tensor of g. Consider now the divergence-gauged
Einstein operator at a background metric g̃M ∈ Sm,α(M):

Φg̃M : Sm,α
δ (M) → Sm−2,α

δ+2 (M),

Φg̃M(gM) = EgM + 2δ∗
gMδg̃M(gM), (2.20)

where δg̃M is the divergence operator with respect to g̃M and δ∗
gM is the formal

L2-adjoint of δgM . (Here, we view Sm−2,α
δ+2 (M) as the Banach space of pairs

(τ, f) corresponding to τ + fω ⊗ ω, where τ is a symmetric 2-tensor on M

and f is a function on M with τij and f in Cm−2,α
δ+2 (M)). Let L = Dg̃MΦ be

linearization of Φ := Φg̃M at gM = g̃M, and let ̂h = (h, u′) denote a variation
of gM with h the variation of g and u′ the variation of u. We then set

˜L(h, u′) = L(h, u′) − Δgν
′ω ⊗ ω,

where ν′ = (log u)′ = u′
u . Thus, the vertical component of ˜L is given by

1
2s′(h)−Δgν

′ + δ∗
gMδgMh(V, V ), where V = u−1∂t, (compare with the remark

following (2.8)). We claim that ˜L is a self-adjoint elliptic operator with respect
to the boundary conditions

(δgM
̂h, hT ,H ′

h + N(ν′)) = (0, 0, 0) at ∂M. (2.21)

(We note that H ′
h + N(ν′) is the variation of the mean curvature of ∂M in

the direction ̂h). Namely, it is proved in [4, Lemma 3.2] that the operator L is
self-adjoint and elliptic with respect to the closely related boundary conditions

(δgM
̂h, [̂hT ]0,H ′

h + N(ν′)) = (0, 0, 0) at ∂M, (2.22)

where [̂hT ]0 denotes the trace-free part of ̂hT (where ̂hT is the restriction
of ̂h to ∂M, and the trace is taken with respect to the induced metric on
∂M). Using exactly the same methods as in [4, Lemma 3.2] together with [4,
Proposition 3.7], one easily sees that adding the term −Δgν

′ω⊗ω to L has the
effect of changing the boundary conditions (2.22) to (2.21) while preserving
ellipticity and self-adjointness.

Let T0 ⊂ T (Sm,α
δ (M)) be the subspace of tangent vectors (infinitesimal

variations) satisfying the boundary conditions (2.21). By elliptic theory, the
operator ˜L0 := ˜L|T0 : T0 → T (Sm−2,α

δ+2 (M)) is Fredholm, so has closed range,
and

(Im ˜L0)⊥ = Ker ˜L0. (2.23)
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Let π2 be the projection onto the second (i.e., vertical) factor of T (Sm−2,α
δ+2 (M)),

as in (2.19). A simple calculation (cf. [4, (2.16)] for instance) shows that
2δ∗

gMδgMh(V, V ) = δh(∇ log u). Hence,

(π2 ◦ ˜L0)(h, u′) = 1
2s′(h) − Δν′ + 1

2δh(∇ log u). (2.24)

As noted in the beginning of the proof, the statement (2.17) does not depend on
the choice of u. Hence, we may set u = 1, so that (π2◦˜L0)(h, u′) = 1

2s′(h)−Δu′.
Now the surjectivity of s′ on TSm,α

(γ,H)(M) is equivalent to the statement

that the restriction of ˜L0 to the horizontal subspace (h, 0) (where u′ = 0) of T0

is surjective onto the vertical space (0, f). By the self-adjoint property (2.23),
this is equivalent to showing that if

∫

M

ϕs′(h) = 0, (2.25)

for some ϕ ∈ Cm,α
δ (M) and for all (h, 0) ∈ T0, then ϕ = 0. To prove this, it

follows from (2.25) that for all such h,

0 =
∫

M

ϕs′(h) =
∫

M

〈S∗ϕ, h〉, (2.26)

where, as in (2.10), S∗ is the formal L2-adjoint of the linearization s′. (The
condition (h, 0) ∈ T0 implies the boundary terms in (2.26) vanish at ∂M and
at infinity). In particular, (g, ϕ) solves

S∗ϕ = 0

on M so that (g, ϕ) is a static vacuum solution, (cf. the discussion following
(2.11)).

Now the potential ϕ decays to zero at infinity at a rate at least r−δ. A
simple asymptotic analysis of the static vacuum Eq. (2.10) then implies ϕ = 0
on M . Alternatively, this follows directly from Proposition 2.1 of [13] which
shows that such potential functions, if not identically zero, are necessarily
asymptotic to a nonzero constant or an affine function. This completes the
proof that s′ is surjective.

Finally, we prove that the kernel Ker s′ splits. Consider again the hori-
zontal and vertical decomposition of the target space Sm−2,α

δ+2 (M) as in (2.19).
Define S1 = (˜L0)−1(∗, 0) and S2 = (˜L0)−1(0, ∗). Clearly, S1 and S2 are closed
subspaces of the domain T0 of ˜L0. It is easy to see that S1 + S2 is also a
closed subspace, of finite codimension (the latter since the range of ˜L0 has
finite codimension). Thus, S1 + S2 admits a closed complement, S3:

T0 = (S1 + S2) ⊕ S3.

Now, the intersection S1 ∩ S2 equals Ker ˜L0, which is finite dimensional since
˜L0 is Fredholm. Hence, Ker ˜L0 ⊂ S2 has a closed complement S′

2 in S2. This
gives a direct sum decomposition

T0 = S1 ⊕ S′
2 ⊕ S3. (2.27)
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As in (2.24), S1 = {̂h = (h, u′) : 1
2s′(h)−Δu′ = 0} when u = 1. Thus, Ker s′ ∩

T0 is the horizontal subspace of S1, which splits by its vertical complement
in S1. This proves that Ker s′ ∩ T0 splits in T0. To complete the proof, let
χm−1,α(M) be the space of Cm−1,α vector fields on M and let χm−1,α

∂M (M)
be the restriction of such vector fields to ∂M . Choose a smooth extension
operator E : χm−1,α

∂M (M) → χm−1,α(M) and a Cm+1,α smooth metric g̃ on M
near (M, g). Given h, consider the vector field Y0 dual to δh|∂M along ∂M and
let Y = E(Y0). One may then uniquely solve the equation δgδ

∗
g̃X = Y with

X = 0 on ∂M , and the decomposition h = (h − δ∗
g̃X) + δ∗

g̃X gives a splitting
of T0 in the full tangent space T (Sm,α

(γ,H)(M)). This proves that Ker s′ splits.
The implicit function theorem (regular value theorem) for Banach man-

ifolds then implies the remaining part of the proposition. �
Remark 2.5. Proposition 2.4 is closely related to the issue of linearization
stability of solutions of the vacuum Einstein equations on M and to the work
of Fischer, Marsden and Moncrief [23]. While Proposition 2.4 is known to be
false for compact manifolds M (i.e., there exist compact (M, g) for which Dsg

is not surjective), it is known to be true in the C∞ setting for complete AF
manifolds (in both cases without boundary).

Proposition 2.4 has the following useful corollary. Consider the map to
Bartnik boundary data:

πB : Cm,α(M) → Metm,α(S2) × Cm−1,α(S2), πB(g, u) = (γ,H), (2.28)

where Metm,α(S2) is the space of Cm,α Riemannian metrics on S2 with the
Cm,α topology. Proposition 2.4 shows that Cm,α(M) is a smooth Banach man-
ifold; clearly, πB is a smooth map of Banach manifolds.

Corollary 2.6. The map πB in (2.28) is a submersion, i.e., DπB is surjective,
with splitting kernel. In particular, πB is an open map.

Proof. Proposition 2.4 implies that for any (γ,H) ∈ Im πB, the map s is a
submersion on Sm,α

(γ,H)(M). Thus, for any given g (or, more precisely, (g, u))

in π−1
B (γ,H) and for any f ∈ Cm−2,α

δ+2 (M), there exists an h (or (h, u′)) in
T(g,u)Sm,α(M) satisfying (hT ,H ′

h) = (0, 0) at ∂M and such that s′(h) = f .
Now given an arbitrary boundary variation (hT ,H ′

h), let he ∈ T(g,u)Sm,α(M)
be an extension of (hT ,H ′

h) to a variation of g on M of compact support. Then,
s′(he) = ϕe, for some ϕe ∈ Cm−2,α

δ+2 (M). Let h0 be a solution of s′(h0) = ϕe

with zero boundary data. Then, h := he − h0 satisfies s′(h) = 0 and h has the
given boundary data (hT ,H ′

h). This proves that DπB is surjective.
Further, one has KerDπB = TCm,α

(γ,H) which was proved to split in Propo-
sition 2.4. �

More generally, for a given function σ ∈ Cm−2,α
δ+2 (M), let

Cm,α
σ (M) = {g ∈ Metm,α

δ (M) : sg = σ}. (2.29)

One has a corresponding map πB as in (2.28), and the same proof as above
shows that πB remains a submersion, for any σ.
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Although the mass mADM has no critical points on Sm,α
(γ,H)(M), it may

have critical points on distinguished subsets of Sm,α
(γ,H)(M) (constrained critical

points). In view of Lemma 2.3, we focus in particular on the submanifold
Cm,α
(γ,H). Clearly,

mADM : Cm,α
(γ,H) → R

is a smooth functional.

Proposition 2.7. Critical points of the ADM mass mADM on Cm,α
(γ,H) are exactly

metrics g that admit an AF function u such that (g, u) is an AF solution of
the static vacuum Einstein equations on M with given boundary data (γ,H).

Note that we are not yet claiming that u > 0; this is addressed in Theorem
2.10 for Bartnik mass minimizers.

Proof. On Cm,α
(γ,H) (if nonempty), one has by (2.8)

H = −16πmADM : Cm,α
(γ,H) → R. (2.30)

The critical points of mADM on the constraint space Cm,α
(γ,H) are thus exactly

the same as critical points of H on Cm,α
(γ,H), and in the following we work with

H. Note that the potential function u is irrelevant at this point (since mADM

is independent of u); thus in the following and for the moment, we make a
fixed (but arbitrary) choice of u = u0 > 0, with u0 − 1 ∈ Cm,α

δ (M).
Let then (g, u0) be a critical point of the constrained variational problem,

i.e.,

dH(g,u0)(h, u′) = 0,

for all (h, u′) ∈ T(g,u0)Cm,α
(γ,H), i.e., s′(h) = 0 and (hT ,H ′

h) = (0, 0) at ∂M . A
standard Lagrange multiplier theorem, discussed explicitly in a related con-
text in [11, Theorem 6.3], shows that there is a distribution (bounded lin-
ear functional) λ on Cm−2,α

δ+2 (M), (the Lagrange multiplier), such that for all,
i.e., unconstrained, variations (h, u′) ∈ T(g,u0)Sm,α

(γ,H),

dH(g,u0)(h, u′) = λ(s′(h)).

Since sg = 0, one has by Proposition 2.2,

dH(g,u0)(h, u′) =
∫

M

〈S∗u0, h〉 =
∫

M

u0s
′(h),

for all variations (h, u′) ∈ TSm,α
(γ,H) of compact support in int(M). Combining

these statements gives

λ(s′(h)) −
∫

M

u0s
′(h) = 0, (2.31)

for all such variations h. We claim that the distribution

T (w) :=
∫

M

u0w − λ(w),
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acting on functions w ∈ Cm−2,α(M) with compact support in int(M) is a
smooth solution of the static vacuum equations with respect to g on M , Cm,α

up to ∂M . To see this, consider variations of the form h = fg, where f is
a smooth function on M . Since s′(fg) = −2Δf − sf = −2Δf , we see from
(2.31) that T is a weak (i.e., distribution) solution of −2Δu = 0 in int(M). By
elliptic regularity (i.e., the well-known Weyl Lemma and Schauder estimates),
T is represented as a Cm,α function u, i.e.,

T (w) =
∫

M

uw

for all such w, where Δu = 0. Thus, for all (h, u′) ∈ T(g,u0)Sm,α
(γ,H) of compact

support in int(M),

0 =
∫

M

us′(h) =
∫

M

〈S∗u, h〉,

where, as in (2.10), S∗ is the formal L2-adjoint of the linearization s′. In par-
ticular, (g, u) solves S∗u = 0 in int(M) so that (g, u) is a smooth static vacuum
solution, (cf. the discussion following (2.11)). Since Ricg ∈ Cm−2,α(M), inte-
gration of the static equations u Ric = D2u shows that u is Cm,α up to ∂M .

We complete the proof by arguing u − 1 ∈ Cm,α
δ (M). Note

λ(w) =
∫

M

(u0 − u)w,

for w compactly supported in int(M), where we recall u0 → 1 at infinity. From
[13, Proposition 2.1], the static vacuum potential u must approach a nonzero
constant at infinity, be asymptotic to an affine function at infinity or else be
identically zero. We will reach a contradiction (to λ being a bounded linear
functional) in every case except u → 1 at infinity. This together with Δu = 0
on M implies u − 1 ∈ Cm,α

δ (M), and the proof will be complete.
Let χi : M → [0, 1] be a sequence of smooth, nonnegative radially sym-

metric cutoff functions of compact support on M , with χi(r) = 1 for r ∈ [0, Ri],
|dkχi(r)| ≤ ck/rk for r ∈ [Ri, 2Ri] and χi(r) = 0 for r ≥ 2Ri with Ri → ∞.

First, suppose that either u ≡ 0, or u approaches a constant other than
1 at infinity. Then, u0 − u approaches a nonzero constant at infinity. Let w ∈
Cm−2,α

δ+2 (M) equal r−2−δ outside of a compact set and vanish near ∂M . Let
wi = χiw, a uniformly bounded sequence in Cm−2,α

δ+2 (M) each with compact
support in int(M). Since λ is a bounded linear functional, the sequence λ(wi) is
uniformly bounded as well. However, a direct computation shows that |λ(wi)|
diverges to infinity, a contradiction.

Last, consider the case in which u (and hence u0 − u) limits to an affine
function at infinity, i.e.,

(u0 − u)(�x) = �a · �x + O(|�x|1−δ),

where �a �= �0 is constant (cf. [13]). Without loss of generality, assume �a =
(0, 0, 1), i.e., (u0 − u)(x, y, z) = z + O(|�x|1−δ). A similar argument as that
given above applies here with a different sequence of test functions. Let
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wi(�x) = |�x|−2−δχi(�x − (0, 0, 3Ri)),

a sequence of smooth functions of compact support in int(M) vanishing near
∂M (for i large enough). It is straightforward to check that {wi} is uniformly
bounded in Cm−2,α

δ+2 (M), but that limi→∞ λ(wi) = +∞. Again, this is a con-
tradiction, since λ is a bounded linear functional. The proof is complete. �

We note that the potential u of an AF static vacuum metric (M, g) is
uniquely determined by g (up to multiplication by a scalar) if g is not flat,
cf. [56, Proposition 10]. On the other hand, any affine function u is the potential
of a flat static exterior solution (M, gEucl). As discussed in Remark 2.11, it is
not fully known in general whether, if (M, g) is an AF static metric, then the
potential u must also be AF when a (nonmimimal) boundary is present.

We now state and prove one of the main results of this section:

Theorem 2.8. An AF metric g ∈ ◦Pm,α(M) on M realizing the Bartnik mass
(2.5) of the boundary data (γ,H) is an AF static vacuum solution (g, u) (i.e.,
with u → 1 at infinity), satisfying the boundary conditions (1.3).

Proof. The Bartnik mass mB is obtained by minimizing mADM subject to the
no-horizon condition and constraints that s ≥ 0, the boundary metric γ is fixed,
and the mean curvature of ∂M is at most H = H∂Ω pointwise. If g ∈ ◦Pm,α(M)
realizes mB (say with mean curvature H∂M ), then a neighborhood of g in
Pm,α(M) is in

◦Pm,α(M) by Lemma 2.1. Lemma 2.3 then implies that g must
be scalar flat, sg = 0. The result then follows from Proposition 2.7, since g is
a critical point of mADM on Cm,α

(γ,H∂M ). �

Remark 2.9. We recall briefly the reasoning that leads to the Bartnik boundary
conditions (1.2) and (1.3). By combining the Gauss and Ricatti equations on
M at ∂M = ∂Ω, one finds

N(H) = 1
2 (sγ − sg − |A|2 − H2). (2.32)

Since the metric γ is fixed on ∂Ω, the scalar curvature sγ is fixed, while the
last three terms in (2.32) are nonpositive, since sg ≥ 0. It follows that N(H)
is uniformly bounded above, but may a priori become arbitrarily negative in
(weak) limits. Thus, in passing to a limit of a mass-minimizing sequence of
extensions, one expects

H∂M ≤ H∂Ω, (2.33)
so that the exterior mean curvature may drop from that given by the region Ω,
as in (1.3). Note that the positive mass theorem still holds on such manifolds
with corners, cf. [44,53]. On the other hand, if A and sg remain bounded on a
minimizing sequence, then one has

H∂M = H∂Ω. (2.34)

Unfortunately, it is not clear how to give a topology on Pm,α(M) to effectively
implement such a structure in limits.

Conversely, given (say) smooth boundary data (γ,H) on S2 that arise
as boundary data for a smooth metric gΩ of nonnegative scalar curvature on
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Ω � B̄, one expects that there is a smooth AF metric on R
3 of nonnegative

scalar curvature in which (Ω, gΩ) isometrically embeds, (corresponding to the
original definition (1.1)). This remains to be fully proved however.

Next, we prove that boundary conditions (2.34) are actually realized for
a minimizer of the ADM mass, as defined in (1.3), provided one uses the
definition (2.4) for

◦Pm,α(M). This result was obtained by Miao for the case
in which (γ,H) has strictly positive Gauss curvature (and H > 0) using a
different technique; see [45, Proposition 3.4]. In addition, we prove that u > 0
everywhere on M .

Theorem 2.10. Suppose that an AF metric g on M realizes the Bartnik mass of
the boundary data (γ,H) in the sense of (2.5) (i.e., with boundary conditions
(2.33)), where H > 0. Then, (2.34) holds, and the AF static vacuum potential
u is strictly positive on M .

Proof. Suppose (M, g) realizes the Bartnik mass (2.5) of (Ω, gΩ), so that as in
(2.33), H∂M ≤ H∂Ω. We first show that (2.34) holds. If it fails, let U ⊂ ∂M
be the nonempty open set on which strict inequality holds:

H∂M < H∂Ω on U.

By Theorem 2.8, the metric g is static vacuum, and so in particular scalar flat.
Let u be the corresponding AF static vacuum potential.

Consider the map πB in (2.28). By Corollary 2.6, πB is a submersion at
(g, 1) and so for any variation (hT ,H ′

h) of the boundary data (γ,H∂M ), there
is a variation h of g such that s′(h) = 0. Choose

(hT ,H ′
h) = (0, q), (2.35)

where q is a smooth function on ∂M supported in U and such that
∫

∂M

uq > 0. (2.36)

Clearly, there are many such choices of q, unless u ≡ 0 on U . However, if u ≡ 0
on U , then H∂M ≡ 0 on U , since the zero set of a static vacuum potential
is totally geodesic. Consider two cases. First, if U is a proper subset of ∂M ,
then H∂M ≡ 0 on U contradicts H∂Ω > 0, since H∂M = H∂Ω outside U .
Second, if U = ∂M , then (M, g, u) is a Schwarzschild metric, by the black
hole uniqueness theorem [17, Theorem 2]. In particular, γ = γ2m is a round
metric. Since H∂Ω > 0 and H∂M = 0, it is easy to see that (M, g) cannot be
a minimal mass extension. (For example, one may take an equidistant round
sphere r > 2m close to the horizon r = 2m of the Schwarzschild metric and
rescale, decreasing the mass).

Now, let h be the corresponding variation of g with s′(h) = 0, satisfying
(2.35). Since s′(h) = 0 and (g, u) is static vacuum, one has from (2.13), (2.30)
and (2.35) that

− 16πm′
ADM(h) = dH(g,u)(h, 0) = 2

∫

∂M

uq > 0, (2.37)
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so that m′
ADM(h) < 0. This gives, at the infinitesimal level, a mass-decreasing

variation of (g, 1) in T(g,1)Cm,α

(γ,H
≤
∂Ω)

(M). Now consider the curve of boundary

data (γ,H∂M + tq) (for instance) with t small. Again by Corollary 2.6, this
curve lifts (via π−1

B ) to a curve gt in the slice or closed complement to Ker s′ =
T(g,1)Cm,α in Cm,α. It follows that mADM(gt) < mADM(g) for t > 0 small
and since πB(gt) = (γ,H + tq), gt ∈ Cm,α

(γ,H
≤
∂Ω)

(M), again for t small. Since by

Lemma 2.1, gt has no horizons for t small, this contradicts the definition of
Bartnik mass. Thus, (2.34) holds.

Next, suppose u < 0 somewhere on M . By the maximum principle, u <
0 at some point on ∂M . Let q be a smooth, nonpositive function on ∂M ,
supported in the set where u < 0, satisfying (2.36). A similar argument to
that given above produces a mass-decreasing path of metrics in Cm,α

(γ,H
≤
∂Ω)

(M),

again contradicting the definition of the Bartnik mass. Thus, u ≥ 0 on M .
Finally, if u(p) = 0 for some p ∈ M , then p ∈ ∂M by the maximum

principle. At p, by the static vacuum equations, 0 = u Ric = D2u and hence
D2u = 0 at p. The restriction of D2u to ∂M gives (D2)T u + N(u)A = 0,
and taking then the trace over ∂M gives Δ∂Mu + N(u)H = 0. Since p is
a minimum of u, Δ∂Mu ≥ 0, while by the Hopf boundary point maximum
principle, N(u) > 0. It follows then that H(p) ≤ 0, a contradiction. This
proves u > 0. �

Theorems 2.8 and 2.10 together imply Theorem 1.1 from Introduction.

Remark 2.11. Theorem 1.1 and its proof implement the original heuristic
program suggested by Bartnik [10,11], based on the perspective initiated by
Brill et al. [15]. It is also possible to prove part of Theorem 1.1 using differ-
ent methods. We briefly summarize this alternate approach and some related
results below.

To begin, Corvino [21] showed that metrics minimizing the Bartnik mass
of a domain Ω are static vacuum outside Ω̄ by constructing suitable localized
scalar curvature deformations. However, this result did not address the issues
of the horizon conditions, nor the global behavior of the potential function u,
and did not fully address the boundary conditions.

Using this method, an elementary argument in [21] shows that the bound-
ary condition (1.3) is preserved; however, it is not clear whether the origi-
nal (stronger) condition (1.2) is preserved. This issue has very recently been
resolved in [22]. Note that the proof that a minimizer is static vacuum does
require some stability condition, such as that in Lemma 2.1.

However, in such an approach, it is not clear whether the potential func-
tion u satisfies u > 0 or even u → 1 at infinity M , i.e., (g, u) may not be
globally static vacuum or asymptotically flat (AF) in the usual sense. Miao
and Tam [47, Theorem 1.1] prove that a static potential is bounded, with a sign,
outside a compact set, provided the metric is asymptotically Schwarzschild of
nonzero mass. Unfortunately, this does not apply to the present setting, since it
is not clear that a static vacuum metric is asymptotically Schwarzschild with-
out knowing in advance its potential has a sign at infinity. Huang et al. [27,
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Theorem 10] show that the static potential of a Bartnik mass minimizer
approaches 1 at infinity (though this argument does not show u > 0 globally).
Note that they use a different version of the Bartnik mass. We also refer the
reader to some related results on static potentials by Galloway and Miao [24]
(cf. Carlotto et al. [18, Corollary 1.9]), for example, in the boundaryless or
minimal boundary case.

An immediate corollary of Theorem 2.10 is the strict monotonicity of the
Bartnik mass, improving (2.6) when mB is realized.

Corollary 2.12. Suppose 0 < H ≤ H ′ and H < H ′ on some nonempty open
set U ⊂ ∂M . If the data (γ,H) are realized by a mass-minimizing extension
in

◦Pm,α(M), then
mB(γ,H ′) < mB(γ,H). (2.38)

3. Remarks on Conjecture I

In this section, we present several results that provide further positive evidence
for the validity of Conjecture I, regarding the existence of AF extensions of
nonnegative scalar curvature.

The main extension results to date are based on the quasi-spherical
method introduced by Bartnik [8]. For example, using this method, it can
be established that any boundary data (γ,H) with γ of positive Gauss cur-
vature Kγ > 0 and H > 0 admit an extension in P(M) (see [8,53,54]). More
recently, extension results have also been obtained by Lin [35] and Lin and
Sormani [36] using a modified Ricci flow.

We write (γ,H) ∈ Pm,α(M) if the boundary data (γ,H) on S2 admit an
admissible extension g ∈ Pm,α(M), and similarly for

◦Pm,α(M).
We first note the following general result.

Proposition 3.1. The spaces Pm,α(M) and
◦Pm,α(M) are open in Metm,α(S2)×

Cm−1,α(S2).

Proof. This is an immediate consequence of Corollary 2.6, in the scalar-flat
case. The general case follows as in (2.29). Lemma 2.1 then implies the state-
ment for

◦Pm,α(M). �

For the discussion to follow, we will not address the horizon issue, which
is more difficult to understand when dealing with more global problems.

We first prove a general result that the space Pm,α(M) is invariant under
pointwise increase of the mean curvature H, keeping the boundary metric γ
fixed, (compare with the proof of Theorem 2.10). In fact, even a small decrease
on H is allowed. The method of proof will also be used in the proof of Theorem
1.2 given in Sect. 4.

Proposition 3.2. Suppose (γ,H) ∈ Pm,α(M). There exists a Cm−1,α function
μ > 0 on S2, (depending on (γ,H)), such that for any Cm−1,α function H0

on S2 satisfying
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H0 ≥ H − μ, (3.1)
pointwise, one has (γ,H0) ∈ Pm,α(M).

Proof. Suppose (γ,H) ∈ Pm,α(M), so that there is an AF extension g of
(γ,H) with scalar curvature s ≥ 0. For simplicity, we will assume (γ,H) and g
are smooth. We first consider the case H0 ≥ H and construct an AF extension
of (γ,H0) by a conformal deformation of g.

For a conformal metric g̃ = v4g with v > 0, the scalar curvature s of g
changes as

v5s̃ = −8Δv + sv =: f, (3.2)
where Δ is the Laplacian operator on (M, g). Since s ≥ 0, −8Δ+s is a positive
operator (for Dirichlet boundary data). Clearly, g̃ ∈ P(M) requires f ≥ 0.

For r > 0, let B(r) = {x ∈ M : dist(x, ∂M) ≤ r}, so that ∂B(r) =
∂M ∪ S(r) is a regular hypersurface for r large. Given f ≥ 0 of compact
support on M , let vr be the unique solution to (3.2) on B(r) with Dirichlet
boundary data vr = 1 on ∂M ∪ S(r). By the maximum principle, vr > 0 on
B(r). It is standard that letting r → ∞, vr → v with v > 0 on M , v = 1 at
∂M , and v → 1 at infinity. In particular, g̃ is a conformal AF metric on M ,
with induced boundary metric

γ̃ = γ at ∂M,

and boundary mean curvature

˜H = v−2H + 4v−2N(log v),

where N is the unit normal into M with respect to g. Hence,

˜H = H + 4N(v). (3.3)

To obtain ˜H = H0, we will demonstrate how to choose f ≥ 0 appropriately
so that the solution v to (3.2) with boundary conditions of 1 on ∂M and at
infinity satisfies N(v) = 1

4 (H0 − H).
Write (3.2) in the form

L(v) := Δv − 1
8sv = − 1

8f. (3.4)

On the bounded domain (B(r), g), L has a (negative) Green’s function G, with
G(x, y) = 0 for (say) y ∈ ∂M ∪ S(r). It is standard that we may take r → ∞
to obtain a (negative) Green’s function G of (M, g) with O2(1/|y|) decay at
infinity for G(x0, y), for any fixed x0.

The Poisson kernel P of L is given by P (x, y) = −NxG(x, y), for x ∈ ∂M
and is positive for y in the interior of M . Green’s formula gives for x ∈ M ,

v(x) = 1
8

∫

M

G(x, y)(−f(y))dy +
∫

∂M

P (y, x)v(y)dy

+ lim
r→∞

∫

S(r)

NyG(x, y)v(y)dy. (3.5)

Here, dy represents the corresponding volume forms on M , ∂M , and S(r),
respectively, with respect to g.
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Note that v = 1 solves (3.4) uniquely for the choice f = s; using (3.5) on
the sequence vi corresponding to fi = sχi, where 0 ≤ χi ≤ 1 are compactly
supported functions on M that converge pointwise to 1 as i → ∞, we may
take a limit (using the decay O(r−2−δ) of s) to arrive at

1 = 1
8

∫

M

G(x, y)(−s(y))dy +
∫

∂M

P (y, x)1dy + lim
r→∞

∫

S(r)

NyG(x, y)1dy.

(3.6)
Since v = 1 on ∂M and v → 1 at infinity, it follows that for general f of
compact support, the solution v to (3.4) is given by

v(x) = 1 + 1
8

∫

M

G(x, y)(s(y) − f(y))dy. (3.7)

Thus, for x ∈ ∂M ,

N(v)(x) = 1
8

∫

M

P (x, y)(f(y) − s(y))dy. (3.8)

It is standard that v has sufficient decay at infinity (e.g., v(y)−1 = Om(|y|−δ))
to assure that g̃ is asymptotically flat.

Now we claim that given any smooth function ϕ ≥ 0 on ∂M , there is a
Ck function f ≥ 0 (for any k > 0) with compact support on M , such that

ϕ(x) = N(v)(x) = 1
8

∫

M

P (x, y)(f(y) − s(y))dy. (3.9)

This will complete the proof (in the case H0 ≥ H), by choosing ϕ = 1
4 (H0 −

H) ≥ 0.
To prove the claim, note first that by the basic reproducing property of

the Poisson kernel,
∫

∂M

P (x, y)ϕ(y)dy = ϕ(x). (3.10)

Choose a constant d0 > 0, smaller than the distance to the cut locus of the nor-
mal exponential map of ∂M into M , and let ∂Mr = {y ∈ M : dist(y, ∂M) = r}
for 0 ≤ r ≤ d0. Define a continuous linear operator Ar : Ck(∂Mr) → Ck(∂Mr)
by

Ar(χ)(x) = χr(x) =
∫

∂Mr

Pr(x, y)χ(y)dy, (3.11)

where x ∈ ∂Mr and Pr = P |∂Mr
. Using the identification of ∂M with ∂Mr via

the normal exponential map, we may regard Ar as a map Ck(∂M) → Ck(∂M).
It is well known (and easy to see) that

Ar → Id, as r → 0,

as bounded linear operators on Ck(∂M). Since the space of invertible operators
is open, we may shrink d0 > 0 if necessary so that given ϕ ∈ Ck(∂M) there
exists a unique ϕr ∈ Ck(∂Mr), r ≤ d0, satisfying

∫

∂Mr

Pr(x, y)ϕr(y)dy = ϕ(x). (3.12)
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Note that Pr is smooth in r for r > 0, and hence so is ϕr. The (higher order)
normal derivatives ∂k

r P (x, y) govern (by convolution) the (higher order) normal
derivatives of harmonic functions on M at ∂M ; it follows that ϕr is also smooth
in r at r = 0.

Now, let ρ(r) be a smooth function of r ≥ 0 with ρ(0) = 1, ρ(r) = 0
for each r ≥ d0, and

∫ d0

0
ρ(r) = d0

2 . Integrating over r and using the Gauss
Lemma and Fubini theorem (or the coarea formula) gives

∫

M

P (x, y)ρ(r(y))ϕr(y)dy = ϕ(x)
∫ d0

0

ρ(r)dr =
1
2
d0ϕ(x). (3.13)

Thus, the Ck function given by f(y) = s(y)+ 16
d0

ρ(r(y))ϕr(y) satisfies (3.9). It
is clear that f is Ck smooth and extends smoothly by zero to M . This proves
the claim (3.9). Note that f is not uniquely determined.

To complete the proof when μ > 0, consider the given extension (M, g)
of (γ,H), and take the unique, smooth solution to

⎧

⎪

⎨

⎪

⎩

Δu = 0 on M

u = 1 on ∂M

u → 1
2 at ∞.

Then, the conformal metric ĝ = u4g belongs to Pm,α(M), induces the metric
γ on its boundary and the induces mean curvature on ∂M given by

̂H = H + 4N(u).

By the maximum principle, N(u) < 0 on ∂M . Thus, (γ,H −μ) ∈ Pm,α(M) for
the choice μ = −4N(u) > 0. The result now follows by applying the argument
above to (γ,H − μ). �

It is useful to understand how the mass mADM changes under the defor-
mations in Proposition 3.2. Thus, recall from (2.16) that if g̃ = v4g, then

m̃ = m − 1
2π

lim
r→∞

∫

S(r)

N(v)dA.

In the context of the proof of Proposition 3.2, suppose f(y) ≥ s(y) ≥ 0,
so that, in particular, ˜H ≥ H. For simplicity, assume f = s outside of a
compact set. Then, (3.7) shows v ≥ 1 and v → 1 at infinity, and (3.4) shows v
is subharmonic outside of a compact set. Then, similar to the proof of the last
part of Lemma 2.3, we can enclose any coordinate sphere S(r) with a smooth
level set L of v, on which the outward normal derivative of v is nonpositive
by the maximum principle. Applying the divergence theorem on the region
between Sr and L, we see that that

∫

S(r)
N(v)dA ≤ 0 for all r large, and thus

m̃ ≥ m.

Thus, roughly speaking, as one increases H, the mass m increases under con-
formal changes, when keeping the boundary metric fixed. On other hand, if
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0 ≤ f(y) ≤ s(y), so that ˜H ≤ H, then (3.7) shows v ≤ 1 and v → 1 at infinity,
so that

m̃ ≤ m.

In particular, one can decrease the mass conformally if s ≥ 0 is not identically
zero; compare with Lemma 2.3.

When combined with existing results, Proposition 3.2 gives further partial
evidence for the validity of Conjecture I.

Given a metric γ on S2, let λ1(−Δγ + Kγ) > 0 be the lowest eigenvalue
of the operator −Δγ + Kγ , where Δγ is the Laplacian with respect to γ and
Kγ is the Gauss curvature.

Corollary 3.3. One has (γ,H) ∈ Pm,α(M) for all H > 0 and all γ such that
λ1(−Δ + K) > 0.

Proof. In Mantoulidis and Schoen [38] constructed extensions g ∈ Pm,α(M) of
(γ, 0) for γ satisfying λ1(−Δ+K) > 0. The result then follows from Proposition
3.2. �

This generalizes (with a different proof) previous extension results of
Bartnik [8] and Miao [45].

Corollary 3.4. For any (γ,H) with H > 0, there is a λ0 > 0 such that

(γ, λH) ∈ Pm,α(M),

for all λ ≥ λ0.

Proof. The proof is based on work in [2–4] on the moduli space Em,α of Cm,α

AF static vacuum solutions (g, u), u > 0, on M = R
3\B. Namely, the map to

Bartnik boundary data

ΠB : Em,α → Metm,α(S2) × Cm−1,α(S2),
ΠB(g, u) = (γ,H), (3.14)

is a smooth Fredholm map, of Fredholm index 0. (This is discussed further in
Sect. 5). Consider the map ΠB restricted to the space Em,α

+ of static vacuum
metrics with H > 0 at ∂M :

ΠB : Em,α
+ → Metm,α(S2) × Cm−1,α

+ (M). (3.15)

Consider also the action of scalars λ ∈ R
+ on Cm−1,α

+ (S2) where (λ,H) → λH.
Let Dm−1,α

+ (S2) be the space of equivalence classes [H] = [λH]. The space
Dm−1,α

+ (S2) is clearly a Banach manifold.
It is proved in [3] that the induced quotient map

˜ΠB : Em,α
+ → Metm,α(S2) × Dm−1,α

+ (S2),
˜ΠB(g) = (γ, [H]),

is a smooth surjective Fredholm map of Fredholm index 1. Hence, for any
given boundary data (γ,H), H > 0, there exists λ0 = λ0(γ,H) such that
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(γ, λ0H) are the Bartnik boundary data of a complete AF static vacuum solu-
tion (M, g, u). Since g ∈ Pm,α(M), the result then follows from Proposition
3.2. �

Corollary 3.4 may be contrasted with the result in [30] that for given
Bartnik boundary data (γ,H), with H > 0, there is a largest value λ0 < ∞
such that (γ, λH) has a s ≥ 0 infilling for λ < λ0, and no such infilling, for
λ > λ0. Here, an s ≥ 0 infilling is a compact Riemannian 3-manifold with
boundary inducing Bartnik boundary data (γ,H) that has nonnegative scalar
curvature. That result required γ to have positive Gauss curvature Kγ , but a
recent result of Mantoulidis and Miao ([37, Theorem 1.3]) implies that λ0 < ∞
without assuming Kγ > 0.

4. Proof of Theorem 1.2

The main purpose of this section is to prove Theorem 1.2. Most of the section
will be devoted to proving:

Theorem 4.1. Let F ∈ F be as in the statement of Theorem 1.2. Then,

mB(B̄, F ∗(gEucl)) = 0, (4.1)

where mB is the Bartnik mass defined by (1.4).

Remark 4.2. The result would be immediate if it were known that the Bartnik
mass is continuous (or even lower semi-continuous) in the smooth topology on
the space of metrics on B̄ of nonnegative scalar curvature, since (B̄, F ∗(gEucl))
can be smoothly approximated, up to isometry, by domains in R

3 which have
zero Bartnik mass. It is proved in [31,33] that the ADM mass is lower semi-
continuous in the pointed C2 and C0 topologies. However, this does not directly
imply lower semicontinuity of the Bartnik mass: The main difficulty is that it is
not known that “close” Bartnik data necessarily have “close” competitors for
near-minimal mass extensions. Note that the recent work of McCormick [42]
on the continuity of the Bartnik mass does not apply here—the regions we
consider will not generally satisfy the required convexity condition in [42, The-
orem 5.1].

Before proving Theorem 4.1, we first show how it is used to prove Theo-
rem 1.2:

Proof of Theorem 1.2. Consider a pair (B̄, F ∗(gEucl)), where F ∈ F . Let F0 :
S2 → R

3 be F |S2 , an immersion (but not embedding) of S2 into R
3. Let

γ0 = F ∗
0 gEucl and H0 : S2 → R be the induced metric and mean curvature.

Now, suppose the Bartnik mass of (B̄, F ∗(gEucl)) is realized by an exten-
sion (M, g) ∈ ◦P(M), so that (1.3) holds with Ω = B̄. By Theorem 4.1, the
ADM mass of (M, g) vanishes.

Glue (B̄, F ∗(gEucl)) and (M, g) along their boundaries so as to satisfy
(1.3) to produce a Riemannian manifold (N,h), without boundary, that is
asymptotically flat and smooth with nonnegative scalar curvature away from
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the gluing hypersurface. The ADM mass of (N,h) also vanishes. By the rigidity
case of the positive mass theorem “with corners” in dimension three [44,53],
(N,h) is isometric to (R3, gEucl) and H0 = H∂M . In particular, there is an
isometric embedding G of (B̄, F ∗(gEucl)) into (R3, gEucl). If we set G0 = G|S2 ,
then G∗

0gEucl = F ∗
0 gEucl = γ0 and the mean curvature of the embedding G0

is H0. Thus, we have two immersions F0 and G0 of S2 into R
3 both realizing

the same induced metric and the same mean curvature. The contradiction will
arise because F0 is not an embedding but G0 is, and we will show below that
F0 and G0 are in fact congruent.

A pair of immersions F1, F2 of a surface into R
3 with the same induced

metric and mean curvature is called a Bonnet pair, and it is well known that
there are no nontrivial Bonnet pairs of spherical topology. We recall the simple
proof. Let Ai be the second fundamental form of Fi. Since H1 = H2 and
γ1 = γ2 ≡ γ, the Gauss–Codazzi equations give

δγ(A1 − A2) = 0,

where δγ is the divergence. Also trγ(A1 −A2) = 0. Thus, A1 −A2 is a holomor-
phic quadratic differential on S2. Since the only such is 0, one has A1 = A2. It
then follows from the fundamental theorem for surfaces in R

3 (rigidity) that
the immersions F1 and F2 are congruent. �

Corollary 4.3. The space of compact regions (Ω, gΩ) of nonnegative scalar cur-
vature that admit a mass-minimizing extension in

◦P(M) is not closed in the
smooth topology.

This corollary will make it hard to prove the existence of mass-minimizing
extensions by studying limits of mass-minimizing sequences in general.

Remark 4.4. Recall a result of Huisken and Ilmanen [28] on the rigidity of the
Bartnik mass: If mB(Ω) = 0, then Ω is locally flat. (Although note their proof
applies to the “outward-minimizing” version of the Bartnik mass.) The proof
of Theorem 1.2 above implies the converse of this result is false, for domains
Ω for which Conjecture II holds. To see this, consider a locally flat domain
(Ω, gΩ) = (B̄, F ∗(gEucl)), where F : B̄ → R

3 is a smooth immersion which is
not an embedding. If mB(Ω) = 0 and mB(Ω) is realized by a minimum-mass
extension (i.e., Conjecture II holds at Ω), then the proof of Theorem 1.2 gives
a contradiction. Hence, either mB(Ω) > 0 or Conjecture II fails at Ω (or both).

Proof of Theorem 4.1. Let F : B̄ → R
3 be the immersion in F . We detail the

proof when the self-intersection set Z ⊂ S2 = ∂B̄ consists of two distinct points
z, z′ with F (z) = F (z′) but with F injective on B̄\Z. The proof in the general
case of a finite number of double points is a straightforward modification of
this case.

Let F0 denote the restriction F |S2 , an immersion (but not embedding) of
S2 into R

3, and let

(γ0,H0) = (F ∗
0 gEucl,HF0)

be the induced metric and mean curvature of F0, defined on S2.
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Let ε > 0. We will prove that (B̄, F ∗(gEucl)) admits an admissible exten-
sion in P(M) (for ε sufficiently small) whose ADM mass is ≤ Cε for a constant
C depending only on F . For ε > 0 small enough, the extension will be in

◦P(M),
i.e., it will contain no immersed minimal surfaces surrounding the boundary.
The proof is rather long, consisting of five steps.

Step 1: Modification of gEucl to introduce positive scalar curvature. Let Ω ⊂ R
3

be the image of F , a compact set. Fix a neighborhood U of Ω, and let R0 = 1
ε

be chosen so that the interior of the ball B(R0) of radius R0 contains the
closure of U (decreasing ε if necessary).

To begin, we smoothly deform the Euclidean metric gEucl on R
3 to pro-

duce a new Riemannian metric ĝ with the following properties: ĝ = gEucl

on U ; ĝ has nonnegative scalar ŝ that is strictly positive somewhere, zero on
R

3\B(R0), and
∫

R3 ŝ̂dv ≤ ε; ĝ is asymptotically flat with ADM mass ≤ ε. To be
definite, we construct ĝ by applying a conformal factor w4 to gEucl, where w is
superharmonic, harmonic outside B(R0), identically 1 on U , and approaches
a constant less than 1 at infinity. Additionally, we can choose w so that

1 − ε ≤ w ≤ 1 + ε, 1 − ε ≤ 1
w

≤ 1 + ε, |∇w| ≤ ε, (4.2)

where |∇w| is taken with respect to gEucl. In particular, there exists a closed
ball K, contained in B(R0)\U , such that

ŝ ≥ α0 > 0 on K, (4.3)

for some constant α0 = α0(ε).

Step 2: Construction of family of metrics ḡt to obtain correct boundary metric.
In this step, we will perturb the immersion F0 to an embedding. This will of
course alter the boundary data (γ0,H0), so we will also perturb the metric ĝ
so as to restore the original boundary metric γ0. This change will introduce a
small amount of negative scalar curvature and will possibly violate (1.3); these
issues will be addressed in Step 3.

To begin, let N0 be the unit outward normal vector field along F0, viewed
as a function on S2 (taken with respect to ĝ, or equivalently, with respect to
gEucl). Fix a number δ > 0 sufficiently small so that Bz(2δ)∩Bz′(2δ) = ∅; here,
Bz(r) ⊂ S2 is the open geodesic r-ball about z, with respect to the induced
metric γ0. Let q : S2 → R

≥0 be a smooth, nonnegative bump function that
equals 1 on Bz(δ) and is zero outside Bz(2δ). Let A ⊂ S2 be the open annular
region:

A = int (Bz(2δ)\Bz(δ)) . (4.4)

An example illustrating this setup is sketched in Fig. 1.
For t ≥ 0, define a smooth family of maps Ft : S2 → R

3 by

Ft(x) = F (x) − tq(x)N0(z), (4.5)

where N0(z) is treated as a constant vector field on R
3. For 0 < t < t0

sufficiently small, Ft is an embedding and Ft(S2) is contained inside U . The
mapping t �→ Ft(S2) gives a local flow of surfaces in which the set Ft(Bz(δ))
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Figure 1. An illustration indicating the initial setup in the
proof of Theorem 4.1

is translated in the −N0(z) direction at speed 1, and Ft(S2\Bz(2δ)) does not
move. Thus, the only change to the geometry occurs in Ft(A).

For 0 < t < t0, the smooth, embedded 2-sphere Ft(S2) bounds a smooth,
compact region Ωt in R

3 that is diffeomorphic to a closed 3-ball. Let Mt =
R

3\ int(Ωt), a smooth manifold with compact boundary ∂M t. Note that Ft is
a diffeomorphism of S2 onto ∂M t.

Lemma 4.5. There exist a domain V ⊂⊂ U ⊂ R
3 and a smooth family of

Riemannian metrics {ḡt}0≤t<t0 on R
3 such that:

ḡ0 = ĝ on R
3; ḡt = ĝ outside of V, for t ∈ [0, t0),

and, on S2,

F ∗
t ḡt = F ∗

0 gEucl = γ0, for t ∈ [0, t0).

Moreover, V satisfies

V ∩ Ft(S2) = Ft(int(Bz( 9
4δ)\Bz( 3

4δ))). (4.6)

Proof. The following construction takes place within U , so we regard gEucl

and ĝ as equal in the remainder of this proof. Fix t ∈ (0, t0), and let γt be
the metric on the embedded surface Ft(S2) ⊂ R

3 induced by gEucl. Let r(x) =
distgEucl(x, ∂M t) be the Euclidean distance of x ∈ R

3 to ∂M t = Ft(S2). Recall
that γt = γ0 outside Ft(Bz(2δ)) (where here we are identifying γ0 = F ∗

0 gEucl

with the induced metric on F0(S2)). Let Σr
t be the image of Ft(A) under the

time r Euclidean exponential map normal to Ft(A) (the r-equidistant surface
to Ft(A)); here, r ∈ (−r0, r0) and r0 is chosen small enough so that Σr

t ⊂ Mt∩U
for r ≥ 0 and Σr

t is smooth for all r ∈ (−r0, r0). Note that r0 may be chosen
independent of t; it depends only on δ and the surface F0(S2). (See the left
side of Fig. 2).

Let Ot be the union of the surfaces Σr
t for |r| < r0, an open set. In Ot,

by the Gauss lemma for the normal exponential map,

gEucl = dr2 + γr
t ,
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Figure 2. This illustration shows part of the setup of the
proof of Lemma 4.5

where γr
t is the metric induced on Σr

t by gEucl. Note γ0
t = γt on Σ0

t . Define a
new metric on Ot by

ḡt = dr2 + γ̄r
t ,

where γ̄r
t is a smooth metric on Σr

t , varying smoothly in r, such that γ̄0
t = γ0|Σ0

t

and γ̄r
t = γr

t , for |r| ≥ r0/2. (If t = 0, define ḡ0 = gEucl on O0.) Note that γ̄0
t ,

a metric on Ft(A), extends smoothly to γt on Ft(S2), since γt = γ0 outside
Ft(A).

To complete the construction, let V be an open set contained in U and
containing

⋃

0<t<t0
Ot and satisfying (4.6). (See the right side of Fig. 2).

Extend ḡt smoothly to V (and smoothly in t ∈ [0, t0) as well, which can
be arranged in the above construction) so that ḡt induces the metric γ0 on
Ft(S2) and ḡt agrees with ĝ near ∂V . Then, ḡt extends to a smooth family of
metrics on R

3, with ḡt = ĝ outside of V . �

Note that ḡt = ĝ = gEucl on a neighborhood of F0(z) = F0(z′). Since
the family ḡt is smooth in t and ḡ0 = ĝ has nonnegative scalar curvature, the
scalar curvature s̄t of ḡt is nonnegative outside V and converges uniformly to
zero inside V as t → 0. We also note, for later reference, that V̄ does not
contain F0(z).

To summarize at this point, we have the asymptotically flat Riemannian
manifold (Mt, ḡt), for each t ∈ (0, t0), for which the induced metric on the
boundary (when pulled back to S2 via Ft) equals the original boundary metric
γ0. The mean curvature H̄t of ∂Mt (viewed as a function on S2) converges
uniformly to the original H0 as t → 0. Moreover,

H̄t = H0 on S2\A′ (4.7)

for all t ∈ (0, t0), where A′ = F−1
t (V ∩ Ft(S2)) = int(Bz( 9

4δ)\Bz( 3
4δ)) is a

slightly enlarged annulus.
The space (Mt, ḡt) is almost, but not quite, an admissible extension of

(B̄, F ∗(gEucl)), for two reasons: First, the mean curvatures of the boundaries
do not agree (although they are close, for t small) and more generally do not
necessarily satisfy (1.3) (i.e., H̄t ≤ H0 may fail to hold at some points); second,
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the scalar curvature s̄t is not nonnegative (although it is nearly so, for t small.).
We address these two problems in the next step.

Step 3: Conformal deformation to correct scalar curvature and boundary mean
curvature. Next, we perform a conformal deformation on (Mt, ḡt). For each
t ∈ (0, t0), consider the linear elliptic problem

⎧

⎪

⎨

⎪

⎩

L̄tvt = 0 in Mt

vt = 1 on ∂Mt

vt → 1 at infinity,

(4.8)

where L̄t := Δ̄t − 1
8 s̄t and Δ̄t is the Laplacian for ḡt. Assuming for the moment

a smooth, positive solution vt exists, define the conformal metric

g̃t = v4
t ḡt on Mt.

Then, the induced metric on the boundary stays the same:

F ∗
t g̃t = F ∗

t ḡt = F ∗
0 gEucl = γ0,

by Lemma 4.5 and the boundary condition on vt. Also, the mean curvature
˜Ht of ∂Mt with respect to g̃t is given by

˜Ht = H̄t + 4N̄ t(vt), (4.9)

where N̄ t is the unit boundary normal on (Mt, ḡt) (viewed as a function on
∂Mt, pointing into Mt). In this step, we will prove that a solution vt > 0 to
(4.8) exists and that, moreover,

˜Ht < H0, (4.10)

for t sufficiently small.
One small difficulty is that in contrast to the setting of Proposition 3.2,

since s̄t may be negative at some points, −L̄t may not automatically be a
positive operator (with Dirichlet boundary conditions), so that the Eq. (4.8)
may not a priori always be uniquely solvable. Similarly, the associated Green’s
function and Poisson kernel may not be uniquely defined or have appropriate
signs. On the other hand, these properties are relatively simple to prove. Note
first that L̄t : Ck+2,α

δ (Mt) → Ck,α
δ+2(Mt) (where we recall the weighted Hölder

space notation from Sect. 2) is formally L2(Mt, ḡt)-self-adjoint with respect
to zero Dirichlet boundary conditions on ∂M t. In the statement below, let
M0 ⊂ R

3 be the closure of the complement of Ω. Note that M0\F0(z) is a
smooth manifold with (noncompact) boundary.

Before stating Lemma 4.6, we need a precise definition of a family of
functions on Mt converging to a function on M0. First, if {ft}0<t<t0 are in
Ck,α

δ+2(Mt) and f0 ∈ Ck,α
δ+2(M0), we define ft → f0 in Ck,α

δ+2(M0) as t → 0 if ft

and f0 admit Ck,α
δ+2 extensions (say f̃t and f̃0, respectively) to a domain M∗ ⊂

R
3 strictly containing M0 and all Mt (for t sufficiently small) in its interior

and f̃t → f̃0 in Ck,α
δ+2(M∗). Second, we define ft → f0 in Ck,α

loc,δ+2(M0\F0(z))
if (i) given any compact set K ⊂ M0\F0(z), there exists a smooth family of
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embeddings Φt : K → Mt, Φ0 being the identity, such that ft ◦ Φt converges
to f in Ck,α(K), and (ii) ft|R3\U → f |R3\U in Ck,α

δ+2(R
3\U).

Lemma 4.6. For t0 > 0 sufficiently small, −L̄t is a positive operator for 0 < t <

t0, with respect to Dirichlet boundary conditions. Hence, given ft ∈ Ck,α
δ+2(Mt),

there is a unique solution ωt ∈ Ck+2,α
δ (Mt) to L̄tωt = ft with ωt = 0 on

∂M t. Additionally, given f0 ∈ Ck,α
δ+2(M0), there is a unique solution ω0 ∈

Ck+2,α
δ (M0) to L̄0ω0 = f0 with ω0 = 0 on ∂M0. Moreover, if ft → f0 in

Ck,α
δ+2(M0) as t → 0, then the solutions ωt converge to ω0 in Ck+2,α

loc,δ (M0\F0(z))
as t → 0. Finally, the Green’s function Ḡt(x, y) and Poisson kernel P̄ t(x, y)
for L̄t exist and satisfy

Ḡt(x, y) ≤ 0, P̄ t(x, y) ≥ 0,

with strict inequality for y in the interior of Mt.

Proof. Note that M0 is not a manifold with boundary (as ∂M0 = F0(S2) is not
embedded), but it does satisfy the Poincaré “exterior cone condition” (cf. [25,
p. 29, 203–205] and is therefore a regular domain for the Dirichlet problem for
the operator

L̄0 = ̂L := ̂Δ − 1
8 ŝ,

where we recall that ŝ ≥ 0. Clearly, −L̄0 is a positive operator with respect
to Dirichlet boundary conditions, ω = 0 on ∂M0 and ω → 0 at infinity. In
particular, for the bottom of the L2 spectrum, one has

λ0 = inf

∫

M0
−fL̄0fdv0

∫

M0
f2dv0

> 0,

where the inf is taken over nonzero smooth functions f of compact support in
M0. It is standard that there exists a positive Green’s function Ḡ0 for L̄0 on
M0, and moreover the Dirichlet problem L̄0ω0 = f0 is uniquely solvable.

As t ↘ 0, the boundaries ∂Mt converge to ∂M0, smoothly away from
F0(z). Similarly, the operators L̄t converge smoothly to the operator L̄0 away
from F0(z) (and are equal outside a compact set). Moreover, the lowest eigen-
value λt

0 of −L̄t varies continuously with t as t → 0, (cf. [5] for instance for a
much more general result than this special situation), and hence λt

0 > 0, for
t sufficiently small. For convenience, we include a direct proof that λt

0 > 0 in
the next paragraph.

For t > 0, let

λt
0 = inf

∫

Mt
−fL̄tfdvt

∫

Mt
f2dvt

(where the infimum is taken over nonzero smooth functions f of compact
support in Mt), be the bottom eigenvalue of −L̄t. We claim that λt

0 > 0 for t
sufficiently small. Since the minimum value of s̄t − ŝ on Mt converges to 0 as
t → 0,
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λt
0 = inf

∫

Mt

(

|∇f |2ḡt
+ 1

8 ŝf2
)

dvt + 1
8

∫

Mt
(s̄t − ŝ) f2dvt

∫

Mt
f2dvt

= inf

∫

Mt

(

|∇f |2ḡt
+ 1

8 ŝf2
)

dvt
∫

Mt
f2dvt

− O(t)

≥ c1 inf

∫

Mt

(

|∇f |2ĝ + c2ŝf
2
)

̂dv
∫

Mt
f2̂dv

− O(t)

for some constants c1, c2 > 0, This is because {ḡt}0<t<t0 and ĝ are uniformly
equivalent by uniform positive constants as t → 0. Now take a manifold with
boundary M∗ ⊂ R

3 that contains all Mt, and consider (M∗, ĝ). We have

λt
0 ≥ c1 inf

∫

M∗

(

|∇f |2ĝ + c2ŝf
2
)

̂dv
∫

M∗
f2̂dv

− O(t),

where this infimum is taken over all nonzero smooth functions f of compact
support in M∗. It is clear this infimum is strictly positive, so that λt

0 > 0 for
t sufficiently small.

Thus, −L̄t is a positive operator for t sufficiently small; it is then stan-
dard, cf. [34] for instance, that the Green’s function Ḡt exists and is strictly
negative in the interior of Mt and hence the Poisson kernel is strictly positive
(since P̄ t(x, y) = −NxḠt(x, y) and Ḡt(x, y) = 0 for x ∈ ∂M t). The existence
and uniqueness, along with the local Ck,α convergence of ωt away from F0(z)
and the weighted Ck+2,α

δ (R3\U) convergence in the end, then follow from stan-
dard elliptic estimates. �

It follows from Lemma 4.6 that (4.8) has a unique, smooth solution.

Remark 4.7. The main technical problem that arises in the discussion to follow
is that for xt → x = F0(z), i.e., xt converging to the singular point,

P̄ t(xt, ·) → 0

(uniformly) on Mt. Thus, the Poisson kernel P̄ t(xt, ·) degenerates at F0(z).
Closely related to this is the fact that the Martin boundary of M0 equals the
Euclidean boundary away from the point F0(z) but at the cusp point F0(z) is
much larger; there is a minimal positive harmonic function supported at F0(z)
for each angle of approach to the singular point F0(z). This is discussed in
Example 3 of [39].

Returning to the analysis of (4.8), it follows as in the discussion concern-
ing (3.7) that

vt(x) = 1 + 1
8

∫

Mt

Ḡt(x, y)s̄t(y)dy, (4.11)
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for t ∈ (0, t0), where dy denotes the volume form dvt(y) of ḡt. As in (3.8), this
gives for x ∈ ∂Mt,

N̄ t(vt)(x) = − 1
8

∫

Mt

P̄ t(x, y)s̄t(y)dy. (4.12)

Let

Ct(δ) = Ft(Bz(δ) ∪ Bz′(δ)) and Dt(δ) = Ft(S2\(Bz(δ) ∪ Bz′(δ))).

The geometry of ∂M t is controlled in Dt(δ) but degenerates in Ct(δ) as t → 0.
Of course,

∂M t = Ct(δ) ∪ Dt(δ).

Lemma 4.8. If ε > 0 (from just before Step 1) is sufficiently small, then for
t0 > 0 sufficiently small, the solution vt to (4.8) is positive and satisfies

N̄ t(vt) < 0, on ∂Mt, for 0 < t < t0. (4.13)

Moreover, there exists b > 0, independent of t ∈ (0, t0), such that

N̄ t(vt)(x) < −b, for x ∈ Dt( 1
2δ), 0 < t < t0. (4.14)

Proof. By Lemma 4.6, as t ↘ 0, vt converges in Ck+2,α
loc,δ (M0\F0(z)) to the limit

solution v0 to
̂Lv0 := ̂Δv0 − 1

8
ŝv0 = 0, (4.15)

on (M0, ĝ) with boundary conditions v0 = 1 on ∂M0 and v0 → 1 at infinity.
By the maximum principle, since ŝ ≥ 0 (and is not identically zero), one has
the following facts:

0 < v0 ≤ 1 on M0,

N0(v0) < 0 on F0(S2\{z, z′}).

Here, the unit normal N0 is viewed as a (well-defined) vector field on
F0(S2\{z, z′}) ⊂ ∂M0. In particular, N0(v0) < −2b on D0( 1

2δ) for some con-
stant b > 0. Since vt → v0 locally in C1 away from F0(z) (by Lemma 4.6), and
Dt( 1

2δ) converges smoothly to D0( 1
2δ) as t → 0, we have

N̄ t(vt) < −b on Dt( 1
2δ),

for t sufficiently small, which proves (4.14).
Next, we claim that vt is uniformly controlled even in a neighborhood

of F0(z); specifically, we establish (4.17) below. Let B′ be a Euclidean ball
centered at F0(z) of sufficiently small radius so that B′ is disjoint from V̄ .
Then, in the region Mt ∩ B′, the metric ḡt is the flat Euclidean metric, so
that L̄t is the Euclidean Laplacian Δ; see Fig. 3. By the maximum principle
applied to the harmonic function 1 − vt on the domain Mt ∩ B′, we have

sup
x∈Mt∩B′

|1 − vt(x)| = sup
x∈∂(Mt∩B′)

|1 − vt(x)|.

Since vt = 1 on ∂Mt, this can be rewritten as

sup
x∈Mt∩B′

|1 − vt(x)| = sup
x∈Mt∩∂B′

|1 − vt(x)|. (4.16)



1686 M. T. Anderson, J. L. Jauregui Ann. Henri Poincaré

Figure 3. A sketch of the main sets involved in the proof
of (4.17). B′ is a fixed ball about F0(z). Ωt is a connected
set, but only its “caps” are shown here, the top one of which
translates upward as t increases

By Lemma 4.6, vt → v0 in Ck,α
loc,δ+2(M0\F0(z)), which implies (since ∂B′ is

a fixed positive distance away from F0(z)) that there exists a compact set K
in M0 containing a neighborhood of M0 ∩ ∂B′ in M0 and a smooth family of
embeddings Φt : K → Mt such that vt ◦ Φt converges to v0 in Ck,α(K), and
that Φt(K) contains a neighborhood of Mt ∩ ∂B′ (for t sufficiently small). In
particular, this implies that supx∈Mt∩∂B′ |v0 ◦ Φ−1

t (x) − vt(x)| → 0 as t → 0.
From (4.16), we have

sup
x∈Mt∩B′

|1 − vt(x)| ≤ sup
x∈Mt∩∂B′

|1 − v0 ◦ Φ−1
t (x)|

+ sup
x∈Mt∩∂B′

|v0 ◦ Φ−1
t (x) − vt(x)|,

and we just argued the second term to the right is O(t). To address the first
term on the right, since the metric ĝ is uniformly ε-close to the Euclidean
metric, one has |1 − v0| = O(ε) on Mt. Thus, supx∈Mt∩∂B′ |1 − v0 ◦ Φ−1

t (x)| is
O(ε) + O(t), so

sup
x∈Mt∩B′

|1 − vt(x)| ≤ O(ε) + O(t), (4.17)

as claimed.
Hence, if ε is sufficiently small, vt is positive (and more generally O(ε))

near F0(z) for t sufficiently small, proving the claim. In particular, by this
together with the appropriate convergence of vt to v0 as in Lemma 4.6, we
have vt > 0 on Mt, for all t > 0 sufficiently small.

Estimate (4.13) for x in Ct( 1
2δ) for t is somewhat more subtle. Considering

(4.12), note that P̄ t(x, y) > 0 and s̄t ≥ α0 > 0 in K from (4.3), while s̄t slightly
negative of order t in V , for V as in Lemma 4.5. However, by Remark 4.7, the
Poisson kernel P̄ t(x, y) degenerates at the singular point x = F0(z) as t → 0:
P̄ t(Ft(z), y) → 0 as t → 0, uniformly in y. Thus, the relative behavior of P̄ t

in these two regions is not immediately clear.
We will use the following boundary Harnack estimate to obtain uniform

control, as t → 0, on the relative behavior of P̄ t(x, y) for y near to and away
from the boundary ∂M t.
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Sub-Lemma 4.9. There exists a constant C > 0 such that

sup
y∈V ∩Mt

P̄ t(x, y) ≤ C inf
y′∈K

P̄ t(x, y′), (4.18)

for x ∈ Ct( 1
2δ) and t ∈ (0, t0), where C is independent of such x and t.

The proof appears later.
Now it follows from (4.12) and the fact that any negative scalar curvature

of ḡt lies within V together with the lower bound s̄t ≥ α0 on K that for
x ∈ Ft(S2),

N̄ t(vt)(x) ≤ − 1
8

∫

V ∩Mt

P̄ t(x, y)s̄t(y)dy − 1
8

∫

K

P̄ t(x, y)α0dy,

since P̄ t(x, y) ≥ 0. It follows then from (4.18) that for x ∈ Ct( 1
2δ),

N̄ t(vt)(x) ≤ 1
8

(

sup
y∈V ∩Mt

P̄ t(x, y)
) (

sup
y∈V ∩Mt

|s̄t(y)|
)

volḡt
(V ∩ Mt)

− 1
8α0

(

inf
y′∈K

P̄ t(x, y′)
)

volĝ(K) ≤ 1
8

(

inf
y′∈K

P̄ t(x, y′)
)

×
[

C

(

sup
y∈V ∩Mt

|s̄t(y)|
)

volḡt
(V ∩ Mt) − α0 volĝ(K)

]

.

Since supy∈V ∩Mt
|s̄t(y)| converges to 0 (because ŝ = 0 on V ) and volḡt

(V ∩Mt)
is bounded as t → 0, the above is negative for t sufficiently small, independent
of x. This completes the proof of Lemma 4.8. �

Now, we explain why (4.10) holds. Recall from (4.7) that H̄t = H0 on
Ct( 3

4δ). Thus, (4.13) and (4.9) show H̃t < H0 on Ct( 3
4δ). Also, H̄t converges

uniformly to H0, so (4.9) and (4.14) show (shrinking t0 if necessary) that
H̃t < H0 on Dt( 1

2δ). This proves (4.10).
To conclude this step, we note that g̃t = v4

t ḡt is asymptotically flat: Since
s̄t vanishes outside a compact set, vt is ḡt-harmonic outside a compact set.
Since vt → 1 at infinity, it is well known (and not hard to show) that v4

t ḡt

is asymptotically flat. Moreover, g̃t has zero scalar curvature since L̄tvt = 0.
Thus, g̃t is an admissible extension of (B̄, F ∗(gEucl)) in P(M), for t sufficiently
small.

Step 4: Control of ADM mass of g̃t. By the conformal deformation formula
(2.16), and the fact that ĝ = ḡ0 = ḡt outside a compact set,

mADM(g̃t) = mADM(ḡt) − 1
2π

lim
r→∞

∫

Sr

N̄ t(vt)dAt

= mADM(ĝ) − 1
2π

∫

SR1

N̄ t(vt)dAt ≤ ε − 1
2π

∫

SR1

N̄0(vt)dA0

≤ ε +
1
2π

∫

SR1

|∇̄0(vt)|dA0, (4.19)
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by the divergence theorem (since vt is ḡt-harmonic outside U for all t) and
since ḡt = ḡ0 on SR1 . Here, R1 ≥ R0 +1, where R0 is the value chosen in Step
1, i.e., SR0 encloses U ⊃ ∂M t. Increasing R1 if necessary, we arrange that

|SR1 |ḡ0

4π(R1)2
≤ 2, (4.20)

by asymptotic flatness.
By Lemma 4.6, the convergence of vt to v0 is sufficient to guarantee that,

by (4.19),

mADM(g̃t) ≤ ε +
2
2π

∫

SR1

|∇̄0(v0)|dA0 (4.21)

for t sufficiently small. Using the Green’s function Ḡ0 to represent v0, we have,
as in (4.11):

v0(x) = 1 + 1
8

∫

M0

Ḡ0(x, y)s̄0(y)dy = 1 + 1
8

∫

B(R0)

Ḡ0(x, y)s̄0(y)dy,

since s̄0 vanishes outside B(R0). By the standard decay of the Green’s function,
there exists constant C1 depending only on the initial immersion F such that

|∇̄0Ḡ0(x, y)|ḡ0
≤ C1

|x|2
for |x| ≥ R1 and y ∈ B(R0). From the ε-bound on the L1 norm of the scalar
curvature of ḡ0 = ĝ from Step 1, this gives

|∇̄0v0(x)|ḡ0
≤ C1ε

8|x|2 ,

for |x| ≥ R1. Combining this with (4.21) and using (4.20) imply that

mADM(g̃t) ≤ ε +
2
2π

C1ε

8(R1)2
|SR1 |ḡ0

≤ (1 + C1)ε.

Step 5: Absence of Horizons. In this final step, we argue that if ε > 0 was
chosen small enough to begin with in Step 1, then (Mt, g̃t) will not contain
any immersed minimal surfaces that surround ∂Mt, for t sufficiently small.

Recall from Step 1 that R0 = 1
ε > 0 was chosen so that B(R0) contains

U , and ĝ was constructed to be conformally flat with zero scalar curvature
outside B(R0). In particular, ḡt and g̃t also have zero scalar curvature and
are conformally flat outside B(R0). It follows that g̃t = u4

t gEucl in R
3\B(R0),

where ut > 0 is gEucl-harmonic for each t (specifically, ut = wvt).
In particular, using Lemma 4.6 and the decay of w, one has the Euclidean

estimates
|ut(x) − 1 + a| ≤ c0

|x| and |∇ut(x)|gEucl ≤ c1

|x|2 , (4.22)

for x ∈ R
3\B(R0), where c0 and c1 depend only on F , and 1−a is the constant

that w (and hence ut) approaches at infinity. By (4.2), 0 < a ≤ ε.
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Suppose Σ is a compact, immersed minimal surface in (Mt, g̃t) that sur-
rounds ∂Mt. The mean curvatures ˜Ht and HEucl of Σ with respect to g̃t and
gEucl are related by

0 = ˜Ht = (1 + f1)HEucl + f2

for smooth functions f1 and f2 on Σ, where |f1| and |f2| are bounded above
by the C1 norm of g̃t − gEucl. (This can be seen from the first variation of area
formula, for instance). Fix a Euclidean ball B′′ centered at F0(z) that does
not contain Σ. In particular, by (4.2), the fact that ḡt converges smoothly to
ĝ as t → 0 and that vt converges smoothly to v0 outside B′′, we have, for t
sufficiently small,

|HEucl| ≤ C2ε on Σ\B′′, (4.23)
for a constant C2 depending only on F and B′′.

Let r = |x| be the Euclidean distance function from F0(z), and let R1 =
maxΣ r, achieved at a point p0 ∈ Σ\B′′. By a standard comparison of mean
curvature of Σ,

HEucl(p0) ≥ HEucl(SR1) =
2

R1
. (4.24)

Thus, 1
R1

≤ C2ε
2 . If ε > 0 is sufficiently small, then R1 > R0. In particular,

p0 ∈ R
3\B(R0), so that g̃t = u4

t gEucl in a neighborhood of p0. Thus

0 = ˜Ht = u−2
t HEucl + 4u−3

t NEucl(ut),

at p0. Combining this with (4.22),

|HEucl(p0)| ≤ 4
|∇ut|

ut
(p0) ≤ 4c1

(R1)2
1

1 − ε − c0
R1

(4.25)

Estimates (4.24) and (4.25) give a contradiction if ε is sufficiently small, since
ε controls 1

R1
.

Thus, if ε is chosen to be sufficiently small in Step 1, then g̃t is an admis-
sible extension of (B̄, F ∗(gEucl)) in

◦P(M) for t sufficiently small. The proof
of Theorem 4.1 is now complete, except for the proof of Sub-Lemma 4.9, to
which we now return. �

Proof of Sub-Lemma 4.9. We will use the boundary Harnack principle for
the elliptic operator L̄t, cf. [12, Theorem 1.1], for instance. Recall that the
open set V , from Lemma 4.5, satisfies F0(z) �∈ V̄ , V ∩ Ft(S2) = Ft(A′) =
Ft(int(Bz( 9

4δ)\Bz( 3
4δ))) for each t and that K is a set disjoint from U on

which ŝ ≥ α0 > 0.
Let O2 ⊃ O1 ⊃ (V ∪ K) be connected, bounded open sets in R

3 chosen
so that O2 ∩ Ct( 5

8δ) = ∅ for all t ∈ (0, t0) and that O1 ⊂ O2. In particular, O2

does not include F0(z). See Fig. 4.
Then, for any x ∈ Ct( 1

2δ), the function y �→ P̄ t(x, y) is smooth and
bounded on O2 ∩ Mt and vanishes on ∂Mt ∩ O2.

Let νt by the unique solution to L̄tνt = 0 in Mt with boundary conditions
0 on ∂M t and 1 at infinity. By Lemma 4.6, νt converges smoothly, away from
F0(z), as t → 0, to a function ν0 on M0 satisfying ̂Lν0 = 0, cf. also the
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Figure 4. Main sets used in the proof of Sub-Lemma 4.9 are
shown above. O2 is not pictured but can be viewed as a slight
enlarging of O1

discussion around (4.17). By the maximum principle, 0 < ν0 < 1 in the interior
of M0. The convergence in the region O2 (which again is a finite distance from
F0(z)) is sufficient to guarantee that, shrinking t0 if necessary,

• 0 < νt ≤ 2 in O2 ∩ int(Mt),
• νt(y) ≥ β for y ∈ K, where β > 0 is some constant independent of t.

By Lemma 4.6 again, for x ∈ Ct( 1
2δ) and y ∈ O2, the Poisson kernel

P̄ t(x, y) satisfies P̄ t(x, ·) = 0 on O2 ∩ ∂M t and P̄ t(x, ·) > 0 in O2 ∩ int(Mt).
Since L̄t is elliptic and νt(y) and y �→ P̄ t(x, y) are both L̄t-harmonic on O2∩Mt,
the boundary Harnack principle (cf. [12, Theroem 1.1]) implies that: For all
y, y′ ∈ O1 ∩ int(Mt) and all x ∈ Ct( 1

2δ), one has

P̄ t(x, y)
νt(y)

≤ ct
P̄ t(x, y′)
νt(y′)

(4.26)

for some constant ct > 0 (depending on t), but independent of x. However,
since L̄t and (Mt, ḡt) converge smoothly in the region O2 (away from F0(z))
as t → 0, we may take the constant ct independent of t ∈ (0, t0); call it C0.

Thus, using (4.26) and the relations on νt above,

sup
y∈V ∩Mt

P̄ t(x, y) = sup
y∈V ∩int(Mt)

P̄ t(x, y) ≤ sup
y∈O1∩int(Mt)

P̄ t(x, y)

≤ sup
y∈O1∩int(Mt)

2P̄ t(x, y)
νt(y)

≤ 2C0 inf
y′∈O1∩int(Mt)

P̄ t(x, y′)
νt(y′)

≤ 2C0 inf
y′∈K

P̄ t(x, y′)
νt(y′)

≤ 2C0

β
inf

y′∈K
P̄ t(x, y′).

This proves the result with C = 2C0
β .

The proof of Theorem 4.1 is now complete. �
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Remark 4.10. In the proof of Theorem 4.1, we constructed admissible exten-
sions of (B̄, F ∗(gEucl)) that obeyed the boundary conditions (1.3). However,
it may be possible with some further work to achieve equality of the mean
curvatures, i.e., (1.2), in the construction by following an argument similar to
the proof of Proposition 3.2. Specifically, one may replace (4.8) with L̄tvt = ft,
where the functions ft ≥ 0 are chosen to be supported near ∂M t and so that
the normal derivatives N̄ t(vt) satisfy (4.9) with H̄t = H0. Note that ft may
blow up near the singular point F0(z), which complicates the analysis; we do
not pursue this further here.

To conclude this section, we note that it is not difficult to see that the
proof of Theorem 1.2 generalizes to a larger class of immersions F at the
boundary of the space of embeddings than the particular class F used in
Theorem 1.2. We will not pursue this in any further detail here. Instead, we
make the following more general:

Conjecture 4.11. Conjecture II is false for any locally flat 3-ball. That is, if F
is any smooth immersion of a 3-ball B̄ in R

3 that is not an embedding, then
(B̄, F ∗(gEucl)) admits no admissible extension realizing its Bartnik mass.

5. Remarks on Conjecture III

In this section, we discuss several aspects of Conjecture III, related to the
analysis in the previous section on Conjecture II.

To begin, (as noted briefly in Introduction), it is proved in [2,4] that
the moduli space Em,α of Cm,α AF static vacuum solutions (g, u), u > 0, on
M = R

3\B is a smooth Banach manifold. The moduli space Em,α is the space
of all such static vacuum metrics (g, u) which are Cm,α smooth up to ∂M ,
modulo the action of the Cm+1,α diffeomorphisms Diffm+1,α

1 (M) of M equal
to the identity on ∂M and asymptotic to the identity at infinity. Moreover,
the map to Bartnik boundary data

ΠB : Em,α → Metm,α(S2) × Cm−1,α(S2) := B,

ΠB(g, u) = (γ,H), (5.1)

is a smooth Fredholm map, of Fredholm index 0, i.e., dim KerDΠB =
dim Coker DΠB , at any (g, u).

The ADM mass of (M, g) is given by a simple Komar integral

mADM(g) =
1
4π

∫

∂M

N(u)dAγ , (5.2)

and clearly the mass
mADM : Em,α → R, (5.3)

is a smooth function on Em,α.
Conjecture III is the statement that the map ΠB is a bijection when

H > 0. As in (3.15), let Em,α
+ be the open Banach submanifold of static

vacuum metrics with H > 0 at ∂M . The map
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ΠB : Em,α
+ → Metm,α(S2) × Cm−1,α

+ (S2),
ΠB(g) = (γ,H), (5.4)

is clearly also a smooth Fredholm map, of Fredholm index 0.
The question of whether ΠB in (5.4) is a bijection is a PDE issue (global

existence and uniqueness for an elliptic boundary value problem) which is now
disconnected from the extension issue in Conjecture I. The interior behavior
in B = R

3\M no longer plays any role (besides assigning boundary data). In
particular, the mass function mADM in (5.3) may well have negative values
on Em,α

+ . Put another way, it is not at all clear (at least in general) how to
restrict the boundary data (γ,H) to the smaller space B+ of such data which
have nonnegative scalar curvature in-fillings in order to obtain meaningful
information about the restricted map ΠB |D+ , where D+ = Π−1

B (B+).
It is proved in [4] that ΠB in (5.4) is not a homeomorphism. In fact,

ΠB is not proper, and if the inverse map is defined, it is not continuous. The
reasons for this are more or less the same as the behavior discussed in Theorem
1.2, namely the passage from embedded spheres to immersed spheres, and it
is worth discussing this in more detail.

Let Immm+1,α := Immm+1,α(S2,R3) be the space of Cm+1,α immer-
sions F : S2 → R

3. This is a smooth Banach manifold (an open sub-
manifold of the full mapping space Cm+1,α(S2,R3)). Similarly, the space
Embm+1,α := Embm+1,α(S2,R3) of Cm+1,α of embeddings is an open sub-
manifold of Immm+1,α. Of course, embeddings F ∈ Embm+1,α give static vac-
uum solutions (M, gEucl, 1) where M is the unbounded component of R3\ Im F ;
thus,

Embm+1,α ⊂ Em+1,α (5.5)
upon an appropriate identification. Immersions that are not embeddings no
longer give such flat static vacuum solutions. It is then natural to consider
the behavior of the inclusion (5.5) at the (point-set theoretic) boundary of
Embm+1,α within Immm+1,α; denote this space as ∂ Embm+1,α.

In the following, we will identify immersions into R
3 that differ by a

rigid motion of R
3. Rigid motions, i.e., the isometry group of R

3, act freely
on Immm+1,α by post-composition. Let Immm+1,α be the resulting smooth
quotient space.

For F ∈ Immm+1,α, the induced metric γ = F ∗(gEucl) is a Cm,α metric
on S2 while the mean curvature H = HF is in Cm−1,α(S2). Note that the
data (γ,H) are well defined for F ∈ Immm+1,α. Thus, the map ΠB in (5.1)
or (5.4) defined initially on Embm+1,α extends to a smooth map on the larger
space Immm+1,α; to avoid confusion, we denote this extended map as ΠI

B .

Lemma 5.1. The map

ΠI
B : Immm+1,α → B, ΠI

B(F ) = (γ,H) = (F ∗(gEucl),HF ),

is a smooth proper embedding of Banach manifolds.

Proof. The map ΠI
B is injective by the proof of Theorem 1.2, i.e., the nonex-

istence of (nontrivial) Bonnet pairs. The proof that DΠI
B is injective is
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essentially the same. Thus, the Gauss–Codazzi (constraint) equations for the
immersion F are δγ(A − Hγ) = 0, where δγ is the divergence. Lineariz-
ing gives δ′

γ′(A − Hγ) + δγ(A′ − H ′γ − Hγ′) = 0, where δ′
γ′ is the vari-

ation of the divergence. If (γ′,H ′) = (0, 0), this becomes δγA′ = 0. Since
trA′ = (trA)′ + 〈A, γ′〉 = 0, it follows as before that A′ is a holomorphic qua-
dratic differential on S2 and hence A′ = 0. Thus, the full Cauchy data (γ′, A′)
of the immersion vanish. It follows by (infinitesimal) rigidity of surfaces that
F ′ is an infinitesimal rigid motion, so F ′ = 0 in TImmm+1,α.

Next, we show that ΠI
B is proper. Suppose Fi satisfy ΠI

B(Fi) = (γi,Hi) →
(γ,H) in B. Then, one has uniform control on δA and trA. It is well known
that (δ, tr) form an elliptic system for symmetric bilinear forms on S2. Since
the system has trivial kernel on Immm+1,α, elliptic regularity gives uniform
control on {Ai} in Cm−1,α. It is then standard that this gives uniform control
on {Fi} in Immm+1,α. Thus, a (sub)sequence of {Fi} converges to a limit F ,
which proves that ΠI

B is proper. �

Let

M = Im(ΠI
B) ⊂ B,

a properly embedded Banach submanifold representing the Bartnik boundary
data of immersions F : S2 → R

3. Let

Memb ⊂ M
be the open submanifold of embedded Bartnik boundary data, i.e., Memb =
Im(ΠI

B(Embm+1,α)). Thus

Memb ⊂ Im(ΠB).

However, it is not at all clear whether the full space of immersed boundary
data M ⊂ Im(ΠB).

As discussed in [4], the map ΠB is not proper when restricted to
Embm+1,α ⊂ Em,α. Namely, take any sequence of embeddings Fi converging to
an immersion F that is not an embedding. The Bartnik boundary data (γi,Hi)
of Fi converge to the boundary data (γ,H) of F . However, the sequence of
static vacuum solutions (M, gi, 1) determined by Fi does not converge to a
limit in Em,α (since ∂(Embm+1,α) is not contained in Em,α).

In analogy to Conjecture 4.11, we make:

Conjecture 5.2. The Bartnik boundary data (γ,H), with H > 0, of any locally
flat 3-ball (that is not an embedded ball in R

3) do not have a static vacuum
extension, i.e., such (γ,H) ∈ M\Memb are not in the image of ΠB.

One may similarly conjecture that Conjecture 5.2 above holds more gen-
erally for immersions F : S2 → M into any static vacuum solution (M, g, u)
in place of flat R

3, where F (S2) is a surface surrounding ∂M .
We also conjecture there is a second region where Conjecture III breaks

down. Recall that the black hole uniqueness theorem [17,29], together with
[46], states that the only static vacuum extension of the boundary data (γ, 0)
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is given by the Schwarzschild metric with γ = γ2m a round metric of radius
2m.

Conjecture 5.3. For any γ ∈ Metm,α(S2) of nonconstant Gauss curvature,
there is a neighborhood Uγ ⊂ Cm−1,α

+ (S2) with 0 ∈ Uγ , such that for H ∈ Uγ ,
the boundary data (γ,H) do not bound a static vacuum metric (M, g, u). In
particular, ΠB is not surjective near the Schwarzschild metric.

Partial evidence for this conjecture is given by the main compactness
theorem (Theorem 1.2) in [4]. Namely, if (M, gi, ui) is a sequence of static
vacuum solutions, ui > 0, with boundary data (γi,Hi) → (γ,H) in B, with
Hi > 0 and H ≥ 0, and if ∂M is strictly outer-minimizing in (M, gi, ui) for
all i, then a subsequence of (M, gi, ui) converges in Em,α to a limit (M, g, u)
realizing the data (γ,H). Setting H = 0, one has a contradiction to the black
hole uniqueness theorem if γ �= γ2m for some m > 0. Hence, such outer-
minimizing solutions cannot exist for i sufficiently large.

It remains an open question as to whether such static vacuum extensions
exist with ∂M not outer-minimizing. If such a sequence exists, either the cur-
vature of gi must blow up near ∂M or the distance to the cut locus of the
normal exponential map must tend to zero (or both), as i → ∞.

Remark 5.4. The compactness result above suggests modifying the Bartnik
mass mB to m̃B by allowing for only outer-minimizing extensions, as sug-
gested by Bray [14]. Note this rules out the constructions above in the proof of
Theorem 1.2 and the discussion above on Conjecture III, which are certainly
not outer-minimizing extensions. One may also restrict the map ΠB in (5.4)
to the space ˜Em,α of static vacuum solutions for which ∂M is strictly outer-
minimizing. Note that ˜Em,α is an open domain in Em,α

+ . However, as discussed
above, the restricted map ΠB on ˜Em,α is not surjective (onto a product neigh-
borhood of the Schwarzschild boundary data). Thus, Conjecture III also fails
for the modified mass m̃B .

Observe that boundary data (γ,H) near Schwarzschild data (γ2m, 0) do
have outer-minimizing extensions in

◦Pm,α. The discussion above (together
with Theorem 1.1) strongly suggests that Conjecture II also fails for the mod-
ified mass m̃B , i.e., there exist (γ,H) for which there is no mass-minimizing
extension realizing m̃B .

Although Theorem 1.2 shows that Conjecture II is false in general, (and
similarly the discussion above indicates that Conjecture III is likely to be
false in general) one would still like to find natural geometric conditions on
the boundary data (γ,H) of the region Ω under which these conjectures could
remain valid. In a simpler but related setting, the guiding light along these lines
is the famous Weyl embedding theorem [48,50] that a 2-sphere S2 with metric
γ of positive Gauss curvature embeds isometrically in R

3 as the boundary of
a convex body Ω. In particular, the normal exponential map expN into the
exterior M = R

3\Ω has no cut or focal points.
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As discussed in [3,4] and seen here in Theorem 1.2, the presence of nearby
cut or focal points of expN is the primary difficulty in establishing Conjec-
ture III and is of course also basic in establishing Conjecture II. Thus, it is
natural to ask:

Question. Are there natural geometric conditions on (γ,H) such that any
extension of (γ,H) in Pm,α or any static vacuum extension in Em,α

+ has a
lower bound on the distance to the cut locus of expN?

Unfortunately, there is little evidence (if any) to suggest that the condi-
tions Kγ > 0 and H > 0 are sufficient for this purpose, i.e., a simple, direct
generalization of the Weyl embedding theorem has little support for its valid-
ity. On the other hand, it would of course be interesting to find any examples
where Kγ > 0, H > 0 with the distance to the cut locus of expN arbitrarily
small.
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to the University for financial support and in particular to Carla Cederbaum
for providing the opportunity to initiate this collaboration. We also extend
our thanks to Zhongshan An and the referees for their careful reading of the
paper and insightful questions and comments. M. A. was partially supported
by NSF Grant DMS 1607479.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Anderson, M.: On the structure of solutions to the static vacuum Einstein equa-
tions. Ann. Henri Poincaré 1, 995–1042 (2000)
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