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The Spin ± 1 Teukolsky Equations
and the Maxwell System on Schwarzschild

Federico Pasqualotto

Abstract. In this note, we prove decay for the spin ± 1 Teukolsky equations
on the Schwarzschild spacetime. These equations are those satisfied by the
extreme components (α and α) of the Maxwell field, when expressed with
respect to a null frame. The subject has already been addressed in the
literature, and the interest in the present approach lies in the connection
with the recent work by Dafermos, Holzegel and Rodnianski on linearized
gravity (Dafermos et al. in The linear stability of the Schwarzschild solu-
tion to gravitational perturbations, 2016. arXiv:1601.06467). In analogy
with the spin ±2 case, it seems difficult to directly prove Morawetz esti-
mates for solutions to the spin ±1 Teukolsky equations. By performing
a differential transformation on the extreme components α and α, we
obtain quantities which satisfy a Fackerell–Ipser Equation, which does
admit a straightforward Morawetz estimate and is the key to the decay
estimates. This approach is exactly analogous to the strategy appearing
in the aforementioned work on linearized gravity. We achieve inverse poly-
nomial decay estimates by a streamlined version of the physical space rp

method of Dafermos and Rodnianski. Furthermore, we are also able to
prove decay for all the components of the Maxwell system. The trans-
formation that we use is a physical space version of a fixed-frequency
transformation which appeared in the work of Chandrasekhar (Proc R
Soc Lond Ser A 348(1652):39–55, 1976). The present note is a version of
the author’s master thesis and also serves the “pedagogical” purpose to
be as complete as possible in the presentation.

1. Introduction

The subject of black-hole stability has received a good amount of attention
lately, as research efforts are focused on proving the full nonlinear stability of
the Kerr family of black holes. See the lecture notes [10] for a comprehensive
introduction on the topic. The interest in the aforementioned problem stems
from the fundamental question of whether the Kerr solution indeed provides
an appropriate description of physical reality.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-019-00785-4&domain=pdf
http://arxiv.org/abs/1601.06467
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In an attempt to address the fully nonlinear problem, researchers have
been following a natural path: first, one studies the covariant scalar wave
equation (spin 0). Then, one studies the Maxwell equations (in which the
extreme components satisfy spin ± 1 Teukolsky equations). Finally, one seeks
to study the linearized Einstein equations (in which the extreme curvature
components satisfy spin ± 2 Teukolsky equations). Eventually, this process
leads to a deeper understanding of the linear structure, which is a crucial step
needed to address the nonlinear stability of the Kerr family.

Hence, the subject of decay of linear waves on a black-hole background has
been recently studied, with many contributions by different research groups.
For the first step of the “linear program,” these efforts culminated in the proof
of decay of scalar waves on a Kerr background for |a| < M , by Dafermos et
al. [12].

To proceed in the outlined program, the Maxwell equations have also
been studied. Boundedness and decay for solutions to the Maxwell equations
have been first proved by Blue [4] on the Schwarzschild background. There were
advances in extending these results to the Kerr setting in the slowly rotating
case (a � M) by Andersson and Blue [2]. Furthermore, Sterbenz and Tataru
proved local energy decay for the Maxwell field on a large class of spherically
symmetric spacetimes in [17]. In addition, Metcalfe, Tataru and Tohaneanu
proved pointwise decay for the Maxwell field under the assumption of local
energy decay, for a fairly general class of asymptotically flat spacetimes, in the
paper [14]. See also [13].

Finally, Andersson, Bäckdahl and Blue found a new way of producing
robust energy estimates on the Schwarzschild background, exploiting a super-
energy tensor. The relevant paper is [1].

Recently, there has also been a substantial advance in the last step of this
“linear program,” i.e., the proof of linear stability of the Schwarzschild metric
under gravitational perturbations. Indeed, a recent result of Dafermos et al.
[11] shows that the Schwarzschild metric is stable under linearized gravitational
perturbations.

1.1. Maxwell: Why Another Proof?

In this paper, we return to the topic of decay of the Maxwell field on a curved
background. The aim of the note is threefold: first, we provide a simple proof
of pointwise decay of the Maxwell field on the Schwarzschild background. Sec-
ond, we adopt the further “didactic” aim to be as detailed as possible in
our exposition. The third and main motivation for this work, though, lies
in the connection with the aforementioned problem of linear stability of the
Schwarzschild metric. It has become evident that a very similar approach to
the one in [11] can be adopted to address the decay properties of the spin ± 1
Teukolsky equations and of the Maxwell system on Schwarzschild.

We briefly recall the strategy followed by the authors in [11]. Given a
solution to the equation for the extreme curvature components (i.e., the spin
± 2 Teukolsky equation), the authors find a second-order differential trans-
formation that performs the following: if we apply the transformation on the
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extreme curvature component, the resulting expression satisfies a “good” equa-
tion (i.e., an equation for which Morawetz and energy estimates can be proved).
The resulting equation is called the Regge–Wheeler equation. The relevant
quantity enables us to estimate all the components of the field, just by using
transport equations.

We wish to follow the same path in the context of the Maxwell system,
which we study on the Schwarzschild background. We start from the spin ± 1
Teukolsky equations, which are satisfied by the extreme components α and α.
We exploit an elementary transformation (which can be found, in its fixed-
frequency form, in the work of Chandrasekhar [6]). The transformation takes
the spin ± 1 Teukolsky equations into a “good” equation, called the Fackerell–
Ipser equation. The transformed quantity has the required property of vanish-
ing on the zeroth mode and of satisfying good integrated decay estimates. We
finally use the transformed quantity to estimate, via transport equations, first
the extreme components α and α, and subsequently the remaining components
of the Maxwell field.

The approach outlined above differs from previous work ([1,4]) in two
main aspects. The first main difference is the analysis of the “good” quan-
tity arising from the Chandrasekhar transformation. Secondly, the way we
perform estimates (specifically, Morawetz estimates and decay estimates) is
closer in spirit to the works [9,11] and uses the “new physical space method”
by Dafermos and Rodnianski. We will touch upon these points in Sect. D in
“Appendix,” where we sketch a comparison with the aforementioned works
[1,4].

Let me finally note that earlier versions of the results contained in this
note were originally obtained in my master thesis at ETH Zürich [15].

1.2. Outline of the Note

We will first motivate our analysis in Sect. 2, giving an outline of the work
[11], as well as a sketch of the argument in the present note.

We subsequently introduce some necessary notation and the null decom-
position of the Maxwell system in Sect. 3, as well as the crucial transformation
which takes the spin ± 1 Teukolsky equations into the Fackerell–Ipser equation.

We then proceed to state the main results of this note in Sect. 4:

• decay for solutions to the spin ± 1 Teukolsky equations (Theorem 4.1),
• decay for solutions to the Maxwell system (Theorem 4.2).

Subsequently, we prove integrated decay estimates for solutions to the
Fackerell–Ipser equation, in Sect. 5. We follow the rp-method approach by
Dafermos–Rodnianski, as in [9].

From these integrated estimates, via a combination of Sobolev embedding
and the Grönwall inequality, we obtain decay for solutions to the spin ± 1
Teukolsky equations in Sect. 6.

We improve the decay for the α component in Sect. 7.
We then extend the decay to the full Maxwell system in Sect. 8.
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We conclude the note with the appendices, in which we collect important
lemmas and calculations. In “Appendix D,” we compare our result with those
achieved in previous work by Blue [4] and Andersson, Bäckdahl, Blue [1].

2. Motivation and Main Idea of the Work

2.1. Introducing the Work on Linearized Gravity

It is sensible to recall here the strategy the authors follow in the paper [11].
We warn the reader that this brief subsection does not have any claim of
completeness, and we refer to the paper [11] for the full details.

In said work, the authors consider the vacuum Einstein equations:

Ricμν = 0, (2.1)

with respect to the unknown metric g, which is considered to be “near” the
Schwarzschild metric. In the following, bold typeface will always denote quan-
tities associated with the metric g, whereas quantities in non-bolded typeface
will always be associated with the Schwarzschild metric g.

The authors perform a suitable linearization as follows. Let (L̂, L̂,e1,e2)
be a normalized null frame with respect to the metric g. Also, � denotes the
Hodge dual with respect to two indices:

�Rμνκλ :=
1
2
εμναβR αβ

κλ . (2.2)

Note that, here, � is in bold typeface, hence the Hodge dual is calculated using
the (bold) volume form ε, which is the natural volume form induced by the
metric g.

In order to write the linearized Einstein equations, the authors decompose
the field into null frame. They consider the Ricci coefficients:

χAB := g(∇AL̂,eB), χ
AB

:= g(∇AL̂,eB),
ηA := − 1

2g(∇L̂eA, L̂), η
A

:= − 1
2g(∇L̂eA, L̂)

ω̂ := 1
2g(∇L̂L̂, L̂), ω̂ := 1

2g(∇L̂ L̂, L̂),
ζ := 1

2g(∇AL̂, L̂).

(2.3)

The authors consider the null components of the Riemann tensor as well,
i.e., the set of components

αAB := R(eA, L̂,eB , L̂), αAB := R(eA, L̂,eB , L̂),
βA := 1

2R(eA, L̂, L̂, L̂), β
A

:= R(eA, L̂, L̂, L̂),
ρ := 1

4R(L̂, L̂, L̂, L̂), σ := 1
4

�R(L̂, L̂, L̂, L̂).
(2.4)

They proceed to linearize the Einstein vacuum equations (2.1) around the
Schwarzschild metric using this null framework. In other words, they write the
unknown metric

g = g +
(1)
g ,

where g is the Schwarzschild metric and
(1)
g is the variation of the metric. They

plug this expression for g into Eq. (2.1), decompose into null components and
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eliminate the nonlinear terms in
(1)
g . They therefore obtain a suitable lineariza-

tion of the Einstein equations around Schwarzschild.
The resulting equations are coupled, meaning that in every equation we

have more than one component of the field. In the following, we adopt the nota-
tion from [11]. In particular, quantities with the superscript (1) correspond to
the variation of the metric, whereas quantities without subscript or superscript
correspond to their original Schwarzschild values.

Remarkably, the perturbed extreme components
(1)
α and

(1)
α were shown

by Teukolsky in [18] to satisfy decoupled equations. In the notation of [11], the

equation for
(1)
α is

/∇4 /∇3

(1)
α +

(
1
2
trχ + 2ω̂

)
/∇4

(1)
α +

(
5
2
trχ − ω̂

)
/∇3

(1)
α − /Δ

(1)
α

+
(1)
α (5ω̂ trχ − ω̂ trχ − 4ρ + 2r−2 + trχtrχ − 4ω̂ω̂) = 0.

(2.5)

On functions, we have the definition Ω /∇3 = ∂u, Ω /∇4 = ∂v. Here, Ω =√
1 − 2M/r. /∇ indicates the induced connection on the spheres of constant

(u, v) Schwarzschild coordinates, and /Δ indicates the corresponding covariant
Laplacian. Also, the definition of non-bolded Ricci coefficients and non-bolded
null components is exactly as in (2.3) and (2.4), replacing all the boldface quan-
tities by the non-bolded ones. Furthermore, e3 = L̂ = Ω−1∂u, e4 = L̂ = Ω−1∂v.

The core of the proof is the following: starting from Eq. (2.5), the authors

find a quantity
(1)

Ψ which satisfies a “good” equation. Such quantity
(1)

Ψ (and

analogously its companion
(1)

Ψ) can be defined in terms of the sole extreme

component
(1)
α (resp.

(1)
α ), which satisfies a spin ± 2 Teukolsky equation. Here

are some definitions
(1)

ψ := −1
2
r−1Ω−2 /∇3(rΩ

2 (1)
α ),

(1)

P := r−3Ω−1 /∇3(r
3Ω

(1)

ψ ),

(1)

ψ :=
1
2
r−1Ω−2 /∇4(rΩ

2 (1)
α ),

(1)

P := r−3Ω−1 /∇4(r
3Ω

(1)

ψ ).

As usual, the superscript (1) indicates that the quantity is the one relative
to the perturbed metric. As before, on functions, Ω /∇3 = ∂u, Ω /∇4 = ∂v. We

finally define the rescaled versions of
(1)

P and
(1)

P :

(1)

Ψ:= r5
(1)

P ,
(1)

Ψ:= r5
(1)

P .

In this setting,
(1)

Ψ satisfies the Regge–Wheeler equation, where we define
μ = 2M/r:

Ω /∇3(Ω /∇4

(1)

Ψ) − (1 − μ) /Δ
(1)

Ψ +
(

4
r2

− 6M

r3

)
(1 − μ)

(1)

Ψ= 0. (2.6)

Here, as before, Ω =
√

1 − 2M/r. Also, on functions, Ω /∇3 = ∂u, Ω /∇4 = ∂v.

The same equation is satisfied by
(1)

Ψ.
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Remark 2.1. Most importantly, solutions to Eq. (2.6) satisfy an energy con-
servation inequality and a Morawetz estimate.

Remark 2.2. Equation (2.6) is a tensorial equation. This equation is typically
stated by other authors in the corresponding scalar form. See Remark 7.1 in
[11] for the form of the corresponding scalar equation.

Remark 2.3. We further notice that
(1)

Ψ can also be defined solely in terms of

the middle components
(1)
σ and

(1)
ρ via angular derivation:

(1)

ΨAB := r5

(
/D�

2 /D�
1(−

(1)
ρ ,

(1)
σ ) +

3
4
ρtrχ(

(1)

χ̂ −
(1)

χ̂ )
)

. (2.7)

Here, the definition of the spherical operators /D�
1 and /D�

2 is as follows:

/D�
1(ρ, σ) := − /∇Aρ + /εAB

/∇B
σ, /D�

2ξ := −1
2
( /∇BξA + /∇AξB − ( /div ξ)/gAB

).

(2.8)

Remark 2.4. An additional difficulty, in the linearized gravity case, is the
existence of pure gauge solutions. These are solutions of the linearized Einstein
equations arising from the diffeomorphism invariance of the Einstein equations.
For the full formulation, we refer to the paper [11], especially Sections 2.1.4 and
6.1. The Maxwell case considered here does not suffer from such difficulties,
as there is a predetermined gauge (given by our choice of L and L) in which
the field satisfies good decay properties.

Remark 2.5. There is a connection between the kernel of /D�
2 /D�

1 and solutions of
the linearized gravity equations corresponding to “infinitesimal perturbations
toward Kerr” of the Schwarzschild solution. As we shall see, this has an analogy
in the Maxwell case.

2.2. Non-radiating Modes

Let us now turn our attention to the Maxwell system on the Schwarzschild
spacetime. We remark that the Maxwell equations possess non-trivial station-
ary solutions, whose null components decay at spacelike infinity.

It is an easy computation to show that the following expression gives
stationary solutions to the Maxwell system on Schwarzschild:

F = qBr−2/εAB + qEr−2

(
1 − 2M

r

)
dt ∧ dr∗. (2.9)

Here, qE and qB are two real parameters, respectively, the “electric charge”
and the “magnetic charge.”

Excluding such “stationary modes” is a crucial element of every proof of
decay of the Maxwell field on the Schwarzschild manifold.

2.3. Key to the Proof for the Spin ± 1 Teukolsky Equations and the Maxwell
System

We consider the Maxwell equations for the unknown two-form F on a fixed
Schwarzschild metric as a background.
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Let us first anticipate some useful notation from Sect. 3. Let us consider
the Regge–Wheeler coordinates (t, r∗, θ, ϕ), with r∗ := r + 2M log(r − 2M) −
3M − 2M log M . We define L := ∂t + ∂r∗ , and L := ∂t − ∂r∗ . We then let

α(V ) := F (L, V ), α(V ) := F (L, V ),

for any vector field V tangent to the spheres St,r of constant t and r coordi-
nates. We subsequently regard α and α as one-forms on the vector bundle B
composed of vectors everywhere tangent to the spheres St,r. Since we denote
(θA, θB) a generic local coordinate system for the sphere S

2, we will write αA

and αA (using capitalized roman indices) to denote the one-forms obtained
by the above procedure. For the complete definitions, we refer the reader to
Sects. 3 and 3.2.

As was proved by Bardeen and Press in [3] (in its scalar, fixed-frequency
version), the extreme components (α and α) satisfy the so-called spin ± 1
Teukolsky equations:

/∇L /∇L(rαA) +
2
r

(
1 − 3M

r

)
/∇L(rαA) − (1 − μ) /Δ(rαA) +

1 − μ

r2
rαA = 0,

(2.10)

/∇L /∇L(rαA) − 2
r

(
1 − 3M

r

)
/∇L(rαA) − (1 − μ) /Δ(rαA) +

1 − μ

r2
rαA = 0.

(2.11)

For the /∇ notation, and for the definition of /Δ, we refer to Sect. 3. Here, as
usual, μ = 2M/r.

Remark 2.6. Notice that these are tensorial equations, cf. Remark 2.2.

Remark 2.7. The stationary solutions considered in Sect. 2.2 have vanishing
α and α components. In other words, the extreme components α and α do not
“see” the stationary modes. Hence, we seek to define a quantity starting from
α and α.

These equations are poorly behaved from the point of view of energy
estimates, due to the presence of bad first-order terms. We now consider the
quantities

φA :=
r2

1 − μ
/∇L(rαA),

φ
A

:=
r2

1 − μ
/∇L(rαA).

(2.12)

Remark 2.8. A fixed-frequency version of this transformation appeared in its
scalar form in the work by Chandrasekhar [6], in the case of linear electromag-
netism on a fixed Kerr background. Similarly, a fixed-frequency version of the
transformation relating Eqs. (2.5) and (2.6) appeared in the work of Chan-
drasekhar [5] on the linearized gravitational perturbations of a Schwarzschild
black hole.
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Remark 2.9. Notice that, in view of the Maxwell equations, in the notation of
the previous subsection,

φA = r3 /D�
1(ρ, σ).

It can be shown by direct calculation from (2.10) and (2.11) that φA and
φ

A
both satisfy the following tensorial Fackerell–Ipser equation:

/∇L /∇Lφ − (1 − μ) /Δφ + V φ = 0, (2.13)

with V = 1−μ
r2 .

Remark 2.10. Notice that this equation is analogous to (2.6). As in the case
of linearized gravity, this equation is also usually stated in the literature as
a scalar equation. The scalar form of the Fackerell–Ipser equation for the
unknown u is the following:

(1 − μ)−1LLu − /Δu = 0. (2.14)

In particular, this is the wave equation satisfied by r2ρ and by r2σ. Commuting
the equation with the angular operator r /∇ leads to the appearance of the
additional zeroth order term. This is closely related to the case of linearized
gravity, see Remark 7.1 in [11], and is consistent with Remark 2.9.

Equation (2.13) is now the key to the argument: it admits robust energy
estimates, and furthermore the quantity φ enables us to estimate the quantities
α and α.

Remark 2.11. Let us notice here that the argument contained in this note (in
particular, the proof of Theorem 4.1) does not suffer from the difficulty arising
from the “pure gauge solutions,” which are present in the linearized gravity
case [11].

3. Preliminaries and Notation

Having settled the heuristics, we proceed to the actual setup.
• Let gS2 be the standard metric on the sphere S

2.
• Let Se be the following smooth Lorentzian manifold without boundary:

Se := (t, r, ω) ∈ R× (2M,∞) × S
2. The metric tensor ge on Se is defined

as follows:

ge := −(1 − μ)dt ⊗ dt + (1 − μ)−1dr ⊗ dr + r2gS2 .

Here, μ := 2M
r . We call Se the open exterior Schwarzschild spacetime,

or simply Schwarzschild exterior. Note that this set does not have a
boundary.

• When denoting subsets of Se determined by some property, we shorten
the notation in the following way:

{property} := {(u, v, ω) ∈ Se : property}.

Hence, for instance, the set {(u, v, ω) ∈ Se : u ≥ u0} is denoted by
{u ≥ u0}.
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• Let ∇ the Levi-Civita connection associated with ge.
• Other coordinates:

– (t, r∗, ω), with r∗ := r + 2M log(r − 2M) − 3M − 2M log M ,
– (t∗, r1, ω) with t∗ := t + 2M log(r − 2M), r1 := r,
– (u, v, ω) with u := t − r∗, v := t + r∗.

• We will adopt the following convention throughout the paper. If y > 2M
is a real number, which we think of as a radius r, we will define y∗ to be
the corresponding r∗ coordinate, that is

y∗ := y + 2M log(y − 2M) − 3M − 2M log M.

This will allow us to make sense of expression such as, for instance, (y1 +
y2)∗, if y1, y2 are reals, both greater than 2M .

• Define a local frame field: (L,L, ∂θA , ∂θB ) such that

L : = ∂t + ∂r∗ ,

L : = ∂t − ∂r∗ ,

and such that ∂θA and ∂θB are local vector fields induced by a system of
local coordinates (θA, θB) for S

2.
• Se embeds isometrically in M, the maximally extended Schwarzschild

spacetime. Let us call such isometric embedding i : Se → M. For details
about the precise definition of M and the form of i, see [10], Section 2.3.

• Consider the Kruskal coordinates (T,R, θ, ϕ) on M, as in [10], Section
2.3. We denote by V the set of vector fields on TM:

V :=
{

∂

∂T
,

∂

∂R
,Ω1,Ω2,Ω3

}
,

where the {Ωi} are rotation Killing fields, such that span(V) = TM.
• We will adopt the following convention throughout the paper: a function

f is smooth on an open set U ⊂ Se (denoted by f ∈ C∞(U)) if there
exists an open set O ⊂ M, such that O ⊃ i(U) and there exists a smooth
function f̃ ∈ C∞(O) (seen as a subset of M) which restricts to f on i(U).

• Let again be U ⊂ Se an open set, and let V be either TU or a derived
bundle of it (i.e., a tensor product of some copies of TU with some copies
of its dual). We say that a section V of V is smooth if the following
holds. We push V forward via i to obtain a section V ′ of V ′, a derived
bundle of TM. We then express the components of V ′ in the frame V
(or the corresponding derived frame), obtaining a collection of functions
(fi)i=1,...,5 : i(U) → R, n ∈ N. For V to be smooth, we require that the
fi’s all be extendible to smooth functions f̄i on an open set O ⊃ i(U), as
in the previous bullet. We denote by Γ(V) the vectorspace of all smooth
sections of such bundle.

Remark 3.1. Notice that this definition encodes the notion of “smooth-
ness up to the event horizon,” for instance, if U = Se, or if U = {t∗ > a},
with a > 0.
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Remark 3.2. L vanishes as r → 2M ,
(
1 − 2M

r

)−1
L is a smooth vector

field on the set U := {t∗ > a}, with a ∈ R, according to our definition (it
is a smooth section of TU).

• Let k ∈ N. We denote by Λk(V) the vectorspace of smooth antisym-
metric k-forms, which is the space of smooth sections of the bundle
V∗ ⊗ · · · ⊗ V∗︸ ︷︷ ︸

k times

, which are antisymmetric with respect to the permutation

of any two arguments.
• We introduce tensor fields tangent to the spheres of constant r.

– Let St̃,r̃ ⊂ Se be the set

St̃,r̃ := {(t, r, ω) ∈ Se, t = t̃, r = r̃}.

– Consider TSt̃,r̃ ⊂ TSe, and let

B :=
⋃

t̃∈(−∞,∞),r̃∈(2M,∞)

TSt̃,r̃ ⊂ TSe.

Notice that B is the bundle tangent to each sphere of constant t, r.
– Sections of B can be seen as sections of TSe, due to the fact that

B ⊂ TSe. Hence, we say that a section W of B (or a derived bundle
thereof) is smooth if the corresponding section of TSe (or a derived
bundle thereof) is.

– If B̃ is B or a derived bundle thereof, we denote by Γ(B̃) the vector
space of all smooth sections of B̃. Similarly, Λk(B̃) is the space of
alternating k-forms on B̃.

– Indices for tensors in TSe and derived bundles will be indicated by
Greek letters μ, ν, κ . . . Indices for tensors in B will be indicated by
uppercase Latin letters: A,B,C, . . ..

– Let /g be the induced metric on spheres of constant r. Technically,
this is a smooth section /g ∈ Γ(B∗ ⊗ B∗). On each sphere St,r, /g is
the round metric.

– Let /εAB ∈ Λ2(B) be the induced volume form on the spheres St̃,r̃.
– Let (·)⊥ : TSe → B be the orthogonal projection on the spheres

St̃,r̃.
– Let V,W ∈ Γ(B). We define a connection on B by

/∇V W := (∇V W )⊥. (3.1)

This connection coincides, on the spheres, with the Levi-Civita con-
nection induced by the induced metric /g.

– We define two other differential operators on Γ(B) in the following
way:

/∇LV := (∇LV )⊥, /∇LV := (∇LV )⊥.

– The previous differential operators can be extended to derived bun-
dles from B in the usual way, asking that they satisfy the Leibnitz
rule.
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– We define the induced covariant curl and divergence in the following
way. Let ω ∈ Γ(B∗):

/div ω := /g
AB /∇AωB , /curl ω := /ε

AB /∇AωB .

• We introduce the foliation needed in the note, and relevant Sobolev norms
on it.

– Let � := {Ω1,Ω2,Ω3} be a set of angular Killing fields of Se whose
elements, at each point of Se, span all directions in B. Let �̃ be the
renormalized version

�̃ := {Ω1/r,Ω2/r,Ω3/r}.

– Let k ≥ 0, let ιΩ̃k (resp. ιΩ̃≤k) be the set of all ordered lists of length
k (resp. ≤ k) composed of elements of �̃, and analogously let ιΩk
(resp. ιΩ̃≤k) be the set of all ordered lists of length k (resp. ≤ k)

composed of elements of �. Elements in ιΩ̃k and ιΩk will be referred
to as multi-indices.

– Let η be a covariant tensor field on B. If J = (V1, . . . , Vk) is a multi-
index, and let /L be the Lie derivative induced by the connection /∇.
Let X ∈ Γ(B). We let

/∇J
η := /∇V1

· · · /∇Vk
η, /LJ

η := /LV1
· · · /LVk

η, ( /∇X)kη := /∇X · · · /∇X︸ ︷︷ ︸
k−times

η.

(3.2)
– Let n ≥ 0 be an integer, η ∈ Γ((B∗)n). We define the angular norm

of η as
|η|(t, r, ω) :=

∑
J∈ιΩ̃n

|η(J)|,

where we assumed, if J = (V1, . . . , Vn),

η(J) = η(V1, . . . , Vn).

– Given ũ, ṽ ∈ R, we define

C ũ,ṽ := {(u, v, ω) ∈ Se, u = ũ, v ≥ ṽ},

Cũ,ṽ := {(u, v, ω) ∈ Se, u ≥ ũ, v = ṽ},

Cũ,ṽ := C ũ,ṽ ∪ C ũ,ṽ,

C ũ := {(u, v, ω) ∈ Se, u = ũ},

C ṽ := {(u, v, ω) ∈ Se, v = ṽ}.

– Let i be the inclusion of Cu0,v0 into Se. Let η be a covariant section
of i∗B or one of its derived bundles. We define the following fluxes

FT
u [η](v1, v2)

:=
∫ v2

v1

∫
S2

[| /∇Lη|2 + (1 − μ)| /∇η|2 + V |η|2](u, v, ω)dvdS2(ω),

(3.3)
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FT
v [η](u1, u2)

:=
∫ u2

u1

∫
S2

[| /∇Lη|2 + (1 − μ)| /∇η|2 + V |η|2](u, v, ω)dudS2(ω),

(3.4)

FN
v [η](u1, u2)

:=
∫ u2

u1

∫
S2

[(1 − μ)−1| /∇Lη|2 + (1 − μ)| /∇η|2

+ V |η|2](u, v, ω)dudS2(ω), (3.5)

F∞[η](u1, v1) := FT
u1

[η](v1,∞) + FN
v1

[η](u1,∞). (3.6)

– Let q, x, s ∈ N≥0. Let η as above. We define the weighted Sobolev
norms

‖η‖Cu0,v0 ;q;x,s

:=
x∑

i=0

∑
J∈ιΩ≤s

{
F∞[( /∇T )i /LJ

η](u0, v0)

+
∫

Cu0∩{r≥R}
rq| /∇L( /∇T )min{i,(x−1)+} /LJ

η|2dvdS2

}
. (3.7)

3.1. The Maxwell System

Let F be an antisymmetric 2-form on Se. Let us introduce the Maxwell Equa-
tions:

dF = 0, d � F = 0. (3.8)
Here, � denotes the Hodge dual operator. More explicitly, if G is a two-form,

(�G)μν =
1
2
εαβγδG

γδ. (3.9)

Equivalently, the system can be written as

∇[μFκλ] = 0, ∇μFμν = 0.

Here, square brackets denote antisymmetrization of indices.

3.2. The Null Decomposition of the Maxwell System

Definition 3.3. Let F ∈ Λ2(Se). We define α, α ∈ Γ(B∗), and ρ, σ ∈ C∞(Se) by
the following relations:

α(V ) := F (V,L),

α(V ) := F (V,L),

ρ :=
1
2

(
1 − 2M

r

)−1

F (L,L),

σ :=
1
2
/ε

CDFCD.

(3.10)

for all V ∈ Γ(B).
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Remark 3.4. α and α can also be viewed as one-forms in Γ(T ∗Se), by requiring
that they vanish on L and L. Furthermore, in the definition of σ, we consider
F as an element of Λ2(B), by restriction.

Remark 3.5. Note that all the previously defined quantities are smooth on Se

(up to the horizon), in the sense of our definition. This is due to the fact that
the vector field (1 − μ)−1L is smooth on Se, according to our definition.

Having introduced these quantities, we write the Maxwell system with
respect to them. We have the following proposition.

Proposition 3.6. Let F ∈ Λ2(Se), and let F satisfy the Maxwell system (3.8)
on Se. Then, defining the objects α, α, ρ, σ as in (3.10) we have that

1
r

/∇L(rαA) + (1 − μ)( /∇Aρ − /εAB
/∇B

σ) = 0, (3.11)

1
r

/∇L(rαA) − (1 − μ)( /∇Aρ + /εAB
/∇B

σ) = 0, (3.12)

/curl α − 2
1 − μ

r
σ + /∇Lσ = 0, (3.13)

− /div α + 2
1 − μ

r
ρ − /∇Lρ = 0, (3.14)

/curl α + 2
1 − μ

r
σ + /∇Lσ = 0, (3.15)

/div α − 2
1 − μ

r
ρ − /∇Lρ = 0. (3.16)

Furthermore, the extreme components α and α satisfy the spin ± 1 Teukolsky
equations:

/∇L /∇L(rαA) +
2
r

(
1 − 3M

r

)
/∇L(rαA) − (1 − μ) /Δ(rαA) +

1 − μ

r2
rαA = 0,

(3.17)

/∇L /∇L(rαA) − 2
r

(
1 − 3M

r

)
/∇L(rαA) − (1 − μ) /Δ(rαA) +

1 − μ

r2
rαA = 0.

(3.18)

Proof of Proposition 3.6. We postpone the relevant calculations to “Appen-
dix,” Sect. A. �
3.3. Derivation of the Fackerell–Ipser Equation

We now proceed to introduce the crucial quantities φ and φ, and we prove
that, if we only require the spin ±1 Teukolsky equations to hold for α and α,
then φ and φ satisfy the so-called Fackerell–Ipser equation.

Proposition 3.7. Let α satisfy the spin +1 Teukolsky equation (3.17) and let α
satisfy the −1 Teukolsky equation (3.18) on Se. Then, we define

φA :=
r2

1 − μ
/∇L(rαA),

φ
A

:=
r2

1 − μ
/∇L(rαA).

(3.19)



1276 F. Pasqualotto Ann. Henri Poincaré

Under these hypotheses, φ and φ satisfy the Fackerell–Ipser Equation:

/∇L /∇LφA − (1 − μ) /Δ(φA) +
1 − μ

r2
φA = 0, (3.20)

/∇L /∇Lφ
A

− (1 − μ) /Δ(φ
A
) +

1 − μ

r2
φ

A
= 0. (3.21)

Remark 3.8. We remark that, if we further assume that α and α are part of a
solution (ρ, σ, α, α) of the Maxwell equations (3.11)–(3.16) on Se, the following
relations hold true:

φA = r3( /∇Aρ + /εAB
/∇B

σ), φ
A

= r3(− /∇Aρ + /εAB
/∇B

σ).

We also remark that, in this case, the tensorial Fackerell–Ipser Equation can be
obtained from the wave equation (scalar Fackerell–Ipser) satisfied by the mid-
dle components, commuting with the projected covariant angular derivative
/∇A.

Proof of Proposition 3.7. It is a straightforward calculation from the Teukol-
sky equation. We restrict to φ, the reasoning for φ being analogous. First of
all, we notice that the Teukolsky equation for α is equivalent to

1 − μ

r2
/∇L

(
r2

1 − μ
/∇L(rαA)

)
− (1 − μ) /Δ(rαA) +

1 − μ

r2
rαA = 0. (3.22)

For,

L

(
r2

1 − μ

)
= − r2

1 − μ

2
r

(
1 − 3M

r

)
.

Multiply Eq. (3.22) by r2

1−μ and subsequently take the /∇L derivative of both
sides. We obtain, since [ /∇L, r2 /Δ] = 0,

/∇L /∇L

(
r2

1 − μ
/∇L(rαA)

)
− r2 /Δ /∇L(rαA) + /∇L(rαA) = 0.

This implies the claim. �

4. Statements of the Main Results

In this section, we state the main results of the present note. The first result,
Theorem 4.1, only deals with solutions to the spin ± 1 Teukolsky equations
on a fixed Schwazrzschild background, and provides decay rates for them. The
second result, Theorem 4.2, concerns a solution F to the full Maxwell system on
a fixed Schwarzschild background, and derives decay estimates for the relevant
quantities using Theorem 4.1.

Theorem 4.1 (Decay of solutions to the Teukolsky equations). There exist a
positive real number R∗ > 0 and a positive constant C depending only on M
and R∗ such that letting (u0, v0) be real numbers such that v0 − u0 = 2R∗,



Vol. 20 (2019) The Spin ± 1 Teukolsky Equations 1277

we have the following. Let α, α ∈ Γ(B∗) be solutions to the spin ±1 Teukolsky
equations on [u0,∞) × [v0,∞) × S

2 ⊂ Se:

/∇L /∇L(rαA) +
2
r

(
1 − 3M

r

)
/∇L(rαA) − (1 − μ) /Δ(rαA) +

1 − μ

r2
rαA = 0,

/∇L /∇L(rαA) − 2
r

(
1 − 3M

r

)
/∇L(rαA) − (1 − μ) /Δ(rαA) +

1 − μ

r2
rαA = 0.

Let φ, φ be the related quantities as in (3.19). Under these assumptions, φ and
φ satisfy the Morawetz estimate (5.8) of Lemma 5.2, as well as the hierarchy
of integrated estimates (5.23) and (5.24).

Furthermore, let χ be a smooth cutoff function such that χ(r) = 1 for
r ≥ 3M , and χ(r) = 0 for r ∈ [2M, 3/2M ]. Let α̃ = (1 − μ)−1α and Ψ :=
χ(r)(1 − μ)−1r3α.

Under these conditions, we have the pointwise estimates:

|α| ≤ C

∥∥Ψ∥∥
Cu0,v0 ;0;0,2

+ ‖φ‖Cu0,v0 ;2;2,1

v
and (4.1)

|α̃| ≤ C
‖α̃‖Cu0,v0 ;0;0,0 +

∥∥φ∥∥
Cu0,v0 ;2;2,1

v
(4.2)

on {r∗ ≤ R∗} ∩ {u ≥ u0} ∩ {v ≥ v0}.
Also, we have

|α| ≤ C

∥∥Ψ∥∥
Cu0,v0 ;0;0,2

+ ‖φ‖Cu0,v0 ;2;q,1

vq/2r3/2
for q ∈ {0, 1, 2}, and (4.3)

|α| ≤ C

∥∥Ψ∥∥
Cu0,v0 ;2;0,2

+ ‖φ‖Cu0,v0 ;2;2,2

(|u| + 1)
1
2 r3

, and (4.4)

|α| ≤ C
‖α̃‖Cu0,v0 ;0;0,0 +

∥∥φ∥∥
Cu0,v0 ;2;2,1

(|u| + 1)r
(4.5)

on {r∗ ≥ R∗} ∩ {u ≥ u0} ∩ {v ≥ v0}. Here, we used the definition of norm in
(3.7).

Theorem 4.2 (Decay of solutions to the Maxwell system). There exist a positive
real number R∗ > 0 and a positive constant C depending only on M and
R∗ such that, letting (u0, v0) be real numbers such that v0 − u0 = 2R∗, we
have the following. Let F ∈ Λ2(TSe) be a solution to the Maxwell system on
{u ≥ u0} ∩ {v ≥ v0}:

dF = 0, d � F = 0.

Recall the definition of the null components α, α, ρ, σ (3.10). We let

ρs :=
R2

4π

∫
ω∈S2

ρ(u0, v0, ω)dS2(ω), σs :=
R2

4π

∫
ω∈S2

σ(u0, v0, ω)dS2(ω).

(4.6)
Recall the definition of φ and φ from (3.19). Let χ be a smooth cutoff function
such that χ(r) = 1 for r ≥ 3M , and χ(r) = 0 for r ∈ [2M, 3/2M ]. Let us
furthermore set α̃ = (1 − μ)−1α, Ψ := χ(r)(1 − μ)−1r3α, and
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Mα :=
∥∥Ψ∥∥

Cu0,v0 ;2;0,2
+ ‖φ‖Cu0,v0 ;2;2,1 , (4.7)

Mρ,σ := ‖φ‖Cu0,v0 ;2;2,1 +
∥∥φ∥∥

Cu0,v0 ;2;2,1
, (4.8)

Mα := ‖α̃‖Cu0,v0 ;0;0,0 +
∥∥φ∥∥

Cu0,v0 ;2;2,1
. (4.9)

Then, we have

|α|, (1 − μ)−1|α| ≤ Cv−1(Mα + Mα), (4.10)∣∣∣ρ − ρs

r2

∣∣∣ ,
∣∣∣σ − σs

r2

∣∣∣ ≤ Cv−1Mρ,σ (4.11)

on {r∗ ≤ R∗} ∩ {u ≥ u0} ∩ {v ≥ v0}.
Furthermore,

|α| ≤ C(|u| + 1)− 1
2 r−3Mα, (4.12)

|α| ≤ C(|u| + 1)−1r−1Mα, (4.13)∣∣∣ρ − ρs

r2

∣∣∣ ,
∣∣∣σ − σs

r2

∣∣∣ ≤ C(|u| + 1)− 1
2 r−2Mρ,σ, (4.14)∣∣∣ρ − ρs

r2

∣∣∣ ,
∣∣∣σ − σs

r2

∣∣∣ ≤ C(|u| + 1)−1r−3/2Mρ,σ (4.15)

on {r∗ ≥ R∗} ∩ {u ≥ u0} ∩ {v ≥ v0}.
A few remarks are in order.

Remark 4.3. We will not delve into the issue of optimal well-posedness state-
ments for the Maxwell system or for the spin ± 1 Teukolsky equations here.
Let us just remark that, in the smooth category, well-posedness for the charac-
teristic initial value problem follows, in both situations, from ideas contained
in the work by Rendall [16].

Remark 4.4. We notice that Theorem 4.2 gives the decay rate v−1 for all
components of the field in the region {r ≤ R}. Furthermore, for all components
of the field, we have the uniform peeling estimates, on a fixed outgoing null
cone C ũ ∩ {r ≥ R}:

|α| � r−3(|ũ| + 1)− 1
2 ,

|ρ|, |σ| � r−2(|ũ| + 1)− 1
2 ,

|α| � r−1(|ũ| + 1)−1.

(4.16)

Here, we supposed for simplicity that Mρ,σ, Mα, Mα all be finite, and that
ρs = σs = 0. The bound for α is the strongest one, corresponding to inequality
(4.4).

We underline the difference between estimates (4.3) and (4.4). In the
former, we require less of the initial data to obtain a lower decay rate. In
the latter, we have a larger weight on the L-derivative of Ψ, and we obtain a
uniform peeling estimate for α. Weaker requirements on initial data, though
implying weaker decay, may be useful for applications to nonlinear problems, in
view of a bootstrap argument. An example is the original proof of the nonlinear
stability of the Minkowski spacetime by Christodoulou and Klainerman [8],
in which the authors do not need optimal decay rates in order to close the
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argument. In fact, the failure of peeling to hold has a physical interpretation
[7].

Remark 4.5 (On initial data). We remark that, in order to solve the full
Maxwell system (3.11)–(3.16), it is enough to impose initial data for α and
α on the set Cu0,v0 . For, then, all first derivatives of α and α along Cu0,v0 can
be recovered via the spin ± 1 Teukolsky equations. Then, we can solve for α
and α in {u ≥ u0} ∩ {v ≥ v0}, again from the Teukolsky equations. Finally,
we can use relations (3.11) and (3.12) to recover all angular derivatives of ρ
and σ. This defines uniquely a solution up to the stationary solutions (2.9).
The resulting quantities α, α, σ, ρ then satisfy the full Maxwell system (3.11)–
(3.16).

Remark 4.6. For notational convenience, the norms we defined in Eq. (3.7)
are not intrinsic to the surface Cu0,v0 . Nevertheless, using the Fackerell–Ipser
equation for φ and φ, it can be shown that

‖φ‖2
Cu0,v0 ;2;2,0

≤
∫

Cu0∩{r≥R}

∑
I∈ι+≤3

(| /∇L /∇I
φ|2 + | /∇ /∇I

φ|2 + r−2| /∇I
φ|2)dvdS2

+
∫

Cu0∩{r≥R}
(r2| /∇L /∇Lφ|2 + r2| /∇Lφ|2)dvdS2

+
∫

Cu0
∩{r≤R}

∑
J∈ι−

≤4

| /∇J
φ|(1 − μ)dudS2.

(4.17)

Here, ι+≤2 (resp. ι−≤2) is the set of all ordered lists of length ≤ 2 composed of
elements of � ∪ {L} (resp. � ∪ {(1 − μ)−1L}).

Estimate (4.17) implies in particular that the norm ‖φ‖2
Cu0,v0 ;2;2,0 can be

controlled in terms of a norm intrinsic to the surface Cu0,v0 . Similar expressions
hold for α and α.

Furthermore notice that estimate (4.17) “loses derivatives.” On the left-
hand side, the norm ‖φ‖2

Cu0,v0 ;2;2,0 depends on 3 “unweighted” derivatives
and on 2 “weighted” derivatives. The norm on the right-hand side of (4.17),
on the other hand, depends on 4 “unweighted” derivatives and 2 “weighted”
derivatives.

Remark 4.7 (On the propagation of decay from initial data). Let ω be a non-
trivial one-form on S

2. Suppose for ease of exposition that /ΔS2ω = 2ω. Let
f1(r) be a smooth function of r. Following Remark 4.5, let us set initial data
for α on Cu0,v0 in the following way:

α = f1(r)ω on Cu0,v0 . (4.18)

We then use the relation (spin +1 Teukolsky equation) to induce data for φ:

/∇LφA = r2 /Δ(rαA) − rαA.
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From the latter, it follows that initial data for φ satisfies

φ(u0, v) =
(∫ v

v0

r(u0, ṽ)f1(r(u0, ṽ))dṽ

)
ω + η, (4.19)

where η is a fixed one-form on S
2. Here, r(u0, ṽ) denotes the r-coordinate of

the point (u0, ṽ) in (u, v)-coordinates. Let us denote

f2(r̄) :=
∫ v

v0

r(u0, ṽ)f1(r(u0, ṽ))dṽ,

whenever the r-coordinate of the point (u0, v) is r̄.
Now, let s ∈ ( 3

2 , 1), and let us suppose the following on the function f1:

|f1(r)| ∼ r−1−s, |f ′
1(r)| ∼ r−2−s, |f ′′

1 (r)| ∼ r−3−s, (4.20)

as r → ∞.
It then follows that

|f2(r)| ∼ 1, |f ′
2(r)| ∼ r−s, |f ′′

2 (r)| ∼ r−s−1, |f ′′′
2 (r)| ∼ r−s−2, (4.21)

It follows now, from (4.17) and the form of φ (4.19), that

‖φ‖Cu0,v0 ;2;2,1 < ∞.

Under conditions (4.20), we furthermore have that, recalling ΨA = χ(r)r3(1−
μ)−1αA, with χ(r) smooth supported away from r = 2M , such that χ(r) = 1
for r ≥ 3M , ∥∥Ψ∥∥

Cu0,v0 ;0;0,2
< ∞.

In this case, the assumptions of estimate (4.3) are satisfied with q = 2, and we
obtain the bound |α| ≤ Cr− 5

2 for α along any fixed outgoing cone, whereas
we supposed that |α| is asymptotic to r−1−s on Cu0,v0 , with s + 1 > 5

2 . In this
case, we do not recover the initial decay.

On the other hand, if we require s ≥ 1, we obtain∥∥Ψ∥∥
Cu0,v0 ;2;0,2

< ∞,

and the assumptions of estimate (4.4) are satisfied. We then have |α| ≤ Cr−3

for some constant C, along a fixed outgoing null cone.
In particular, for s = 1, we are able to propagate the r−3 initial decay.

Similar statements hold for α, ρ, σ.
We finally remark that, if we were to a sharper decay than r−3 for α on

the initial cone Cu0,v0 , generically, it would not propagate.

5. Estimates on the Fackerell–Ipser Equation

In this section, we prove integrated decay estimates for solutions to the
Fackerell–Ipser equation. The estimates and the methods to obtain them are
very similar to those in [11]. The results contained in this section are of inde-
pendent interest, and the section can be read independently from the rest of the
paper, starting from the assumption that φ only satisfies the Fackerell–Ipser
equation.
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We do not prove pointwise decay for φ, as it clearly follows from the ideas
in the proof of Theorem 4.2, cf. Remark 3.8.

Let us now proceed to the setup. Let v2 ≥ v1 ≥ v0 and u2 ≥ u1 ≥ u0.
Let V = (1 − μ)/r2. Recall the definition of the null fluxes and of the Sobolev
norms:

FT
u [φ](v1, v2)

:=
∫ v2

v1

∫
S2

[| /∇Lφ|2 + (1 − μ)| /∇φ|2 + V |φ|2](u, v, ω)dvdS2(ω), (5.1)

FT
v [φ](u1, u2)

:=
∫ u2

u1

∫
S2

[| /∇Lφ|2 + (1 − μ)| /∇φ|2 + V |φ|2](u, v, ω)dudS2(ω), (5.2)

FN
v [φ](u1, u2)

:=
∫ u2

u1

∫
S2

[(1 − μ)−1| /∇Lφ|2 + (1 − μ)| /∇φ|2 + V |φ|2](u, v, ω)dudS2(ω),

(5.3)

F∞[φ](u1, v1) := FT
u1

[φ](v1,∞) + FN
v1

[φ](u1,∞),

:= ‖φ‖Cu0,v0 ;q;x,s (5.4)
x∑

i=0

∑
J∈ιΩ≤s

{
F∞[( /∇T )i /LJ

φ](u0, v0)

+
∫

Cu0∩{r≥R}
rq| /∇L( /∇T )min{i,(x−1)+} /LJ

φ|2dvdS2

}
. (5.5)

Let R∗ > 0. We define the spacetime regions (Fig. 1):

Du2
u1

:= {r ≥ R, u ∈ [u1, u2]} ,

Ev2
v1

:= {r ≤ R, v ∈ [v1, v2]} ,

Fu2
u1

:= Du2
u1

∪ Ev2
v1

, such that v1 − u1 = 2R∗ and v2 − u2 = 2R∗.
(5.6)

5.1. Energy Conservation

Lemma 5.1. Let φ be a smooth solution to the Fackerell–Ipser Equation (3.20)
on {u ≥ u0} ∩ {v ≥ v0}. Let v2 ≥ v1 ≥ v0 and u2 ≥ u1 ≥ u0. Defining the
fluxes as in (5.1) and (5.2), we have that

FT
u2

[φ](v1, v2) + FT
v2

[φ](u1, u2) = FT
v1

[φ](u1, u2) + FT
u1

[φ](v1, v2). (5.7)

Proof. First, we notice that the Fackerell–Ipser Equation implies:

( /∇L + /∇L)
∫

S2

{
| /∇Lφ|2 + | /∇Lφ|2 + 2

1 − μ

r2
|r /∇φ|2 + 2V |φ|2

}
dS2

+ ( /∇L − /∇L)
∫

S2

{
| /∇Lφ|2 − | /∇Lφ|2

}
dS2 = 0.

Integrating with respect to dudv yields the claim. �
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Figure 1. Penrose diagram depicting of the spacetime regions

5.2. Morawetz Estimate

Lemma 5.2. There exists a positive constant C such that the following holds.
Let φ be a smooth solution to the Fackerell–Ipser Equation (3.20) on {u ≥
u0} ∩ {v ≥ v0}. Defining the fluxes as in (5.1), (5.2), we have that

∫ u2

u1

∫ v2

v1

∫
S2

{
1
r2

| /∇Lφ − /∇Lφ|2 +
(r − 3M)2

r3

(
| /∇φ|2 +

1
r
| /∇Lφ + /∇Lφ|2

)

+
1
r3

|φ|2
}

(1 − μ)dudvdS2

≤ C(FT
v1

[φ](u1, u2) + FT
u1

[φ](v1, v2)). (5.8)

Proof of Lemma 5.2. We consider the following identities, which follow from
the Fackerell–Ipser equation. Let f : Se → R be a smooth radial function. Let
(·)′ denote differentiation with respect to ∂r∗ . Recall that V = 1−μ

r2 :
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( /∇L + /∇L)
∫

S2
f
{
| /∇Lφ|2 − | /∇Lφ|2

}
dS2

+( /∇L − /∇L)
∫

S2
f

{
| /∇Lφ|2 + | /∇Lφ|2 − 2

1 − μ

r2
|r /∇φ|2 − 2V |φ|2

}
dS2

+
∫

S2

{
2f ′(| /∇Lφ|2 + | /∇Lφ|2) − 4∂r�

(
f

1 − μ

r2

)
|r /∇φ|2

− 4∂r�(fV )|φ|2
}

dS2 = 0. (5.9)

We also have

( /∇L + /∇L)
∫

S2

(
f ′φ · ( /∇L + /∇L)φ

)
dS2

−( /∇L − /∇L)
∫

S2

(
f ′φ · ( /∇L − /∇L)φ + f ′′|φ|2

)
dS2

+
∫

S2

{
−2f ′′′|φ|2 − 4f ′ /∇Lφ · /∇Lφ

+ 4f ′
(

1 − μ

r2
|r /∇φ|2 + V |φ|2

)}
dS2 = 0. (5.10)

In the previous equation, the dot · indicated that we are contracting with /g.
Let us now add the previous Eqs. (5.9) and (5.10), to get

( /∇L + /∇L)
∫

S2

(
f
{
| /∇Lφ|2 − | /∇Lφ|2

}
+ f ′φ · ( /∇L + /∇L)φ

)
dS2

+ ( /∇L − /∇L)
∫

S2

(
f

{
| /∇Lφ|2 + | /∇Lφ|2 − 2

1 − μ

r2
|r /∇φ|2 − 2V |φ|2

}

− f ′φ · ( /∇L − /∇L)φ − f ′′|φ|2
)
dS2

+
∫

S2

{
2f ′(| /∇Lφ − /∇Lφ|2) + |r /∇φ|2

[
−4f

(
1 − μ

r2

)′]

+ |φ|2(−4fV ′ − 2f ′′′)
}

dS2 = 0. (5.11)

We now proceed to integrate Eq. (5.11) on spacetime against the form dudv.
By Lemma B.1, we note that for the bulk term to be positive, it suffices that
there exists a c > 0 such that the following three inequalities hold true:

− 2
(V + 1

r2 (1 − μ))′

1 − μ
f − f ′′′

1 − μ
≥ c

r3
, (5.12)

− 4f

(
1 − μ

r2

)′
> 0, (5.13)

f ′ > 0. (5.14)

By choosing f(r) :=
(
1 + M

r

) (
1 − 3M

r

)
, let us calculate, as in [11],

f ′ = (1 − μ)
(

2M

r2
+

6M2

r3

)
,
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f ′′ = (1 − μ)∂r(f ′) =
2M

(
−48M3 + 30M2r + Mr2 − 2r3

)
r6

,

f ′′′ = (1 − μ)∂r(f ′′) =
4M(1 − μ)

(
144M3 − 75M2r − 2Mr2 + 3r3

)
r7

,

(
V +

1 − μ

r2

)′
= 2
(1 − μ

r2

)′
= −4

(1 − μ)
r3

(
1 − 3M

r

)
,

− 4f
(1 − μ

r2

)′
= 8

(1 − μ)
r3

(
1 − 3M

r

)2(
1 +

M

r

)
.

These calculations immediately show that conditions (5.13) and (5.14) are
satisfied. Plugging these calculations in condition (5.12), multiplying by 1

4r3,
and renaming x := M

r , we obtain that it suffices, for (5.12) to hold, that there
exists c > 0 such that, for all x ∈ [0, 1/2],

−144x4 + 93x3 + 8x2 − 13x + 2 ≥ c.

An analysis of the polynomial reveals that this inequality is true for all x ∈
[0, 1/2] upon choosing, for instance, c = 1/8 (in fact, the minimum is at x =
1/2, where the polynomial takes the value 1/8).

We therefore obtain the following estimate, making use of the positivity
of the angular terms:∫ u2

u1

∫ v2

v1

∫
S2

{
1
r2

| /∇Lφ − /∇Lφ|2

+
(r − 3M)2

r3
| /∇φ|2 +

1
r3

|φ|2
}

(1 − μ)dudvdS2

≤ C(FT
u1

[φ](v1, v2) + FT
v1

[φ](v1, v2)).

(5.15)

We can recover the missing derivative by integrating Eq. (5.9) with a mono-
tonically increasing f , which vanishes of third order at r = 3M , and get:∫ u2

u1

∫ v2

v1

∫
S2

{
1
r2

| /∇Lφ − /∇Lφ|2 +
(r − 3M)2

r3

(
| /∇φ|2 +

1
r
| /∇Lφ + /∇Lφ|2

)

+
1
r3

|φ|2
}

(1 − μ)dudvdS2

≤ C(FT
v1

[φ](u1, u2) + FT
u1

[φ](v1, v2)).
(5.16)

This is the claim. �
5.3. The Redshift Estimate

Lemma 5.3 (The redshift estimate). There exists a positive constant C such
that the following holds. Let φ be a smooth solution to the Fackerell–Ipser
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Equation (3.20) on {u ≥ u0} ∩{v ≥ v0}. Let u2 ≥ u1 ≥ u0 and v2 ≥ v1 ≥ v0.
Let χ(r) be a smooth cutoff function such that χH+(r) = 1 for r ∈ (2M, 5/2M)
and χH+(r) = 0 for r ≥ 3M . Defining the fluxes as in (5.1)–(5.4), we have
that

F∞(u2, v2) ≤ CF∞(u1, v1), (5.17)∫ u2

u1

∫ v2

v1

∫
S2

{
1
r2

| /∇Lφ − /∇Lφ|2

+
(r − 3M)2

r3

(
| /∇φ|2 +

1
r
| /∇Lφ + /∇Lφ|2

)
+

1
r3

|φ|2
}

(1 − μ)dudvdS2

+
∫ u2

u1

∫ v2

v1

∫
S2

χH+(r)| /∇(1−μ)−1Lφ|2(1 − μ)dudvdS2

≤ C(FN
v1

[φ](u1, u2) + FT
u1

[φ](v1, v2)). (5.18)

Proof. Let 2M < rc < 3M . Let h(r) be a smooth radial function such that
h(r) = (1 − μ)−1 for r ∈ (2M, rc), h(r) = 0 for r ∈ [3M,+∞). The following
relation can be deduced from the Fackerell–Ipser equation:

L
{
h(r)| /∇Lφ|2

}
+ L

{
(1 − μ)h(r)| /∇φ|2

}
+ L

{
(1 − μ)

r2
h(r)|φ|2

}

− L {h(r)} | /∇Lφ|2 − L

{
(1 − μ)

r2
h(r)

}
|φ|2 − r2L

{
(1 − μ)

r2
h(r)

}
| /∇φ|2 S

2

= 0.

(5.19)

Here, A(u, v, ω) S
2

= 0 denotes equality after integration on S
2 against the form

dS2, i.e.,
∫

S2 A(u, v, ω)dS2(ω) = 0. We proceed to integrate (5.19) against the
form dudv in the region {u1 ≤ u ≤ u2} ∩ {v1 ≤ v ≤ v2}. The second claim
is achieved absorbing the error terms arising from h with estimate (5.8) (note
that we only require one derivative on the initial slice).

Analyzing the boundary terms arising from integration of (5.19) and
adding a multiple of (5.7), we obtain the first claim. �

5.4. The Estimates Required for the rp Method

Definition 5.4. Let χH+ be the smooth cutoff function of Lemma 5.3. We define
m[φ] to be the integrand in the left-hand side of Eq. (5.18):

m[φ] :=
1
r2

| /∇Lφ − /∇Lφ|2 +
(r − 3M)2

r3

(
| /∇φ|2 +

1
r
| /∇Lφ + /∇Lφ|2

)

+
1
r3

|φ|2 + χH+(r)| /∇(1−μ)−1Lφ|2. (5.20)
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Furthermore, we let

mall[φ] := m[φ] + m[ /∇T φ]. (5.21)

Remark 5.5. Let us notice that the Fackerell–Ipser Equation implies that there
exists a constant C > 0, depending only on M , such that

∫ ∞

u1

∫ ∞

v1

∫
S2

mall[φ](1 − μ)dudvdS2

≥ C

∫ ∞

u1

∫ ∞

v1

∫
S2

(
1
r2

(| /∇Lφ|2 + | /∇(1−μ)−1Lφ|2)

+
1
r3

|φ|2 +
1
r
| /∇φ|2

)
(1 − μ)dudvdS2.

This is seen by the following observation. It is evident that mall[φ] controls in
a pointwise fashion all non-degenerate derivatives at r = 2M and at r = 3M ,
with the exception of the angular derivatives at r = 3M . To bound the angular
derivatives at the photon sphere, we contract the Fackerell–Ipser equation with
g(r)φA, where g(r) is a radial cutoff function which is 1 in a neighborhood of
r = 3M , and vanishes outside of a neighborhood of r = 3M . We then integrate
by parts (in the L direction for the term /∇L /∇L, and in the angular direction
for the angular term) and see that all the error terms can be bounded in terms
of mall[φ]. We conclude that mall[φ] controls all non-degenerate derivatives of
φ everywhere on Se.

Remark 5.6. From the commutation relations: [ /∇T , /∇L] = [ /∇T , r /∇L] =
[ /∇T , /∇A] = 0, we obtain that /∇T φ satisfies the Fackerell–Ipser equation, if
φ does. The reasoning which led to the proof of Lemma 5.3 then yields

∫ ∞

u1

∫ ∞

v1

∫
S2

mall[φ](1 − μ)dudvdS2

≤ C(F∞[φ](u1, v1) + F∞[ /∇T φ](u1, v1)). (5.22)

Lemma 5.7 (p-hierarchy). There exists a positive number R∗ and a positive
constant C such that the following holds. Let φ be a smooth solution to the
Fackerell–Ipser Equation (3.20) on {u ≥ u0} ∩ {v ≥ v0}, let u2 ≥ u1 ≥ u0,
v2 ≥ v1 ≥ v0. Let P (u) be (u, 2R∗ + u). Defining fluxes as in (5.4), we have
that ∫

Cu2∩{r≥R}
(r2| /∇Lφ|2)dvdS2

+
∫
D

u2
u1

[
r| /∇Lφ|2 + | /∇φ|2 + r−2|φ|2

]
(1 − μ)dudvdS2

≤ C (F∞[φ](P (u1))) +
∫

Cu1∩{r≥R}
(r2| /∇Lφ|2)dvdS2. (5.23)
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Also, ∫
Cu2∩{r≥R}

(r| /∇Lφ|2)dvdS2

+
∫
D

u2
u1

[
| /∇Lφ|2 + | /∇φ|2 + r−2|φ|2

]
(1 − μ)dudvdS2

≤ C (F∞[φ](P (u1))) +
∫

Cu1∩{r≥R}
(r| /∇Lφ|2)dvdS2. (5.24)

Proof. Let p, k ∈ R. Let us consider the identity, which follows from the
Fackerell–Ipser Equation (3.20):

L

{
rp

(1 − μ)k
| /∇Lφ|2

}
+ L

{
rp

(1 − μ)k−1
| /∇φ|2

}
+ L

{
V

rp

(1 − μ)k
|φ|2

}

− L

{
rp

(1 − μ)k

}
| /∇Lφ|2 − L

{
V

rp

(1 − μ)k

}
|φ|2

+
[
(2 − p)rp−1(1 − μ)2−k + rp(k − 1)(1 − μ)−k+1 2M

r2

]
| /∇φ|2 S

2

= 0. (5.25)

Here, S
2

= denotes equality after integration on S
2 with respect to the volume

form dS2. We fix R∗ > 0 big enough so that the following holds in the region
r∗ ≥ R∗:

− L

(
rp

(1 − μ)k

)
≥ 1

2
rp−1, (5.26)

when p is either 1 or 2 and k is either 1 or 2.
Let us furthermore calculate

−L

(
V rp

(1 − μ)k

)
=(1−μ)2−k(2−p)rp−3−2Mrp−4(1−k)(1−μ)−k+1. (5.27)

Recall the definition of D:

Du2
u1

:= {r ≥ R, u ∈ [u1, u2]} .

By possibly choosing R bigger, we assume that R − M > 3M . Let f be a
smooth radial function such that

f(r) :=
{

1 for r ≥ R,
0 for r ≤ R − M.

We then integrate the expression

L

{
rp

(1 − μ)k
f | /∇Lφ|2

}
+ L

{
rp

(1 − μ)k−1
f | /∇φ|2

}

+ L

{
V

rp

(1 − μ)k
f |φ|2

}
− L

{
rp

(1 − μ)k
f

}
| /∇Lφ|2 − L

{
V

rp

(1 − μ)k
f

}
|φ|2

(5.28)
on the region J+(Su1,v1), with v1 = 2R∗ + u1.
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We choose p = 2, k = 2, and we use the Morawetz estimate (5.8) in order
to bound the spacetime error term in the strip r ∈ [R − M,R]. We obtain∫

Cu2∩{r≥R}
(r2| /∇Lφ|2)dvdS2

+
∫
D

u2
u1

[
r| /∇Lφ|2 + | /∇φ|2 + r−2|φ|2

]
(1 − μ)dudvdS2

≤ CF∞[φ](P (u1)) +
∫

Cu1∩{r≥R}
(r2| /∇Lφ|2)dvdS2. (5.29)

Choosing p = 1, k = 1, we obtain, instead∫
Cu2∩{r≥R}

(r| /∇Lφ|2)dvdS2

+
∫
D

u2
u1

[
| /∇Lφ|2 + | /∇φ|2 + r−2|φ|2

]
(1 − μ)dudvdS2

≤ CF∞[φ](P (u1)) +
∫

Cu1∩{r≥R}
(r| /∇Lφ|2)dvdS2. (5.30)

This proves the lemma. �

5.5. Application of the rp Method: Decay of Null Fluxes

We now apply the rp-method of Dafermos and Rodnianski to prove integrated
decay for φ. We prove the following lemma.

Lemma 5.8. There exists a positive number R∗ and a positive constant C such
that the following holds. Let φ be a smooth solution to the Fackerell–Ipser
Equation (3.20) on {u ≥ u0} ∩ {v ≥ v0}, let u ≥ u0. Let P (u) be (u, 2R∗ + u).
We have the decay of the flux:

F∞[φ](P (u)) ≤ Cu−2 ‖φ‖Cu0,v0 ;2;2,0 . (5.31)

Here, we used the definition of norm in (3.7).

Proof. We define the sequence un := 2n(|u0| + M). Inequality (5.23) now
yields: ∫

Cun ∩{r≥R}
r2| /∇Lφ|2dvdS2

≤ C (F∞[φ](P (u0))) +
∫

Cu0∩{r≥R}
(r2| /∇Lφ|2)dvdS2. (5.32)

Also,

(un+1 − un)
∫

Cũn∩{r≥R}
r| /∇Lφ|2dvdS2

≤
∫
D

un+1
un

r| /∇Lφ|2(1 − μ)dudvdS2

≤ C (F∞[φ](P (u0))) +
∫

Cun∩{r≥R}
(r2| /∇Lφ|2)dvdS2. (5.33)
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This holds for some ũn ∈ (un, un+1). All in all, we have, for this new sequence
ũn, ∫

Cũn ∩{r≥R}
r| /∇Lφ|2dvdS2

≤ Cũ−1
n F∞[φ](P (u0)) + ũ−1

n

∫
Cu0∩{r≥R}

r2| /∇Lφ|2dvdS2.

(5.34)

Recall the definition of the spacetime regions:

Ev2
v1

:= {r ≤ R, v ∈ [v1, v2]} ,

Fu2
u1

:= Du2
u1

∪ Ev2
v1

, such that v1 − u1 = 2R∗ and v2 − u2 = 2R∗.

Recall furthermore the definition of m[φ], as in (5.20). We employ Eq. (5.24)
and the Morawetz estimate (recall: Eq. (5.18) and Definition 5.4), to obtain
the following:∫

E
v2
v1

m[φ](1 − μ)dudvdS2 +
∫

Cu2∩{r≥R}
r| /∇Lφ|2dvdS2

+
∫
D

u2
u1

[
| /∇Lφ|2 + | /∇φ|2 + r−2|φ|2

]
(1 − μ)dudvdS2

≤ CF∞[φ](P (u1)) +
∫

Cu1∩{r≥R}
r| /∇Lφ|2dvdS2. (5.35)

Recall now that mall[φ] := m[φ]+m[ /∇T φ]. Plugging now the previous sequence
ũn into the formula (5.35), summing it with estimate (5.22) and using Fubini’s
theorem, we obtain a second sequence ˜̃un (with ˜̃un + ˜̃vn = 2R∗) such that

˜̃un

∫
S2

∫
C ˜̃vn

∩{r≤R}
mall[φ]dudS2

+ ˜̃un

∫
S2

∫
C ˜̃un

∩{r≥R}

[
| /∇Lφ|2 + | /∇φ|2 + r−2|φ|2

]
dvdS2

≤ C

∫
E

ṽ2
ṽ1

mall[φ]dudvdS2

+ C

∫
D

ũ2
ũ1

[
| /∇Lφ|2 + | /∇φ|2 + r−2|φ|2

]
(1 − μ)dudvdS2

≤ C
(
F∞[φ](P (ũn)) + F∞[ /∇T φ](P (ũn))

)
+
∫

Cũn ∩{r≥R}
r| /∇Lφ|2dvdS2

≤ C
(
F∞[φ](P (ũn)) + F∞[ /∇T φ](P (ũn))

)
+ Cũ−1

n F∞[φ](P (u0))

+ ũ−1
n

∫
Cu0

r2| /∇Lφ|2dvdS2. (5.36)

We commute the Fackerell–Ipser Equation (3.20) with /∇T , and we see that

F∞[ /∇T φ](P (u))
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decays, by the same reasoning for the decay of F∞[φ](P (u)). We use the
monotonicity of energy given in (5.17) to eliminate the restriction to the dyadic
sequence. We finally obtain the bound

F∞[φ](P (u)) ≤ Cu−2
2∑

i=0

F∞[( /∇T )iφ](P (u0))

+
2∑

i=0

∫
Cu0∩{r≥R}

r2| /∇L( /∇T )min{i,1}φ|2dvdS2.

This is the claim. �

Corollary 5.9. Assume the hypotheses of Lemma 5.8. Consider the Lie deriv-
ative /L induced from the connection /∇. Recall the definition of the set � :=
{Ω1,Ω2,Ω3}. The following estimate holds, for j ∈ {1, 2, 3}:

F∞[/LΩj
φ](P (u)) ≤ Cu−2 ‖φ‖Cu0,v0 ;2;2,1 . (5.37)

Here, we used the definition of norm in (3.7).

Proof. Let η ∈ Γ(B∗). An easy calculation implies that we have the commuta-
tion relations:

[/LΩi
, /∇L]η = 0, [/LΩi

, /∇L]η = 0.

Furthermore, since the Ωi’s are Killing vectors for the induced metric /g on the
spheres, by Equation 3.25 in [8], we have that

[/LΩi
, /∇] = 0.

We therefore obtain that /LΩi
φ also satisfies the Fackerell–Ipser equation (3.20).

The proof then proceeds as in Lemma 5.8. �

5.6. The rp -Method Revisited

We will now derive decay for a null flux, crucial for the decay of the extreme
components.

Lemma 5.10. There exists a positive number R∗ and a positive constant C
such that the following holds. Let φ be a smooth solution to the Fackerell–Ipser
Equation (3.20) on {u ≥ u0} ∩ {v ≥ v0}. We define the following flux:

F�

p [η](ũ, ṽ) :=
∫

Cṽ∩{r≥R}∩{u≥ũ}
|η|2(u, ṽ, ω)(r(u, ṽ))pdudS2. (5.38)

Let u ≥ u0, v ≥ v0. We have the decay estimates:

F�

0 [φ](u0, v) ≤ C ‖φ‖2
Cu0,v0 ;2;0,0 ,

F�

2 [ /∇φ](u0, v) ≤ C ‖φ‖2
Cu0,v0 ;2;0,0 , (5.39)

F�

−1[φ]
(v

2
, v
)

≤ C
‖φ‖2

Cu0,v0 ;2;1,0

v
,

F�

1 [ /∇φ]
(v

2
, v
)

≤ C
‖φ‖2

Cu0,v0 ;2;1,0

v
, (5.40)
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Figure 2. Penrose diagram of the spacetime regions

F�

−2[φ]
(v

2
, v
)

≤ C
‖φ‖2

Cu0,v0 ;2;2,0

v2
,

F�

0 [ /∇φ]
(v

2
, v
)

≤ C
‖φ‖2

Cu0,v0 ;2;2,0

v2
. (5.41)

Proof. We choose R such that R − M > 3M . We choose a smooth radial
function f with the following requirements:

f(r) =
{

1 for r ≥ R,
0 for r ≤ R − M.

Let v1 ≥ v0, u1 ≥ u0. We define the spacetime region (Fig. 2):

W(u1, R,R1, v1) := {u ≥ u1} ∩ {r ≥ R} ∩ {2(R1)∗ + u1 ≤ v ≤ v1}.

To shorten notation, we let W1 := W(u1, R,R, v1), and W2 := W(u1, R−
M,R, v1). We integrate the expression (5.28) on the region W2 against the form
dudvdS2. We obtain, using (5.25),
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∫
{v=v1}∩W1

{
rp

(1 − μ)k−1
| /∇φ|2 + V

rp

(1 − μ)k
|φ|2

}
dudS2

+
∫
W1

{
−L

{
rp

(1 − μ)k

}
| /∇Lφ|2 − L

{
V

rp

(1 − μ)k

}
|φ|2

}
dudvdS2

+
∫
W1

{
(2 − p)rp−1(1 − μ)2−k

+rp(k − 1)(1 − μ)−k+1 2M

r2

}
| /∇φ|2dudvdS2

�
∫

{u=u1}∩W1

{
rp

(1 − μ)k
| /∇Lφ|2

}
dvdS2 + F∞[φ](u1, u1 + 2R∗). (5.42)

Here, we used the Morawetz estimate (5.18) as well as the conservation of
energy (5.17) to bound the errors (both boundary and spacetime) arising from
the cutoff f (here is where we use that R > 4M not to lose derivatives).

First, recall: V = 1−μ
r2 . Also, by possibly increasing R,

− L

{
rp

(1 − μ)k

}
≥ 1

2
rp−1 (5.43)

on W1, for p = 0, 1, 2.
We now plug p = 2, k = 1 in Eq. (5.42). We obtain that there exists a

positive constant K > 0 such that the following holds:∫
{v=v1}∩W1

{
r2| /∇φ|2 + |φ|2

}
dudS2 +

∫
W1

Kr| /∇Lφ|2dudvdS2

�
∫

{u=u1}∩W1

r2

(1 − μ)
| /∇Lφ|2dvdS2 + F∞[φ](u1, u1 + 2R∗). (5.44)

In particular, this means that the flux∫
{v=v1}∩W1

{
r2| /∇φ|2 + |φ|2

}
dudS2 ≤ C ‖φ‖2

Cu0,v0 ;2;0,0 .

Furthermore, using again Eq. (5.42), with p = 1, k = 1, we obtain:∫
{v=v1}∩W1

{
r| /∇φ|2 + r−1|φ|2

}
dudS2

�
∫

{u=u1}∩W1

r| /∇Lφ|2dvdS2 + F∞[φ](u1, u1 + 2R∗). (5.45)

Using inequality (5.45) with the choice u1 = v/2, v1 = v, together with (5.36),
(5.34), (5.24) and the monotonicity of F∞[φ] (5.17) to eliminate the restriction
to the dyadic sequence, we obtain

F�

−1[φ](v/2, v) + F�

1 [ /∇φ](v/2, v) ≤ Cv−1 ‖φ‖2
Cu0,v0 ;2;1,0 . (5.46)

Furthermore, using again Eq. (5.42), with p = 1, k = 1, together with inequal-
ity (5.36) commuted once with /∇T , we obtain similarly

F�

−2[φ](v/2, v) + F�

0 [ /∇φ](v/2, v) ≤ Cv−2 ‖φ‖2
Cu0,v0 ;2;2,0 . (5.47)
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This finishes the proof of the lemma. �

6. Decay for Solutions to the Spin ± 1 Teukolsky Equations

In this section, we assume that α and α are solutions to the spin ±1 Teukolsky
equations, and we prove items (4.1)–(4.3), (4.5) of Theorem 4.1. We postpone
the proof of item 4.4 to the next section, which is self-contained and in partic-
ular does not depend on the estimates for the incoming fluxes in Lemma 5.10.

Proof of estimates (4.1)–(4.3), (4.5) in Theorem 4.1. We divide the proof into
four steps.

Step 1: Estimates on α, Region of Unbounded r

We recall the definition of φ:

φA =
r2

1 − μ
/∇L(rαA). (6.1)

Let p ∈ R. It follows that

/∇L(r1+pαA) = −p(1 − μ)rpαA + (1 − μ)rp−2φA. (6.2)

Let 2p > ε > 0, an application of the Cauchy–Schwarz inequality implies

/∇L(r2+2p|α|2) = 2r1+pαA(−p(1 − μ)rpαA + (1 − μ)rp−2φA)

≤ −(2p − ε)(1 − μ)r1+2p|α|2 + ε−1(1 − μ)r2p−3|φ|2. (6.3)

A straightforward calculation implies that [r /∇, /∇L] = 0. Commuting Eq. (6.2)
twice with r /∇, we obtain

/∇L(r3+p /∇C /∇BαA) = −p(1 − μ)rp+2 /∇C /∇BαA + (1 − μ)rp /∇C /∇BφA.

This implies:

/∇L(r2+2p|r2 /∇ /∇α|2)
≤ −(2p − ε)(1 − μ)r1+2p|r2 /∇ /∇α|2 + ε−1(1 − μ)r2p−3|r2 /∇ /∇φ|2. (6.4)

We let ṽ ≥ v0, ũ ≥ u0, and ṽ − ũ = 2(r̃)∗. Let r0 such that ṽ − u0 = 2(r0)∗.
We now integrate Eq. (6.3) and (6.4) on C ṽ ∩ {r ≥ r̃} ∩ {u ≥ u0}. We obtain:∫

S2
r̃2+2p(|r̃2 /∇ /∇α|2(ũ, ṽ, ω) + |α|2(ũ, ṽ, ω))dS2(ω)

� r0
2+2p

∫
S2

(|r2
0 /∇ /∇α|2(u0, ṽ, ω) + |α|2(ũ, ṽ, ω))dS2(ω)

+ ε−1

∫
Cṽ∩{r≥r̃}∩{u≥u0}

r2p−3(|φ|2(u, ṽ) + |r2 /∇ /∇φ|2(u, ṽ))dS2du. (6.5)

Recall the definition of the cutoff χ. It is a smooth function such that χ(r) = 1
for r ≥ 3M , and χ(r) = 0 for r ∈ [2M, 5/2M ].

Letting Ψ := χ(r)(1 − μ)−1r3α, we trivially bound the initial boundary
term by data:

|α| ≤ Cr− 5
2
∥∥Ψ∥∥

Cu0,v0 ;0;0,2
. (6.6)
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Furthermore, we bound the integrals of φ appearing in the RHS of (6.5) by
Lemma 5.10. We first write, using the definition of Lie derivative:∫

Cṽ∩{r≥r̃}∩{u≥u0}
r2p−3(|φ|2(u, ṽ) + |r2 /∇ /∇φ|2(u, ṽ))dS2du

≤ C

∫
Cṽ∩{r≥r̃}∩{u≥u0}

r2p−3(|φ|2(u, ṽ) + r2| /∇φ|2(u, ṽ))dS2du

+ C

∫
Cṽ∩{r≥r̃}∩{u≥u0}

r2p−1
3∑

j=1

| /∇/LΩj
φ|2(u, ṽ))dS2du.

From here, we consider two cases:
• If ũ ≤ ṽ/2, estimate (5.39) is sufficient to conclude. Let r̃ such that

r̃∗ = 1
2 (ṽ − ũ). Then,∫

S2
r̃5(|r̃2 /∇ /∇α|2(ũ, ṽ, ω) + |α|2(ũ, ṽ, ω))dS2(ω)

� r0
5

∫
S2

(|r2
0 /∇ /∇α|2(u0, ṽ, ω) + |α|2(ũ, ṽ, ω))dS2(ω)

+ ε−1

∫
Cṽ∩{r≥r̃}∩{u≥u0}

(|φ|2(u, ṽ) + r2| /∇φ|2(u, ṽ))dS2du

+ ε−1

∫
Cṽ∩{r≥r̃}∩{u≥u0}

r2
3∑

j=1

| /∇/LΩj
φ|2(u, ṽ)dS2du

�
∥∥Ψ∥∥2

Cu0,v0 ;0;0,2
+ F�

0 [φ](u0, ṽ) + F�

2 [ /∇φ](u0, ṽ)

+
3∑

i=1

F�

2 [ /∇/LΩi
φ](u0, ṽ)

�
∥∥Ψ∥∥2

Cu0,v0 ;0;0,2
+ ‖φ‖2

Cu0,v0 ;2;0,0 +
3∑

i=1

∥∥/LΩi
φ
∥∥2

Cu0,v0 ;2;0,0

�
∥∥Ψ∥∥2

Cu0,v0 ;0;0,2
+ ‖φ‖2

Cu0,v0 ;2;0,1 .

(6.7)

Note that, if ũ ≤ ṽ/2, then r̃∗ = 1
2 (ṽ − ũ) ≥ 1

4v. The Sobolev embedding
for one-forms (see Lemma C.2 in “Appendix”) then implies the bound

|α(u, v, ω)| ≤ C(
∥∥Ψ∥∥

Cu0,v0 ;0;0,2
+ ‖φ‖Cu0,v0 ;2;0,1)v

− 5
2 ,

in the region {r ≥ R∗} ∩ {u ≤ v/2}.
• If ũ ≥ ṽ/2, we consider again Eq. (6.5). Notice that r0 � (r0)∗ = 1

2 (ṽ −
u0) � ṽ/2. We estimate∫
S2

r̃2+2p(|r̃2 /∇ /∇α|2(ũ, ṽ, ω) + |α|2(ũ, ṽ, ω))dS2(ω)

� r0
2p+2−5

∫
S2

r5
0(|r2

0 /∇ /∇α|2(u0, ṽ, ω) + |α|2(u0, ṽ, ω))dS2(ω)
︸ ︷︷ ︸

(i)
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+F�

2p−3[φ](ṽ/2, ṽ) + F�

2p−1[ /∇φ](ṽ/2, ṽ) +
3∑

i=1

F�

2p−1[ /∇/LΩi
φ](ṽ/2, ṽ)

︸ ︷︷ ︸
(ii)

+
∫

Cṽ∩{ṽ/2≥u≥u0}
r2p−3|φ|2(u, ṽ) + r2p−1| /∇φ|2(u, ṽ)dS2du

︸ ︷︷ ︸
(iii)

+
∫

Cṽ∩{ṽ/2≥u≥u0}
r2p−1

3∑
j=1

| /∇/LΩj
φ|2(u, ṽ)dS2du

︸ ︷︷ ︸
(iv)

.

Now, by inequality (6.6),

(i) �
∥∥Ψ∥∥2

Cu0,v0 ;0;0,2
.

Concerning (ii), we have, by Lemma 5.10, that

F�

2p−3[φ](ṽ/2, ṽ) + F�

2p−1[ /∇φ](ṽ/2, ṽ) � v2p−3 ‖φ‖2
Cu0,v0 ;2;3−2p,0 ,

3∑
i=1

F�

2p−1[ /∇/LΩi
φ](ṽ/2, ṽ) � v2p−3

∥∥/LΩi
φ
∥∥2

Cu0,v0 ;2;3−2p,1
.

Concerning (iii), we have that the r-coordinate of the point of coordinates
(ṽ, ṽ/2) is such that r(ṽ, ṽ/2) � ṽ, ṽ/2 = ṽ/2. Then, if p ∈ {3/2, 1, 1/2},
2p − 3 ≤ 0, hence

(iii) � (r(ṽ, ṽ/2))2p−3

∫
Cṽ∩{ṽ/2≥u≥u0}

(|φ|2(u, ṽ) + r2| /∇φ|2(u, ṽ))dS2du

� (ṽ)2p−3 ‖φ‖Cu0,v0 ;2;0,0 .

Similarly,

(iv) � (ṽ)2p−3 ‖φ‖Cu0,v0 ;2;0,1 .

Using the Sobolev embedding, Lemma C.2 in “Appendix,” setting q =
−2p + 3, we finally have

|α(u, v, ω)| ≤ C(
∥∥Ψ∥∥

Cu0,v0 ;0;0,2
+ ‖φ‖Cu0,v0 ;2;q,1)v

−q/2r−3/2

in the region {r ≥ R∗} ∩ {u ≥ v/2}, for q ∈ {0, 1, 2}.

Summarizing, we have the claim (4.3). This concludes Step 1.

Step 2: Estimates on α, Region of Bounded r

We let 2M < rc < R, v ≥ v0 u ≥ u0, and we integrate Eqs. (6.3) and (6.4) on

Cv ∩ {rc ≤ r ≤ R}.
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We already know by estimate (6.7) in Step 1 that there exists a constant C
depending only on R such that∫

S2
(| /∇ /∇α|2(u, v, ω) + |α|2(u, v, ω))dS2

≤ CRv−2(
∥∥Ψ∥∥2

Cu0,v0 ;0;0,2
+ ‖φ‖2

Cu0,v0 ;2;2,1).

Here, u and v are such that v − u = 2R∗. From the estimates on the flux of φ
(5.31), (5.37), and the Sobolev embedding C.2, we finally obtain

|α|(u, v, ω) ≤ Cv−1(
∥∥Ψ∥∥

Cu0,v0 ;0;0,2
+ ‖φ‖Cu0,v0 ;2;2,1), (6.8)

where (u, v, ω) ∈ {u ≥ u0} ∩ {v ≥ v0} ∩ {r ≤ R}.

Step 3: Estimates on α, Region of Bounded r

We set
α̃ := (1 − μ)−1α.

It follows that

/∇L((1 − μ)−2r2|α|2)
= L((1 − μ)−2)r2|α|2 + 2(1 − μ)−2rαA /∇L(rαA)

= −2(1 − μ)−2 2M

r2
r2|α|2 + 2(1 − μ)−2rαA /∇L(rαA). (6.9)

Recall the definition of φ:

φ
A

=
r2

1 − μ
/∇L(rαA).

This implies:
/∇L(r2|α̃|2) = −4M |α̃|2 + 2r−1α̃Aφ

A
. (6.10)

From this, it follows that

/∇L(r2|α̃|2) + 4M |α̃|2 ≤ 4Mε|α̃|2 +
1

4Mr2ε
|φ|2. (6.11)

Defining now A2(u, v) :=
∫

S2 |α̃|2(u, v, ω)dS2(ω), we have the same equation
for A2:

/∇L(r2A2) + 4MA2 ≤ 4MεA2 +
1

4Mr2ε

∫
S2

|φ|2dS2. (6.12)

We integrate this inequality on the interval [v0, v]. We obtain

L

(
exp

(∫ v

v0

4M(1 − ε)
r(u, v′)2

dv′
)

r(u, v)2A(u, v)2
)

≤ 1
4Mr(u, v)2ε

exp
(∫ v

v0

4M(1 − ε)
r(u, v′)2

dv′
)∫

S2
|φ|2dS2. (6.13)

Consider u as fixed. Since we restrict to the region {r ≤ R}, we have that the
function

F (u, v) :=
∫ v

v0

4M(1 − ε)
r(u, v′)2

dv′ (6.14)
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is monotonically increasing and satisfies the inequalities

4M(1 − ε)
R2

(v − v0) ≤ F (u, v) ≤ M−1(1 − ε)(v − v0). (6.15)

By integrating inequality (6.13), we obtain that there exists a constant CR

such that

exp(F (v))r(u, v)2A(u, v)2 − r(u, v0)2A(u, v0)2

≤ CR

∫
S2

∫ v

v0

(r(u, v′))−2 exp(F (u, v′))|φ|2dv′dS2.
(6.16)

We split the integral on the right-hand side into two:∫
S2

∫ v

v0

exp(F (u, v′))(r(u, v′))−2|φ|2dv′dS2

=
∫

S2

∫ v/A0

v0

exp(F (u, v′))(r(u, v′))−2|φ|2dv′dS2

+
∫

S2

∫ v

v/A0

exp(F (u, v′))(r(u, v′))−2|φ|2dv′dS2, (6.17)

with A0 > 1. We subsequently claim that:

exp(−F (u, v))
∫

S2

∫ v/A0

v0

exp(F (u, v′))(r(u, v′))−2|φ|2dv′dS2

≤ C
∥∥φ∥∥2

Cu0,v0 ;0;0,0
v−2,

(6.18)

and

exp(−F (u, v))
∫

S2

∫ v

v/A0

exp(F (u, v′))(r(u, v′))−2|φ|2dv′dS2

≤ C
∥∥φ∥∥

Cu0,v0 ;2;2,1
v−2.

(6.19)

• In order to prove (6.18), we recall the inequalities (6.15), which we write
in the following way:

A1v + A2 ≤ F (u, v) ≤ A3v + A4, (6.20)

with A1 < A3 positive constants. Choose A0 > 0 so that

−A1 + A3/A0 < 0.

Note that A0 depends only on the value of R. Then,

exp(−F (u, v))
∫

S2

∫ v/A0

v0

exp(F (u, v′))(r(u, v′))−2|φ(u, v′)|2dv′dS2

≤ exp(−F (u, v) + F (u, v/A0))
∫

S2

∫ ∞

v0

(r(u, v′))−2|φ(u, v′)|2dv′dS2

� exp((−A1 + A3/A0)v)
∫

S2

∫ ∞

v0

(r(u, v′))−2|φ(u, v′)|2dv′dS2. (6.21)
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We now use the fact that φ satisfies the Fackerell–Ipser equation: we
have the energy conservation statement (5.17). We obtain the first claim
(6.18).

• For the claim (6.19), we first estimate, given that, for fixed u, F (u, v) is
non-decreasing in v,

exp(−(F (v)))
∫

S2

∫ v

v/A0

exp(F (v′))(r(u, v′))−2|φ|2dv′dS2

≤
∫

S2

∫ v

v/A0

(r(u, v′))−2|φ|2dv′dS2.

We consequently notice that, by the energy conservation statement (5.7),
the resulting flux satisfies∫

S2

∫ v

v/A0

(r(u, v′))−2|φ|2dv′dS2 ≤ CF∞[φ](Q(v)). (6.22)

where the point Q(v) = ((A0)−1v−2R∗, (A0)−1v). We now use the bound
in Lemma 5.8 in order to obtain∫

S2

∫ v

v/A0

(r(u, v′))−2|φ|2dv′dS2 ≤ Cv−2
∥∥φ∥∥2

Cu0,v0 ;2;2,1
. (6.23)

This is claim (6.19).
We now use Eq. (6.16), together with the fact that

r(u, v0)2A(u, v0)2 ≤ CR ‖α̃‖Cu0,v0 ;0;0,0

on the region {v ≥ v0} ∩ {r ≤ R}. We obtain finally that A satisfies, in the
region J +(Cu0,v0) ∩ {r ≤ R},

A ≤ Cv−1(‖α̃‖Cu0,v0 ;0;0,0 +
∥∥φ∥∥

Cu0,v0 ;2;2,0
).

We notice that Eq. (6.11) holds with α̃ replaced by r2 /∇ /∇α̃ (this follows by
taking the r /∇ derivative of the defining relation of φ). Using the Sobolev
embedding (Lemma C.2), we obtain the decay for α in the region {r ≤ R}:

|α| ≤ C(1 − μ)v−1(
∥∥φ∥∥

Cu0,v0 ;2;2,1
+
∥∥(1 − μ)−1α

∥∥
Cu0,v0 ;0;0,2

). (6.24)

Step 4: Estimates on α, Region of Unbounded r

Setting p = 0 in Eq. (6.9), we obtain, using Cauchy–Schwarz on the right:

/∇L(r2A2) + 4M |α̃|2 ≤ 4Mε|α̃|2 +
1

r24Mε
|φ|2. (6.25)

We integrate this equation on cones of constant u coordinate, starting from
{r = R}. We use the Sobolev embedding C.2 and the estimates (5.31). We
finally obtain:

|α| ≤ C

(|u| + 1)r
(
∥∥φ∥∥

Cu0,v0 ;2;2,1
+
∥∥(1 − μ)−1α

∥∥
Cu0,v0 ;0;0,2

), (6.26)

on the region {r ≥ R}∩J +(u0, v0). This concludes the proof of the proposition.
�
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7. Improved Decay for α

In this section, we prove estimate (4.4) of Theorem 4.1. We state again the
result, as it is of independent interest. It is essentially an application of the rp

method to the spin +1 Teukolsky equation.

Proposition 7.1. There exists R∗ > 0 and a constant C > 0 such that the
following holds. Let α satisfy the spin +1 Teukolsky equation on {u ≥ u0} ∩
{v ≥ v0}, with v0 − u0 = 2R∗. Let χ be a smooth cutoff function such that
χ(r) = 1 for r ≥ 3M , and χ(r) = 0 for r ∈ [2M, 3/2M ].

We let Ψ := χ(r)(1−μ)−1r3α. In these conditions, we have the following
bound, valid in the region {r ≥ R}:

|α| ≤ C(|u| + 1)− 1
2 r−3(

∥∥Ψ∥∥
Cu0,v0 ;2;0,2

+ ‖φ‖Cu0,v0 ;2;2,2).

In order to prove the proposition, we make use of the following lemma.
The lemma gives decay estimates on the boundary terms at {r = R}.

Lemma 7.2. Under the assumptions of Proposition 7.1, we have the following
inequality, valid for u1 ≥ u0:

∫
Cu1∩{r≥R}

(r2|α|2 + r2|r /∇α|2)dvdS2

+
∫

{r=R}∩{u≥u1}
(| /∇α|2 + |α|2)dT +

∫
D∞

u1

(|r /∇α|2 + |α|2)dudvdS2

≤ (1 + |u1|)−2
2∑

i=0

F∞[( /∇T )iφ](P (u0))

+ (1 + |u1|)−2
2∑

i=0

∫
Cu0∩{r≥R}

r2| /∇L( /∇T )min{i,1}φ|2dvdS2

+ (1 + |u1|)−2

∫
Cu0∩{r≥R}

(r4|α|2 + r4|r /∇α|2)dvdS2.

(7.1)
Here, as usual, dT is the induced volume form on the hypersurface {r = R}.

Recall now the definition of angular multi-indices and repeated Lie deriv-
ative of (3.2). Letting I ∈ ιΩ≤2, the estimate (7.1) holds as well when all the

occurrences of the symbol α in (7.1) are replaced with /LI
α, and all the occur-

rences of the symbol φ in (7.1) are replaced with /LI
φ.

Proof of Lemma 7.2. Let us notice that the quantity φ satisfies the following
equation, upon substitution in the Teukolsky equation for α (3.17):

/∇LφA − r2 /Δ(rαA) + rαA = 0. (7.2)
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Let f(r) be a smooth radial function. We now multiply Eq. (7.2) by (1 −
μ)f(r)φA, and we obtain the identity, valid upon integration on S

2:

1
2
L
{
(1 − μ)f(r)|φ|2

}
− 1

2
L {(1 − μ)f(r)} |φ|2

+
1
2
L
{
f(r)r2|r2 /∇α|2

}
− 1

2
L
(
f(r)r2

)
|r2 /∇α|2

+
1
2
L
{
f(r)r2|rα|2

}
− 1

2
L
(
f(r)r2

)
|rα|2 S

2

= 0.

(7.3)

Let us then integrate with respect to the form dudv in the spacetime region
{r ≥ R} ∩ Du2

u1
∩ {v ≤ vmax}. We obtain, taking vmax → ∞, and averaging in

φ, ∫
Cu2∩{r≥R}

f(r)r2(|rα|2 + |r2 /∇α|2)dvdS2

−
∫

Cu1∩{r≥R}
f(r)r2(|rα|2 + |r2 /∇α|2)dvdS2

+
∫

{r=R}∩{u1≤u≤u2}
f(R)R2(|R2 /∇α|2 + |Rα|2)dT

−
∫
D

u2
u1

L(r2f(r))(|r2 /∇α|2 + |rα|2)dudvdS2

≤ C(f,R)
∫

{R≤r≤R+M}∩{u≥u1}
(|φ|2 + | /∇Lφ|2)dudvdS2

+
∫
D

u2
u1

L((1 − μ)f(r))|φ|2dudvdS2.

(7.4)

Here, we supposed f to be positive and smooth. dT is, as before, the induced
volume form on the hypersurface {r = R}.

We choose now f(r) = (1 − μ)−1 in inequality (7.4), and we obtain∫
Cu2∩{r≥R}

(r4|α|2 + r4|r /∇α|2)dvdS2

+
∫

{r=R}∩{u1≤u≤u2}
(| /∇α|2 + |α|2)dT

+
∫
D

u2
u1

r(|r2 /∇α|2 + |rα|2)dudvdS2

≤ C

∫
Cu1∩{r≥R}

(r4|α|2 + r4|r /∇α|2)dvdS2 + CF∞[φ](P (u1)). (7.5)

Recall that, here, P (u) = (u, u + 2R∗). This implies that, along a dyadic
sequence un, we have∫

Cun∩{r≥R}
r(|rα|2 + |r2 /∇α|2)dvdS2

≤ Cu−1
n

∫
Cu0∩{r≥R}

(r4|α|2 + r4|r /∇α|2)dvdS2 + u−1
n F∞[φ](P (u0)).

(7.6)
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We choose now f(r) = r−1(1 − μ)−1 in inequality (7.4), and we obtain, dis-
carding the last term in (7.4) (indeed, L((1 − μ)f) < 0):∫

Cu2∩{r≥R}
(r3|α|2 + r3|r /∇α|2)dvdS2

+
∫

{r=R}∩{u1≤u≤u2}
(| /∇α|2 + |α|2)dT

+
∫
D

u2
u1

(|r2 /∇α|2 + |rα|2)dudvdS2

≤ C

∫
Cu1∩{r≥R}

(r3|α|2 + r3|r /∇α|2)dvdS2

+ C

∫
{R≤r≤R+M}∩{u≥u1}

(|φ|2 + | /∇Lφ|2)dudvdS2

(7.7)

From inequality (5.36), we now have, along a dyadic sequence ũn, that

ũnF∞[φ](P (ũn))

≤ C

(
F∞[φ](P (u0)) + F∞[ /∇T φ](P (u0)) +

∫
Cu0∩{r≥R}

| /∇Lφ|2rdvdS2

)

︸ ︷︷ ︸
:=W [φ](P (u0))

.

By the Morawetz estimate for φ, then, we have (without loss of generality, we
can assume r > 3M):∫

{R≤r≤R+M}∩{u≥u1}
(|φ|2 + | /∇Lφ|2)dudvdS2

≤ (1 + |u1|)−1W [φ](P (u0)).
(7.8)

We therefore have the inequality, valid for u2 ≥ un:∫
Cu2∩{r≥R}

(r3|α|2 + r3|r /∇α|2)dvdS2

+
∫

{r=R}∩{un≤u≤u2}
(| /∇α|2 + |α|2)dT

+
∫
D

u2
un

(|r2 /∇α|2 + |rα|2)dudvdS2

≤ u−1
n W [φ](P (u0)) + Cu−1

n

∫
Cu0∩{r≥R}

(r4|α|2 + r4|r /∇α|2)dvdS2. (7.9)

From the last display, in particular, it follows that, for u1 ≥ u0,∫
Cu1∩{r≥R}

(r3|α|2 + r3|r /∇α|2)dvdS2 +
∫

{r=R}∩{u≥u1}
(| /∇α|2 + |α|2)dT

≤ Cu−1
1 W [φ](P (u0)) + Cu−1

1

∫
Cu0∩{r≥R}

(r4|α|2 + r4|r /∇α|2)dvdS2.



1302 F. Pasqualotto Ann. Henri Poincaré

From (7.9), it furthermore follows, along a dyadic sequence ūn,
∫

Cūn ∩{r≥R}
(|rα|2 + |r2 /∇α|2)dvdS2

≤ Cū−2
n

∫
Cu0∩{r≥R}

(r4|α|2 + r4|r /∇α|2)dvdS2 + ū−2
n W [φ](P (u0)).

(7.10)

We choose now f(r) = r−2(1 − μ)−1 in inequality (7.4), and we obtain finally
∫

Cu2∩{r≥R}
(r2|α|2 + r2|r /∇α|2)dvdS2

+
∫

{r=R}∩{u1≤u≤u2}
(| /∇α|2 + |α|2)dT

+
∫
D

u2
u1

(|r /∇α|2 + |α|2)dudvdS2

≤
∫

Cu1∩{r≥R}
(r2|α|2 + r2|r /∇α|2)dvdS2

+
∫

{R≤r≤R+M}∩{u≥u1}
(|φ|2 + | /∇Lφ|2)dudvdS2.

(7.11)

We now use the Morawetz estimate for φ, as well as the flux decay in
Lemma 5.8, to obtain

∫
{r=R}∩{u≥ūn}

(| /∇α|2 + |α|2)dT +
∫
D∞̄

un

(|r /∇α|2 + |α|2)dudvdS2

≤ ū−2
n

2∑
i=0

F∞[( /∇T )iφ](P (u0))

+ ū−2
n

2∑
i=0

∫
Cu0∩{r≥R}

r2| /∇L( /∇T )min{i,1}φ|2dvdS2

+ ū−2
n

∫
Cu0∩{r≥R}

(r4|α|2 + r4|r /∇α|2)dvdS2.

(7.12)

It is trivial to remove the restriction to the dyadic sequence, due to the mono-
tonicity of the fluxes considered on the left-hand side of (7.12).

Similarly, it is straightforward to deduce the decay estimate, valid for all
u1 ≥ u0:∫

Cu1∩{r≥R}
(r2|α|2 + r2|r /∇α|2)dvdS2

≤ (1 + |u1|)−2
2∑

i=0

F∞[( /∇T )iφ](P (u0))
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+ (1 + |u1|)−2
2∑

i=0

∫
Cu0∩{r≥R}

r2| /∇L( /∇T )min{i,1}φ|2dvdS2

+ (1 + |u1|)−2

∫
Cu0∩{r≥R}

(r4|α|2 + r4|r /∇α|2)dvdS2. (7.13)

The lemma is thus proved by combining the /LI -commuted versions of displays
(7.12) and (7.13). �

Proof of Proposition 7.1 and of (4.4). Let us consider the Teukolsky equation
for α (3.17), and write it in the following way:

/∇L

(
r2

1 − μ
/∇L(rαA)

)
− r2 /Δ(rαA) + rαA = 0

⇐⇒ /∇L /∇L

(
r2

1 − μ
rαA

)
− /∇L

(
L

(
r2

1 − μ

)
rαA

)

− r2 /Δ(rαA) + rαA = 0

⇐⇒ /∇L /∇L

(
r2

1 − μ
rαA

)
− /∇L

(
1 − μ

r2
L

(
r2

1 − μ

)
r2

1 − μ
rαA

)

− r2 /Δ(rαA) + rαA = 0.

(7.14)

Letting ΨA := (1 − μ)−1r3αA, we have the following equation for ΨA:

/∇L /∇LΨA − /∇L

(
1 − μ

r2
L

(
r2

1 − μ

)
ΨA

)
− (1 − μ) /ΔΨA +

1 − μ

r2
ΨA = 0,

(7.15)

which implies

/∇L /∇LΨA − L

(
1 − μ

r2
L

(
r2

1 − μ

))
ΨA −

(
1 − μ

r2
L

(
r2

1 − μ

))
/∇LΨA

− (1 − μ) /ΔΨA +
1 − μ

r2
ΨA = 0.

(7.16)

Let f = f(u, v) be a smooth function. Multiply the last display through
by f(u, v) /∇LΨA. We obtain

f(u, v) /∇LΨA /∇L /∇LΨA =
1
2
L(f(u, v)| /∇LΨ|2) − 1

2
L(f(u, v))| /∇LΨ|2,

− f(u, v) /∇LΨAL

(
1 − μ

r2
L

(
r2

1 − μ

))
ΨA

= −f(u, v)
1
2
L

(
1 − μ

r2
L

(
r2

1 − μ

))
L|Ψ|2

= −1
2
L

{
f(u, v)L

(
1 − μ

r2
L

(
r2

1 − μ

))
|Ψ|2

}

+
1
2
L

{
f(u, v)L

(
1 − μ

r2
L

(
r2

1 − μ

))}
|Ψ|2,
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− f(u, v)
(

1 − μ

r2
L

(
r2

1 − μ

))
/∇LΨA /∇LΨA

= −f(u, v)
(

1 − μ

r2
L

(
r2

1 − μ

))
| /∇LΨ|2,

− (1 − μ)f(u, v) /ΔΨA /∇LΨA = −f(u, v)
1 − μ

r2
r2 /ΔΨA /∇LΨA

S
2

= f(u, v)
1 − μ

r2
/∇L(r /∇BΨA)(r /∇BΨA)

=
1
2
L
{
f(u, v)(1 − μ)| /∇Ψ|2

}
− 1

2
r2L

(
f(u, v)

1 − μ

r2

)
| /∇Ψ|2,

f(u, v)
1 − μ

r2
ΨA /∇LΨA =

1
2
f(u, v)

1 − μ

r2
L|Ψ|2

=
1
2
L

(
f(u, v)

1 − μ

r2
|Ψ|2

)
− 1

2
L

(
f(u, v)

1 − μ

r2

)
|Ψ|2.

We now proceed to integrate the resulting identity on the region Du2
u1

∩
{v ≤ vmax}. We notice the following, from the Poincaré inequality for one-
forms (Lemma B.1):

− f(u, v)L
{

1 − μ

r2
L

(
r2

1 − μ

)}
|Ψ|2 + f(u, v)

1 − μ

r2
|Ψ|2

+ f(u, v)(1 − μ)| /∇Ψ|2

≥ f(u, v)
{

−L

{
1 − μ

r2
L

(
r2

1 − μ

)}
+ 2

1 − μ

r2

}
|Ψ|2

= 12Mr−3f(u, v)(1 − μ)|Ψ|2 ≥ 0.

Hence, if f is a positive function, we can discard the corresponding incoming
null flux on vmax.

We now choose f(u, v) = (1−μ)−1v2. It is easy to verify that there exists
a value uin such that the following holds, for u ≥ uin and u + v ≥ 2R∗:

−L

(
v2

r2

)
≥ 0, −L

(
v2

r3

)
≥ 0

We now use the previous display, along with the Poincaré estimate for one-
forms (Lemma B.1) to obtain positivity of the bulk terms in Ψ, for u ≥ uin:

1
2
L

{
f(u, v)L

(
1 − μ

r2
L

(
r2

1 − μ

))}
|Ψ|2 − 1

2
L

(
v2

r2

)
|Ψ|2

− 1
2
L

(
v2

r2

)
| /∇Ψ|2 ≥ 1

2
L

{
−2

v2

r2
+ f(u, v)L

(
1 − μ

r2
L

(
r2

1 − μ

))}
|Ψ|2

=
1
2
L

{
−12M

v2

r3

}
≥ 0.
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We therefore obtain the following estimate, valid for u1, u2 ≥ uin:∫
Cu2∩{r≥R}

v2| /∇LΨ|2dvdS2 −
∫

Cu1∩{r≥R}
v2| /∇LΨ|2dvdS2

≤ C

∫
{r=R}∩{u1≤u≤u2}

(|Ψ|2 + | /∇Ψ|2)dT .

(7.17)

Similarly, we have the commuted version of the previous bound:∑
I∈ιΩ≤2

∫
Cu2∩{r≥R}

v2| /∇L /LIΨ|2dvdS2

−
∑

I∈ιΩ≤2

∫
Cu1∩{r≥R}

v2| /∇L /LIΨ|2dvdS2

≤ C
∑

I∈ιΩ≤2

∫
{r=R}∩{u1≤u≤u2}

(|/LIΨ|2 + | /∇/LIΨ|2)dT .

(7.18)

We now choose f(u, v) = (1−μ)−1r2. We notice that the only spacetime term
remaining in either |Ψ|2 or | /∇Ψ|2 is∫

D
u2
u1

L

{
f(u, v)L

(
1 − μ

r2
L

(
r2

1 − μ

))}
|Ψ|2dudvdS2. (7.19)

With our choice of f , we have

L

{
f(u, v)L

(
1 − μ

r2
L

(
r2

1 − μ

))}
= 12M

1 − μ

r2
. (7.20)

Hence, we obtain the following estimate, possibly restricting to R large enough,∫
Cu2∩{r≥R}

r2| /∇LΨ|2dvdS2 −
∫

Cu1∩{r≥R}
r2| /∇LΨ|2dvdS2

+
∫
D

u2
u1

r| /∇LΨ|2dudvdS2 +
∫
D

u2
u1

r−2|Ψ|2dudvdS2

≤ CR

∫
{r=R}∩{u1≤u≤u2}

(|Ψ|2 + | /∇Ψ|2)dT .

(7.21)

Similarly, we obtain the commuted estimate

∑
I∈ιΩ≤2

{∫
Cu2∩{r≥R}

r2| /∇L /LIΨ|2dvdS2

−
∫

Cu1∩{r≥R}
r2| /∇L /LIΨ|2dvdS2

+
∫
D

u2
u1

r| /∇L /LIΨ|2dudvdS2 +
∫
D

u2
u1

r−2|/LIΨ|2dudvdS2

}

≤ CR

∑
I∈ιΩ≤2

∫
{r=R}∩{u1≤u≤u2}

(|/LIΨ|2 + | /∇/LIΨ|2)dT .

(7.22)
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By an analogous reasoning, we obtain the following estimate, choosing f(r) =
(1 − μ)−1r:

∫
Cu2∩{r≥R}

r| /∇LΨ|2dvdS2 −
∫

Cu1∩{r≥R}
r| /∇LΨ|2dvdS2

+
∫
D

u2
u1

| /∇LΨ|2dudvdS2 +
∫
D

u2
u1

r−3|Ψ|2dudvdS2

≤ CR

∫
{r=R}∩{u1≤u≤u2}

(|Ψ|2 + | /∇Ψ|2)dT .

(7.23)

We also obtain the corresponding commuted estimate:

∑
I∈ιΩ≤2

∫
Cu2∩{r≥R}

r| /∇L /LIΨ|2dvdS2

−
∑

I∈ιΩ≤2

∫
Cu1∩{r≥R}

r| /∇L /LIΨ|2dvdS2

+
∑

I∈ιΩ≤2

∫
D

u2
u1

| /∇L /LIΨ|2dudvdS2

+
∑

I∈ιΩ≤2

∫
D

u2
u1

r−3|/LIΨ|2dudvdS2

≤ CR

∑
I∈ιΩ≤2

∫
{r=R}∩{u1≤u≤u2}

(|/LIΨ|2 + | /∇/LIΨ|2)dT .

(7.24)

We now choose f(u, v) = (1 − μ)−1. We look again at the resulting
combination of spacetime terms in either |Ψ|2 or | /∇Ψ|2 and use the Poincaré
inequality for one-forms:

1
2
L

{
(1 − μ)−1L

(
1 − μ

r2
L

(
r2

1 − μ

))
− r−2

}
|Ψ|2 − 1

2
r2L(r−2)| /∇Ψ|2

≥ 1
2
L

{
(1 − μ)−1L

(
1 − μ

r2
L

(
r2

1 − μ

))
− 2r−2

}
|Ψ|2.

We now notice:

L

{
(1 − μ)−1L

(
1 − μ

r2
L

(
r2

1 − μ

))
− 2r−2

}

= (1 − μ)∂r

{
−2r−2 − ∂r

(
(1 − μ)2

r2
∂r

(
r2

1 − μ

))}
= (1 − μ)

36M

r4
.
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Hence, we obtain the following estimate:

∫
Cu2∩{r≥R}

| /∇LΨ|2dvdS2 −
∫

Cu1∩{r≥R}
| /∇LΨ|2dvdS2

+
∫
D

u2
u1

r−1| /∇LΨ|2dudvdS2 +
∫
D

u2
u1

r−4|Ψ|2dudvdS2

≤ CR

∫
{r=R}∩{u1≤u≤u2}

(|Ψ|2 + | /∇Ψ|2)dT .

(7.25)

Also, we obtain the following commuted version of the previous estimate:

∑
I∈ιΩ≤2

{∫
Cu2∩{r≥R}

| /∇L /LIΨ|2dvdS2 −
∫

Cu1∩{r≥R}
| /∇L /LIΨ|2dvdS2

+
∫
D

u2
u1

r−1| /∇L /LIΨ|2dudvdS2 +
∫
D

u2
u1

r−4|/LIΨ|2dudvdS2

}

≤ CR

∑
I∈ιΩ≤2

∫
{r=R}∩{u1≤u≤u2}

(|/LIΨ|2 + | /∇/LIΨ|2)dT .

(7.26)

Notice that, in particular, from Lemma 7.2, we have the following estimate:

∑
I∈ιΩ≤2

∫
{u≥u0}∩{r=R}

(| /∇/LI
α|2 + |/LI

α|2)dvdS2

≤
∑

I∈ιΩ≤2

∫
Cu0∩{r≥R}

(r−4|/LIΨ|2 + r−2| /∇/LIΨ|2)dvdS2

+
∑

I∈ιΩ≤2

F∞[/LI
φ](P (u0)).

(7.27)

Now, using inequalities (7.18), (7.22) and (7.27), we have the following uniform
bound for the flux in r2| /∇LΨ|:

∑
I∈ιΩ≤2

∫
Cu∩{r≥R}

v2| /∇L /LIΨ|2dvdS2 ≤ C(
∥∥Ψ∥∥2

Cu0,v0 ;2;0,2
+ ‖φ‖2

Cu0,v0 ;0;0,2).

(7.28)
Here, we used the definition Ψ := χ(r)Ψ, where χ is a smooth cutoff function as
in the statement of the proposition, i.e., such that χ(r) = 0 for r ∈ [2M, 5/2M ],
and χ(r) = 1 for r ∈ [3M,∞).
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Now, from (7.22) it follows that there exists a dyadic sequence un such
that

∑
I∈ιΩ≤2

∫
Cun ∩{r≥R}

(
r| /∇L /LIΨ|2 + r−2|/LIΨ|2

)
dvdS2

≤ Cu−1
n

⎧⎨
⎩
∑

I∈ιΩ≤2

∫
Cu0∩{r≥R}

(r−4|/LIΨ|2 + r−2| /∇/LIΨ|2)dvdS2

+
∑

I∈ιΩ≤2

∫
Cu0∩{r≥R}

r2| /∇L /LIΨ|2dvdS2 +
∑

I∈ιΩ≤2

F∞[/LI
φ](P (u0))

⎫⎬
⎭ .

(7.29)
Recall that, from inequality (7.5), the following bound holds for all u ≥ u0:

∑
I∈ιΩ≤2

∫
Cu∩{r≥R}

(| /∇/LIΨ|2 + r−2|/LIΨ|2)dvdS2

≤ C(1 + |u|)−1
∑

I∈ιΩ≤2

(
W [/LI

φ](P (u0))

+
∫

Cu0∩{r≥R}
(r−2|/LIΨ|2 + | /∇/LIΨ|2 + r2| /∇L /LIΨ|2)dvdS2

)
.

(7.30)

We plug the sequence {un} in estimate (7.24) and use (7.30) to bound
the terms on the right-hand side, and we obtain that there exists a second
dyadic sequence {ūn} such that there holds

∑
I∈ιΩ≤2

∫
Cūn∩{r≥R}

(
| /∇L /LIΨ|2 + r−3|/LIΨ|2

)
dvdS2

≤ C(|ūn| + 1)−2

⎧⎨
⎩
∑

I∈ιΩ≤2

∫
Cu0∩{r≥R}

(r−4|/LIΨ|2 + r−2| /∇/LIΨ|2)dvdS2

+
∑

I∈ιΩ≤2

∫
Cu0∩{r≥R}

r2| /∇L /LIΨ|2dvdS2 +
∑

I∈ιΩ≤2

F∞[/LI
φ](P (u0))

+
∑

I∈ιΩ≤2

W [/LI
φ](P (u0))

⎫⎬
⎭ . (7.31)

We now wish to remove the restriction to the dyadic sequence on the integral
∫

Cūn ∩{r≥R}

(
| /∇L /LIΨ|2 + r−3|/LIΨ|2

)
dvdS2.
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Concerning the term in /∇LΨ, we have that, from inequality (7.31), (7.25) and
(7.1), the following bound holds for all u ≥ u0:∫

Cu∩{r≥R}
| /∇LΨ|2dvdS2

≤ (1 + |u|)−2
2∑

i=0

F∞[( /∇T )iφ](P (u0))

+ (1 + |u|)−2
2∑

i=0

∫
Cu0∩{r≥R}

r2| /∇L( /∇T )min{i,1}φ|2dvdS2

+ C(1 + |u|)−2

∫
Cu0∩{r≥R}

(r−2|Ψ|2 + | /∇Ψ|2 + r2| /∇LΨ|2)dvdS2.

(7.32)
Similarly, considering the corresponding commuted estimates, if I ∈ ιΩ≤2, we
have, for u ≥ u0,∫

Cu∩{r≥R}
| /∇L /LIΨ|2dvdS2

≤ C(|u| + 1)−2(‖Ψ‖2
Cu0,v0 ;2;0,2 + ‖φ‖2

Cu0,v0 ;2;2,2).
(7.33)

Now, from the commuted version of (7.1), we obtain, if I ∈ ιΩ≤2 and u ≥ u0:∫
Cu∩{r≥R}

(r−4|/LIΨ|2 + r−2| /∇/LIΨ|2)dvdS2

≤ C(|u| + 1)−2(‖Ψ‖2
Cu0,v0 ;2;0,2 + ‖φ‖2

Cu0,v0 ;2;2,2).
(7.34)

We now have, using Lemma C.5 in “Appendix,” letting (u, v, ω) a point
in (u, v)-coordinates:

|Ψ(u, v, ω)|2 ≤ C(|u| + 1)−1(‖Ψ‖2
Cu0,v0 ;2;0,2 + ‖φ‖2

Cu0,v0 ;2;2,2),

if v − u ≥ 2R∗. This implies the claim. �

8. Decay Estimates for σ and ρ

In this section, we suppose that F ∈ Λ2(Se) is a solution to the full Maxwell
system, and we prove Theorem 4.2.

Proof of Theorem 4.2. Let F ∈ Λ2(Se) satisfy the Maxwell Equations (3.11) to
(3.16). Then, the extreme components α and α satisfy the spin ± 1 Teukolsky
Equations [(3.17) and (3.18)], and hence we have the required decay rates for
α and α from Theorem 4.1.

Hence, the proof reduces to proving decay for the middle components σ
and ρ. As noticed in Remark 3.8, we have

φA = r3( /∇Aρ + /εAB
/∇B

σ),

φ
A

= r3(− /∇Aρ + /εAB
/∇B

σ).
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Hence, it is clear that estimates (5.31) and (5.37) still hold with φ replaced by
either r3 /∇ρ or r3 /∇σ.

Let us now define ρs(u, v) and σs(u, v):

ρs(u, v) :=
R2

4π

∫
ω∈S2

ρ(u, v, ω)dS2(ω),

σs(u, v) :=
R2

4π

∫
ω∈S2

σ(u, v, ω)dS2(ω).
(8.1)

We notice that, by integrating each of the Maxwell Equations (3.13)–(3.16) on
S

2, we have, for all (u, v) ∈ {u ≥ u0} ∩ {v ≥ v0},

σs(u, v) = σs(u0, v0), ρs(u, v) = ρs(u0, v0). (8.2)

Let us restrict our attention to the estimates for ρ. The estimates for σ can be
obtained in a very analogous manner.

Step 1: Region of Bounded r

We first consider the region {r ≤ R}∩J +(Cu0,v0). Estimates (5.31) and (5.37)
imply:

F∞[ /∇ρ](P (u)) +
3∑

i=1

F∞[ /∇/LΩi
ρ](P (u)) ≤ Cu−2(Mρ,σ)2. (8.3)

Here, Mρ,σ is as in Eq. (4.8).
Let 2M < rc < R. We now use the Sobolev lemma in “Appendix C.4” to

obtain, if ṽ ≥ v0,

sup
(u,ṽ,ω)∈Cṽ∩{rc≤r≤R}

|ρ(u, ṽ, ω) − (r(u, ṽ))−2ρs(u, ṽ)|2

≤ C

∫
Cṽ∩{rc≤r≤R}

(| /∇ /∇ρ|2 + |(1 − μ)−1 /∇L /∇ /∇ρ|2)(1 − μ)dS2du. (8.4)

By writing the expression of the Lie derivative, we obtain that there exist
positive constants C0, C1, C2 such that, in the region {r ≤ R},

3∑
i=1

|(1−μ)−1 /∇L /LΩi
/∇ρ|2 ≥ |(1−μ)−1 /∇L /∇ /∇ρ|−C1| /∇ρ|2 −C2| /∇ /∇ρ|2 (8.5)

This implies that, possibly renaming C1 and C2, the following inequality
holds (recall: [/LΩi

, /∇] = 0):∫
Cṽ∩{rc≤r≤R}

(1 − μ)(| /∇ /∇ρ|2 + |(1 − μ)−1 /∇L /∇ /∇ρ|2)dS2du

≤ C1F∞[ /∇ρ](P (ũ)) + C2

3∑
i=1

F∞[ /∇/LΩi
ρ]P (ũ),

with ṽ − ũ = 2R∗. (4.11) now easily follows from the previous display, along
with (8.3), in the region {u ≥ u0} ∩ {v ≥ v0}.
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Step 2: Region of Unbounded r

Let v ≥ v1 ≥ v0 and u = u1 ≥ u0, and let v1 − u1 = 2R∗ and v − u = 2r∗. We
begin by noticing, by Lemma C.1 and the definition of φ:

|ρ − r−2ρs|2 �
∫

S2
r4| /∇ /∇ρ|2dS2 =

∫
S2

r−2| /∇φ|2dS2. (8.6)

Now, the definition of Lie derivative yields:

/LΩi
φA = /∇Ωi

φA + φ( /∇AΩi).

This implies the pointwise bound:

| /∇L /∇Ωi
φ|2 = /∇L /∇Ωi

φA /∇L /∇Ωi
φA

= /∇L(/LΩi
φA − φ( /∇AΩi)) /∇L(/LΩi

φA − φ( /∇AΩi)) � | /∇L /LΩi
φ|2 + | /∇Lφ|2.

(8.7)
Furthermore, we have

| /∇L /∇φ|2 �
3∑

i=1

1
r2

| /∇L /∇Ωi
φ2| +

1
r2

| /∇φ|2. (8.8)

We now use the Cauchy–Schwarz inequality, as well as the computation in
Eq. (8.7) to obtain the following chain of estimates.

r

∫
S2

| /∇φ|2(u, v, ω)dS2(ω)

�
∫

Cu∩{r≥R}
| /∇φ|2(u, ṽ, ω)dS2dṽ

+
∫

Cu∩{r≥R}
r(u, ṽ)

(
| /∇φ|| /∇L /∇φ|

)
(u, ṽ, ω)dS2(ω)dṽ

(8.8)

�
∫

Cu∩{r≥R}

3∑
i=1

(
| /∇φ|| /∇L /∇Ωi

φ|
)
dS2(ω)dṽ

+
∫

Cu∩{r≥R}
| /∇φ|2dS2(ω)dṽ

(8.7)

� (Mρ,σ)2(|u| + 1)−2

+

(∫
Cu∩{r≥R}

| /∇φ|2dS2dṽ

) 1
2
(∫

Cu∩{r≥R}

3∑
i=1

| /∇L /LΩi
φ|2dS2dṽ

) 1
2

+

(∫
Cu∩{r≥R}

| /∇φ|2dS2dṽ

) 1
2
(∫

Cu∩{r≥R}
| /∇Lφ|2dS2dṽ

) 1
2

� (Mρ,σ)2(|u| + 1)−2.

Remark 8.1. Notice that the flux F∞ allows us to estimate not only the /∇Lφ
term, but also the /∇φ term.
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This implies finally that

|ρ(u, v, ω) − r−2ρs(u0, v0)| ≤ Cr− 3
2 (|u| + 1)−1Mρ,σ. (8.9)

Similarly, we compute

r2

∫
S2

| /∇φ|2(u, v, ω)dS2(ω) �
∫

S2

3∑
i=1

/g
(
/∇Ωi

φ, /∇Ωi
φ
)
(u, v, ω)dS2(ω)

�
∫

Cu∩{r≥R}
| /∇φ|2(u, ṽ, ω)dṽdS2(ω)

+
∫

Cu∩{r≥R}
/∇L(

3∑
i=1

/g
(
/∇Ωi

φ, /∇Ωi
φ
)
)(u, ṽ, ω)dṽdS2(ω).

(8.10)

The first term in the right-hand side of the last display is estimated by (5.31).
We again use Eq. (8.7) to obtain, for the second term in (8.10), the following
chain of estimates.

∣∣∣∣∣
∫

Cu∩{r≥R}
/∇L(

3∑
i=1

/g
(
/∇Ωi

φ, /∇Ωi
φ
)
)dṽdS2(ω)

∣∣∣∣∣

�
3∑

i=1

(∫
Cu∩{r≥R}

r−2| /∇Ωi
φ|2dS2(ω)dṽ

) 1
2

×
(∫

Cu∩{r≥R}
r2| /∇L /∇Ωi

φ|2dṽdS2(ω)

) 1
2

�
3∑

i=1

(∫
Cu∩{r≥R}

| /∇φ|2dS2(ω)dṽ

) 1
2

×
(∫

Cu∩{r≥R}
r2(| /∇L /LΩi

φ|2 + | /∇Lφ|2)dṽdS2(ω)

) 1
2

� (|u| + 1)−1(Mρ,σ)2.

The last inequality follows by the decay estimates (5.37), (5.31), and the
uniform boundedness estimate (5.23) applied to the flux containing the L-
derivative.

This implies the decay rate for ρ:

|ρ(u, v, ω) − r−2ρs(u0, v0)| ≤ C(|u| + 1)− 1
2 r−2Mρ,σ. (8.11)

This concludes the proof of the theorem. �
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Appendix A. Derivation of the Null Decomposition of the
Maxwell System and of the Spin ± 1 Teukolsky
Equations

Proof of Proposition 3.6. The proof is by calculation in the null frame and
Hodge dualization.

Step 1: The Full Maxwell System

Recall: L := ∂r�
+ ∂t = ∂u, L := ∂t − ∂r�

= ∂u. In the following calculations,
when an uppercase letter appears, it signifies contraction with one of the basis
elements ∂θA , ∂θB , where θA and θB are local coordinates for S

2.
Now, set eA := ∂θA and eB := ∂θB . Let us now calculate

∇eA
eB = /∇eA

eB − 1
2
(1 − μ)−1 (g(∇eA

eB , L)L + g(∇eA
eB , L)L)

= /∇eA
eB +

1
2
(1 − μ)−1 (g(eB ,∇eA

L)L + g(eB ,∇eA
L)L)

= /∇eA
eB +

1
2
(1 − μ)−1

(
g(eB ,−1 − μ

r
eA)L + g(eB ,

1 − μ

r
eA)L

)

= /∇eA
eB +

1
2r

(L − L)/gAB
.

(A.1)
We begin by calculating:

∇AFBL = eAF (eB , L) − F (∇eA
eB , L) − F (eB ,∇eA

L)

= eAF (eB , L) − F ( /∇eA
eB , L)

− 1
2r

F ((L − L)/gAB
, L) − F (eB ,

1 − μ

r
eA)

= /∇AαB − 1 − μ

r
ρ/gAB

+
1 − μ

r
σ/εAB .

(A.2)

Furthermore, we have:

∇AFBL = eAF (eB , L) − F (∇eA
eB , L) − F (eB ,∇eA

L)

= eAF (eB , L) − F ( /∇eA
eB , L)

− 1
2r

F ((L − L)/gAB
, L) − F (eB ,−1 − μ

r
eA)

= /∇AαB − 1 − μ

r
ρ/gAB

− 1 − μ

r
σ/εAB .

(A.3)

By the null decomposition of the Hodge dual of F , it follows that

∇A
�FBL = /εCB

/∇AαC − 1 − μ

r
σ/gAB

− 1 − μ

r
ρ/εAB

∇A
�FBL = −/εCB

/∇AαC − 1 − μ

r
σ/gAB

+
1 − μ

r
ρ/εAB .
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We also have:
1
2
∇AFLL =

1
2
∇A(F (L,L)) − 1

2
F (∇AL,L) − 1

2
F (L,∇AL)

= /∇Aρ +
1
2

1 − μ

r
(αA + αA).

(A.4)

Again, by taking the Hodge dual,
1
2
∇A

�FLL = /∇Aρ +
1
2

1 − μ

r
(−/εCAαC + /εCAαC).

Now, use Eqs. (A.1) and (A.4) to get:

∇LFLA + ∇AFLL + ∇LFAL = −∇LFAL + ∇AFLL + ∇LFAL

= − /∇LαA + /∇LαA − 2(1 − μ) /∇Aρ − F (∇AL,L) − F (L,∇AL)

= − /∇LαA + /∇LαA − 2(1 − μ) /∇Aρ − 1 − μ

r
αA − 1 − μ

r
αA

= −1
r

/∇L(rαA) +
1
r

/∇L(rαA) − 2(1 − μ) /∇Aρ = 0.

(A.5)

By taking the dual of the last equation, we obtain

∇L
�FLA + ∇A

�FLL + ∇L
�FAL

=
1
r

/∇L(r/εBAαB) +
1
r

/∇L(r/εBAαB) − 2(1 − μ) /∇Aσ = 0
(A.6)

The last display is equivalent to:

−1
r

/∇L(rαA) − 1
r

/∇L(rαA) + 2(1 − μ)/εAB
/∇B

σ = 0. (A.7)

We therefore obtain Eqs. (3.11) and (3.12):

1
r

/∇L(rαA) + (1 − μ)( /∇Aρ − /εAB
/∇B

σ) = 0,

1
r

/∇L(rαA) − (1 − μ)( /∇Aρ + /εAB
/∇B

σ) = 0.
(A.8)

Now, let us calculate, with the aid of (A.3), the following expression:

∇AFBL + ∇LFAB + ∇BFLA

= /∇AαB − 1 − μ

r
ρ/gAB

− 1 − μ

r
σ/εAB+

− /∇BαA +
1 − μ

r
ρ/gAB

− 1 − μ

r
σ/εAB + /εAB

/∇Lσ = 0.

(A.9)

Contracting the last display with /ε
AB , we obtain the following equation:

/curl α − 2
1 − μ

r
σ + /∇Lσ = 0. (A.10)

By taking the dual of the last equation, we obtain furthermore

− /div α + 2
1 − μ

r
ρ − /∇Lρ = 0. (A.11)
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We finally compute, with the aid of (A.2), the following expression:

∇AFBL + ∇LFAB + ∇BFLA

= /∇AαB − 1 − μ

r
ρ/gAB

+
1 − μ

r
σ/εAB+

− /∇BαB +
1 − μ

r
ρ/gAB

+
1 − μ

r
σ/εAB + /∇Lσ

= /curl α + 2
1 − μ

r
σ + /∇Lσ = 0.

(A.12)

We obtain:

/curl α + 2
1 − μ

r
σ + /∇Lσ = 0.

Taking the dual of the last expression yields

/div α − 2
1 − μ

r
ρ − /∇Lρ = 0. (A.13)

This concludes the derivation of the null decomposition of the Maxwell system.

Step 2: Spin ± 1 Teukolsky Equations

We now turn to the derivation of the spin ± 1 Teukolsky equations. Recall the
following facts, which can be checked by explicit calculation:

/∇L/εAB = 0, /∇L/εAB = 0, /∇L/gAB
= 0, /∇L/gAB

= 0,

[r /∇A, /∇L] = [r /∇A, /∇L] = 0.

Operate now on Eq. (3.11) with L, in order to obtain

/∇L /∇L(rαA) + L(1 − μ)r( /∇Aρ − /εAB
/∇B

σ)

+ (1 − μ)r( /∇A /∇Lρ − /εAB
/∇B

/∇Lσ)︸ ︷︷ ︸
(∗)

= 0.

Using the expression for Lρ (3.14) and Lσ (3.13), we obtain

(∗) = (1 − μ)r
(

2
1 − μ

r
/∇Aρ − 2

1 − μ

r
/εAB

/∇B
σ

)

+ (1 − μ)r (− /∇A /div α + /εAB
/∇B /curl α)︸ ︷︷ ︸

:=−(ANG)

.

Hence,

/∇L /∇L(rαA) − (1 − μ)
2M

r2
r( /∇Aρ − /εAB

/∇B
σ)

+ 2(1 − μ)2( /∇Aρ − /εAB
/∇B

σ) + (1 − μ)r · ANG = 0.

This implies, upon substitution using (3.11) again,

/∇L /∇L(rαA) − 2
r

(
1 − 3M

r

)
/∇L(rαA) − (1 − μ)r · ANG = 0.
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Using now Lemma A.1, we obtain the claim for α. The reasoning for α is
analogous. �

Lemma A.1. Let S2 be endowed with the standard metric gS2 and denote by D
the Levi-Civita connection associated with such metric on S

2. Let εAB be the
standard volume form. Let ω be a smooth one-form on S

2, let div and curl the
associated covariant divergence and curl:

divω := gABDAωB curlω := εABDAωB .

Let Δ := gAB
S2 DADB be the covariant Laplacian. Then, we have:

DAdivω − εABDBcurlω = ΔωA − ωA. (A.14)

Proof. Let p ∈ S
2. Let us fix a vector V ∈ TpS

2, and let us set up coordinates
(θ, ϕ) such that the coordinates of p are (π/2, 0), ∂θ|p = V , and finally the
metric in these local coordinates is represented by the two-form dθ ⊗dθ +
sin2 θdϕ ⊗dϕ. Let

TA := DAdiv ω − εABDBcurl ω. (A.15)
Then, since the left-hand side of (A.14) is a tensor, we have

T (∂θ)|p = T (V ) = D∂θ
divω︸ ︷︷ ︸

(1)

− εθBDBcurl ω︸ ︷︷ ︸
(2)

.

(1) = ∂θ

(
∂θω(∂θ) − ω(D∂θ

∂θ) +
∂ϕ

sin θ
ω

(
∂ϕ

sin θ

)
− ω

(
D ∂ϕ

sin θ

∂ϕ

sin θ

))∣∣∣∣
(π/2,0)

=
(

∂θ∂θω(∂θ) + ∂θ

(
∂ϕ

sin θ
ω

(
∂ϕ

sin θ

))
− ω(∂θ)

)∣∣∣∣
(π/2,0)

− (2) = − ∂ϕ

sin θ

(
(D∂θ

ω)
(

∂ϕ

sin θ

)
− (D ∂ϕ

sin θ

ω) (∂θ)
)∣∣∣∣

(π/2,0)

= − ∂ϕ

sin θ

(
∂θω

(
∂ϕ

sin θ

)
+

cos θ

sin2 θ
ω(∂ϕ)

)∣∣∣∣
(π/2,0)

+
∂ϕ

sin θ

∂ϕ

sin θ
ω(∂θ)

∣∣∣∣
(π/2,0)

.

Upon summation,

T (∂θ)|p = (∂θ∂θω(∂θ) − ω(∂θ))|(π/2,0) +
∂ϕ

sin θ

∂ϕ

sin θ
ω(∂θ)

∣∣∣∣
(π/2,0)

.

A calculation of the covariant Laplacian in coordinates (θ, ϕ) at (π/2, 0) yields
the claim. �

Appendix B. A Poincaré Lemma

Let us first set some notation for this section.
• Consider the sphere S

2, with the standard metric gS2 and the standard
volume form ε.

• Denote by D the Levi-Civita connection on the sphere S
2 related to the

standard metric gS2 .
• Denote by Δ the covariant Laplacian associated with D, Δ := gAB

S2 DADB .
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• Denote by ΔH the Hodge-de-Rham Laplacian:

ΔH := dδ + δd,

where δ := −�d� is the codifferential. Here, if ω is a one-form, the Hodge
dual (�ω) is still a one-form, defined to satisfy

(�ω)A := εABωB.

• Let our convention on the Riemann tensor be

R(X,Y )Z := (DXDY − DY DX − D[X,Y ])Z,

where X,Y,Z are smooth vector fields. Consequently, we denote

RmABCD := gS2(R(∂θA , ∂θB )∂θC , ∂θD ).

Here, (θ1, θ2) is a local coordinate system on S
2, and the previous equa-

tion defines uniquely the 4-covariant tensor Rm.
• We define the Ricci tensor so that RicAB := Rm C

AC B .
• Under these conventions, if ωA is a one-form, the commutation relation

holds:
DADBωC − DBDAωC = −Rm D

ABC ωD.

The main purpose of this section is to give a proof of the following elementary
inequality.

Lemma B.1 (Poincaré inequality for one-forms on S
2). Let ω be a smooth one-

form on S
2. We have the inequality∫

S2
|Dω|2dS2 ≥

∫
S2

|ω|2dS2. (B.1)

We first need a classical result.

Lemma B.2 (Hodge). Let ω be a smooth one-form on S
2, then there exist

smooth functions f and g ∈ C∞(S2) such that

ω = df + �dg.

We deduce a simple case of the Bochner–Weitzenböck identity.

Lemma B.3. For any one-form ω on the sphere S
2, we have∫

S2
|Dω|2dS2 =

∫
S2

(ΔHω)AωAdS2 −
∫

S2
|ω|2dS2. (B.2)

Proof. We compute

gABDADBDCf = gABDADCDBf = gABDCDADBf − gABRm E
ACB DEf.

Now, on functions, ΔH = −Δ, and Rm AE
AC = −Ric E

C . Therefore, we have,
considering Ric as a map from one-forms to one-forms:

Δ(df) = −ΔH(df) + Ric(df),

for f ∈ C∞(S2). Since DAεBC = 0, the same holds for the dual:

Δ(�dg) = −ΔH(�dg) + Ric(�dg),

for g ∈ C∞(S2).
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Consider now a one-form ω, by the Hodge decomposition (Lemma B.2),
we then have

(Δω)A = −(ΔHω)A + Ric B
A ωB . (B.3)

Now, Ric = gS2 . We now contract the previous display with ωA. We integrate
by parts on S

2 in order to obtain the claim. �

We then characterize the spectrum of ΔH on one-forms.

Lemma B.4. The smooth one-form ω is an eigenvector for ΔH if and only if
it is of the form ω = df +�dg, with f and g smooth eigenfunctions of ΔH with
the same eigenvalue.

Proof. If ΔHf = λf and ΔHg = λg, then

ΔH(df) = dδdf + 0 = λdf,

also
ΔH(�dg) = dδd(�dg) + 0 = λ � dg.

On the other hand, if ω is a one-form on the sphere, we have, by the Hodge
theorem, that there exist f and g such that ω = df + �dg. Then, imposing the
eigenvalue condition, we have

ΔH(df + �dg) = λ(df + �dg) =⇒ d(ΔHf − λf) = �d(ΔHg − λg). (B.4)

This implies, since the only harmonic functions on the sphere are the constant
functions, ΔHf − λf = c1, ΔHg − λg = c2. By considering f1 := f + c1/λ and
g1 := g + c2/λ, we obtain two functions f1 and g1 in the conditions. �

We are now ready to prove Lemma B.1.

Proof of Lemma B.1. By Lemma B.4, the spectrum of ΔH on S
2 on one-forms

is the same as the spectrum on functions.
Let us now take the Hodge decomposition of ω, ω = df + �dg, and write

f , g in the spherical harmonic decomposition. We obtain sequences fk, gk such
that

fk
L2(S2)→ f, gk

L2(S2)→ g.

Since f , g are smooth, and hence in particular belong to H2(S2), the approx-
imation by spherical harmonics is in H2(S2):

fk
H2(S2)→ f, gk

H2(S2)→ g.

Letting now ω
(k)
A := dfk + �dgk, we have, from Eq. (B.2), and from the fact

that the smallest eigenvalue of ΔH is 2,∫
S2

|Dω(k)|2dS2 ≥
∫

S2
(2|ω(k)|2 − |ω(k)|2)dS2 =

∫
S2

|ω(k)|2dS2.

Taking the limit k → ∞, and using the continuity of the norm, we obtain the
claim. �
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Appendix C. Sobolev Lemmas

These Sobolev lemmas are used throughout the note. The proofs being stan-
dard, we do not provide them.

Lemma C.1 (Sobolev estimate for scalar functions on the sphere). Consider
(S2, gS2), the two-sphere with the standard metric, let D be the associated Levi-
Civita connection, and let f be a smooth function f : S

2 → R. Let f̄ :=
1
4π

∫
S2 fdS2 be the spherical average of f . There exists a universal constant C

such that

sup
S2

|f − f̄ |2 ≤ C

∫
S2

|DDf |2dS2. (C.1)

Lemma C.2. There is a universal constant C such that, for any one-form η on
S

2, the following inequality holds:

sup
S2

|η|2 ≤ C

∫
S2

(|DDη|2 + |η|2)dS2. (C.2)

Lemma C.3 (1-d Sobolev embedding). Let (a, b) ⊂ R, with −∞ < a < b < ∞.
Let f : (a, b) → R, f ∈ W 1,1(R). Then, there holds:

∥∥∥∥∥f(x) − (b − a)−1

∫ b

a

f(y)dy

∥∥∥∥∥
L∞(R)

≤ ‖f ′‖L1(R) . (C.3)

A straightforward application of Lemma C.3 yields the following lemma.

Lemma C.4 (Sobolev inequality involving only certain derivatives). Let R >
2M . Let f : Se → R be a smooth function. Let v0 ≥ 0. Let f̄ be the mean of f
over the spheres:

f̄(u, v) :=
1
4π

∫
S2

f(u, v, ω)dS2(ω). (C.4)

Then, there exists a constant C = C(R) such that, for any ṽ ≥ v0,

sup
(u,ṽ,ω)∈Cṽ∩{2M≤r≤R}

|f(u, ṽ, ω) − f̄(u, ṽ)|2

≤ C

∫
Cṽ∩{2M≤r≤R}

(| /∇ /∇f |2 + |(1 − μ)−1 /∇L /∇ /∇f |2)(1 − μ)dS2du
(C.5)

Finally, we state the following lemma, which we need in the proof of
Proposition 7.1.

Lemma C.5. For any R > 0, there exists a constant C > 0 such that the
following holds. Let Ψ ∈ Λ1(B) be a one-form tangent to the spheres of constant
r-coordinate. Then, we have
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|Ψ|2(ū, v̄, ω) ≤ C
∑

I∈ιΩ≤2

∫
Cū∩{R≤r≤2R}

|/LIΨ|2dvdS2

+
∑

I∈ιΩ≤2

(∫
Cū∩{R≤r≤2R}

|/LIΨ|2dvdS2 +
∫

Cū∩{r≥R}
| /∇L /LIΨ|2dvdS2

) 1
2

×
(∫

Cū∩{r≥R}
v2| /∇L /LIΨ|2dvdS2

) 1
2

(C.6)
Here, ū and v̄ are such that

v̄ − ū ≥ 2R∗ = 2(R + 2M log(R − 2M) − 3M − 2M log(M)).

Sketch of proof. The lemma is a straightforward consequence of the Sobolev
inequality on spheres (Lemma C.2), the Cauchy–Schwarz inequality, as well as
the one-dimensional Hardy inequality:∫ ∞

0

x−2(F (x))2dx ≤ C

∫ ∞

0

(
df

dx

)2

dx. (C.7)

Here, f is any smooth real-valued function on R, and F is its primitive (in x)
which vanishes at 0. �

Appendix D. Comparison with Previous Work

In this section, we compare our approach with the work of Blue [4] and with
the work of Andersson, Bäckdahl and Blue [1].

We briefly recall the main strategy in [4]. There, the author considers the
multiplier estimate arising from the “K-vector field”:

K := u2∂u + v2∂v,

on the full Maxwell system (here, as usual, u = t − r∗, and v = t + r∗). The
ensuing estimate displays a negative bulk term close to the photon sphere
at r = 3M , comprised solely of angular derivatives of the ρ, σ components. In
order to estimate these bad bulk terms, he then considers the scalar Fackerell–
Ipser equation [Eq. (2.14)] satisfied by the middle components ρ and σ, and
proves a Morawetz estimate. The aforementioned K-multiplier estimate, along
with Sobolev embeddings, finally implies pointwise decay.

Let us note here that the Morawetz estimate in [4] is obtained directly
on the scalar Fackerell–Ipser equation, which displays static solutions. There,
the Morawetz bulk is controlled by the initial conformal Morawetz energy (the
energy arising from the K-multiplier), which is infinite for static solutions.
In our case, since we have effectively “commuted with an angular derivative,”
we are able to prove a Morawetz estimate (5.8) which is controlled by initial
data terms at the level of energy with no r-weights, and which furthermore
vanish on static solutions. This allows us to include the case of static solutions
in a natural way.
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The main two differences between our approach and that of [4] are the
following. Firstly, we consider the quantities φA and φ

A
, which do not appear

in [4]. Furthermore, the methods to prove decay are different: in our result,
we rely on the new physical space method of Dafermos–Rodnianski [9] (which
is also in the spirit of the work on linearized gravity [11]), whereas in [4] the
author makes essential use of the K-multiplier.

The initial assumptions differ between the two approaches: our technique
allows us to work separating the Teukolsky equations from the rest of the
system. Finally, the decay rates we obtain are analogous to those in [4], with
minor differences.

To conclude this section, we compare our findings with those of [1]. In
this work, whose sole purpose is to prove integrated local energy decay, the
authors obtain the following estimate:

∫
J+({t=t1})

(r − 3M)2

r3
(|βX̂ |2 + |βŶ |2)

+ M
M(r − 2M)

r3
|βẐ |2 +

M(r − 3M)2(r − 2M)
r5

|βT̂ |2dVol

� E({t = t1})

(D.1)

Here,

βT̂ = (1 − μ)− 1
2 ∇∂t

(rρ + irσ),

βX̂ = ∇∂θ
(ρ + iσ),

βŶ = csc θ∇∂φ
(ρ + iσ),

βẐ =
1
r
∂r(r2(ρ + iσ)),

and

E({t = t1}) :=
∫

{t=t1}
(|βX̂ |2 + |βŶ |2 + |βẐ |2 + |βT̂ |2)r2dr sin θdθdφ.

In this case, a first-order Morawetz estimate is achieved which does not
“see” the stationary Coulomb solutions (indeed, the quantity β vanishes for
stationary solutions of Maxwell on Schwarzschild).

If we compare the estimate proved in [1] [Eq. (D.1)] with our Morawetz
estimate [Eq. (5.8)], it is evident that our estimate lies at the level of two
derivatives of the field F , whereas estimate (D.1) contains only one derivative
of the field on both sides. Hence, in our approach, we require control on more
derivatives in the initial data, to obtain a Morawetz estimate which in turn
controls more derivatives of the solution.
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