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Index Theory and Topological Phases
of Aperiodic Lattices

C. Bourne and B. Mesland

Abstract. We examine the non-commutative index theory associated with
the dynamics of a Delone set and the corresponding transversal groupoid.
Our main motivation comes from the application to topological phases
of aperiodic lattices and materials and applies to invariants from tilings
as well. Our discussion concerns semifinite index pairings, factorisation
properties of Kasparov modules and the construction of unbounded Fred-
holm modules for lattices with finite local complexity.
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Introduction

Models of systems in solid-state physics that do not make reference to a Bloch
decomposition or Fourier transform are essential if one wishes to understand
topological phases of disordered or aperiodic systems. A description of disor-
dered media using crossed product C∗-algebras has successfully adapted many
important properties of periodic topological insulators to the disordered set-
ting, see [13,42,77] for example.

Recently, newer proposed models of topological materials and meta-mat-
erials have emerged whose underlying lattice has a quasicrystalline [8] or amor-
phous configuration [68]. In the case of amorphous lattice configurations, be-
cause there is no canonical labelling of the lattice points, the Hamiltonians
of interest cannot be described by a crossed product C∗-algebra. Hence, the
techniques and results on the bulk–boundary correspondence in [20] cannot be
applied to recent results on edge states and transport in topological amorphous
(meta-)materials [68]. Such amorphous systems are instead modelled by the
transversal (étale) groupoid G associated with a Delone set developed in [10,14,
47,48]. One of the key results of the paper is the extension of the K-theoretic
framework for topological phases to such algebras and aperiodic media.

Quasicrystalline materials often display finite local complexity, meaning
that up to translation the lattice is determined by a finite number of patterns or
polyhedra (cf. Definition 2.2). If the lattice has finite local complexity, the ape-
riodic but ordered pattern configurations can be described using tiling spaces.
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By [85, Theorem 2], the tiling space of such lattices is homeomorphic to the
d-fold suspension of a Z

d-subshift space, though not necessarily topologically
conjugate. This result implies that, adding some extra sites to quasicrystalline
lattice configurations if necessary, there is a Z

d-labelling of points and the
system can be described by a discrete crossed product C(Z) � Z

d.
The advantage of the transversal groupoid approach is that it does not

require finite local complexity nor a Z
d-labelling. In particular, the framework

can accommodate non-periodic R
d-actions. Thus, the modifications needed to

obtain a Z
d-labelling (which may not be physically reasonable) can be avoided.

Furthermore, the transversal groupoid covers a broader range of examples
which are not covered by the results in [85] such as the pinwheel tiling.

Given a Hamiltonian on an aperiodic system, computational techniques
are currently in development to determine its spectrum [9]. If the Hamiltonian
contains a spectral gap, we can associate a topological phase with the system
by modelling its dynamics via the transversal groupoid G. In particular, topo-
logical indices and K-theoretic properties of such Hamiltonians are determined
using the groupoid C∗-algebra.

In previous work, this groupoid description was used to describe bulk
topological phases [21]. In this paper, we show that a (gapped) Hamiltonian
acting on a Delone set L ⊂ R

d is enough to define strong and weak topological
phases as well as show the bulk–edge correspondence of Hamiltonians acting on
the lattice �2(L). Furthermore, if the unit space Ω0 of the transversal groupoid
G has an invariant measure, then Chern number formulas can also be defined
for complex topological phases.

Because of the generality of Delone sets, they are able to model materials
that go beyond what is normally considered when discussing topological phases
of matter. These include quasicrystal structures but also other materials such
as glasses and some liquids, see [11] for example. This tells us, at least from
a mathematical perspective, that our constructions and results are potentially
applicable to a broader range of materials and meta-materials in addition to
the applications to (possibly disordered) crystals.

In the present paper, our central object of study is an unbounded KK-
cycle for the transversal groupoid C∗-algebra which gives rise to a class in
KKd(C∗

r (G, σ), C(Ω0)) (real or complex) with d the dimension of the under-
lying space, σ a magnetic twisting and Ω0 the transversal space. When this
KK-cycle is coupled with the K-theoretic phase of a gapped free-fermionic
Hamiltonian [which gives a class in Kn(C∗

r (G, σ))], the corresponding index
pairing gives analytic indices that encode the strong topological phase. When
the transversal Ω0 has an invariant probability measure, we can construct a
semifinite spectral triple and measure this (disorder-averaged) pairing using
the semifinite local index formula (considered for ergodic measures in [21]).

The factorisation properties of the unbounded KK-cycle also allow us to
express the index pairing as a pairing over a closed subgroupoid Υ that encodes
the dynamics of the transversal in (d − 1)-dimensions and models an edge
system. Namely, we can link these systems explicitly via a short exact sequence
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0 → C∗
r (Υ, σ) ⊗ K → T → C∗

r (G, σ) → 0

with T modelling a half-space system. When the lattices we consider have a
canonical Z

d-labelling, then this short exact sequence is the usual Toeplitz
extension of a crossed product considered in [77]. Our result, analogous to the
crossed product case, [20,77], is that our d-dimensional pairing with C∗

r (G, σ)
(as an element in the K-theory of the configuration space or a numerical phase
label of this pairing) is equal to or in the same K-theory class as the (d − 1)-
dimensional pairing with C∗

r (Υ, σ) up to a possible sign.
For aperiodic lattices with finite local complexity, the transversal Ω0 is

totally disconnected. In this case, a general construction due to Pearson and
Bellissard [74] gives a family of spectral triples on C(Ω0). Coupling the un-
bounded KK-cycle for (C∗

r (G), C(Ω0)) to such a spectral triple for C(Ω0)
using the unbounded Kasparov product gives us K-homology representatives
for C∗

r (G). The construction of the product operator employs the techniques
developed in [66], but the commutators with C∗

r (G) turn out to be unbounded.
Nonetheless, using arguments similar to [36] and recent results in [63], we are
able to show that the operator represents the Kasparov product of the given
classes via the bounded transform. The analytic difficulties with the commu-
tators can be directly attributed to the disorder, that is, the non-periodicity
of the Delone set.

Let us remark that the unbounded Fredholm module constructed from
quasicrystalline lattice configurations allows us to consider new topological
phases that cannot be defined in periodic systems or disordered systems with a
contractible disorder space of configurations. Indeed, the totally disconnected
structure of the transversal Ω0 is a crucial ingredient in defining these new
phases.

Some of our results show parallels with those of Kubota and of Ewert–
Meyer, who study topological phases associated with Delone sets and the corre-
sponding Roe algebra [31,54]. Briefly, the Roe algebra, by its universal nature,
provides a means to compare topological phases from different lattice config-
urations (see [54, Lemma 2.19]). Conversely, the transversal groupoid algebra
is used to determine the topological phase of Hamiltonians associated with a
fixed lattice configuration. Because the groupoid algebra is separable (while
the Roe algebra is not), it is more susceptible to the use of KK-theoretic
machinery, which is a central theme of this paper. In particular, it is gener-
ally easier to both define and compute the pairings with KK-cycles or cyclic
cocycles that characterise the numerical phase labels; see [21, Section 3] for
numerical simulations.

Lastly, the groupoid of a transversal is typically used to study the dynam-
ics of aperiodic tilings and related dynamical systems. We have not emphasised
the application to tilings in this manuscript, though our constructions and re-
sults may have broader interest.

Outline. Because our paper draws from aspects of dynamical systems, operator
algebras, Kasparov theory and physics, we aim to give a systematic and largely
self-contained exposition of our results.
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We first give a brief overview of the mathematical tools we require in Sect.
1, which include Kasparov theory, semifinite index theory and C∗-algebras of
étale groupoids twisted by a 2-cocycle. We consider C∗-modules constructed
from étale groupoids and review how groupoid equivalences can be naturally
expressed in terms of C∗-modules. In particular, we consider groupoids with a
normalised 2-cocycle, where groupoid equivalence for compatible twists gives
rise to a Morita equivalence of the twisted groupoid C∗-algebras. We also
provide a higher-dimensional extension of the result in [65], where if one has
a continuous 1-cocycle c : G → R

n that is exact in the sense of [65], then this
cocycle gives rise to a Dirac-like operator and unbounded Kasparov module
over the twisted C∗-algebra of G relative to that of a closed subgroupoid H =
Ker(c). We further provide a condition on R-valued cocycles that guarantees
injectivity of the Busby invariant directly. This condition is satisfied in all
examples considered in the paper.

In Sect. 2, we review the construction of the transversal groupoid follow-
ing [10,14,47,50] and show how it fits into our general KK-theoretic frame-
work. In the case of dimension 1, we give an alternative description of the
groupoid C∗-algebra and unbounded KK-cycle using Cuntz–Pimsner algebras
and results from [37,80,81].

In Sect. 3, we show how the unbounded KK-cycle we build factorises into
the product of an ‘edge’ KK-cycle modelling a system of codimension 1 with
a linking KK-cycle that relates the two systems. This can also be extended to
higher codimension and is related to weak topological insulators.

We then consider spectral triple constructions in Sects. 4 and 5. We con-
struct spectral triples using the evaluation map of the transversal, an invari-
ant measure (which gives a semifinite spectral triple) and the product with a
Pearson–Bellissard spectral triple. The latter construction yields an unbounded
Fredholm module with mildly unbounded commutators as in [36], so that the
bounded transform represents the Kasparov product.

Lastly, we apply our results to topological phases in Sect. 6, where the
physical invariants of interest naturally arise as index pairings of classes in
Kn(C∗

r (G, σ)) with our unbounded KK-cycles (or spectral triples). Here we
prove Chern number formulas for complex phases, analytic strong and weak
indices for systems with anti-linear symmetries and the bulk–boundary cor-
respondence. Much like the crossed product setting, our bulk indices are also
well defined for a much larger algebra that can be constructed using non-
commutative Lp-spaces. A connection of these extended indices to regions of
dynamical or spectral localisation remains an open problem.

1. Preliminaries on Groupoids and Kasparov Theory

1.1. Kasparov Modules and Semifinite Spectral Triples

In this section, we establish basic results and notation that we will need for
this paper. Because we are motivated by topological phases whose relation to
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real K-theory is now well-established [34,40,49], we will work in both real and
complex vector spaces and algebras.

Given a real or complex right-B C∗-module EB , we denote the right ac-
tion by e·b and the B-valued inner product (· | ·)B . The set of adjointable endo-
morphisms on EB with respect to this inner product is denoted by End∗(EB).
The rank-1 operators Θe,f , e, f ∈ EB , are defined such that

Θe,f (g) = e · (f | g)B , e, f, g ∈ EB .

The norm closure of the algebraic span of the set of such rank-1 operators is
the set of compact operators on EB , and we denote this set by K(EB). We will
often work with Z2-graded algebras and spaces and denote by ⊗̂ the graded
tensor product (see [44, Section 2] and [17, Section 14]). A densely defined
closed symmetric operator T : Dom T → EB is self-adjoint and regular if the
operators T ± i : Dom D → EB have dense range. See [60, Chapter 9–10] for
the basic theory of unbounded operators on C∗-modules.

Definition 1.1. Let A and B be Z2-graded real (resp. complex) C∗-algebras.
A real (resp. complex) unbounded Kasparov module (A, πEB ,D) (also called
an unbounded KK-cycle) for (A,B) consists of

(1) a Z2-graded real (resp. complex) C∗-module EB ,
(2) a graded ∗-homomorphism π : A → End∗(EB),
(3) an unbounded self-adjoint, regular and odd operator D and a dense ∗-

subalgebra A ⊂ A such that for all a ∈ A ⊂ A,

[D,π(a)]± ∈ End∗(EB), π(a)(1 + D2)−1 ∈ K(EB).

For complex algebras and spaces, one can also remove the gradings, in which
case the Kasparov module is called odd (otherwise even).

We will often omit the representation π when the left action is unam-
biguous. Unbounded Kasparov modules represent classes in the KK-group
KK(A,B) or KKO(A,B) [7]. We note that an unbounded A-C or A-R Kas-
parov module is precisely the definition of a complex or real spectral triple.

Another non-commutative extension of index theory and closely related
to unbounded Kasparov theory are semifinite spectral triples [25,26]. Let τ be
a fixed faithful, normal, semifinite trace on a von Neumann algebra N . We
denote by KN the τ -compact operators in N , that is, the norm closed ideal
generated by the projections P ∈ N with τ(P ) < ∞.

Definition 1.2. Let N ⊂ B(H) be a graded semifinite von Neumann algebra
with trace τ . A semifinite spectral triple (A,H,D) is given by a Z2-graded
Hilbert space H, a graded ∗-algebra A ⊂ N with C∗-closure A and a graded
representation on H, together with a densely defined odd unbounded self-
adjoint operator D affiliated to N such that

(1) [D, a]± is well defined on Dom(D) and extends to a bounded operator on
H for all a ∈ A,

(2) a(1 + D2)−1 ∈ KN for all a ∈ A.
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For N = B(H) and τ = Tr, one recovers the usual definition of a spectral
triple. A semifinite spectral triple relative to (N , τ) with A unital is called p-
summable if (1+D2)−s/2 is τ -trace class for all s > p. We also call a semifinite
spectral triple QC∞ if a, [D, a] ∈ Dom(δk) for all k ∈ N with δ(T ) = [|D|, T ]
being the partial derivation.

Semifinite spectral triples can be paired with K-theory classes in K∗(A)
via a semifinite Fredholm index [16]. An operator T ∈ N that is invertible
modulo KN has a semifinite Fredholm index

Indexτ (T ) = τ(PKer(T )) − τ(PKer(T ∗)).

If the semifinite spectral triples are p-summable and QC∞, the complex index
pairing can be computed using the resolvent cocycle and the semifinite local
index formula [25,26]. By writing the index pairing as a pairing with cyclic
cohomology, the topological invariants of interest can more easily be connected
to physics [77]. See [16,26,32] for further details on semifinite index theory
and [76] for results concerning numerical implementation.

Suppose (A, EB ,D) is an unbounded Kasparov module for a separable
C∗-algebra A and the right-hand algebra B has a faithful, semifinite and norm
lower semicontinuous trace τB . We work with faithful traces as we can always
pass to a quotient algebra B/Ker(τB) if necessary. Assuming such a trace,
one can often construct a semifinite spectral triple via a dual trace construc-
tion [58]. We follow this approach in Sect. 4.2. By constructing a semifinite
spectral triple from a Kasparov module, we obtain a KK-theoretic interpre-
tation of the semifinite index pairing, which can be expressed via the map

K∗(A) × KK∗(A,B) → K0(B)
(τB)∗−−−→ R, (1)

with (A, EB ,D) representing the class in KK∗(A,B). Equation (1) allows us
to more explicitly characterise the range of the semifinite index pairing (which
is in general R-valued). The local index formula then gives us a computable
expression for the KK-theoretic composition in Eq. (1).

1.2. Étale Groupoids, Twisted Algebras and C∗-Modules

We start with some basic definitions for convenience. Our standard reference
for groupoid C∗-algebras is [79].

Definition 1.3. A groupoid is a set G with a subset G(2) ⊂ G×G, a multiplication
map G(2) → G, (γ, ξ) �→ γξ and an inverse G → G γ �→ γ−1 such that

(1) (γ−1)−1 = γ for all γ ∈ G,
(2) if (γ, ξ), (ξ, η) ∈ G(2), then (γξ, η), (γ, ξη) ∈ G(2),
(3) (γ, γ−1) ∈ G(2) for all γ ∈ G,
(4) for all (γ, ξ) ∈ G(2), (γξ)ξ−1 = γ and γ−1(γξ) = ξ.

Given a groupoid, we denote by G(0) = {γγ−1 : γ ∈ G} the space of units
and define the source and range maps r, s : G → G(0) by the equations

r(γ) = γγ−1, s(γ) = γ−1γ
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for all γ ∈ G. The source and range maps allow us to characterise

G(2) =
{
(γ, ξ) ∈ G × G : s(γ) = r(ξ)

}
.

We furthermore assume that G has a locally compact topology such that
G(0) ⊂ G is Hausdorff in the relative topology and multiplication, inversion,
source and range maps all continuous. In this work, we restrict ourselves to
groupoids that are both Hausdorff and étale.

Definition 1.4. A topological groupoid G is called étale if the range map r :
G → G(0) is a local homeomorphism.

Definition 1.5. Let G be a locally compact and Hausdorff groupoid. A contin-
uous map σ : G(2) → T 	 U(1) is a 2-cocycle if

σ(γ, ξ)σ(γξ, η) = σ(γ, ξη)σ(ξ, η)

for any (γ, ξ), (ξ, η) ∈ G(2), and

σ(γ, s(γ)) = 1 = σ(r(γ), γ)

for all γ ∈ G. We will call a groupoid 2-cocyle normalised if σ(γ, γ−1) = 1 for
all γ ∈ G.

Remark 1.6. We can also define O(1) 	 Z2-valued groupoid 2-cocycles whose
cocycle relation is the same as the U(1) case. Generally speaking, if we are
working in the category of complex spaces and algebras, we will use U(1)-
valued 2-cocycles. If we are in the real category, we work with O(1)-valued
2-cocycles.

Because the algebraic structure is the same in either setting, we will
abuse notation slightly and denote by σ a generic groupoid 2-cocycle, where
the range of this 2-cocycle will be clear from the context.

Given an étale groupoid G and 2-cocycle σ, we define Cc(G, σ) to be the
∗-algebra of compactly supported functions on G with twisted convolution and
involution

(f1 ∗ f2)(γ) =
∑

γ=ξη

f1(ξ)f2(η)σ(ξ, η), f∗(γ) = σ(γ, γ−1)f(γ−1).

The 2-cocycle condition ensures that Cc(G, σ) is an associative ∗-algebra. In
the present paper, we restrict ourselves to considering normalised cocycles,
which covers all examples of interest to us. Our definition of the groupoid 2-
cocyle and twisted convolution algebra comes from Renault [79]. For a broader
version of twisted groupoid algebra, see [56].

1.3. The C∗-Module of a Groupoid and the Reduced Twisted C∗-Algebra

Take an étale groupoid G with a normalised 2-cocycle σ. The space Cc(G, σ)
is a right module over C0(G(0)) via (f · g)(ξ) = f(ξ)g(s(ξ)). Since G(0) ⊂ G is
closed, we can consider the restriction map ρ : Cc(G) → C0(G(0)). This defines
a C0(G(0)) valued inner product on the right module Cc(G, σ) via
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(f1 | f2)C0(G(0))(x) := ρ(f∗
1 ∗ f2)(x)

=
∑

ξ∈s−1(x)

f1(ξ−1)f2(ξ−1)σ(ξ, ξ−1) =
∑

ξ∈r−1(x)

f1(ξ)f2(ξ)

as σ is normalised. Denote by EC0(G(0)) the C∗-module completion of Cc(G)
in this inner product. There is an action of the ∗-algebra Cc(G, σ) on the
C∗-module EC0(G(0)) by bounded adjointable endomorphisms, extending the
action of Cc(G, σ) on itself by left multiplication.

Definition 1.7 (cf. [52]). The reduced groupoid C∗-algebra C∗
r (G, σ) is the

completion of Cc(G, σ) in the norm inherited from the embedding Cc(G, σ) ↪→
End∗(EC0(G(0))).

Definition 1.8. Let G be an étale groupoid over G(0). An s-cover of G is a locally
finite countable open cover V := {Vi}i∈N consisting of pre-compact sets, such
that s : Vi → G(0) is a homeomorphism onto its image.

Lemma 1.9. Let V := {Vi}i∈N be an s-cover of G and χi : Vi → R a partition
of unity subordinate to V, that is,

∑
i χi(η)2 = 1 for all η ∈ G. Write um :=∑

i≤m Θχi,χi
. Then for all f ∈ Cc(G, σ) there exists N ∈ N such that for all

n ≥ N

f(η) = unf(η) =
∑

i≤n

χi ∗ ρ(χ∗
i ∗ f)(η).

In particular, umf converges to f in the norm of EC0(G(0)).

Proof. The above, together with the fact that we have an s-cover gives
∑

i

(
χi · ρ(χ∗

i ∗ f)
)
(η) =

∑

i

χi(η)ρ(χ∗
i ∗ f)(s(η))

=
∑

i

∑

ξ∈r−1(s(η))

χi(η)χ∗
i (ξ)f(ξ−1)σ(ξ, ξ−1)

=
∑

i

∑

ξ∈r−1(s(η))

χi(η)χi(ξ−1)f(ξ−1)

=
∑

i

∑

ξ∈s−1(s(η))

χi(η)χi(ξ)f(ξ)

=
∑

{i:η∈Vi}
χ2

i (η)f(η) = f(η).

Since f has compact support, there exists N = Nf such that χn|suppf = 0 for
all n ≥ N . Thus, the sum above is uniformly finite and hence convergent in
the ρ-norm. �

Note that the above result implies that un is a sequence of local units for
Cc(G(2)) ⊂ K(EC0(G(0))).

Lemma 1.10. We have supn ‖un‖End∗(E
C0(G(0))

) ≤ 1.
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Proof. We compute the operator norm of the un directly. Let f ∈ Cc(G, σ):

(unf | unf)C(G(0))(x) =
∑

ξ∈r−1(x)

|unf(ξ)|2

=
∑

ξ∈r−1(x)

∣
∣∣
∣
∣
∣

∑

i≤n

χi(ξ)
2f(ξ)

∣
∣∣
∣
∣
∣

2

≤
∑

ξ∈r−1(x)

⎛

⎝
∑

i≤n

χi(ξ)
2|f(ξ)|

⎞

⎠

2

≤
∑

ξ∈r−1(x)

|f(ξ)|2 = (f | f)C(G(0))(x)

Thus, it follows that

‖unf‖2
C0(G(0)) = sup

x∈G(0)
(unf | unf)C(G(0))(x)

≤ sup
x∈G(0)

(f | f)C(G(0))(x) = ‖f‖2
C0(G(0)),

and we find that sup ‖un‖End∗(E
C0(G(0))

) ≤ 1 as claimed. �

Proposition 1.11. The sequence un forms an approximate unit for K(EC0(G(0))).
In other words, the ordered set of elements χi ∈ EC0(G(0)) forms a frame for
EC0(G(0)).

Proof. The sequence un is uniformly bounded in operator norm and converges
strongly to 1 on a dense subset. This implies that it converges strongly to
1 on all of EC0(G(0)), which is equivalent to being an approximate unit for
K(EC0(G(0))). �

1.4. Morita Equivalence of Twisted Groupoid C∗-Algebras

In this section we work with an arbitrary étale groupoid G with closed sub-
groupoid H that admits a Haar system and a normalised 2-cocycle σ : G(2) → T

or {± 1}. The map σ restricts to a 2-cocycle on the subgroupoid H. Denote
by

ρH : Cc(G, σ) → Cc(H, σ),

the restriction map. This map is a generalised conditional expectation by [79,
Proposition 2.9]. It gives rise to a Cc(H, σ)-valued inner product, where

(f1 | f2)Cc(H,σ)(η) = ρH(f∗
1 ∗ f2)(η)

=
∑

ξ∈r−1
G (rH(η))

f∗
1 (η−1ξ)f2(ξ−1)σ(η−1ξ, ξ−1).

This map is compatible with the right action,

(f · h)(γ) =
∑

η∈r−1
H (sG(γ))

f(γη)h(η−1)σ(γη, η−1), f ∈ Cc(G, σ), h ∈ Cc(H, σ).

We again take the completion of Cc(G, σ) in the C∗
r (H, σ)-valued inner

product to obtain a right C∗-module EC∗
r (H,σ). The left action of Cc(G, σ) on

itself makes EC∗
r (H,σ) into a (C∗

r (G, σ), C∗
r (H, σ))-bimodule by [67, Theorem
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1.4]. These bimodules often support a natural operator making them into KK-
cycles, as we will discuss in Sect. 1.5.

At present we wish to describe the compact operators on EC∗
r (H,σ). To

this end, we first define

G/H ∼=
{
[ξ] : ξ ∈ G, [γ] = [ξ] ⇐⇒ there exists η ∈ H with γη = ξ

}
.

We can define a new groupoid by considering a left action of G on this quotient
space. Namely, we take

G � G/H :=
{
(ξ, [γ]) ∈ G × G/H : sG(ξ) = rG(γ)

}
,

where we have (G � G/H)(0) = G/H and

r(ξ, [γ]) = [ξγ], s(ξ, [γ]) = [γ],

(ξ, [γ])−1 = (ξ−1, [ξγ]), (ξ, [γ]) ◦ (η, [η−1γ]) = (ξη, [η−1γ]).

Furthermore, we can again use the 2-cocycle σ on G to define a 2-cocycle on
G � G/H,

σ((ξ, [γ]), (η, [η−1γ])) = σ(ξ, η).

The groupoid G naturally implements an equivalence between G �G/H and H
in the sense of [71]. Namely G is a free and proper left (G � G/H)-space and a
free and proper right H-space via the groupoid actions,

(ξ, [γ]) · η = ξη, s(ξ) = r(γ) = r(η), γ · η = γη, s(γ) = r(η).

In particular, Cc(G) can be completed into Morita equivalence bimod-
ules for both the full and reduced C∗-algebras of H and G � G/H [71,90]. If
the 2-cocycles on H and G � G/H are compatible (e.g. if both are inherited
from a fixed 2-cocycle on G), then the full twisted groupoid C∗-algebras are
Morita equivalent by [30, Theorem 9.1]. Morita equivalence was extended to
the reduced C∗-algebras of Fell bundles in [69,70,91], which includes twisted
reduced groupoid C∗-algebras (see [70, Proposition 6.2]). We briefly review
this construction for the special case in which we are working.

We define a left action of Cc(G � G/H, σ) on Cc(G, σ) (seen as a right
Cc(H, σ)-module) by the formula

(π(g)f)(γ) =
∑

ξ∈r−1(r(γ))

g(ξ, [ξ−1γ])f(ξ−1γ)σ(ξ, ξ−1γ),

g ∈ Cc(G � G/H, σ), f ∈ Cc(G, σ).

As we argue below, this action extends to an isomorphism

C∗
r (G � G/H, σ) �−→ K(EC∗

r (H,σ)),

to obtain the following result.

Proposition 1.12 ([70], Theorem 5.5, [90], Theorem 4.1, [91], Theorem 14). The
C∗-module EC∗

r (H,σ) is a Morita equivalence bimodule between the C∗-algebras
C∗

r (H, σ) and C∗
r (G � G/H, σ).
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This statement is derived from the proof in [90] with fairly minor alter-
ations. The more general Fell bundle setting requires more machinery, see [70,
91]. We define the linking groupoid as the topological disjoint union,

L = (G � G/H) � G � Gop � H

where Gop is the opposite groupoid Gop = {γ : γ ∈ G}, which we can
equip with a 2-cocycle σop(γ1, γ2) = σ(γ2, γ1). As the name suggests, L is
a groupoid with unit space G/H � H and source and range maps inherited
from the groupoid structure on its parts [90, Lemma 2.1]. We can consider the
twisted convolution algebra of L, with respect to the cocycle σ̂ : L → T which
coincides with the given cocycles on each of the components of the disjoint
union.

The algebraic machinery used in [72,90] also works in the twisted case
(see [79, Chapter II, Lemma 2.5] or [69, Chapter 5]), and the argument in [90]
follows through to obtain the result.

1.5. Exact Cocycles and Unbounded KK-Cycles

We now discuss the construction of KK-cycles from the data of a continuous
1-cocycle c : G → R

n which is exact in the sense of [65, Definition 3.3]. We will
assume G is étale, so that in this higher-dimensional setting exactness entails
that Ker(c) admits a Haar system and the map

r × c : G → G(0) × R
n, ξ �→ (r(ξ), c(ξ)),

is a quotient map onto its image.
Given H = Ker(c) a closed subgroupoid of G, we will construct a KK-

cycle from c supported on the module EC∗
r (H,σ) constructed in the previous

section. We use the representation of Cc(G, σ) on EC∗
r (H,σ) by left multiplica-

tion, π(f1)f2 = f1 ∗ f2 for f2 ∈ Cc(G, σ) ⊂ EC∗
r (H,σ). Again by [67, Theorem

1.4] this action extends to a representation of C∗
r (G, σ).

The components of the exact cocycle c : G → R
n give n real cocycles

ck(ξ) := (πk ◦ c)(ξ) by composition with the kth coordinate projection

πk : R
n → R, x = (x1, . . . , xn) �→ xk.

Following [79], C∗
r (G, σ) has n mutually commuting one-parameter groups of

automorphisms {u
(k)
t }n

k=1, which on Cc(G, σ) are given by

(u(k)
t f)(ξ) = eitck(ξ)f(ξ), t ∈ R

with ck = πk ◦ c as above. The generators of these automorphisms are deriva-
tions {∂j}n

j=1 on Cc(G, σ), where (∂jf)(ξ) = cj(ξ)f(ξ) (pointwise multiplica-
tion). We denote by Dcj

the extension of these derivations to an unbounded
operator on EC∗

r (H,σ).
We use this differential structure to define an unbounded operator that

plays the role of an elliptic differential operator. Our construction mimics the
construction of the elements α and β in [44, Section 5] and, as such, uses
the exterior algebra

∧∗
R

n. We briefly establish our Clifford algebra notation,
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where Clr,s is the (real) Z2-graded C∗-algebra generated by the mutually anti-
commuting odd elements {γj}r

j=1, {ρk}s
k=1 such that

(γj)2 = 1, (γj)∗ = γj , (ρk)2 = −1, (ρk)∗ = −ρk.

The exterior algebra
∧∗

R
n has representations of Cl0,n and Cln,0 with gen-

erators
ρj(ω) = ej ∧ ω − ι(ej)ω, γj(ω) = ej ∧ ω + ι(ej)ω,

where {ej}n
j=1 is the standard basis of R

n and ι(ν)ω is the contraction of ω

along ν. One readily checks that ρj and γj mutually anti-commute and gener-
ate representations of Cl0,n and Cln,0, respectively. An analogous construction
holds in the complex case where EndC(

∧∗
C

n) ∼= Cln⊗̂Cln, where the two rep-
resentations graded-commute.

Proposition 1.13. Let G be an étale groupoid and c : G → R
n an exact cocycle

with kernel H. The triple

nλc
H =

⎛

⎝Cc(G, σ)⊗̂Cl0,n, EC∗
r (H,σ)⊗̂

∧∗
R

n, Dc =
n∑

j=1

Dcj
⊗̂γj

⎞

⎠

is an unbounded real Kasparov module for (C∗
r (G, σ), C∗

r (H, σ)). If we use com-
plex algebras and

∧∗
C

n, the Kasparov module is complex.

Proof. The essential self-adjointness and regularity of D follow since the subset

Cc(G, σ)⊗̂
∧∗

R
n ⊂ EC∗

r (H,σ)⊗̂
∧∗

R
n,

is a core for D and D2 = c2⊗̂1∧∗
Rd with (c2f)(ξ) = (c1(ξ)2 + · · ·+cn(ξ)2)f(ξ).

Therefore, 1 + D2 has dense range. We note that in particular

(1 + D2)−1 = (1 + c2)−1⊗̂1∧∗
Rn .

Using exactness of c, the same argument as [65, Theorem 3.9] can now be
applied to show that (1 + D2)−1 is compact in EC∗

r (H). For f ∈ Cc(G, σ), a
simple computation using the regular representation gives that

[Dc, π(f)] =
n∑

j=1

[Dcj
, π(f)]⊗̂γj =

n∑

j=1

π(∂jf)⊗̂γj

which is adjointable as Cc(G, σ) is invariant under the derivations {∂j}n
j=1. �

We remark that there is additional structure on the KK-cycles con-
structed in Proposition 1.13. Namely, using the action of Spinn,0 or Spin0,n

on
∧∗

R
n defined in [44, §2.18] and using the notation from [44, §5], the un-

bounded KK-cycle nλc
H determines a class in the equivariant Kasparov group

KKOR
n

Spinn
(C∗

r (G, σ), C∗
r (H, σ)) or KKC

n

Spinn
(C∗

r (G, σ), C∗
r (H, σ)). We can then

restrict the C∗-module EC∗
r (H,σ)⊗̂

∧∗
R

n to the irreducible spinor represen-
tation space. By [44, §5, Lemma 1], this restriction gives an isomorphism of
KK-groups.

For concreteness, we write out the unbounded representatives of the
spinor Kasparov modules explicitly. Given n, we fix an irreducible complex
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or real representation space SC
n and Sn of C�n and Cln,0 respectively. We

also set Kn = R, C or H to be the maximal commuting subalgebra for the
irreducible real representation of Cln,0 on Sn (see [61, Chapter I, §5]).

Proposition 1.14. Let G be an étale groupoid and c : G → R
n an exact cocycle

and H := Ker(c). Then the triple

nλSC

H =

⎛

⎝Cc(G, σ), EC∗
r (H,σ)⊗̂SC

n ,

n∑

j=1

Dcj
⊗̂γj

⎞

⎠

is a complex Kasparov module of parity n mod 2.
Let Sn be an irreducible representation space of Cln,0. If n �≡ 1mod 4,

then

nλS
H =

⎛

⎝Cc(G, σ),
(
E⊗̂Sn

)
C∗

r (H,σ)⊗̂Kn
,

n∑

j=1

Dcj
⊗̂γj

⎞

⎠ ,

Kn =

⎧
⎪⎨

⎪⎩

R, n = 0, 2 mod 8,

C, n = 3 mod 4,
H, n = 4, 6 mod 8

is a real graded unbounded Kasparov module. If n ≡ 1mod 4, then

nλS
H =

⎛

⎝Cc(G, σ)⊗̂Cl0,1,

(
EC∗

r (H,σ) ⊗ Sn

EC∗
r (H,σ) ⊗ Sn

)

Kn

,

⎛

⎝
n∑

j=1

Dcj
⊗ γj

⎞

⎠ ⊗̂σ1

⎞

⎠ ,

Kn =

{
R, n = 1mod 8,
H, n = 5mod 8

is an unbounded Kasparov module, where the left action of Cl0,1 is generated

by
(

0 −1
1 0

)
.

The spinor Kasparov modules have the advantage that the left alge-
bra is no longer graded, which is useful if we wish to apply the local index
formula (for complex semifinite spectral triples constructed from nλSC

H ). We
will predominantly work with the ‘oriented’ Kasparov module nλc

H and class
[nλc

H] ∈ KKn(C∗
r (G, σ), C∗

r (H, σ)) (real or complex) as the representations are
more tractable and we can work in the real or complex category interchange-
ably. Though we emphasise that at the level of K-groups (and up to a possible
normalisation), there is no loss of information working with either the spin or
oriented KK-cycles.

1.6. The Extension Class of an R-Valued Cocycle

Consider the Kasparov module from Proposition 1.13. In case n = 1 we obtain
an ungraded Kasparov module to which we can associate an extension of C∗-
algebras with positive semisplitting.
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In this section we fix ε > 0 and a continuous non-decreasing function
χ+ : R → R satisfying

χ+(x) :=
{

0 if x ≤ −ε
1 if x ≥ 0.

Lemma 1.15. The operator

Πc : Cc(G, σ) → Cc(G, σ), Πcf(η) := χ+(c(η))f(η),

extends to a self-adjoint operator Πc ∈ End∗
C∗

r (H,σ)(E) with ‖Πc‖ ≤ 1. For all
f ∈ Cc(G, σ) it holds that π(f)(Π2

c − Πc) ∈ K(E).

Proof. The operator Dc is self-adjoint and regular in EC∗
r (H,σ) and Πc :=

χ+(D) as defined by the continuous functional calculus. It follows that Πc is
a self-adjoint operator on EC∗

r (H,σ).
The action of Π2

c − Πc is implemented by the function Kc ∈ Cc(G �

G/H, σ)

Kc(ξ, [η]) = (χc(c(η))2 − χc(c(η)))f(ξ),

and thus defines a compact operator. �

The same argument as the proof of Lemma 1.15 shows that the (un-
graded) Kasparov module (C∗

r (G, σ), EC∗
r (H,σ), 2Πc − 1) represents the same

class in KKO1(C∗
r (G, σ), C∗

r (H, σ)) (or complex) as the bounded representa-
tive of

(
Cc(G, σ)⊗̂Cl0,1, EC∗

r (H,σ)⊗̂
∧∗

R,Dc⊗̂γ1
)
.

In order to construct an extension of C∗
r (G, σ) by C∗

r (G � G/H), which
is Morita equivalent to C∗

r (H, σ), we need to consider the Busby invariant. To
this end, we first note the following result on étale groupoids.

Proposition 1.16 ([79], Chapter II, Proposition 4.2 and [89], Proposition 3.3.3).
Let G be an étale groupoid with a fixed 2-cocycle σ. The identity map Cc(G, σ) →
Cc(G, σ) extends to a continuous injection j : C∗

r (G, σ) → C0(G). For a ∈
C∗

r (G) the map j is given by

jG(a)(η) :=
(
π(a)δs(η) | δη

)
C0(G(0))

(r(η)), (2)

where δη ∈ Cc(G, σ) is any function for which

r : supp (δη) → r(supp (δη)), s : supp (δη) → s(supp (δη)),

are homeomorphisms and δη(η) = 1 on a neighbourhood of η.

Definition 1.17. Let c : G → R be a continuous cocycle. We say that c is r-
unbounded if for all x ∈ G(0) and all M > 0 there exists η ∈ r−1(x) for which
c(η) > M .

Recall that the Calkin algebra of a C∗-module E over a C∗-algebra B
is the quotient Q(EB) := End∗

B(E)/K(EB). We denote by q : End∗
B(E) →

Q(EB) the quotient map. Lastly, we denote by M(B) the multiplier algebra
of B.
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Proposition 1.18. Let c : G → R be an exact cocycle on a Hausdorff étale
groupoid G, H = Ker(c) and σ a 2-cocycle on G. If c is r-unbounded, then the
∗-homomorphism

ϕ : C∗
r (G, σ) → Q(EC∗

r (H,σ)), ϕ(a) = q(ΠcaΠc)

is injective.

Proof. Using Proposition 1.16, we can view elements of C∗
r (G � G/H, σ) as

C0-functions on G � G/H. Let E = EC∗
r (H,σ) and F = FG/H the C∗-module

over the unit space of G � G/H. Then

End∗
C∗

r (H,σ)(E) = M
(
K(EC∗

r (H,σ))
)

= M(C∗
r (G � G/H, σ)).

Since the representation of C∗
r (G � G/H, σ) on F is essential, we see that

End∗
C∗

r (H,σ)(E) acts on F . Thus, if j = jG�G/H and T ∈ End∗
C∗

r (H,σ)(E), then
formula (2) defines a continuous function j(T ) : G � G/H → C. The functions
δ(ξ,[η]) can be chosen so that ‖δ(ξ,[η])‖F ≤ 1, so we obtain the pointwise estimate

|j(T )(ξ, [η])| =
∣
∣(π(T )δ[η] | δ(ξ,[η]))C0(G/H)([ξη])

∣
∣≤

∥
∥(π(T )δ[η] | δ(ξ,[η]))

∥
∥

C0(G/H)

≤ ‖T‖End∗
C∗

r (H,σ)(E) ‖δ[η]‖F ‖δ(ξ,[η])‖F ≤ ‖T‖.

In particular, if Tn → T in norm in End∗
C∗

r (H,σ)(E) then j(Tn) → j(T ) point-
wise on G � G/H.

Suppose that a �= 0 ∈ C∗
r (G, σ) and choose ξ ∈ G with |j(a)(ξ)| ≥ 3δ > 0.

Choose f ∈ Cc(G, σ) with ‖f − a‖C∗
r (G,σ) < δ and |f(ξ)| ≥ 2δ. Then for every

(ξ, [η]) ∈ G � G/H it holds that

|j(Πc(f − a)Πc)(ξ, [η])| ≤ ‖Πc(f − a)Πc‖ ≤ ‖f − a‖ < δ.

For f ∈ Cc(G) it holds that

j(ΠcfΠc)(ξ, [η]) = χ+(c(ξη))χ+(c(η))f(ξ).

Thus, for all [η] = (r(η), c(η)) satisfying c(η) ≥ max{0,−c(ξ)} we estimate
∣
∣j(ΠcaΠc)(ξ, [η])

∣
∣ ≥

∣
∣j(ΠcfΠc)(ξ, η)

∣
∣ −

∣
∣j(Πc(f − a)Πc)(ξ, [η])

∣
∣

= |f(ξ)| − |(j(Πc(f − a)Πc)(ξ, [η])|
≥ |f(ξ)| − ‖Πc(f − a)Πc‖
≥ |f(ξ)| − ‖f − a‖ > δ.

Since c is exact, there is a homeomorphism

G/H → {(r(ξ), c(ξ)) : ξ ∈ G} ⊂ G(0) × R,

where the latter set carries the relative topology. Since c is r-unbounded, for
fixed ξ there is a non-compact set of pairs (ξ, [η]) ∈ G � G/H with |j(ΠcaΠc)
(ξ, [η])| > δ. Therefore, j(ΠcaΠc) /∈ C0(G � G/H) and

ΠcaΠc /∈ C∗
r (G � G/H, σ) = KC∗

r (H,σ)(E).

This is equivalent to the statement that the map

ϕ : C∗
r (G, σ) → Q(EC∗

r (H,σ)), ϕ(a) = q(ΠcaΠc),

is injective. �
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Using the isomorphism K(EC∗
r (H,σ)) ∼= C∗

r (G�G/H, σ) and the injectivity
of ϕ, we construct the generalised Toeplitz extension

0 → C∗
r (G � G/H, σ) → C∗(ΠcC

∗
r (G, σ)Πc, C

∗
r (G � G/H, σ)) → C∗

r (G, σ) → 0

with completely positive semisplitting a �→ ΠcaΠc and Busby invariant ϕ. The
algebra

T = C∗(ΠcC
∗
r (G, σ)Πc, C

∗
r (G � G/H, σ))

is represented on ΠcEC∗(H,σ).

2. Delone Sets and the Transversal Groupoid

We briefly summarise the construction of a groupoid of an aperiodic hull. Re-
sults and further details can be found in [2,12,14,47,48,50]. We most closely
follow the perspective of [12,14] and construct a dynamical system and
transversal groupoid from the topology of point measures in R

d.

2.1. Delone Dynamical Systems

Definition 2.1. Let L ⊂ R
d be discrete and infinite and fix 0 < r < R.

(1) L is r-uniformly discrete if |B(x; r) ∩ L| ≤ 1 for all x ∈ R
d.

(2) L is R-relatively dense if |B(x;R) ∩ L| ≥ 1 for all x ∈ R
d.

An r-uniformly discrete and R-relatively dense set L is called an (r,R)-Delone
set.

We will occasionally want extra structure on our Delone set.

Definition 2.2. Let L ⊂ R
d be discrete and infinite.

(1) A patch of radius R > 0 of L is a subset of R
d of the form (L−x)∩B(0;R),

for some x ∈ L. If for all R > 0 the set of its patches of radius R is finite,
then L has finite local complexity.

(2) We call L repetitive if given any finite subset p ⊂ L and ε > 0, there is
an R > 0 such that in any ball B(x;R) there is a subset p′ ⊂ L∩B(x;R)
that is a translation of p within the distance ε; that is, there is an a ∈ R

d

such that the Hausdorff distance between p′ and p + a is less that ε.
(3) We call L aperiodic if there is no x �= 0 ∈ R

d such that L − x = L.

There is an equivalence between discrete sets and point measures in R
d.

Let M(Rd) denote the space of measures on R
d and consider

QD(Rd) = {ν ∈ M(Rd) : ∀x ∈ R
d, ν is pure point and ν({x}) ∈ N},

UDr(Rd) = {ν ∈ QD(Rd) : ∀x ∈ R
d, ν(B(x; r)) ≤ 1}.

For ν ∈ QD(Rd), L(ν) = supp(ν) is discrete. Similarly for a discrete set L, we
can define a measure δL =

∑
x∈L δx ∈ QD(Rd), where δx is the point measure.

We can also relate measures and Delone sets.

Proposition 2.3. Let ν ∈ UDr(Rd) be a measure such that for all x ∈ R
d,

ν(B(x;R)) ≥ 1. Then L(ν) is an (r,R)-Delone set.
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As M(Rd) is a subspace of Cc(Rd)∗, it can be given the weak ∗-topology.

Proposition 2.4 ([14], Theorem 1.5). The set UDr(Rd) is a compact subspace
of M(Rd).

Proposition 2.5 (cf. [59], Sect. 3, [33], Chapter 1). The set of (r,R)-Delone
sets, Del(r,R), is a compact and metrizable space. Let dH denote the Hausdorff
distance between sets. A neighbourhood base at ω ∈ Del(r,R) is given by the
sets

Uε,M (ω) =
{
η ∈ Del(r,R) : dH

(
L(ω) ∩ B(0;M), L(η) ∩ B(0;M)

)
< ε

}

with M, ε > 0.

The translation action on R
d gives an action on Cc(Rd) and thus an

action on UDr(Rd), where

(Taν)(f) = ν(T−af), (T−af)(x) = f(x − a), f ∈ Cc(Rd).

As expected, the R
d-action on UDr(Rd) induces an R

d-action on the discrete
lattices L(ν) by translation, Ta(L(ν)) = L(ν) + a.

Definition 2.6 (cf. [10], Sect. 2, [14], Definition 1.7). Let L be a uniformly
discrete subset of R

d. The continuous hull of L is the dynamical system
(ΩL, Rd, T ), where ΩL is the closure of the orbit of ν ∈ UDr(Rd) such that
supp(ν) = L.

We note that ΩL is compact by Proposition 2.4. The translation action on
UDr(Rd) gives the family of homeomorphisms {Ta}a∈Rd on ΩL. Thus, start-
ing from a Delone set L, we may associate with it a continuous topological
dynamical system (ΩL, T, Rd). This dynamical system is minimal if and only
if the lattice L is repetitive [14, Theorem 2.13].

Example 2.7. Let L be a periodic and cocompact group G, then it is immediate
that ΩL ∼= R

d/G. This is the classical picture with no aperiodicity or disorder
on our lattice. We can use Rieffel induction on the C∗-dynamical system to
simplify the crossed product algebra

C(ΩL) � R
d ∼= C(Rd/G) � R

d ∼= C∗(G) ⊗ K,

which then implies that, for L = Z
d, K∗(C(ΩL) � R

d) ∼= K−∗(Td). Consid-
ering applications to topological phases, we see that for periodic lattices the
dynamics of the hull reproduces the K-theoretic topological phase of the Bloch
bundle over the Brillouin torus.

There is a loose equivalence between Delone sets and tilings of R
d, where

much of the terminology we use was originally formulated [2,33,47,50].

Definition 2.8. A tile of R
d is a compact subset of R

d that is homeomorphic
to the closed unit ball. A tiling of R

d is a covering of R
d by a family of tiles

whose interiors are pairwise disjoint.

Given a tiling T with a uniform minimum and maximum bound on the
radius of each tile, we can choose a point from the interior of every tile to
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obtain a Delone set LT . There is also an explicit passage from Delone sets to
tilings via the Voronoi tiling.

Definition 2.9. Let L be an (r,R)-Delone set in R
d. The Voronoi tile around

a point x ∈ L is the set

Vx =
{
y ∈ R

d : ‖y − x‖ ≤ ‖y − x′‖ for all x′ ∈ L
}
.

The Voronoi tiling V associated with L is the family {Vx}x∈L.

Remark 2.10 (A note on topologies). Given a Delone set, one may instead
consider the corresponding Voronoi tiling. If each tile in the Voronoi tiling
comes from a finite collection of prototiles, there is a canonical tiling space
with tiling metric (cf. [84, Chapter 1]). The topology of the tiling space is
strictly finer than the topology coming from the weak-∗ topology on the space
of Delone sets. However, if the Delone set is repetitive and has finite local
complexity, then the topologies are equivalent, see [12, Section 2] and [50].

We will mostly work under the assumption that L is (r,R)-Delone only.
Therefore, if one wishes to apply our work to tilings, one should also assume
that L is repetitive and has finite local complexity.

2.2. The Transversal Groupoid

The notion of an abstract transversal in a groupoid allows one to replace a
topological groupoid by a smaller subgroupoid, up to Morita equivalence.

Definition 2.11. A topological groupoid F admits an abstract transversal if
there is a closed subset X ⊂ F (0) such that
(1) X meets every orbit of the F-action on F (0);
(2) for the relative topologies on X and

FX := {ξ ∈ F : r(ξ) ∈ X} ⊂ F ,

the restrictions r : FX → X and s : FX → F (0) are open maps for the
relative topologies on FX and X.

The set G := FX ∩ F−1
X is a closed subgroupoid and FX is a groupoid

equivalence between F and G (with its relative topology), see [71, Example
2.7]. Abstract transversals were studied more generally in [75, Section 3]. We
will describe an abstract transversal G ⊂ ΩL �R

d which is Hausdorff and étale
in the relative topology.

Definition 2.12. The transversal of a lattice L is given by the set

Ω0 = {ω ∈ ΩL : 0 ∈ L(ω)},

We see that Ω0 is a closed subset of ΩL and so is compact by Proposition
2.4.

Proposition 2.13 ([14], Proposition 2.3, [12], Proposition 2.24). Let L be a
Delone set.
(1) If L has finite local complexity, then Ω0 is totally disconnected.
(2) If L is repetitive, aperiodic and of finite local complexity, then Ω0 is a

Cantor set (totally disconnected with no isolated points).



1988 C. Bourne, B. Mesland Ann. Henri Poincaré

The passage from the continuous hull ΩL to the transversal Ω0 discretises
the R

d-action at the cost that we no longer have a group action, but only a
groupoid structure.

Proposition 2.14 ([10], Sect. 3, [48], Lemma 2). Given a Delone set L with
transversal Ω0, define the set

G :=
{
(ω, x) ∈ Ω0 × R

d : T−xω ∈ Ω0

}
=

{
(ω, x) ∈ Ω0 × R

d : x ∈ L(ω)
}
.

Then G is a Hausdorff étale groupoid with maps

(ω, x)−1 = (T−xω,−x), (ω, x) · (T−xω, y) = (ω, x + y),

s(ω, x) = T−xω, r(ω, x) = ω (3)

and unit space G(0) = Ω0.

The transversal groupoid G and its corresponding (twisted) C∗-algebra
will be our central object of study. The space Ω0 is an abstract transversal in
the sense of Definition 2.11, so that G ⊂ Ω0 × R

d with its subspace topology
is Morita equivalent to ΩL � R

d. This result is well known to experts, see [33,
Chapter 2, Section 2] for the case of tilings. We find it worthwhile to give a
detailed proof in the Delone lattice setting. To this end, we first make the
following observation.

Lemma 2.15. Let 0 < ε < r/2. For any ω ∈ Ω0, the intersection L(ω) ∩B(y; ε)
contains at most one point.

Proof. Suppose that the intersection is non-empty and x1, x2 ∈ L(ω) ∩B(y; ε).
Then d(x1, x2) < 2ε < r so it must hold that x1 = x2. �

For μ ∈ R>0 we denote by

Pμ := {L(ω) ∩ B(0;μ) : ω ∈ Ω0},

the set of patterns of radius μ. The sets

Up,μ := {ω ∈ ΩL : 0 ∈ L(ω),L(ω) ∩ B(0;μ) = p} ⊂ Ω0, μ ∈ R>0, p ∈ Pμ,

define the relative topology on the closed subset Ω0 := {ω ∈ ΩL : 0 ∈ L(ω)}.
In case L has finite local complexity each set Pμ is finite and the clopen sets
Up,μ determine the totally disconnected topology on Ω0. We now provide the
proof that Ω0 is indeed an abstract transversal.

Proposition 2.16. Let L ⊂ R
d be a uniformly r-discrete subset with transversal

Ω0 and associated groupoid G. For U ⊂ Ω0 an open set, the sets

V(U,y,ε) := (U × B(y; ε)) ∩ G
= {(ω, x) ∈ Ω0 × R

d : ω ∈ U, x ∈ L(ω) ∩ B(y; ε)},

form a base for the topology on G. For 0 < ε < r/2, the restriction s : V(U,y,ε) →
Ω0 is a homeomorphism onto its image. Moreover, the restrictions

s : ΩL � R
d ∩ r−1(Ω0) → ΩL, r : ΩL � R

d ∩ r−1(Ω0) → Ω0,

are open maps. Therefore, the set Ω0 is an abstract transversal and the groupoid
G ⊂ ΩL � R

d, with the subspace topology, is Morita equivalent to ΩL � R
d.
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Proof. The sets V(U,y,ε) generate the relative topology on G as a subset of the
crossed product groupoid ΩL�R

d of the hull of L. To see that each of the basic
sets is an s-set, we adapt the proof of [12, Lemma 2.10]. The map s is injective
on V(U,y,ε), for (ω, x), (η, z) ∈ V(p,μ,y,ε) the equality T−xω = T−zη implies that
ω = Tx−zη, and x − z ∈ L(ω). Now x, z ∈ B(y; ε) so d(x, z) < 2ε < r, and
thus, x = z because L(ω) is r-discrete. It then follows that ω = η as well. Now
consider s : (ω, x) �→ T−xω and the image

s
(
V(U,y,ε)

)
= {ω ∈ Ω0 : ∃x ∈ B(y; ε), Txω ∈ U}
= {ω ∈ Ω0 : ∃x ∈ B(0; ε), Tx+yω ∈ U}
= Ω0 ∩ T−y ({ω ∈ Ω0 : ∃x ∈ B(0; ε), Txω ∈ U})

= Ω0 ∩ T−y (s(U × B(0; ε))) ,

with s(ω, x) = φ(ω,−x) and φ as in [12, Lemma 2.10], and by that result
the map s is a homeomorphism onto its image. Thus, since y is fixed, the set
s
(
V(U,y,ε)

)
is open in Ω0. Now ω ∈ s

(
V(U,y,ε)

)
implies that B(−y; ε)∩L(ω) �= ∅

and thus contains a unique point x−y
ω . The map

ty : s
(
V(U,y,ε)

)
→ V(U,y,ε), ω �→ (T−x−y

ω
ω,−x−y

ω ),

is an inverse for s: If ω = T−xη with {x} = B(y; ε) ∩ L(η) then

x−y
ω = x−y

T−xη = B(−y; ε) ∩ L(T−xη) = −x,

and so indeed

ty ◦ s(η, x) = sy(ω) = (Txω, x) = (η, x).

The points xy
ω satisfy the equality xy

ω = y + x0
T−yω, and thus, the map ty

can be written

ty(ω) = (T−x−y
ω

ω,−x−y
ω ) = (TyT−x0

Tyω
ω, y − x0

Tyω) = (Ty × Ty) ◦ t0 ◦ Ty(ω).

The map t0 is continuous by [12, Lemma 2.10] and y is fixed, proving continuity
of ty.
We now proceed to show the maps s, r are open when restricted to r−1(Ω0).
As above we have

s(U × B(y; ε) ∩ r−1(Ω0)) = {T−x(ω) : ω ∈ U ∩ Ω0, x ∈ B(y; ε) ∩ L(η)},

and to prove that the map s|r−1(Ω0) is open we may restrict ourselves to sets
U = Uδ,M (ω)∩Ω0 and M sufficiently large, δ sufficiently small. It then suffices
to show that the set s(U × B(y; ε) ∩ r−1(Ω0)) contains a basic open neigh-
bourhood of any of its elements T−x(ω). Let δ < ε < r/2 and M > δ. Then if
η ∈ ΩL is such that

dH(B(0;M + ‖y‖ + r) ∩ L(T−xω), B(0;M + ‖y‖ + r) ∩ L(η)) < δ/2,

we have that −x ∈ L(T−xω) ∩B(0;M +‖y‖+r). By definition of the Hausdorff
distance, we have

inf
w∈B(0;M+‖y‖)∩L(η)

‖w + x‖ < δ/2,
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and since the sets involved are discrete, there exists a point w ∈ L(η) with
‖w + x‖ ≤ δ/2. Moreover, if δ < r then this point w is unique because L(η) is
r-discrete. Then for z ∈ B(0;M) ∩ L(ω) and v ∈ B(0;M) ∩ L(T−xη) we have

(z − w) ∈ B(0;M + ‖y‖ + r) ∩ L(T−xω), (v + x) ∈ B(0;M + ‖y‖ + r) ∩ L(η),

from which we deduce

‖z − v‖ ≤ ‖(v + x) − (z − w)‖ + ‖x + w‖ < δ,

and therefore it follows that

dH(B(0;M) ∩ L(ω), B(0;M) ∩ L(T−wη)) < δ.

Since ‖w + y‖ ≤ ‖w + x‖ + ‖x − y‖ < δ < ε, it holds that (T−wη,−w) ∈
U × B(y, ε) and 0 ∈ T−wη. Therefore, η ∈ s((U × B(y, ε)) ∩ r−1(Ω0)) and
s : r−1(Ω0) → ΩL is an open map. The statement that r is an open map is
immediate because Ω0 carries the relative topology inherited from ΩL. This
completes the proof. �

From this, we derive several structure statements for the groupoid G.

Proposition 2.17. For any 1 ≤ k ≤ d the groupoid cocycles

ĉk := (c1, . . . , ck) : (ω, x) �→ (x1, . . . , xk),

are exact in the sense of [65, Definition 3.3].

Proof. The subspace topology on G has a base consisting of the sets
(
U(p,μ) × B(y; ε)

)
∩ G = {(ω, x) ∈ Ω0 × R

d : L(ω) ∩ B(0;μ) = p,

x ∈ L(ω) ∩ B(y; ε)},

with μ ∈ [0,∞), p ∈ Pμ, y ∈ R
d and 0 < ε < r/2. For (ω, x) ∈ G, choose

μ > ‖x‖+r/2 and let p := L(ω)∩B(0;μ). Consider (η, z) ∈ (Up,μ×B(x; ε))∩G.
Then it holds that ‖z − x‖ < ε < r/2 and

z, x ∈ L(η) ∩ B(0, μ) = L(ω) ∩ B(0, μ),

from which we conclude that z = x. In particular, each ĉk is locally constant
and ĉ−1

k (0) is a clopen subgroupoid. Since G is étale, counting measures define
a Haar system on ĉ−1

k (0). Exactness of the cocycles ĉk entails that the map
(ω, x) �→ (ω, ĉk(x)) = (ω, x1, . . . , xk) is a complete quotient map onto its image.
This map is equal to the restriction of the map id × πk to G, with πk : R

d →
R

k the projection onto the first k coordinates, which is a complete quotient
map. �

Note that the above proof applies to any cocycle c : G → R
k that factors

through the cocycle ĉd : G → R
d. Now that we have characterised the étale

topology on G, we recall the constructions in Sect. 1 and consider an s-cover
for G (Definition 1.8), which will then give a frame for the C∗-module over
the unit space, which we denote EC(Ω0). We fix a choice of 0 < ε < r/2 and
a countable set of points Y ⊂ R

d for which B(y; ε) form an open cover of R
d.

Note that we can choose the set Y = λZ
d with λ > 0 sufficiently small, which

is convenient but not necessary.
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Proposition 2.18. Let L ⊂ R
d be a uniformly discrete subset, G the associated

groupoid and EC(Ω0) the C∗-module over the unit space. For any 0 < ε < r/2
and any countable cover {B(y; ε)}y∈Y the open sets

Vy := V(0,0,y,ε) = {(ω, x) ∈ Ω0 × R
d : x ∈ L(ω) ∩ B(y; ε)},

form an s-cover for G. Any partition of unity χy subordinate to the cover
{B(y; ε)}y∈Y of R

d can be lifted to a partition of unity subordinate to the
cover Vy of G via χy(ω, x) = χy(x). Consequently, the functions χy : G → R

define a frame for EC(Ω0).

Proof. The sets Vy form an open cover of G because each (ω, x) ∈ G is an
element of Vy whenever x ∈ B(y; ε) and such y exists because B(y; ε) form an
open cover. Moreover, each of the Vy is an s-set by Lemma 2.16. The functions
χy define a frame by Proposition 1.11. �

2.3. The Twisted Groupoid Algebra and Its K-theory

Given our transversal groupoid, we fix a normalised 2-cocycle σ : G(2) → T

(or {± 1} in the real case). Our central motivation for working with twisted
groupoid algebras comes from the following example.

Example 2.19 (Magnetic twists). For the transversal groupoid, we can encode
the action of a magnetic field that twists the translation action of the lattice.
Working first with the continuous hull ΩL �R

d, we follow [15, Section 2.2] and
define a 2-cocycle,

σ : R
d × R

d → U(C(ΩL)), σ(x, y) = exp
(

− iΓ〈0, x, x + y〉
)

where Γ〈0, x, x + y〉 is the magnetic flux through the triangle defined by the
points 0, x, x + y ∈ R

d. The magnetic field need not be constant over C(ΩL)
and can generally be described by a continuous map B : ΩL →

∧2
R

d, where
Γ〈x, y, z〉 =

∫
〈x,y,z〉Bω and 〈x, y, z〉 ⊂ R

2d is the triangle with corners x, y, z ∈
R

d. If the magnetic field is constant over ΩL, then our general flux equation
can be simplified by a skew-symmetric matrix B with

σ(x, y) = exp(−i〈x,B(x + y)〉) = exp(−i〈x,By〉).

Our choice of 2-cocycle on the crossed product C(ΩL) �σ R
d restricts to

a 2-cocycle on the transversal groupoid, which we also denote by σ. Namely,
we define

σ((ω, x), (T−xω, y)) = exp(−iΓL(ω)〈0, x, x + y〉)

where ΓL(ω)〈0, x, x + y〉 is the magnetic flux through the triangle defined by
the points 0, x, x + y ∈ L(ω). We note that our twist will always be trivial for
d = 1 and is normalised because

σ((ω, x), (T−x,−x)) = exp(−iΓL(ω)〈0, x, 0〉) = 1.

The cocycle condition on σ translates into the condition that for x, x + y, x +
y + z ∈ L(ω),
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ΓL(ω)〈0, x, x + y〉 + ΓL(ω)〈0, x + y, x + y + z〉
= ΓL(ω)〈0, x, x + y + z〉 + ΓL(T−xω)〈0, y, y + z〉,

which follows from Stokes’ Theorem and the observation that

ΓL(T−xω)〈0, y, y + z〉 = ΓL(ω)〈x, x + y, x + y + z〉.
Given our groupoid G and cocycle σ, we can construct the groupoid C∗-

algebra by the method given in Sect. 1.3, acting on the C∗-module over the
unit space. The K-theory of the twisted groupoid algebra is used to describe
topological phases of gapped Hamiltonians, which we will then pair with KK-
cycles to obtain numerical labels for these phases. In the absence of a 2-cocycle
twist, the continuous dynamical system (ΩL, T, Rd) can be described via the
crossed product groupoid ΩL � R

d, which is then groupoid equivalent to G.
Applying the equivalence theorem of [71,90] and the Connes–Thom isomor-
phism [27],

K∗(C∗
r (G)) ∼= K∗(C(ΩL) � R

d) ∼= K∗−d(C(ΩL)) ∼= Kd−∗(ΩL),

in both real and complex K-theory. This result remains true for twists by
2-cocycles.

Proposition 2.20. Let L be a Delone set and σ :
(
ΩL � R

d
)(2) → T (or {± 1}

in the real case) a continuous 2-cocycle. Then the twisted groupoid C∗-algebra
C∗(G, σ) is Morita equivalent to the twisted crossed product C(ΩL) �σ R

d and
there is an isomorphism K∗(C∗

r (G, σ)) → Kd−∗(ΩL).

Proof. As the 2-cocycle on G comes from the restriction of a 2-cocycle on
ΩL � R

d, we can apply [30, Theorem 9.1], which gives that C∗
r (G, σ) is Morita

equivalent to the twisted crossed product C(ΩL) �σ R
d. Then, by Packer–

Raeburn stabilisation, [73, Section 3], and the Connes–Thom isomorphism, we
obtain that

K∗(C∗
r (G, σ)) ∼= K∗(C(ΩL) �σ R

d) ∼= K∗((C(ΩL) ⊗ K) � R
d)

∼= K∗−d(C(ΩL) ⊗ K) ∼= Kd−∗(ΩL).

Hence, the K-theory of the twisted groupoid C∗-algebra reduces to that of the
continuous hull ΩL. �

Let us emphasise that the computation of the K-theory of ΩL is highly
non-trivial. A homological description of the K-theory of ΩL for a large class
of tilings with finite local complexity is given in [33] as well as computational
techniques. See also the review [43]. In the case that L is repetitive, aperi-
odic and has finite local complexity, one can characterise ΩL as a projective
limit [2,12,50] and compute its K-theory using the Pimsner–Voiculescu spec-
tral sequence [87] (adapted from the spectral sequence used by Kasparov [45,
§6.10]), whose E2-page is isomorphic to the Čech cohomology of ΩL with inte-
ger coefficients. In the case of low-dimensional substitution tilings with finite
local complexity and a primitive and injective substitution map, Gonçalves–
Ramirez–Solano relate the Čech cohomology of ΩL to the K-theory of the
groupoid C∗-algebra of the unstable equivalence relation on ΩL (note that
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this groupoid C∗-algebra is Morita equivalent to C∗
r (G)) [39, Theorem 2.3].

See [39] for a detailed exposition on these (and other) matters.
In contrast to ΩL, the K-theory of the transversal Ω0 is often very simple

to compute. If L is a Delone set with finite local complexity, then by Propo-
sition 2.13 Ω0 is totally disconnected and, by continuity of the K-functor,
K∗(C(Ω0)) ∼= C(Ω0,K∗(F)), where F = C or R.

2.3.1. The Bulk KK-Cycle. We now introduce our main tool to extract nu-
merical invariants from K∗(C∗

r (G, σ)) (see Sect. 6). The transversal groupoid
G is étale, and the cocycles ĉk : G → R

k, ĉk(ω, x) = (x1, . . . , xk) are exact by
Proposition 2.17. Hence, we can construct a family of unbounded KK-cycles
for G by Proposition 1.13.

We call the special case c(ω, x) := ĉd(ω, x) = x, where Ker(c) ∼= G(0) ∼=
Ω0, the bulk KK-cycle as it spans all dimensions of the lattice, where the
terminology is taken from topological phases. Explicitly,

dλΩ0 =

⎛

⎝Cc(G, σ)⊗̂Cl0,d, EC(Ω0)⊗̂
∧∗

R
d,

d∑

j=1

Xj⊗̂γj

⎞

⎠ , (4)

is an unbounded Kasparov module, with Xj the self-adjoint regular operator
(Xjf)(ω, x) = xjf(ω, x) on EC(Ω0). We will consider other unbounded KK-
cycles from cocycles on G and their properties in Sect. 3.

2.4. One-Dimensional Delone Sets as Cuntz–Pimsner Algebras

Given an (r,R)-Delone set L ⊂ R
d, we have constructed the groupoid G and

a class in KKd(C∗
r (G, σ), C(Ω0)) that encodes the translation action on the

transversal. For the case d = 1 and trivial cocycle σ = 1, we now give an equiv-
alent description of C∗

r (G) as a Cuntz–Pimsner algebra. We also find that the
Kasparov cycle from Eq. (4) is equivalent to the class of the defining exten-
sion of the Cuntz–Pimsner algebra. We remark that a similar construction is
done in [95] that includes higher dimensions but for more restrictive substitu-
tion tilings. Here we leave open the question of higher dimensions where, in
analogy with crossed products by Z

d, a description of C∗(G, σ) as an iterated
Cuntz–Pimsner algebra or C∗-algebra of a product system [92] is a natural
aim.

In the case d = 1, recall the cocycle c(ω, x) = x ∈ R and write

G(0) = G0 := c−1(0), G1 := c−1(r,R), G−1 := c−1(−R,− r).

Lemma 2.21. Let (ω, x) ∈ G and x > 0. There exist (ωj , xj) ∈ G1, j = 1, . . . n
such that

(ω, x) =
n∏

j=1

(ωj , xj),

and this decomposition is unique. A similar statement holds for (ω, x) with
x < 0 where we replace G1 with G−1.



1994 C. Bourne, B. Mesland Ann. Henri Poincaré

Proof. The lattice L(ω) ⊂ R is discrete, so we can order it as

L(ω) = {yn}n∈Z, y0 = 0, yj < yj+1, r < yj+1 − yj < R. (5)

Then (ω, x) = (ω, yn) for some n and we set

ωj := T−xj−1ω, xj := yj − yj−1.

It follows that

(ω, x) = (ω, yn) = (ω, y1) · (T−y1ω, y2 − y1) · · · (T−yn−1ω, yn − yn−1)

=
n∏

j=1

(ωj , xj),

as claimed. Suppose that

(ω, x) =
m∏

j=1

(ηj , zj),

is another such decomposition and assume without loss of generality that m ≥
n. Then η1 = ω1 = ω. Since z1, x1 ∈ L(ω) ∩ (r,R), it follows that z1 = x1. This
argument can be repeated to find ηj = ωj and xj = zj for 1 ≤ j ≤ n, so the
decompositions are the same if m = n. If m > n, then

(ηn+1, 0) = (ηn+1, zn+1) · · · (ηm, zm) = (ηn+1, zn+1 + · · · + zm),

so 0 < zn+1 + · · · + zm = 0, a contradiction. �

The previous result indicates that the one-dimensional transversal grou-
poid is in some sense generated by G1 = c−1(r,R). This then gives us a path-
way to recharacterise C∗

r (G) as a Cuntz–Pimsner algebra. The following result
comes from standard arguments.

Lemma 2.22. Suppose d = 1 and let E
(r,R)
C(Ω0)

be the completion of Cc(G1) in

C∗
r (G). Then E

(r,R)
C(Ω0)

is a C∗-bimodule over C(Ω0) with structure

(f1 | f2)C(Ω0)(ω) = (f∗
1 ∗ f2)(ω, 0), C(Ω0)(f1 | f2)(ω)=(f1 ∗ f∗

2 )(ω, 0),

(g1 · f · g2)(ω, x) = g1(ω)f(ω, x)g2(T−xω).

An analogous result also holds for the completion of Cc(G−1).

Denote by d : G → Z the map that associates with an element (ω, x) the
integer n for which x = yn with L(ω) = {yn}n∈Z as in Eq. (5) on page 1994.
We call d(ω, x) the degree of (ω, x).

Proposition 2.23. The map d : G → Z is a continuous 1-cocycle that is unper-
forated in the sense of [81]. Consequently, C∗

r (G) is isomorphic to the Cuntz–
Pimsner algebra OE(r,R) and for n > 0 the sets

G±n := {ξ1 · · · ξn : ξi ∈ G± 1},

define a decomposition G =
⋃

n∈Z
Gn into clopen subsets.
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Proof. We prove that d is locally constant. Let (ω, x) ∈ G and choose μ, y
such that x ∈ B(y; ε) ⊂ B(0;μ) with ε < r/2. Then (ω, x) ∈ V(p,μ,y,ε) for
p = L(ω) ∩ B(0;μ) and consider (η, z) ∈ V(p,μ,y,ε). Since

x, z ∈ B(y; ε) ⊂ L(ω) ∩ B(0;μ) = L(η) ∩ B(0;μ),

and ε < r/2, it follows that x = z. Then since

L(ω) ∩ B(0;μ) = L(η) ∩ B(0;μ)

it follows that d(ω, x) = d(η, z). Thus, the degree is locally constant on G. By
Lemma 2.21 the degree is additive, and it thus defines a continuous 1-cocycle
with

d−1(n) = Gn := (G n
|n| )

|n|,

and each Gn is clopen. We thus satisfy the hypothesis of [81, Proposition 10],
which gives the isomorphism OE(r,R) → C∗

r (G). �
2.4.1. The Cuntz–Pimsner Extension Class. We extend the equivalence of the
one-dimensional transversal groupoid with a Cuntz–Pimsner algebra to a com-
patibility of the bulk KK-cycle from Eq. (4) on page 1993 with the class in
KK1(OE(r,R) , C(Ω0)) that comes from the defining extension of OE(r,R) .

Lemma 2.24. The C∗-module E
(r,R)
C(Ω0)

is a self-Morita equivalence bimodule
(SMEB).

Proof. Given ω ∈ Ω0 with ordering L(ω) = {xn}n∈Z with x0 = 0 and xn −
xn−1 ∈ (r,R), a generic element in c−1(r,R) can be written as (T−xn

ω, xn+1 −
xn). We first compute
(

C(Ω0)(f1 | f2) · f3

)
(T−xnω, xn+1 − xn) = (f1 ∗ f∗

2 )(Txnω, 0)f3(T−xnω, xn+1 − xn)

= f1(T−xnω, xn+1 − xn)f∗
2 (Txn+1ω, xn − xn+1)f3(T−xnω, xn+1 − xn)

= f1(T−xnω, xn+1 − xn)f2(T−xnω, xn+1 − xn)f3(T−xnω, xn+1 − xn)

and then compare to
(
f1 · (f2 | f3)C(Ω0)

)
(T−xnω, xn+1 − xn)=f1(T−xnω, xn+1−xn)(f∗

2 ∗ f3)(Txn+1ω, 0)

= f1(T−xnω, xn+1 − xn)f∗
2 (Txn+1ω, xn − xn+1)f3(Txnω, xn+1 − xn)

= f1(T−xnω, xn+1 − xn)f2(T−xnω, xn+1 − xn)f3(T−xnω, xn+1 − xn)

as required. Lastly the bimodule is full as by the compactness of Ω0, any
g ∈ C(Ω0) can be written

g(ω) = f1(ω, x1)f2(ω, x1) = C(Ω)(f1 | f2)(ω)

= f̃1(T−x1ω,−x1)f̃2(T−x1ω,−x1) = (f̃1 | f̃2)C(Ω0)(ω)

for some f1, f2, f̃1, f̃2 ∈ Cc(c−1(r,R)). �

Given the bimodule E
(r,R)
C(Ω0)

, the Cuntz–Pimsner algebra OE(r,R) is defined
by a short exact sequence

0 → K
(
(FE(r,R))C(Ω0)

)
→ TE(r,R) → OE(r,R) → 0, (6)
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where TE(r,R) is generated by creation and annihilation operators on the Fock
module FE(r,R) =

⊕
n≥0(E

(r,R))⊗n
C(Ω0)

with (E(r,R))⊗0
C(Ω0)

:= C(Ω0).
The extension Eq. (6) gives a KK1-class [ext] which can be composed

with the natural Morita equivalence between K
(
(FE(r,R))C(Ω0)

)
and C(Ω0).

Thus, the Cuntz–Pimsner algebra gives an element [ext]⊗̂K[FE ] ∈ KK1

(OE(r,R) , C(Ω0)). We can use [80, Section 3.1] to construct an unbounded Kas-
parov module representing this class.

Using the conjugate module E
(r,R)

C(Ω), we define for n < 0,
(
E(r,R)

)⊗n =
(
E

(r,R))⊗|n|. We can then consider the bi-infinite Fock module

FE,Z :=
⊕

n∈Z

(
E(r,R)

)⊗n

C(Ω0)
,

which carries a natural representation of OE and an operator making it into
a KK-cycle.

Proposition 2.25 ([80], Theorem 3.1). Define an operator N on the algebraic
direct sum

⊕alg
m∈Z

E⊗m by Nξ = nξ for ξ ∈ E⊗n. There is a ∗-homomorphism
OE(r,R) → End∗((FE,Z)C(Ω0)

)
such that Sf ·ξ := f⊗ξ for all f ∈ E(r,R) and ξ ∈

(
E(r,R)

)⊗n. The triple
(
OE(r,R) , (FE,Z)C(Ω0), N) is an unbounded odd Kasparov

module that represents the class [ext]⊗̂K[FE ] ∈ KK1(OE(r,R) , C(Ω0)).

Corollary 2.26. The odd Kasparov module from Proposition 2.25 defines the
same class in KK1(C∗

r (G), C(Ω0)) as the bulk Kasparov module dλΩ0 from Eq.
(4) on page 1993 with d = 1.

Proof. The C∗-algebras are isomorphic by Proposition 2.23. Furthermore, the
positive semisplitting from both the groupoid and Cuntz–Pimsner Kasparov
modules is the projection onto elements with nonnegative cocycle values. Hence,
the extensions are equivalent, which also gives equivalence within KK1. �

By the presentation of C∗
r (G) as a Cuntz–Pimsner algebra, we can use

the long (cyclic) exact sequence as a tool for the computation of K∗(C∗
r (G)).

Namely, for complex algebras,

K0(C(Ω0))
⊗([C(Ω0)]−[E(r,R)]) �� K0(C(Ω0))

ι∗ �� K0(C∗
r (G))

∂

��
K1(C∗

r (G))

∂

��

K1(C(Ω0))ι∗
�� K1(C(Ω0))

⊗([C(Ω0)]−[E(r,R)])

��

where the map K∗(C(Ω0))
⊗[E(r,R)]−−−−−−→ K∗(C(Ω0)) comes from the internal prod-

uct of the K-theory class with the element [E(r,R)] ∈ KK(C(Ω0), C(Ω0)).
There is an analogous but longer exact sequence for real C∗-algebras,

· · · → KOj(C(Ω0))
⊗([C(Ω0)]−[E(r,R)])−−−−−−−−−−−−−→ KOj(C(Ω0))

ι∗−→ KOj(C∗
r (G)) ∂−→ KOj−1(C(Ω0)) → · · · .
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By the Morita equivalence of C∗
r (G) and C(ΩL)�R, we know that K∗(C∗

r (G)) ∼=
K∗−1(C(ΩL)) by the Connes–Thom isomorphism. As the K-theory of C(ΩL)
is generally quite difficult to compute, the Pimsner exact sequence for C∗

r (G) is
a helpful tool for such K-theory computations. For example, if K1(C(Ω0)) = 0
(e.g. if L has finite local complexity), then we immediately obtain that

K0(C∗
r (G)) ∼= Coker(1 − [E(r,R)]), K1(C∗

r (G)) ∼= Ker(1 − [E(r,R)]).

Hence, for a one-dimensional lattice L with finite local complexity,

K0(C(ΩL)) ∼= Ker(1 − [E(r,R)]), K1(C(ΩL)) ∼= Coker(1 − [E(r,R)]).

Of course, this result is restricted to one-dimensional lattices or tilings. A
description of C∗

r (G) for higher dimensions using the C∗-algebra of a product
system or as an iterated Cuntz–Pimsner algebra may be possible. We leave
this analysis to future research.

Remark 2.27. As a brief cautionary remark, we note that our bimodule
C(Ω0)E

(r,R)
C(Ω0)

looks quite similar but is different from the crossed product bi-
module αAA with α : Z → Aut(A) and such that Oα

∼= A �α Z. Indeed, given
ω ∈ Ω0 and x1 ∈ L(ω) ∩ (r,R), there is no guarantee that T−2x1ω ∈ Ω0 as
would be the case for a Z-action.

3. Factorisation and the Bulk–Boundary Correspondence

A key attribute of the operator algebra approach to topological phases via
crossed products is that both bulk and boundary systems can be treated under
the same general framework with an extension of C∗-algebras linking the two
systems. Namely, up to stabilisation the edge algebra can be described via
C(Ω) �σ Z

d−1 and, we can recover the bulk algebra by the iterated crossed
product (C(Ω) �σ Z

d−1) � Z ∼= C(Ω) �σ Z
d for normalised twists.

In this section we use the groupoid cocycle cd : G → R to consider the
closed subgroupoid Υ = Ker(cd). This subgroupoid is too small to completely
model an edge system but is groupoid equivalent to one that we argue encodes
the translation dynamics on the transversal in (d−1)-directions. Furthermore,
we show that the subgroupoid Υ gives rise to a canonical bulk–boundary exten-
sion of reduced C∗-algebras that generalises the Toeplitz extension for crossed
products. In particular, we use this extension to factorise the groupoid KK-
cycle into a product of a (d − 1)-dimensional system and the bulk–boundary
extension that recovers the bulk system.

3.1. The Edge Groupoid

We now apply our results on twisted groupoid equivalences to the transversal
groupoid and the bulk–boundary short exact sequence.

Recall the groupoid cocycle cd : G → R, cd(ω, x) = xd. Because cd is
exact, we can apply the results from Sect. 1.5 and construct an unbounded
KK-cycle. We consider the closed subgroupoid Υ = Ker(cd), namely

Υ =
{
(ω, y) ∈ Ω0 × R

d−1 : T(−y,0)ω ∈ Ω0

}
.
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with multiplication, range and source maps inherited from G. Furthermore,
the restriction of σ to Υ gives a well-defined 2-cocycle for Υ. Recalling Sect.
1.4, the restriction map

ρΥ : Cc(G, σ) → Cc(Υ, σ)

defines a (C∗
r (G, σ), C∗

r (Υ, σ))-bimodule EC∗
r (Υ,σ). Applying Proposition 1.13

to the cocycle cd : G → R and writing Xd := Dcd
gives us the following.

Proposition 3.1 ([65], Theorem 3.9). The triple

dλd−1 =
(
Cc(G, σ)⊗̂Cl0,1, EC∗

r (Υ,σ)⊗̂
∧∗

R,Xd⊗̂γ
)

is a real or complex unbounded Kasparov module.

The groupoid Υ is too small to be thought of as representing an edge
system. Instead, we will consider the groupoid G �G/Υ whose twisted reduced
C∗-algebra is Morita equivalent to C∗

r (Υ, σ), cf. Sect. 1.4.
The cocycle cd determines the subset Ran(cd) ⊂ R

d (which need not be
a subgroup). Having fixed this set, the groupoid G � G/Υ allows us to put a
groupoid structure back into our system with the translation action in (d−1)-
directions.

The space G/Υ is given by equivalence classes of elements [(ω, x)] ∈ G
under the relation

(ω, x) ∼ (ω′, x′) ⇔ ∃(T−xω, (y, 0)) ∈ Υ (ω, x + (y, 0)) = (ω′, x′).

Hence, the quotient G/Υ can be described by equivalence classes of pairs
[(ω, xd)] with (ω, xd) ∈ Ω0 × Ran(cd). We have the presentation of G � G/Υ
by pairs

G � G/Υ ∼=
{
((ω, x), [(ω′, yd)]) : rG(c−1

d (yd)) = T−xω
}

∼= {((ω, x), [(T−xω, yd)])} ⊂ G × G/Υ.

Recall that (ω, x) ∈ G if x ∈ L(ω). Our presentation says that ((ω, x), [(T−x

ω, yd)]) ∈ G � G/Υ if there is some u ∈ R
d−1 such that x, x + (u, yd) ∈ L(ω).

The unit space is given by

(G � G/Υ)(0) = G/Υ,

and the groupoid structure is determined by

s((ω, x), [(T−xω, yd)]) = [(T−xω, yd)], r((ω, x), [(T−xω, yd)]) = [(ω, xd + yd)],

((ω, x), [(T−xω, yd)])−1 = ((T−xω,−x), [(ω, xd + yd)]),

((ω, x), [(T−xω, yd)]) · ((T−xω, z), [(T−x−zω, yd − zd)])

= ((ω, x + z), [(T−x−zω, yd − zd)]).

We note that for ((T−xω, z), [(T−x−zω, yd−zd)]) to be in G�G/Υ, there must be
some v ∈ R

d−1 such that x+(v, yd) ∈ L(ω). Because ((ω, x), [(T−xω, yd)]) ∈ G�

G/Υ implies x+(u, yd) ∈ L(ω) for some u ∈ R
d−1, the groupoid multiplication

involves a translation in (d−1)-dimensions only. Thus, we see that the groupoid
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G � G/Υ models the dynamics of the transversal Ω0 relative to the fixed set
Ran(cd). We use the 2-cocycle σ on G to define a 2-cocycle on G � G/Υ via

σ
(
((ω, x), [(T−xω, yd)]), ((T−xω, z), [(T−x−zω, yd − zd)])

)
=σ((ω, x), (T−xω, z)).

Applying Proposition 1.12, we obtain the following.

Proposition 3.2. The C∗-module EC∗
r (Υ,σ) is a Morita equivalence bimodule

between C∗
r (G � G/Υ, σ) and C∗

r (Υ, σ). In particular, there is an isomorphism
C∗

r (G � G/Υ, σ) ∼= K(EC∗
r (Υ,σ)).

The Morita equivalence bimodule gives an invertible element in KK(C∗
r

(G�G/Υ, σ), C∗
r (Υ, σ)). From the perspective of index theory, we can work with

either Υ or G � G/Υ. While we consider G � G/Υ to be our edge groupoid, the
subgroupoid Υ ⊂ G will be easier to work with for some of our mathematical
arguments.

3.2. The Bulk–Boundary Extension

Because the Kasparov module from Proposition 3.1 comes from an exact R-
valued cocycle, we can construct an extension of C∗-algebras. As in Lemma
1.15 in Sect. 1.6, we fix an ε > 0 and a function χ+ to define a self-adjoint
operator Πd := Πcd

∈ End∗
C∗

r (Υ,σ)(E) on the C∗-module EC∗
r (Υ,σ) satisfying

Π2
d −Πd ∈ KC∗

r (Υ,σ)(E). Since the Delone set L is relatively dense, the cocycle
cd takes arbitrarily large values in each r-fibre and is r-unbounded. Therefore,
the map

ϕ : C∗
r (G, σ) → Q(EC∗

r (Υ,σ)), ϕ(a) = q(ΠdaΠd),

is injective by Proposition 1.18. Hence, we can construct the generalised Toe-
plitz extension

0 → C∗
r (G � G/Υ, σ) → C∗(ΠdC

∗
r (G, σ)Πd, C

∗
r (G � G/Υ, σ)) → C∗

r (G, σ) → 0
(7)

with completely positive semisplitting a �→ ΠdaΠd and Busby invariant ϕ.
In the case that our lattices have a canonical Z

d-labelling, then this ex-
tension reduces to the usual bulk–boundary short exact sequence considered
in [77]. In the case d = 1, we have Υ ∼= G(0) ∼= Ω0, and the extension (7) is
equivalent to the Toeplitz–Cuntz–Pimsner extension for C∗

r (G, σ) of Corollary
2.26.

For a fixed ω ∈ Ω0, the Toeplitz algebra can be represented on the space
Πω

d �2(L(ω)), which we can interpret as a half-infinite system with boundary.
Because we work with general Delone sets, 0 need not be an isolated point in
Ran(cd). As such, our boundary operator Πd is not a projection in general, but
if we have a Z

d-labelling, the above construction yields a genuine projection.

Remark 3.3 (Integer-valued cocycles and the Pimsner–Voiculescu extension)
It is shown in [65, Proposition 3.22] that if the an exact cocycle cd is integer-
valued, then the associated KK-class [Dcd

] ∈ KK1(C∗
r (G, σ), C∗

r (Υ, σ)) coin-
cides with the KK-class defined from the circle action

αc : T → Aut(C∗
r (G, σ)), αc

t(f)(ξ) := eitcd(ξ)f(ξ),
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via the construction in [24]. For crossed products by Z, the Kasparov module
of a circle action is the same as the Kasparov module constructed from the
Toeplitz extension of the crossed product (constructed in, for example, [20])

0 → C∗
r (Υ, σ) ⊗ K → T → C∗

r (Υ, σ) � Z → 0

with C∗
r (Υ, σ) � Z ∼= C∗

r (G, σ). A similar result holds for semisaturated circle
actions (see [3, Section 3.3] or [4, Section 3]). Hence, we recover the ‘usual’
bulk–boundary extension considered in [77] for special cases of integer-valued
cocycles cd. This applies in particular if cd is unperforated.

Remark 3.4 (The Connes–Thom class). Let us now consider the relation be-
tween the Kasparov module of Proposition 3.1 and its Toeplitz extension with
the Connes–Thom isomorphism and the Wiener–Hopf extension of [51], when
d ≥ 2.

The transversal groupoid G is Morita equivalent to the crossed product
groupoid ΩL � R

d, and for d ≥ 2 the boundary groupoid Υ is equivalent to
ΩL � R

d−1. Given a normalised 2-cocycle σ : R
d × R

d → U(C(ΩL)), there is
an isomorphism C(ΩL) �σ R

d ∼=
(
C(ΩL) �σ R

d−1
)

� R and a Wiener–Hopf
extension

0 → (C(ΩL) �σ R
d−1) ⊗ K[L2(R)] → W → C(ΩL) �σ R

d → 0,

see [51]. In [22, Section 6], it was shown that the Wiener–Hopf extension can
be represented by the unbounded Kasparov module

(
Cc

(
R, C(ΩL) �σ R

d−1
)
⊗̂Cl0,1, FC(ΩL)�σRd−1⊗̂

∧∗
R, X⊗̂γ

)
, (8)

where FC(ΩL)�σRd−1 is the bimodule obtained from the conditional expectation
induced from the restriction to the closed subgroupoid ΩL �R

d−1 ⊂ ΩL �R
d,

ρ : Cc(ΩL �σ R
d) → Cc(ΩL �σ R

d−1),
ρ(f)(x1, . . . , xd−1) = f(x1, . . . , xd−1, 0).

We consider the composition of KK-classes
(
C(ΩL) �σ R

d, F d
C∗

r (G,σ), 0
)
⊗̂C∗

r (G,σ)

[
dλd−1

]

⊗̂C∗
r (Υ,σ)

(
C∗

r (Υ, σ), (F d−1)∗
C(ΩL)�σRd−1 , 0

)
,

where the left and right Kasparov modules represent the Morita equivalence
(resp. dual Morita equivalence) of the groupoid algebras and crossed products.
The end result of this triple product is a Kasparov module representing a class
in KK1(C(ΩL) �σ R

d, C(ΩL) �σ R
d−1). Its relation to the Kasparov module

in Eq. (8) is as follows. By Definition 2.11 and Proposition 2.16, the Morita
equivalence bimodule F d

C∗
r (G,σ) is obtained from restriction of the crossed prod-

uct dynamics to the transversal Ω0. The C∗-module EC∗
r (Υ,σ) from dλd−1 in

Proposition 3.1 is defined by a restriction Cc(G, σ) → Cc(Υ, σ). Lastly the dual
Morita equivalence bimodule (F d−1)∗

C(ΩL)�σRd−1 is induced by the inclusion
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of Υ into ΩL � R
d−1. Hence, the inner product on the balanced tensor prod-

uct can be considered as coming from a generalised conditional expectation
Cc(ΩL � R

d, σ) → Cc(ΩL � R
d−1, σ) and there is a natural identification

F d ⊗C∗
r (G,σ) E ⊗C∗

r (Υ,σ) (F d−1)∗
C(ΩL)�σRd−1

∼−→ FC(ΩL)�σRd−1 .

An argument similar to that in the proof of Theorem 3.6 shows that the
operator X in FC(ΩL)�σRd−1 satisfies the connection condition with respect to
the operator X ⊗ 1 in E ⊗C∗

r (Υ,σ) (F d−1)∗
C(ΩL)�σRd−1 . As these maps are also

compatible with the Clifford actions, we recover the unbounded representative
of the Wiener–Hopf extension from Eq. (8) on page 2000. The boundary maps
in K-theory and K-homology from the Wiener–Hopf extension, i.e. the product
with the unbounded Kasparov module from Eq. (8), implement the inverse of
the Connes–Thom isomorphism [82]. Hence, these maps are represented by our
Toeplitz extension up to groupoid/Morita equivalence.

3.3. Factorisation

By the same basic argument as the bulk algebra, we can build a KK-cycle
for C∗

r (Υ, σ) which is stably isomorphic to the edge algebra C∗
r (G � G/Υ, σ).

We denote by FC(Ω0) the (C∗
r (Υ, σ), C(Ω0))-C∗-bimodule coming from the

restriction of C∗
r (Υ, σ) to the unit space. The notation FC(Ω0) distinguishes it

from the C∗-module EC(Ω0) constructed from C∗
r (G, σ). Specifically,

d−1λΩ0 =

⎛

⎝Cc(Υ, σ)⊗̂Cl0,d−1, FC(Ω0)⊗̂
∧∗

R
d−1,

d−1∑

j=1

Xj⊗̂γj

⎞

⎠

is an unbounded Kasparov module and gives rise to a class in KKd−1(C∗
r (Υ, σ),

C(Ω0)) (real or complex). We have constructed a class representing our bulk–
boundary extension and a KK-cycle for the edge algebra. The key K-theoretic
result that drives the bulk–boundary correspondence is that these two KK-
cycles can be put together using the unbounded Kasparov product to recon-
struct the bulk KK-cycle.

Theorem 3.5. Under the boundary map coming from the extension of Eq. (7)
on page 1999,

∂[d−1λΩ0 ] = [dλd−1]⊗̂C∗
r (Υ,σ)[d−1λΩ0 ] = (− 1)d−1[dλΩ0 ],

with dλΩ0 the bulk KK-cycle from Eq. (4) on page 1993 and where − [x] de-
notes the inverse in the KK-group. Furthermore, the equality is an unbounded
equivalence up to a permutation of the Clifford algebra basis.

Theorem 3.5 is a special case of Theorem 3.6 with k = d − 1. Hence, we
delay the proof until Sect. 3.4.

3.3.1. A Remark on More General Boundaries. Our edge groupoid Υ can be
thought of as the result of a cut of the Delone sets L(ω) ∈ Ω0 along the plane
defined by Ker(cd) ∼= R

d−1 × {0}. This choice of cut or boundary is somewhat
arbitrary. Let us briefly consider more general boundary choices though, as we
will show, our KK-theoretic factorisation still applies.
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Let b : R
d → R be a continuous homomorphism such that as a vector

space dim(Ran(b)) = 1. The plane defined by Ker(b) defines a new (d − 1)-
dimensional plane in R

d which we can cut along to make a new boundary. It
is easy to check that the corresponding map cb : G → R, cb(ω, x) = b(x) is
an exact groupoid cocycle. Hence, we can study this boundary via the closed
subgroupoid Υb = Ker(cb) and equivalent groupoid G � G/Υb, which models
the (d−1)-dimensional dynamics of the transversal relative to Ran(b). Because
cb is exact, we can construct an ungraded and unbounded Kasparov module(
Cc(G, σ), EC∗

r (Υb,σ),Db

)
that gives a class [extb] ∈ KK1(C∗

r (G, σ), C∗
r (Υb, σ))

and a bulk–boundary short exact sequence

0 → C∗
r (G � G/Υb, σ) → Tb → C∗

r (G, σ) → 0.

As a vector space, Ker(b) is (d−1)-dimensional and so fix an orthonormal
basis {z1, . . . , zd−1}. These basis vectors give rise to an exact R

d−1-valued
cocycle on the groupoid Υb, which we use to build an unbounded Kasparov
module and a class [d−1λ

b
Ω0

] ∈ KKd−1(C∗
r (Υb), C(Ω0)).

Following the proof of Theorem 3.6 with k = d−1, the product of the class
of the Kasparov modules [extb] and [d−1λ

b
Ω0

] is represented by the unbounded
Kasparov module

⎛

⎝Cc(G, σ)⊗̂Cl0,d, EC(Ω0)⊗̂
∧∗

R
d,

d−1∑

j=1

Zj⊗̂γj+1 + Db⊗̂γ1

⎞

⎠ .

At this point, we can take transformation from the basis {z1, . . . , zd−1, zd} to
the standard basis of R

d. This transformation recovers the bulk K-cycle dλΩ0

up to a Clifford basis reordering. Fixing the Clifford basis reordering, we have
that

[extb]⊗̂C∗
r (Υb,σ)[d−1λ

b
Ω0

] = (− 1)d−1[dλΩ0 ]

and our factorisation result extends.
Let us briefly note that while any crystallographic group G ⊂ R

d is a
Delone set and our choice of boundary is quite general, the factorisation and
bulk–boundary result in Theorem 3.5 is too coarse to detect boundary indices
derived from the crystalline structure as in [38].

3.4. KK-Cycles with Higher Codimension

Let us now generalise the constructions and ideas from the previous section
to consider subinvariants of arbitrary codimension. Such invariants are linked
to so-called weak topological phases which are characterised by elements in
K∗(C∗

r (G, σ)) that are not detected by the ‘top degree form’ that comes via a
pairing with dλΩ0 .

Once again we use a groupoid homomorphism čk : G → R
d−k via čk(ω, x)

= (xk+1, . . . , xd) and define Υk = Ker(čk), where we characterise

Υk =
{

(ω, x1, . . . , xk) ∈ Ω0 × R
k : (x1, . . . , xk, 0, . . . , 0) ∈ L(ω)

}
.
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As in the case of k = d − 1, Υk is a closed subgroupoid of G and is equivalent
to G � G/Υk. By Proposition 1.13, we can build a Kasparov module

dλk =

⎛

⎝Cc(G, σ)⊗̂Cl0,d−k, Ed−k
C∗

r (Υk,σ)⊗̂
∧∗

R
d−k,

d∑

j=k+1

Xj⊗̂γj−k

⎞

⎠ .

In the case k = d−1, dλd−1 is the unbounded KK-cycle representing the bulk–
boundary extension considered in Sect. 3.1. We will be interested in pairings
of dλk with the K-theory of C∗

r (G, σ). Such pairings naturally take values in
the K-theory of C∗

r (Υk, σ).
As in the case of k = d − 1, we can construct an unbounded KK-cycle

for the subgroupoid Υk,

kλΩ0 =

⎛

⎝Cc(Υk, σ)⊗̂Cl0,k, F k
C(Ω0)

⊗̂
∧∗

R
k,

k∑

j=1

Xj⊗̂γj

⎞

⎠ ,

F k
C(Ω0)

:= Cc(Υk, σ)C(Ω0)
, (9)

which represents the class [kλΩ0 ] ∈ KK(C∗
r (Υk, σ)⊗̂Cl0,k, C(Ω0)).

We now present our main factorisation result, which allows us to decom-
pose the bulk Kasparov module dλΩ0 as the product of dλk with kλΩ0 (up to
a sign related to the orientation of Clifford algebras).

Theorem 3.6. Taking the Kasparov product,

[dλk]⊗̂C∗
r (Υk,σ)[kλΩ0 ] = (− 1)k(d−k)[dλΩ0 ].

Furthermore, our equivalence is at the unbounded level up to a permutation of
the Clifford basis.

Proof. Much of this proof is bookkeeping and is very similar to the proof
in [20, Theorem 3.4]. To take the product of the C∗

r (G, σ)⊗̂Cl0,d−k–C∗
r (Υk, σ)

Kasparov module with a C∗
r (Υk, σ)⊗̂Cl0,k–C(Ω0) Kasparov module, we first

take the external product of dλk with a KK-cycle representing the iden-
tity in KK(Cl0,k, Cl0,k). This identity class can be represented by (Cl0,k,

Cl0,kCl0,k
, 0

)
with right and left actions by multiplication. We then take

the product of a (C∗
r (G, σ)⊗̂Cl0,d, C

∗
r (Υk, σ)⊗̂Cl0,k) Kasparov module with a

(C∗
r (Υk, σ)⊗̂Cl0,k, C(Ω0)) Kasparov module. First, the balanced tensor prod-

uct gives the C∗-module
(
Ed−k⊗̂

∧∗
R

d−k⊗̂Cl0,k

)
⊗̂C∗

r (Υk,σ)⊗̂Cl0,k

(
F k⊗̂

∧∗
R

k
)

C(Ω0)

∼=
(
Ed−k ⊗C∗

r (Υk,σ) F k
C(Ω0)

)
⊗̂

∧∗
R

d−k⊗̂
(
Cl0,k⊗̂Cl0,k

∧∗
R

k
)

∼=
(
Ed−k ⊗C∗

r (Υk,σ) F k
)
C(Ω0)

⊗̂
∧∗

R
d−k⊗̂

∧∗
R

k

as Cl0,d−1 acts on
∧∗

R
d−1 non-degenerately. Next we define a unitary iso-

morphism

Ed−k ⊗C∗
r (Υk,σ) F k

C(Ω0)
→ EC(Ω0),
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by first considering defining a map on dense submodules,

v : Cc(G, σ) ⊗Cc(Υk,σ) Cc(Υk, σ)C(Ω0) � f ⊗ h �→ f · h ∈ Cc(G, σ)C(Ω0).

This map preserves the inner product structures, is thus uniformly bounded
and, hence, extends to an isomorphism of C∗-modules. Furthermore, the map
commutes with the representation of C∗

r (G, σ) as elements in End∗(Ed−k
C∗

r (Υk,σ))
commute with the right action of C∗(Υk, σ). Similarly, {Xl}d

l=k+1 also com-
mutes with this map as Xl is right C∗

r (Υk, σ)-linear on Ed−k
C∗

r (Υk,σ). The opera-
tors {Xj}k

j=1 satisfy the connection condition under the unitary isomorphism
v. Let f ∈ Cc(G, σ) and consider the map

v ◦ |f〉 : Cc(Υk, σ) → Cc(G, σ), h �→ f · h.

Then we need to check that Xj ◦v◦|f〉−v◦|f〉◦Xj defines a bounded operator
F k

C(Ω0)
→ EC(Ω0). This follows since each Xj acts as a derivation of Cc(G, σ):

(
(Xjf) · h + f · (Xjh)

)
(ω, x)

=
∑

(y,0d−k)∈L(ω)−x

(
(xj + yj)f(ω, x + y)h(T−x−yω,−y)

+ f(ω, x+y)(−yj)h(T−x−yω,−y)
)
σ((ω, x + y), (T−x−yω,−y))

= xj

⎛

⎝
∑

(y,0d−k)∈L(ω)−x

f(ω, x+y)h(T−x−yω,−y)σ((ω, x+y), (T−x−yω,−y))

⎞

⎠

= Xj(f · h)(ω, x).

It follows that Xj ◦ v ◦ |f〉 − v ◦ |f〉 ◦ Xj = v ◦ |Xjf〉, which is a bounded
adjointable operator. The left and right Clifford actions on

∧∗
R

d−k⊗̂
∧∗

R
k

are given by

ρl⊗̂1(ω1⊗̂ω2) = (el ∧ ω1 − ι(el)ω1)⊗̂ω2,

1⊗̂ρj(ω1⊗̂ω2) = (− 1)|ω1|ω1⊗̂(ej ∧ ω2 − ι(ej)ω2),

γl⊗̂1(ω1⊗̂ω2) = (el ∧ ω1 + ι(el)ω1)⊗̂ω2,

1⊗̂γj(ω1⊗̂ω2) = (− 1)|ω1|ω1⊗̂(ej ∧ ω2 + ι(ej)ω2),

with |ω| the degree of the form and {el}d−k
l=1 and {ej}k

j=1 the standard bases
of R

d−k and R
k, respectively.

We relate
∧∗

R
d−k⊗̂

∧∗
R

k ∼=
∧∗

R
d, which sends the Cl0,d−k⊗̂Cl0,k →

Cl0,d by the map on generators,

ρl⊗̂1 �→ ρl, 1⊗̂ρj �→ ρd−k+j

with l ∈ {1, . . . , d−k} and j ∈ {1, . . . , k} (see [44, §2.16]). There is an analogous
map for the right action of Cld−k,0⊗̂Clk,0.
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This leads us to conclude that the unbounded Kasparov module
⎛

⎝Cc(G, σ)⊗̂Cl0,d, EC(Ω0)⊗̂
∧∗

R
d,

d∑

l=k+1

Xl⊗̂γl−k +
k∑

j=1

Xj⊗̂γd−k+j

⎞

⎠ ,

(10)
represents the Kasparov product [dλk]⊗̂C∗

r (Υk,σ)[kλΩ0 ], because it satisfies the
hypotheses of [55, Theorem 13]. Its operator satisfies the connection condition
as shown above, the domain of the operator is included in the domain of∑d

l=k+1 Xl⊗̂γl−k, and since the Xj⊗̂γj mutually anti-commute, the positivity
condition is satisfied as well.

The Kasparov module (10) recovers the bulk module dλΩ0 up to a reorder-
ing of the Clifford basis, as we now show. We consider the map ηd−k(γj) =
γj−(d−k) on Cld,0 where we identify γl = γd−l if l ≤ 0. We define the same
map on ρj and Cl0,d. The map η is an automorphism of Clifford algebras but
may reverse the canonical orientation, namely

ηd−k(ωCld,0) = ηd−k

(
γ1 · · · γd

)
= γk+1 · · · γdγ1 · · · γk

= (− 1)k(d−k)γ1γ2 · · · γd = (− 1)k(d−k)ωCld,0 ,

with the same result for the orientation of Cl0,d. We can apply the map ηd−k to
obtain the bulk cycle dλΩ0 but at the expense that at the level of KK-classes
[x] �→ (− 1)k(d−k)[x] [44, §5, Theorem 3]. This finishes the proof. �

3.4.1. Another Factorisation. Let us also show another way our Kasparov
modules can be factorised using a different short exact sequence. Starting
with Υk, Υk−1 is a closed subgroupoid and we can build the C∗-bimodule
FC∗

r (Υk−1,σ) via the restriction Cc(Υk, σ) → Cc(Υk−1, σ). Applying Proposi-
tion 1.13, we obtain the unbounded Kasparov module

kλk−1 =
(

Cc(Υk, σ)⊗̂Cl0,1, FC∗
r (Υk−1,σ)⊗̂

∧∗
R, Xk⊗̂γ

)

and for (Πkf)(ω, y) = χ+(yk)f(ω, y) with χ+ as in Sect. 1.6, we have an
extension

0 → C∗
r (Υk � Υk/Υk−1, σ) → C∗(ΠkC∗

r (Υk, σ)Πk,

C∗
r (Υk � Υk/Υk−1, σ)

)
→ C∗

r (Υk, σ) → 0.

Theorem 3.7. Taking the Kasparov product,

[dλk]⊗̂C∗
r (Υk,σ)[kλk−1] = (− 1)d−k[dλk−1].

Furthermore, our equivalence is at the unbounded level up to a permutation of
the Clifford basis.

Proof. The proof follows a very similar argument as the proof of Theorem 3.6.
First, we define a map

v : Cc(G, σ) ⊗Cc(Υk,σ) Cc(Υk, σ)Cc(Υk−1,σ) → E
d−(k−1)
C∗

r (Υk−1,σ), f ⊗ hk �→ f · hk
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where we consider f ·hk as an element in E
d−(k−1)
C∗

r (Υk−1,σ) One can check analogously
to the proof of Theorem 3.5 that this map extends to a unitary isomorphism
of C∗-modules

v : Ed−k ⊗C∗
r (Υk,σ) FC∗

r (Υk−1,σ) → E
d−(k−1)
C∗

r (Υk−1,σ).

Similarly, we check that
(
Xk ◦ v ◦ |f〉 − v ◦ |f〉 ◦ Xk

)
h = (Xkf) · h = v ◦ |Xjf〉(h)

defines a bounded operator and for j ∈ {k + 1, . . . , d}, (Xj ⊗ 1) �→ Xj as Xj

is right C∗
r (Υk)-linear.

Applying the isomorphism and grouping together the Clifford actions, we
obtain the unbounded Kasparov module
(

Cc(G, σ)⊗̂Cl0,d−(k−1), E
d−(k−1)
C∗

r (Υk) ⊗̂
∧∗

R
d−(k−1), Xk⊗̂γd−k+1 +

d∑

j=k+1

Xj⊗̂γj−k

)

,

which as before satisfies [55, Theorem 13] and thus represents the Kasparov
product. To relate this KK-cycle to dλk−1, we correct the Clifford labelling
by the map γj �→ γj+1 for 1 ≤ j ≤ d − k and γd−k+1 �→ γ1. Such a map will
change the orientation of Cl0,d−(k−1) and Cld−(k−1),0 by a factor of (− 1)d−k.
The result follows. �

4. Spectral Triple Constructions

We now present two constructions of (semifinite) spectral triples obtained from
localising the bulk KK-cycle for (C∗

r (G, σ), C(Ω0)) over a state of C(Ω0). Their
index-theoretic properties are discussed in Sect. 6.

4.1. The Evaluation Spectral Triple

We can directly construct a spectral triple on �2(L(ω)) by considering the
internal product of the Kasparov module dλΩ0 with the trivially graded Kas-
parov module evω = (C(Ω0), evω

RR, 0) coming from the evaluation map on
C(Ω0) → R (or C). This spectral triple was considered in [21] for com-
plex algebras. The Kasparov module evω gives a class in KKO(C(Ω0), R)
or KK(C(Ω0), C) if the algebra and space is complex. If we take the internal
product, then
⎛

⎝Cc(G, σ)⊗̂Cl0,d, EC(Ω0)⊗̂
∧∗

R
d, X =

d∑

j=1

Xj⊗̂γj

⎞

⎠ ⊗̂C(Ω0) (C(Ω0), evω
RR, 0)

∼=

⎛

⎝Cc(G, σ)⊗̂Cl0,d, (EC(Ω0) ⊗evω R)⊗̂
∧∗

R
d,

d∑

j=1

Xj ⊗ 1⊗̂γj

⎞

⎠ .

There is an isometric isomorphism EC(Ω0) ⊗evω
R → �2(s−1(ω)) (see for in-

stance [52, p. 50]). Since
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s−1(ω) = {(T−xω,−x) : x ∈ L(ω)} 	 L(ω), (T−xω,−x) �→ x,

the Hilbert space �2(s−1(ω)) can be canonically identified with �2(L(ω)). This
gives a map

ρω : EC(Ω0) ⊗evω
R → �2(L(ω)), ρω(f ⊗ t)(x) = tf(T−xω,−x),

and the action of Cc(G, σ) is then computed to be

ρω(π(f1)f2)(x) = (f1 ∗ f2)(T−xω,−x)

=
∑

y∈L(ω)−x

σ((T−xω, y), (T−x−yω,−x − y))f1(T−xω, y)f2(T−x−yω,−x − y)

=
∑

u∈L(ω)

σ((T−xω, u − x), (T−uω,−u))f1(T−xω, u − x)f2(T−uω,−u)

=
∑

u∈L(ω)

σ((T−xω, u − x), (T−uω,−u))f1(T−xω, u − x)(ρωf2)(u).

Hence, for f ∈ Cc(G, σ) the representation of C∗
r (G, σ) on �2(L(ω)) is given by

(
πω(f)ψ)(x) =

∑

y∈L(ω)

σ((T−xω, y − x), (T−yω,−y))f(T−xω, y − x)ψ(y).

Proposition 4.1 ([21], Proposition 5.1). The triple

dλω =

⎛

⎝Cc(G, σ)⊗̂Cl0,d, πω
�2(L(ω))⊗̂

∧∗
R

d,

d∑

j=1

Xj⊗̂γj

⎞

⎠

is a QC∞ and d-summable spectral triple. If ω, ω′ ∈ Ω0 are such that ω′ =
T−aω. then the spectral triples dλω and dλω′ define the same class in the K-
homology of C∗

r (G, σ).

4.2. Invariant Measures and the Semifinite Spectral Triple

Measure theoretic properties of the continuous hull ΩL have been extensively
studied. We note a useful result below.

Proposition 4.2 ([12,86]). There is a one-to-one correspondence between mea-
sures on ΩL invariant under the R

d-action and measures on the unit space
Ω0 invariant under the groupoid action. Furthermore, if L is repetitive, ape-
riodic and has finite local complexity, then there is a one-to-one correspon-
dence between the invariant measures on ΩL and a canonical positive cone in
Hd(ΩL, R).

Hence, under additional hypotheses, invariant measure theory on the
transversal Ω0 can be reduced to a homological condition on the continuous
hull ΩL. We will now assume that the unit space Ω0 has a probability measure
P that is invariant under the groupoid action with supp(P) = Ω0. Using [58,
Theorem 1.1], given the trace

τP : C(Ω0) → C, f �→
∫

f(ω) dP(ω)
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on C(Ω0) we can define the dual trace on finite-rank endomorphisms Fin
(EC(Ω0)) ⊂ K(EC(Ω0)) by the formula

Trτ (Θe1,e2) = τP((e2 | e1)C(Ω0)),

which then extends to a faithful, semifinite and norm lower semicontinuous
trace on the von Neumann algebra N = Fin(EC(Ω0))

′′ ⊂ B(Hτ ), with Hτ the
completion of Cc(G, σ) under the inner product

〈f1, f2〉 =
∫

Ω0

(f1 | f2)C(Ω0)(ω) dP(ω) =
∫

Ω0

(f∗
1 ∗ f2)(ω, 0) dP(ω).

We note that for f ∈ Cc(G, σ), the dual trace Trτ can also be written by
the simple formula

Trτ (f) =
∫

Ω0

f(ω, 0) dP(ω). (11)

The semifinite trace we use is quite abstract but can be related to the
so-called trace per unit volume if we also assume ergodicity.

Proposition 4.3 ([21], Proposition 4.23). If the measure on ΩL is ergodic under
the translation action, then for almost all ω ∈ Ω0 and any f ∈ Cc(G, σ),

Trτ (f) = TrVol(πω(f)) := lim
Λ↗L(ω)

1
|Λ| Tr�2(L(ω))

(
PΛπω(f)

)
,

PΛ : �2(L(ω)) → �2(Λ),

where the limit Λ ↗ L(ω) is an increasing sequence of finite sets approximating
L(ω).

The following result does not require an ergodicity assumption.

Proposition 4.4. The triple

dλτ =

⎛

⎝Cc(G, σ)⊗̂Cl0,d, Hτ ⊗̂
∧∗

R
d,

d∑

j=1

Xj ⊗ γj

⎞

⎠

is a QC∞ and d-summable semifinite spectral triple relative to (N ,Trτ ). Fur-
thermore, for f ∈ Cc(G, σ), the identity

res
z=d

Trτ (π(f)(1 + |X|2)−s/2) = Vold−1(Sd−1) Trτ (f),

holds true.

Proof. The representation of C∗
r (G, σ) on EC(Ω0) gives a representation π :

C∗
r (G, σ) → B(Hτ ) as Hτ

∼= E ⊗C(Ω0) L2(Ω0,P). This representation retains
the property that [Xj , π(f)] = π(∂jf) and, as such, [|X|k, π(f)] is well defined
and bounded for all k ∈ N. To consider the summability, we first note that (1+
X2)−s/2 = (1 + |X|2)−s/2⊗̂1∧∗

Rd and so it suffices to prove the summability
of (1 + |X|2)−s/2. We then observe that the space of trace class elements
under the dual trace L1(N ,Trτ ) contains the trace class operators on the
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space
∫ ⊕
Ω0

�2(L(ω)) dP(ω) and, on this subalgebra, the dual trace acts as the
usual trace on the direct integral. With this in mind, we first compute

(
π(f)(1 + |X|2)−s/4ψ

)
(T−xω,−x)

=
∑

y∈L(ω)

σ((T−xω, y − x), (T−yω,−y))f(T−xω, y − x)

(1 + |y|2)−s/4ψ(T−yω,−y).

Hence, the ‘integral kernel’ of this operator is

kf (ω;x, y) = σ((T−xω, y − x), (T−yω,−y))f(T−xω, y − x)(1 + |y|2)−s/4.

Similarly, one can compute that the integral kernel of (1 + |X|2)−s/4π(f∗) is

kf∗(ω;x, y) = σ((T−xω, y − x), (T−yω,−y))f∗(T−xω, y − x)(1 + |x|2)−s/4.

Then we can estimate the Trτ -Hilbert–Schmidt norm
∥
∥π(f)(1 + |X|2)−s/4

∥
∥2

2
=

∫

Ω0

∑

x,y∈L(ω)

kf∗(ω;x, y)kf (ω; y, x) dP(ω)

=
∫

Ω0

∑

x,y∈L(ω)

σ((T−xω, y − x), (T−yω,−y))σ(T−yω, x − y), (T−xω,−x))

× f∗(T−xω, y − x)f(T−yω, x − y)(1 + |x|2)−s/2 dP(ω)

=
∫

Ω0

∑

x,y∈L(ω)

σ((T−xω, y − x), (T−yω, x − y))σ((T−xω, 0), (T−xω,−x))

× |f(T−yω, x − y)|2(1 + |x|2)−s/2 dP(ω)

=
∫

Ω0

∑

x,y∈L(ω)

|f(T−yω, x − y)|2(1 + |x|2)−s/2 dP(ω)

=
∫

Ω0

∑

x∈L(ω)

∑

u∈L(ω)−x

|f(Tu−xω, u)|2(1 + |x|2)−s/2 dP(ω)

≤ C

∫

Ω0

∑

x∈L(ω)

(1 + |x|2)−s/2 dP(ω) = C

∫

Ω0

Cs(ω) dP(ω),

where in the third line we have used the cocycle identity, where we then note
that

σ((T−xω, y − x), (T−yω, x − y))σ((T−xω, 0), (T−xω,−x))

= σ(ξ, ξ−1)σ(r(η), η) = 1.

Because Delone subsets of R
d display the same summability asymptotics as

Z
d, we see that Cs(ω) is bounded for all ω ∈ Ω0 and s > d. Hence, we have that

π(f)(1+|X|2)−s/4 is Trτ -Hilbert–Schmidt. Therefore, (1+|X|2)−s/4π(f∗f)(1+
|X|2)−s/4 is Trτ -trace class for all f ∈ Cc(G, σ) and s > d. In particular,
(1 + |X|2)−s/2 is Trτ -trace class for s > d.
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Let us now consider the residue trace of π(f)(1+ |X|2)−z/2 for �(z) < d.
By the properties of the dual trace, we can compute the trace by summing
along the diagonal of this integral kernel.

Trτ

(
π(f)(1 + |X|2)−z/2

)
=

∫

Ω0

∑

x∈L(ω)

k(x, x) dP(ω)

=
∫

Ω0

∑

x∈L(ω)

σ((T−xω, 0), (T−x,−x))f(T−xω, 0)(1 + |x|2)−z/2 dP(ω)

=
∫

Ω0

f(ω, 0)
∑

x∈L(ω)

(1 + |x|2)−z/2 dP(ω)

= C(z)
∫

Ω0

f(ω, 0) dP(ω),

where we have used that σ(r(ξ), ξ) = 1 for all ξ ∈ G and the invariance of the
measure P under the groupoid action. For any Delone set ω ∈ Ω0, we use an
integral approximation to compute that

C(z) =
∑

x∈L(ω)

(1 + |x|2)−z/2 = Vold−1(Sd−1)
Γ
(

d
2

)
Γ
(

z−d
2

)

2Γ
(

d
2

) + h(z)

with h a function holomorphic in a neighbourhood of �(z) = d. The function
C(z) has a meromorphic extension to the complex plane with a simple pole at
z = d with resz=d C(z) = Vold−1(Sd−1). The result follows. �

Also of use to us for complex algebras is the semifinite spectral triple
from the spinc KK-cycle in Proposition 1.14. That is,

dλ
SC

τ =

⎛

⎝Cc(G, σ), Hτ ⊗̂C
2� d

2 �
,

d∑

j=1

Xj⊗̂γj

⎞

⎠ (12)

is a QC∞ and d-summable semifinite spectral triple that is even or odd de-
pending on the parity of d. We recall that, as the spin and oriented Kasparov
modules are equivalent at the level of KK-theory (up to a renormalisation),
we can equivalently consider pairings with the spin semifinite spectral triple.

5. Unbounded Fredholm Modules for Lattices with Finite Local
Complexity

We will now assume that our lattice L has finite local complexity. Recall from
Proposition 2.13 that this implies that the transversal Ω0 is totally discon-
nected. In particular, we have an explicit description of the basis of the topol-
ogy of Ω0 by closed and open sets. Namely, for some n ∈ N and P ⊂ B(0;n)
discrete, the sets UP,n = {ω ∈ Ω0 : B(0;n) ∩ L(ω) = P} give a basis of the
topology of Ω0, see [47]. We will use these sets to characterise Ω0 as the bound-
ary of a rooted tree. This then allows us to use the Pearson–Bellissard con-
struction to obtain a spectral triple and corresponding class in KK(C(Ω0), C).
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We compose this spectral triple with our bulk KK-cycle via the unbounded
Kasparov product. As in [36, Section 6], the resulting operator exhibits mildly
unbounded commutators with the algebra Cc(G) and its bounded transform is
a Fredholm module.

Spectral triple constructions for C∗
r (G) building from the Pearson–Bellis-

sard framework have already appeared in the tiling literature [57,64]. While the
setting of each construction is quite different, it would be interesting to better
understand the relationship between these spectral triples and our unbounded
Fredholm module.

5.1. The Pearson–Bellissard Spectral Triple

In the case that L has finite local complexity, Ω0 is totally disconnected and
can be conveniently described as the boundary of a rooted tree T = TL using
the local patterns p ∈ Pμ. The set of vertices of TL is denoted VL and the set
of edges by EL. They are given explicitly by

VL := {p ∈ PnR : n ∈ N}, EL := {(p, q) ∈ PnR × P(n+1)R : p ⊂ q}.

Thus, the vertices are the patterns seen at all levels nR and there is an edge
from p ∈ PnR to q ∈ P(n+1)R if and only if p ⊂ q. The root of this tree is the
unique element {0} ∈ P0. The vertex set V is naturally N-graded by

Vn := {p ∈ V : p ∈ PnR},

and we denote the degree of v ∈ V by |v|. The boundary ∂T is defined to be
the set of infinite paths α = p0 · · · pn · · · with

{0} = p0 ⊂ p1 ⊂ · · · ⊂ pn ⊂ pn+1 ⊂ · · ·
Such a boundary point determines a unique set L(α) :=

⋃∞
n=0 pn ⊂ R

d, and
since 0 ∈ L(α), we have L(α) ∈ Ω0. Conversely, any element L ∈ Ω0 defines a
boundary point by setting pn := L ∩ B(0;nR).

The topology on the boundary of a tree is defined by the so-called cylinder
sets associated to vertices

Cp := {α ∈ ∂T : α|p| = p} 	 {ω ∈ Ω0 : L(ω) ∩ B(0;nR) = p} = U(nR,p),

where the latter identification is given by sending a boundary point to its
associated set. Thus, the topology on ∂T matches that on Ω0 and the two
spaces are homeomorphic. Equivalently, the topology on ∂T can be defined
through the ultrametric

ρ(α, ω) = min{e−nR : ∃p ∈ PnR α, ω ∈ Cp}.

By a choice function, we mean a map τ : V → ∂T such that τ(v) ∈ Cv.
A choice function defines a representation

πτ : C(Ω0) → B(�2(V)), π(f)φ(v) := f(τ(v))φ(v).

It is straightforward to verify that for any pair of choice functions (τ+, τ−) the
pair (πτ+ , πτ−) defines a quasi-homomorphism C(Ω0) → K(�2(V)) and hence
a class in KK(C(Ω0), C) [29]. We associate a spectral triple to this data in
the spirit of Pearson–Bellissard [74], with some extra flexibility for reasons
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similar to those in [36], related to the pathologies of the unbounded Kasparov
product.

Proposition 5.1. Let (τ+, τ−) be a pair of choice functions, ρ an ultrametric
on Ω0 and let ζ : N → R≥0 be a sequence with ζn → ∞ and for which there
exists C > 0 such that ζn ≤ C

(
supp∈Vn

diamρ Cp

)−1. The representation

π(f)
(

φ+

φ−

)
(v) :=

(
f(τ+(v))φ+(v)
f(τ−(v))φ−(v)

)

,

and self-adjoint operator

D

(
φ+

φ−

)
(v) =

(
0 D−

D+ 0

)(
φ+

φ−

)
(v) :=

(
ζ|v|φ−(v)
ζ|v|φ+(v)

)

,

define a spectral triple (Lip(Ω0), �2(V, C2),D) for C(Ω0) whose K-homology
class coincides with that of the quasi-homomorphism (πτ+ , πτ−).

Proof. The only thing to check is that the Lipschitz functions for the metric
ρ have bounded commutators with each such D. This follows since

‖[D, f ]φ(v)‖ = ζ|v|‖f(τ+(v)) − f(τ−(v))‖‖φ(v)‖,

and by assumption the sequence ζ|v| satisfies ζ|v| ≤ Cρ(τ+(v), τ−(v))−1. �

The spectral triple constructed in [74, Proposition 8] corresponds to
choosing the sequence ζn := enR. Here we choose the sequence ζn := log(1+n).
Before we proceed, we record the following observation which serves as the
main technical tool in our arguments below.

Lemma 5.2. Let x, y ∈ B(0;nR) and ‖x − y‖ < r. If α, ω ∈ Ω0 are such that
x ∈ L(ω), y ∈ L(α) and ρ(T−xω, T−yα) ≤ e−nR, then x = y and ρ(α, ω) ≤
e−nR+‖x‖.

Proof. Since ρ(T−xω, T−yα) ≤ e−nR, it holds that

L(T−xω) ∩ B(0;nR) = L(T−yα) ∩ B(0;nR),

and x, y ∈ R
d ∩ B(0;nR) gives

−x,−y ∈ L(T−xω) ∩ B(0;nR) = L(T−yα) ∩ B(0;nR),

and since ‖x − y‖ < r, it follows that x = y. Then because

B(−x;nR − ‖x‖) ⊂ B(0;nR), Tx(B(−x;nR − ‖x‖)) = B(0;nR − ‖x‖)

it follows that

L(ω) ∩ B(0;nR − ‖x‖) = L(α) ∩ B(0;nR − ‖x‖).

This means that ρ(α, ω) ≤ e−(nR−‖x‖) = e−nR+‖x‖. �
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5.2. The Product Operator

We now proceed to describe the product operator (in the sense of [66]) defined
from the unbounded Kasparov module of Proposition 1.13 and the Pearson–
Bellissard spectral triples of Proposition 5.1. Because the formulas that ap-
pear in this section are somewhat involved, we condense our notation for the
groupoid G. Namely, let ξ = (ω, x) ∈ G be a generic groupoid element and
let x(ξ) ∈ R

d be the image of the cocycle (ω, x) �→ x ∈ R
d with xk(ξ) the

kth component, xk. Furthermore, to reduce computational complexity, for the
remainder of this section we set σ = 1. The case of a non-trivial 2-cocycle twist
requires a separate treatment and involves even longer computations, though
we expect the analytic subtleties to be similar.

Given a choice function τ : V → ∂T = Ω0, consider the fibre product

Gs ×τ V := {(ξ, v) ∈ G × V : s(ξ) = τ(v)}.

Denote by L2(Gs ×τ V) the Hilbert space completion of Cc(Gs ×τ V) in the
inner product

〈φ, ψ〉 =
∑

v∈V

∑

ξ,s(ξ)=τ(v)

φ(ξ, v)ψ(ξ, v).

The following lemma is a straightforward verification.

Lemma 5.3. Let τ : V → Ω0 be a choice function. The map

α : Cc(G) ⊗alg
πτ

Cc(V) → Cc(Gs ×τ V), α(f ⊗ ψ)(ξ, v) := f(ξ)ψ(v),

extends to a unitary isomorphism EC(Ω0) ⊗πτ
L2(V) ∼−→ L2(Gs ×τ V). The left

representation of Cc(G) is concretely expressed as

f ∗ φ(η, w) =
∑

s(ξ)=r(η)

f(ξ)φ(ξ−1η, v).

Using this lemma, we can decompose the tensor product Hilbert space
via the choice function,

H = H+ ⊕ H− = L2(Gs ×τ+ V)⊗̂
∧∗

R
d ⊕ L2(Gs ×τ− V)⊗̂

∧∗
R

d,

though we note that H± is not the decomposition of the tensor product Hilbert
space due to the grading, which also takes into account the Z2-graded structure
of

∧∗
R

d. On this Hilbert space, the operator X from the bulk KK-cycle in
Eq. (4) on page 1993 is mapped to the operator

X =
d∑

k=1

Xk⊗̂γk : H± → H±, X(φ ⊗ w)(ξ, v) =
d∑

k=1

xk(ξ)φ(ξ, v)⊗̂γkw.

We fix ε with 0 < ε < r
2 , a discrete lattice Y ⊂ R

d and a uniformly locally
finite cover for R

d with subordinate partition of unity

Y := {B(y; ε)}y∈Y , χy : B(y; ε) → [0, 1],
∑

y∈Y

χ2
y = 1,
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Recalling Proposition 2.18, from Y, we consider the sets {Vy}y∈Y ,

Vy =
{
ξ = (ω, x) ∈ Ω0 × R

d : x ∈ L(ω) ∩ B(y; ε)
}
,

which form an s-cover of G. Consequently, the functions χy : G → R define a
frame for EC(Ω0). In order to construct the connection operator, we wish to
describe the maps

〈χ±
y | : L2(G ×τ± V) → �2(V), |χ±

y 〉 : �2(V) → L2(Gs ×τ± V).

Since the support χy is a compact subset of B(y; ε), the convolution product
takes the form

χ∗
y ∗ f(η, v) =

∑

ξ∈r−1(r(η))

χ∗
y(ξ)f(ξ−1η, v) =

∑

ξ∈r−1(r(η))

χy(ξ−1)f(ξ−1η, v)

=
∑

{ξ∈s−1(r(η))∩Vy}
χy(ξ)f(ξη, v)

= χy(ξ)f(ξη, v), with ξ ∈ s−1(r(η)) ∩ Vy,

and 0 when the latter set is empty. This shows that the maps become

〈χ±
y | : L2(G ×τ± V) → �2(V), 〈χ±

y |φ(v) := χy(ξy
±(v))φ(ξy

±(v), v),

whenever Vy ∩s−1(τ±(v)) �= ∅ and ξy
±(v) is the unique point in Vy ∩s−1(τ±(v)).

In case Vy ∩ s−1(τ±(v)) = ∅ we have 〈χ±
y |φ(v) = 0. We can now define the

operators

T± : Cc(G ×τ± V) → Cc(G ×τ∓ V),

by

T+φ+(η, v) =
∑

y

∑

ξ∈s−1(τ+(v))

ζ|v|χy(η)χy(ξ)φ+(ξ, v), s(η) = τ−(v).

The above sum is in fact finite for each (η, v) ∈ G ×τ− V, since the summands
are nonzero only for those y with η ∈ Vy and Vy ∩ s−1(τ+(v)) �= ∅. For T− we
have an analogous formula.

The operators T± can be viewed as being constructed from the Grass-
mann connection associated with the frame {χy} as in [66, Section 3.4]. We
use the methods developed there to address self-adjointness properties of these
operators.

Lemma 5.4. The operator

T :=
(

0 T−
T+ 0

)
: Cc(G ×τ+ V) ⊕ Cc(Gs ×τ− V)→L2(G ×τ+ V) ⊕ L2(Gs ×τ− V),

is essentially self-adjoint.

Proof. For fixed z the continuous functions
(
χy | χz

)
C(Ω0)

(ω) =
∑

ξ∈s−1(ω)

χy(ξ)χz(ξ),

are possibly nonzero only for those y with B(y; ε) ∩ B(z; ε) �= ∅. There are
only finitely many such y since the cover Y has finite intersection number.
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Moreover, they are locally constant since for ρ(α, ω) < e−nR sufficiently small
we have

(χy | χz)C(Ω0)(α) = (χy | χz)C(Ω0)(ω),

by Lemma 5.2. Thus, the frame {χy}y∈Y is column finite in the sense of [66,
Proposition 3.2], the operators Θz,z := Θχz,χz

preserve a core for T by [66,
Lemma 3.15] and the commutators [T,Θz,z] extend to bounded operators by
[66, Lemma 3.8].

It remains to show that there exists an approximate unit un in the convex
hull of the Θz,z that satisfies [66, Definition 3.9]. For a fixed n, consider the
set

In :=
⋃

v⊂B(0;nR)

{y ∈ Y : s−1(τ±(v)) ∩ Vy �= ∅},

and consider the operator un :=
∑

y∈In
Θy,y. Since

[T,Θy,y]φ(η, ν) =
∑

z,ξ

(χy(ξ)2 − χy(η)2)ζ|ν|χz(ξ)χz(η)φ(ξ, ν),

we see that for |v| ≥ nR, Lemma 5.2 gives that x(ξ) = x(η) and thus χy(ξ) =
χy(η), so we have [T, un]φ(η, v) = 0. For |v| ≤ nR, we find

∑

y∈In

(χy(r(ξ))2 − χy(r(η))2)ζ|v|χz(ξ)χz(η)φ(ξ, ν) = 0,

because ξ, η ∈ s−1(τ±(v)) and ν ⊂ B(0;nR) so
∑

y∈In
χ2

y(ξ) =
∑

y∈In
χ2

y(η) =
1. This proves that [T, un] = 0, so {χy}y∈Y form a complete frame and T is
essentially self-adjoint by [66, Theorem 3.18]. �

Denote by

C = C+ ⊕ C− := Cc(G ×τ+ V)⊗̂
∧∗

R
d ⊕ Cc(G ×τ− V)⊗̂

∧∗
R

d,

the common core for X and T and by κ the grading operator on
∧∗

R
d. Then

we have Xκ = −κX and Tκ = κT . We now address self-adjointness of the
densely defined symmetric Hilbert space operator D = X + Tκ, using the
methods of [63].

Proposition 5.5. The resolvent (X±i)−1 maps the core C bijectively onto itself.
For φ ∈ C± and w ∈

∧∗
R

d we have the estimate
〈
(XTκ + TκX)(φ ⊗ w), (XTκ + TκX)(φ ⊗ w)

〉
≤ r2‖Tκ(φ ⊗ w)‖2.

Consequently, the sum operator D := X + Tκ is essentially self-adjoint with
compact resolvent and the bounded transforms of X and D satisfy the Connes–
Skandalis positivity and connection conditions (see [28, Appendix A]).

Proof. The statement about the resolvent is immediate since X is given by
Clifford multiplication by a real valued function. Thus, the anti-commutator
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XTκ + TκX = (XT − TX)κ is defined on C. The commutator XT − TX can
be explicitly computed as

(TX − XT )(φ(η, v)⊗w) =
d∑

k=1

∑

y,ξ

(xk(ξ) − xk(η))ζ|v|χy(ξ)χy(η)φ(ξ, v) ⊗ γkw

=
d∑

k=1

(xk(ξ) − xk(η))(Tφ)(η, v) ⊗ γkw,

and since the γk are Clifford matrices, it holds that
∥
∥
∥
∥
∥

d∑

k=1

(xk(ξ) − xk(η))(Tφ)(η, v) ⊗ γkw

∥
∥
∥
∥
∥

2

=
∑

k

‖xk(ξ) − xk(η)‖2‖Tκ(φ ⊗ w)‖2.

Since x(ξ), x(η) ∈ B(y; ε), it follows that
∑

k ‖xk(ξ) − xk(η)‖2 < 4ε2 ≤ r2,
which gives us the desired estimate. Self-adjointness, compact resolvent and
positivity follow from [63, Theorem 4.5, Theorem 7.4, Proposition 7.12], and
the connection condition follows from [66, Theorem 4.4]. �

Remark 5.6. Note that we have not yet shown that D has bounded commu-
tators with Cc(G) and that this is the only obstruction to D representing the
unbounded Kasparov product via [63, Theorem 7.4]. In fact, the operator X
has bounded commutators with all f ∈ Cc(G), but the operator T does not.
In the next section we will show that whenever ζ|v| is chosen so that it grows
sufficiently slowly, the bounded transform of D will be a Fredholm module.
This Fredholm module will satisfy the Connes–Skandalis connection and posi-
tivity conditions by the previous proposition and thus represents the Kasparov
product.

5.3. The Bounded Transform as a Fredholm Module

Recall that a continuous function b : R → [− 1, 1] is a normalising function if
it is odd and limx→±∞ b(x) = ± 1. To prove that for the right choice of ζ|v| we
obtain a Fredholm module, we use the following lemma.

Lemma 5.7. Let (S, T ) be a weakly anti-commuting pair of self-adjoint regular
operators on the Hilbert C∗-module EB, a ∈ End∗(EB), b : R → [− 1, 1]
normalising function and 0 < δ < 1

2 . Write D = S + T and suppose that
a(D ± i)−1 is compact and the operators

[S, a], (1 + S2)−δ[T, a], [T, a](1 + S2)−δ,

extend boundedly to all of EB. Then [b(D), a] is a compact operator.

Proof. We need only show that [T, a](1 + D2)−δ and its adjoint extend to
bounded operators. Then [36, Theorem A.6] applies to reach the conclusion.
Since we have the factorisation

[T, a](1 + D2)−δ = [T, a](1 + S2)−δ(1 + S2)δ(1 + D2)−δ,

it suffices to show that (1 + S2)δ(1 + D2)−δ is bounded. Now if R is a densely
defined operator on EB with bounded adjoint, then for e1 ∈ Dom R, e2 ∈ EB ,
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‖(Re1 | e2)B‖ = ‖(e1 | R∗e2)B‖ ≤ C‖e1‖‖e2‖
so R is bounded on its domain. Since D = S + T is self-adjoint and regular on
Dom S ∩ Dom T , the operators (S ± i)(D ± i)−1 are everywhere defined and
closed, hence bounded. Their adjoints are the extension of (D ± i)−1(S ± i).
Hence,

((1 + D2)−1e | e)B

= ((D + i)−1e | (D + i)−1e)B

= ((D + i)−1(S + i)(S + i)−1e | (D + i)−1(S + i)(S + i)−1e)B

≤ C((S + i)−1e | (S + i)−1e)B = C((1 + S2)−1e | e)B .

Thus, it holds that

(1 + D2)−1 ≤ C(1 + S2)−1.

For 0 < δ < 1
2 we have the form estimate

((1 + D2)−δ(1 + S2)δe | (1 + D2)−δ(1 + S2)δe)B ≤ Cδ(e | e)B ,

which proves that the adjoint is bounded. �
By Proposition 1.11 every f ∈ Cc(G) can be expressed as a finite sum

f =
∑

y χyfy with fy ∈ C(Ω0). It follows that f∗ =
∑

f∗
y χ∗

y, and since Cc(G) is
closed under the adjoint operation, it suffices to show that for all f ∈ Lip(Ω0)
and all χ∗

k Lemma 5.7 is satisfied for certain choices of ζ|v|. From now on, we
fix the choice ζ|v| := log(1 + |v|).
Lemma 5.8. Let f ∈ Lip(Ω0). Then

‖f‖log := sup
α�=ω

|f(α) − f(ω)|
log(1 − log(ρ(α, ω)))

< ∞,

and so ‖f(α) − f(ω)‖ ≤ ‖f‖log log(1 − log(ρ(α, ω))).

Proof. Since 0 ≤ ρ(α, ω) ≤ 1, it follows that

ρ(α, ω) ≤ log(e − log(ρ(α, ω))) ≤ log(1 − log(ρ(α, ω))) + log(e − 1).

So for ρ(α, ω) small there is a uniform constant with

ρ(x, y) ≤ C log(1 − log(ρ(α, ω))),

and ‖f‖log ≤ ‖f‖Lip
C . The statement follows. �

Lemma 5.9. Let V := {Vy}y∈Y be an s-cover of a groupoid G with intersection
number N and χy a subordinate partition of unity. For η ∈ G and ω ∈ G(0)

fixed, the set

Yη,ω := {(ξ, y) ∈ s−1(ω) × Y : χy(ξ)χy(η) �= 0},

contains at most N elements.

Proof. First of all observe that (ξ, y) ∈ Yη,ω only if ξ, η ∈ Vy and there can be
at most N distinct indices y for which η ∈ Vy. Secondly if (ξ, y), (ξ′, y) ∈ Yη,ω,
then since Vy is an s-cover, it follows that ξ = ξ′. Thus, there are at most N
distinct pairs (ξ, y) ∈ Yη,ω. �
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Proposition 5.10. For f ∈ Lip(Ω0) and δ > 0 the operators (1 + X2)−δ[T, f ]
and [T, f ](1 + X2)−δ extend to bounded operators.

Proof. Because X2 and T act diagonally on the finite-dimensional Clifford
representation space

∧∗
R

d, it suffices to prove boundedness on L2(Gs ×τ+

V) ⊕ L2(Gs ×τ− V). For f ∈ Lip(Ω0) the commutator takes the simple form

[T+, f ](1 + X2)−δφ+(η, v)

=
∑

y

∑

ξ∈s−1(τ+(v))

ζ|v|(1 + ‖x(ξ)‖2)−δ(f(r(ξ)) − f(r(η)))χy(η)χy(ξ)φ+(ξ, v),

with s(η) = τ−(v). We consider the two cases namely

ξ ∈ Jv := x−1(B(0; |v|R − r)), ξ /∈ Jv.

In the first case, we have χy(ξ), χy(η) �= 0 only if x(η) ∈ B(0; |v|R), and Lemma
5.2 gives that x(ξ) = x(η). Then applying Lemma 5.8 yields the estimate

‖f(r(ξ)) − f(r(η))‖ ≤ ‖f‖log log(1 + |v|R − ‖x(ξ)‖).

Since

sup
v

sup
ξ∈Jv

log(1 + |v|R − ‖x(ξ)‖)(1 + ‖x(ξ)‖2)−δ log(1 + |v|) < ∞,

and denoting by Jc
v the complement of Jv,

sup
v

sup
ξ∈Jc

v

ζ|v|(1 + ‖x(ξ)‖2)−δ < ∞,

so we have the following norm estimates (with C denoting a generic constant):
∥
∥[T+, f ](1 + X2)−δφ+(η, v)

∥
∥2

=
∑

v∈V,
η∈s−1(τ−(v))

∥
∥
∥
∥
∥
∥

∑

ξ∈s−1(τ+(v))

∑

y

ζ|v|(1 + ‖x(ξ)‖2)−δ

× (f(r(ξ)) − f(r(η)))χy(η)χy(ξ)φ+(ξ, v)

∥
∥
∥
∥
∥
∥

2

≤ C
∑

v,η

⎛

⎝
∑

ξ∈s−1(τ+(v))

∥
∥
∥
∥
∥

∑

y

χy(η)χy(ξ)φ+(ξ, v)

∥
∥
∥
∥
∥

⎞

⎠

2

≤ C
∑

v,η

⎛

⎝
∑

ξ∈s−1(τ+(v))

∑

y

χy(η)χy(ξ) ‖φ+(ξ, v)‖

⎞

⎠

2

≤ CN
∑

v,η

∑

ξ∈s−1(τ+(v))

∑

y

χy(η)2χy(ξ)2‖φ+(ξ, v)‖2,
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where we have used Lemma 5.9 and the estimate (a1 + · · · + aN )2 ≤ N(a2
1 +

· · ·+a2
N ). Now we use that for a fixed ξ ∈ s−1(τ+(v)) and y ∈ Y with χy(ξ) �= 0

there is at most one η ∈ s−1(τ−(v)) with 0 �= χy(η) ≤ 1 so
∥
∥[T+, f ](1 + X2)−δφ+(η, v)

∥
∥2 ≤ CN

∑

v∈V

∑

ξ∈s−1(τ+(v))

∑

y

χy(ξ)2‖φ+(ξ, v)‖2

≤ CN
∑

v∈V

∑

ξ∈s−1(τ+(v))

‖φ+(ξ, v)‖2 = N‖φ‖2,

it follows that [T, f ](1 + X2)−δ defines a bounded operator for all δ > 0. �

Next we consider the commutator [T, χ∗
z] with χz the frame elements. We

obtain the same statement for them.

Lemma 5.11. For φ ∈ Cc(Gs ×τ+ V) we have

〈[T+, χ∗
z]φ, [T+, χ∗

z]φ〉

=
∑

v∈V

∑

η∈s−1(τ−(v))

ζ2
|v|

×

∥
∥
∥
∥
∥
∥

∑

ξ∈s−1(τ+(v))

∑

y,α,β

(χz(α)χy(βη)χy(αξ) − χz(β)χy(η)χy(ξ)) φ(ξ, v)

∥
∥
∥
∥
∥
∥

2

,

(13)

where we used the shorthand notation
∑

y,α,β :=
∑

α∈s−1(r(ξ))

∑
β∈s−1(r(η))∑

y∈Y .

Proof. The formula is obtained by direct calculation. First, we compute the
commutator acting on a function φ ∈ Cc(Gs ×τ+ V):

[T+, χz]φ(η, v) =
∑

y

∑

ξ∈s−1(τ+(v))

∑

α∈r−1(r(ξ))

ζ|v|χy(η)χy(ξ)χz(α)φ(α−1ξ, v)

−
∑

y

∑

β∈r−1(r(η))

∑

ξ∈s−1(τ+(v))

ζ|v|χz(β)χy(β−1η)χy(ξ)φ(ξ, v)

=
∑

y

∑

ξ∈s−1(τ+(v))

∑

α∈s−1(r(ξ))

ζ|v|χz(α)χy(η)χy(αξ)φ(ξ, v)

−
∑

y

∑

β∈r−1(r(η))

∑

ξ∈s−1(τ+(v))

ζ|v|χz(β)χy(β−1η)χy(ξ)φ(ξ, v)

=
∑

y,ξ

ζ|v|

⎛

⎝
∑

α∈s−1(r(ξ))

χz(α)χy(η)χy(αξ)

−
∑

β∈r−1(r(η))

χz(β)χy(β−1η)χy(ξ)

⎞

⎠φ(ξ, v).
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The L2-norm of the vector [T+, χ∗
z]φ is thus computed as

〈[T+, χ∗
z]φ, [T+, χ∗

z]φ〉 =
∑

v∈V

∑

η∈s−1(τ−(v))

‖[T+, χ∗
k]φ(η, v)‖2

=
∑

v,η

ζ2
|v|

∥
∥
∥
∥
∥
∥

∑

y,ξ

⎛

⎝
∑

α∈s−1(r(ξ))

χz(α)χy(η)χy(αξ)

−
∑

β∈r−1(r(η))

χz(β)χy(β−1η)χy(ξ)

⎞

⎠φ(ξ, v)

∥
∥
∥
∥
∥
∥

2

=
∑

v,η

ζ2
|v|

∥
∥
∥
∥
∥
∥

∑

y,ξ

⎛

⎝
∑

α∈s−1(r(ξ))

∑

β∈s−1(r(η))

χz(α)χy(βη)χy(αξ)

−χz(β)χy(η)χy(ξ)) φ(ξ, v)

∥
∥
∥
∥
∥
∥

2

=
∑

v,η

ζ2
|v|

∥
∥
∥
∥
∥
∥

∑

ξ

∑

y,α,β

(χz(α)χy(βη)χy(αξ) − χz(β)χy(η)χy(ξ)) φ(ξ, v)

∥
∥
∥
∥
∥
∥

2

.

This is the desired formula. �

In the inner product expression (13) on page 2019, we split the sum over
V into a sum over

Vz :={v ∈ V : z ∈ B(0; |v|R − r)}, and V\Vz ={v ∈ V : z /∈B(0; |v|R − r)}.

The sum over V\Vz is easily seen to define a bounded operator B. We further
examine the expression that occurs inside the norm bars in (13), namely

∑

ξ∈s−1(τ+(v))

∑

α∈s−1(r(ξ))

∑

β∈s−1(r(η))

∑

y

(χz(α)χy(βη)χy(αξ) −χz(β)χy(η)χy(ξ))φ(ξ, v),

(14)

for v ∈ Vz and η ∈ s−1(τ−(v)) fixed. We need to further distinguish between
two cases for ξ ∈ s−1(τ+(v)) with ξ, η ∈ Vy. For the fixed function χz, we split
the sum over ξ ∈ s−1(τ+(v)) into a sum over

J(z,v) := {ξ ∈ s−1(τ+(v)) : x(ξ) /∈ B(0; |v|R − ‖z‖ − r)}, and

s−1(τ+(v))\J(z,v),

for which we obtain the following expression.

Lemma 5.12. We have an equality

∑

v∈V,

η∈s−1(τ−(v))

ζ2
|v|

∥
∥
∥
∥
∥
∥

∑

ξ∈s−1(τ+(v))

∑

y,α,β

(χz(α)χk(βη)χy(αξ) − χz(β)χy(η)χy(ξ))φ(ξ, v)

∥
∥
∥
∥
∥
∥

2

= 〈Bφ, Bφ〉
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+
∑

v∈Vz,

η∈s−1(τ−(v))

ζ2
|v|

∥
∥
∥
∥
∥
∥

∑

ξ∈J(z,v)

∑

y,α,β

(χz(α)χy(βη)χy(αξ) − χz(β)χy(η)χy(ξ))φ(ξ, v)

∥
∥
∥
∥
∥
∥

2

,

where B is a bounded operator.

Proof. We need to show that the sum over

ξ ∈ s−1(τ+(v))\J(z,v) = {ξ ∈ s−1(τ+(v)) : x(ξ) ∈ B(0; |v|R − ‖z‖ − r)}
vanishes. To this end, we prove the implication

ξ ∈ s−1(τ+(v))\J(z,v) ⇒ x(ξ) = x(η), x(α) = x(β), x(αξ) = x(βη). (15)

Using (15) we deduce that the sum over Jc
(z,v) := s−1(τ+(v))\J(z,v) vanishes,

because χz(η) depends only on x(η):
∑

y

∑

ξ∈Jc
(z,v)

∑

α∈s−1(r(ξ))

∑

β∈s−1(r(η))

(χz(α)χy(βη)χy(αξ)

−χz(β)χy(η)χy(ξ)) φ(ξ, v)

=
∑

ξ∈Jc
(z,v)

∑

α∈s−1(r(ξ))

∑

β∈s−1(r(η))

∑

y

χz(β)
(
χy(βη)2 − χy(η)2

)
φ(ξ, v) = 0,

and we are left with the sum over the complement J(z,v). It thus remains to
show (15) holds true.

Let η ∈ s−1(τ−(v)) and ξ ∈ s−1(τ+(v)) with x(ξ), x(η) ∈ B(y; ε) as well
as ξ ∈ s−1(τ+(v))\J(z,v). First, observe that we have

L(τ+(v)) ∩ B(0; |v|R) = L(τ−(v)) ∩ B(0; |v|R),

since ρ(τ+(v), τ−(v)) ≤ e−|v|R. Then since

x(ξ) ∈ B(0; |v|R − ‖z‖ − r) ⊂ B(0; |v|R − r)

and ‖x(ξ) − x(η)‖ < r it must hold that x := x(ξ) = x(η). We also conclude
that

ρ(Txτ+(v), Txτ−(v)) ≤ e−|v|R+‖x(ξ)‖,

by Lemma 5.2, and thus,

L(Txτ+(v)) ∩ B(0; |v|R − ‖x(ξ)‖) = L(Txτ−(v)) ∩ B(0; |v|R − ‖x(ξ)‖).

For any two elements

α=(Tx(α)r(ξ), x(α))∈s−1(r(ξ)) ∩ Vz, β=(Tx(β)r(η), x(β))∈s−1(r(η))∩Vz,

we have

−x(α) ∈ L(Txτ+(v)) ∩ B(z; ε), −x(β) ∈ L(Txτ−(v)) ∩ B(z; ε).

Now for x = x(ξ) = x(η) ∈ B(0; |v|R − ‖z‖ − r) we have B(z; ε) ⊂ B(0; |v|R −
‖x(ξ)‖). Using Lemma 5.2, we find

−x(α),−x(β) ∈ L(Txτ+(v)) ∩ B(0; |v|R − ‖x(ξ)‖)

= L(Txτ−(v)) ∩ B(0; |v|R − ‖x(ξ)‖),
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and since ‖x(α) − x(β)‖ < r, it must hold that z := x(α) = x(β). Thus,

α = (Tx+w(τ+(v)), w), β = (Tx+w(τ−(v)), w)

where −w is the unique point in L(Txτ+(v)) ∩B(z; ε) = L(Txτ−(v)) ∩B(z; ε). We
then have

αξ = (Tw+x(τ+(v)), w + x), βη = (Tw+x(τ−(v)), w + x),

that is x(αξ) = x(βη). This proves (15) on page 2021. �

Proposition 5.13. Let χk be the partition of unity elements associated with the
s-cover {Vy}y∈Y . The operators

[T, χ∗
k](1 + X2)−δ, (1 + X2)−δ[T, χ∗

k]

extend boundedly to all of L2(G ×τ+ V)⊗̂
∧∗

R
d ⊕ L2(G ×τ− V)⊗̂

∧∗
R

d.

Proof. We can again ignore the finite-dimensional space
∧∗

R
d, where X2 and

T act diagonally. Consider

〈[T, χ∗
k](1 + X2)−δφ, [T, χ∗

k](1 + X2)−δφ〉 − 〈Bφ, Bφ〉

=
∑

v∈Vz,

η∈s−1(τ−(v))

ζ2
|v|

∥
∥
∥
∥
∥
∥

∑

ξ∈J(z,v)

(1 + ‖x(ξ)‖2)−δ
∑

y,α,β

(χk(α)χy(βη)χy(αξ)

− χk(β)χy(η)χy(ξ))φ(ξ, v)

∥
∥
∥
∥
∥
∥

2

≤
∑

v∈Vz,

η∈s−1(τ−(v))

⎛

⎝
∑

ξ∈J(z,v)

∥
∥
∥
∥
∥
∥

∑

y,α,β

(χk(α)χy(βη)χy(αξ) − χz(β)χy(η)χy(ξ))φ(ξ, v)

∥
∥
∥
∥
∥
∥

⎞

⎠

2

≤
∑

v∈Vz,

η∈s−1(τ−(v))

∑

ξ∈J(z,v)

N

∥
∥
∥
∥
∥
∥

∑

y,α,β

(χz(α)χy(βη)χy(αξ) − χz(β)χy(η)χy(ξ))

∥
∥
∥
∥
∥
∥

2

‖φ(ξ, v)‖2,

where the last inequality follows from Lemma 5.9. We proceed

〈[T, χ∗
k](1 + X2)−δφ, [T, χ∗

k](1 + X2)−δφ〉 − 〈Bφ,Bφ〉

≤ 2N
∑

v∈Vz,
η∈s−1(τ−(v))

∑

ξ∈J(z,v)

∑

y,α,β

(
χz(α)2χy(αξ)2χy(βη)2

+χz(β)2χy(ξ)2χy(η)2
)
‖φ(ξ, v)‖2

≤ 2N
∑

v∈Vz

∑

ξ∈J(z,v)

∑

α,β

(
χz(α)2 + χz(β)2

)
‖φ(ξ, v)‖2

≤ 4N
∑

v∈Vz

∑

ξ∈J(z,v)

‖φ(ξ, v)‖2 ≤ 4N‖φ‖2,

and we conclude that [T, χ∗
k](1 + X2)−δ is bounded for all δ. The statement

for (1 + X2)−δ[T, χ∗
k] follows in a similar manner. �



Vol. 20 (2019) Index Theory and Topological Phases 2023

Theorem 5.14. The triple
(
Cc(G)⊗̂Cl0,d, L2(Gs ×τ+ V)⊗̂

∧∗
R

d ⊕ L2(Gs ×τ− V)⊗̂
∧∗

R
d, X + Tκ

)

is an ε-unbounded Fredholm module for all 0 < ε < 1 in the sense of [36, Defi-
nition A.1]. It represents the Kasparov product of the class [dλΩ0 ] ∈ KK(C∗

r (G)
⊗̂Cl0,d, C(Ω0)) of Eq. (4) on page 1993 and the quasi-homomorphism [(πτ+ , πτ−)] ∈
KK(C(Ω0), C).

Proof. By [36, Theorem A.6] the bounded transform of X + Tκ is a Fredholm
module. By Proposition 5.5 and [28, Theorem A.3], this Fredholm module
represents the Kasparov product of the indicated classes. �

As previously mentioned, it would be interesting to compare the K-
homology class of the ε-unbounded Fredholm module from Theorem 5.14 with
similar constructions in the tiling literature [57,64].

We have concretely represented a K-homology class containing informa-
tion of both the transversal dynamics and internal structure of the unit space.
In Sect. 6.3 we will briefly consider its potential applications to topological
phases of lattices or tilings with finite local complexity (e.g. quasicrystals) via
the index pairing.

6. Index Pairings and Topological Phases

Up to now we have largely been concerned with the K-homology and KK-
theory of C∗

r (G, σ). In this section, we use these constructions and properties
to consider homomorphisms on K-theory. That is, we are interested in product
pairings in real or complex K-theory

Kn(C∗
r (G, σ)) × KKd(C∗

r (G, σ), C(Ω0)) → Kn−d(C(Ω0)). (16)

Our motivation for studying such pairings comes from applications to
topological phases of Hamiltonians on aperiodic lattices, which we briefly in-
troduce. A low-energy quantum mechanical system with negligible interactions
between particles is modelled via a self-adjoint Hamiltonian acting on a com-
plex separable Hilbert space H. This Hamiltonian is often an element of or
affiliated to a C∗-algebra of observables. One can then consider underlying
symmetries of the Hamiltonian, where Wigner’s theorem implies that such
symmetries arise on H as projective unitary or anti-unitary representations
of a symmetry group [94]. In the case of an anti-unitary representation of Z2

(e.g. a time-reversal symmetry), conjugation by the generator of this represen-
tation often gives a Real structure r on the C∗-algebra of observables. That is,
an anti-linear order-2 automorphism that commutes with the ∗-operation.

While other symmetry groups can be considered, for free-fermionic topo-
logical phases, one generally considers a symmetry group G ⊂ Z2 × Z2. The
symmetries that generate this group are chiral symmetry (unitary,
anti-commutes with Hamiltonian), time-reversal symmetry (anti-unitary, com-
mutes with Hamiltonian) and particle–hole symmetry (anti-unitary,
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anti-commutes with Hamiltonian). A key reason for studying such symmetries
comes from the following result.

Proposition 6.1 ([49]). Let h be a self-adjoint element in the complex C∗-
algebra A with a spectral gap at 0 (taking a shift h − μ if necessary).
(1) The spectral projection χ(−∞,0](h) gives a class in K0(A).
(2) If h has a chiral symmetry, then h determines an element in K1(A).
(3) If h has a time-reversal symmetry and/or particle–hole symmetry, then

h determines an element in KOn(Ar). The degree n of the KO-theory
group and the Real structure r is determined by the symmetry of the
Hamiltonian (cf. [49, Section 6]).

Remarks 6.2. (1) Proposition 6.1 has appeared in numerous forms, see [19,
34,53,93] for example.

(2) We wish to apply Proposition 6.1 to the case A = C∗
r (G, σ) (complex

C∗-algebras) so that we can then apply our KK-theoretic machinery
to the case of invertible Hamiltonians h ∈ C∗

r (G, σ). For systems with no
anti-linear symmetries, this is no problem. For systems with time-reversal
symmetry or particle–hole symmetry, we require the corresponding real
subalgebra C∗

r (G, σ)r to have a presentation as a twisted real groupoid C∗-
algebra, C∗

r (G, σR)R with σR a O(1)-valued twist. This places a restriction
on the U(1)-valued twist σ, but is immediate if the twist is trivial. Such
assumptions are to be expected as, for example, the case of magnetic
twists from Example 2.19 should in general not be compatible with a
time-reversal symmetry.

Hence, we shall from now on assume that our algebra of observables
is given by the real or complex transversal groupoid C∗-algebra and that
we have a class in Kn(C∗

r (G, σ)) (real or complex) to take pairings with.
(3) Because we have an unbounded Kasparov module

dλΩ0 =

⎛

⎝Cc(G, σ)⊗̂Cl0,d, EC(Ω0)⊗̂
∧∗

R
d, X =

d∑

j=1

Xj⊗̂γj

⎞

⎠ ,

the completion A = Cc(G, σ) of Cc(G, σ) in the norm ‖f‖ + ‖[X, f ]‖
is a Banach ∗-algebra that is stable under the holomorphic functional
calculus [18]. Having fixed such an algebra A, the spectral gap assumption
on h ∈ C∗

r (G, σ), means that we can improve Proposition 6.1 and obtain
an element of the group Kn(A) ∼= Kn(C∗

r (G, σ)).

Given a K-theory class from Proposition 6.1, we can thus consider pair-
ings such as Eq. (16) on page 2023. In general, the pairing in Eq. (16) can
be described using a Clifford index similar to Atiyah–Bott–Shapiro [5]. This
index then serves as an explicit phase label of the K-theory class from Propo-
sition 6.1.

Also of importance are numerical pairings, which can be defined in a
few ways. One is by point evaluation C(Ω0) → C or R, which leads to Z or
Z2-valued invariants. Alternatively, we fix a faithful and invariant measure on
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ΩL, which gives an invariant measure on Ω0. This defines a trace on C(Ω0)
and a homomorphism K0(C(Ω0)) → R. In particular, for complex algebras,
the composition

K∗(C∗
r (G, σ)) × KK∗(C∗

r (G, σ), C(Ω0)) → K0(C(Ω0))
∫

−→ R (17)

can be computed using the semifinite local index formula. The cyclic formula
that we obtain from the local index formula is then more amenable to physical
interpretation and numerical approximation.

6.1. Complex Pairings

For complex algebras, we use the semifinite local index formula to pair complex
K-theory classes in K∗(C∗

r (G, σ)) with the spinc semifinite spectral triple from
Eq. (12) on page 2010. Algebraic manipulation of the Dirac operator means
that only the top degree term survives as in [16, Appendix]. Then we can
evaluate the resolvent cocycle, which uses the residue trace computation from
Proposition 4.4. We will simply state the result as the proof follows the same
argument as analogous results in [22,23].

Proposition 6.3. Let u be a complex unitary in Mq(A) and dλ
SC

τ the complex
semifinite spectral triple from Eq. (12) on page 2010 with d odd. Then the
semifinite index pairing is given by the formula

〈[u], [dλSC

τ ]〉 = C̃d

∑

ρ∈Sd

(− 1)ρ (TrCq ⊗Trτ )

⎛

⎝
d∏

j=1

u∗∂ρ(j)u

⎞

⎠ ,

C̃2n+1 =
2(2πi)nn!
(2n + 1)!

,

where TrCq is the matrix trace on C
q and Sd is the permutation group on d

letters.
If p is a projection in Mq(A), then the pairing with dλ

SC

τ with d even is
given by

〈[p], [dλSC

τ ]〉 = Cd

∑

ρ∈Sd

(− 1)ρ (TrCq ⊗Trτ )

⎛

⎝p

d∏

j=1

∂ρ(j)p

⎞

⎠ , C2n =
(−2πi)n

n!
.

If the measure on the unit space is ergodic, then we can almost surely
describe the semifinite index pairing via the usual Z-valued index pairing with
the evaluation spectral triple from Proposition 4.1. Namely, setting FX =
X(1 + X2)−1/2 and Πq = 1

2 (1 + FX) ⊗ 1q, we have for almost all ω ∈ Ω0,
Index

(
Πqπω(u)Πq + (1 − Πq)

)

= C̃d

∑

ρ∈Sd

(− 1)ρ (TrCq ⊗TrVol)

⎛

⎝
d∏

j=1

πω(u)∗[Xρ(j), πω(u)]

⎞

⎠ ,

Index
(
πω(p)(FX ⊗ 1q)+πω(p)

)

= Cd

∑

ρ∈Sd

(− 1)ρ (TrCq ⊗TrVol)

⎛

⎝πω(p)
d∏

j=1

[Xρ(j), πω(p)]

⎞

⎠ ,
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which was proved by slightly different means in [21].

6.1.1. Weak Chern Numbers. Analogous to the construction in Sect. 4.2, we
can construct a semifinite spectral triple dλ

SC

τk
from the Kasparov module dλk

via the dual trace Trτk
constructed from the trace τk on C∗

r (Υk, σ). This semifi-
nite spectral triple is QC∞ and (d−k)-summable with a residue trace evalua-
tion analogous to Proposition 4.4. The semifinite pairing with dλ

SC

τk
represents

the composition

Kd−k(C∗
r (G, σ)) × KKd−k(C∗

r (G, σ), C∗
r (Υk, σ)) → K0(C∗

r (Υk, σ)) τk−→ R.
(18)

We again use the local index formula to compute this pairing; the interested
reader can consult [23], where the proof transfers to this setting without issue.

Proposition 6.4. The composition from Eq. (18) is computed by, for d−k even
and p ∈ Mq(A) a projection,

〈[p], [dλSC

τk
]〉 = Cd−k

∑

ρ∈Sd−k

(− 1)ρ(Trτ ⊗TrCq )

⎛

⎝p
d∏

j=k+1

∂ρ(j)(p)

⎞

⎠ ,

C2n =
(−2πi)n

n!
.

If d − k is odd and u ∈ Mq(A) is unitary, then

〈[u], [dλSC

τk
]〉 = C̃d−k

∑

ρ∈Sd−k

(− 1)ρ(Trτ ⊗TrCq )

⎛

⎝
d∏

j=k+1

u∗∂ρ(j)(u)

⎞

⎠ ,

C̃2n+1 =
2(2πi)nn!
(2n + 1)!

.

Hence, we recover and extend results from [23,78].

6.2. Real Pairings and Analytic Indices

Our aim for this section is to define an analytic index representing the map

KOn(C∗
r (G, σ)) × KKOd(C∗

r (G, σ), C(Ω0)) → KOn−d(C(Ω0))

Suppose we are given a gapped Hamiltonian h = h∗ in a C∗-algebra A such
that h is compatible with the CT -symmetry group G ⊂ {1, T, C,CT}. Then,
following the construction in [19, Section 3.3], one is able to construct, up to
Morita equivalence, a finitely generated and projective module pA⊕N

A with a
representation Cln,0 → End∗(pA⊕N

A ) constructed from the symmetry group
G. Note that if the Hamiltonian is particle–hole symmetric, then the projec-
tion p ∈ MN (A) is closely related, but not equal, to the Fermi projection
χ(−∞,EF ](h).

When we apply this construction to the transversal groupoid, we obtain
the projective module pC∗

r (G, σ)⊕N
C∗

r (G,σ) which, with its left Cln,0 action, is a
representative of the class [h] ∈ KOn(C∗

r (G, σ)) from Proposition 6.1. The fact
that the Hamiltonian is gapped implies that this class can be represented by
a projective module over the smooth dense subalgebra A ⊂ C∗

r (G, σ).
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The perspective outlined in [19,40] is that topological phases are mea-
sured via a pairing of this K-theory class [h] ∈ KOn(C∗

r (G, σ)) with a dual
element. In our case, this element is precisely the bulk KK-cycle from Eq. (4)
on page 1993. Hence, we compute the product

(
Cln,0, pC∗

r (G, σ)⊕N
C∗

r (G,σ), 0
)

⊗̂C∗
r (G,σ) dλΩ0

=
(
Cln,d, pE⊕N

C(Ω0)
⊗̂R

2d

, p(X ⊗ 1N )p
)

Making small adjustments (that do not change the KK-class) if neces-
sary, we can ensure that the product pXp graded-commutes with the left Cln,d-
action. We denote by FpXp the bounded transform of pXp. If the operator FpXp

is a regular Fredholm operator (as characterised in [41, Section 4.3]), then
Ker(FpXp)C(Ω0) is a complemented C∗-submodule of pE⊕N

C(Ω0)
⊗̂

∧∗
R

d with a
graded left action of Cln,d. Furthermore, all index-theoretic information of the
Kasparov product is contained in the Clifford module Ker(FpXp)C(Ω0), see [19,
Appendix B]. If FpXp is not regular, then we can amplify FpXp to a regular
Fredholm operator at the expense that this changes the supporting model
pE⊕N ⊕C(Ω0)K for some K. The physical significance of this amplification is
not always clear and, as such, needs to be considered on a case by case basis.

We briefly summarise our argument.

Proposition 6.5. If FpXp is regular, then the C∗-module Ker(FpXp)C(Ω0) with
left Cln,d-action represents the Kasparov product of the class [h] ∈ KOn(C∗

r

(G, σ)) with the bulk KK-cycle from Eq. (4) on page 1993.

Let us now associate an analytic index representing the Kasparov product.

Definition 6.6. We let r,sMC(Ω0) be the Grothendieck group of equivalence
classes of real Z2-graded right-C(Ω0) C∗-modules carrying a graded left rep-
resentation of C�r,s.

Provided FpXp is regular, the product Ker(FpXp) determines a class in the
quotient group n,dMC(Ω0)/i∗(n+1,dMC(Ω0)), where i∗ comes from restricting a
Clifford action of C�n+1,d to C�n,d. Next, we use an extension of the Atiyah–
Bott–Shapiro isomorphism, see [88, §2.3], to make the identification

n,dMC(Ω0)/i∗n+1,dMC(Ω0)
∼= KOn−d(C(Ω0)).

Definition 6.7. If FpXp is regular, the Clifford index of FpXp is given by the
class

Indexn−d(FpXp)=[Ker(FpXp)]∈n,dMC(Ω0)/i∗n+1,dMC(Ω0)
∼=KOn−d(C(Ω0)).

Remark 6.8 (Range of the pairing). In general it is a difficult task to compute
KOn−d(C(Ω0)) for a transversal set Ω0 that comes from a generic Delone set.
However, if our original Delone lattice has finite local complexity, then Ω0 is
totally disconnected (Proposition 2.13), so by the continuity of the K-functor,
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KOj(C(Ω0)) ∼= C(Ω0,KOj(R)) =

⎧
⎪⎨

⎪⎩

C(Ω0, Z), j = 0 mod 4,
C(Ω0, Z2), j = 1, 2 mod 8,

0, otherwise.

Example 6.9 (Spectral triple pairings). By the evaluation map evω : C(Ω0) →
R, we can also pair our K-theory classes with the evaluation spectral triple
dλω from Proposition 4.1,

KOn(C∗
r (G)) × KOd(C∗

r (G)) → KOn−d(R).

The Z or Z2-valued indices can be measured using results from [6,40,46].
Writing these pairings explicitly,

[h]⊗̂[dλω]

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dimR Ker
(
(FpωXpω

)+
)

− dimR Ker
(
(FpωXpω

)−
)
, n − d = 0mod 8

dimR Ker
(
(FpωXpω

)+
)
mod 2, n − d = 1mod 8

dimC Ker
(
(FpωXpω

)+
)

mod 2, n − d = 2mod 8
dimH Ker

(
(FpωXpω

)+
)

− dimH Ker
(
(FpωXpω

)−
)
, n − d = 4mod 8

0, otherwise

under the decomposition of F =
(

0 F−
F+ 0

)
by the grading. By considering H

as an even-dimensional complex space, the quaternionic index naturally takes
values in 2Z.

Let us also briefly remark that complex topological phase labels can also
be defined via a Clifford index, though generally indices defined via cyclic
cocycles can be more easily related to measurable physical phenomena.

6.2.1. Extending the Pairings. In [21], complex bulk indices are extended to
a larger algebra constructed from the non-commutative Sobolev spaces Wr,p,
obtained as the closure of Cc(G, σ) in the norms

‖f‖r,p =
∑

|α|≤r

Trτ (|∂αf |p)1/p, r ∈ N, p ∈ [1,∞), α ∈ N
d,

∂α = ∂α1
1 · · · ∂αd

d , |α| =
d∑

j=1

αj .

We also consider the von Neumann algebra generated by the GNS represen-
tation of C∗

r (G, σ) with respect to the dual trace Trτ , denoted by L∞(G,Trτ ).
Following [21], we define ASob as the intersection of Wr,p for r, p ∈ N with
L∞(G,Trτ ), but emphasise that the topology of ASob comes only from the
Sobolev norms ‖·‖r,p and not the von Neumann norm (see also [22, Section 5]).

If the measure on the continuous hull ΩL is ergodic under the translation
action, then Z and Z2-valued bulk topological phases can be defined over ASob.
For complex pairings, the Hochschild cocycle from the semifinite spectral triple
is also well defined for the Sobolev algebra and, as this cocycle represents the
Chern character (because the lower-order terms vanish), the cyclic formulas
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for the index also extend to the Sobolev algebra. For real pairings with an
ergodic measure, the analytic indices considered in Example 6.9 are almost
surely well defined and constant over Ω0 in the Sobolev setting. See [22,40,46]
for a more comprehensive treatment.

For Hamiltonians acting on �2(Zd) ⊗ C
n without a spectral gap but in-

stead a region Δ ⊂ σ(h) of dynamical localisation [which implies, amongst
other properties, that Δ∩σpp(h) is dense in Δ], the pairings with ASob are con-
nected to these localised regions via the Aizenman–Molchanov bound [1,77].
For the case of a general Delone set, the Hamiltonian h ∈ ASob acts on the
family {�2(L(ω))}ω∈Ω0 . In the general Delone setting, spectral properties of the
Hamiltonian are more difficult to determine. See [35,62,83] for more informa-
tion.

6.2.2. Weak Indices. Our KK-theoretic pairings can also be used to define
analytic indices for the pairing with the higher codimension Kasparov modules
constructed in Sect. 3.4. Namely, using the KK-cycles dλk from Sect. 3.4, we
have a well-defined map,

KOn(C∗
r (G, σ)) × KKOd−k(C∗

r (G, σ), C∗
r (Υk, σ)) → KOn−(d−k)(C∗

r (Υk, σ)).

Once again this index can be described using Clifford modules.

6.3. Pairings for Lattices with Finite Local Complexity

The complex and real pairings from the previous section can be defined for
general Delone sets. When the underlying lattice L used to construct the con-
tinuous hull ΩL has finite local complexity, we can define new numerical phase
labels via the ε-unbounded Fredholm module from Theorem 5.14.

Recall the unbounded operator X + Tκ on
(
L2(Gs ×τ+ V) ⊕ L2(Gs ×τ−

V)
)
⊗̂

∧∗
R

d whose bounded transform b(X+Tκ) is Fredholm and has compact
commutators with the representation of Cc(G) (cf. Lemma 5.7).

There are well-defined index pairings for the K-theoretic phase of the
Hamiltonian [h] ∈ Kn(C∗

r (G)) with the K-homology class [b(X + Tκ)] ∈
Kd(C∗

r (G)) via a Fredholm index for complex phases and a skew-adjoint Fred-
holm index for real phases,

Kn(C∗
r (G)) × Kd(C∗

r (G)) → Kn−d(F), F = R, C.

We emphasise that unlike the cases of Z or Z2-valued indices that can
be defined by the evaluation map evω : Ω0 → F, these indices depend on the
ultrametric structure of the transversal. To more explicitly show this, we note
the following result, which is an immediate consequence of the associativity of
the Kasparov product.

Proposition 6.10. The index pairing of the K-theoretic Hamiltonian phase [h] ∈
Kn(C∗

r (G)) with the class [b(X +Tκ)] ∈ Kd(C∗
r (G)) is the same as the pairing

of the class of the Clifford module [Ker(FpXp)] ∈ Kn−d(C(Ω0)) from Proposi-
tion 6.5 with the Pearson–Bellissard spectral triple [(πτ+ , πτ−)] ∈ K0(C(Ω0))
from Proposition 5.1.
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It is worth noting that the index paring of any fixed class α ∈ Kn−d

(C(Ω0)) with [(πτ+ , πτ−)] depends on only finitely many of the values τ±(v),
viewed as a pair of point evaluations. This follows from the fact that K0(C(Ω0))
is generated by the classes of indicator functions χp of the cylinder sets Cp.
For |v| > |p|, it holds that τ+(v) ∈ Cp if and only if τ−(v) ∈ Cp, and thus,

[χp] ⊗ [(πτ+ , πτ−)] =
∑

|v|≤|p|
[χp] ⊗ [(πτ+(v), πτ−(v))].

This generic observation was used in [36, Theorem 6.3.1] to determine
the rational K-homology class of an analogous operator. This does not seem
to be possible in the present context.

The physical distinction between the indices defined via b(X + Tκ) and
the more standard bulk index pairings in Sects. 6.1 and 6.2 is currently un-
clear to us as well. Another question is whether the class of the ε-unbounded
Fredholm module has a finitely summable representative and, if so, whether
the corresponding Chern character gives additional physical information.

6.4. The Bulk–Boundary Correspondence

Because our topological phases arise as pairings with the bulk KK-cycle, the
results from Sect. 3 can be used to relate pairings of differing dimension. Recall
that we have the extension,

0 → C∗
r (G � G/Υ, σ) → T → C∗

r (G, σ) → 0,

with G �G/Υ the edge groupoid and T acting on a half-infinite space. Suppose
that [h] ∈ Kn(C∗

r (G, σ)) (real or complex) and consider the product with dλΩ0 .
Then by Theorem 3.5,

[h]⊗̂C∗
r (G,σ)[dλΩ0 ] = (− 1)d−1[h]⊗̂C∗

r (G,σ)

(
[dλd−1]⊗̂C∗

r (Υ,σ)[d−1λΩ0 ]
)

= (− 1)d−1
(
[h]⊗̂C∗

r (G,σ)[dλd−1]
)
⊗̂C∗

r (Υ,σ)[d−1λΩ0 ]

= (− 1)d−1∂[h]⊗̂C∗
r (Υ,σ)[d−1λΩ0 ]

with ∂[h] ∈ KOn−1(C∗
r (G � G/Υ, σ)) the image under the boundary map

in K-theory. That is, the pairing with respect to the bulk algebra C∗
r (G, σ) is

non-trivial if and only if the pairing ∂[h]⊗̂C∗
r (Υ,σ)[d−1λΩ0 ] over the edge algebra

C∗
r (Υ, σ) [or C∗

r (G � G/Υ, σ)] is non-trivial.
Furthermore, because the semifinite pairings involve the Kasparov prod-

uct and then the trace, the bulk–edge correspondence also holds for the Chern
number formulas (using the Morita equivalence between spinc and oriented
structures). Using the notation from Proposition 6.3,

〈[p], [dλSC

τ ]〉 = −〈∂[p], [d−1λ
SC

τ ]〉, 〈[u], [dλSC

τ ]〉 = 〈∂[u], [d−1λ
SC

τ ]〉.
Similarly, our weak or higher codimension pairings also factorise by The-

orem 3.7. Namely, via the short exact sequence,

0 → C∗
r (Υk � Υk/Υk−1, σ) → Tk → C∗

r (Υk, σ) → 0, (19)

we have the equality of pairings,

[h]⊗̂C∗
r (G,σ)[dλk−1] = (− 1)d−k[h]⊗̂C∗

r (G,σ)

(
[dλk]⊗̂C∗

r (Υk,σ)[kλk−1]
)
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= (− 1)d−k
(
[h]⊗̂C∗

r (G,σ)[dλk]
)
⊗̂C∗

r (Υk,σ)[kλk−1]

= (− 1)d−k∂
(
[h]⊗̂C∗

r (G,σ)[dλk]
)
.

That is, our weak pairing [h]⊗̂C∗
r (G,σ)[dλk] takes values in Kn−d+k(C∗

r (Υk, σ))
and if we apply the boundary map coming from the short exact sequence
in Eq. (19) on page 2030, then up to a sign we obtain the weak pairing
[h]⊗̂C∗

r (G,σ)[dλk−1] ∈ Kn−d+k−1(C∗
r (Υk−1, σ)). Of course this equality is not

necessarily related to the presence of a boundary and is more a property of
the Kasparov modules that we use to define the weak topological phases.

For lattices with finite local complexity, we also obtain a factorisation of
index pairings of the class [h] ∈ Kn(C∗

r (G, σ)) with the ε-unbounded Fredholm
module from Theorem 5.14,

[h]⊗̂C∗
r (G,σ)

(
[dλΩ0 ]⊗̂C(Ω0)[(πτ+ , πτ−)]

)

= (− 1)d−1∂[h]⊗̂C∗
r (Υ,σ)

(
[d−1λΩ0 ]⊗̂C(Ω0)[(πτ+ , πτ−)]

)
,

where the right-hand side is a pairing Kn−1(C∗
r (Υ)) × Kd−1(C∗

r (Υ)) →
Kn−d(R) (or complex).

6.5. Examples From Materials Science and Meta-Materials

Constructing model Hamiltonians for generic Delone sets is in general a diffi-
cult task, particularly if the underlying lattice is amorphous. However, given
ω ∈ Ω0, we can write down a basic Hamiltonian by coupling lattice sites with
exponential decay and twisting by a magnetic flux,

(Hωψ)(x) =
∑

y∈L(ω)

e−iΓL(ω) 〈0,x,y〉e−β|x−y|ψ(y), β > 0, ψ ∈ �2(L(ω)).

There is some element h ∈ C∗
r (G, σ) such that πω(h) = Hω using the pointwise

representation. If Δ ⊂ R is a spectral gap of h, then the spectral projection
PE = χ(−∞,E](h) is in the smooth ∗-subalgebra A ⊂ C∗

r (G, σ) for any E ∈ Δ.
One of the advantages of introducing a magnetic flux into the Hamiltonian is
that it can potentially open gaps in the spectrum of h, as is required by our
assumptions. Let us also remark that our choice of Hamiltonian can also be
used to model mechanical or gyroscopic meta-materials provided the energies
are low, see [68] for example.

In the setting of a spectral gap, our results give that for d even,

Cd

∑

μ∈Sd

(− 1)μ Trτ

⎛

⎝PE

d∏

j=1

∂μ(j)(PE)

⎞

⎠

= −Cd−1

∑

ν∈Sd−1

(− 1)ν(TrΥτ ⊗TrH)

⎛

⎝
d−1∏

j=1

û∗
h∂ν(j)(ûh)

⎞

⎠ (20)

where ûh = e2πif(ΠdhΠd) with Πd the projection onto a half-space and f a
function that smoothly goes from 0 to 1 inside the spectral gap Δ. We also
use that C∗

r (G � G/Υ, σ) ∼= C∗
r (Υ, σ) ⊗ K(H) and so our boundary semifinite
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pairing can be written using the semifinite spectral triple over C∗
r (Υ, σ)⊗K(H)

relative to TrΥτ ⊗TrH.
If 0 /∈ σ(h) (shifting by a constant term if necessary) and RChRC = −h

for some self-adjoint unitary RC ∈ A, then we can define the Fermi unitary
UF = 1

2 (1 − RC)(1 − 2PF ) 1
2 (1 + RC) with [UF ] ∈ K1(A). Then, for d odd

Cd

∑

μ∈Sd

(− 1)μ Trτ

⎛

⎝
d∏

j=1

U∗
F ∂μ(j)UF

⎞

⎠

= Cd−1

∑

ν∈Sd−1

(− 1)ν(TrΥτ ⊗TrH)

⎛

⎝Ind(UF )
d−1∏

j=1

∂ν(j)Ind(UF )

⎞

⎠ (21)

with Ind(UF ) the index map in complex K-theory.
If the measure on ΩL is ergodic under the translation action, we can

replace the dual trace in the left-hand-side Eqs. (20) and (21) with the trace
per unit volume on �2(L(ω)) for almost all ω ∈ Ω0. In this setting, the bulk
cyclic formulas continue to be well defined and integer-valued if the assumption
on Δ is relaxed to a mobility gap (as characterised in [21, Section 6.2]).

We can implement other CT -symmetries on h by a choice of Real struc-
ture on C∗

r (G, σ). Because the equation for h is quite generic, such symmetries
and invariants can be implemented by passing to matrices over C∗

r (G, σ). The
corresponding bulk and boundary pairings are described in Sect. 6.2, though
let us note that if there is no magnetic flux (such as in time-reversal symmetric
Hamiltonians), then a model Hamiltonian with spectral gap may be difficult
to construct for a generic Delone lattice. However, gaps in the spectrum with-
out a magnetic field may be possible by considering more ordered (but still
aperiodic) lattices coming from quasicrystals or substitution tilings.
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[90] Sims, A., Williams, D.P.: Renault equivalence theorem for reduced groupoid
C∗-algebras. J. Operator Theory 68(1), 223–239 (2012)

[91] Sims, A., Williams, D.P.: An equivalence theorem for reduced Fell bundle C∗-
algebras. New York J. Math. 19, 159–178 (2013)

[92] Sims, A., Yeend, T.: C∗-algebras associated to product systems of Hilbert bi-
modules. J. Operator Theory 64(2), 349–376 (2010)

[93] Thiang, G.C.: On the K-theoretic classification of topological phases of matter.
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