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Long-Range Scattering for Discrete
Schrodinger Operators
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Abstract. In this paper, we define time-independent modifiers to con-
struct a long-range scattering theory for a class of difference operators
on Z%, including the discrete Schrédinger operators on the square lattice.
The modifiers are constructed by observing the corresponding Hamilton
flow on T*T<. We prove the existence and completeness of modified wave
operators in terms of the above-mentioned time-independent modifiers.
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1. Introduction

We consider a class of generalized discrete Schrodinger operators Hy and H
on H =324, d > 1,

Houla] = 3 flylule — o,
yezd (1.1)
Hulzr] = Houlz] + V[z]u[z],

where f € L(Z%) = {u € 2(ZY) | u[z] = O({z)~®)}, (@) = (1 + |z},

satisfies f[—z] = f[z], * € Z%, and V is a real-valued bounded function on Z<.
Then Hy and H are bounded self-adjoint operators on K.
We define the discrete Fourier transform F' by

Fu(¢) = (2r)" % Z e" ™ Sylz], €€T=[-mm)"

€L

for u € ¢*(Z%). Then F is continuously extended to a unitary operator from
H to L*(T4) and

H()U[x] =F* (h()()Fu()) [(ﬁ],

® Birkhduser
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where
ho(§) := Y e ™ fla], €T (12)
€7D
The above condition on f implies hg is a real-valued smooth function on T¢%.

We denote by v(€) and A(&) the generalized velocity and the Hessian of hyg,
respectively:

v(§) = Veho(§),
A(€) = "VeVeho(€) = (9¢,0¢,ho(€)) 1<) k<a-
The set of threshold energies is denoted by T,

T ={ho(§) | £ € T v(¢) =0}.

We note T has Lebesgue measure 0 by Sard’s theorem. We first assume the
condition below.

Assumption 1.1. The sets {¢ € T? | v(¢) = 0} and {¢ € T¢ | det A(§) = 0}
have d-dimensional Lebesgue measure zero.

The above assumption implies the absence of point and singular contin-
uous spectrum. The following assertion is a generalized version of Theorem
12.3.2 in [5].

Proposition 1.2. Suppose that the set {£ € T¢ | v(€) = 0} has d-dimensional
Lebesgue measure zero. Then Hg has purely absolutely continuous spectrum and

0ac(Ho) = ho(T9), where o,.(Hy) denotes the absolutely continuous spectrum
Of Ho.

Proof. Fix a point & € W = {¢& € T¢ | v(¢) # 0}. Then it suffices to
prove CX(U) C Hoe(FHoF™*) for some neighborhood U C W of &; for any

fecx),
Blo(Ho) =R, B [ F(E)Pde

o *(B)Nsupp [
is an absolutely continuous Borel measure. The claim is proved by taking a
local coordinate U 3 x — (y(x), ho(z)) € R x R, O

If V[z] decays at infinity, then V is a compact operator on H and hence
Ooss(H) = 0oss(Ho) = 0ac(Ho) = ho(T?), where oess(H) and oess(Hp) denotes
the essential spectrum of H and Hj, respectively. We suppose a long-range
condition on V.

Assumption 1.3. There exist V € C°°(R%R) and ¢ € (0,1] such that V |za =
V and

8;)‘17(1‘)‘ < Colz)lol=e zeRY aezd,
where Z; ={0,1,2,...}.

Under Assumptions 1.1 and 1.3, the singular continuous spectrum of H
is empty (see, e.g., [12]). In the following, we write V for V without confusion.
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Remark 1.4. Assumption 1.3 is equivalent to the following condition used in
[11],

5 —lal- d d
8§‘V[x]‘§0{1<x> lol=e 2 e RY, a€Zd,

where ¢ = 5;11 52‘57 and 5ij (2] = V[z] — V [z —¢;] is the difference
operator with respect to the jth variable. Here {e;} is the standard orthogonal

basis of R%. See Lemma 2.1 in [11] for the detail.

In Sect. 2, we construct modified wave operators with time-independent
modifiers, which are proposed by Isozaki and Kitada [7], so-called Isozaki-
Kitada modifiers. Isozaki-Kitada modifiers are formally defined by

Wi =slim e je o,
SRS E

— =00

We construct J as an operator of the form

Julz] = (27r)_d/ Z @Oy yy1de, (1.3)
'JI‘d
yeZ
where the phase function ¢ is a solution to the eikonal equation

ho(Vasp(x,€)) + V() = ho(§) (1.4)

in the “outgoing” and “incoming” regions and considered in “Appendix A”.
The next theorem is our main result.

Theorem 1.5. Under Assumptions 1.1 and 1.3, there exists an operator J of
the form (1.3) such that, for any T' € ho(T4)\T, the modified wave operators

WET) = s-lim et Je=itHo gy () (1.5)

exist, where Ep, denotes the spectral measure of Hy. Furthermore, the follow-
ing properties hold:

(i) Intertwining property: HWJi(F) = VVJi (T Ho.

(ii) Partial isometries: |W7 (T)ul| = || Em, (T)ul|.

(iii) Asymptotic completeness: Ran W3 (I') = Ep(T)Hoo(H).
Ezamples 1.6. (i) In [11], a long-range scattering theory of the standard dif-
ference Laplacian Houlz] = —3 Dly—aj= U], @ € 7% is considered. In this
case, ho(§) = — ijl cos§; satisfies Assumption 1.1.

(ii) A model for two-dimensional triangle lattice is expressed by the op-

erator Houlz] = —% Z?Zl ulz +nj], x € Z%, where ny = (1,0), ny = (—1,0),
ng = (0,1), ng = (0,—-1), n5 = (1, —1), ng = (—1,1) (see, e.g., [2]). Since

ho(§) = fé(cosfl +cos & + cos(&1 — &2))

in this case, Assumption 1.1 is satisfied.

Scattering theory for Schrodinger operators on R? has been extensively
studied [1,6,14,15]. If the perturbation is long range, i.e., V(z) = O({z)~¢),
0 < £ < 1, then the scattering theory needs a modification [6,7,15]. Discrete
Schrodinger operator describes the state of electrons in solid matters with
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graph structure. Spectral properties of discrete Schrédinger operators have
been studied in [2,4,8,11-13].

The main idea of the construction of modifiers is similar to [11]. We
translate H into an operator on the flat torus T¢ via discrete Fourier transform
and consider the corresponding classical mechanics on T?. The proof is mainly
based on [7]. We use the time-decaying method to construct the phase function
 in the definition of J, and then the stationary phase method and the Enss
method to prove the existence and completeness of modified wave operators.
The construction of ¢ is given in “Appendix A”, which follows the argument of
[9]. The main properties of ¢ are summarized in Proposition 2.1. In Sect. 2, we
prepare some lemmas for the proof of Theorem 1.5. The Poisson summation
formula is used to prove that pseudo-difference operators on Z¢ are translated
to pseudo-differential operators on T¢ modulo smoothing operators (see the
proof of Lemma 2.3 in “Appendix B”). This enables us to get over the difficulty
derived from the discreteness of Z%. In Sect. 3, we prove Theorem 1.5.

2. Preliminaries

We first state a proposition on the Hamilton flow generated by h(x,&) :=

ho(€) + V(zx), which is proved in “Appendix A”. Here we note that hg, v and

A are extended periodically in ¢ from T = [—7,7)? to R, and we identify

integrations on T¢ with those on [—, 7). We also note that the following

proposition concerns functions on R? x (R*\v~*(0)), not on Z¢ x (T*\v=1(0)).
We fix x € C*(R?) such that

@) = {o if |z < 1, 21

1 if |z > 2,

and we define cos(x,y) = % for 2,y € R?\{0}. The following assertion is

an analogue of Theorem 2.5 in [7].

Proposition 2.1. There exists a real-valued function ¢ € C*°(R%x (R¥\v~1(0)))
satisfying the following properties: Set a > 0. Let ¢, € C°(R?xR?) be defined
by

eul0.8) = (ol = 0- O (") 06 (22)

(1) The function @, satisfies
Qalx, &+ 2rm) = pa(2,€) + 212 -m, m € Z4, (2.3)
020{ [palw,€) = v €]| < Cagaalw)' =1, (2.4)
|'VaVepa(a, &) —I| < % (2.5)

N

for (z,€) € R x R4, where |M| := (E;{k:l |Mj;€\2> for a matriz M.



Vol. 20 (2019) Long-Range Discrete Schrodinger 1443

(2) We set
Jouz] == (27)~ / D e @O Oy yde. (2.6)
yezZd
Then
(HJ, — J,Ho)u[z] = (2m)~ / D el Os (@ Hulyldg,  (2.7)
yeZ4
where

Salx,€) := efi“"“(””’f)H(ew“("E)) [x] — ho(&)
Z flz]ei(eE=28=0a@:) LV [2] — hy(€) (2.8)

z€7Z4
satisfies for |x| > 1 and |v(§)| > a

1—e

025,(0.6)| < {Cﬁ,a<w> <, Jcos(a,v(€))

ES: (2.9)
Cpalr)™%,  |cos(z,v(€))| < 3.

We note that ¢, satisfies the eikonal equation (1.4) on {(x,¢) | |z| >
R, [v(&)| > a,|cos(z,v(§))| > 1} and that the property is used for the proof
of (2.9) in the | cos(z,v(£))| > § case (see Proposition A.9 and (A.51).

In the rest of this section, we prepare some lemmas for the proof of prop-
erties (ii) and (iii). We choose v € C°(ho(T9)\T) and p+ € C*°([—1,1];[0,1])
such that

po(0) +p_(0) = 1,
(@) =1, oe [H ,

p_(o)=1, o€ [1,4” .

Using v and p4, we define operators with cutoffs in the energy and the direction
of z and v(&). We set symbols py and operators Py, Py and E4(t) by

P2 (9, €) = 1(ho(€))x(y)p (cos(y, v(€))). (2.10)

Paula] = (2m)" / S ey, (y, €yufy) de, (2.11)
y€eZ

Pyula] = (27) / S ettty (y, €)uly] de, (2.12)
yeZ4

Ei(t)=Jee op,  teR, (2.13)

where J, is defined by (2.6).

We consider properties of these operators. We use the stationary phase
method as in the pseudo-differential operator calculus (see, e.g., [16]). The
following two Lemmas correspond to Proposition 3.4 and Lemma 3.7 in [7],
and the proofs are given in “Appendix B” (see also [3,7]).
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Lemma 2.2. J,, Py and Py are bounded operators on H.

Lemma 2.3. v(Hy)— Py —P_, Pt — Py, E4(0)— Py, JXJ,— I and J,J: — 1
are compact operators on H.

The next lemma, corresponding to Proposition 3.8 in [7], is an analogue
of the intertwining property of wave operators.

Lemma 2.4. For any s € R,
s-lim eo By (t — ) = e*Hop,. (2.14)

t—too

Proof. The definition of EL(t) implies
Mo B (t —5) = eitHOJ:Jae*i(t*S)HOPi
— ¢t (J* ], — I)e~itHogisHop, | cisHop,

Since e~Hoy — 0 weakly as t — +oo for any u € H = H,.(Hy), Lemma 2.3
implies that the first term converges strongly to 0 as t — Foc. 0

Next we prove the norm convergence of limy_, 4., e E (t). If we set

Gi(t) = (& + H) EL(t)y=(HJ, — JaHo)Ei(t),

then we have
t
e EL(t) - Py = E+(0) — Py +i / ™G (r)dr.
0
The following proposition is analogous to Theorem 3.5 in [7], and proves G4 ()
is integrable in {4t > 0}, respectively.

Proposition 2.5. G (t) is norm continuous and compact for any t € R. Fur-
thermore, G+ (t) satisfies

IGL(@)| < C@E)~1F, £t >0. (2.15)

In particular, e“HEi(t) — Py converges to a compact operator with respect to
the norm topology as t — o0, respectively.

Proof. Let
O(z,y,&5t) = pa(x,£) = tho(§) — ¢a(y, §).
Then the definition (2.13) of F4 (t) implies
G+ (t)ulz] = (HJ, — J,Hy)e "*Ho P[]
=20 [ s, s . Ol
T yeza

The norm continuity of G4 (t) is obvious. Furthermore, (2.9) implies the com-
pactness of HJ, — J,Hy by the similar argument in the proof of Lemma 2.3,
hence G4 (1) is compact.
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Let us prove (2.15). We consider the + case only. The other case is proved
similarly. We use another decomposition p* € C>([—1,1]; [0, 1]) which is dif-
ferent from p4 in that

pH(o)+p (o) =1,
(o) = {O: i

s,(x,f):::sa(x,f)x{m¢0}p_(cos(x7v(f))%
s+(x,§):::sa(x,g)—-s_(x,ﬁ)

We then decompose G+ as

G(tyule] = (2m) 7 [ 3 D sy s ullde

IN IV
ROl 108

We define

yez?
= (Fy(t) + F_(t))u[z]. (2.16)
Now we claim that for any ¢ > 0 and ¢ > 0,
IEL @) < Clat)™ 7, (2.17)
IF_()]] < Cofaty~". (2.18)

If (2.17) and (2.18) hold, then (2.15) follows from (2.16).
For the proof of (2.17), we let

O(t;y,8) = tho(§) + pa(y, )
and set
Ly :=(Ved) (1 = Veo - D).
Then (2.4) implies on the support of s, (z,§)p+(y, £),
(Veg) ™' < Cllyl + (@)~
Thus, for any ¢ € Z, we have
Fatule] = (2m) ™" [ 30 18 (74009 60D 0, O (1, Dl

yezd

— (2m) ¢ /T O e (L) (0 (2, )p (4, ) ) ulylde

yezZd

_ (zﬂ)fd/ 3 i) {efwam&) (*L1)" (ez‘wa<x,5>5+p+) } uly]de.
Td
y€ezZd

The function in {} is a finite sum of functions of the form sf(x,&)p%(y, &;t)
such that

0254 (@,6)| < Cata) 1=,
(2.19)
020 (9,€:1)| < Callyl + tlo©)) .
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Indeed, (2.19) follows from (2.9) and (2.10). Letting

Sjule] = (2m) 7 [ 3 9O @ ulylde,

y€eZd

Piula) = (2m) ™0 [ 37 ety 5.

yezd

we have

Fi(t)=>_ Ste "Mopl(t).
J

Furthermore, we have by (2.19) and the argument in the proof of Lemma 2.2
) S5 < e
|2/ ()] < Celat)~".
Thus we obtain
{z) = F (1)) < Cifat) ™

for any ¢ € Z, . Interpolation with respect to £ implies (2.17).
For the proof of (2.18), we note on the support of s_(z,&)p+(y, §),

(V@)™ < Clla —yl + to(©)

Letting
Ly = (Ve®)"2(1 + V@ - Dy),
we have
_ i (x . 4
F_(t)u[z] = (2m) d/ > PEVED (YLy) (s (2, py (v, €))uly)dg
TdyeZd
= (27T)_d/ Z et (Pa(®,8)=0a(y,8)) g—itho(£) (tLQ)Z (s_py)uly]dé
’]I‘d
yeZa

for any ¢ € Z. Since

g (2,9, &51) 1= e 7O (1LY (s_ (2, O)py (1, )
satisfies

afqe(w,y,ﬁ;t)‘ < Coplto(€)71~*

for any ¢ € Z,, we obtain (2.18) by the argument in the proof of Lemma 2.2.
U

The next proposition claims that any particle in the energy I' does not
stay in any bounded domain in x.

Proposition 2.6. For any R >0 and ¢ > 0,
IX¢lei<ry B+ (s)]| < Cer(s)™  £s>0. (2:20)
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Proof. We prove (2.20) for the + case only. We first note
Bos)ule] = 2m)~" [ 3 ey, (g, ulylis
yEZ

where ®(x,y,&;t) = wa(x, &) —the(§)—paly, §). We observe that on the support
of p+(y7 5)7

[s0(§) + Vewa(y, )| = eyl + slv(€)])

for large s. Then, if |x| < R, we have for s > 0 large enough

IVe®(z, 9,6 5)| = eyl + slo(©)]),  (y,€) € supppy..
Similarly to the proof of (2.18), we obtain (2.20). O

3. Proof of Theorem 1.5

3.1. Existence of Modified Wave Operators

We prove the existence of the limit (1.5) for the + case only. The other case is
proved similarly. First we fix I' € ho(T?)\T. We remark that, for any u € H
such that Fu € C*°(T?) and supp Fu C hy '(T"), we have

JE,(T)u = Jyu (3.1)

for some small enough a > 0. Then, to prove the existence of the limit (1.5),
it suffices to show that

0
_ / H(;it (eitHJaefitHou)
0

_ / | (LT, — Jo Ho)e™ Moy |dt
0

dt

dt

= [ e (3.2)
0

is finite for such u. The last equality follows from the fact that e® is a
unitary operator. Furthermore, by Assumption 1.1 and a partition of unity
on T4, we may assume that Fu € C°°(T9) has a sufficiently small support in
{6 € b (T) [det AE) £0}.

Let w(t) := (HJ, — J,Hp)e "oy, Then (2.7) implies

w)fe] = (2m)F [ O, o€ )

Now we use the stationary phase method. The stationary point £ = £(z,t) is
determined by

Veou(r,6) —vl(E) = 0. (33)
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We define
Dy := {x € Z% | 3¢ € supp Fu s.t. (3.3) holds}.

By (2.4), there exists an open set U € {¢ € hy *(T') | det A(€) # 0} such that
supp F'u € U and that for ¢t > 0 large enough,

D, C {x | % € v(U)} =: Dj.
On (D7)¢, the non-stationary phase method implies
lwt)[z]] < Cellz|+t)7% ze€Z t>0
for any £ > 0. Thus we learn for any ¢ > 0
Ix(ppew(®)]| < Cit . (3.4)
On Dj, the stationary phase method implies
w(t)[z] =t~ 2 At 2)sa(z, £ (2, 1) Fu(€(z, 1) + 210 (t, ),

where A(t, z) is uniformly bounded in x and ¢ with 2 € D}, and

r(t,x)| <C sup  sup [0 sa(x, ).
|B|<d+3 &€supp Fu

Since cos(z,v(§)) > 3 for € D] and & € supp Fu if t is sufficiently large, we
have by (2.9)

sal@,E(, 1)] < Cla) ',
Ir(t,2)] < Cla) .

We note |z| ~ t on D} and the Lebesgue measure of D} is bounded by Ct<.
Thus we learn

2

||XD;,w<t>||s< / ,(Ct-%’<x>-1-5)2dx> <ot (35)

Dt

Hence (3.4) and (3.5) imply

lw®)l| < [Ixpyw®)| + xppew®)| < O,
which proves (3.2) is finite. O
3.2. Proof of the Properties (i), (ii) and (iii)
Proof of (i). The intertwining property is proved similarly to the short-range
case (see, e.g., [14]). O
Proof of (i). Tt suffices to show W7 (T)ul| = |ju|| for Fu € C°°(T%) with
supp F'u C hal(F). For such u, Ju = J,u holds for small @ > 0. Thus letting
uy = e~ oy, we learn

IWED|* = Tim [ Tewl? = lim ((J3Ja = Dug,ur) + [Jul*

Using w-lim;_, o ux = 0 and Lemma 2.3, we have limy_, 4 oo (J¥J, — Ius = 0.
This proves W7 (I') are partial isometries. O
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Proof of (iii). We prove the asymptotic completeness of Wj'(F) only. Since
intertwining property implies Ran W (I') C Ep (I)H,c(H), it suffices to prove
Ran W (T) D En(T)Hac(H).

We fix v € Hae(H) and v € C°(R) so that v(H)v = v and suppy C
I'. We set v; := e~ *Hy for simplicity. Then we show that Ey(T)H..(H) C
Ran W (') follows from

lim limsup |Jvs — e HE, (t — s)v,|| = 0. (3.6)

55— 00 t—00

First, we observe

Lemma 2.4 implies the second term tends to 0 as ¢ — oco. The first term is
estimated by (3.6) since

||ei“%<](;k [ve — E4(t — s)vs]||
< e Tz lor — B (t = s)us]

= (171l

etho J;efth,U o estOPJrUS H

< ||6itH0J; [vp — Ey(t — S)US]H + ’ 6”H°J;E+(t — §)vs — eiSHOP—‘,-Us

e H (y, — By (t — s)vs)

= ||zl os — e EL(t — s),

Thus we have

lim limsup ||e*fo J e~ Hy — ¢sHop 4 || = 0.
a +

SO0 t—oo

i sl itHo J* ,—itH
This implies {e oJxe

there exists the limit

U}tzo is a Cauchy sequence in H, equivalently,

lim e**fo J:eﬂtHv =: Q%.
t—oo

Hence we obtain for sufficiently small a > 0,
v=W;](T)Q% € Ran W (I).
In the rest of the proof, we show (3.6). Since vs = v(H)vs, we have
vy — IR (1 — s)u, = y(H)vs — TR (t — s)v,
= (v(H) —~(Ho))vs
+ (v(Ho) — Py — P_)vs
n (P+ _eit=Hp (¢ s)) vs + Povs. (3.7)

We note w-lims_,oo v = 0 and y(H) — y(Hp) is compact by the compactness
of H— Hy = V. We also note y(Hy) — Py — P_ is compact by Lemma 2.3,
and P, —e!(t=5) B (t — s) converges to a compact operator independent of s
as t — oo by Proposition 2.5. Thus the terms on the RHS of (3.7) except the
last one converge to 0.
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To estimate the last term of (3.7), we observe
| P_vs||? = (P* P_vg,v,)
= ((P* — P_)P_vs,vy)
+ ((P- — e M E_(=s)) P_v,,vy)
+ (P_vs, E_(—5)"v). (3.8)

By the similar argument as above, we learn the first and second terms of (3.8)
converge to 0 as s — oco. The third term of (3.8) is bounded by

[(P_vs, E_(=s)"v)|
= |(P_vs, E_(=5)"(X{|z|>R} + X{|z|<R})V)]
SE- (=) P-vslllixgizizryoll + 1P-vs X {21 < Ry E- (=3) ]|

< Collixgeizryoll + Ixqiei <Ry E-(=5)I) (3.9)
for any R > 0. Using (2.20) and limpg .o [|X{|z|>r}?|| = 0, we learn that (3.9)
converges to 0 as s — oco. Hence we obtain (3.6). O
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Appendix A. Classical Mechanics and the Construction of
Phase Function

In this appendix, we use the following notations: For p € (0, 1), we define
W, &) = ho(§) + V(z),
Vilt.a) = Vianpon (FEE),
ho(t,@,€) = ho(§) + V,(t, @),
V2V, (t,x) = 'V, V,V,(t, x),

where x € C*(R?) is a fixed function satisfying (2.1). Let € be as in Assump-
tion 1.3. We fix €g,e1 > 0 such that eg + 1 < e.

The construction of time-decaying potential is same as Isozaki and Kitada
[7] and is first used by Kitada and Yajima [10]. One of the merits of this
construction is that V, decays with respect to time ¢ almost same as position .
The next lemma follows from Assumption 1.3 with elementary computations.
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Lemma A.1. For anyt € R, x € R? and multi-index «,
|05V, (8, 2)| < Comin{p™(t) =175, (z)~Io1=e}, (A.1)
where Cy,’s are independent of x, t and p.

Let (q,p)(t,s) = (q,p)(t, s; x, &) be the solution to the canonical equation
associated to the Hamiltonian h,:

8tQ(t’ 3) = thp(tap(t’ S)a q(t7 8))7
5tp(ta 5) = _thp(tvp(ta S)a Q(t7 S))>
(¢:p)(s,8) = (2,9).

This can be rewritten in the integral form:

q(t,s) == —I—/ v(p(T, s))dr, (A.2)

p(t,s) =¢& —/ VeV, (1,q(T, 5))dr. (A.3)

Before proving Proposition 2.1, let us describe the outline of this section.
First, we see in Proposition A.2 that q(t,s) ~ x + (t — s)v(&) and p(t,s) ~ &
for sufficiently small p > 0. Then we construct a solution ¢(t;x,&) of the
Hamilton—Jacobi equation (A.30) by the method of characteristics. Also es-
timates for y(s,¢;x,£) and n(t, s;x, &), characterized by (A.21) and (A.22),
respectively, are given in Proposition A.3. Using the above ¢, we define func-
tions ¢4 (z, ) by (A.33), and we confirm that ¢+ satisfies the eikonal equation
(1.4) and the estimate (2.4) in outgoing and incoming region, respectively. Fi-
nally, we construct a function ¢(z,£) such that Proposition 2.1 holds with ¢4
and phase-space cutoffs.

Now, we start with estimates for classical orbits (g, p)(t, s; z, ). The fol-
lowing proposition is the corresponding result of Proposition 2.1 in [7].

Proposition A.2. For p > 0 small enough, there exist Cy > 0 (¢ € Zy) such
that, for any z,& € R, 0 < +s5 < +t and multi-indices o and 3,

(s, t;2,€) — €| < Cop™(s)™,

Ip(t, s;2,8) — & < Cop™(s)™ ",

107 [Vaq(s, t;2,8) — I]] < Clap™(s) ",

09V ap(s, t;2,6)| < Claip™(s) 175,

9207 [Vt s;2,€) - I]‘ < Claps 1™ (s) " [t — 5],

D200V p(t, 532,€)| < Clapripp™(s) 7,

O [Vealt, s;2,) — (t = ) A©))| < Clap™(s) It —sl,

A
OF [Vep(t, 5:2,€) — 11| < Cia o™ (s) ™, (A1l
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0507 [q(t, s;2,€) — x — (t — s)v(p(t, s; 2, 5))](
< Claj41pp™° min{[t — s|(s) ™", (tyt==1}, (A.12)

[N
=

d
Here, |o| = (55, los[?)

matriz M.

for a vector x and |M| = (Zj,k:l |Mjk|2) for a

Proof. We prove in the 0 < s <t case. The other case is proved similarly. The
proof is decomposed into 5 steps.

Step 1: Proof of (A.4) and (A.5). The inequalities (A.4) and (A.5) are
shown by (A.1) and

t
pt,t)y—&=— [ V,V,(r,q(r,t))dr, t,t eR.

t

Step 2: Proof of (A.6) and (A.7). We use the induction with respect to
|a|. First we prove (A.6) and (A.7) for a = 0. Differentiating (A.2) and (A.3)

in x, we have

Voa(st) = I+ [ A(p(1,))Vep(r, t)dr,
vazp(s’ t) = - j;fs vnznvp(Tv Q(T, t))vmq(Tv t)dT'

Letting

we observe

{ Qo(s) = [ Alp(7, 1)) Po(r)dr, (A.13)

Py(s) = — [ V2V, (1,q(7,t))Qo(T)dT — [} V2V, (7, q(7,t))dr.
Thus combining the two equations in (A.13), we learn
Bo(s) = Bi(Fo(-))(s) + Ro(s),

where

B(PO)(s) = — [ V2V, (r.q(r.1)) [ / " A(p(o. 1) Po)do | dr.

t

Rof)i= - [ VAVt
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Let [ M(:)[lo := supg< < (s)' T [M(s)| for M € C([0,t]; Myq(R)). Then (A.1)
implies

t
IB/(P(-))(s)] < / Copo (r) 251 / |P(o)|dodr

< Cop™|| Pl / r)=2 / (o)1 "1dodr

S

< CoC'p™ ()12 P,
t
R < [ Copfotr) 21 < Cpofs) 1o

If p < (2CC7 )7L the operator norm || By|lo of By with respect to || - ||o is
bounded by 3 L. Hence we obtain

1Po()llo = (1 = B~ (Ro())llo < ——=— [ Ro()llo < 2Cp™,  (A.14)
T B0

which proves (A.7) for a = 0. The inequality (A.6) for a = 0 follows directly
from (A.13) and (A.14).

Next we confirm the induction is valid. We fix o € Z4\{0} and assume
that (A.6) and (A.7) hold for o with |a/| < |af. leferentlatmg (A.13), we
have

8“@0(8) f A( (T t))(?“PO( )dT—FRO,l(S),
9Py (s) = —ft V2V, (1, q(7,t))02Qo(7)dT (A.15)
+Ro.21(s) + Ro,22(s),

where
Roa(s) == 0<a/<a< )/ 02" | )] 92~ Po(7)dr,
Roe) == 3 () / 8 [V2V, (1)) 05 Qo)

Roaa(s) = - | "o [V2V(r, a(m.1))] dr,

and () == H?Zl Wfla;), By (A.1) and assumptions of the induction, we

have

[Ro(s)] < Cp™(s)~' 7=,

t
| Ro,21(s)] S/ Cp™(r)~2751 - Cp™(r)~T1dr < Cp™(s)~ 172,

t
[ Ro,22(s)] < / Cpo (1) ~251dr < Cpfo(s) =1,

The similar argument as for v = 0 implies ||0$ Po(-)]lo < Cop®® and (A.6).
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Step 3: Proof of (A.10) and (A.11). We use the induction with respect to
|8]. First we consider the 8 = 0 case. Similarly to Step 2, we have

{ng , f A(p(t,s Vgp( s)dr,
Vep(tss) =T — [[ V2V, (7,q(7,5))Veq(r, s)dr,
equivalently,
= J; Alp(r, $) P'(1)dr — [[(A(p(r, ) — A())dr,
P’ = —f V2 (7, q(T,s))Q’(T)dT (A.16)
ffs T —8)V2V,(1,q(7,8))A(E)dT,
where

By (A.16), we have
P'(t) = Bs(P'(-)(t) + R'(1),
where
R'(t) = —/ Vin(T,q(T, s)) /T A(p(o, s))dodr.

Letting [|[M(-)[|1 := sup;>, [M(t)| for M € C([s,00); M4(R)), we have

BPOY) < [ Corrir) e [ " |P(o)|dodr

< Cop Pl [ (7) 7 r — s)ar
< CoC'p ()72 P,

R(1)] < / Cpf (1) 721 (7 — s)dr < Cpfo(s)~"

Thus, if p < (2C2C") 70, we obtain
— / 1 £0 —E&1
IPOll = 0= B RO < T IR Ol < 265720 (417

This proves (A.11) for 8 = 0. The inequality (A.10) for 5 = 0 follows from
(A.5), (A.16) and (A.17).
Next we prove the induction works. Differentiating (A.16), we have

{3?@ (t) f A(p(T, s) 8'6P/( )dT + Ry, (t) + Ri5 (1), (A.18)

0L P!(t) = — [ VAV,(r,a(7, )00 Q' ()T + Ry (6) + R 1),
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where

Ry, (1) = ( )/ oF [A(p(r,5))] 05~ P/(r)dr,

0<B'<B

Riy(t) = / 82 [A(p(r, 5)) — A(€)]dr,
Ry (t) == — Z (5/)/ ('“)?/ (V2V,(1,q(1,5))] 8?_6/Q/(T)d7—

0<B'<B3
Ri(t) = / (r — )00 [V2V, (r, (7, 5)A(6)] dr.

Thus we have

9L P (1) :BS(G?P'(J)(??)*/ VaVo(r,a(7,9)(R1y (1) + Ria(7))dr

+ Ry, (t) + Ry (1)
If (A.10) and (A.11) are true for 8’ with |5’| < ||, we learn
Ry, (1) < Cp™(s) |t — ],

[Rip(t) < € sup

? p(r,s) — €] dr < Cp™(s) |t — s,
181<18] /s

t
Ry (1)) < / Cpo(r) 25 - Cpfo ()51 |r — sldr < Cp2e0(s) =21,

t
| Ros(1)] < / Cp™ ()27 — s|dr < Cp™(s) ™"

Using the similar argument as for 5 = 0, we obtain (A.10) and (A.11) for any
3.

Step 4: Proof of (A.8) and (A.9). We use the induction with respect to
|a] 4+ |B]. In the a = 8 = 0 case, differentiation in x implies

{qu(t s)=1+ ftA 7,8))Vep(T, 8)dr,
V.p(t,s) —f V2V, (1,q(7,8))Vuq(T, s)dT.

Letting

we observe
{Q(t) - [ Al )P | o
Pt)=—/, V2V, (1,q(7,5))Q(T)dT — IN V2V, (1,q(7,5))dT.
This implies
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where
- [ Vgt opar
Since )
R(t)] < /t Cop®(T) ™2 C1dr < Cpo(s) 171,
we have )

IPO = 11 = By) Rl < 2007 (5) 7721,

which proves (A.9) for a = § = 0. The inequality (A.8) follows from (A.9) and
(A.19).

We prove the induction with respect to |a| + |3] works. By (A.19), we
have

0297Q(t) = [ Alp(r,5))020, P(r)dr + Ry(t),
020, P(t) = — [1 V2V, (7, q(r,5))020, Q(r)dr (A.20)
+R21( ) + RQQ( ),

where
t
Ri(t) = Y <2‘> (5) / 0507 [A(p(r,s))] 02~ 8.~ P(r)dr,
s
Roy (1)
t
= > (j) (5) | o0 V] 20 Q(rar,
ﬁ%ﬁé?
Roo(t / 3aaﬁ V2 ( ,q(T, 5))](1

Thus we learn
t
0208 P(t) = B,(0200 P())(t) — / V2V, (7, q(r, 8)) R (r)dr

+ Rgl(t) + Roo (t)
By (A.10), (A.11) and assumptions of the induction, we have
[Ri(t)] < Cp™(s) 15|t — ],

t
|R21(t)‘ S / Cpso <T>—2—81 . Cpao <S>—1—81 |T _ S|d7’ S Op280 <S>—1—2517

t
[ Ra2(t)] < / Cp*(r)~?7%1dr < Op(s)~ 1=

Similarly to the argument for o« = 8 = 0, we obtain (A.8) and (A.9) for any «
and (.
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Step 5: Proof of (A.12). By (A.2) and (A.3), we have

q(t,s;xz,€) = er/ v(p(r, s))dr

ot / " (p(t, 5 + / YLV (oo, s))da) dr.

Thus
q(ta 55, 5) - (t - S)’U(p(t, S))
:/ [U (p(t,s) +/ VIVP(U,q((Ls))da) - v(p(ts))] dr.
This equality and (A.8)—(A.11) imply (A.12). O

Similarly to Proposition 2.2 in [7], we observe that, if p is small enough,
the maps

y—q(s, t;y,),
1~ p(t, s;2,1m)
have the corresponding inverses.
Proposition A.3. Fiz p > 0 so that Cyp®° < % holds, where Cy is the constant

in Proposition A.2. Then, for z,& € R and 0 < +s < +t, there exist y(s,t) =
y(s,t;2,€) € R and n(t, s) = n(t, s;z,€) € R? such that

{q(& ty(s,t;1,6),8) =, (A.21)
p(t, s;x,n(t, s;3,6)) = ¢, (A.22)
and
{q(t, sy, n(t, 852, 8)) = y(s, t;x,§), (A.23)
p(s, ty(s, t;2,6), &) = n(t, s;2,8). (A.24)
Furthermore, for any x,& € R, 0 < 45 < +t and multi-indices o and 3,
105 [Vay(s,t;2,8) — I]] < CLp™(s)~ ", (A.25)
OR0LV.n(t, 55,€)| < Clgp™ ()77, (A.26)
02 In(t. s12,6) = €| < Chp™o(s) =, (A.27)
02 [y(s.t:2.) =2 = (t = $)o(©) (A.28)

< C' S min{|t — s|(s) 7, (t)1 7

Proof. Step 1. By |V.q(s,t;2,8) — I| < %, |Vep(t,s;z, &) — I| < % and
Schwartz’s global inversion theorem ([6], Proposition A.7.1), we have the ex-
istence and uniqueness of y(s,t;x,&) and n(t, s;z,§) satisfying (A.21) and
(A.22). The equalities (A.23) and (A.24) are shown by (A.21) and (A.22).

Step 2: Proof of (A.25). Differentiation of (A.21) in x implies
Vaq(s, ty(s,1), ) Vay(s,t) = 1. (A.29)
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We have by (A.6)

IVay(s,t) = I| = [(Vaq(s, t; y(s,t)ag))il —1I
< ClVaq(s, ty(s,1),€) — I
< Cp™(s)~"".
Differentiating (A.29), we have for o # 0

Vaeq(s, t;y(s,t),£) 0 Vay(s,t)

o / —O/
—— % () Wl t0(s.0. 910 Vs
0<a’'<a @
Using (A.6) and the induction with respect to |a|, we observe that the RHS of
the above equality is bounded by Cp® (s)~¢'. Thus we have |05V ,y(s, )| <

Cop™(s)=.
Step 3: Proof of (A.27). By (A.24), we observe for § =0

In(t,s) — € = |p(s t;y(s,1),€) — €]

t
/ VoV, (rq(r (s, 1), €))dr
< Cpfo(s) e

In the case of |3] = 1, we have by differentiation of (A.22) in £
Vgp(t? S;T, n(t7 S))vfn(t7 S) =1
Similarly to Step 2, we obtain by (A.11)
[Ven(t,s) —I| < C[Vep(t, s;z,n(t, s)) = 1|
< Cp™(s)~"".
In the other cases, we learn by (A.22)
Vep(t, s;2.(t, 5))0¢ Ven(t, s)
ﬂ ’ _ ’
—— % () Wentt s )0 Ventee). 520,
0sp'<p
The induction with respect to |3| and (A.11) imply each term in the RHS is
bounded by Cp(s)~c1. Thus (A.27) holds for any 3.
Step 4: Proof of (A.26). Differentiating (A.22) in z, we have
Vap(t, s;2,n(t, s)) + Vep(t, s;2,1(t, 5)) Van(t, s) = 0.
This equality and (A.9) imply
Van(t,s)| = [(Vep(t, s;z,n(t, 5))) 7' Vap(t, s;2,1(t, 5))]
< C|Vap(t, s;2,n(t, )|
< CpPo(s)™i 7o,
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which proves (A.26) for « = 8 =0. If a + 8 # 0, we have
Vep(t, s;2,1(t, 5))020F Von(t, s)
= —0207 [Vap(t, s;0,m(t,5))]
« N ’ Y
.S ( ) (5 )as 0 [Vep(t, 5, m(t, )02~ 087Vt ).

!/ /
o' <a,f'<B, “ b
lo'+p"|>1
Thus (A.26) is proved by (A.27), (A.9), (A.11) and the induction with respect
to |af + | 5.
Step 5: Proof of (A.28). Similarly to the proof of (A.12) in Proposi-
tion A.2, we have

y(s,t) —x — (t = s)v(€)
=q(t,s;z,n(t, s)) —x — (t = s)v(p(t, s;z,1(t, 5)))
_ /t [U (g 4 tVpr(o',q(a,s;x,n(t,s)))da) - v(f)] dr.
Using this equality, (A.10) and (A.27), we obtain (A.28). 0
We define

ot @, §) »= ult; z,n(t, 052, €)),
where
t
’U/(t, x, 77) =TT + / {hp — T thp}(Ta q(Ta Oa x, n)ap(Ta 07 xZ, n))dT
0
Then a direct calculus implies that ¢ satisfies the Hamilton—Jacobi equation

Kho(t;x,8) = hy(t, Ved(t;z,€), §),

and the relation between ¢ and the functions y and 7 in Proposition A.3:

{ Vz¢(t§x7£) = n(tv 0; :Z:,g),

(A.30)

A31
Veo(t;,€) = y(0,8;2,€). (A31)

Remark A.4. The relation (A.31) and Proposition A.3 imply the estimate
10507 [Vay(s, t;2,€) = 11| < Clopy 1507 (5) (A.32)
holds for |3| > 1. Hence (A.25) is extended to (A.32) for any a and g.

Now, we construct outgoing and incoming solutions of the eikonal equa-
tion (1.4).

Lemma A.5. The limits
¢i (1‘,5) =

= lim
t—+oo

((t;2,€) — ¢(t0,¢)) (A.33)

exist, are smooth in R** and
Gi(x, € +2mm) = ¢u(x,€) +2mx-m, =z, €RY m ezl (A.34)
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Proof. We define
R(tv €z, 5) = (b(ta &€, 5) - d)(t’ 07 5)
Then we have

VoR(t,x, &) =n(t,0;2,&) = p(0,t;9(0,; 2, £),€)

—co / (VaV) (o a(r by (0, £, €). €))dr

=&+ /Ot(Vsz)(T, q(7,0;2,n(t, 0; 2,€)))dr.
Since
0207 (V) (7. a(r, 052, (8,02, €)))]| < Clas (1)1,
V. R(t,z,€) converges to a smooth function uniformly in (z,&) € R2¢. Thus
O R(t,x,6) == /OIVzG?R(t,Hx,f)dG (A.35)
converges locally uniformly in R??. This implies the smoothness of ¢ .
It is easy to see (A.34) if we remark
n(t,0;x,& + 2rm) = n(t,0;z,§) + 2wm,
q(t,0;x,& 4+ 2mrm) = q(t,0; x, &)

for z,6 € R%, t € R and m € Z°. 0

Next we consider properties of ¢4+ in the “outgoing” and “incoming”
regions. We prepare improved estimates of Proposition A.2 for an orbit which
is outgoing or incoming.

Lemma A.6. Let (¢,p)(t) = (¢,p)(t,0;x,€) be an orbit satisfying (A.2) and
(A.3). Suppose

lg(7)| > b|r|+d, +7>0

for some b > 0 and d > 0. Then there exist log,lg > 2 such that for £t > 0
and o, B € Néo,

Ip(t) €l < CbH (), (A.36)
0207 [Va(t) — 1| < Capb™'o () =172 1), (A.37)
O20LT (1) < Cagh™'o () ~* 7102, (A.38)
0f [Vealt) — tA)]| < Cab™" () |1, (A.39)
92 [Vep(t) — I]‘ < Cpb~la(d)~e. (A.40)
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Proof. We calculate similarly to Proposition A.2, whereas we use the following
estimate instead:

102V, (ta(8))] < Cala(t))™1*175 < Cafblt] +d) 112
O

The next lemma gives improved estimates of Proposition A.3 for outgoing
or incoming orbits.

Lemma A.7. Let b,d >0, b# 0 and z, £ € R? satisfy
lg(7,0;2,n(¢,0;2,8))| = 07| +d, 0< 7 <+t
for any +t > 0. Then there exist l;ﬁ, l’ﬂ > 2 such that, for =t >0,

020 [Va(t,05,€)| < G~ () =111, (A1)
102 [n(t,0:.2,€) — €]| < bt (a) . (A.42)
Proof. The proofs are similar to those of (A.26) and (A.27) if we use
|05V, (T, (1,05 2,m(t, 05 2,£)))| < Co(blT| + d}flo“f‘f, 0 < &7 < £t
0

Using the above two lemmas, we have the estimate of ¢ (x,£) — 2z - € on
the outgoing and incoming region, respectively. See Proposition 2.4 in [7] for
the case of Schrodinger operators.

Proposition A.8.
030 [p(,€) — m - £]| < Caglo(§)|Her () 1= (A.43)
on {(x,&) | |x[F|v(€)|* 75 > C.,, £ cos(z,v(£)) > 0}, respectively.

Proof. On {(z,§) | z,v(€) # 0, cos(z,v(§)) > 0}, (A.4), (A.5) and (A.12)
imply for 0 < 4+7 < +¢,

q(7, 052, n(t,0; 2, €))| > |z + To(p(T, 0;2,7(t,0;2,€)))| — Co(r)' =
= |z + To(p(7, t; (0, t; 2,€),€))| — Co(r)! ==
> o+ 70()| = C(r)=2" = o)==

1 1—e;
> ﬁ‘“”' +lru(@)]) = Clr) =

If we remark

£1 1—eq €1 —e1
2] + [ro(€)] (1x|) (1|m<£>|) _ PO
€1 — &1

1 el —g)t=
we learn for |z|*t |[v(&)[1 =51 > C¢,
1
la(, 052, 9(t, 0;2,€)) = 5 (je| + [To(€)]), 0 < +7 <+t (A.44)

Hence the proposition is proved by (A.44), (A.31), (A.33), (A.35) and
Lemma A.7. g
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The following proposition says ¢4 is a solution to the eikonal equation
(1.4).

Proposition A.9. For any a > 0, there exists R, > 1 such that ¢+ satisfies the
eikonal equation

Wz, Vads(,8)) = ho(§) (A.45)
on the outgoing (or incoming) region
{(, ) | |z] = Ra, [v(§)] = a, % cos(z,v(¢)) = 0},
respectively.
Proof. By (A.31) and (A.33), we have
Veds(z,€) = Tim n(t,0;2,8) = lim p(0,8y(0,8 7, ), ).
If |z| > 2p~', then we have by the definition of V,
W, Vabs(2,€) = lim_ho(0,2,p(0,6y(0,6:.).8).  (A6)
Now we claim
E(7) = hy(7, (7, t;y(0, t;2,€),8), p(7, £, 9(0, 5 2, £), £))
= hy(7,q(7,0;2,n(t, 05 2, €)), p(7, 0; 2, n(t, 0; 2,€)))

is a constant for 0 < +7 < +t. A direct calculus implies

dFE
T (1) = Ochy(7,4(7,0:, m(, 0;z,€)),p(1,0;z,7(t, 0; 2,£)))

= 0,V (7, q(7, 0y 2,n(t, 0; 7, £))).
We note (A.44) holds on {(z,&) | |x| > Ra, |[v(§)| > a, £cos(z,v(§)) > 0} for

R, large enough, and hence

lq(7,0;2,m(t,0;2,8))| > - (Ra + al7])

max {pl, <10;T<>T>> } . 0< 47 <+t

We also note 9;V,(t,z) = 0if |z| > 2max{p~*, %} Thus we have $€(7) =
0 if 0 < £7 < +£t, in particular,

hp(0,$7p(0,t; y(07t;x75)’§)) = E(O) = E(t) (A'47)
= ho(t,y(0,1; 2, €), €).

N o =

>

Hence, (A.46) and (A.47) imply
W, Vs (e.€)) = lm_hy(t.y(0.1:2,€).) = ho(e).
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Proof of Proposition 2.1. Let p € C*°(R? x (R¥\v~1(0))) be defined by
p(,8) = (04 (2,8) =z - x4 (,8)
(- (2,8) =z - &x-(z,§) + - ¢, (A.48)
where
Xt (2, €) = X (nlv(©)|“x) Y (cos(x, v(€))) (A.49)
and ¥y € C*([—1,1];[0,1]) satisfy
1, +o>1

V(o) = {O +o ; (2).’

If 1 and ¢ are fixed so that pu is sufficiently small and that ¢ is sufficiently large,

then ¢ satisfies (2.3), (2.4) and (2.5).
Finally we prove (2.9). Let s, be defined by (2.8). We decompose s, by
Sal(@,€) = s4(2,€) + 53(2,€), (A.50)

where

=Y fla]etealm2070@O) _ ho(V,04(x, ),

z€7Z4
s (2,6) = h(x, Vapa(,€)) — ho(E).
For 52, (A.45) and Assumption 1.3 imply for |z| > R, and 83,

Oa |COS(.’E,'U(£))| 2 99
9° i( &) = { 2 (A.51)
¢fal® O((x)~), | cos(z, v(€))] < 3.
For s!, we have

Lz, €)= Z £l (ei(cpa(r—zyf)—saa(m,f)) _ e—iz-Vm¢a(17§))

z€Z4

= fl etz Varal@®) (ez’%ms,z) _ 1)7

z€Z4

where

@a(x,f,z) = @a(x - Z,f) - @a(-%g) +z- Vz‘pa(xaf)

1 1
=2z </ 01/ Vi@a(l‘ — 91022,5)d92d91) z
0 0

‘3?[671'%%%(1,&)]’ < Cg(gﬂﬁ‘

By (2.4), we observe

and
1 1
8?<I>a(x,£,z)‘ gcﬁ|z|2/ 91/ (x — 01052) 7172 d0,d6;
0 0
< Cplz) 7175 (2)* =
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Thus we obtain
‘aﬁ L ]<cﬁ<x>—1—8. (A.52)
Hence (2.9) is proved by (A.50), (A.51) and (A.52). O

Appendix B. Proofs of Lemmas 2.2 and 2.3
B.1. Proof of Lemma 2.2
First we remark that .J,, Py, Py and their formal adjoint operators

Touli) = )70 [ 3 el e ugyag

d
yeZ4

Prafe] = (2n) [ 3 @0 @ ul e,

y€eZd
Pruls] = (27)" / I i@ OOy, (5, €)uly] de
yeZa

map from .7(Z?) to itself.
Letting L := (z — y) 2(1 + (z — y) - D¢), D¢ := V¢, we easily see
L (ei(m_y)'f) = ¢!@=¥)€ Thus we have

Prulz] = (2m)~ / ZL’“ “””y )pi(yﬁ) [yl dg

y€ezZd

(2m)~ /Z L) (p2(y, €)) uly) €

y€eZ

for any k € Nxo. We define [pi| := supjgj<qq15UP(s,¢)cza e |8?pi(x,f)|.
Then we learn that, setting k =d + 1,

|Prulz]| < Clpx| Y (= y) =" Hula]|.
yeZ
This and Young’s inequality imply [|[Piu| < Clpxl|||u|l, where [ull
= (X ,eza |u[x]|2)% Hence Py are bounded.
Next we prove Py are bounded. A direct calculus implies

Py Poufz) = (2m) / S @O, (2, €)ps (. Euly] dé

yEZ

(2m)- / Z =) n(&e 0y (x, &)pa(y, )ufy] dE,

yeZa

where 7 in the last equality is defined by

1
n(E e y) = /0 Vo 0aly + 0z — y), £)d6. (B.1)
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Then (2.5) implies n(-;z,y) : T* — T9 has its inverse map &(-; x, 7). Changing
the variable £ to 1, we have

PiPiufz] = (27) ¢ /Td > e e (@, y, n)ufy] dy,

yezZa
d§
det | —= ).
¢ (dn>‘

o7 {det (jf;) - 1” < Cplz)~5, (B.2)

where

r(z,y,m) = px (@, E(n; 2, y))p+(y, (0 2, )

Since (2.4) implies

the similar argument for PL proves the boundedness of P;]E’i Thus, for u €
S (Z%), we obtain

[ Prull® = [(PLPru,u)| < || P Pel|flull?,
which implies Py are bounded. The boundedness of .J,, is proved similarly. [

B.2. Proof of Lemma 2.3

Since
v(Ho) — Py — P— =~(Ho)(1 - x),

the compactness of the support of 1 — x implies Py + P_ — v(Hp) is a finite
rank operator, in particular, a compact operator.
We show P} — Py are compact. We observe

(P~ Pajula)
=0 [ 3 s ,6) ~ paly €)uly) e
T A
1
~ et [ 3 ey | Vapstyota =)0 ulyla
1
=i [ 3 et | Ve Vaplo+ 00— ). 000wl

where the last equality follows from integral by parts in £. Since

<Gy [ to-+ 8-y as

< Ch(z) 1,

/0 O Ve - Vapa(y + 0(z — y), £)]d0

similar argument in Lemma 2.2 proves (z)(Pf — Py) are bounded. By the
compactness of (z)~! as an operator on H, P} — Py = (x)~! - (2)(P} — Py)
are compact.
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We next prove the compactness of E4(0) — Py. Using (B.1), we have
Ex(0)ulz] = Jo Prulz]
(2m)~ / Z e$a@8)=2aWE)y (y E)u[y] de

yeZ4
(2m)” Z 'V p, (y,£(n)) |det u ly] d.
d 77
yEZ
Thus
(P=(0) = Pojale] = )~ [ 3 (o, ynpuly] i,
y€eZd
where

r(z,y,m) = p+(y,£(n))

det (ji) ‘ —p+(y,m)-

By (B.2), we have |07 [r(z,y,n)]| < Cg(z)~¢, and hence (x)°(E+(0) — P+) are
bounded. This proves Ey(0) — Py are compact.

The compactness of J,J¥ — I is proved similarly to that of E4(0) — Py,
since

(Ju* — Dulz] = (27) / T i@ OOy ] dé — ula]

y€EZ?
d¢
det (dﬂ)‘ - 1) u [y] dn.

= (97)" 4 i(z—y)n

et [ 3 et (
y€eZ?

Finally, we prove J;J, —I is compact. Now we mimic the proof of Lemma

7.1 in [12]. For f € L?(T%), we denote

Laf(§) = FJ5JaF" f(§)

(2m)~ Z/ i(Pa (@)= 2al@m) f ()

€L

iaf(f) — (27r)_d /Rd /Td ei(“""'(m’g)_“"“(m’”))f(n)dndm.

First we show that, for any ¢ € C°°(T¢) with sufficiently small support,
Koy i=1o (L — f/a)
is a compact operator on L?(T%). We define II : L*(RY) — L*(T%) by

=Y f(&+2mm).

meZa
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Then (2.3) implies

ML) = @m0 3 [ [ teetmerimmesen fy)anas

mezd

2 ¢i(Pa(@E)F2mzm—ca(@m) £(pVdnda.
S [ e ) dud

mezd

Using Poisson’s summation formula

Z 2mizom _ Z 536 "

mezZ mez

in the sense of distribution, we have

ML, f() = (r) 3 [ eene0enten )y = Luf(9)

z€Z4

Thus we learn

Kauf(€) =wo (L, — La) f(

> v

mezi\{0} -
- / kaﬂ/)(ga W)f(ﬂ)dna
Td

where the integral kernel

Fap@n) = 3 w(©) / (o.&+2mm) — pu(w)) g

meza\{0} Re

£)
/ ¢ilee(@E42mm)=0u(w0) (1) dnd
Td

is smooth. This implies the compactness of K y.
In order to show the compactness of ¢ o (L, — I), we note

Lof(&) = (2m) ¢ / / ¢ i Vepa(entOEm)A0-E=1) (1) dpdy.
Rd JTd

Letting

1
y(a;6,m) = /0 Veala,n+0(6 — n))d6

we observe y(+;&,7n) has its inverse map by (2.5). Thus we have

L€ = ) [ [ e e (52)] spanas

This equality and
feY dz —|a|—e
02070} [det <dy> - 1” < Cagy(y) 1o

imply the compactness of 1 o (f/a —1I).

1467

(B.3)
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Hence, with the help of a partition of unity {¢; }3’:1 on T?, we observe

J
JiJo—I=F(Lg~T)F =F*y" (Ka,wj 410 (La — I)) F
j=1
is compact. U
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