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Abstract. In this paper, we define time-independent modifiers to con-
struct a long-range scattering theory for a class of difference operators
on Z

d, including the discrete Schrödinger operators on the square lattice.
The modifiers are constructed by observing the corresponding Hamilton
flow on T ∗

T
d. We prove the existence and completeness of modified wave

operators in terms of the above-mentioned time-independent modifiers.
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1. Introduction

We consider a class of generalized discrete Schrödinger operators H0 and H
on H = �2(Zd), d ≥ 1,

⎧
⎨

⎩

H0u[x] =
∑

y∈Zd

f [y]u[x − y],

Hu[x] = H0u[x] + V [x]u[x],
(1.1)

where f ∈ S (Zd) := {u ∈ �2(Zd) | u[x] = O(〈x〉−∞)}, 〈x〉 := (1 + |x|2) 1
2 ,

satisfies f [−x] = f [x], x ∈ Z
d, and V is a real-valued bounded function on Z

d.
Then H0 and H are bounded self-adjoint operators on H.

We define the discrete Fourier transform F by

Fu(ξ) = (2π)− d
2

∑

x∈Zd

e−ix·ξu[x], ξ ∈ T
d = [−π, π)d

for u ∈ �1(Zd). Then F is continuously extended to a unitary operator from
H to L2(Td) and

H0u[x] = F ∗ (h0(·)Fu(·)) [x],
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where

h0(ξ) :=
∑

x∈Zd

e−ix·ξf [x], ξ ∈ T
d. (1.2)

The above condition on f implies h0 is a real-valued smooth function on T
d.

We denote by v(ξ) and A(ξ) the generalized velocity and the Hessian of h0,
respectively:

v(ξ) = ∇ξh0(ξ),

A(ξ) = t∇ξ∇ξh0(ξ) = (∂ξj
∂ξk

h0(ξ))1≤j,k≤d.

The set of threshold energies is denoted by T,

T =
{
h0(ξ) | ξ ∈ T

d, v(ξ) = 0
}

.

We note T has Lebesgue measure 0 by Sard’s theorem. We first assume the
condition below.

Assumption 1.1. The sets {ξ ∈ T
d | v(ξ) = 0} and {ξ ∈ T

d | det A(ξ) = 0}
have d-dimensional Lebesgue measure zero.

The above assumption implies the absence of point and singular contin-
uous spectrum. The following assertion is a generalized version of Theorem
12.3.2 in [5].

Proposition 1.2. Suppose that the set {ξ ∈ T
d | v(ξ) = 0} has d-dimensional

Lebesgue measure zero. Then H0 has purely absolutely continuous spectrum and
σac(H0) = h0(Td), where σac(H0) denotes the absolutely continuous spectrum
of H0.

Proof. Fix a point ξ0 ∈ W := {ξ ∈ T
d | v(ξ) �= 0}. Then it suffices to

prove C∞
c (U) ⊂ Hac(FH0F

∗) for some neighborhood U ⊂ W of ξ0; for any
f ∈ C∞

c (U),

B(σ(H0)) → R, B 
→
∫

h−1
0 (B)∩supp f

|f(ξ)|2dξ

is an absolutely continuous Borel measure. The claim is proved by taking a
local coordinate U � x 
→ (y(x), h0(x)) ∈ R

d−1 × R. �

If V [x] decays at infinity, then V is a compact operator on H and hence
σess(H) = σess(H0) = σac(H0) = h0(Td), where σess(H) and σess(H0) denotes
the essential spectrum of H and H0, respectively. We suppose a long-range
condition on V .

Assumption 1.3. There exist Ṽ ∈ C∞(Rd;R) and ε ∈ (0, 1] such that Ṽ |Zd =
V and

∣
∣
∣∂α

x Ṽ (x)
∣
∣
∣ ≤ Cα〈x〉−|α|−ε, x ∈ R

d, α ∈ Z
d
+,

where Z+ = {0, 1, 2, . . . }.

Under Assumptions 1.1 and 1.3, the singular continuous spectrum of H
is empty (see, e.g., [12]). In the following, we write V for Ṽ without confusion.
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Remark 1.4. Assumption 1.3 is equivalent to the following condition used in
[11],

∣
∣
∣∂̃α

x V [x]
∣
∣
∣ ≤ C ′

α〈x〉−|α|−ε, x ∈ R
d, α ∈ Z

d
+,

where ∂̃α
x = ∂̃α1

x1
· · · ∂̃αd

xd
, and ∂̃xj

V [x] = V [x] − V [x − ej ] is the difference
operator with respect to the jth variable. Here {ej} is the standard orthogonal
basis of Rd. See Lemma 2.1 in [11] for the detail.

In Sect. 2, we construct modified wave operators with time-independent
modifiers, which are proposed by Isozaki and Kitada [7], so-called Isozaki–
Kitada modifiers. Isozaki–Kitada modifiers are formally defined by

W±
J = s-lim

t→±∞ eitHJe−itH0 .

We construct J as an operator of the form

Ju [x] = (2π)−d

∫

Td

∑

y∈Zd

ei(ϕ(x,ξ)−y·ξ)u[y]dξ, (1.3)

where the phase function ϕ is a solution to the eikonal equation

h0(∇xϕ(x, ξ)) + V (x) = h0(ξ) (1.4)

in the “outgoing” and “incoming” regions and considered in “Appendix A”.
The next theorem is our main result.

Theorem 1.5. Under Assumptions 1.1 and 1.3, there exists an operator J of
the form (1.3) such that, for any Γ � h0(Td)\T, the modified wave operators

W±
J (Γ) := s-lim

t→±∞ eitHJe−itH0EH0(Γ) (1.5)

exist, where EH0 denotes the spectral measure of H0. Furthermore, the follow-
ing properties hold:

(i) Intertwining property: HW±
J (Γ) = W±

J (Γ)H0.
(ii) Partial isometries: ‖W±

J (Γ)u‖ = ‖EH0(Γ)u‖.
(iii) Asymptotic completeness: Ran W±

J (Γ) = EH(Γ)Hac(H).

Examples 1.6. (i) In [11], a long-range scattering theory of the standard dif-
ference Laplacian H0u[x] = − 1

2

∑
|y−x|=1 u [y] , x ∈ Z

d is considered. In this

case, h0(ξ) = −∑d
j=1 cos ξj satisfies Assumption 1.1.

(ii) A model for two-dimensional triangle lattice is expressed by the op-
erator H0u[x] = − 1

6

∑6
j=1 u[x + nj ], x ∈ Z

2, where n1 = (1, 0), n2 = (−1, 0),
n3 = (0, 1), n4 = (0,−1), n5 = (1,−1), n6 = (−1, 1) (see, e.g., [2]). Since

h0(ξ) = −1
3
(cos ξ1 + cos ξ2 + cos(ξ1 − ξ2))

in this case, Assumption 1.1 is satisfied.

Scattering theory for Schrödinger operators on R
d has been extensively

studied [1,6,14,15]. If the perturbation is long range, i.e., V (x) = O(〈x〉−ε),
0 < ε ≤ 1, then the scattering theory needs a modification [6,7,15]. Discrete
Schrödinger operator describes the state of electrons in solid matters with
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graph structure. Spectral properties of discrete Schrödinger operators have
been studied in [2,4,8,11–13].

The main idea of the construction of modifiers is similar to [11]. We
translate H into an operator on the flat torus Td via discrete Fourier transform
and consider the corresponding classical mechanics on T

d. The proof is mainly
based on [7]. We use the time-decaying method to construct the phase function
ϕ in the definition of J , and then the stationary phase method and the Enss
method to prove the existence and completeness of modified wave operators.
The construction of ϕ is given in “Appendix A”, which follows the argument of
[9]. The main properties of ϕ are summarized in Proposition 2.1. In Sect. 2, we
prepare some lemmas for the proof of Theorem 1.5. The Poisson summation
formula is used to prove that pseudo-difference operators on Z

d are translated
to pseudo-differential operators on T

d modulo smoothing operators (see the
proof of Lemma 2.3 in “Appendix B”). This enables us to get over the difficulty
derived from the discreteness of Zd. In Sect. 3, we prove Theorem 1.5.

2. Preliminaries

We first state a proposition on the Hamilton flow generated by h(x, ξ) :=
h0(ξ) + V (x), which is proved in “Appendix A”. Here we note that h0, v and
A are extended periodically in ξ from T

d = [−π, π)d to R
d, and we identify

integrations on T
d with those on [−π, π)d. We also note that the following

proposition concerns functions on R
d ×(

R
d\v−1(0)

)
, not on Z

d ×(
T

d\v−1(0)
)
.

We fix χ ∈ C∞(Rd) such that

χ(x) =

{
0 if |x| ≤ 1,

1 if |x| ≥ 2,
(2.1)

and we define cos(x, y) := x·y
|x||y| for x, y ∈ R

d\{0}. The following assertion is
an analogue of Theorem 2.5 in [7].

Proposition 2.1. There exists a real-valued function ϕ ∈ C∞(Rd×(Rd\v−1(0)))
satisfying the following properties: Set a > 0. Let ϕa ∈ C∞(Rd×R

d) be defined
by

ϕa(x, ξ) = (ϕ(x, ξ) − x · ξ)χ
(

v(ξ)
a

)

+ x · ξ. (2.2)

(1) The function ϕa satisfies

ϕa(x, ξ + 2πm) = ϕa(x, ξ) + 2πx · m, m ∈ Z
d, (2.3)

∣
∣
∣∂α

x ∂β
ξ [ϕa(x, ξ) − x · ξ]

∣
∣
∣ ≤ Cαβ,a〈x〉1−ε−|α|, (2.4)

∣
∣t∇x∇ξϕa(x, ξ) − I

∣
∣ <

1
2

(2.5)

for (x, ξ) ∈ R
d × R

d, where |M | :=
(∑d

j,k=1 |Mjk|2
) 1

2
for a matrix M .
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(2) We set

Jau [x] := (2π)−d

∫

Td

∑

y∈Zd

ei(ϕa(x,ξ)−y·ξ)u[y]dξ. (2.6)

Then

(HJa − JaH0)u [x] = (2π)−d

∫

Td

∑

y∈Zd

ei(ϕa(x,ξ)−y·ξ)sa(x, ξ)u [y] dξ, (2.7)

where

sa(x, ξ) := e−iϕa(x,ξ)H(eiϕa(·,ξ)) [x] − h0(ξ)

=
∑

z∈Zd

f [z]ei(ϕa(x−z,ξ)−ϕa(x,ξ)) + V [x] − h0(ξ) (2.8)

satisfies for |x| ≥ 1 and |v(ξ)| ≥ a

∣
∣
∣∂

β
ξ sa(x, ξ)

∣
∣
∣ ≤

{
Cβ,a〈x〉−1−ε, | cos(x, v(ξ))| ≥ 1

2 ,

Cβ,a〈x〉−ε, | cos(x, v(ξ))| ≤ 1
2 .

(2.9)

We note that ϕa satisfies the eikonal equation (1.4) on {(x, ξ) | |x| ≥
Ra, |v(ξ)| ≥ a, | cos(x, v(ξ))| ≥ 1

2} and that the property is used for the proof
of (2.9) in the | cos(x, v(ξ))| ≥ 1

2 case (see Proposition A.9 and (A.51).
In the rest of this section, we prepare some lemmas for the proof of prop-

erties (ii) and (iii). We choose γ ∈ C∞
c (h0(Td)\T) and ρ± ∈ C∞([−1, 1]; [0, 1])

such that

ρ+(σ) + ρ−(σ) = 1,

ρ+(σ) = 1, σ ∈
[
1
4
, 1

]

,

ρ−(σ) = 1, σ ∈
[

−1,−1
4

]

.

Using γ and ρ±, we define operators with cutoffs in the energy and the direction
of x and v(ξ). We set symbols p± and operators P±, P̃± and E±(t) by

p±(y, ξ) = γ(h0(ξ))χ(y)ρ±(cos(y, v(ξ))), (2.10)

P±u [x] = (2π)−d

∫

Td

∑

y∈Zd

ei(x−y)·ξp±(y, ξ)u [y] dξ, (2.11)

P̃±u [x] = (2π)−d

∫

Td

∑

y∈Zd

ei(x·ξ−ϕa(y,ξ))p±(y, ξ)u [y] dξ, (2.12)

E±(t) = Jae−itH0 P̃±, t ∈ R, (2.13)

where Ja is defined by (2.6).
We consider properties of these operators. We use the stationary phase

method as in the pseudo-differential operator calculus (see, e.g., [16]). The
following two Lemmas correspond to Proposition 3.4 and Lemma 3.7 in [7],
and the proofs are given in “Appendix B” (see also [3,7]).
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Lemma 2.2. Ja, P± and P̃± are bounded operators on H.

Lemma 2.3. γ(H0) − P+ − P−, P ∗
± − P±, E±(0) − P±, J∗

aJa − I and JaJ∗
a − I

are compact operators on H.

The next lemma, corresponding to Proposition 3.8 in [7], is an analogue
of the intertwining property of wave operators.

Lemma 2.4. For any s ∈ R,

s-lim
t→±∞ eitH0J∗

aE±(t − s) = eisH0 P̃±. (2.14)

Proof. The definition of E±(t) implies

eitH0J∗
aE±(t − s) = eitH0J∗

aJae−i(t−s)H0 P̃±

= eitH0 (J∗
aJa − I) e−itH0eisH0 P̃± + eisH0 P̃±.

Since e−itH0u → 0 weakly as t → ±∞ for any u ∈ H = Hac(H0), Lemma 2.3
implies that the first term converges strongly to 0 as t → ±∞. �

Next we prove the norm convergence of limt→±∞ eitHE±(t). If we set

G±(t) :=
(

d
idt

+ H

)

E±(t) = (HJa − JaH0)E±(t),

then we have

eitHE±(t) − P± = E±(0) − P± + i

∫ t

0

eiτHG±(τ)dτ.

The following proposition is analogous to Theorem 3.5 in [7], and proves G±(t)
is integrable in {±t ≥ 0}, respectively.

Proposition 2.5. G±(t) is norm continuous and compact for any t ∈ R. Fur-
thermore, G±(t) satisfies

‖G±(t)‖ ≤ C〈t〉−1−ε, ±t ≥ 0. (2.15)

In particular, eitHE±(t) − P± converges to a compact operator with respect to
the norm topology as t → ±∞, respectively.

Proof. Let

Φ(x, y, ξ; t) := ϕa(x, ξ) − th0(ξ) − ϕa(y, ξ).

Then the definition (2.13) of E±(t) implies

G±(t)u[x] = (HJa − JaH0)e−itH0 P̃±u[x]

= (2π)−d

∫

Td

∑

y∈Zd

eiΦ(x,y,ξ;t)sa(x, ξ)p±(y, ξ)u[y]dξ.

The norm continuity of G±(t) is obvious. Furthermore, (2.9) implies the com-
pactness of HJa − JaH0 by the similar argument in the proof of Lemma 2.3,
hence G±(t) is compact.
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Let us prove (2.15). We consider the + case only. The other case is proved
similarly. We use another decomposition ρ± ∈ C∞([−1, 1]; [0, 1]) which is dif-
ferent from ρ± in that

ρ+(σ) + ρ−(σ) = 1,

ρ+(σ) =

{
1, σ ≥ 3

4 ,

0, σ ≤ 1
2 .

We define

s−(x, ξ) := sa(x, ξ)χ{x	=0}ρ−(cos(x, v(ξ))),

s+(x, ξ) := sa(x, ξ) − s−(x, ξ).

We then decompose G+ as

G+(t)u[x] = (2π)−d

∫

Td

∑

y∈Zd

eiΦ(x,y,ξ;t)(s+p+ + s−p+)(x, y, ξ)u[y]dξ

=: (F+(t) + F−(t))u[x]. (2.16)

Now we claim that for any t ≥ 0 and � ≥ 0,

‖F+(t)‖ ≤ C〈at〉−1−ε, (2.17)

‖F−(t)‖ ≤ C�〈at〉−�. (2.18)

If (2.17) and (2.18) hold, then (2.15) follows from (2.16).
For the proof of (2.17), we let

φ(t; y, ξ) := th0(ξ) + ϕa(y, ξ)

and set

L1 := 〈∇ξφ〉−2(1 − ∇ξφ · Dξ).

Then (2.4) implies on the support of s+(x, ξ)p+(y, ξ),

〈∇ξφ〉−1 ≤ C〈|y| + t|v(ξ)|〉−1.

Thus, for any � ∈ Z+, we have

F+(t)u[x] = (2π)−d

∫

Td

∑

y∈Zd

L�
1

(
e−iφ(t;y,ξ)

)
eiϕa(x,ξ)s+(x, ξ)p+(y, ξ)u[y]dξ

= (2π)−d

∫

Td

∑

y∈Zd

e−iφ(t;y,ξ) (tL1

)�
(
eiϕa(x,ξ)s+(x, ξ)p+(y, ξ)

)
u[y]dξ

= (2π)−d

∫

Td

∑

y∈Zd

eiΦ(t;y,ξ)
{

e−iϕa(x,ξ) (tL1

)�
(
eiϕa(x,ξ)s+p+

)}
u[y]dξ.

The function in {} is a finite sum of functions of the form s�
j(x, ξ)p�

j(y, ξ; t)
such that

⎧
⎪⎪⎨

⎪⎪⎩

∣
∣
∣∂

β
ξ s�

j(x, ξ)
∣
∣
∣ ≤ Cβ〈x〉�−1−ε,

∣
∣
∣∂

β
ξ p�

j(y, ξ; t)
∣
∣
∣ ≤ Cβ〈|y| + t|v(ξ)|〉−�.

(2.19)
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Indeed, (2.19) follows from (2.9) and (2.10). Letting

S�
ju[x] := (2π)−d

∫

Td

∑

y∈Zd

ei(ϕa(x,ξ)−y·ξ)s�
j(x, ξ)u[y]dξ,

P �
j (t)u[x] := (2π)−d

∫

Td

∑

y∈Zd

ei(x·ξ−ϕa(y,ξ))p�
j(y, ξ; t)u[y]dξ,

we have

F+(t) =
∑

j

S�
je

−itH0P �
j (t).

Furthermore, we have by (2.19) and the argument in the proof of Lemma 2.2
∥
∥〈x〉1+ε−�S�

j

∥
∥ < ∞,

∥
∥P �

j (t)
∥
∥ ≤ C�〈at〉−�.

Thus we obtain

‖〈x〉1+ε−�F+(t)‖ ≤ C ′
�〈at〉−�

for any � ∈ Z+. Interpolation with respect to � implies (2.17).
For the proof of (2.18), we note on the support of s−(x, ξ)p+(y, ξ),

〈∇ξΦ〉−1 ≤ C〈|x − y| + t|v(ξ)|〉−1.

Letting

L2 := 〈∇ξΦ〉−2(1 + ∇ξΦ · Dξ),

we have

F−(t)u[x] = (2π)−d

∫

Td

∑

y∈Zd

eiΦ(x,y,ξ;t)
(
tL2

)� (s−(x, ξ)p+(y, ξ))u[y]dξ

= (2π)−d

∫

Td

∑

y∈Zd

ei(ϕa(x,ξ)−ϕa(y,ξ))e−ith0(ξ)
(
tL2

)� (s−p+)u[y]dξ

for any � ∈ Z+. Since

q�(x, y, ξ; t) := e−ith0(ξ)
(
tL2

)� (s−(x, ξ)p+(y, ξ))

satisfies
∣
∣
∣∂

β
ξ q�(x, y, ξ; t)

∣
∣
∣ ≤ C�,β〈tv(ξ)〉|β|−�

for any � ∈ Z+, we obtain (2.18) by the argument in the proof of Lemma 2.2.
�

The next proposition claims that any particle in the energy Γ does not
stay in any bounded domain in x.

Proposition 2.6. For any R > 0 and � ≥ 0,

‖χ{|x|<R}E±(s)‖ ≤ C�,R〈s〉−�, ±s ≥ 0. (2.20)
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Proof. We prove (2.20) for the + case only. We first note

E+(s)u[x] = (2π)−d

∫

Td

∑

y∈Zd

eiΦ(x,y,ξ;s)p+(y, ξ)u[y]dξ,

where Φ(x, y, ξ; t) = ϕa(x, ξ)−th0(ξ)−ϕa(y, ξ). We observe that on the support
of p+(y, ξ),

|sv(ξ) + ∇ξϕa(y, ξ)| ≥ c(|y| + s|v(ξ)|)
for large s. Then, if |x| ≤ R, we have for s > 0 large enough

|∇ξΦ(x, y, ξ; s)| ≥ c(|y| + s|v(ξ)|), (y, ξ) ∈ supp p+.

Similarly to the proof of (2.18), we obtain (2.20). �

3. Proof of Theorem 1.5

3.1. Existence of Modified Wave Operators

We prove the existence of the limit (1.5) for the + case only. The other case is
proved similarly. First we fix Γ � h0(Td)\T. We remark that, for any u ∈ H

such that Fu ∈ C∞(Td) and suppFu ⊂ h−1
0 (Γ), we have

JEH0(Γ)u = Jau (3.1)

for some small enough a > 0. Then, to prove the existence of the limit (1.5),
it suffices to show that

∫ ∞

0

∥
∥
∥
∥

d
dt

(
eitHJe−itH0EH0(Γ)u

)
∥
∥
∥
∥ dt

=
∫ ∞

0

∥
∥
∥
∥

d
dt

(
eitHJae−itH0u

)
∥
∥
∥
∥ dt

=
∫ ∞

0

‖eitH(HJa − JaH0)e−itH0u‖dt

=
∫ ∞

0

‖(HJa − JaH0)e−itH0u‖dt (3.2)

is finite for such u. The last equality follows from the fact that eitH is a
unitary operator. Furthermore, by Assumption 1.1 and a partition of unity
on T

d, we may assume that Fu ∈ C∞(Td) has a sufficiently small support in
{ξ ∈ h−1

0 (Γ) | det A(ξ) �= 0}.
Let w(t) := (HJa − JaH0)e−itH0u. Then (2.7) implies

w(t)[x] = (2π)− d
2

∫

Td

ei(ϕa(x,ξ)−th0(ξ))sa(x, ξ)Fu(ξ)dξ.

Now we use the stationary phase method. The stationary point ξ = ξ(x, t) is
determined by

1
t
∇ξϕa(x, ξ) − v(ξ) = 0. (3.3)
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We define

Dt := {x ∈ Z
d | ∃ξ ∈ suppFu s.t. (3.3) holds}.

By (2.4), there exists an open set U � {ξ ∈ h−1
0 (Γ) | det A(ξ) �= 0} such that

suppFu � U and that for t > 0 large enough,

Dt ⊂
{

x | x

t
∈ v(U)

}
=: D′

t.

On (D′
t)

c, the non-stationary phase method implies

|w(t)[x]| ≤ C�〈|x| + t〉−�, x ∈ Z
d, t > 0

for any � ≥ 0. Thus we learn for any � ≥ 0

‖χ(D′
t)

cw(t)‖ ≤ C ′
�t

−�. (3.4)

On D′
t, the stationary phase method implies

w(t)[x] = t−
d
2 A(t, x)sa(x, ξ(x, t))Fu(ξ(x, t)) + t−

d
2 −1r(t, x),

where A(t, x) is uniformly bounded in x and t with x ∈ D′
t, and

|r(t, x)| ≤ C sup
|β|≤d+3

sup
ξ∈supp Fu

|∂β
ξ sa(x, ξ)|.

Since cos(x, v(ξ)) ≥ 1
2 for x ∈ D′

t and ξ ∈ suppFu if t is sufficiently large, we
have by (2.9)

|sa(x, ξ(x, t))| ≤ C〈x〉−1−ε,

|r(t, x)| ≤ C〈x〉−1−ε.

We note |x| ∼ t on D′
t and the Lebesgue measure of D′

t is bounded by Ctd.
Thus we learn

‖χD′
t
w(t)‖ ≤

(∫

D′
t

(
Ct−

d
2 〈x〉−1−ε

)2

dx

) 1
2

≤ C ′t−1−ε. (3.5)

Hence (3.4) and (3.5) imply

‖w(t)‖ ≤ ‖χD′
t
w(t)‖ + ‖χ(D′

t)
cw(t)‖ ≤ C ′′t−1−ε,

which proves (3.2) is finite. �

3.2. Proof of the Properties (i), (ii) and (iii)

Proof of (i). The intertwining property is proved similarly to the short-range
case (see, e.g., [14]). �

Proof of (ii). It suffices to show ‖W±
J (Γ)u‖ = ‖u‖ for Fu ∈ C∞(Td) with

suppFu ⊂ h−1
0 (Γ). For such u, Ju = Jau holds for small a > 0. Thus letting

ut = e−itH0u, we learn
∥
∥W±

J (Γ)u
∥
∥2

= lim
t→±∞ ‖Jaut‖2 = lim

t→±∞((J∗
aJa − I)ut, ut) + ‖u‖2.

Using w-limt→±∞ ut = 0 and Lemma 2.3, we have limt→±∞(J∗
aJa − I)ut = 0.

This proves W±
J (Γ) are partial isometries. �
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Proof of (iii). We prove the asymptotic completeness of W+
J (Γ) only. Since

intertwining property implies RanW+
J (Γ) ⊂ EH(Γ)Hac(H), it suffices to prove

Ran W+
J (Γ) ⊃ EH(Γ)Hac(H).

We fix v ∈ Hac(H) and γ ∈ C∞(R) so that γ(H)v = v and supp γ ⊂
Γ. We set vt := e−itHv for simplicity. Then we show that EH(Γ)Hac(H) ⊂
Ran W+

J (Γ) follows from

lim
s→∞ lim sup

t→∞
‖vs − ei(t−s)HE+(t − s)vs‖ = 0. (3.6)

First, we observe
∥
∥
∥eitH0J∗

ae−itHv − eisH0 P̃+vs

∥
∥
∥

≤ ∥
∥eitH0J∗

a [vt − E+(t − s)vs]
∥
∥ +

∥
∥
∥eitH0J∗

aE+(t − s)vs − eisH0 P̃+vs

∥
∥
∥ .

Lemma 2.4 implies the second term tends to 0 as t → ∞. The first term is
estimated by (3.6) since

∥
∥eitH0J∗

a [vt − E+(t − s)vs]
∥
∥

≤ ∥
∥eitH0J∗

a

∥
∥ ‖vt − E+(t − s)vs‖

= ‖J∗
a‖

∥
∥
∥ei(t−s)H(vt − E+(t − s)vs)

∥
∥
∥

= ‖J∗
a‖

∥
∥
∥vs − ei(t−s)HE+(t − s)vs

∥
∥
∥ .

Thus we have

lim
s→∞ lim sup

t→∞

∥
∥
∥eitH0J∗

ae−itHv − eisH0 P̃+vs

∥
∥
∥ = 0.

This implies
{
eitH0J∗

ae−itHv
}

t≥0
is a Cauchy sequence in H, equivalently,

there exists the limit

lim
t→∞ eitH0J∗

ae−itHv =: Ωav.

Hence we obtain for sufficiently small a > 0,

v = W+
J (Γ)Ωav ∈ Ran W+

J (Γ).

In the rest of the proof, we show (3.6). Since vs = γ(H)vs, we have

vs − ei(t−s)HE+(t − s)vs = γ(H)vs − ei(t−s)HE+(t − s)vs

= (γ(H) − γ(H0))vs

+ (γ(H0) − P+ − P−)vs

+
(
P+ − ei(t−s)HE+(t − s)

)
vs + P−vs. (3.7)

We note w-lims→∞ vs = 0 and γ(H) − γ(H0) is compact by the compactness
of H − H0 = V . We also note γ(H0) − P+ − P− is compact by Lemma 2.3,
and P+ − ei(t−s)HE+(t − s) converges to a compact operator independent of s
as t → ∞ by Proposition 2.5. Thus the terms on the RHS of (3.7) except the
last one converge to 0.
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To estimate the last term of (3.7), we observe

‖P−vs‖2 = (P ∗
−P−vs, vs)

= ((P ∗
− − P−)P−vs, vs)

+
((

P− − e−isHE−(−s)
)
P−vs, vs

)

+ (P−vs, E−(−s)∗v) . (3.8)

By the similar argument as above, we learn the first and second terms of (3.8)
converge to 0 as s → ∞. The third term of (3.8) is bounded by

|(P−vs, E−(−s)∗v)|
= |(P−vs, E−(−s)∗(χ{|x|≥R} + χ{|x|<R})v)|
≤ ‖E−(−s)P−vs‖‖χ{|x|≥R}v‖ + ‖P−vs‖‖χ{|x|<R}E−(−s)‖‖v‖
≤ Cv(‖χ{|x|≥R}v‖ + ‖χ{|x|<R}E−(−s)‖) (3.9)

for any R > 0. Using (2.20) and limR→∞ ‖χ{|x|≥R}v‖ = 0, we learn that (3.9)
converges to 0 as s → ∞. Hence we obtain (3.6). �
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Appendix A. Classical Mechanics and the Construction of
Phase Function

In this appendix, we use the following notations: For ρ ∈ (0, 1), we define

h(x, ξ) = h0(ξ) + V (x),

Vρ(t, x) = V (x)χ(ρx)χ
( 〈log〈t〉〉x

〈t〉
)

,

hρ(t, x, ξ) = h0(ξ) + Vρ(t, x),

∇2
xVρ(t, x) = t∇x∇xVρ(t, x),

where χ ∈ C∞(Rd) is a fixed function satisfying (2.1). Let ε be as in Assump-
tion 1.3. We fix ε0, ε1 > 0 such that ε0 + ε1 < ε.

The construction of time-decaying potential is same as Isozaki and Kitada
[7] and is first used by Kitada and Yajima [10]. One of the merits of this
construction is that Vρ decays with respect to time t almost same as position x.
The next lemma follows from Assumption 1.3 with elementary computations.
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Lemma A.1. For any t ∈ R, x ∈ R
d and multi-index α,

|∂α
x Vρ(t, x)| ≤ Cα min{ρε0〈t〉−|α|−ε1 , 〈x〉−|α|−ε}, (A.1)

where Cα’s are independent of x, t and ρ.

Let (q, p)(t, s) = (q, p)(t, s;x, ξ) be the solution to the canonical equation
associated to the Hamiltonian hρ:

⎧
⎪⎨

⎪⎩

∂tq(t, s) = ∇ξhρ(t, p(t, s), q(t, s)),
∂tp(t, s) = −∇xhρ(t, p(t, s), q(t, s)),
(q, p)(s, s) = (x, ξ).

This can be rewritten in the integral form:

q(t, s) = x +
∫ t

s

v(p(τ, s))dτ, (A.2)

p(t, s) = ξ −
∫ t

s

∇xVρ(τ, q(τ, s))dτ. (A.3)

Before proving Proposition 2.1, let us describe the outline of this section.
First, we see in Proposition A.2 that q(t, s) ∼ x + (t − s)v(ξ) and p(t, s) ∼ ξ
for sufficiently small ρ > 0. Then we construct a solution φ(t;x, ξ) of the
Hamilton–Jacobi equation (A.30) by the method of characteristics. Also es-
timates for y(s, t;x, ξ) and η(t, s;x, ξ), characterized by (A.21) and (A.22),
respectively, are given in Proposition A.3. Using the above φ, we define func-
tions φ±(x, ξ) by (A.33), and we confirm that φ± satisfies the eikonal equation
(1.4) and the estimate (2.4) in outgoing and incoming region, respectively. Fi-
nally, we construct a function ϕ(x, ξ) such that Proposition 2.1 holds with φ±
and phase-space cutoffs.

Now, we start with estimates for classical orbits (q, p)(t, s;x, ξ). The fol-
lowing proposition is the corresponding result of Proposition 2.1 in [7].

Proposition A.2. For ρ > 0 small enough, there exist C� > 0 (� ∈ Z+) such
that, for any x, ξ ∈ R

d, 0 ≤ ±s ≤ ±t and multi-indices α and β,

|p(s, t;x, ξ) − ξ| ≤ C0ρ
ε0〈s〉−ε1 , (A.4)

|p(t, s;x, ξ) − ξ| ≤ C0ρ
ε0〈s〉−ε1 , (A.5)

|∂α
x [∇xq(s, t;x, ξ) − I]| ≤ C|α|ρε0〈s〉−ε1 , (A.6)

|∂α
x ∇xp(s, t;x, ξ)| ≤ C|α|ρε0〈s〉−1−ε1 , (A.7)

∣
∣
∣∂α

x ∂β
ξ [∇xq(t, s;x, ξ) − I]

∣
∣
∣ ≤ C|α|+|β|ρε0〈s〉−1−ε1 |t − s|, (A.8)

∣
∣
∣∂α

x ∂β
ξ ∇xp(t, s;x, ξ)

∣
∣
∣ ≤ C|α|+|β|ρε0〈s〉−1−ε1 , (A.9)

∣
∣
∣∂

β
ξ [∇ξq(t, s;x, ξ) − (t − s)A(ξ)]

∣
∣
∣ ≤ C|β|ρε0〈s〉−ε1 |t − s|, (A.10)

∣
∣
∣∂

β
ξ [∇ξp(t, s;x, ξ) − I]

∣
∣
∣ ≤ C|β|ρε0〈s〉−ε1 , (A.11)
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∣
∣
∣∂α

x ∂β
ξ [q(t, s;x, ξ) − x − (t − s)v(p(t, s;x, ξ))]

∣
∣
∣

≤ C|α|+|β|ρε0 min{|t − s|〈s〉−ε1 , 〈t〉1−ε1}. (A.12)

Here, |x| =
(∑d

j=1 |xj |2
) 1

2
for a vector x and |M | =

(∑d
j,k=1 |Mjk|2

) 1
2
for a

matrix M .

Proof. We prove in the 0 ≤ s ≤ t case. The other case is proved similarly. The
proof is decomposed into 5 steps.

Step 1: Proof of (A.4) and (A.5). The inequalities (A.4) and (A.5) are
shown by (A.1) and

p(t, t′) − ξ = −
∫ t

t′
∇xVρ(τ, q(τ, t′))dτ, t, t′ ∈ R.

Step 2: Proof of (A.6) and (A.7). We use the induction with respect to
|α|. First we prove (A.6) and (A.7) for α = 0. Differentiating (A.2) and (A.3)
in x, we have

{
∇xq(s, t) = I +

∫ s

t
A(p(τ, t))∇xp(τ, t)dτ,

∇xp(s, t) = − ∫ s

t
∇2

xVρ(τ, q(τ, t))∇xq(τ, t)dτ.

Letting

Q0(s) := ∇xq(s, t) − I,

P0(s) := ∇xp(s, t),

we observe
{

Q0(s) =
∫ s

t
A(p(τ, t))P0(τ)dτ,

P0(s) = − ∫ s

t
∇2

xVρ(τ, q(τ, t))Q0(τ)dτ − ∫ s

t
∇2

xVρ(τ, q(τ, t))dτ.
(A.13)

Thus combining the two equations in (A.13), we learn

P0(s) = Bt(P0(·))(s) + R0(s),

where

Bt(P (·))(s) := −
∫ s

t

∇2
xVρ(τ, q(τ, t))

[∫ τ

t

A(p(σ, t))P (σ)dσ

]

dτ,

R0(s) := −
∫ s

t

∇2
xVρ(τ, q(τ, t))dτ.
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Let ‖M(·)‖0 := sup0≤s≤t〈s〉1+ε1 |M(s)| for M ∈ C([0, t] ;Md(R)). Then (A.1)
implies

|Bt(P (·))(s)| ≤
∫ t

s

C2ρ
ε0〈τ〉−2−ε1

∫ t

τ

|P (σ)|dσdτ

≤ C2ρ
ε0‖P‖0

∫ ∞

s

〈τ〉−2−ε1

∫ ∞

τ

〈σ〉−1−ε1dσdτ

≤ C2C
′ρε0〈s〉−1−2ε1‖P‖0,

|R0(s)| ≤
∫ t

s

C2ρ
ε0〈τ〉−2−ε1dτ ≤ Cρε0〈s〉−1−ε1 .

If ρ ≤ (2C2C
′)− 1

ε0 , the operator norm ‖Bt‖0 of Bt with respect to ‖ · ‖0 is
bounded by 1

2 . Hence we obtain

‖P0(·)‖0 = ‖(1 − Bt)−1(R0(·))‖0 ≤ 1
1 − ‖Bt‖0

‖R0(·)‖0 ≤ 2Cρε0 , (A.14)

which proves (A.7) for α = 0. The inequality (A.6) for α = 0 follows directly
from (A.13) and (A.14).

Next we confirm the induction is valid. We fix α ∈ Z
d
+\{0} and assume

that (A.6) and (A.7) hold for α′ with |α′| < |α|. Differentiating (A.13), we
have

⎧
⎪⎨

⎪⎩

∂α
x Q0(s) =

∫ s

t
A(p(τ, t))∂α

x P0(τ)dτ + R0,1(s),
∂α

x P0(s) = − ∫ s

t
∇2

xVρ(τ, q(τ, t))∂α
x Q0(τ)dτ

+R0,21(s) + R0,22(s),
(A.15)

where

R0,1(s) :=
∑

0�α′≤α

(
α

α′

)∫ s

t

∂α′
x [A(p(τ, t))] ∂α−α′

x P0(τ)dτ,

R0,21(s) := −
∑

0�α′≤α

(
α

α′

) ∫ s

t

∂α′
x

[∇2
xVρ(τ, q(τ, t))

]
∂α−α′

x Q0(τ)dτ,

R0,22(s) := −
∫ s

t

∂α
x

[∇2
xVρ(τ, q(τ, t))

]
dτ,

and
(

α
α′

)
:=

∏d
j=1

αj !
α′

j !(αj−α′
j)!

. By (A.1) and assumptions of the induction, we
have

|R0,1(s)| ≤ Cρε0〈s〉−1−ε1 ,

|R0,21(s)| ≤
∫ t

s

Cρε0〈τ〉−2−ε1 · Cρε0〈τ〉−ε1dτ ≤ Cρε0〈s〉−1−2ε1 ,

|R0,22(s)| ≤
∫ t

s

Cρε0〈τ〉−2−ε1dτ ≤ Cρε0〈s〉−1−ε1 .

The similar argument as for α = 0 implies ‖∂α
x P0(·)‖0 ≤ Cαρε0 and (A.6).
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Step 3: Proof of (A.10) and (A.11). We use the induction with respect to
|β|. First we consider the β = 0 case. Similarly to Step 2, we have

{
∇ξq(t, s) =

∫ t

s
A(p(τ, s))∇ξp(τ, s)dτ,

∇ξp(t, s) = I − ∫ t

s
∇2

xVρ(τ, q(τ, s))∇ξq(τ, s)dτ,

equivalently,
⎧
⎪⎨

⎪⎩

Q′(t) =
∫ t

s
A(p(τ, s))P ′(τ)dτ − ∫ t

s
(A(p(τ, s)) − A(ξ))dτ,

P ′(t) = − ∫ t

s
∇2

xVρ(τ, q(τ, s))Q′(τ)dτ

− ∫ t

s
(τ − s)∇2

xVρ(τ, q(τ, s))A(ξ)dτ,

(A.16)

where

Q′(t) := ∇ξq(t, s) − (t − s)A(ξ),

P ′(t) := ∇ξp(t, s) − I.

By (A.16), we have

P ′(t) = Bs(P ′(·))(t) + R′(t),

where

R′(t) := −
∫ t

s

∇2
xVρ(τ, q(τ, s))

∫ τ

s

A(p(σ, s))dσdτ.

Letting ‖M(·)‖1 := supt≥s |M(t)| for M ∈ C([s,∞) ;Md(R)), we have

|Bs(P (·))(t)| ≤
∫ t

s

C2ρ
ε0〈τ〉−2−ε1

∫ τ

s

|P (σ)|dσdτ

≤ C2ρ
ε0‖P‖1

∫ t

s

〈τ〉−2−ε1(τ − s)dτ

≤ C2C
′ρε1〈s〉−ε1‖P‖1,

|R′(t)| ≤
∫ t

s

Cρε1〈τ〉−2−ε1(τ − s)dτ ≤ Cρε0〈s〉−ε1 .

Thus, if ρ ≤ (2C2C
′)−ε0 , we obtain

‖P ′(·)‖1 = ‖(1 − Bs)−1R′(·)‖1 ≤ 1
1 − ‖Bs‖1

‖R′(·)‖1 ≤ 2Cρε0〈s〉−ε1 . (A.17)

This proves (A.11) for β = 0. The inequality (A.10) for β = 0 follows from
(A.5), (A.16) and (A.17).

Next we prove the induction works. Differentiating (A.16), we have
{

∂β
ξ Q′(t) =

∫ t

s
A(p(τ, s))∂β

ξ P ′(τ)dτ + R′
11(t) + R′

12(t),

∂β
ξ P ′(t) = − ∫ t

s
∇2

xVρ(τ, q(τ, s))∂
β
ξ Q′(τ)dτ + R′

21(t) + R′
22(t),

(A.18)
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where

R′
11(t) :=

∑

0�β′≤β

(
β

β′

) ∫ t

s

∂β′
ξ [A(p(τ, s))] ∂β−β′

ξ P ′(τ)dτ,

R′
12(t) :=

∫ t

s

∂β
ξ [A(p(τ, s)) − A(ξ)] dτ,

R′
21(t) := −

∑

0�β′≤β

(
β

β′

)∫ t

s

∂β′
ξ

[∇2
xVρ(τ, q(τ, s))

]
∂β−β′

ξ Q′(τ)dτ,

R′
22(t) := −

∫ t

s

(τ − s)∂β
ξ

[∇2
xVρ(τ, q(τ, s))A(ξ)

]
dτ.

Thus we have

∂β
ξ P ′(t) = Bs(∂

β
ξ P ′(·))(t) −

∫ t

s

∇2
xVρ(τ, q(τ, s))(R′

11(τ) + R′
12(τ))dτ

+ R′
21(t) + R′

22(t).

If (A.10) and (A.11) are true for β′ with |β′| < |β|, we learn

|R′
11(t)| ≤ Cρε0〈s〉−ε1 |t − s|,

|R′
12(t)| ≤ C sup

|β′|≤|β|

∫ t

s

∣
∣
∣∂

β′
ξ [p(τ, s) − ξ]

∣
∣
∣ dτ ≤ Cρε0〈s〉−ε1 |t − s|,

|R′
21(t)| ≤

∫ t

s

Cρε0〈τ〉−2−ε1 · Cρε0〈s〉−ε1 |τ − s|dτ ≤ Cρ2ε0〈s〉−2ε1 ,

|R′
22(t)| ≤

∫ t

s

Cρε0〈τ〉−2−ε1 |τ − s|dτ ≤ Cρε0〈s〉−ε1 .

Using the similar argument as for β = 0, we obtain (A.10) and (A.11) for any
β.

Step 4: Proof of (A.8) and (A.9). We use the induction with respect to
|α| + |β|. In the α = β = 0 case, differentiation in x implies

{
∇xq(t, s) = I +

∫ t

s
A(p(τ, s))∇xp(τ, s)dτ,

∇xp(t, s) = − ∫ t

s
∇2

xVρ(τ, q(τ, s))∇xq(τ, s)dτ.

Letting

Q(t) := ∇xq(t, s) − I,

P (t) := ∇xp(t, s),

we observe
{

Q(t) =
∫ t

s
A(p(τ, s))P (τ)dτ,

P (t) = − ∫ t

s
∇2

xVρ(τ, q(τ, s))Q(τ)dτ − ∫ t

s
∇2

xVρ(τ, q(τ, s))dτ.
(A.19)

This implies

P (t) = Bs(P (·))(t) + R(t),
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where

R(t) := −
∫ t

s

∇2
xVρ(τ, q(τ, s))dτ.

Since

|R(t)| ≤
∫ t

s

C2ρ
ε0〈τ〉−2−ε1dτ ≤ Cρε0〈s〉−1−ε1 ,

we have

‖P (·)‖1 = ‖(1 − Bs)−1R‖1 ≤ 2Cρε0〈s〉−1−ε1 ,

which proves (A.9) for α = β = 0. The inequality (A.8) follows from (A.9) and
(A.19).

We prove the induction with respect to |α| + |β| works. By (A.19), we
have

⎧
⎪⎨

⎪⎩

∂α
x ∂β

ξ Q(t) =
∫ t

s
A(p(τ, s))∂α

x ∂β
ξ P (τ)dτ + R1(t),

∂α
x ∂β

ξ P (t) = − ∫ t

s
∇2

xVρ(τ, q(τ, s))∂α
x ∂β

ξ Q(τ)dτ

+R21(t) + R22(t),

(A.20)

where

R1(t) :=
∑

α′≤α,β′≤β,
|α′+β′|≥1

(
α

α′

)(
β

β′

) ∫ t

s

∂α′
x ∂β′

ξ [A(p(τ, s))] ∂α−α′
x ∂β−β′

ξ P (τ)dτ,

R21(t)

:= −
∑

α′≤α,β′≤β,
|α′+β′|≥1

(
α

α′

)(
β

β′

)∫ t

s

∂α′
x ∂β′

ξ

[∇2
xVρ(τ, q(τ, s))

]
∂α−α′

x ∂α−β′
ξ Q(τ)dτ,

R22(t) := −
∫ t

s

∂α
x ∂β

ξ

[∇2
xVρ(τ, q(τ, s))

]
dτ.

Thus we learn

∂α
x ∂β

ξ P (t) = Bs(∂α
x ∂β

ξ P (·))(t) −
∫ t

s

∇2
xVρ(τ, q(τ, s))R1(τ)dτ

+ R21(t) + R22(t).

By (A.10), (A.11) and assumptions of the induction, we have

|R1(t)| ≤ Cρε0〈s〉−1−ε1 |t − s|,

|R21(t)| ≤
∫ t

s

Cρε0〈τ〉−2−ε1 · Cρε0〈s〉−1−ε1 |τ − s|dτ ≤ Cρ2ε0〈s〉−1−2ε1 ,

|R22(t)| ≤
∫ t

s

Cρε0〈τ〉−2−ε1dτ ≤ Cρε0〈s〉−1−ε1 .

Similarly to the argument for α = β = 0, we obtain (A.8) and (A.9) for any α
and β.
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Step 5: Proof of (A.12). By (A.2) and (A.3), we have

q(t, s;x, ξ) = x +
∫ t

s

v(p(τ, s))dτ

= x +
∫ t

s

v

(

p(t, s) +
∫ t

τ

∇xVρ(σ, q(σ, s))dσ

)

dτ.

Thus

q(t, s;x, ξ) − x − (t − s)v(p(t, s))

=
∫ t

s

[

v

(

p(t, s) +
∫ t

τ

∇xVρ(σ, q(σ, s))dσ

)

− v(p(t, s))
]

dτ.

This equality and (A.8)–(A.11) imply (A.12). �

Similarly to Proposition 2.2 in [7], we observe that, if ρ is small enough,
the maps

y 
→ q(s, t; y, ξ),

η 
→ p(t, s;x, η)

have the corresponding inverses.

Proposition A.3. Fix ρ > 0 so that C0ρ
ε0 < 1

2 holds, where C0 is the constant
in Proposition A.2. Then, for x, ξ ∈ R

d and 0 ≤ ±s ≤ ±t, there exist y(s, t) =
y(s, t;x, ξ) ∈ R

d and η(t, s) = η(t, s;x, ξ) ∈ R
d such that

{
q(s, t; y(s, t;x, ξ), ξ) = x, (A.21)
p(t, s;x, η(t, s;x, ξ)) = ξ, (A.22)

and
{

q(t, s;x, η(t, s;x, ξ)) = y(s, t;x, ξ), (A.23)
p(s, t; y(s, t;x, ξ), ξ) = η(t, s;x, ξ). (A.24)

Furthermore, for any x, ξ ∈ R
d, 0 ≤ ±s ≤ ±t and multi-indices α and β,

|∂α
x [∇xy(s, t;x, ξ) − I]| ≤ C ′

αρε0〈s〉−ε1 , (A.25)
∣
∣
∣∂α

x ∂β
ξ ∇xη(t, s;x, ξ)

∣
∣
∣ ≤ C ′

αβρε0〈s〉−1−ε1 , (A.26)
∣
∣
∣∂

β
ξ [η(t, s;x, ξ) − ξ]

∣
∣
∣ ≤ C ′

βρε0〈s〉−ε1 , (A.27)
∣
∣
∣∂

β
ξ [y(s, t;x, ξ) − x − (t − s)v(ξ)]

∣
∣
∣ (A.28)

≤ C ′
βρε0 min{|t − s|〈s〉−ε1 , 〈t〉1−ε1}.

Proof. Step 1. By |∇xq(s, t;x, ξ) − I| < 1
2 , |∇ξp(t, s;x, ξ) − I| < 1

2 and
Schwartz’s global inversion theorem ([6], Proposition A.7.1), we have the ex-
istence and uniqueness of y(s, t;x, ξ) and η(t, s;x, ξ) satisfying (A.21) and
(A.22). The equalities (A.23) and (A.24) are shown by (A.21) and (A.22).

Step 2: Proof of (A.25). Differentiation of (A.21) in x implies

∇xq(s, t; y(s, t), ξ)∇xy(s, t) = I. (A.29)
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We have by (A.6)

|∇xy(s, t) − I| = |(∇xq(s, t; y(s, t), ξ))−1 − I|
≤ C|∇xq(s, t; y(s, t), ξ) − I|
≤ Cρε0〈s〉−ε1 .

Differentiating (A.29), we have for α �= 0

∇xq(s, t; y(s, t), ξ)∂α
x ∇xy(s, t)

= −
∑

0�α′≤α

(
α

α′

)

∂α′
x [∇xq(s, t; y(s, t), ξ)] ∂α−α′

x ∇xy(s, t).

Using (A.6) and the induction with respect to |α|, we observe that the RHS of
the above equality is bounded by Cρε0〈s〉−ε1 . Thus we have |∂α

x ∇xy(s, t)| ≤
C ′

αρε0〈s〉−ε1 .
Step 3: Proof of (A.27). By (A.24), we observe for β = 0

|η(t, s) − ξ| = |p(s, t; y(s, t), ξ) − ξ|

=
∣
∣
∣
∣

∫ t

s

∇xVρ(τ, q(τ, t; y(s, t), ξ))dτ

∣
∣
∣
∣

≤ Cρε0〈s〉−ε1 .

In the case of |β| = 1, we have by differentiation of (A.22) in ξ

∇ξp(t, s;x, η(t, s))∇ξη(t, s) = I.

Similarly to Step 2, we obtain by (A.11)

|∇ξη(t, s) − I| ≤ C|∇ξp(t, s;x, η(t, s)) − I|
≤ Cρε0〈s〉−ε1 .

In the other cases, we learn by (A.22)

∇ξp(t, s;x, η(t, s))∂β
ξ ∇ξη(t, s)

= −
∑

0�β′≤β

(
β

β′

)

∂β′
ξ [∇ξp(t, s;x, η(t, s))]∂β−β′

ξ ∇ξη(t, s), β �= 0.

The induction with respect to |β| and (A.11) imply each term in the RHS is
bounded by Cρε0〈s〉−ε1 . Thus (A.27) holds for any β.

Step 4: Proof of (A.26). Differentiating (A.22) in x, we have

∇xp(t, s;x, η(t, s)) + ∇ξp(t, s;x, η(t, s))∇xη(t, s) = 0.

This equality and (A.9) imply

|∇xη(t, s)| = |(∇ξp(t, s;x, η(t, s)))−1∇xp(t, s;x, η(t, s))|
≤ C|∇xp(t, s;x, η(t, s))|
≤ Cρε0〈s〉−1−ε1 ,



Vol. 20 (2019) Long-Range Discrete Schrödinger 1459

which proves (A.26) for α = β = 0. If α + β �= 0, we have

∇ξp(t, s;x, η(t, s))∂α
x ∂β

ξ ∇xη(t, s)

= −∂α
x ∂β

ξ [∇xp(t, s;x, η(t, s))]

−
∑

α′≤α,β′≤β,
|α′+β′|≥1

(
α

α′

)(
β

β′

)

∂α′
x ∂β′

ξ [∇ξp(t, s;x, η(t, s))]∂α−α′
x ∂β−β′

ξ ∇xη(t, s).

Thus (A.26) is proved by (A.27), (A.9), (A.11) and the induction with respect
to |α| + |β|.

Step 5: Proof of (A.28). Similarly to the proof of (A.12) in Proposi-
tion A.2, we have

y(s, t) − x − (t − s)v(ξ)

= q(t, s;x, η(t, s)) − x − (t − s)v(p(t, s;x, η(t, s)))

=
∫ t

s

[

v

(

ξ +
∫ t

τ

∇xVρ(σ, q(σ, s;x, η(t, s)))dσ

)

− v(ξ)
]

dτ.

Using this equality, (A.10) and (A.27), we obtain (A.28). �
We define

φ(t;x, ξ) := u(t;x, η(t, 0;x, ξ)),

where

u(t;x, η) := x · η +
∫ t

0

{hρ − x · ∇xhρ}(τ, q(τ, 0;x, η), p(τ, 0;x, η))dτ.

Then a direct calculus implies that φ satisfies the Hamilton–Jacobi equation
{

∂tφ(t;x, ξ) = hρ(t,∇ξφ(t;x, ξ), ξ),
φ(0;x, ξ) = x · ξ,

(A.30)

and the relation between φ and the functions y and η in Proposition A.3:
{

∇xφ(t;x, ξ) = η(t, 0;x, ξ),
∇ξφ(t;x, ξ) = y(0, t;x, ξ).

(A.31)

Remark A.4. The relation (A.31) and Proposition A.3 imply the estimate

|∂α
x ∂β

ξ [∇xy(s, t;x, ξ) − I] | ≤ C ′
|α|+|β|ρ

ε0〈s〉−ε1 (A.32)

holds for |β| ≥ 1. Hence (A.25) is extended to (A.32) for any α and β.

Now, we construct outgoing and incoming solutions of the eikonal equa-
tion (1.4).

Lemma A.5. The limits

φ±(x, ξ) := lim
t→±∞(φ(t;x, ξ) − φ(t; 0, ξ)) (A.33)

exist, are smooth in R
2d and

φ±(x, ξ + 2πm) = φ±(x, ξ) + 2πx · m, x, ξ ∈ R
d, m ∈ Z

d. (A.34)
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Proof. We define

R(t, x, ξ) := φ(t;x, ξ) − φ(t; 0, ξ).

Then we have

∇xR(t, x, ξ) = η(t, 0;x, ξ) = p(0, t; y(0, t;x, ξ), ξ)

= ξ +
∫ t

0

(∇xVρ)(τ, q(τ, t; y(0, t;x, ξ), ξ))dτ

= ξ +
∫ t

0

(∇xVρ)(τ, q(τ, 0;x, η(t, 0;x, ξ)))dτ.

Since
∣
∣
∣∂α

x ∂β
ξ [(∇xVρ)(τ, q(τ, 0;x, η(t, 0;x, ξ)))]

∣
∣
∣ ≤ Cαβ〈τ〉−1−ε1 ,

∇xR(t, x, ξ) converges to a smooth function uniformly in (x, ξ) ∈ R
2d. Thus

∂β
ξ R(t, x, ξ) = x ·

∫ 1

0

∇x∂β
ξ R(t, θx, ξ)dθ (A.35)

converges locally uniformly in R
2d. This implies the smoothness of φ±.

It is easy to see (A.34) if we remark

η(t, 0;x, ξ + 2πm) = η(t, 0;x, ξ) + 2πm,

q(t, 0;x, ξ + 2πm) = q(t, 0;x, ξ)

for x, ξ ∈ R
d, t ∈ R and m ∈ Z

d. �

Next we consider properties of φ± in the “outgoing” and “incoming”
regions. We prepare improved estimates of Proposition A.2 for an orbit which
is outgoing or incoming.

Lemma A.6. Let (q, p)(t) = (q, p)(t, 0;x, ξ) be an orbit satisfying (A.2) and
(A.3). Suppose

|q(τ)| ≥ b|τ | + d, ±τ ≥ 0

for some b > 0 and d ≥ 0. Then there exist lαβ , lβ ≥ 2 such that for ±t ≥ 0
and α, β ∈ N

d
≥0,

|p(t) − ξ| ≤ Cb−1〈d〉−ε, (A.36)
∣
∣
∣∂α

x ∂β
ξ [∇xq(t) − I]

∣
∣
∣ ≤ Cαβb−lαβ 〈d〉−1−|α|−ε|t|, (A.37)

∣
∣
∣∂α

x ∂β
ξ ∇xp(t)

∣
∣
∣ ≤ Cαβb−lαβ 〈d〉−1−|α|−ε, (A.38)

∣
∣
∣∂

β
ξ [∇ξq(t) − tA(ξ)]

∣
∣
∣ ≤ Cβb−lβ 〈d〉−ε|t|, (A.39)

∣
∣
∣∂

β
ξ [∇ξp(t) − I]

∣
∣
∣ ≤ Cβb−lβ 〈d〉−ε. (A.40)
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Proof. We calculate similarly to Proposition A.2, whereas we use the following
estimate instead:

|∂α
x Vρ(t, q(t))| ≤ Cα〈q(t)〉−|α|−ε ≤ Cα〈b|t| + d〉−|α|−ε.

�
The next lemma gives improved estimates of Proposition A.3 for outgoing

or incoming orbits.

Lemma A.7. Let b, d ≥ 0, b �= 0 and x, ξ ∈ R
d satisfy

|q(τ, 0;x, η(t, 0;x, ξ))| ≥ b|τ | + d, 0 ≤ ±τ ≤ ±t

for any ±t ≥ 0. Then there exist l′αβ , l′β ≥ 2 such that, for ±t ≥ 0,
∣
∣
∣∂α

x ∂β
ξ [∇xη(t, 0;x, ξ)]

∣
∣
∣ ≤ Cαβb−l′αβ 〈d〉−1−|α|−ε, (A.41)

∣
∣
∣∂

β
ξ [η(t, 0;x, ξ) − ξ]

∣
∣
∣ ≤ Cβb−l′β 〈d〉−ε. (A.42)

Proof. The proofs are similar to those of (A.26) and (A.27) if we use

|∂α
x Vρ(τ, q(τ, 0;x, η(t, 0;x, ξ)))| ≤ Cα〈b|τ | + d〉−|α|−ε, 0 ≤ ±τ ≤ ±t.

�
Using the above two lemmas, we have the estimate of φ±(x, ξ) − x · ξ on

the outgoing and incoming region, respectively. See Proposition 2.4 in [7] for
the case of Schrödinger operators.

Proposition A.8.
∣
∣
∣∂α

x ∂β
ξ [φ±(x, ξ) − x · ξ]

∣
∣
∣ ≤ Cαβ |v(ξ)|−lαβ 〈x〉1−|α|−ε (A.43)

on {(x, ξ) | |x|ε1 |v(ξ)|1−ε1 ≥ Cε1 ,± cos(x, v(ξ)) ≥ 0}, respectively.
Proof. On {(x, ξ) | x, v(ξ) �= 0, ± cos(x, v(ξ)) ≥ 0}, (A.4), (A.5) and (A.12)
imply for 0 ≤ ±τ ≤ ±t,

|q(τ, 0;x, η(t, 0;x, ξ))| ≥ |x + τv(p(τ, 0;x, η(t, 0;x, ξ)))| − C0〈τ〉1−ε1

= |x + τv(p(τ, t; y(0, t;x, ξ), ξ))| − C0〈τ〉1−ε1

≥ |x + τv(ξ)| − C〈τ〉1−ε1 − C0〈τ〉1−ε1

≥ 1√
2
(|x| + |τv(ξ)|) − C〈τ〉1−ε1 .

If we remark

|x| + |τv(ξ)| ≥
(

1
ε1

|x|
)ε1

(
1

1 − ε1
|τv(ξ)|

)1−ε1

=
|x|ε1 |v(ξ)|1−ε1

εε1
1 (1 − ε1)1−ε1

|τ |1−ε1 ,

we learn for |x|ε1 |v(ξ)|1−ε1 ≥ Cε1

|q(τ, 0;x, η(t, 0;x, ξ))| ≥ 1
2
(|x| + |τv(ξ)|), 0 ≤ ±τ ≤ ±t. (A.44)

Hence the proposition is proved by (A.44), (A.31), (A.33), (A.35) and
Lemma A.7. �
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The following proposition says φ± is a solution to the eikonal equation
(1.4).

Proposition A.9. For any a > 0, there exists Ra > 1 such that φ± satisfies the
eikonal equation

h(x,∇xφ±(x, ξ)) = h0(ξ) (A.45)

on the outgoing (or incoming) region

{(x, ξ) | |x| ≥ Ra, |v(ξ)| ≥ a,± cos(x, v(ξ)) ≥ 0},

respectively.

Proof. By (A.31) and (A.33), we have

∇xφ±(x, ξ) = lim
t→±∞ η(t, 0;x, ξ) = lim

t→±∞ p(0, t; y(0, t;x, ξ), ξ).

If |x| ≥ 2ρ−1, then we have by the definition of Vρ

h(x,∇xφ±(x, ξ)) = lim
t→±∞ hρ(0, x, p(0, t; y(0, t;x, ξ), ξ)). (A.46)

Now we claim

E(τ) := hρ(τ, q(τ, t; y(0, t;x, ξ), ξ), p(τ, t; y(0, t;x, ξ), ξ))

= hρ(τ, q(τ, 0;x, η(t, 0;x, ξ)), p(τ, 0;x, η(t, 0;x, ξ)))

is a constant for 0 ≤ ±τ ≤ ±t. A direct calculus implies

dE

dτ
(τ) = ∂thρ(τ, q(τ, 0;x, η(t, 0;x, ξ)), p(τ, 0;x, η(t, 0;x, ξ)))

= ∂tVρ(τ, q(τ, 0;x, η(t, 0;x, ξ))).

We note (A.44) holds on {(x, ξ) | |x| ≥ Ra, |v(ξ)| ≥ a, ± cos(x, v(ξ)) ≥ 0} for
Ra large enough, and hence

|q(τ, 0;x, η(t, 0;x, ξ))| ≥ 1
2
(Ra + a|τ |)

≥ 2max
{

ρ−1,
〈τ〉

〈log〈τ〉〉
}

, 0 ≤ ±τ ≤ ±t.

We also note ∂tVρ(t, x) = 0 if |x| ≥ 2max{ρ−1, 〈t〉
〈log〈t〉〉}. Thus we have dE

dτ (τ) =
0 if 0 ≤ ±τ ≤ ±t, in particular,

hρ(0, x, p(0, t; y(0, t;x, ξ), ξ)) = E(0) = E(t) (A.47)

= hρ(t, y(0, t;x, ξ), ξ).

Hence, (A.46) and (A.47) imply

h(x,∇xφ±(x, ξ)) = lim
t→±∞ hρ(t, y(0, t;x, ξ), ξ) = h0(ξ).

�
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Proof of Proposition 2.1. Let ϕ ∈ C∞(Rd × (Rd\v−1(0))) be defined by

ϕ(x, ξ) = (φ+(x, ξ) − x · ξ)χ+(x, ξ)

+ (φ−(x, ξ) − x · ξ)χ−(x, ξ) + x · ξ, (A.48)

where

χ±(x, ξ) = χ
(
μ|v(ξ)|�x)

ψ±(cos(x, v(ξ))) (A.49)

and ψ± ∈ C∞([−1, 1]; [0, 1]) satisfy

ψ±(σ) =

{
1, ±σ ≥ 1

2 ,

0, ±σ ≤ 0.

If μ and � are fixed so that μ is sufficiently small and that � is sufficiently large,
then ϕ satisfies (2.3), (2.4) and (2.5).

Finally we prove (2.9). Let sa be defined by (2.8). We decompose sa by

sa(x, ξ) = s1
a(x, ξ) + s2

a(x, ξ), (A.50)

where

s1
a(x, ξ) =

∑

z∈Zd

f [z] ei(ϕa(x−z,ξ)−ϕa(x,ξ)) − h0(∇xϕa(x, ξ)),

s2
a(x, ξ) = h(x,∇xϕa(x, ξ)) − h0(ξ).

For s2
a, (A.45) and Assumption 1.3 imply for |x| ≥ Ra and β,

∂β
ξ s2

a(x, ξ) =

{
0, | cos(x, v(ξ))| ≥ 1

2 ,

O(〈x〉−ε), | cos(x, v(ξ))| ≤ 1
2 .

(A.51)

For s1
a, we have

s1
a(x, ξ) =

∑

z∈Zd

f [z]
(
ei(ϕa(x−z,ξ)−ϕa(x,ξ)) − e−iz·∇xϕa(x,ξ)

)

=
∑

z∈Zd

f [z] e−iz·∇xϕa(x,ξ)
(
eiΦa(x,ξ,z) − 1

)
,

where

Φa(x, ξ, z) = ϕa(x − z, ξ) − ϕa(x, ξ) + z · ∇xϕa(x, ξ)

= z ·
(∫ 1

0

θ1

∫ 1

0

∇2
xϕa(x − θ1θ2z, ξ)dθ2dθ1

)

z.

By (2.4), we observe
∣
∣
∣∂

β
ξ [e−iz·∇xϕa(x,ξ)]

∣
∣
∣ ≤ Cβ〈z〉|β|

and
∣
∣
∣∂

β
ξ Φa(x, ξ, z)

∣
∣
∣ ≤ Cβ |z|2

∫ 1

0

θ1

∫ 1

0

〈x − θ1θ2z〉−1−εdθ2dθ1

≤ Cβ〈x〉−1−ε〈z〉3+ε.
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Thus we obtain
∣
∣
∣∂

β
ξ s1

a(x, ξ)
∣
∣
∣ ≤ Cβ〈x〉−1−ε. (A.52)

Hence (2.9) is proved by (A.50), (A.51) and (A.52). �

Appendix B. Proofs of Lemmas 2.2 and 2.3

B.1. Proof of Lemma 2.2

First we remark that Ja, P±, P̃± and their formal adjoint operators

J∗
au[x] = (2π)−d

∫

Td

∑

y∈Zd

ei(x·ξ−ϕa(y,ξ))u[y]dξ,

P ∗
±u[x] = (2π)−d

∫

Td

∑

y∈Zd

ei(x−y)·ξp±(x, ξ)u [y] dξ,

P̃ ∗
±u[x] = (2π)−d

∫

Td

∑

y∈Zd

ei(ϕa(x,ξ)−y·ξ)p±(x, ξ)u [y] dξ

map from S (Zd) to itself.
Letting L := 〈x − y〉−2(1 + (x − y) · Dξ), Dξ := 1

i ∇ξ, we easily see
L

(
ei(x−y)·ξ) = ei(x−y)·ξ. Thus we have

P±u [x] = (2π)−d

∫

Td

∑

y∈Zd

Lk
(
ei(x−y)·ξ

)
p±(y, ξ)u [y] dξ

= (2π)−d

∫

Td

∑

y∈Zd

ei(x−y)·ξ(L∗)k (p±(y, ξ)) u [y] dξ

for any k ∈ N≥0. We define |p±| := sup|β|≤d+1 sup(x,ξ)∈Zd×Td |∂β
ξ p±(x, ξ)|.

Then we learn that, setting k = d + 1,

|P±u [x] | ≤ C|p±|
∑

y∈Zd

〈x − y〉−d−1|u[x]|.

This and Young’s inequality imply ‖P±u‖ ≤ C|p±|‖u‖, where ‖u‖
:=

(∑
x∈Zd |u[x]|2)

1
2 . Hence P± are bounded.

Next we prove P̃± are bounded. A direct calculus implies

P̃ ∗
±P̃±u[x] = (2π)−d

∫

Td

∑

y∈Zd

ei(ϕa(x,ξ)−ϕa(y,ξ))p±(x, ξ)p±(y, ξ)u [y] dξ

= (2π)−d

∫

Td

∑

y∈Zd

ei(x−y)·η(ξ;x,y)p±(x, ξ)p±(y, ξ)u [y] dξ,

where η in the last equality is defined by

η(ξ;x, y) :=
∫ 1

0

∇xϕa(y + θ(x − y), ξ)dθ. (B.1)
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Then (2.5) implies η(·;x, y) : Td → T
d has its inverse map ξ(·;x, y). Changing

the variable ξ to η, we have

P̃ ∗
±P̃±u[x] = (2π)−d

∫

Td

∑

y∈Zd

ei(x−y)·ηr(x, y, η)u [y] dη,

where

r(x, y, η) = p±(x, ξ(η;x, y))p±(y, ξ(η;x, y))
∣
∣
∣
∣det

(
dξ

dη

)∣
∣
∣
∣ .

Since (2.4) implies
∣
∣
∣
∣∂

β
η

[

det
(

dξ

dη

)

− 1
]∣
∣
∣
∣ ≤ Cβ〈x〉−ε, (B.2)

the similar argument for P± proves the boundedness of P̃ ∗
±P̃±. Thus, for u ∈

S (Zd), we obtain

‖P̃±u‖2 = |(P̃ ∗
±P̃±u, u)| ≤ ‖P̃ ∗

±P̃±‖‖u‖2,

which implies P̃± are bounded. The boundedness of Ja is proved similarly. �

B.2. Proof of Lemma 2.3

Since

γ(H0) − P+ − P− = γ(H0)(1 − χ),

the compactness of the support of 1 − χ implies P+ + P− − γ(H0) is a finite
rank operator, in particular, a compact operator.

We show P ∗
± − P± are compact. We observe

(P ∗
± − P±)u[x]

= (2π)−d

∫

Td

∑

y∈Zd

ei(x−y)·ξ(p±(x, ξ) − p±(y, ξ))u [y] dξ

= (2π)−d

∫

Td

∑

y∈Zd

ei(x−y)·ξ(x − y) ·
∫ 1

0

∇xp±(y + θ(x − y), ξ)dθ u[y]dξ

= (2π)−di

∫

Td

∑

y∈Zd

ei(x−y)·ξ
∫ 1

0

∇ξ · ∇xp±(y + θ(x − y), ξ)dθ u[y]dξ,

where the last equality follows from integral by parts in ξ. Since
∣
∣
∣
∣

∫ 1

0

∂β
ξ [∇ξ · ∇xp±(y + θ(x − y), ξ)]dθ

∣
∣
∣
∣ ≤ Cβ

∫ 1

0

〈y + θ(x − y)〉−1dθ

≤ C ′
β〈x〉−1,

similar argument in Lemma 2.2 proves 〈x〉(P ∗
± − P±) are bounded. By the

compactness of 〈x〉−1 as an operator on H, P ∗
± − P± = 〈x〉−1 · 〈x〉(P ∗

± − P±)
are compact.



1466 Y. Tadano Ann. Henri Poincaré

We next prove the compactness of E±(0) − P±. Using (B.1), we have

E±(0)u[x] = JaP̃±u[x]

= (2π)−d

∫

Td

∑

y∈Zd

ei(ϕa(x,ξ)−ϕa(y,ξ))p±(y, ξ)u [y] dξ

= (2π)−d

∫

Td

∑

y∈Zd

ei(x−y)·ηp±(y, ξ(η))
∣
∣
∣
∣det

(
dξ

dη

)∣
∣
∣
∣ u [y] dη.

Thus

(E±(0) − P±)u[x] = (2π)−d

∫

Td

∑

y∈Zd

ei(x−y)·ηr(x, y, η)u [y] dη,

where

r(x, y, η) = p±(y, ξ(η))
∣
∣
∣
∣det

(
dξ

dη

)∣
∣
∣
∣ − p±(y, η).

By (B.2), we have |∂β
η [r(x, y, η)]| ≤ Cβ〈x〉−ε, and hence 〈x〉ε(E±(0) − P±) are

bounded. This proves E±(0) − P± are compact.
The compactness of JaJ∗

a − I is proved similarly to that of E±(0) − P±,
since

(JaJ∗
a − I)u[x] = (2π)−d

∫

Td

∑

y∈Zd

ei(ϕa(x,ξ)−ϕa(y,ξ))u [y] dξ − u[x]

= (2π)−d

∫

Td

∑

y∈Zd

ei(x−y)·η
(∣

∣
∣
∣det

(
dξ

dη

)∣
∣
∣
∣ − 1

)

u [y] dη.

Finally, we prove J∗
aJa−I is compact. Now we mimic the proof of Lemma

7.1 in [12]. For f ∈ L2(Td), we denote

Laf(ξ) = FJ∗
aJaF ∗f(ξ)

= (2π)−d
∑

x∈Zd

∫

Td

ei(ϕa(x,ξ)−ϕa(x,η))f(η)dη,

L̃af(ξ) = (2π)−d

∫

Rd

∫

Td

ei(ϕa(x,ξ)−ϕa(x,η))f(η)dηdx.

First we show that, for any ψ ∈ C∞(Td) with sufficiently small support,

Ka,ψ := ψ ◦ (La − L̃a)

is a compact operator on L2(Td). We define Π : L1(Rd) → L1(Td) by

Πf(ξ) :=
∑

m∈Zd

f(ξ + 2πm).
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Then (2.3) implies

ΠL̃af(ξ) = (2π)−d
∑

m∈Zd

∫

Rd

∫

Td

ei(ϕa(x,ξ+2πm)−ϕa(x,η))f(η)dηdx

= (2π)−d
∑

m∈Zd

∫

Rd

∫

Td

ei(ϕa(x,ξ)+2πx·m−ϕa(x,η))f(η)dηdx.

Using Poisson’s summation formula
∑

m∈Zd

e2πix·m =
∑

m∈Zd

δx−m (B.3)

in the sense of distribution, we have

ΠL̃af(ξ) = (2π)−d
∑

x∈Zd

∫

Td

ei(ϕa(x,ξ)−ϕa(x,η))f(η)dη = Laf(ξ).

Thus we learn

Ka,ψf(ξ) = ψ ◦ (ΠL̃a − L̃a)f(ξ)

=
∑

m∈Zd\{0}
ψ(ξ)

∫

Rd

∫

Td

ei(ϕa(x,ξ+2πm)−ϕa(x,η))f(η)dηdx

=
∫

Td

ka,ψ(ξ, η)f(η)dη,

where the integral kernel

ka,ψ(ξ, η) =
∑

m∈Zd\{0}
ψ(ξ)

∫

Rd

ei(ϕa(x,ξ+2πm)−ϕa(x,η))dx

is smooth. This implies the compactness of Ka,ψ.
In order to show the compactness of ψ ◦ (L̃a − I), we note

L̃af(ξ) = (2π)−d

∫

Rd

∫

Td

ei
∫ 1
0 ∇ξϕa(x,η+θ(ξ−η))dθ·(ξ−η)f(η)dηdx.

Letting

y(x; ξ, η) :=
∫ 1

0

∇ξϕa(x, η + θ(ξ − η))dθ,

we observe y(·; ξ, η) has its inverse map by (2.5). Thus we have

L̃af(ξ) = (2π)−d

∫

Rd

∫

Td

eiy·(ξ−η)

∣
∣
∣
∣det

(
dx

dy

)∣
∣
∣
∣ f(η)dηdy.

This equality and
∣
∣
∣
∣∂

α
y ∂β

ξ ∂γ
η

[

det
(

dx

dy

)

− 1
]∣
∣
∣
∣ ≤ Cαβγ〈y〉−|α|−ε

imply the compactness of ψ ◦ (L̃a − I).
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Hence, with the help of a partition of unity {ψj}J
j=1 on T

d, we observe

J∗
aJa − I = F ∗(La − I)F = F ∗

J∑

j=1

(
Ka,ψj

+ ψj ◦ (L̃a − I)
)

F

is compact. �
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Birkhäuser, Basel (2009)
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