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Abstract. This work develops a new method to calculate non-
perturbative corrections in one-dimensional Quantum Mechanics, based
on trans-series solutions to the refined holomorphic anomaly equations
of topological string theory. The method can be applied to traditional
spectral problems governed by the Schrödinger equation, where it both
reproduces and extends the results of well-established approaches, such as
the exact WKB method. It can be also applied to spectral problems based
on the quantization of mirror curves, where it leads to new results on the
trans-series structure of the spectrum. Various examples are discussed,
including the modified Mathieu equation, the double-well potential and
the quantum mirror curves of local P

2 and local F0. In all these exam-
ples, it is verified in detail that the trans-series obtained with this new
method correctly predict the large-order behavior of the corresponding
perturbative sectors.

1. Introduction

It has been known for some time that certain string theories may be encoded in
simple quantum mechanical models. This has led to a very fruitful interaction
between string theory (and its close cousin, supersymmetric gauge theories)
and Quantum Mechanics, as illustrated by [1,2]. It was recently pointed out
that this connection is more general than previously thought. More precisely,
it was argued in [3] that the all-orders WKB approximation in generic one-
dimensional quantum systems is encoded in the so-called refined holomorphic
anomaly equations of topological string theory [4–6]. This makes it possible
to calculate the quantum periods (also known as Voros multipliers [7]) to all
orders, by using both modularity and the direct integration of the holomorphic
anomaly equations [8,9]. In the case of polynomial potentials, there is a physi-
cal reason for the connection between the WKB method and the holomorphic
anomaly equations [10,11]: it turns out that these quantum mechanical models
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can be engineered in terms of Seiberg–Witten (SW) theories with gauge group
SU(N) (where N corresponds to the degree of the potential), in the NS back-
ground [1], and in a particular scaling limit near the Argyres–Douglas point in
moduli space. Since the holomorphic anomaly equation governs the quantum
periods of supersymmetric gauge theories in this background [12–14], they are
inherited by the quantum mechanical model.

So far, the results in [3] are purely perturbative: the � expansion in the
WKB method is treated as a genus expansion in topological string theory and
obtained, order by order, by using the recursive structure of the holomorphic
anomaly. It is now natural to ask whether the connection between quantum
mechanical problems and the holomorphic anomaly goes beyond perturba-
tion theory, and can be used to compute non-perturbative effects in Quantum
Mechanics. In other words, is it possible to extend this connection to quan-
tum mechanical trans-series1 including exponentially small corrections? The
key ingredient for such an extension would be a generalization of the refined
holomorphic anomaly equations to the realm of trans-series.

The standard anomaly equation governing the conventional topological
string has already been generalized non-perturbatively in [17,18]. This has
led, for example, to a very precise determination of the large-order behavior
of the genus expansion for topological string theory on toric Calabi–Yau (CY)
threefolds. More recently, it has been used in [19] to provide a semiclassical de-
coding of a recent proposal for a non-perturbative topological string partition
function [20]. Our first goal in this paper is to generalize the work of [17,18] to
the refined topological string. This leads to a general trans-series solution for
the refined topological string free energy. Since we want to make contact with
simple quantum mechanical problems, we focus on the so-called Nekrasov–
Shatashvili (NS) limit [1]. The trans-series solution of the refined holomorphic
anomaly equations should correspond, in this limit, to the non-perturbative
sector of Quantum Mechanics.

In order to test this idea, we look at two different types of problems. The
first type consists of conventional quantum mechanical models in one dimen-
sion, involving the Schrödinger operator. Extensive work since the late 1970s
has led to a good understanding of the trans-series structure in this type of ex-
amples, by using exact versions of the WKB method [7,21–23], multi-instanton
calculations in Quantum Mechanics [24–26], or the uniform WKB approxima-
tion [27–29]. We start our analysis by looking at the modified Mathieu equa-
tion, which is closely related to the NS limit of the Ω-deformed SW theory
[1,30,31]. The study of the refined holomorphic anomaly in this model is best
implemented by using modular forms, as first pointed out in [8]. Interestingly,
the study of trans-series solutions requires an extension of this framework to
deal with exponentially small corrections. We propose an extended modular
ring which captures the properties of the trans-series, and we test our re-
sults against the large-order behavior of the non-holomorphic extension of the

1We refer the reader to [15,16] for an introduction to resurgence, trans-series, and their
asymptotics, alongside a very complete list of references on the subject.
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quantum periods. Based on this analysis, we find a universal form for the one-
instanton correction at all orders in �. We also determine a higher instanton
solution of the holomorphic anomaly equations which agrees with the result for
the trans-series in Quantum Mechanics, in the holomorphic limit. The struc-
ture found for the modified Mathieu equation extends straightforwardly to
other canonical examples in Quantum Mechanics, like the double-well and the
cubic potential studied in [3]. These results indicate that the correspondence
between quantum mechanical problems and the refined holomorphic anomaly
equations found in [3] extends to the non-perturbative realm.

The power of a new method should also be measured by its ability to go
beyond what is already known. Our new non-perturbative method in Quan-
tum Mechanics shows its true strength in a second type of problems, namely
the spectral problems associated with quantum mirror curves. These spectral
problems involve difference, rather than differential, equations, and they have
been intensively studied in the last few years. In spite of this, very little is
known about their trans-series structure. Our method gives a concrete tool to
calculate non-perturbative trans-series for the all-orders WKB expansion in
this problem. This leads again to predictions for the large-order behavior of
the WKB series, which we test in detail in the case of local P

2. In addition, we
can deduce from our results the full one-instanton trans-series for the eigen-
values of the difference equation. The systematic, perturbative expansion of
these eigenvalues has been recently studied in [32], and we use our results to
predict and test the asymptotic behavior of this expansion in the case of local
F0.

The all-orders WKB method produces an asymptotic expansion in powers
of �

2, which is sometimes called the quantum volume. In the case of quantum
mirror curves, the relation to topological strings has led to a plethora of exact
results which in particular promote the quantum volume to a true function. It
is then natural to ask what is the relation between the asymptotic expansion
and the exact result. We perform this analysis in the case of local P

2, and we
find that, as in previous related examples [19,33], the asymptotic expansion of
the quantum volume is Borel summable, but its Borel resummation does not
agree with the exact result. This opens the way for a “semiclassical decoding”
of the exact quantum volume in terms of a full trans-series, which we leave for
future work.

This paper is organized as follows: In Sect. 2, we review the connection
between the all-orders WKB method and the refined holomorphic anomaly
equations, and we study trans-series solutions to these equations in the NS
limit. Sections 3, 4, 5 and 6 are devoted to detailed discussions of examples.
In Sect. 3, we consider the modified Mathieu equation. We present the trans-
series solution to the corresponding holomorphic anomaly equations in terms
of modular forms. We test this solution against the large-order behavior of the
quantum free energies, and we also check that it reproduces known results in
Quantum Mechanics. Section 4 does a similar analysis for another important
example in Quantum Mechanics: the double-well potential. Sections 5 and 6
are devoted to examples based on quantum mirror curves: the case of local P

2
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and the case of local F0, respectively. In the first case, we do a comparison
between the Borel resummation of the quantum free energies and the exact
answer obtained from topological string theory. In the second case, we use our
results on trans-series to predict the large-order behavior of the perturbative
series for the energy levels worked out systematically in [32]. We conclude in
Sect. 7 and list some open problems. Two appendices contain supplementary
material on the topics discussed in the paper. In the first “Appendix,” we
present the formulation of the refined holomorphic anomaly equations of [6,34]
in terms of a master equation, while in the second ”Appendix” we present a
large-order test of the trans-series obtained in Quantum Mechanics for the
modified Mathieu equation.

2. WKB, Trans-Series and the Refined Holomorphic Anomaly

2.1. The All-Orders WKB Method

In this paper, we will be interested in spectral problems in one dimension. One
general strategy to attack these problems is to use the all-orders WKB method
[35] (see, for example, [36,37] for clear presentations). In this method, one de-
fines a formal power series in �

2 which we will call the quantum volume, whose
classical limit is the volume in phase space defined by a maximal energy E. Let
us review how this quantum volume is defined in the case of Schrödinger op-
erators. We start with the Schrödinger equation for a one-dimensional particle
in a potential V (x),

�
2ψ′′(x) + p2(x)ψ(x) = 0, p(x) =

√
2(E − V (x)), (2.1)

where we have set the mass m = 1. Let us consider the standard WKB ansatz
for the wavefunction,

ψ(x) = exp
{

i
�

∫ x

Q(x′)dx′
}

, (2.2)

which leads to a Riccati equation for Q(x),

Q2(x) − i�
dQ

dx
(x) = p2(x). (2.3)

We now solve for the function Q(x) as a power series in �:

Q(x) =
∞∑

k=0

Qk(x)�k. (2.4)

If we split this formal power series into even and odd powers of �,

Q(x) = Qodd(x) + P (x), (2.5)

where

P (x) =
∑

n≥0

Pn(x)�2n, (2.6)
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we find that Qodd(x) is a total derivative,

Qodd(x) =
i�
2

P ′(x)
P (x)

=
i�
2

d
dx

log P (x), (2.7)

and wavefunction (2.2) can be written as

ψ(x) =
1

√
P (x)

exp
{

i
�

∫ x

P (x′)dx′
}

. (2.8)

Let us now consider the Riemann surface Σ defined by

y2 = p2(x). (2.9)

We will restrict ourselves to curves of genus one. The turning points of the
WKB problem are the points where p2(x) = 0 and correspond to the branch
points of curve (2.9). For a curve of genus one, there are only two independent
one-cycles A and B encircling turning points. The A-cycle corresponds to an
allowed region for the classical motion, while the B-cycle corresponds to a
forbidden region. The period of the one-form y(x)dx along the A-cycle gives
the volume of the classically allowed region in phase space,

vol0(E) =
1
2

∮

A

y(x)dx. (2.10)

By using the formal power series in (2.6), we define the quantum volume as a
formal power series in �

2,

volp(E) =
∑

n≥0

�
2nvoln(E), voln(E) =

1
2

∮

A

Pn(x)dx. (2.11)

The all-orders WKB quantization condition is then

volp(E) = 2π�

(
m +

1
2

)
, m = 0, 1, 2, · · · . (2.12)

One important question in Quantum Mechanics (asked, e.g., in [38]) is whether
there is a well-defined function of E and � whose asymptotic expansion in �,
at fixed E, coincides with (2.11). In other words, is there a non-perturbative
definition of the quantum volume? Surprisingly, such a definition is not known
in general. For the Schrödinger equation with polynomial potentials, Voros has
constructed exact quantum volumes for states of definite parity, defined as fixed
points of a functional recursion (see, e.g., [39,40]). In the context of integrable
systems, the quantum volume can be obtained from the so-called Yang–Yang
function. The Yang–Yang function can be explicitly written down in some
cases via the relation to supersymmetric gauge theory [1] or to topological
string theory [20,41–44]. In all those cases, the quantum volume is a well-
defined function and its asymptotic expansion agrees with (2.11).

We can use the integrals of the differential y(x)dx around the two cycles
A and B of curve (2.9) to define the classical periods,

t =
1
2π

∮

A

y(x)dx, tD = −i
∮

B

y(x)dx, (2.13)
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with appropriate choices of branch cuts for the function y(x). It is useful to
introduce the prepotential or classical free energy F0(t) by the equation

tD =
∂F0

∂t
. (2.14)

We should regard t as a flat coordinate parametrizing the complex structure
of curve (2.9). If we now use the quantum-deformed differential P (x)dx, we
promote the classical periods to “quantum” periods,

t(�) = �ν =
1
2π

∮

A

P (x)dx, �
∂F

∂t(�)
=

∂F

∂ν
= −i

∮

B

P (x)dx, (2.15)

where we have introduced the variable ν = t(�)/�. Both quantum periods are
defined by formal power series expansions in �

2, and the leading-order term of
this expansion, which is obtained as � → 0, gives back the classical periods.
Note that the quantum A-period is proportional to the quantum volume, and
the all-orders WKB quantization condition reads

ν = m +
1
2
. (2.16)

The quantum B-period defines the quantum free energy as a formal power
series in �

2, where each coefficient is a function of the full quantum period ν,

F (ν) =
∑

n≥0

Fn(ν)�2n−1. (2.17)

This quantity is the analogue of the NS free energy in N = 2 supersymmetric
gauge theories and topological string theory. In writing the quantum free en-
ergy and the quantum A-period, we have already made a choice of “frame,”
but as it is well known from SW theory, there is an infinite number of frames
related by duality transformations. We will see in the examples below that, in
some cases, it is convenient to use different frames to perform the analysis.

The other type of spectral problems that we want to address in this
paper is obtained by quantization of mirror curves to toric CY threefolds. In
the genus-one case, mirror curves can be written as

O(ex, ey) + κ = 0, (2.18)

where O(ex, ey) is a polynomial in ex, ey. As explained in, e.g., [20], we quantize
the function O(ex, ey) by promoting x, y to canonically conjugate Heisenberg
operators x and y on L2(R), satisfying the commutation relation

[x, y] = i�. (2.19)

Ordering ambiguities are solved by Weyl’s prescription. In this way, we obtain
a spectral problem of the form

O(ex, ey)|ψ〉 = −κ|ψ〉, (2.20)

where |ψ〉 belongs to the domain of the operator O(ex, ey) inside L2(R). When
working in the x representation for the wavefunctions, ey acts as a difference
operator, and the spectral problem (2.20) can be written as a difference equa-
tion. It has been proved in [45,46] that, in many cases, the operators O(ex, ey)



Vol. 20 (2019) Non-perturbative Quantum Mechanics 549

have a discrete spectrum. (More precisely, their inverses are trace class oper-
ators in L2(R).) On the other hand, difference equations can also be solved
with the WKB method [47], by using an ansatz of form (2.2). The leading-order
term is given by

Q(x) = y(x) + O(�), (2.21)

where y(x) is the (multi-valued) function defined by (2.18). As shown in [12,48],
this WKB analysis makes it possible to define quantum periods, similarly to
what we have discussed in the context of the Schrödinger equation. One of the
quantum periods defines the quantum volume, as in (2.11), and this in turn
makes it possible to write down a perturbative quantization condition of form
(2.12). One can also define a quantum free energy, as in (2.15). It was argued in
[12,48], and further tested in [49,50], that the quantum free energy obtained
with the WKB method agrees with the NS limit of the refined topological
string free energy for the corresponding CY manifold.

The refined topological string free energy satisfies a generalized or re-
fined set of holomorphic anomaly equations [5,6] which extend the original
construction in [4]. In particular, in the case of the difference equations (2.20),
the quantum free energy defined by the WKB method satisfies the NS limit of
the equations in [5,6]. In [3], evidence was given that the quantum free energy
of many one-dimensional Schrödinger problems also satisfies these equations,
even when the spectral problem is not related to any known supersymmetric
gauge theory or topological string theory. It was then conjectured in [3] that
the connection between the WKB method and the holomorphic anomaly equa-
tions should be valid for general one-dimensional problems.2 This conjectural
connection, if true, provides a unified framework to study spectral problems
coming from Schrödinger operators and from quantum mirror curves. We will
now review in some detail the refined holomorphic anomaly equations, and we
will study their trans-series solution.

2.2. The Refined Holomorphic Anomaly

We consider the B-model refined topological string on a local CY manifold
described by a Riemann surface Σ. This could be of form (2.9), as arising in
ordinary Quantum Mechanics, or a mirror curve defined by an equation like
(2.20). The moduli space of complex structures on the CY manifold is a special
Kähler manifold with metric Gkm̄. In the case of a local CY manifold built
upon a Riemann surface Σ, the metric is related to the period matrix τ of Σ
by

Gij̄ =
2πi
β

(τ − τ)ij , (2.22)

where β is a real normalization constant.
We will denote the corresponding covariant derivatives by Di. The pre-

potential F0 of this special Kähler manifold is precisely the function of the
moduli defined by (2.14). The Yukawa couplings Cijk are defined by

2Some evidence for this conjecture has been already found for curves of genus two in [51].
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Cijk =
∂3F0

∂ti∂tj∂tk
, (2.23)

and we can fix β so that

Gij̄ =
∂2F0

∂ti∂tj
+ h.c. (2.24)

An important quantity entering into the formalism is

C
lm

k̄ = Glp̄Gmn̄C p̄n̄k̄. (2.25)

The basic quantities in refined topological string theory are the perturbative
free energies F (g1,g2)(ti), with g1, g2 ≥ 0 (see, for example, [5,31,52,53] for
more details). The total free energy is a function of two parameters, ε1,2, and
it is defined by the asymptotic expansion

Fref(ti; ε1, ε2) ∼
+∞∑

g1=0

+∞∑

g2=0

(ε1 + ε2)
2g1 (ε1ε2)

g2−1
F (g1,g2)(ti). (2.26)

There are two important limits of this quantity. The first one corresponds to
ε1 = −ε2 = gs. In this limit, only the perturbative free energies with g1 = 0
contribute, and we recover the standard topological string with string coupling
gs. The second limit is the so-called NS limit [1], in which we take ε1 = 0. More
precisely, we define the quantum or NS free energy by the limit

F (ti, �) = lim
ε1→0

ε1 F (ti; ε1, ε2 = �). (2.27)

It has the asymptotic expansion

F (ti, �) ∼
+∞∑

n=0

F (n,0)(ti)�2n−1, (2.28)

and we shall denote for simplicity

F (n,0)(ti) = Fn(ti). (2.29)

The refined topological string energies can be computed with many differ-
ent techniques: instanton calculus [31], the refined topological vertex [52,54],
BPS invariants [53,55] and, in the case of the NS limit, the WKB method
mentioned above [12,48]. Another powerful technique is based on the refined
holomorphic anomaly equations. These equations exploit the fact that the re-
fined free energies can be promoted to non-holomorphic functions of both the
moduli ti and their complex conjugates t̄i, F (g1,g2)(ti, t̄i). The refined holo-
morphic anomaly equations govern the anti-holomorphic dependence of these
functions, and they read

∂F (g1,g2)

∂t̄k

=
1

2
C

lm
k̄

(

DlDmF (g1,g2−1) +
∑

0<r1+r2<g1+g2

DlF
(r1,r2)DmF (g1−r1,g2−r2)

)

.

(2.30)
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These equations are valid for g1 + g2 ≥ 2. In the standard topological string
limit, with g1 = 0, one recovers the BCOV holomorphic anomaly equations [4].
In the NS limit, the first term in the r.h.s. of (2.30) drops out, and we obtain
the simplified equations

∂Fn

∂t̄k
=

1
2
C

lm

k̄

n−1∑

r=1

DlFrDmFn−r, n ≥ 2. (2.31)

In this paper, we will focus on the case in which Σ has genus one, so
that the moduli space of complex structures has dimension one. It can be
parametrized by the elliptic modulus τ , which is related to the prepotential
by

τ =
β

2πi
∂2F0

∂t2
. (2.32)

In this case, the anti-holomorphic dependence of the free energies can be en-
coded in a single function, usually called the propagator S, defined by

∂t̄S = C̄ tt
t̄ . (2.33)

Here, we have denoted the single index by t, which refers to the modulus of the
CY. By using the propagator, we can write the refined holomorphic anomaly
equations in the case of curves of genus one as

∂F (g1,g2)

∂S
=

1
2

(

D2
t F (g1,g2−1) +

∑

0<r1+r2<g1+g2

DtF
(r1,r2)DtF

(g1−r1,g2−r2)

)

,

(2.34)

and their NS limit (2.31) as

∂Fn

∂S
=

1
2

n−1∑

r=1

DtFr DtFn−r, n ≥ 2. (2.35)

Equations (2.31) have to be supplemented with an explicit expression for F1.
It turns out that, in known examples [5,6],

F1 = − 1
24

log Δ, (2.36)

where Δ is essentially the discriminant of the curve Σ. (It can contain addi-
tional functions of the moduli.) Using (2.36) as the initial condition, as well
as the special geometry of the moduli space, the holomorphic anomaly equa-
tions (2.31) determine the functions Fn recursively, up to a purely holomorphic
dependence on the moduli which is usually called the holomorphic ambiguity.

When using the refined holomorphic anomaly to compute the quantum
free energies, it is important to take into account an important subtlety. The
argument t of the functions Fn(t) is, as it should, the full quantum period t(�)
appearing in (2.15). The anomaly equations typically give the Fns as functions
of the complex modulus of the curve—parametrized by the elliptic modulus τ
or by the complex parameter appearing in the equation of the curve—which
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we will denote by z. However, the relation between z (or τ) and t(�) is the one
determined by the classical period [5,6].

As first noted in [8,9], in the case of curves of genus one, it is very useful,
both conceptually and computationally, to re-express the anomaly equations
in the language of modular forms. This leads to convenient parametrizations
of the free energies and their holomorphic ambiguities, and to a fast symbolic
(computational) implementation of the recursion. When the Riemann surface
has genus one, there is a single Yukawa coupling, which we will denote by

Y = Cttt. (2.37)

To satisfy (2.33), the propagator S can be written as the non-holomorphic
modular form [8]

S = − β

12
Ê2(τ, τ̄), (2.38)

where Ê2(τ, τ̄) is defined by

Ê2(τ, τ̄) = E2(τ) − 3
πIm τ

, (2.39)

and E2(τ) is the weight-two Eisenstein series. It is also very useful to introduce
the Maass derivative acting on (almost holomorphic) modular forms of weight
k,

Dτ =
1

2πi
d
dτ

− k

4πImτ
. (2.40)

The refined holomorphic anomaly equations read in this case, in the NS limit,

∂Fn

∂Ê2

= −β3

24
Y 2

n−1∑

r=1

DτFrDτFn−r, n ≥ 2. (2.41)

This equation (2.41) is solved by an expression of the form,

Fn =
2n−3∑

r=0

fn,rÊ
r
2 (2.42)

where the coefficients fn,r are holomorphic in τ . Since Fn has modular weight
zero for n ≥ 1, the coefficients fn,r have weight −2r. The coefficient fn,0 is the
holomorphic ambiguity. As first explained in [8], one can determine the holo-
morphic ambiguity by first finding an appropriate parametrization in terms
of modular forms, which depends on the particular curve under consideration.
The holomorphic ambiguity is written in this way as an unknown linear com-
bination of known modular forms. To determine the coefficients in this linear
combination, one imposes boundary conditions at special loci in the moduli
space of the curve. This method has been used in, e.g., [9,13,56]. We will see
concrete implementations of this procedure in the examples of this paper.
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2.3. Trans-Series Solutions of the Refined Holomorphic Anomaly Equations

As setup originally in [4], the holomorphic anomaly equations are inherently
perturbative. Due to the recursive nature of these equations, it is natural to ask
whether they can have trans-series solutions which capture non-perturbative
effects. This was answered in the affirmative in [17] and further developed
and exemplified in [18,19,57,58]. In this section, we will extend some aspects
of [17,18] to the refined case, focusing on the NS limit which is relevant for
quantum mechanical problems.

The first step in constructing the trans-series solution is to obtain a “mas-
ter equation” for the total free energy (2.27). Such an equation is given by

∂F

∂S
− 1

2
� (DtF )2 =

1
�

W − U DtF, (2.43)

where
U = DtF0,

W = W0 + �
2 W1,

(2.44)

and

W0 =
∂F0

∂S
+

1
2

(DtF0)
2
,

W1 =
∂F1

∂S
.

(2.45)

It is easy to see that this reproduces recursion (2.35). A more general master
equation can be written away from the NS limit, which should provide the
starting point for an analysis of general trans-series in the refined topological
string. We present this master equation in “Appendix A.”

We now postulate a trans-series ansatz for the solution of this master
equation, rather than the perturbative series (2.28). The simplest ansatz is a
one-parameter trans-series with an infinite number of exponentially small cor-
rections, as the one already used in [17,18] for the standard anomaly equation
of [4]. We will write

F (σ; �) =
∞∑

n=0

σn e−nA/� F (n)(�). (2.46)

In this equation, A is the instanton action, σ is a trans-series parameter and
F (n)(�) denotes the perturbative expansion in � around the n-th instanton. All
multi-instanton sectors are themselves asymptotic series (as the perturbative
series (2.28) already was)

F (n)(�) ∼
+∞∑

k=0

�
k+b(n)

F
(n)
k , (2.47)

where b(n) is a “characteristic exponent” or “starting genus.”
We now proceed as in [17], i.e., we insert the trans-series (2.46) into the

master equation (2.43). One recovers the perturbative NS-limit holomorphic
anomaly equation (2.35) for the perturbative coefficients in (2.28), alongside a
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new non-perturbative extension for the non-perturbative coefficients in (2.47).
At first non-trivial non-perturbative order, one obtains

∂SA = 0, (2.48)

i.e., the instanton action is holomorphic (since the anti-holomorphic depen-
dence is all contained in the propagator). This is in complete analogy with
what happens in the standard topological string case [17]. Note, however, that
this condition only occurs if the combination of starting genera

Bnm = b(n−m) −
(
b(n) − b(m)

)
(2.49)

is strictly positive,3 Bnm > 0. (This already occurred in the standard topo-
logical string case; see [17] for further details.) We shall proceed under this
assumption. The holomorphicity condition (2.48) puts little restrictions on the
actual value of the action. However, one expects that it is a period of the CY
manifold, as it was postulated in [59] based on previous insights [38,60,61]. By
explicitly using holomorphicity of the instanton action, the remaining terms
give us the non-perturbative extension of the NS-limit holomorphic anomaly
equations. We find,

∂SF
(n)
k = −

k∑

i=1

D(n)
i F

(n)
k−i

+
1
2

n−1∑

m=1

k−Bnm∑

i=0

(
∂tF

(m)
i − m (∂tA) F

(m)
i+1

)

×
(
∂tF

(n−m)
k−Bnm−i−1 − (n − m) (∂tA) F

(n−m)
k−Bnm−i

)

+
1
2

n−1∑

m=1

(
∂tF

(n−m)
k−Bnm

−(n − m) (∂tA) F
(n−m)
k−Bnm+1

)(
−m (∂tA) F

(m)
0

)
.

(2.50)

In these equations, the D(n)
i are operators defined as follows:

D(n)
2i−1 = n∂tA∂tF

(0)
i , i = 1, 2, 3, · · · ,

D(n)
2i = −∂tF

(0)
i Dt, i = 1, 2, 3, · · · .

(2.51)

Note that the operator in the first line is a multiplicative operator involving no
derivatives. Equations (2.50) become very simple for the first instanton sector.
We find,

∂SF
(1)
0 = 0 (2.52)

and

∂SF
(1)
k = −

k∑

i=1

D(1)
i F

(1)
k−i, k ≥ 1. (2.53)

3Otherwise there will be extra (non-trivial) constraints.
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For example, for k = 1, 2 we obtain,

∂SF
(1)
1 = −∂tA∂tF

(0)
1 F

(1)
0 ,

∂SF
(1)
2 = −∂tA ∂tF

(0)
1 F

(1)
1 + ∂tF

(0)
1 ∂tF

(1)
0 .

(2.54)

There is a slightly simpler master equation which we will also use in the
following. Let us define

F̃ = �F − F
(0)
0 . (2.55)

Then, the holomorphic anomaly equation can be written as

∂SF̃ − 1
2

(
DtF̃

)2
= 0. (2.56)

which can also be solved with a trans-series ansatz, as we will see in our
examples.

One of the signposts of resurgence is that higher instanton corrections
“resurge” in the large-order behavior of lower instanton series (see, e.g., [15,
16]). In the case we are considering here, the perturbative series is the series
of NS free energies (2.28). We expect the large-order behavior of this series to
be controlled by the first instanton series F (1). More precisely, we expect the
leading double-factorial behavior

F (0)
n ∼

∞∑

k=0

μk
Γ (2n − b − k)

A2n−b−k
, n � 1, (2.57)

where we have denoted

b = b(1) + 1, (2.58)

A is the smallest action in absolute value, and the coefficients μn are given by
the loop corrections in the one-instanton sector,

μk =
Σ
2πi

F
(1)
k . (2.59)

In this equation, Σ is a Stokes parameter which has to be determined in each
problem.

In the rest of this paper, we will study the trans-series solution of the NS
limit of the refined holomorphic anomaly in various examples.

3. Examples in Quantum Mechanics: The Modified Mathieu
Equation

We now apply the formalism developed in the previous section to various ex-
amples. The first one is the modified Mathieu equation, which has been studied
in detail in the recent literature (see, e.g., [62–67]), due to its connection to
SW theory and its quantum deformation [1,31].
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3.1. WKB Analysis and the Refined Holomorphic Anomaly

The modified Mathieu equation describes a one-dimensional, quantum me-
chanical particle in a cosh(x) potential. The classical Hamiltonian is

H(p, x) = p2 + 2 cosh(x), (3.1)

and the corresponding Schrödinger equation is
(

−�
2 d2

dx2
+ 2 cosh(x) − E

)
ψ(x) = 0. (3.2)

The spectral problem associated with the modified Mathieu equation leads
to an infinite number of discrete energy levels, labeled by an integer n =
0, 1, 2, · · · . These energy levels can be computed by using the all-orders WKB
method. For a given energy E, the turning points of the motion are given by
±x+, where

x+ = cosh−1

(
E

2

)
. (3.3)

The classical volume of phase space is given by the integral,

vol0(E)= 4
∫ x+

0

dx
√

E − 2 cosh x= 8
√

E + 2
[
K
(

E − 2
E + 2

)
− E

(
E − 2
E + 2

)]
,

(3.4)

where K(m), E(m) denote the complete elliptic integrals of the first and the
second kinds, as a function of the squared modulus m = k2. The all-orders
WKB method gives an asymptotic expansion for the quantum volume, of form
(2.11). It is possible to calculate the very first orders of this expansion by using
conventional techniques. One finds, for example, at the next-to-leading order,

vol1(E) =
2K
(

2E
E+2 − 1

)
− E E

(
2E

E+2 − 1
)

6(E − 2)
√

2 + E
. (3.5)

As explained in Sect. 2.1, the WKB method makes it possible to define quan-
tum periods, as well as a quantum free energy. The quantum volume gives
the quantum A-period. There is a quantum B-period associated with a cycle
which goes around the imaginary axis and is given by

a(E, �) =
1

2πi

∫ πi

−πi

dx

(√
E − 2 cosh x +

∞∑

n=1

�
2nPn(x)

)

. (3.6)

The classical limit of this period will be denoted by a(E), and it is given by

a(E) =
2
√

E

π

√

1 +
2
E

E
(

4
2 + E

)
. (3.7)

The classical prepotential is defined by,
∂F0

∂a
= vol0(E), (3.8)

where a = a(E) is the classical limit of the B-period. Note that, in this prob-
lem, we define the prepotential and the quantum free energy in terms of the
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A-period. This is because we are choosing here a particular frame, which we
will call the “electric” frame. There is a dual, “magnetic” frame, obtained by
performing an S transformation which exchanges the A and the B periods,
and which is more useful to analyze the spectral problem, as we shall see.

The prepotential can be computed at large a as

F0(a) = 4a2 log(2a) − 6a2 − 1
2a2

− 5
64a6

− 3
64a6

+ O(a−10). (3.9)

This is, up to a choice of normalization, the prepotential of SW theory [30],
and the Riemann surface underlying Hamiltonian (3.1) is equivalent to the SW
curve

y2 = (x − u)(x2 − 1), (3.10)

where u, the complex modulus of the curve, is related to energy in (3.2) by

E = 2u. (3.11)

This relation can be regarded as a consequence of the connection between
SW theory and classical integrable systems [68,69], since (3.1) is the only
non-trivial Hamiltonian of the classical N = 2 Toda lattice. The classical
prepotential F0(a) can be promoted to a full quantum free energy by the
equation

�
∂F

∂a
= volp(E), (3.12)

where a is now the full quantum period in (3.6). The resulting quantity,

F (a) =
∑

n≥0

Fn(a)�2n−1, (3.13)

is the NS limit of the Nekrasov free energy for SU(2), N = 2 supersymmet-
ric Yang–Mills theory [1,12] (or, more precisely, its asymptotic expansion in
powers of �

2). Let us now introduce the “magnetic” quantum period

aD(�) = − �

4π

∂F

∂a
. (3.14)

The corresponding “magnetic” or dual quantum free energy

FD(aD, �) =
∑

n≥0

FD,n(aD)�2n−1 (3.15)

is defined by

�
∂FD(aD, �)

∂aD(�)
= 4πa(�). (3.16)

Then, the all-orders WKB quantization condition can be written as

aD(�) = −�ν

2
. (3.17)

From this quantization condition, one can derive in particular the perturbative
expansion of the energy E = E(ν) as a function of the quantum number ν, by
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simply expanding the quantum period aD(�) around u = 1, order by order in
�, and solving for u as a function of � and ν. One finds in this way,

u(ν, �) − 1
�

= ν +
1
64
(
4ν2 + 1

)
� − ν

1024
(
4ν2 + 3

)
�
2

+

(
80ν4+136ν2+9

)
�
3

131072
+

(−528ν5 − 1640ν3 − 405ν
)

�
4

4194304
+O (�5

)

(3.18)

This is precisely what one obtains in the standard perturbative analysis of
the modified Mathieu equation, by using, for example, the BenderWu package
[70].

In this quantum mechanical problem, the connection to topological
string theory and its geometric engineering limit indicates that the Fn(a) can
be computed by using the NS limit of the refined holomorphic anomaly equa-
tion. As noted in (2.36), the first correction to the classical prepotential is
given by

F1(a) = − 1
24

log Δ, Δ = u2 − 1. (3.19)

In order to obtain efficiently the higher-order corrections Fn(a), with n ≥ 2, we
rewrite the holomorphic anomaly equations in terms of modular forms, as we
explained in Sect. 2.2. The relevant modular forms are the ones associated with
the SW curve, and discussed, e.g., in [8]. They form a ring with generators

K2(τ) = ϑ4
3(q) + ϑ4

4(q),

L2(τ) = ϑ4
2(q),

Ê2(τ) = E2(τ) − 3
π Imτ

,

(3.20)

where ϑi(q) are the Jacobi elliptic functions, and E2(τ) is the second Eisenstein
series. These generators have modular weight 2. Their argument is

q = eiπτ , (3.21)

where τ is the elliptic modulus

τ = i
K
(

2
u+1

)

K
(

u−1
u+1

) (3.22)

and is related to the prepotential by

∂2F0

∂a2
= −4πiτ, (3.23)

so that the constant β in (2.32) is β = −1/2, and

S =
1
24

Ê2. (3.24)
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We note that the Maass derivative (2.40) acts on the above generators as

DτK2 =
1
6
Ê2K2 +

1
12
(
3L2

2 − K2
2

)
,

DτL2 =
1
6
Ê2L2 +

1
6
K2L2,

Dτ Ê2 =
1
12

Ê2
2 − 1

48
(
K2

2 + 3L2
2

)
.

(3.25)

As usual in SW theory, we have to specify the electric–magnetic frame
for the calculation of the quantum prepotential. We will reserve the notation
Fn for the quantum free energies in the electric frame. When n = 0, 1, the
free energies in the electric frame are given in (3.8), (3.19). Expressions in
the magnetic frame can be obtained, in the language of modular forms, by an
S-duality transformation

τ → τD = −1
τ

. (3.26)

We also introduce

qD = e2πiτD . (3.27)

It will be also useful to introduce the quasi-modular forms,

a(τ) =
2
3

E2(τ) + K2(τ)
√

L2(τ)
,

aD(τD) =
2
3

E2(τD) − K2(τD) − 3L2(τD)
√

2K2(τD) − 2L2(τD)
.

(3.28)

The first one corresponds to the electric period a(E), while the second one is
related to the B-period by

∂F0

∂a
= −4πaD (−1/τ) . (3.29)

They have the following expansions in terms of the exponentiated modulus,

a(τ) =
1√
q

(
1
2

+ 3q2 − 21q4

2
+ 33q6 + · · ·

)
, (3.30)

aD(τD) = −16qD − 96q2D − 384q3D + · · · . (3.31)

The free energies in the magnetic frame FD,n, appearing in (3.15) can be
obtained from the Fn by an S-transformation, and depend on the variable
aD. We recall that the holomorphic anomaly equations will give the Fns as
functions of the elliptic modulus τ or its dual τD. To obtain them as functions
of the full quantum periods a(�), aD(�), we should use the classical equations
(3.28) relating τ and τD to a, aD.

In order to use the anomaly equations (2.41), we have to specify as well
the Yukawa coupling, which is given by

Y =
16

√
L2

K2
2 − L2

2

. (3.32)



560 S. Codesido et al. Ann. Henri Poincaré

We also need an appropriate parametrization of the holomorphic ambiguity.
In this case, since the relevant ring of modular forms is generated by (3.20),
we parametrize the ambiguity by

fn,0 = Y 2n−2

� 3(n−1)
2 	∑

i=0

an,i K3n−3−2i
2 L2i

2 , (3.33)

where the an,i are constant numbers. They are fixed by the following boundary
conditions for the dual free energies,

FD,n(aD) =
(

1
4

)n−1 (
1 − 21−2n

)
B2n

2n(2n − 1)(2n − 2)
1

a2−2n
D

+ O (a0
D

)
, n ≥ 2,

(3.34)

where B2n are the Bernoulli numbers. In this way we find, for example,

F2 =
Y 2

4423680

[
10Ê2K

2
2 + K3

2 − 75K2L
2
2

]
,

F3 =
Y 4

10273695989760

[
− 140Ê3

2K3
2 + Ê2

2

(
840K4

2 + 1260K2
2L2

2

)

+ Ê2

(
21K5

2 − 28287K3
2L2

2 − 9450K2L
4
2

)

+ 769K6
2 + 310500K2

2L4
2 + 87012K4

2L2
2 + 43875L6

2

]
. (3.35)

Higher-order free energies can be easily computed recursively.

3.2. The Free Energy Trans-Series

We now proceed to compute the free energy trans-series from the extended
holomorphic anomaly equations. We first introduce the covariant derivative
w.r.t. the modulus a as

Da =
Dτ

Dτa
= βY Dτ = −Y

2
Dτ . (3.36)

We look for a trans-series solution of the holomorphic anomaly equations,
involving exponentially small quantities of the form e−A/�. In order to use the
formalism of modular forms, we have to take into account that the exponents
in these quantities are instanton actions, given by periods, and are not modular
invariant. We will now introduce a formalism which makes it possible to exploit
modularity in spite of this fact. First of all, we enlarge the ring of modular
objects as follows. Since E2 does not transform as a modular form under an S
transformation, we introduce the quantity

ED
2 = E2 +

6
iπτ

, (3.37)

so that

E2(−1/τ) = τ2ED
2 (τ), ED

2 (−1/τ) = τ2E2(τ), (3.38)
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i.e., E2, ED
2 provide a vectorial representation of the S transformation.4 In ad-

dition, we introduce a degree-counting constant which transforms with weight
one under S, and which we denote by ω1. In any evaluation, it should be taken
to 1. This leads to an enlarged ring with additional generators E2, ED

2 and ω1.
To define the action of the Maass derivative on these additional generators,
we note that Dτ can be written as

Dτ =
1

2πi
∂τ +

k

12

(
Ê2 − E2

)
, (3.39)

and we assign a weight −2 to τ , so that

Dτ

(
1

iπτ

)
= −1

2
1

(iπτ)2
− 1

6
Ê2 − E2

iπτ
. (3.40)

We can then calculate in a straightforward way,

DτE2 =
1
6
Ê2E2 − 1

48
(
K2

2 + 3L2
2 + 4E2

2

)
,

DτED
2 =

1
6
Ê2E

D
2 − 1

48

(
K2

2 + 3L2
2 + 4

(
ED

2

)2)
,

Dτω1 =
1
12

(
Ê2 − E2

)
ω1.

(3.41)

In addition, we postulate the following transformation of ω1 under S-duality,

ω1(−1/τ) = τ
π

6i
ED

2 − E2

ω1
. (3.42)

Both the Maass derivative of ω1 and its S transformation lead to a formalism
with very useful properties. Let us introduce the actions,

AA(τ) = 4πa
1
ω1

=
8π

3
E2 + K2

ω1

√
L2

,

AB(τ) = iω1 ∂aF0 =
16i ω1√

L2

ED
2 + K2

E2 − ED
2

,

(3.43)

which now transform with weight zero. As a first check of the usefulness of ω1,
we first note that the derivatives of these actions w.r.t. a are precisely what
we expect from (3.23), namely

DaAA = −1
2
Y DτAA =

4π

ω1
,

DaAB =
24i

E2 − ED
2

ω1 = 4πτ ω1.
(3.44)

In addition, the introduction of ω1, together with its S transformation
rule in (3.42), makes it possible to work out the dual expansion of the actions.

4Note that ED
2 , as defined in (3.37), is in principle not invariant under the T transformation

τ → τ +1. In order to find the correct results for the large-order behavior, we need, however,
ED

2 to be invariant under this transformation. This can be done by restricting definition
(3.37) to the fundamental domain in the upper half plane and then extend it to the rest of
the plane by imposing invariance under T .
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For example, after an S transformation, we find,

AA = 8i
√

2
K2(τD) + 3L2(τD) − 2ED

2 (τD)
[
E2(τD) − ED

2 (τD)
]√

L2(τD) − K2(τD)
ω1, (3.45)

which after setting ω1 = 1 leads to the following dual expansion,

AA = 16 + 4aD

(
log
(aD

16

)
− 1
)

+
3a2

D

4
+

5a3
D

32
+

55a4
D

1024
+ O(a5

D). (3.46)

Similarly, one finds

AB = −4πiaD. (3.47)

Now that we have an appropriate, enlarged modular formalism, let us
look for a trans-series solution of the NS holomorphic anomaly equations. We
will use the master equation (2.56) for the modified quantum free energy (2.55),
and we consider the trans-series ansatz

F̃ = F̃ (0) + F̃ (1) + · · · (3.48)

Here, F̃ (1) is the one-instanton correction

F̃ (1) = �
bf (1)e−G/�, (3.49)

where f (1) is a constant and

e−G/� = e−A/�
∑

k≥0

F
(1)
k �

k, (3.50)

i.e., G is the exponentiated instanton action together with all quantum cor-
rections around the one-instanton configuration. As we shall see, it is possible
to determine G in a single strike. By plugging ansatz (3.48), (3.49) in (2.56),
we find

∂SG − DaF̃ (0)DaG = 0. (3.51)

Our goal is now to solve this equation for G. We know that G = A+ · · · .
Let us then consider the ansatz

G = A +
(

(S − SA) DaA
)
DaF̃ (0), (3.52)

where SA has weight two and is holomorphic

∂SSA = 0. (3.53)

Our first observation is that ∂Ê2
and Da (or Dτ ) do not commute in

general: by looking at the algebra of extended generators (3.25) and (3.41), we
find that, when acting on an object of weight k,

∂Ê2
Dτ =

k

12
+ Dτ∂Ê2

. (3.54)

This can be also written as

∂SDa = Da∂S − k Y. (3.55)

We deduce that ∂S and Da commute when acting on objects of zero weight.
We have introduced ω1 precisely so that actions have zero weight, therefore

∂S (DaA) = Da (∂SA) = 0, (3.56)
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since actions are holomorphic, therefore independent of the propagator, as
established in (2.48). (In this context, holomorphy of A means that it does not
involve the generator Ê2 of the extended ring.) ∂S and Da also commute on
the weight zero object F̃ (0). We then calculate

∂SG = DaA DaF̃ (0) +
(

(S − SA) DaA
)
DaaF̃ (0)DaF̃ (0),

DaG = DaA + Da

(
(S − SA) DaA

)
DaF̃ (0) +

(
(S − SA) DaA

)
DaaF̃ (0),

(3.57)

and we conclude that (3.51) is verified if

Da

(
(S − SA) DaA

)
= 0. (3.58)

This equation relates SA and A. In fact, when the action A is one of the actions
in (3.43), we can solve for SA as follows. As a consequence of algebra (3.41),
one has

Da

(
DaAA ·

(
Ê2 − E2

))
= Da

(

4π
Ê2 − E2

ω1

)

= 0,

Da

(
DaAB ·

(
Ê2 − ED

2

))
= Da

(

24i ω1
Ê2 − ED

2

E2 − ED
2

)

= 0.

(3.59)

We conclude that

S − SA,A =
1
24

(
Ê2 − E2

)
=

i
4π

1
τ̄ − τ

,

S − SA,B =
1
24

(
Ê2 − ED

2

)
=

1
4πτ

iτ̄
τ̄ − τ

.

(3.60)

Finally, upon using (3.44), we find:

GA(τ, τ̄) ω1 = 4πa(τ) +
i

τ̄ − τ
DaF̃ (0)(τ, τ̄),

GB(τ, τ̄) ω−1
1 = i ∂aF0(τ) +

i τ̄

τ̄ − τ
DaF̃ (0)(τ, τ̄).

(3.61)

This gives the full one-instanton correction after exponentiation. Let us note
that the functions GA,B have a very non-trivial � expansion. For GA, one finds,

GA(τ, τ̄)ω1 = 4πa(τ) −
π
(
Ê2 − E2

)
K2

√
L2

36 (K2
2 − L2

2)
�
2

+
π
(
Ê2 − E2

)
L
3/2
2

311040 (L2
2 − K2

2 ) 3

[
− 20Ê2

2K2
2 + K4

2 + 40Ê2

(
2K3

2 + 3K2L
2
2

)

− 1347K2
2L2

2 − 450L4
2

]
�
4 + O (�6

)
, (3.62)
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while for GB , one has

GB(τ, τ̄)ω−1
1 = i ∂aF0 +

iK2

√
L2

(
Ê2 − ED

2

)

6
(
ED

2 − E2

)
(K2

2 − L2
2)

�
2

+
iL3/2

2

(
Ê2 − ED

2

)

51840
(
E2 − ED

2

)
(K2

2 − L2
2)

3

[
K2

2

(
20Ê2

2 − 80Ê2K2 − K2
2

)

+ 3K2L
2
2

(
449K2 − 40Ê2

)
+ 450L4

2

]
�
4 + O (�6

)
. (3.63)

By expanding the exponential, we can immediately calculate all the coefficients
F

(1)
k , k ≥ 1.

We should mention that trans-series for the quantum free energies asso-
ciated with the Mathieu equation have been computed in [64] by using WKB
methods. They find solutions involving exponentially small corrections in the
periods, as we have found above.

An immediate application of the above calculation is the determination
of the trans-series for the quantum volume function, which in this case is given
by (3.12). We can write it as

V (0) = volp(E) =
∂F0

∂a
+ DaF̃ , (3.64)

calculated in the electric frame. The one-instanton trans-series associated with
this is of the form

V (1) = Da

(
e−G/�

)
= −�

b−1DaG e−G/�

= −�
b−1
(
DaA +

(
(S − SA) DaA

)
DaaF̃ (0)

)
e−G/�.

(3.65)

For instance, for the B-period action we find

V (1) = −�
b−1

(
4πτ +

iτ̄
τ̄ − τ

DaaF̃ (0)

)
ω1 exp

{
−1

�

iτ̄
τ̄ − τ

DaF̃ (0) ω1

}
.

(3.66)

3.3. Application: Large-Order Behavior

We have now determined the full one-instanton correction to the quantum
free energy, for arbitrary values of τ and τ̄ (which can be taken to be inde-
pendent variables). This correction depends on a choice of instanton action,
which corresponds to the A or the B period. Some ingredients in the answer,
like the exponent b, are still undetermined. In addition, what we have actu-
ally shown is that the expressions (3.61) solves the master equation, but there
might be other solutions differing by a holomorphic ambiguity. For all these
reasons, it is important to test our results (3.61) by using the resurgent con-
nection between one-instanton amplitudes and the large-order behavior of the
perturbative series, summarized in (2.57) and (2.59).
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Figure 1. Absolute Value of the Instanton Actions (3.67),
as functions of u

A numerical study of the large-order behavior of the F
(0)
n indicates that

b = 2. In addition, there are two relevant actions,

AA = 4πa, AB = i ∂aF
(0)
0 , (3.67)

which are obtained from (3.43) once we set ω1 = 1. The relative domi-
nance of these actions depends on where we are in moduli space, as explained
in [59]. As shown in Fig. 1, the A-period dominates the asymptotics at large
u, while the B-period dominates the asymptotics at small u, and there is an
exchange of dominance as we move from the strong-coupling region of small u
to the weak-coupling region of large u. We then expect that the full large-order
behavior of the F

(0)
n is controlled by the one-instanton amplitudes associated

with the A and the B periods, which in turn can be obtained by exponenti-
ating the functions appearing in (3.61), respectively. The Stokes parameter Σ
appearing in (2.59) can be extracted from the boundary behavior in (3.34),
and turns out to be given by

ΣA

2πi
=

1
π2

,
ΣB

2πi
=

1
2π2

. (3.68)

Note that the non-holomorphic F
(0)
n depends on q, q̄ through the modular

form

Ê2(q, q̄) = E2(q) +
6

log(qq̄)
, (3.69)

and we can regard q, q̄ as independent variables. The trans-series also depends
on q, q̄, and should control the large-order behavior for arbitrary values of
these two variables.

In order to test the predictions (2.59) for the coefficients μm, we can
proceed as follows. By using the values of F

(0)
n and the predicted values for μ�,

 = 0, · · · ,m − 1, we consider the sequence

μ(n)
m =

(
2n

A
)m
[

F
(0)
n A2n−2

Γ(2n − 2)
−

m−1∑

r=0

μr Ar

(2n − 2 − r)r

]

, n = 0, 1, 2, · · · ,

(3.70)

where (x)n = x(x+1) · · · (x+n−1) is the Pochhammer symbol. This sequence
should converge to μm as n → ∞. In addition, we can accelerate the conver-
gence of this sequence by using Richardson transforms (in the present context,
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see for example [16,71]). We will denote by μ
(k,�)
m the numerical approximation

to μm obtained by taking the first k terms of the sequence μ
(n)
m and performing

 Richardson transforms. Let us now present some concrete numerical tests of
the large-order behavior. Take, for example, the value,

q =
1
10

, (3.71)

which gives u = 1.492.... This is in the strong-coupling region, and the relevant
one-instanton amplitude is associated with the B-period. The holomorphic
limit is obtained when τ̄ → i∞, or equivalently when q̄ → 0. In this limit, and
from the explicit value of GB , we find the predictions:

μ0 =
1

2π2
,

μ1 = i 0.00795571145895174009795449858 . . . ,

μ2 = −0.00062468027457634687835468457 . . . ,

...
μ5 = i 0.00200651427778427678850353789 . . . .

(3.72)

The numerical value obtained for μ5 by using the sequence of the Fn up
n = 45 and with 10 Richardson transforms is

μ
(45,10)
5 = i 0.00200651427778 . . . , (3.73)

matching 12 digits with the resurgent prediction of μ5. This is a strong test of
this and the previous coefficients, which were used as input for the numerics.
In Fig. 2, we show the sequence (3.70) up to n = 45, its first Richardson
transform and the predicted value for μ5 from the trans-series.

Figure 2. The sequence (3.70) with m = 5 for q = 1/10,
q̄ = 0, up to n = 45, as well as its first Richardson transform.
The horizontal line is the prediction obtained from GB in
(3.61)
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Similar tests can be done for more general values of q̄, and in all cases we
find perfect agreement between the prediction obtained from GB and the actual
large-order behavior. An interesting case occurs when τ̄ = 0. This corresponds
to the free energies in the magnetic frame, F

(0)
D,n, and in the holomorphic limit.

In this case, GB = AB and the asymptotics is trivial, in the sense that

μ0 =
1

2π2
, μn≥1 = 0. (3.74)

This is precisely what is found in a numerical study of the large-order behavior.
We have tested the predictions obtained from our analytic instanton results
also in the region of large u, where the relevant instanton action is associated
with the A-period.

3.4. Higher-Order Instanton Corrections

In the previous section, we have studied the one-instanton trans-series, but we
expect higher instanton corrections. In this section, we find a solution to the
holomorphic anomaly equations describing multi-instanton corrections. First
of all, we introduce the following multi-instanton ansatz for the function F̃
introduced in (2.55):

F̃ =
∞∑

m=0

F̃ (m), (3.75)

where each F̃ (m) has the following structure:
F̃ (m) = φ(m)e−mG/�. (3.76)

We note that
φ(0) = F̃ (0) = �F (0) − F

(0)
0 . (3.77)

We have already solved for φ(1) in Sect. 3.2, namely
φ(1) = �

2f (1), (3.78)

where we used the value of b = 2 obtained from the large-order analysis. After
plugging it into the master equation (2.56), and using (3.51), we obtain, for
m ≥ 1,

∂Sφ(m) − Daφ(0) · Daφ(m)

=
1
2

m−1∑

r=1

(
Daφ(r) − r

�
φ(r) · DaG

)(
Daφ(m−r) − m − r

�
φ(m−r) · DaG

)
.

(3.79)

The left-hand side of this equation involves the operator that annihilates G in
(3.51), which we will denote by

W := ∂S − Daφ(0) · Da. (3.80)

It has the following properties:
1. W (G) = 0, W

(
Daφ(0)

)
= 0,

2. W is linear,
3. W is a derivation.
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In order to solve (3.79), we have to “integrate” with respect to W .
Let us first consider the m = 2 instanton correction. By using (3.78), we

obtain from (3.79) the equation

W
(
φ(2)
)

=
1
2

(
�f (1)

)2
(DaG)2 . (3.81)

Let us denote by

T := DaA (S − SA) (3.82)

the combination appearing in (3.52), so that

G = A + T Daφ(0). (3.83)

We recall from (3.58) that

DaT = 0, (3.84)

and by using (3.53) and (3.56) we find that

∂ST = DaA. (3.85)

Now we apply W on the following weight zero object,

W (T DaG) = DaA DaG + T Da∂SG − Daφ(0) T DaaG

= DaA DaG + T Daaφ(0) DaG

= Da

(
A + T Daφ(0)

)
DaG = (DaG)2 ,

(3.86)

where we have used (3.51) and (3.84). We conclude that

φ(2) = φ
(2)
0 +

1
2

(
� f (1)

)2
T DaG (3.87)

solves (3.81), with φ
(2)
0 in the kernel of W . The simplest solution compatible

with the large-order behavior of the quantum free energies is that φ
(2)
0 = �

2f (2)

is a constant, so we find

φ(2)/�
2 = f (2) +

1
2

(
f (1)
)2

T DaG. (3.88)

It is now clear that T always accompanies the Da derivatives so that the
full object keeps the correct weight. Define

W (·) = T 2 W (·) ,

D (·) = T Da (·) .
(3.89)

Just like W and Da, they are both linear derivations. The recursion for m ≥ 1
becomes

Wφ(m) =
1
2

m−1∑

r=1

(
Dφ(r) − r

�
φ(r) · DG

)(
Dφ(m−r) − m − r

�
φ(m−r) · DG

)
.

(3.90)
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Suppose now that X0 has weight zero, so that ∂S and Da commute when
acting on it. Let us use (3.83) to write,

Daφ(0) =
G − A

T
. (3.91)

Then the action of W can be written in terms of G,

WX0 = T 2 ∂SX0 − (G − A) DX0. (3.92)

We then have the following commutator,

WDX0 = T 2 ∂S (T DaX0) − (G − A) D2X0

= T 2 (DaA · DaX0 + T Da∂SX0) − (G − A) D2X0

= DA · DX0 + D (WX0 + (G − A) DX0) − (G − A) D2X0

= DWX0 + DG · DX0. (3.93)

This means that W, appearing in (3.90), closes over
〈
G, DG, D2G, D3G, · · · 〉 , (3.94)

and we can build the recursion with these elements. Let us look, for example,
at the third-order instanton, with m = 3. The equation determining φ(3) is

Wφ(3) = 2�
2f (1)f (2)

(DG
)2 + �

2
(
f (1)
)3 (DG

)3 − �
3(f(1))3

2

(DG
) (D2G

)
.

(3.95)

The building blocks to solve this equation can be obtained by using (3.93)
and WG = 0, and we find

W
(

1
3
D2G

)
= DG · D2G,

W
(

1
2

(DG)2
)

= (DG)3 ,

W
(
DG
)

= (DG)2 .

(3.96)

Therefore,

φ(3)/�
2 = f (3) + 2f (1)f (2) DG +

(
f (1)
)3

2
(DG)2 − �

(
f (1)
)3

6
D2G. (3.97)

Proceeding in this way, it is possible to calculate the m-th multi-instanton
correction in terms of a set of constants f (1), · · · , f (m). In principle these con-
stants should be related, since we expect a single trans-series parameter. In
the case of the trans-series controlling the large-order behavior of the Fns, for
example, the values of these constants can be found, in principle, by using ex-
plicit large-order results and resurgence relations. In the next section, we will
fix the values of these constants by comparing to results obtained in Quantum
Mechanics.
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3.5. Comparison with Previous Results in Quantum Mechanics

In conventional Quantum Mechanics, one can find exact quantization condi-
tions for the spectrum by using the exact WKB method [7,21,23], instanton
calculus [24–26], or the uniform WKB approximation [27–29]. These quanti-
zation conditions are in fact equations defining implicitly a trans-series for the
quantum period ν in (2.15). This leads, by a formal trans-series expansion, to
a trans-series for any function of ν, like, for example, the energy E = E(ν).
The exact spectrum is then obtained by applying Borel–Écalle resummation
to the resulting trans-series.

The trans-series obtained from exact quantization conditions are usually
based on instanton solutions to the Euclidean EOM. However, there are no real
instanton solutions for the cosh(x) potential, and one needs complex instantons
[38] coming from classical trajectories along the imaginary axis in the complex
x plane [72,73], where we have a periodic potential. One way to find the
appropriate trans-series for the modified Mathieu equation is to start with
the cos(x) potential (i.e., the Mathieu equation). In the cos(x) potential, the
quantization condition was obtained in [24–26] by using instanton calculus and
derived in [29] by using the uniform WKB method. It reads

1 + e±2πiν = fSG(ν) + 2 cos θ
√

fSG(ν). (3.98)

Here, θ is the quasi-momentum, and fSG(ν) can be written as

fSG(ν) =
2π

Γ2
(
ν + 1

2

)
(

32
�

)2ν

e−ASG(ν,�), (3.99)

where ASG(ν, �) is a certain regular function of ν, �. The ± sign in (3.98)
corresponds to the choice of lateral resummation. To make contact with the
modified Mathieu equation, we change � → −� in the function ASG(ν, �), and
we eliminate the dependence in θ by taking θ = π/2. We end up with the
equation,

1 + e±2πiν = f(ν), (3.100)

where

f(ν) =
2π

Γ2
(
ν + 1

2

)
(

32
�

)2ν

eA(ν,�), A(ν, �) = −ASG (ν,−�) . (3.101)

The function f(ν) turns out to be related to the derivative of the dual quantum
prepotential introduced in (3.16), as follows:

f(ν) = exp
(

∂FD(aD, �)
∂aD(�)

)
, (3.102)

where aD(�) and ν are linked by (3.17). We recall from (3.34) that
∂FD(aD, �)/∂aD(�) has a singular part at aD = 0. After exponentiation, the
singular part gets resummed into the pre-factor of f(ν) involving the Gamma
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function. A(ν, �) is then the regular part of this derivative. It has the expan-
sion,

A(ν, �) =
16
�

+
�

16

(
3ν2 +

3
4

)
−
(

�

16

)2(
5ν3 +

17ν

4

)
+ O(�3). (3.103)

Relation (3.100) defines a trans-series for the quantum period ν. To compute
it explicitly, we write, as in [27,28],

ν̂ = ν + Δν, Δν =
∑

k≥1

Δν(k), (3.104)

where

Δν(k) ∝ ekA(ν,�)/� (3.105)

is a k-instanton contribution. From equation (3.100), one finds (we pick the +
sign for simplicity)

Δν(1) =
i

2π
f,

Δν(2) =
i

4π
f2 − 1

4π2
ff ′,

Δν(3) =
if3

6π
− 3f2f ′

8π2
− if2f ′′

16π3
− if(f ′)2

8π3
,

(3.106)

and so on. In the following, we will rewrite f(ν) as

f(ν) = exp
{

−2
�
F ′

D

}
(3.107)

where we denoted F ′
D = ∂νF

(0)
D (ν, �). The extra 2/� comes from the relation

between aD and ν. The trans-series for u(ν, �) (or, equivalently, for the energy)
can be obtained by promoting the perturbative relation u = u(ν) to a trans-
series relation, as explained in, e.g., [27,28]. We obtain,

u(ν + Δν) =
∑

n≥0

u(n)(ν). (3.108)

The first three-instanton corrections for u read,

u(1) = e−2F ′
D/�

iu′

2π
,

u(2) = e−4F ′
D/�

(
iu′

4π
− u′′

8π2
+

F ′
D

2π2�

)
,

u(3) = e−6F ′
D/�

(
i F ′′′

D u′

8π3�
+

i F ′′
D u′′

4π3�
− 3i

(
F ′′
D

)2
u′

4π3�2
+

3F ′′
Du′

4π2�
− iu′′′

48π3
− u′′

8π2
+

iu′

6π

)

,

(3.109)

where we have denoted u = u(0), u′ = ∂νu. To verify that (3.100) gives the
correct trans-series for the energy, we have checked in detail that (3.108),
(3.109) lead to the appropriate large-order behavior of the perturbative energy
series and of the first instanton series; see “Appendix B.”

Let us now show that (3.108), (3.109) are compatible with the results ob-
tained from the holomorphic anomaly equation. In the context of the anomaly
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equation, we obtain a trans-series for the quantum free energy, so the compar-
ison is easier to made if there is a functional relation between u and F (or FD)
which can be promoted to a trans-series relation. In fact, such an equation
exists and it is often referred to as “perturbative/non-perturbative” or PNP
relation.5 PNP relations in one-dimensional quantum systems were first noted
by G. Álvarez and his collaborators in a series of papers [27,28,74,75], and
they have been generalized to other models in [29]. In the case of the (modi-
fied) Mathieu equation, the PNP relation coincides with the extension of the
Matone relation [76] to the quantum NS limit [77], see for example [63,66,78].
In our notation, the PNP relation reads:

u(ν, �) − 1 =
�
2

48
+

�
3

8
∂�

[
FD(ν, �)

�

]
. (3.110)

Let us now search for the appropriate trans-series of the quantum free ener-
gies which leads, through (3.110), to (3.108), (3.109). In view of (3.16), the
“classical” action should be

A = −4πa. (3.111)

Now we need the G function corresponding to this action. Since f(ν) was
written in terms of FD, we should write it in the magnetic frame. From (3.61),
we find

G (τ, τ̄) = −4πa

ω1
− i

ω1 (τ̄ − τ)
DaF̃ (0). (3.112)

To go to the magnetic frame, we perform an S transformation. Since ω1

has weight one, it also transforms, and we obtain

G (τD, τ̄D) = −∂F
(0)
D,0

∂aD
ω1 − ω1

(
− 1

τD

)
i DaF̃ (0)

1/τD − 1/τ̄D
. (3.113)

Writing it in the form,

G = A + T DaF̃ (0), (3.114)

we have

A = −∂F
(0)
D,0

∂aD
ω1, T =

i ω1

1 − τD/τ̄D
. (3.115)

The holomorphic limit in the magnetic frame corresponds to τ̄D → i∞.
Therefore, in this limit,

T = i. (3.116)

The covariant derivative also gets an i factor in the magnetic frame. (This
is due to the fact that, under an S transformation, a goes to −iaD.) Therefore,

5In spite of their name, PNP relations are relations between perturbative Voros multipliers
or quantum periods in one-dimensional quantum systems. They do not carry information
about the relevant trans-series. This information is encoded in quantization conditions like
(3.100).
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in this frame,

D = T Da = −∂aD
=

2
�
∂ν , (3.117)

where we have used relation (3.17). The G function becomes

G = −∂aD
F

(0)
0,D − ∂aD

F̃
(0)
D = −� ∂aD

F
(0)
D = 2 ∂νFD. (3.118)

This is precisely what is needed. Let us now denote by F̃
(k)
D the instanton

corrections obtained in Sect. 3.4 in the magnetic frame, and with the above
choice (3.118) for the function G. According to (3.110), we have

u(k) =
�
3

8
∂�

[
F̃

(k)
D

�2

]

, k ≥ 1. (3.119)

We have verified that this relation holds true for k = 1, · · · , 5 with the
following choice of the constants in the holomorphic ambiguity:

f (m) =
1

(2m)2 πi
. (3.120)

As an example, let us consider the three-instanton free energy. From
(3.97) and (3.119), we get

u(3) = e−6/� F ′
D

[
8
(
f (1)
)3

F ′′′
D u′

�
+

16
(
f (1)
)3

F ′′
D u′′

�
− 48

(
f (1)
)3

(F ′′
D)2 u′

�2

−48f (2)f (1) F ′′
D u′

�
− 4

(
f (1)
)3

u′′′

3
+ 8f (2)f (1)u′′ − 6f (3)u′

]

.

(3.121)

This reproduces precisely the last line in (3.109), once (3.120) is used. We
conclude that our trans-series solution of the holomorphic anomaly equations
not only leads to the correct large-order behavior of the quantum free energies,
but it also reproduces correctly the trans-series obtained from exact quantiza-
tion conditions in Quantum Mechanics. In the next section, we will see more
examples in quantum mechanical models.

4. More Examples in Quantum Mechanics

4.1. The Double-Well Potential

The double-well potential in Quantum Mechanics is given by

V (x) =
x2

2
(1 + λx)2 . (4.1)

We will set λ = 1. A detailed analysis of the all-orders WKB method
in terms of the refined holomorphic anomaly was already presented in [3].
Here we summarize some of the results. The classical A-period t corresponds
to the allowed region, while the classical B-period tD = ∂tF0 corresponds
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to the tunneling region between the wells. They define together a classical
prepotential F0(t). The modulus τ of the corresponding elliptic curve satisfies:

τ =
1

4πi
∂2F0

∂t2
, (4.2)

and the energy is related to τ by the relationship

E =
L2
2

32K2
2

, (4.3)

where K2, L2 are the modular forms introduced in (3.20). From (4.2), we
deduce that β = 1/2, therefore

S = − 1
24

Ê2. (4.4)

The direct integration of the resulting holomorphic anomaly equations,
in the NS limit, makes it possible to calculate the functions Fn systematically,
as shown in [3].

We can now use the techniques developed in this paper to obtain the one-
instanton trans-series. Since quantum mechanical problems associated with
genus-one curves have the same structure, the one-instanton correction is still
given by the general solution (3.49), where G is given in (3.52). Equivalently,
we can write it as (3.83), where T is given by (3.82). The only ingredient
that changes is the parameter β appearing in (2.38), which does not affect the
derivation of (3.83).

Let us now find the trans-series responsible for the large-order behavior of
the quantum free energies in the double well. There are two relevant instanton
actions, given by the periods

AA · ω1 = 2πi t,

AB / ω1 = tD = ∂tF
(0)
0 .

(4.5)

Figure 3. The instanton actions (4.5) as a function of q2
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In Fig. 3, we plot their absolute value as a function of q2, where we clearly
see their regions of dominance. By using the explicit formulae for A, we obtain
from (3.82):

T = DtA (S − SA) = DtA
(

−1
2

)
Ê2 − EA

2

12
=

⎧
⎪⎨

⎪⎩

2πi
24

Ê2−E2
ω1

if A = AA,

Ê2−ED
2

E2−ED
2

ω1 if A = AB.

(4.6)

The normalization of the trans-series can be determined by the singu-
lar behavior at the conifold points identified in [3], which correspond to the
energies E = 0, E = 1/32. One finds,

f
(1)
A =

2i
π

, f
(1)
B =

i
π

. (4.7)

By plugging now the above results in (3.49), we find, for the instanton
correction associated with the AA action,

�
−2F̃

(1)
A =

2i
π

e−AA/�

⎛

⎝1 +
i
√

2π
(
Ê2 − E2

)
K

3/2
2

(
2K2

2 − 3L2
2

)

9L2
2ω1 (K2

2 − L2
2)

�

−
π2
(
Ê2 − E2

)
2K3

2

(
2K2

2 − 3L2
2

)
2

81L4
2ω

2
1 (K2

2 − L2
2) 2

�
2 + O (�3

)
⎞

⎠ , (4.8)

while for the AB action,

�
−2F̃

(1)
B =

i
π

e−AB/�

⎛

⎝1 +
4
√

2K
3/2
2 ω1

(
Ê2 − ED

2

) (
2K2

2 − 3L2
2

)

3L2
2

(
ED

2 − E2

)
(L2

2 − K2
2 )

�+

+
16K3

2ω2
1

(
Ê2 − ED

2

)
2
(
2K2

2 − 3L2
2

)
2

9L4
2

(
E2 − ED

2

)
2 (K2

2 − L2
2) 2

�
2 + O (�3

)
⎞

⎠ . (4.9)

We have tested the above expressions systematically, in different regions
of dominance for the instanton actions, and for different values of q, q̄ (not
necessarily complex conjugate values). Let us give an example, corresponding
to the values

q = 1/2, q̄ = 1/4. (4.10)

From Fig. 3, we find that these values are in the region where the B-period
dominates. Using the sequence defined by (3.70), we can compute numerical
approximations to the value of μm. As before, we denote by μ

(n,r)
m the numer-

ical approximation obtained by taking n values of this sequence, as well as r
Richardson transforms. We find, for example,

μ
(40,11)
5 = −5.13138 . . . · 1023. (4.11)
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Figure 4. Sequence (3.70) with m = 5 for the quantum free
energies of the double well, at q = 1/2, q̄ = 1/4, represented
by blue circles (denoted by “numerical”), as well as its first two
Richardson transforms. The horizontal line is the prediction
from the trans-series (color figure online)

The prediction from the trans-series is

Σ
2πi

F
(1)
5

∣∣∣∣q=1/2
q̄=1/4

= −5.13138091 . . . · 1023. (4.12)

We show the convergence to this value in Fig. 4.

4.2. Comparison with the Exact Quantization Condition

As in the case of the modified Mathieu equation, we can compare the trans-
series obtained with the refined holomorphic anomaly equations, with the
trans-series obtained from the exact quantization condition in Quantum Me-
chanics. The exact quantization condition for the double-well potential was
first obtained in [24] with instanton techniques and then derived in [7] with
the exact WKB techniques of Voros–Silverstone [21,22].6 For us, the most con-
venient form for this quantization condition is the one derived by G. Álvarez
in [27] by using the uniform WKB method. It reads,

1 + e2πit(�)/� = iε e−tD(t,�)/2�. (4.13)

In this equation, t(�) = �ν is the quantum A-period, ε takes into account
the parity of the states, and tD(t, �) is the quantum B-period, re-expressed in
terms of the quantum A-period. From now on, we will set ε = +1 for simplicity.
Note that (4.13) is very similar to equation (3.100) appearing in the context
of the modified Mathieu equation, and it can be also used to define a trans-
series for ν (or equivalently, the quantum A-period t), as we did in (3.104),
(3.106). Any function of ν, like the energy, gets promoted to a trans-series as
it happened in (3.108). We find, similarly to (3.109),

6See, however, [79] for an approach to the exact energy levels of the double-well and other
potentials which does not rely on trans-series.
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Ê(t, �) = E(t, �) − � E′

2π
e−tD/2� +

(
−� t′D E′

8π2
+

�
2 E′′

8π2
− i� E′

4π

)
e−tD/�

+

(
�
2 t′D E′′

16π3
+

�
2 t′′D E′

32π3
− 3� t′D

2 E′

64π3
− 3i� t′D E′

16π2

−�
3 E′′′

48π3
+

i�2 E′′

8π2
+

� E′

6π

)
e−3tD/2� + O

(
e−2tD/�

)
, (4.14)

where we have denoted t′D = ∂ttD(t, �) and E′ = ∂tE(t, �).
Let us now show how the result above can be reproduced by using the

trans-series for the free energy. The only ingredient we need is the PNP relation
for the double well obtained in [27], which we write in the form

∂E

∂t
= ξ ∂λ

∂F (0)

∂t
, (4.15)

where ξ is an appropriate constant. Suppose now that we choose an instanton
action proportional to the B-period,

A = α ∂tF
(0)
0 (4.16)

and its associated one-instanton trans-series (3.49). The function T is given
by (3.82), and one obtains [see, e.g., the second equation in (3.60)]

T = −β
Ê2 − ED

2

12
α Dt

(
∂tF

(0)
0

)
. (4.17)

In the electric frame, the non-holomorphic Ê2 becomes simply E2, and with
(2.32)

T e = α, (4.18)

while the G function becomes

Ge = α
(
∂tF

(0)
0 (t) + ∂tF̃

(0)(t, �)
)

= α ∂tF
(0)(t, �). (4.19)

With the value α = 1/2 for the double-well problem, we find

T e =
1
2
, Ge =

1
2
tD(t, �), ξ∂λGe =

1
2
E′. (4.20)

By using (3.89), this also means that

De =
1
2
∂t. (4.21)

By using these results, we can verify that the multi-instanton results obtained
in Sect. 3.4 reproduce the results obtained from the exact quantization condi-
tion. Let us take, for example, the m = 2 instanton correction, (3.88). Following
the PNP relation, the corresponding correction to the energy should be given
by

∂λF̃ (2) =

(
�
2
(
f (1)
)2

2
D∂λG − �

(
f (1)
)2

DG ∂λG − 2�f (2) ∂λG

)

e−2G/�

(4.22)
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and

E(2) = ξ∂λF̃ (2),e =

(
�
2
(
f (1)
)2

8
E′′ − �

(
f (1)
)2

8
t′D E′ − �f (2) E′

)

e−tD/�.

(4.23)

Using values of the constants similar to (3.120),

f (m) =
im−1

m2π
, (4.24)

we get

E(2) =
(

�
2

8π2
E′′ − �

8π2
t′D E′ − i�

4π
E′
)

e−tD/�, (4.25)

precisely what appears in (4.14). We have verified the agreement up to m = 5
(the five instanton correction).

All the results obtained in this section for the double well can be extended
to the cubic oscillator studied in [3]. In that case, one has that β = 1, and the
relevant instanton action is also of form (4.16) with α = 1. The function G
in the electric frame is also proportional to the quantum B-period. One can
also check that the multi-instanton series obtained in Sect. 3.4 reproduce the
trans-series obtained from the exact quantization condition obtained in, e.g.,
[7,74], provided the constants f (m) take the value

f (m) =
i2m−1

2m2π
. (4.26)

5. Examples of Quantum Mirror Curves: Local P
2

The examples analyzed so far involve Schrödinger operators from Quantum
Mechanics. We have seen that the trans-series obtained from the refined holo-
morphic anomaly give us new results for the asymptotics of the quantum free
energies. These results are compatible with the trans-series obtained with stan-
dard techniques in Quantum Mechanics. In this section, we will consider the
spectral problems associated with quantum mirror curves (see [2] for a review
and references). In these problems, there are conjectural exact quantization
conditions [20,42] which determine the spectrum of these operators. This cre-
ates the opportunity to compare these exact results with the results obtained
with approximation schemes: the all-orders WKB expansion and the standard
perturbative expansions [32,34], as well as their trans-series extensions.

In this and the next section, we will study the spectral problem for two
different toric CY manifolds, local P

2 and local F0, in the all-orders WKB
expansion, through the refined holomorphic anomaly equations. We will also
calculate the corresponding trans-series. For these spectral problems, there
are no trans-series results in Quantum Mechanics to compare with, so the
holomorphic anomaly gives the only concrete approach to understand their
resurgent structure.
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5.1. Refined Holomorphic Anomaly, Trans-Series and Large-Order Behavior

In the case of the local P
2 geometry, the corresponding quantum mechanical

operator is

OP2 = ex + ey + e−x−y. (5.1)

It was conjectured in [20] and then proved in [45,46] that this operator has a
discrete spectrum and its inverse ρ = O−1 is trace class. Although these opera-
tors are not of Schrödinger type, and they lead to difference equations instead
of differential equations, one can still use the all-orders WKB approximation
[47], as it has been done in [34,48,50,80]. The associated Riemann surface is
just the mirror curve of local P

2, which has the form

ex + ey + e−x−y + κ = 0. (5.2)

The calculation of the classical volume reduces to the calculation of classical
periods on this curve. We will parametrize the moduli space with the coordi-
nate z, which is related to κ by

z =
1
κ3

. (5.3)

The standard, classical periods in the large-radius frame (which is appropriate
for the point z = 0) are given by

−t = log(z) + �̃1(z),
∂F0

∂t
=

1
6
(
log2(z) + 2�̃1(z) log(z) + �̃2(z)

)
,

(5.4)

where

�̃1(z) =
∑

j≥1

3
(3j − 1)!

(j!)3
(−z)j ,

�̃2(z) =
∑

j≥1

18
j!

Γ(3j)
Γ(1 + j)2

{ψ(3j) − ψ(j + 1)} (−z)j .

(5.5)

After integration, we find the prepotential

F0(t) =
t3

18
+ 3e−t − 45

8
e−2t + · · · . (5.6)

Then, a simple calculation shows that (see for example [5,20] for more details)

vol0(E) = 3
dF̂0

dt
− π2

2
, (5.7)

where the F̂0 symbol means, as in [20], that we changed e−t → −e−t in the
exponentially small corrections appearing in expansion (5.6). The relation be-
tween t and E is given by

t = 3E − �̃1

(−e−3E
)
. (5.8)

Explicitly, one finds [34]

vol0(E) =
9E2 − π2

2
+ 9
∑

j≥1

(3j − 1)!
j!3

{ψ(3j) − ψ(j + 1) − E} e−3jE . (5.9)
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The most efficient way to calculate the higher-order corrections to the quan-
tum volume is to use the refined holomorphic anomaly equations. To set up
these equations, we proceed as in, e.g., [5,13,18,81]. We will use as our global
coordinate the modulus z introduced in (5.3). We also need some preliminary
ingredients from special geometry. We introduce the discriminant of curve
(5.2),

Δ = 1 + 27z, (5.10)

the Yukawa coupling,

Y = (∂zt)3∂3
t F0 = −1

3
1

z3Δ
, (5.11)

and the standard topological string genus-one free energy,

FTS
1 =

1
2

log
∂t

∂z
+

1
12

log(z7Δ). (5.12)

The holomorphic limit of the propagator S, in the large-radius frame, is given
by the equation

∂zF
TS
1 =

1
2
Y SLR, (5.13)

where the superscript indicates that S is calculated in the large-radius frame.
One finds, explicitly [18],

SLR =
2
Y

(
1

zΔ
− 2F1

(
2
3 , 4

3 , 1;−27z
)

6z 2F1

(
1
3 , 2

3 , 1;−27z
)

)

. (5.14)

With these ingredients one can already solve the refined holomorphic anomaly
equations in the NS limit, (2.35). The initial condition for the recursion is the
value of F1 [5],

F1 = − 1
24

log(z−1Δ). (5.15)

The holomorphic ambiguity is fixed by imposing appropriate boundary condi-
tions. As usual, the holomorphic quantum free energies Fn can be computed
in different frames, and when needed we will indicate such a frame by a super-
script. In the conifold frame, and near the conifold singularity at z = −1/27,
the quantum free energies satisfy the gap condition [5,8,13]

FC
n =

(−3)n−1
(
21−2n − 1

)
(2n − 3)!

(2n)!
B2n

t2n−2
c

+ O (t0c
)
, n ≥ 2, (5.16)

where tc is the flat coordinate at the conifold, given by

tc =
3
√

3
2π

(
∂tF0 − π2

6

)
. (5.17)
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Using all this information, it is straightforward to calculate the Fn at very
high order in n. One finds, for example,

F2 = Y 2

(
Sz4

128
− 729z8

80
+

27z7

80
− z6

256

)
,

F3 = −Y 4

(
S3z6

3072
+ S2

(
27z9

512
− z8

2048

)
+ S

(
6561z12

640
− 1053z11

5120
+

z10

4096

)

−1594323z16

1120
+

5137263z15

4480
− 1644381z14

35840
+

2223z13

17920
− z12

24576

)
. (5.18)

In order to make contact with the quantum volume, we note that at higher
orders in �, the relationship between t and E given in (5.8) gets quantum
corrections, and one needs the so-called quantum mirror map t(E, �) [48]. From
the point of view of WKB theory, the quantum mirror map just encodes the
quantum corrections to the A-period, t. In this case, the quantum mirror map
has the form

t(E, �) = 3E − 3
(
q1/2 + q−1/2

)
e−3E + · · · , q = ei�. (5.19)

The all-orders perturbative quantum volume is then given by

volp(E) = 3
∑

n≥0

∂F̂LR
n

∂t
�
2n − π2

2
, (5.20)

where the F̂LR
n , with n ≥ 1, are obtained by taking the holomorphic large-

radius limit of the Fn, changing e−t → −e−t in the exponentially small cor-
rections, and then relating t to E via the quantum mirror map (5.19).

The first question involving trans-series that we can ask is: what is the
large-order asymptotics of the series of quantum free energies Fn? General
resurgence results predict that the asymptotics should be of form (2.57), with
relation (2.59). Since z = −e−3E +O(�2) is naturally negative for this problem,
we will focus on negative values of z. A similar problem, concerning the large-
order asymptotics of the standard topological string free energies of local P

2,
was studied in detail in [18]. The instanton action that controls the asymptotic
behavior depends on the point where we are in moduli space. We will perform
the analysis in a region in between the conifold point and the large-radius
point, i.e.,

1
512

< |z| <
1
27

. (5.21)

It turns out that, in this region, the asymptotics of the Fn is controlled
by the action

A =
2πi√

3
tc, (5.22)

where the conifold coordinate tc has been defined in (5.17). This is also the ac-
tion controlling the asymptotics of the standard topological string free energies
in this region, as found in [18].

Let us now determine the trans-series associated with this action. We will
use equations (2.50) to determine the trans-series at the one-instanton level,
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F
(1)
n . We will parametrize the moduli space with the coordinate z. We will

also need boundary conditions in order to fix the ambiguities. To do this, we
proceed as in [18] and we note that, in the conifold frame, we have behavior
(5.16). By using

B2n = (−1)n−1 2(2n)!
(2π)2n

(
1 + 4−n + · · · ) (5.23)

this determines

b = 2 (5.24)

and the large-order coefficients (2.57) in the conifold frame,

μC
0 =

1
2π2

, μC
n = 0, n ≥ 1. (5.25)

Let us now analyze the equations for the trans-series. First of all, according
to (2.52), F

(1)
0 is holomorphic and has no propagator dependence. Therefore,

this quantity does not depend on the frame and it can evaluated, for example,
in the conifold one. By comparing to (5.25), and by using (2.59), we conclude
that

Σ
2πi

F
(1)
0 =

1
2π2

. (5.26)

The next correction is non-trivial. By solving the first equation in (2.54), we
find

F
(1)
1 = f

(1)
1 (z) − ∂zA ∂zF

(0)
1 F

(1)
0 S, (5.27)

where f
(1)
1 (z) is a holomorphic ambiguity. We fix it again by going to the

conifold frame, and by using that μC
1 = 0. Since

∂zF
(0)
1 = −z2

8
Y, (5.28)

we obtain
Σ
2πi

F
(1)
1 =

1
16π2

z2 (∂zA) Y
(
S − SC

)
, (5.29)

where SC is the propagator in the conifold frame. It has the explicit expression
[18]

SC =
z2

2

(

−1 − 54z + 2
πP2/3 (1 + 54z) + 2

√
3Q2/3 (1 + 54z)

πP−1/3 (1 + 54z) + 2
√

3Q−1/3 (1 + 54z)

)

,

(5.30)

where Pν(x), Qν(x) are Legendre functions. Proceeding in the same way, we
solve the second equation in (2.54), and we find

Σ
2πi

F
(1)
2 =

1
256π2

[
z2 (∂zA) Y

(
S − SC

) ]2
. (5.31)
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The pattern we obtain in this way is very similar to what we obtained in the
analysis of the Mathieu equation, see, e.g., (3.52). This suggests that the full
one-instanton amplitude is given by

F̃ (1) = f (1)
�
2 exp

⎡

⎣
A + ∂zA · (S − SC

) · ∂z

(
F (0) − F

(0)
0

)

�

⎤

⎦ , (5.32)

with
Σ
2πi

f (1) =
1

2π2
. (5.33)

By expanding (5.32), we reproduce the results obtained above for F
(1)
1,2 , and

we obtain very explicit expressions for all the coefficients F
(1)
k . One finds, for

example,

F
(1)
3 =

(∂zA) Y 3z4
(
S − SC

)

15360

(
5 (∂zA)2 z2

(
S − SC

)2 −

−6
(
20S2 + 20S(108z − 1)z2 +

(
209952z2 − 4212z + 5

)
z4
) )

.

(5.34)

This leads, through (2.59), to predictions for all the coefficients μk controlling
the large-order behavior of the Fn.

Since we can generate the functions Fn up to a large value of n, we
can test the above expectations in great detail. This is done as follows: we
fix a value of the propagator (typically corresponding to a choice of frame)
and a value of z. We use the sequence Fn(z), up to a given value of n, to
extract numerical approximations for the action A and for the coefficients μk,
k = 0, · · · , 4, improved with Richardson extrapolation. The numerical results
are then compared to the predictions coming from (5.22) and (5.32). We show
tests of our predictions in Figs. 5, 6 and 7 for A and μ0, for μ1,2, and for μ3,4,
respectively. In all cases, we consider the large-radius frame, and values of z
of the form z = −2−ξ. We indicate the number of matching digits between the
numerical approximation and the prediction as a function of the total number
of terms in the sequence. As we can see, in region (5.21) the agreement is
impressive. However, as we get closer to z = 0, the number of matching digits

Figure 5. Large-order tests for A2 (left) and μ0 (right), for
different values of z = −2−ξ
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Figure 6. Large-order tests for μ1 (left) and μ2 (right), for
different values of z = −2−ξ

Figure 7. Large-order tests for μ3 (left) and μ4 (right), for
different values of z = −2−ξ

decreases. The reason for such a loss of precision was already clarified in [18]:
near z = 0 there is another action, given by the large-radius period t, which
is of the same order than tc, and an additional trans-series enters into the
asymptotics. We have performed tests for complex values of z and for more
general values of the propagator in the region of dominance of (5.22), and the
agreement is again excellent.

5.2. Quantum Free Energy: Exact Versus All-Orders WKB

As we have already remarked, the quantum volume is defined as an asymptotic
expansion in �, and does not always have a non-perturbative definition. The
same thing happens with the quantum free energy (2.17), which is defined by
an asymptotic series. It turns out that, in the special case of spectral problems
associated with topological strings on toric CY manifolds, there is an exact,
non-perturbative function whose asymptotic expansion gives back (5.20). Let
us first review how the exact quantum volume is constructed. First of all, we
note that the quantum free energies FLR

n (t) have an expansion as t → ∞ of
the form

FLR
n (t) = δn0

t3

18
− δn1

t

24
+
∑

k≥1

an,ke−kt. (5.35)

It turns out that the formal double sum

FLR
inst(t, �) =

∑

n≥0

∑

k≥1

an,ke−kt
�
2n (5.36)
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can be first resummed in � in the form [52,82]

FLR
inst(t, �) = �

∑

jL,jR

∑

�=wd

Nd
jL,jR

sin �w
2 (2jL + 1) sin �w

2 (2jR + 1)
2w2 sin3 �w

2

e−�t, (5.37)

where Nd
jL,jR

are integer numbers, called BPS invariants, which generalize the
Gopakumar–Vafa invariants of the CY [83]. This means in particular that the
quantum volume can be also resummed in the form

volp(E, �) =
t2

2
− π2

2
− �

2

8
− 3�

∑

jL,jR

∑

�=wd

dNd
jL,jR(−1)wd

× sin �w
2 (2jL + 1) sin �w

2 (2jR + 1)
2w sin3 �w

2

e−�t. (5.38)

This resummation does not lead to an appropriate quantization condition due
to the poles which appear at � ∈ 2πQ, as first noted in [80]. One needs to
add corrections invisible in an � expansion, which were determined in [20] as
a consequence of a general correspondence between spectral theory (ST) and
topological strings (TS), or ST/TS correspondence. The quantization condi-
tion was written later in a simpler form by using BPS invariants in the NS limit
[42]. (The equivalence between both formulations in many cases was derived
in [84].) Let us denote by

f(t, �) = 3
∂F̂LR

inst

∂t
(5.39)

the last term in the r.h.s. of (5.38). Then, the non-perturbative volume is
simply given by

volnp(E, �) = �f

(
2πt

�
,
4π2

�

)
. (5.40)

The total, exact quantum volume is then defined as

volex(E, �) = volp(E, �) + volnp(E, �). (5.41)

There is strong evidence that the above expression defines a function of E
and �, for real � and E sufficiently large, which gives the actual spectrum of
operator (5.1) through the exact quantization condition

volex(E, �) = 2π�ν. (5.42)

In some cases, this exact volume function can be derived from a first
principles, resummed WKB calculation [85]. It is clear (see, e.g., [86]) that the
above procedure also defines an exact function FLR

ex (t, �) by

FLR
ex (t, �) =

t3

18
− �

2 t

24
+ FLR

inst(t, �) +
�

2π
FLR
inst

(
2πt

�
,
4π2

�

)
. (5.43)

The asymptotic expansion of this function for small � and fixed t is
precisely the total quantum free energy (2.17) of local P

2, in the large-radius
frame:
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Figure 8. The difference in absolute value between the Borel
resummation of the all-orders WKB expansion of the quantum
free energy, BF (0) and the exact value (5.43), as a function of
�, for different values of z

FLR
ex (t, �) ∼

∑

n≥0

FLR
n (t)�2n. (5.44)

It is then natural to ask whether the asymptotic series in the r.h.s. is Borel
summable, and in case it is, whether its Borel resummation agrees with the
exact function in the l.h.s. Borel summability in the region of negative z in
(5.21) follows from the large-order analysis above, since A2 is negative. We
have found numerically that the Borel resummation of the FLR

n , which we
denote by BF (0), differs from the exact result (5.43), as shown in Fig. 8. For
example, we obtain

BF (0)
(
z = −2−6, � = π

)
= 2.0571102 . . . ,

Fex

(
z = −2−6, � = π

)
= 2.0565565 . . . .

(5.45)

Here, z is obtained from t by using the inverse of the classical mirror map
given in the first line of (5.4). This is in contrast to what happens with the
perturbative series in � calculating the energy levels of the spectral problem of
(5.1). This series is Borel summable and can be Borel-resummed to the exact
values of the energies [32,86]. At the same time, the mismatch we find is not
surprising, and it seems to be the default behavior for “stringy” series which
diverge doubly factorially, as it has been realized recently in related examples
[19,33].

Our numerical results suggest that the mismatch between the exact result
and the Borel resummation is an exponentially small effect, controlled by the
same instanton action which was found in [19]. In view of this mismatch,
one could ask whether the exact quantum free energy could be recovered by
considering the non-trivial trans-series associated with this instanton action
and performing Borel–Écalle resummation, as in [19]. In other words, can
we “semiclassically decode” the exact function (5.43) in terms of its WKB
expansion and an appropriate trans-series? Without further input, this is a
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difficult problem, since we have to find the appropriate trans-series parameter,
which could depend on both � and the modulus z. We leave this issue for
future work.

6. Examples of Quantum Mirror Curves: Local F0

6.1. Refined Holomorphic Anomaly and All-Orders WKB

Let us finally consider another important spectral problem, corresponding to
the local F0 geometry. The quantum mechanical operator is

OF0 = ex + mF0e
−x + ey + e−y. (6.1)

It has been proved rigorously [45,46] that O−1
F0

is trace class and positive when
mF0 > 0. In this paper, we will focus on the special case mF0 = 1, in which the
theory simplifies considerably. The all-orders WKB method for this operator
has been studied in [34,48,50,80]. The associated Riemann surface is the mirror
curve of local F0,

ex + e−x + ey + e−y + κ = 0. (6.2)

As in the example of local P
2, the calculation of the classical volume of phase

space reduces to the calculation of classical periods on this curve. The appro-
priate global coordinate in the moduli space is

z =
1
κ2

. (6.3)

The classical periods are determined by the equations (see, e.g., [87])

∂zt = − 2
π z

√
1 − 16z

K
(

16z

16z − 1

)
,

∂z

(
∂F0

∂t

)
= −2

z
K (1 − 16z) ,

(6.4)

where the integration is fixed by the leading-order behavior

t = − log z − 4z − 18z2 + · · · ,

∂tF0 =
1
2

(log z)2 + 4 (1 + log z) z + · · · .
(6.5)

One has in this case that [5,20]

vol0(E) = 2
∂F0

∂t
− 2π2

3
, (6.6)

where t = 2E + O(e−2E) is related to E by the classical mirror map, i.e., by
the first equation for the period in (6.5), once we set z = e−2E .

As in the case of local P
2, the higher-order free energies can be easily

computed with the NS limit of the refined holomorphic anomaly equations.
In the special case we are considering with mF0 = 1, one can formulate the
problem in terms of modular forms, as it was done in [88] for the original
anomaly equations of [4]. We introduce the modular forms,

b = ϑ4
2 (q) , c = ϑ4

3 (q) , d = ϑ4
4 (q) , (6.7)
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as well as Ê2. The argument q = eπiτ is related to the prepotential F0 by

τ = − 1
πi

∂2F0

∂t2
, (6.8)

so that the coefficient in (2.32) is β = −2, and Y is given by [88]

Y =
2

d
√

c
= 2 ∂tttF0. (6.9)

This provides the map between the modular variables and the geometry of
curve (6.2). In particular, we can recover the modulus as

z =
1
16

b

c
. (6.10)

For this model, the NS limit of the refined anomaly equations is of form (2.41)
with the β = −2 value. The initial condition for the recursion is F1, which is
given by

F1 = − 1
24

log
(

1 − 16z

z2

)
= − 1

24
log
(

256 c d

b2

)
. (6.11)

We now parametrize the holomorphic ambiguity in (2.42) as

fn,0 = Y 2n−2
3n−3∑

i=0

αn,i bi d3n−3−i. (6.12)

In order to fix the ambiguity, we have to introduce boundary conditions. This
requires a discussion of the frames appropriate for different regions in moduli
space. The large-radius frame, which is appropriate for the region near z = 0,
is defined at the classical level by the standard large-radius periods (6.5). The
quantum corrections in this frame are obtained simply by setting Ê2 → E2(q)
in the above formulae. As explained, e.g., in [81,88,89], there are two other
important frames. One is the conifold frame, appropriate near the conifold
singularity z = 1/16 (equivalently, near κ = 4). The appropriate periods at
this point are defined by

tc =
1
π

(
∂F0

∂t
− π2

3

)
,

∂FC
0

∂tc
= −π t + 8C,

(6.13)

where C is Catalan’s constant. The second equation defines the conifold pre-
potential FC

0 (tc). The conifold modulus qc = eπiτc is given by

τc = − 1
πi

∂2FC
0

∂t2c
, (6.14)

and it is related to τ by an S transformation, which can be implemented in
the modular forms as

b(q) → −d (qc) , c(q) → −c (qc) , d(q) → −b (qc) . (6.15)
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The quantum corrections to the free energy in the conifold frame can
then be obtained from the non-holomorphic Fn as

FC
n =

(
1
2

)2n−2

[Fn]Ê2 �→E2(qc)
, (6.16)

and applying transformation (6.15). The gap boundary condition at the coni-
fold reads

FC
n =

(
1 − 21−2n

)
B2n

(2n)(2n − 1)(2n − 2)
1

t2n−2
c

+ O (t0c
)
. (6.17)

To obtain more boundary conditions, we consider the theory in the orb-
ifold frame, appropriate near κ = 0. The corresponding periods are given by

to =
i

4π

(
2πi t − 2

∂F0

∂t

)
,

∂FO
0

∂to
= −1

2
∂F0

∂t
.

(6.18)

The orbifold modulus qo = eπiτo is given by

τo =
1
πi

∂2FO
0

∂t2o
, (6.19)

and the passage to the orbifold frame is implemented through the modular
transformation

b(q) → c(qo), d(q) → −d(qo), c(q) → b(qo). (6.20)

The quantum corrections in the orbifold frame can then be obtained from the
non-holomorphic Fn as

FO
n =

(−1)n−1

2
[Fn]Ê2 �→E2(qo)

, (6.21)

and applying transformation (6.20). The gap boundary condition at the orb-
ifold is

FO
n =

(
1 − 21−2n

)
B2n

(2n)(2n − 1)(2n − 2)
1

t2n−2
o

+ O (t0o
)
. (6.22)

These boundary conditions (together with the absence of constant terms in
the expansion at large radius) fix the holomorphic ambiguity completely. One
finds, for example,

F2 =
(c + d)2

1728cd2
Ê2 − 37b3 + 51b2d + 18bd2 + 20d3

8640cd2
. (6.23)

In order to obtain the quantum corrections to the quantum volume, we have
to take into account that the relation between t and E is now given by the
quantum mirror map t = t(E, �), which in this case reads [48],

t(E, �) = 2E − 4e−2E − (2q + 2q−1 + 14
)
e−4E + O (e−6E

)
. (6.24)
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The all-orders WKB quantization condition is then given by

volp(E) = 2
∑

n≥0

∂Fn

∂t
�
2n − 2π2

3
= 2π�ν. (6.25)

6.2. Trans-Series and Large-Order Behavior for the Energy Levels

We can now use the technology developed in this paper to solve an elemen-
tary problem in the Quantum Mechanics of operator (6.1). Let us denote by
κ(ν, �) = eE(ν,�) the eigenvalue of OF0 , as a function of the shifted energy
level ν = m + 1/2 and �. One can use standard perturbation theory to find
κ(ν, �) a perturbative series in �, whose coefficients depend on ν. This was first
addressed in [34,86], and studied more systematically in [32], who extended
the BenderWu package of [70] to include difference equations associated with
operators such as (5.1) and (6.1). By using the extended package of [32], one
finds, for the very first orders,

κ(ν, �) =
∑

�≥0

κ�(ν)�� = 4 + 2ν� +
4ν2 + 1

16
�
2 +

ν(4ν2 + 3)
384

�
3 + · · · .

(6.26)

This result can be in principle derived from the all-orders WKB quantiza-
tion condition. In analogy with what happened in the Mathieu equation, the
quantization condition (6.25) defines a quantum dual period

tc(�) =
1
π

⎛

⎝
∑

n≥0

∂Fn

∂t
�
2n − π2

3

⎞

⎠ = �ν, (6.27)

which is the analogue of aD(�) in our analysis of the modified Mathieu equa-
tion. We can now expand each term ∂tFn around κ = 4 by using the quantum
mirror map. This gives

�ν =
κ − 4

2
− (κ − 4)2

32
+

5 (κ − 4)3

1536
+ · · · +

(
− 1

32
+

κ − 4

512
− 5 (κ − 4)2

8192
+ · · ·

)
�
2

+

(
− 13

49152
+

275 (κ − 4)

1572864
+ · · ·

)
�
4 + · · · . (6.28)

After inverting this expansion, we obtain,

κ(ν, �) =

(
4 + 2(�ν) +

(�ν)2

4
+

(�ν)3

96
+ · · ·

)
+

(
1

16
+

(�ν)

128
+

3(�ν)2

1024
+ · · ·

)
�
2

+

(
13

24576
− 151(�ν)

393216
+ · · ·

)
�
4 + · · · , (6.29)

which is a rearrangement of the perturbative expansion (6.26). We now ask
the following question: what is the behavior of the coefficients κ�(ν) appearing
in the perturbative expansion (6.26), at large  and fixed ν? (This question
was asked in, e.g., [32].) We expect a behavior of the form

κ� ∼
∞∑

r=0

Γ ( − b − r)
A�−b−r

μr,  � 1. (6.30)
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A derivation of this asymptotics directly from the difference equation, via
uniform WKB or other techniques, is not available. However, we can answer
this question by using the trans-series for the quantum free energies. By now
it should be clear that the one-instanton correction for genus-one curves is of
the form

F̃ (1) = f (1)
�
2 exp

{

−A + (S − SA) DtA DtF̃

�

}

, (6.31)

where the action A is a period, and f (1) an overall constant. The value of the
action can be determined from the large-order behavior of sequence (6.26) and
turns out to be

A = −2πt = −16C + 2
∂FC

0

∂tc
. (6.32)

As in the case of the modified Mathieu equation, we have to evaluate (6.31) in
the magnetic frame. The same argument that led to (3.118) produces in here

F̃ (1) = f (1)
�
2 exp

{
−1

�

(
−16C + 2

∂FC
0

∂tc
+ 2

∂FC
1

∂tc
�
2 + · · ·

)}

= f (1)
�
2 exp

(
2π t(tc, �)/�

)
,

(6.33)

where t(tc, �) is the quantum version of the second relation in (6.13), i.e.,

− πt(tc, �) =
∑

n≥0

∂FC
n

∂tc
�
2n + 8C. (6.34)

We now promote ν to a trans-series, as in the examples in standard Quantum
Mechanics. By using the quantization condition (6.27), we obtain

Δν(1) =
1
π�

∂F̃ (1)

∂t
= 2f (1) e16C/�

[
exp
(

−1
�

∂FC

∂tc

)]2
. (6.35)

The exponent can be computed explicitly by using our results from the refined
holomorphic anomaly and going to the conifold frame. One finds,

− 1
�

∂FC

∂tc
=
[
ν − ν log

( ν

16

)
+

1
24ν

− 7
2880ν3

+ O (ν−5
)
]

−ν log � +
12ν2 + 11

192
� − 20ν3+49ν

4608
�
2

+
1680ν4+9240ν2+889

2949120
�
3+O (�4

)
.

(6.36)

A very important property of this result is that the �-independent part in the
first line (which contains the singularities at ν = 0) can be exactly resummed
in terms of a Gamma function. [This happens in all the Quantum Mechanical
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models analyzed in [3] and also in the modified Mathieu equation, as we saw
in (3.101).] More precisely, it is the large ν expansion of

log

[ √
2π16ν

Γ
(
1
2 + ν

)

]

. (6.37)

Putting everything together, we find

Δν(1) = f (1) 4π

Γ2
(
1
2 + ν

)
(

16
�

)2ν

e16C/�

⎛

⎝1 +
∑

k≥1

ak(ν)�k

⎞

⎠ , (6.38)

where the coefficients ak(ν) can be easily computed from the expansion of the
functions ∂tcF

C
n . One finds, for the very first coefficients,

a1(ν) =
12ν2 + 11

96
,

a2(ν) =
144ν4 − 160ν3 + 264ν2 − 392ν + 121

18432
,

a3(ν) =
8640ν6 − 28800ν5 + 54000ν4 − 96960ν3 + 188100ν2 − 64680ν + 22657

26542080
.

(6.39)

The trans-series for the energy can be calculated as in [27],

κ(ν + Δν(1) + · · · ) = κ(ν) + κ(1)(ν) + · · · ; (6.40)

and therefore

κ(1) =
∂κ

∂ν
Δν(1) = f (1) ξ(ν) b1(ν), (6.41)

where

ξ(ν) =
64π

Γ2
(
1
2 + ν

)
(

16
�

)2ν−1

e16C/� (6.42)

and

b1(ν) = 1 +
12ν2 + 24ν + 11

96
� +

144ν4 + 416ν3 + 552ν2 + 136ν + 193

18432
�
2 + O(�3).

(6.43)

If we write the one-instanton correction as

κ(1) = �
be−A/�

∞∑

r=0

κ(1)
r �

r, (6.44)

standard resurgent analysis predicts that the coefficients in (6.30) are given
by

μr =
κ
(1)
r

2πi
. (6.45)

It only remains to determine the coefficient f (1), which can be fixed by the
large-order behavior of the sequence κ�(ν) and is given by

f (1) =
2i
π

. (6.46)
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We conclude that the action A and the coefficient b appearing in (6.30) are
given by

A = −16C, b = −2ν + 1. (6.47)

The first two coefficients μ0, μ1 are given by

μ0 =
4
π

162ν

Γ2
(
1
2 + ν

) , μ1 =
4
π

162ν

Γ2
(
1
2 + ν

)
12ν2 + 24ν + 11

96
, (6.48)

and further coefficients can be computed with the methods explained above.
One can extend this trans-series to arbitrary ν (i.e., not necessarily a half-
integer) by introducing a factor (−1)2ν−1 in f (1).

We can test these predictions with an analysis of the sequence κ�(ν)
defined in (6.26). We extract a numerical prediction μ

(k,l)
i for the coefficients

μi by taking the first k terms in the sequence

μ
(m)
i =

(m

A

)i
(

(−A)−bAm κm

Γ(m − b)
−

i−1∑

r=0

μr Ar

(m − b − r)r

)

, (6.49)

which is similar to (3.70), and performing in addition  Richardson transforms.
As an example, we quote the prediction for the value of μ5 in the ground state
ν = 1/2,

μ5 =
65131771

3344302080π
= 0.00619922666015825876905655974809 . . . (6.50)

while the numerical result by using 120 terms of the series and 40 Richardson
transforms is

μ
(120,40)
5 = 0.0061992266601582587690566 . . . , (6.51)

agreeing on 20 digits. In Fig. 9 we plot the sequence (6.49) for i = 5, together
with its first two Richardson transforms. The convergence to the predicted
value (6.50) is clear.

Figure 9. The sequence (6.49) for i = 5, denoted by blue
circles, together with its two first Richardson transforms. The
convergence to the predicted value (6.50) is manifest (color
figure online)
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7. Conclusions and Outlook

In this paper, we have extended the correspondence between the refined holo-
morphic anomaly equations and the all-orders WKB method into the realm of
trans-series, providing in this way a new method to obtain non-perturbative
results in Quantum Mechanics (in one dimension). We have constructed trans-
series solutions to the NS limit of the refined anomaly equations which both
recover and generalize known trans-series in standard quantum mechanical
models. For spectral problems associated with quantum mirror curves, our
trans-series solutions give information which cannot be obtained by straight-
forward generalizations of the current methods, as we have illustrated in the
case of local P

2 and local F0.
There are clearly many avenues for research open by our new methods. In

this paper, our focus has been mostly on the one-instanton sector, for which
we have in fact produced a universal expression (see, e.g., (6.31)). We have
also discussed the structure of the higher instanton sectors, and in particular,
by using PNP relations, we have verified that the results of the holomorphic
anomaly equations match existing results in Quantum Mechanics. In the case of
spectral problems associated with quantum mirror curves, the higher instanton
sector is less understood. One reason is that the PNP relationship in these
examples is more problematic.7 It would be important to calculate and test
systematically the higher-order instanton corrections in the case of quantum
mirror curves, and compare them to the exact results of [20,41,42]. It has
been noticed in [90–92] that quantum mirror curves turn out to be related
to interesting spectral problems in condensed matter systems. It would be
interesting to see whether our methods lead to new non-perturbative results
for this type of systems.

As a tool to analyze instanton trans-series, we have extended the ring
of modular forms to take into account exponentially small corrections. This
extension requires some unorthodox ingredients from the point of view of the
traditional theory of modular forms, but it is very successful in producing
correct predictions for the large-order behavior. There might be more natural
versions of our formalism, and it would be very interesting to further clarify
this new mathematical structure.

Our comparison of the Borel resummation of quantum free energies and
the available exact results is clearly incomplete. First of all, this comparison
can be done for other examples, such as the modified Mathieu equation, where
the exact result for the quantum free energy is provided by instanton calculus
[31]. The main question is whether all these exact results can be decoded in
terms of the perturbative series, plus the trans-series found in this paper. This
was achieved in [19] in a closely related example, but a deeper understanding
of trans-series parameters is needed in order to have a systematic tool for such
an analysis.

Finally, an important open problem is to extend our discussion (and the
one of [17,18]) to the fully refined case, involving the two parameters ε1,2.

7We would like to thank Andrea Brini for detailed discussions on this issue.
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This is a necessary step in order to unveil the trans-series structure of the
refined topological string and will hopefully open a new window on the non-
perturbative structure of the topological string.
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Appendix A: Master Equation for the Refined Topological
String

We want to write down a “master equation” governing the total free energy
of the fully refined topological string. Let

Z = exp (Fref(ti; ε1, ε2)) (A.1)

be the total partition function. Then, it can be easily seen that the holomorphic
anomaly equations (2.34) can be written in the form

∂Z

∂S
− 1

2
ε1ε2 D2

zZ =
(

1
ε1ε2

W + V − U Dz

)
Z. (A.2)

In this equation, the “boundary functions” W , V and U are given by

U = DzF
(0)
(0,0), (A.3)

W =
+∞∑

n=0

(ε1 + ε2)
2n

Wn, (A.4)

V =
+∞∑

n=0

(ε1 + ε2)
2n

Vn, (A.5)

the {Wn} are given by

W0 =
∂F

(0)
(0,0)

∂S
+

1
2

(
DzF

(0)
(0,0)

)2
, (A.6)

W1 =
∂F

(0)
(1,0)

∂S
, (A.7)

Wn≥2 =
∂F

(0)
(n,0)

∂S
− 1

2

n−1∑

m=1

DzF
(0)
(n−m,0) DzF

(0)
(m,0), (A.8)
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and the {Vn} by

V0 =
∂F

(0)
(0,1)

∂S
− 1

2

(
D2

zF
(0)
(0,0)

)2
, (A.9)

Vn≥1 =
∂F

(0)
(n,1)

∂S
− 1

2

(
D2

zF
(0)
(n,0)

)2
−

n∑

m=1

DzF
(0)
(n−m,1) DzF

(0)
(m,0). (A.10)

It is not too hard to see that in the standard topological string limit where
ε1ε2 = g2s , the refined master equation (A.2) reduces to the master equation
obtained in [17],

∂Z

∂S
− 1

2
g2s D2

zZ =
(

1
g2s

W + V − U Dz

)
Z, (A.11)

and the functions U , V and W are given in this limit by

U = DzF
(0)
0 , (A.12)

W =
∂F

(0)
0

∂S
+

1
2

(
DzF

(0)
0

)2
, (A.13)

V =
∂F

(0)
1

∂S
− 1

2

(
D2

zF
(0)
0

)2
. (A.14)

In the NS limit, we recover instead the results discussed in the main text.

Appendix B: Large-Order Behavior in the Modified Mathieu
Equation

In this “Appendix,” we give evidence that the trans-series equation for the
modified Mathieu equation (3.100) leads to the correct large-order behavior of
the perturbative and the one-instanton series. The trans-series for the energy
reads,

E(1)(ν) =
i

2π

∂E(0)

∂ν
f(ν),

E(2)(ν) =
i

4π
f2(ν)

∂E(0)

∂ν
− 1

8π2

∂

∂ν

(
f2(ν)

∂E(0)

∂ν

)
.

(B.1)

where f(ν) is given in (3.101). We will write, as in [27],

fk(ν)
∂E(0)

∂ν
= ξk(ν)bk(ν), (B.2)

where

ξ(ν) =
2π

Γ2
(
ν + 1

2

)
(

32
�

)2ν

e
16
� . (B.3)
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One finds, for example,

b1(ν) = 1 +
1
64
(
3 + 8ν + 12ν2

)
� + · · · ,

b2(ν) = 1 +
1
32
(
3 + 4ν + 12ν2

)
� + · · · .

(B.4)

Let us now focus on the ground state ν = 1/2. We write,

E(0)(1/2) =
∑

k≥0

ak�
k. (B.5)

Then, the standard dispersion relation

ak ∼ 1
π

∫ ∞

0

Im E(1)(1/2)
d�

�k+1
, (B.6)

and the integral
∫ ∞

0

e−A/zz−k−2dz = A−1−kΓ(1 + k), (B.7)

give the asymptotic behavior

ak ∼ 2
π

(−16)−k

(
1 − 5

2k
− 13

8k2
+ · · ·

)
, k � 1, (B.8)

which is the result obtained in [29,72]. However, the trans-series should also
give us the asymptotics of the coefficients of the first instanton series. To see
how this goes, we note that the first instanton correction is formally purely
imaginary, and it will get an exponentially small real piece related to the real
part of the second instanton series. We expect

2Re E(1)(ν) = − 1
4π2

∂

∂ν

(
f2(ν)

∂E(0)

∂ν

)
. (B.9)

Note the factor of 2 in the r.h.s., which is standard in resurgence (see, e.g.,
equation (5.14) in [93] or else [94] for more details). If we write

E(1)(1/2) =
32i
�

e16/�
∑

k≥0

a
(1)
k �

k, (B.10)

the dispersion relation tells us that

a
(1)
k ∼ − 2

π

∫ ∞

0

Re E
(1)
0 (�)

�

32
e−16/�

d�

�k+1
. (B.11)

To perform the integral, we need the result
∫ ∞

0

e−A/z log(z)z−k−2dz = A−k−1Γ(k + 1) (log(A) − Hk + γ) , (B.12)

where Hk is the harmonic number, as well as the asymptotics at large k,

− Hk + γ = − log(k) − 1
2k

+
1

12k2
+ O(k−3). (B.13)
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One then obtains the prediction for large-order behavior,

a
(1)
k ∼ − 8

π
(−16)−kΓ(k + 1)

{
log(k)

(
1 − 4

k
+ O(k−2)

)

+ log(2) + γ +
1
k

(
−3

2
− 4γ − 4 log(2)

)
+ O(k−2)

}
, k � 1,

(B.14)

which can be checked in detail by using standard techniques.8
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ics. arXiv:1803.02320

[11] Grassi, A., Mariño, M.: A Solvable Deformation of Quantum Mechanics.
arXiv:1806.01407

[12] Mironov, A., Morozov, A.: Nekrasov functions and exact Bohr–Sommerfeld in-
tegrals. JHEP 1004, 040 (2010). arXiv:0910.5670

[13] Huang, M.-X., Kashani-Poor, A.-K., Klemm, A.: The Ω deformed B-model
for rigid N = 2 theories. Annales Henri Poincaré 14, 425–497 (2013).
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[66] Başar, G., Dunne, G.V., Ünsal, M.: Quantum geometry of resurgent
perturbative/non-perturbative relations. JHEP 05, 087 (2017). arXiv:1701.06572

[67] Piatek, M. R., Pietrykowski, A. R.: Solvable spectral problems from 2d CFT and
N = 2 gauge theories. In: 25th International Conference on Integrable Systems
and Quantum Symmetries (ISQS-25) Prague, Czech Republic, June 6–10, 2017,
2017. arXiv:1710.01051

[68] Martinec, E.J., Warner, N.P.: Integrable systems and supersymmetric gauge
theory. Nucl. Phys. B 459, 97–112 (1996). arXiv:hep-th/9509161

[69] Gorsky, A., Krichever, I., Marshakov, A., Mironov, A., Morozov, A.: Integra-
bility and Seiberg–Witten exact solution. Phys. Lett. B 355, 466–474 (1995).
arXiv:hep-th/9505035
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